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Abstract

In recent years, light detection and ranging (LiDAR) sensors have been applied in
several situations, including robotics and autonomous driving. However, LiDAR
sensors have relatively low resolutions. Therefore, it is imperative to design an
effective sampling algorithm for LiDAR sensors. To manage complex on-road
environments, conventional ROI-based LiDAR sampling algorithm utilizes semantic
information to achieve robust and high reconstruction quality. However, the ratio
between sampling rates of objects, roads, and background areas is not thoroughly
investigated. Therefore, the overall reconstruction quality may be degraded. To
address this problem, this study presents a proposed method to examine the sampling
budget ratio between objects, roads, and background areas, under the assumption
that characteristics of objects, roads, and background areas are known prior to
sampling. Experimental results depict a significant reduction in the mean-absolute-
error (MAE) of the object region, road region and overall region by up to 45.92%,
54.18% and 3.36% under the proposed method, respectively, compared to the
conventional method.

Keyword: Sampling Algorithm, Light Detection and Ranging Sensor, LiDAR,
Autonomous Driving, On-road Environment, ROI-based Sampling.
Student Number: 2018-27790
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Chapter 1. Introduction

1.1. Overview

Autonomous driving is a fully automated vehicle drove by itself without human
supervision. [1] Should system performance degrade, the vehicle is autonomously
restored to the system of minimal risk. Autonomous driving has received attention
recently with the goal of reducing road accidents, congestion, and pollution; and to
eliminate the huge cost of owning personal vehicles if integrated with blooming
share-driving services. [2], [3] Autonomous driving, considered as the key of the
future is actively developed in both academia, and industry. [4] In autonomous
driving, sensors, for example cameras, GPS navigation, and light detection and
ranging (LiDAR) sensors are installed in the vehicle to imitate the complex human
natural sensing system. [5], [6]

Figure 1. Autonomous Driving

1.2. Light detection and ranging sensor LiDAR sampling

The LiDAR sensor is based on range sensing that estimates the time intervals
between emission of light from the LiDAR and arrival of light reflected from a
distant object to measure distances of objects. Therefore, within range, a LIDAR

sensor can give adequate information from a wide and broad field of view (FOV).

(71, [81, [9]



Velodyne Lidar
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Figure 2. 3D image taken by Velodyne LiDAR

Although a LiDAR sensor detects obstacles on the road in autonomous driving, there
are many challenges in utilizing this sensing in real-time applications. First, the
quality of measurement from the LiDAR strongly depends on the reflective property
and the angle of the reflecting surface. In practice, measurements are lost because
reflected laser beams do not return during the distance measurement process. Second,
despite a LiDAR sensor is able to construct a 3D map of surrounding, in order to
process and store large-scale point cloud, LiDAR requires significant resources. To
address these issues, fast and accurate sampling methods are proposed by Hawe et
al. [10], Schwartz et al. [11], [12] and L. K. Liu et al. [ 13]. Nevertheless, their studies

have some disadvantages.

The method by Hawe et al. [10] is not practical because prior to sampling it is
required gradient of the disparity map and the difference between the gradient of
color images and that of disparity maps. Schwartz et al. [11], [12] proposed a
sampling method namely saliency-guided to perform sampling in a two-stage
manner. For a given sampling approach, it extracts an object information or saliency
from the estimated depth to select better locations. The proposed method of L. K.
Liu et al. [13] is analogous to the two-stage sampling. These approaches are time-
consuming rough disparity estimation. These schemes are unsuitable for autonomous
driving in on-road environments owing to the complexity of background in an
outdoor environment, and the reliability of gradient image of a scene in outdoor
scenarios. -X. T. Nguyen et al. [ 14] proposed a LiDAR sampling method to distribute
samples in on-road environment rely on the semantic segmentation information from
regions of interest (ROI). Given a fixed sampling budgets, samples are moved from
the background and road areas into an object area, significantly enhancing the quality
of reconstructing objects. However, the ratio between sampling rates of objects,
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roads, and background areas is not thoroughly investigated. Thus, the overall
reconstruction quality may be degraded.
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Chapter 2. Background

This section introduces a sampling problem and describes the ROI-based sampling
algorithm, relevant sampling method to this paper.

