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Abstract 
 

This thesis suggests reverse leakage current problem which can occur when 

resistive random access memory (RRAM) is integrated as synaptic device with 

integrate-and-fire (IF) neuron circuit in spiking neural network (SNN). To this 

issue, self-rectifying RRAM was proposed as a solution. Ni/W/SiNx/n-Si RRAM 

with different bottom electrode (BE) doping concentration was fabricated and 

measured. Their DC and rectifying characteristics were analyzed based on the 

measurement data. Among them, self-rectifying RRAM with lowest BE doping 

concentration exhibited foremost rectifying characteristics without any additional 

selector or diode device. Furthermore, hardware-based system level simulation was 

conducted to evaluate the effect of self-rectifying RRAM synapse on spiking neural 

network. As a result, total 10.2%p of accuracy increment was obtained in MNIST 

pattern recognition simulation, utilizing the proposed RRAM.     

 

Keyword : Resistive random access memory (RRAM), synaptic device, 

neuromorphic, self-rectifying, system level simulation 

Student Number : 2018-28157 
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Chapter 1 
 

 Introduction 
 

Neuromorphic systems have drawn attention for their low power consumption 

and parallel computing [1, 2, 3]. They often employ spiking neurons as the primary 

units of signal processing, which are biologically plausible artificial neuron models 

where tasks are performed by action potentials [4]. Among various neural networks, 

spiking neural network (SNN) is one of the well-known neural networks having 

great potential for its energy-efficient computing [5, 6, 7]. It is composed of 

neurons and synapse which are mostly represented by circuits and synaptic devices 

respectively. Previously reported integrate-and-fire neuron circuit serve as a unit 

that constitute SNN [8]. Integrate-and-fire circuit integrates presynaptic signals 

with respect to time and deliver signals to the synapses connected to the axons 

when its membrane voltage reaches threshold. While broadly used non-SNNs 

where input and output values are represented by real numbers, those values are 

represented by firing rate or spike timing of neurons in spiking neurons [9]. In 

addition, their operation are time-dependent in that they integrate the signal over 
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time.  

Despite these differences, researchers have discovered that SNNs with spike-

rate coded data is equivalent to non-SNN with Rectified Linear Unit (ReLU) 

activation function [4, 11]. SNNs can be trained online with various methods which 

is biologically plausible, such as Spike-Timing Dependent Plasticity (STDP), or it 

can be trained offline by weight transfer from non-SNN with the same structure 

[11]. These approaches allowed the researchers to successfully perform machine 

learning tasks such as pattern recognition and time-series analysis with SNNs. 

Some of the research groups have been successfully integrated synaptic devices 

and neuron circuits which has been presented on VLSI [12, 13].   

To construct hardware based SNN, many researchers made effort to build 

artificial neuron circuits for intelligent systems such as integrate-and-fire circuit. 

For the synapse, there has been many attempts to integrate Resistive Random 

Access Memory (RRAM) with neuron circuit owing to their great advantages of 

low power, high scalability, gradual switching characteristics, and extensibility to 

3D structure [14-22]. However, despite the strengths, serious problems arise when 

RRAM is integrated with IF circuit as synapse.  
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In this paper, we propose a serious problem which can occur in hardware 

based SNN when RRAM is used as synaptic device. Since RRAM is a passive, 

bidirectional device, current may not flow as expected. This can impede the 

postsynaptic spike to generate, causing error to various neuromorphic application. 

We address this issue and suggest self-rectifying RRAM as a solution. Fabricated 

RRAM synaptic device and its measurement data are demonstrated. To evaluate the 

synaptic device performance of proposed RRAM, hardware based SNN simulation 

is conducted within simple MNIST pattern recognition.  

 

1.1. Integrate and Fire Neuron Circuit 
 

Integrate-and-fire neurons are one of the simplest models for describing 

biological neuron behaviors, which integrate input signals on membrane capacitors 

and generate action potentials when the membrane voltage reaches a certain level. 

Connecting multiple integrate-and-fire neurons results in spiking neural networks 

(SNNs), which are intelligent systems capable of performing tasks such as pattern 

recognition [23, 24]. 

