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Abstract
Keyword spotting (KWS) plays an important role in the current speech-based

human-computer interaction, and is widely used on smart devices. With the rapid

development of neural networks, various applications in speech related fields such

as speech recognition, speech synthesis and speaker recognition have achieved

great performances. Neural networks have become attractive choices for KWS

architectures because of their good performance in speech processing.

However, since the application environment is mostly in small smart devices

including smart phones, tablets and smart home devices, neural network

architectures must consider the limited memory and computation capacity of these

smart devices when designing a KWS system . At the same time, the KWS system

should be able to maintain low latency in order to respond in real time. In addition,

KWS is different from other tasks, because it needs to be always online and waiting

for the call from the users, therefore, the power budget of the KWS application is

also greatly restricted.

Among the mainstream neural network models, FCDNN (fully connected

deep neural network), CNN (convolutional neural network), RNN (recurrent neural

network) and the combination of them are mainly used for KWS in the past.

Recently, attention-based models have become more and more popular. Among

them, CNN is widely adopted in KWS, because of its excellent accuracy,

robustness, and parallel processing capacity. Parallel processing capacity is

essential for low-power implementations.

In this work, we present a neural network model-Simple Depthwise

Convolutional Network, which supports an efficient keyword spotting. We mainly

focus on a more compact Residual Network, and apply noise injection as an

intermediate process to maintain high accuracy. Typically, ResNet always requires

several hundred thousands parameters to achieve good performance. In our model,

we employ depthwise convolutional neural networks to decrease the number of

parameters, so that it can be more suitable for smart devices with limited resources.

Finally, our model is tested on a real mobile device Samsung Galaxy S6 Edge,
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reality in the real inference time (that is, latency) of about 6.9ms, which is 17.5%

faster than the state-of-the-art model TC-ResNet. The publicly available Google

Speech Commands dataset is used to evaluate the models. The results show that we

only use about one half of the parameters and at most 300 times fewer number of

computations than the original base model, meanwhile, much smaller memory

footprint yet maintain the 96.59% comparable high accuracy which outperforms

the other state-of-the-art KWS models.

Keyword : Keyword Spotting (KWS), Convolutional Neural Network (CNN),

Small Footprint

Student Number : 2018-24547



iii

Contents

Abstract i

Contents iii

List of Tables v

List of Figures vi

1. Introduction 1

1.1 Keyword Spotting System (KWS)............................................................... 1

1.2 Challenges in Keyword Spotting..................................................................6

1.3 Neural Network Architecture for Small-Footprint KWS..............................6

1.3.1 TDNN-SWSA...................................................................................7

1.3.2 TC-ResNet........................................................................................ 9

1.3.3 DS-CNN............................................................................................9

1.4 Simple Depthwise Convolutional Neural Network for

Efficient KWS.......................................................................................... 10

1.5 Outline of the Thesis...................................................................................11

2. Simple Depthwise Convolutional Neural Network 12

2.1 Depthwise ConvNet....................................................................................12

2.2 Simple Depthwise ConvNet....................................................................... 14

2.3 Residual Simple Depthwise ConvNet........................................................ 15

2.4 Experiments and Results.................................................................................... 17

3. Robustness of Efficient Keyword Spotting 19

3.1 Weight Noise Injection............................................................................... 19



iv

3.2 Experiments on Two Different GSCs......................................................... 21

3.2.1 Standard GSC................................................................................. 21

3.2.2 Augmented GSC.............................................................................22

3.2.3 Experiments and Results.................................................................22

3.3 FRR and FAR in a 3rd Dataset................................................................... 24

3.3.1 FRR and FAR................................................................................. 24

3.3.2 The third GSC.................................................................................24

3.3.3 Experiments and Results.................................................................25

4. Conclusions 28

5. Bibliography 29

Abstract (in Korean) 32



v

List of Tables

Table 1. Finding the base channel list............................................................. 17

Table 2. Various multiplier K attemptions..................................................... 18

Table 3. Results of different 1-D depthwise convolution

kernel size.......................................................................................... 18

Table 4. Results of the models trained with single weight

injection..............................................................................................20

Table 5. Results of different noise scales........................................................21

Table 6. Results of various models on augmented dataset...........................23

Table 7. The performance results for DC-ResNet

and TC-ResNet..................................................................................23

Table 8. Results of various models on a standard dataset..............................23

Table 9. The test accuracy on/not on third GSC...................................... ..25



vi

List of Figures

Fig 1. End to End keyword spotting system................................................ 3

Fig 2. The topology of HMM based keyword spotting system................... 5

Fig 3. The schematic of TDNN-SWSA....................................................... 8

Fig 4. Depthwise convolution .................................................................. 13