2.1. Definition of a sampling problem

Let x € RN bean N x 1 vector representing a depth map of an entire scene in a
Field of View captured by LiDAR. For simplicity we assume that x is normalized
sothat 0 < x; <1 for i =1, ..., N. Generally, it is not feasible for a LIDAR sensor
acquiring data for all locations in the Field of View so that reconstructing the depth
map of the entire Field of View from sampled data is necessary. A captring data is
capable of acquire the number of samples M. The sampling problem is an
optimization problem of selecting samples in Field of View to minimize
reconstruction error with the constraint that the number of samples are the target
budget M. Let {1, ..., N} be the set of indexes of locations of the entire Field of
View and {iy, ..., iy} be the set of indexes of sampling location among {1, ..., N}.
Mathematically, we consider problem

N
in <> g~
b N L (M

where xi,...,xy are the real values and ¥y, ...,Xy are values estimated from M

sampled data x; , ..., x;,,

2.2. Oracle Random Sampling
2.2.1 Sampling Model

To acquire a set of spatial samples, a diagonal S € RM*N is used to represent the

sampling operation with the (i, j)-th entry of S being as follows

6 1, with probability p;
e {0, with probability 1—p;
)

Where {p f}?’ﬂis a sequence of pre-defined probabilities satisfying 0 <p; < 1

and the average of probabilities must achieve a target sampling ratio ¢

1
DX
j=1
3)
Where 0 < &< 1
Given S, the sample disparity map as
b = Sx @)



Based on definition of S, it is worth noting that the sampled disparity b € RN*1
will contain zeros if S;; = 0.
2.2.2 Oracle Random Scheme

Let a = [ay,...,ay]T be a vector representing the magnitude of the ground truth
disparity map’s gradient. It can be calculated as follows

a= Vx= \/(Dxx)z + (Dyx)2 (5)

. N . U .
A function of {af}j—1 is chosen based on the intuition sampled subset of gradient

should carry the maximum of amount of information compared to the full set of
gradients. To capture this intuition, it is to require that the average gradient
computed from all N samples is identical to average gradient computed from
subset of N samples. The average gradient computed from all samples is as

follows
N

The average gradient computed from a random subset of N samples is as follows
a;
y gef Z ] I
N

Where {Ij}?l:l is a sequence of Bernoulli random variables with probabilities

ZIH

(6)

(7

Pr[lj = 1] = pj. Here, the division of a; by p; isto ensure that Y is biased, i.e,
E[Y] = u.

Minimizing the difference between Y and p can be achieved by minimizing the
variance E[(Y — u)?]

ELCY — )] NZ—Var[I] o
8

Since Var[lj] = pj(l p]) Variance E[(Y — n)?] is as follows:
N
1—p; 1 a;?
so-1= 5 (5220
j =AY ©)

It can be seen that the optimal sampling probabilities {p j}?/:l can be obtained by

solving the optimization problem

min - ) —
o N &= b (10)



subject to %Z?’lej =¢,0=<p;<1
The solution is formulated as follows
pj = min(ra]-, 1) (11)

Where 7 is the solution of g(7) = 0. Here,

N
g = Z min(za;, 1) — &N
j

(12)
2.3. ROI-based LiDAR sampling algorithm
Scanners [
LIDAR
CONTROLLER
S Laser +—
= Y
g Time-to-Digital
A Photodetector Converter (TDC)

Sampling — LiDAR

Figure 4. LIDAR ROI-based sampling system configuration [9], [14].

There are two main reasons make previous sampling schemes inappropriate to apply
for autonomous driving in on-road environment. Firstly, in general, a scene in an
outdoor environment composes of complex background; this engendered previous
approaches to allocate excessively high number of samples into non-interested areas.
Secondly, obtaining a reliable gradient image of a scene in an outdoor environment,
generally, is a challenging task owing to the complication of its RGB image and the
sparseness of its raw depth image to estimate a reliable gradient. To tackle the
sampling problem in an on-road environment, it is assumed to apply the state-of-the-
art road and object detection algorithms to segment a scene into three regions namely
6 ¥ ! 4



road, object, and background.

Let S,, Sk, and S be the index sets of points in object, road, and background
regions, respectively. The union of the three sets is the set of sample budget, and the
intersection of any two is an empty set.