Various neuron circuits were presented to emulate integrate-and-fire model 
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and neural learning algorithms on circuits [25]. Such circuits focused on integration 

and action potential generation. When an integrate-and-fire circuit receives 

presynaptic spikes, current is injected to membrane capacitor, and the amount of 

which depends on state of the synaptic device. Simple illustration of integrate-and-

fire neuron circuit and its operation is presented in Figure.1.  

 

Integrate-and fire neuron circuits and synaptic devices compose neuromorphic 

systems. Each synaptic device connects two spiking neuron circuits those referred 

to as presynaptic neuron circuit and postsynaptic neuron circuit. Presynaptic 

neuron circuit transmits spike while postsynaptic neuron circuit receives the spike. 

Even for the same presynaptic spike, the amount of current received by 

postsynaptic neuron may differ depending on the state of the synaptic device. This 

Postsynaptic Spike

Presynaptic Spike

Synaptic Device

Figure 1. Illustration of integrate-and-fire neuron circuit 
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factor which determines such amount of current for single presynaptic spike is 

relatively known as synaptic weight. When current flow through the synaptic 

device, membrane capacitor is charged accordingly. If the amount of current is 

large enough, Vmem exceeds the threshold voltage of the postsynaptic neuron 

evoking the postsynaptic neuron to generate the postsynaptic spike.  

 

 

1.2. Resistive Random Access Memory 
 

Resistive random access memory (RRAM) has been broadly investigated 

as a leading candidate for next generation nonvolatile memory [26]. RRAM has 

also been drawing attentions as a synaptic device in neuromorphic system [27-32] 

due to its advantageous features such as simple structure, low cost, high integration 

density [33], fast operation [34, 35, 36], gradual switching [37], and CMOS 

compatibility [38].  

Since neuromorphic system requires a number of synapses, high density 

RRAM array is highly recommended. For high density RRAM implementation, 

many array structures have been proposed. Figure 2 shows schematic of 
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representative 3D RRAM arrays.  

To construct a neuro-inspired non-von Neumann computing architecture, 

3D array structure with adjustable nonvolatile memory cells is key factor. 

Especially, cross-point RRAM is suitable for neuromorphic system thanks to its 

structure. This is because the input vector and the conductivity matrix, which is one 

of the most crucial part of machine learning algorithms, can be carried out naturally 

if the synaptic elements that can control the electrical conductivity are located 

between two crossing lines.   

 

 

 

Figure 2. Schematic of (a) simply stacked 3D horizontal RRAM array; (b)D vertical 

RRAM array; (c) the cross-section of (b) by cutting through one pillar electrode[39]. 
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Many researchers have been focusing on RRAM as one of candidates for 

such synaptic element. Number of studies which apply RRAM to neuromorphic 

system has been increased, while application to high density memory field has 

decreased every year (IEDM, 2014-2016). In addition, it has been reported that 

RRAM took over the proportion among other Flash-based devices and phase 

change memory (PCM) for the type of synaptic devices employed in the hardware 

implementation of the artificial neural network (IEDM, VLSI 2018).  

As demonstrated so far, RRAM has become a point of interest to many 

researchers as synaptic device for neuromorphic system. Integration of RRAM as 

synaptic device with neuron circuit will be addressed in the next chapter.  

 

 

 

 

 

 

 



 

 ８ 

Chapter 2  
 

Reverse leakage current in neuron circuit 
 

 In this chapter, we present reverse leakage current problem which 

occurs in hardware based SNN when RRAM is utilized as synaptic device. For 

specification, the problem is sequentially described based on the integrate-and-fire 

neuron circuit. Furthermore, comparison with one of the established issues RRAM 

possess (sneak path) will be described.   

 

 

2.1 Reverse Leakage Current 
 

 Although RRAM has been a renowned synaptic device for their 

great advantages, it also has suffered from few challenges. When RRAM is 

integrated in a circuit, it is a bidirectional passive component. This indicates 

current direction through RRAM depends on voltage difference. For this small 

reason, serious problem can arise in RRAM array.  