Fig 5. Pointwise convolution..................................................................... 13

Fig 6. Compare traditional 2-D conv with 1-D temporal conv..................15

Fig 7. Compare 1-D temporal conv with 1-D depth conv......................... 15

Fig 8. The whole architecture of DC-ResNet............................................ 16

Fig 9. TC-ResNetROC and DC-ResNetROC tested

on not augmented GSC.................................................................. 26

Fig 10. TC-ResNetROC tested on augmented GSC 5 times..................... 26

Fig 11. DC-ResNetROC tested on augmented GSC 5 times..................... 27

Fig 12. The comparison between the best TC-ResNetand

the best DC-ResNetROC tested on augmented GSC...................27



１

Chapter 1

Introduction

1.1 Keyword Spotting System (KWS)

The rapid development of neural networks has made artificial intelligence possible,

and has achieved good results in processing speech and images [1,2]. Neural

network(NN) based KWS has achieved great popularity in the recent years

[3,4,5,6,7,8]. The accuracy of machine recognition basically exceeds that of human

recognition. As the most basic and direct way to interact with machines, speech

plays an extremely critical role in artificial intelligence systems. In recent years, it

has been used by major technology companies in the world for daily interaction on

smart devices or smart homes. Speech recognition is mostly performed in the

servers of service providers after the user's voice is transmitted. However, this

server-based speech recognition has drawn attention regarding security and privacy.

This is because the user's voice has been transmitted to the server, making it

vulnerable to external attacks, and possibly leaking personal information to the

outside [9]. In order to alleviate these concerns, on-device speech applications are

needed. Before performing speech recognition, the device needs to be woken up

and detect several predefined keywords. These predefined short contents consist of
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several characters called keywords. This process of detecting keywords by the

device is called keyword spotting.

Keyword spotting is the first step of human-computer interaction based on

speech. Thus, it is very important to detect the keywords very accurately, so that

subsequent speech recognition can be activated. Then it is possible to perform

interactive task operations. The process of keyword spotting is actually divided into

these following steps: First, the device needs to stay online at all times, waiting for

the user to give a call. When the user speaks out the keyword, the online device can

receive audio signals in real time to quickly detect if it is recognized as a keyword,

the device will wake up from the standby state to enter the interactive preparation

state [10].

As introduced above, simply speaking, in some terms, keyword spotting is

actually a simplified version of speech recognition. However, there is no decoding

part like a language model, and the final task is to complete a classification task. In

a typical process of keyword spotting using a neural network model, the entire

system is roughly divided into two processes, as shown in Fig 1. The first one is the

acoustic feature extractions, and the other one is the classification process based on

the neural network model.
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Fig 1. End to End keyword spotting system

The first step is the feature extractions, which is actually the same as that in

speech recognition. The arriving speech signal is passed to the feature extraction

module. If the speech signal length is L, a window function of length w is added,

and s is the stride size. T frames are always obtained. Each frame extracts F-

dimensional speech features through Mel-Frequency Cepstral Coefficients (MFCC)

or Mel-Frequency Cepstral Banks (MFFB). Then, the entire input speech signal is

converted into FTx feature graph. In the second step, the two-dimensional

feature matrix obtained above is transmitted to the classifier module. Finally the

probability of the output category is obtained through the neural network model.

In addition to the end-to-end neural network-based KWS system described

above, the traditional method also uses the keyword/filler hidden Markov model
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(HMM) for recognition [11，12], as shown in Fig 2. The key to this type of system

is the decoding module on the lower side of Fig. 2. It is similar to the decoder in

the HMM based speech recognizer. It also utilizes the Viterbi algorithm to obtain

the optimal path, but it is similar to LVCSR (large-scale vocabulary continuous

speech recognition). The difference from the speech recognition system is the

specific construction of the decoding network. The decoding network in speech

recognition contains all the words in the dictionary, while the wake-up decoding

network contains the keyword and filler words on the upper side of Fig.2. The

words excluding the keywords are all included in the filler path, and not every

word will have a corresponding path. Such a network will be much smaller than a

typical speech recognition network. When decoding keywords in a targeted manner,

there are fewer optional paths, allowing the improvement of decoding speed. All of

the other decoded candidates follow the same method to complete the overall

framework. Although this method has achieved a reasonable performance in

accuracy, it is still difficult to train, and it also requires a lot of computation

process. Other technologies, such as RNN, are significantly better than HMM-

based KWS in terms of accuracy [13]. Since RNNs have to wait for the previous

steps, the structure demands a large delay, which is not ideal for KWS requiring a

real-time response. Therefore, this article implements the variant network of CNN

to perform KWS tasks.
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Fig 2. The Topology of HMM based keyword spotting system
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1.2 Challenges in Keyword Spotting

As introduced in chapter 1.1, keyword spotting is usually considered as the first

step of the human-machine interaction, mostly used on smart devices. There are

basically four metrics for KWS.