Sy USzUSp ={1,2,..., N} (13)
SoﬂSR= SOOSBZSBQSRZQ) (14)

Object, road and background regions have different characteristics so that it is
likely to sample them with different priorities. Let 15, Az and Az be weighted-
parameters denoting sampling priorities for the object, road and background areas,
respectively. A road area is generally flat so that the MAE does not change
dramatically when the sampling rate changes. As a result, the parameter A for a
road area is less than the one for a background area. Ay, 4o and Ax must satisfy
the equations as follows:

Ao = alg (15)

AR = BAp (16)

For a given sampling ratio &, the prior map, and parameters a and S, the
N
j:

derivation of the optimal sampling probability {p j} L is formulated as the

following optimization problem:

1 af af ai
min — Z—+az—+ﬁz—
P1,---PN N pl p] pk

i€Sp j€So kESg 17)

. 1
subject to ;Z?’:lpj =¢{,0=p; <1

Obviously, given weight parameters a and [ are derived by solving the
optimization as follows:

1
min (MAE,y; + AMAEy;) (18)



Chapter 3. Proposed method

This research proposes methods to distribute samples efficiently in road and object
regions to enhance the reconstruction quality of object and road areas, and overall
area.

3.1. Analytical method

—=-all

-=-object

-+-road
25

057 ==wr1‘(1""ffA-(-——n)rJa,,,_Jj,J,,,__ b

e e e e e e e e b ST TP JUP S S G0 M Sy S S G Sy S Sy
1

I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
S

Figure 5. Average mean absolute error over sampling rates

Given a target sampling ratio &, the problem is to distribute the sampling ratio for
specific region as object, road and background in order to minimize the
reconstruction error in object, road, background region or overall image. The
reconstruction error is solely capable of being calculated after sampling. Therefore,
it is assumed that MAE has to be predicted prior sampling so as to optimize final
output. Fig. 1 illustrates the MAEs of object, road areas and background scenes for
specified sampling rates from 1% to 50%. By examining on various images, it is
evident that the these MAEs can be modeled as functions f,(x), fr(x), fz(x)
such that f,:[0,1] » R, , fz:[0,1] » R,, f5:[0,1] » R,. It is noticeable that
although graphs are similar in case of MAE of all, MAE of object and MAE of road,
which are shown in Fig. 4 and Fig. 5, the parameters a,, by, co, Ar, bgr, Cgr,
ag, bg, cg vary depending on the area of object and road.

bo
MAE ., ; = Ao) =
obj fO( 0) Qo + co +/10 (19)
b
MAE,oqq = fr(Ag) = ag + ——
CR + AR (20)
bg

MAEbackground = fp(Ap) =ag + s + g 1)
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For consistency, let a = [ay, ...,ay]T be a vector indicating a prior information of
a depth map. For a given sampling ratio &, the prior map, and parameters @ and

B, respectively, the derivation of the optimal sampling probability {p j}?’:l is
formulated as the following optimization problem

2

n (05 Lo Za’?ﬂp %
min — — — —
prpy N\ 75 i ° pj R Pk

i€Sp j€So kESR (22)
Subject to
1
N ZPi"’ZPj"’ Zpk =<
i€SB j€So kESR (23a)
1 Z 8 1 Z
Tl Pk =P 7 pi
ISkl KESR 151 iesg (23b)
1 Z 1
To 1 pj=a Z pi
1Sol &= 1581 &5 (23¢)

Where ¢5, ¢g, ¢r are the weights for background, object, and road,
respectively. ¢g, ¢, ¢Pr are chosen based on which area is more important in
optimization. Overall, ¢p = ¢pp = ¢pr = 1 shows a better performance in overall
reconstruction.

In this model, it is pivotal to note that it is assumed (19), (20) and (21) are
determined prior sampling, which means that the parameters a,, by, ¢y, ar, bg,
cr, g, bg, cp are known prior sampling. From characteristics of object, road
and background, it is obvious that the background and object areas are not flat.
Therefore, to minimize the total errors of object, road, and background, this
optimization problem can be expressed as follows:

ar‘%gllB(quMAEbackground + ¢0MAEobj + ¢RMAEroad) (24)

Because the total sampling budget of whole image must be maintained, the
following constraint holds:
A0S0 + ArSg + ApSp = ¢ (25)

Where
Ao = adp, g = BAp (26)

And &, A, Sp, Sg and Sy are the sampling ratios of whole image, object area,
road area, and background area, the ratio of object area to whole image, the ratio of
road area to whole image, the ratio of background area to whole image,
respectively.