 Cross-point RRAM array has a well-known problem originated from 

above characteristics: sneak path problem [39]. During both write and read 
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operation, leakage current form sneak path through unselected cells. Since IR drop 

exists in the wire, 0 voltage is not guaranteed which leads to leakage paths. In 

terms of the write operation, unselected cells can be programmed without intention. 

Read operation can also malfunction from the sneak path problem. The cell to be 

read out can be HRS which is surrounded by LRS cells. In this case, the sneak path 

can flow through the surrounding cells in the LRS and summed with read-out 

current causing the output current bigger than it should be. In order to suppress the 

sneak path, many researchers conducted various approaches such as selector or 

diode.  

However, sneak path problem is not the only problem RRAM suffers. 

Figure 3. Schematic of the sneak path problem in the cross-point 

RRAM array. Figure adopted from [39]. 
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When RRAM is integrated as synapse in hardware based neural network, reverse 

leakage occurs in neurons where membrane voltage is larger than zero and not 

receiving spikes from presynaptic neurons as shown in Figure 4. This provokes 

error to membrane capacitor charge integration, impeding the successful operation 

of neuromorphic application. In this thesis, the specific situation will be named 

‘reverse leakage current problem’.  

When Vin,1 is high, Iforward flows through the RRAM synapse delivered by 

two current mirrors as depicted in Figure 4. Delivered current charges the 

membrane capacitor increasing Vmem. If this circuit function appropriately, Vmem 

IforwardIreverse

Vin,1Vin,2

N1

VD,N1

Iin

I&F neuron circuit

Cmem
Vmem

Figure 4. Reverse leakage current problem in spiking neural network 
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would increase according to the synapse current and generate postsynaptic spike. 

However, problem occurs when Vin,1 becomes low and Vin,2 becomes high. In this 

case, Iforward also flows through the RRAM synapse to N1, increasing the drain 

current of the NMOS. From this operation, gate voltage of N1 increases 

accordingly thereby increasing the node voltage of VD,N1. Since VD,N1 becomes 

bigger than Vin,1, reverse leakage current occurs from VD,N1 to Vin,1. On account of 

this event, Iin current delivered by current mirror would be smaller than it should be. 

This leads to postsynaptic spike generation failure, consequently provoking 

malfunction in SNN. Therefore, to properly function in SNN, RRAM should be 

integrated with a diode which can offer rectifying characteristics.  
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Chapter 3 
 

Self-rectifying RRAM 
 

In the previous chapter, we discussed the solemnity of reverse leakage 

current problem. It is evident that this problem will be solved with an additional 

diode integration. However, integration of additional device with RRAM would 

weaken one of the biggest advantages of RRAM, which is small size. Therefore, 

RRAM with self-rectifying characteristics will be beneficial for both size and 

suppression of reverse leakage current. In this chapter, introduction of self-

rectifying RRAM and its DC characteristics will be analyzed. 

 

3.1. Self-rectifying RRAM 
 

 In Ni/W/SiNx/n-Si RRAM, we can take advantage of its metal-

insulator-silicon (MIS) structure. After the forming process of SiNx switching layer, 

SiNx no longer serve as an insulator only offering conductive path for the switching 

process. Consequently, it becomes a metal-silicon (MS) contact indicating the 

presence of Schottky contact. This Schottky contact can be utilized to construct 
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RRAM with self-rectifying characteristics. Since rectification effect by Schottky 

diode will vary with BE doping concentration, three types of RRAM with different 

BE doping concentration was chosen in this experiment.  

The proposed Ni/W/SiNx/n-Si RRAM devices were fabricated by the 

following process flow. RRAM fabrication was done upon n-type Si (100) 

substrate. Screen oxide was thermally grown and ion implantation was conducted 

to form BE. In order to observe doping concentration dependency, n-type dopant 

was used in three different doses: type A ( 51012 cm-2), type B (51014cm-2) and 

type C (51015 cm-2) with 40 keV energy. BE doping concentration of each samples 

are analyzed by secondary ion mass spectrometry (SIMS).  After the BE 

formation, screen oxide was removed and 8 nm thick SiNx switching layer was 

deposited by plasma enhanced chemical vapor deposition (PECVD) using SiH4 and 

NH3 gas reactant at 300°C. Tungsten TE was deposited with sputtering system 

while the samples were covered with shadow mask resulting circular TE pattern 

with 100m diameter. Finally, nickel was deposited with thermal evaporator 

system to prevent TE oxidation followed by the removal of the shadow mask. The 
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energy-dispersive X-ray spectroscopy (EDS) was conducted for depth profile of 