The recall rate recalls to the number of times that it was correctly awakened as

a percentage of the total number of times the keyword was detected. This value is

better when it is larger.

The false alarm rate refers to the probability of keywords that should not be

detected. A better the performance can be achieved with a lower value.

The real time factor is also one of the four metrics for KWS, which represents

the response speed of the equipment.

Lastly, the power metrics is another metric for KWS. It is essential for portable

devices.

Regarding the four metrics described above, there were some notable

challenges. That is the trade-off between high accuracy and low power

consumption, or high accuracy and low latency. In this thesis, we not only focus on

the accuracy, but also pay attention on the latency. Usually power consumption is

mainly affected by the capacity of hardware of devices and architecture of models

we designed, which requiring us to deeply compress our model, so that less

parameters and computations are demanded. However at the same time, this model

should be able to maintain a high accuracy and faster speed comparable to that of

the state-of-the-art models.

1.3 Neural Network Architecture for Small-Footprint KWS

There are some neural network architectures that are suitable for the on-device

small footprint KWS. Among the mainstream neural network architectures,

convolutional neural network (CNN) based models and ResNet based models show
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fairly great performances, especially the models outperform in accuracy [14,15]

and showing low latency [15]. However, all of these ResNet models in previous

studies consume quantities of parameters, doing lots of computations as the cost of

pursuing high accuracy. As a result, the response speed is slowed by a considerable

amount. The trade-off of these metrics is crucial for KWS, since KWS is

commonly used on resource restrained devices. In this section, several latest

researches will be explored including the architecture using self-attention which

gained popularity in speech recognition, time delay neural network, temporal

convolution combined with ResNet, and lastly with depthwise convolution.

1.3.1 TDNN-SWSA

This network is the time delay network with shared weight self-attention (TDNN-

SWSA) [16]. TDNN is known as a classic network architecture and has achieved

great success in recent speech recognition tasks [17]. In this study, they used

TDNN here to capture local features, and shorten the length of the input before

feeding it into the self-attention module. In addition, three matrices in the self-

attention module [18] share the same matrix and are projected into the same single

space. In this way, the number of parameters diminished sharply.

The schematic of the TDNN based subsampling is as shown in Fig 3. The

length of the input is shortened to (Tin − w + 1)/k, where w is the length of the

TDNN window Eq.(1) and Eq.(2) show the differences between the two different

attention methods.
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Fig.3 The schematic of TDNN-SWSA

The innovation of TDNN is the usage of the self-attention to share weights. In

order to reduce the total number of parameters.

The traditional way of self attention is as follows:

While the SWSA is represented as:

A shared weight matrix replaces three different matrices which correspond to

queries, keys and values. In this way, the number of parameters are reduced sharply
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into 12k, only 1/20 of ResNet15, although there is some accuracy sacrifice.

1.3.2 TC-ResNet

TC-ResNet refers to Temporal Convolutional - Residual Networks [15].

Convolutional neural network (CNN) based KWS tasks have shown outstanding

accuracy. This model applied temporal convolution, i.e. 1D convolution along the

temporal dimension and took MFCC features as the input, as shown in Fig 4.

Compared with 2D convolution, the output feature map size of temporal

convolution is much smaller, which contributes to the drastic reduction of the

computational burden in the next layers and its fast implementation. Another CNN

architecture adopted is ResNet, specifically, ResNet8 and ResNet14. They changed

the kernel size into 3x1 and 9x1, and expanded some channels in some of the

model experiments.

By using temporal convolution, the burden of computation was lessened and

the kernel looked at the whole range of frequency to improve the performance. TC-

ResNet achieved the best accuracy in the model TC-ResNet14-1.5 with 96.6%.

However the downsides of using large size of ResNet are consuming hundreds of

thousands of parameters and requiring lots of computations, which leads to a large

model size and increase in the inference time.

1.3.3 DS-CNN

DS-CNN refers to the depthwise separable convolutional neural network (DS-CNN)

[19]. Depthwise separable CNN here is based on the implementation of stacking n

many pure depthwise separableconvolutioins. A DS-CNN is composed of one

depthwise convolution decomposes 3-D convolutions into 2-D convolutions, and

one pointwise convolution which follows the depthwise convolution. Each

convulotion was followed by a batch normalization [20] and the (Relu) activation

function. N many DS-CNNs were stacked together to build up a DS-CNN model.

The usage of depthwise and pointwise convolution made wider and deeper systems

possible, even in the resource-constrained devices. Furthermore, 8bit quantization



１０

was performed here to compress the model size. We can take the advantage of

efficiency in number of parameters, operations and model size.