3§ 53 17
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From (25), and (26), it can be deduced that:

0 $ Sp
=——a+ -
From (25), (26), and (27):
-For a = 0:
§—ApSp =0 (28)
-For = 0:
f - /‘lBSB - a/‘{BSO =0 (29)

The optimization problem in (24) can be solved with constraints in (25), (26). (28)
and (29). The optimal solutions are as follows

§ S <so $boSy | ¢Rbr5b)cb

5 S, T \S N BbyS, T \PsbyS;

Ab =
[cbrSs | 5oy So [BoboS)
¢B b°r r r ¢B b o (30)
c ¢0boSb —c
— ¢Obosb + b ¢BbbSo ©
dpbpS, Ap (31)

Figure 6, 7, 8, 9 show the objective function (24) and the result to solve optimization
problem of this objective function. Variations of this objective function can be found
in the Appendix section.

3§ 53 -11
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Chapter 4. Experimental results

4.1. Dataset

This section evaluates the proposed method on KITTI datasets [5]. KITTI dataset
consists of camera images, laser scans, high-precision GPS measurements, and IMU
accelerations from a combined GPS/IMU system. Depth images are used in
evaluation. They are acquired by projecting point cloud data into a color image
domain. The raw depth map, which is taken by using Velodyne HDE64 sensor [§],
is used as the input and ground truth is used for evaluation. It is known that the
combination of 11 raw scans creates the ground truth image.

Figure 12. Raw scan from KITTI

Figure 13. Ground truth depth from KITTI

Figure 14. RGB image of scene



4.2 Quantitative evaluation

Figure 15. Object segmentation

Figure 16. Road segmentation

Figure 17. Sample on object area

Figure 8. mpl on road area

Flgre 19. le on ime

16



This section compares the performance of the proposed method with existing method
ROI-based LiDAR sampling algorithm. This study attempts to optimize the previous
research of ROI-based LiDAR sampling algorithm in on-road environment.
According to —X.T.Nguyen et al. [14], the research proposed a scheme detects the
object areas. From the segmentation results, the approach distributes samples across
the segmented areas. However, the ratio between sampling rates of object, road and
background regions is not fully investigated. In our study, the ratio sampling rates is
introduced in order to achieve better performance.

The comparison of the MAEs on object, road, background and overall areas are
shown in TABLES 1, 2, 3, and 4, respectively. On each table, the first, second, and
third rows shows the results with three variations of ROI-based sampling algorithm
and the fourth, fifth, sixth, seventh, eighth, ninth display the proposed method with
different with different weight for object, road and background. In each row, the
second, third, fourth, and fifth columns represent the results with the sampling rates
of 5%, 10%, 15%, and 20%, respectively.

As can be seen in TABLE 1, the MAEs of object areas using proposed method are
fairly low, in case of sampling rate 5% and 10%, it worth noting that MAEs of object
area considerably decrease when applying proposed method by up to 43.83%. Data
in TABLE 1 suggest that proposed method is suitable for low sampling rate. Objects
represent for cars, trucks, or pedestrians.

5% 10% 15% 20%
ROI-based sampling (¢ = 1,8 = 1) 1.372 | 1.289 | 1.097 | 1.065
ROI-based sampling (@« = 4,5 = 1) 1.166 |0.909 |0.724 | 0.701
ROI-based sampling (& = 4, = 0.25) 0.727 | 0.637 | 0.610 | 0.639
Proposed method (@ = 1,0 = 1,05 = 1) 0.893 ]0.760 | 0.702 | 0.668
Proposed method (@ = 2,0 = 1,05 = 1) 0.697 ]0.626 | 0.595 |0.581
Proposed method (0p = 1,05, = 2,05 = 1) 0.901 |0.765 | 0.707 | 0.669
Proposed method (@y = 2,0, = 2,05 = 1) 0.884 | 0.743 | 0.688 | 0.663
Proposed method (09 = 3,0, =2,05=1) 0.681 | 0.607 | 0.589 | 0.576
Proposed method (9 = 2,0 = 3,05 = 1) 0.711 ]0.647 | 0.603 | 0.582

TABLE 1. MAEs (m) among ROI-based algorithm and proposed method on object
at sampling rates of 5%, 10%, 15%, and 20%

From TABLE 2 it can be seen that while MAEs of object area considerably decrease
when applying proposed method by up to 43.83%, MAEs of object area slightly
increase up to only 17.89%.