Ni/W/SiNx/n-Si device, containing information on atomic percentage of each 

element depending on the depth. All of the measurements were conducted using 

Keithley 4200-SCS semiconductor parameter analyzer (SPA). Control bias were 

applied to Ni electrode while n-Si BE were grounded during the measurements. 

  

Figure 5. (a) TEM image of fabricated Ni/W/SiNx/n-Si RRAM device; (b) EDS 

line scan from TE to BE of self-rectifying RRAM device; (c) Doping 

concentration profile of 3 device with different implantation dose  
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 Figure 5 (a) shows transmission electron microscopy (TEM) image 

of fabricated device. From this image, thickness and amorphous state of SiNx can 

be observed. One can observe from EDS data in Figure 5 (b) that the SiNx layer is 

formed Si-rich, which is advantageous for RRAM switching characteristics [31]. 

According to the SIMS analysis results illustrated in Figure 5 (c), doping 

concentrations of the Si BEs each have been well controlled by the dose.  

 

3.2. Measurement and Analysis 
 

Figure 6 shows DC current - voltage (I-V) characteristics of RRAM 

devices with different BE doping concentration. Compliance current was applied to 

avoid the permanent breakdown and to control appropriate switching 

characteristics of each device. Owing to the Schottky diode between TE metal and 

BE Si, highest rectification ratio was obtained in the device with lowest doping 

concentration BE (See Figure 6 (a)). As shown in Figure 6 (b), when doping 

concentration was higher than that of type A, rectifying characteristics were seen 

but not significantly. On the other hand, type C showed hardly any rectifying  
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Figure 6. I-V characteristics by DC sweep measurement of fabricated (a) 

51012 (b) 51014 (c) 51015 cm-2 dose RRAM. Among three devices, (a) has the 

highest rectification effect dominated by diode. 
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characteristics. Current at negative bias was significantly suppressed in type A than 

type B and C as depicted in Figure 6 (a). The low resistance state (LRS) current of 

type C drops sharply in low voltage region in Figure 6 (c), while that of type A 

drops more gradually (Figure 6 (a)).  

Based on the DC sweep measurement data, the reverse bias characteristics 

were further examined and reset mechanism of the devices were analyzed. Figure 7 

(a) shows scatter plot including reset current vs. reset voltage graph for the three 

devices. Here, reset current is defined as the current from reset point. As one can 

notice from the plot, reset power (reset voltage × reset current) is close to constant 

regardless of BE doping concentration. For mathematical analysis, linear fitting of 

the three clusters was done and plotted in Figure 7 (a). The slope of the fitted result 

is −1.1 indicating that the reset operation occurs from the same power. This 

provides evidence that all fabricated Ni/W/SiNx/n-Si devices follow the reset 

switching mechanisms of Joule heating [32]. The set switching process can be 

explained by trap generation in SiNx layer. When set voltage is applied to the TE, 

high electric field can accelerate the electrons breaking down the lattice structure. 

From this, dangling bond can be created and they serve as traps composing 
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conducting path [33]. Figure 7(b) depicts numerical rectification ratio based on the 

DC measurement data. Here, rectification ratio is defined as positive voltage LRS 

current divided by negative voltage LRS current. RR in type A and B was extracted 

from 1V, whereas RR of type C was extracted from 0.3V because of the limitation 

by compliance current. RRAM with lowest BE doping concentration device had 

maximum 3 orders of rectification ratio surpassing other devices with higher BE 

doping concentration. Type A with high RR also showed good retention even after 

extensive amount of time exposed in 125°C (Figure 8 (a)).  

 

 

Figure 7. (a) Reset voltage vs reset current graph of type A (51012 cm-2) and linear 

fit slope indicating Joule heating reset mechanism; (b) Statistical box graph of 

rectification ratio based on measurement data 
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Figures 8(b)-(d) show the cumulative probability distribution of LRS and 

HRS current measured from three types of devices. The memory window between 

LRS and HRS current in type A is high enough (>102) to use as synapse in neural 

network compared to other two devices. Also, the LRS and HRS current of type A 

had less variability than other devices. Based on the previously mentioned 

properties, the sample which has the lowest BE doping concentration (type A) is 

the most suitable self-rectifying RRAM synapse as a solution for SNN reverse 

leakage current problem.  

Figure 8. (a) Reset voltage vs reset current graph of type A (51012 cm-2) and linear 

fit slope indicating Joule heating reset mechanism; (b) Statistical box graph of 

rectification ratio based on measurement data 
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Chapter 4 
 

Hardware-Based System Level Simulation 
 

 

 In this chapter, we evaluate the contribution of self-rectifying 

RRAM to the system by conducting hardware-based system level simulation. 

MNIST pattern recognition simulation was conducted utilizing the measurement 

data of fabricated RRAM.   

 

 

4.1. System Level Evaluation of Self-Rectifying RRAM 
 

 Since self-rectifying RRAM with 51012 cm-2 BE concentration 

(type A) has highest rectification ratio, it is expected to effectively suppress reverse 

leakage current. However, it is not clear how much this suppressed reverse leakage 

current effect the system. Therefore, we conducted system level evaluation based 

on measurement data shown in the previous chapter.  
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 For the evaluation, MNIST pattern recognition test with hardware 

based SNN was conducted. Figure 6 shows the model of neural network employed 

in this simulation. Single layer, binary weight neural network within 784 inputs and 

10 outputs was employed in this model. Since the MNIST data sets have 784 pixels 

(2828) and 10 labels (0 to 9), the number of inputs and outputs were also set by 

784 and 10.   

  

 

Figure 5. Hardware-based neural network system configuration 
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As depicted in Figure 9, 7840 number of weights were first trained by gradient 

descent method with continuous weight values. Then the weights were binarized in 

to 0 and 1 by setting the proportion of each weight becomes 50:50 as shown in 

Figure 10. In the inference step, weights were assigned according to this binarized 

weight map. From this very same model, inference accuracy of non-SNN was 

82.90%.  

Figure 10. Binarized weight map after neural network 

training 
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 For the inference, input datasets were transformed into 256 

timesteps per pixel. Since each of the pixels have values from 0 to 255, each 

timesteps were encoded to generate a spike by the probability proportional to the 

pixel values. Figure 11 illustrates the circuit diagram of multiple RRAM synapse 

connected to one postsynaptic IF neuron circuit. As each timestep passes by, Vhigh or 

Vlow is applied to the top electrode of RRAM synapse. Then the synaptic current 

flowing through RRAM is determined by the voltage difference of input voltage 

and VD,N1. For the realistic simulation, this synaptic current was adopted from the 

Figure 11. Circuit diagram of multiple RRAM synapses connected to one postsynaptic IF 

neuron circuit through current mirror. Reverse leakage was considered in this circuit. (b) 

Schematic of hardware-based system level simulation of binary-weight SNN employing the 

proposed self-rectifying RRAM synapses.  
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measurement data of three types of RRAM.  

First, VD,N1 was enumerated by solving Kirchoff’s current law (KCL). 

Then by the voltage difference between input voltage and VD,N1, current was 

adopted from the measurement data. From the binarized weight map in Figure 10, 

HRS current or LRS current was adopted when the weight was 0 or 1 respectively. 