TABLE 3 and TABLE 4 presents a better performance of proposed method in MAEs
of background and overall, which decreases up to 9.32%, 4.68%, respectively.

It should be noted that the MAE degradation mainly occurs on the road region; which

is fairly low. Hence, the proposed sampling method provides an effective trade-off
between errors on the object and those on the remaining areas.

1 O -11
17 | = L1



5%

10%

15%

20%

ROI-based sampling (a =1, = 1) 0.208 | 0.159 |0.132 | 0.123
ROI-based sampling (a =4, = 1) 0.227 |0.170 | 0.142 | 0.129
ROI-based sampling (o = 4, 8 = 0.25) 0.419 | 0.267 | 0.220 | 0.180
Proposed method (Pp = 1,0, =1,05 = 1) 0.249 ]0.174 |0.147 |0.134
Proposed method (Pp = 2,0, =1,05 = 1) 0.274 10.186 | 0.157 |0.141
Proposed method (0y = 1,0, = 2,05 = 1) 0.183 | 0.155 |0.136 | 0.118
Proposed method (@y = 2,0 = 2,05 = 1) 0.247 |0.173 | 0.146 | 0.132
Proposed method (@y = 3,0 = 2,05 = 1) 0.267 |0.182 | 0.151 | 0.136
Proposed method (Pp = 2,0 =3,0p=1) 0.182 | 0.141 | 0.126 | 0.116

TABLE 2. MAEs (m) among ROI-based algorithm and proposed method on road at
sampling rates of 5%, 10%, 15%, and 20%

5% 10% 15% 20%
ROI-based sampling (e =1, =1) 1.295 1.029 | 0.872 | 0.805
ROI-based sampling (@ =4, =1) 1.450 | 1.102 | 0.948 | 0.902
ROI-based sampling (& = 4, = 0.25) 1.269 | 1.033 | 0.892 | 0.731
Proposed method (09 = 1,05, =1,05=1) 1.186 | 0.881 | 0.758 | 0.692
Proposed method (0y = 2,0, = 1,05 = 1) 1.518 | 1.083 | 0.909 | 0.812
Proposed method (@y = 1,0z = 2,05 = 1) 1.238 10924 |0.801 |0.723
Proposed method (@y = 2,0 = 2,05 = 1) 1.669 | 1.151 | 0.955 | 0.852
Proposed method (@y = 3,0z = 2,05 = 1) 1.981 | 1214 |1.029 | 0.884
Proposed method (@y = 2,0, = 3,05 = 1) 1.783 | 1.197 | 0.996 | 0.900

TABLE 3. MAEs (m) among ROI-based algorithm and proposed method on
background at sampling rates of 5%, 10%, 15%, and 20%

5% 10% 15% 20%
ROI-based sampling (« =1, =1) 0.793 | 0.647 | 0.551 | 0.513
ROI-based sampling (« =4, =1) 0.847 |0.654 | 0.560 | 0.529
ROI-based sampling (& = 4,8 = 0.25) 0.853 ] 0.660 | 0.579 | 0.521
Proposed method (09 = 1,05, =1,05=1) 0.810 | 0.599 | 0.520 | 0.476
Proposed method (0p = 2,0, = 1,05 = 1) 0.848 | 0.626 | 0.538 | 0.491
Proposed method (0 = 1,0, = 2,05 = 1) 0.832 |0.619 | 0.541 | 0.489
Proposed method (@y = 2,0 = 2,05 = 1) 0.929 ]0.651 | 0.556 | 0.505
Proposed method (@y = 3,0 = 2,05 = 1) 0981 ]0.672 |0.572 |0.516
Proposed method (@y = 2,0, = 3,05 = 1) 0.954 |0.673 | 0.571 | 0.516

TABLE 4. MAEs (m) among ROI-based algorithm and proposed method on
overall at sampling rates of 5%, 10%, 15%, and 20%
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(d)
Figure 20. Reconstruction results at road and object regions by (a) ROI-Based
Sampling algorithm, (b) Proposed method, and (c¢)-(d) the zoom-out results of
object areas from (a)-(b), respectively.
19 2 M E g



Chapter 5. Conclusion

In this research, an optimized method of ROI-based LiDAR sampling algorithm in
on-road environment for autonomous driving is proposed. With variations in the
proposed method, they offer lower MAEs in object area and road areas and overall
than the precedent research, and performs better than other sampling methods.
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