After this process, current sum of 724 RRAM synapse was calculated (Iin). From Iin 

and Cmem, Vmem was calculated and compared with Vth. If Vmem is bigger than Vth, 

postsynaptic spike is generated.      
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4.2. Simulation Results  

 

 Figure 12 shows the confusion matrix illustrated by the simulation 

results. Y-axis represents the real label of the datasets, and X-axis represents the 

predicted label. High accuracy is achieved when sum of the diagonal values in the 

confusion matrix is big. As depicted in Figure 12, sum of the diagonal values was 

TABLE I. MNIST classification accuracy result of hardware-based binary-weight 

SNN simulation 

Synapse Rectification Ratio Accuracy [%] 

Ideal - 82.90  

Type A 460 (high) 82.84 

Type B 2.1 76.61 

Type C 1.03 (low) 72.65 

 

Figure 12. Confusion matrix of type A and C of the hardware-based 

SNN simulation results 
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bigger when type A synapse was used in the simulation. Furthermore, one can 

observe that label “1” accuracy is particularly small when type C synapse was 

employed. This result originates from the fact that MNIST pattern "1" contains 

larger number of dark pixels compared to other patterns, making the system more 

vulnerable to reverse leakage problem. Table  shows inference accuracy of each 

type of devices. While type A synapse with high rectification ratio shows only 

0.06%p drop from ideal synapse accuracy, type C shows 10.25%p drop. Additional 

simulation was set up by considering the variability of type A and type C according 

to the measurement data depicted in Figure 8. For type A, the average accuracy was 

75.3%, and its standard deviation was 1.58%p, while type C had 59.2% average 

accuracy and 2.66%p standard deviation. Even when the variability is taken into 

account, since type A has superior uniformity than that of type C, accuracy drop 

was considerably low. Above simulation results indicate that rectification 

characteristics of RRAM successfully suppressed reverse leakage current problem 

thereby increasing inference accuracy. Furthermore, this results also emphasize the 

severity of reverse leakage current problem in spiking neural network.   



 

 ２７ 

Chapter 5 
 

Conclusions 
 

In summary, we proposed self-rectifying RRAM synapse to solve reverse leakage 

current problem that arises when RRAM device is integrated with IF circuit as 

synapse in SNN. We investigated that Ni/W/SiNx/n-Si RRAM with 51012 BE dose 

exhibited highest rectification ratio with built-in Schottky diode. We verified that 

the proposed device alleviates reverse leakage current problem by conducting 

hardware based SNN simulation for MNIST classification. Classification accuracy 

was improved by 10.19%p when self-rectifying RRAM was employed compared to 

non-rectifying RRAM case. As a result, proposed self-rectifying RRAM not only 

possess potential as synaptic device for hardware SNN but is also an expected 

candidate for bringing various promising results in neuromorphic system 

application. 
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초    록 

 
본 논문에서는 저항변화메모리가 시냅스 소자로서 스파이킹 뉴럴 

네트워크에 인테그레이트-앤-파이어 뉴런 회로와 집적될 때에 발생하는 

역방향 누설 전류 문제에 대해서 제안한다. 또한, 이러한 문제를 

해결하기 위해 자가정류기능이 있는 저항변화메모리를 제안 및 

제작하였다. 니켈/텅스텐/실리콘나이트라이드/실리콘 의 구조를 가진 

자가정류기능의  저항변화메모리를 하부전극의 도핑 농도를 다르게 하여 

제작하였고 측정하였다. 측정결과를 바탕으로 소자들의 전압-전류 

특성과 정류 특성을 분석한 결과, 제작한 소자들 중 가장 낮은 도핑 

농도의 하부전극을 가진 저항변화메모리의 정류비가 가장 큰 것으로 

확인하였다. 나아가 제안하는 자가정류기능의 저항변화메모리가 

스파이킹 뉴럴 네트워크에 어떤 영향을 미치는지 확인하기 위하여 

하드웨어 기반 시스템 레벨 시뮬레이션을 진행하였다. 그 결과, 

자기정류기능의 소자를 시냅스로 한 뉴럴 네트워크에서의 MNIST 패턴 

인식 시뮬레이션 인식률이 총 10.2%p 증가 하였다. 본 논문에서 

제시하는 자가정류 소자는 이후 다양한 뉴로모픽 어플리케이션의 결과를 

성공으로 이끌 수 있는 가능성을 지닌다.     

 

주요어 : 저항변화메모리 (RRAM), 시냅스 소자, 뉴로모픽, 자가정류기능, 

시스템 레벨 시뮬레이션  

학   번 : 2018-28157 
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