1.4 Simple Depthwise Convolutional Neural Network for
Efficient KWS

Through the previous study, we recommend a simple depthwise convolutional

neural network for footprint KWS. Simple depthwise separable convolutional

neural network is the simplest form of depthwise convolution, combined with

residual neural network and we utilized this architecture in training our model.

Simple Depthwise Convolutional Network consists of 1-D depthwise

convolution part and a ResNet part. ResNet-based KWS systems showed great

performance. In order to keep a high accuracy, we used ResNet. The issue in

utilizing ResNet that required solving was that it consumed too many parameters.

To resolve this, we applied another way of implementing the 1-D depthwise

separable convolutional neural network. Depthwise convolution is advantageous

since it requires less parameters, making it different from the traditional

convolutions. However, the lack of pointwise convolution makes it difficultto

expand the feature map, resulting in an accuracy not as good as before. In order to

make it learn neighboring channels, we chose simple depthwise convolution by

looking through K channels (in our model, it means K features) and using T length

as one input. In addition, we applied noise injection into weights, which improved

accuracy at some level, since training with noise injection was helpful in finding a

wide range of local minima in loss surface, and also avoid overfitting. Lastly, we

trained on three different KWS datasets to make our system more robust.

Through this method, our simple depthwise convolutional neural network was

able to maintain the best accuracy, while occupying much less parameters, smaller

model size and faster speed .
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1.5 Outline of the Thesis

More details about our recommended model will be introduced in the following

pages. And the rest of this dissertation are organized as follows. In Chapter 2,

simple depthwise convolution is illustrated, including the structure of simple

depthwise convolution, its contribution and the results of some experiments when

choosing the basic settings. Chapter 3 focuses on simple depthwise convolution

with noise injection, the experiments on three different datasets, and the

comparisons with the state-of-the-art models, especially on the accuracy, speed, the

number of parameters and the computations. The last chapter gives a conclusion of

the entire thesis.



１２

Chapter 2

Simple Depthwise Convolutional Neural Network

This chapter includes four sections, and the first three are the introduction of basic

models : the traditional depthwise separableconvolution, simple expanded

depthwise convolution, and recommended network combined. The last part is

composed of experiments and results of this model compared with other various

networks .

2.1 Depthwise ConvNet

Depthwise ConvNet is the variant of traditional convolutional network, which is

popular and has been employed in various fields such as in machine translation,

computer vision and speech recognition [21,22].

Depthwise convolution as shown in Fig.5 is a part of depthwise separable

convolution which was inspired from MobileNet [22]. The other part is pointwise

convolution, as shown in Fig.6. Unlike conventional convolution operations, one

convolution kernel of Depthwise Convolution single channel kernel is responsible

for only one input channel. If the number of input channels is N, there must be N

many channels or multiple of N many channels. Besides, each kernel is a single-
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channel. Every time, the single-channel kernel convolutes with the corresponding

single channel of the input. Therefore, a N-channel input is processed to generate N

feature maps (if there is same padding, the size is the same as the input layer).

While in the conventional convolution, each convolution kernel operates

simultaneously with every channel of the input.

Fig.4 Depthwise convolution in depthwise separableconvolution

Fig.5 Pointwise convolution in depthwise separableconvolution
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The output feature map of depthwise convolution cannot be extended. It is the

input of pointwise convolution, and pointwise convolution operates the same

convolution as depthwise convolution does, after which combining the output

feature maps together as one new feature map. In this way, the model is able to

effectively use feature information of different channels at the same spatial position.

2.2 Simple Depthwise ConvNet

First is the 1-D temporal convolutional neural network, rather than the 2-D

convolutin in the left side of Fig.6. TC-ResNet chose to do 1-D convolution along

the time axis in the right side of Fig.6 . If the kernel size is Cx1x33x for 2-D

convolution, 'x3x1x CD for 1-D temporal convolution, when they keep the same

number of parameters, the MACs of 2-D convolution is is f/3xC (C is 160, f is

40, here) times of 1-D temporal convolution. Thereby, 1-D convolution needs

much less parameters and computations than 2-D convolution.

Simple Depthwise Convolutional Network is illustrated as the 1-D depthwise

convolution as shown in the right side of Fig.7, which is different from the

conventional depthwise convolution part of depthwise separableconvolution, and is

slightly different from the 1-D temporal convolution mentioned above. 1-D

depthwise convolution also convolutes along the time axis. Although the height of

the kernel is not 1 but k, it is still 1-D convolution, because we set the kernel size to

1xxTK . The reason why we stacked K here is that pure depthwise convolution

cannot obtain the information from other channels, which may result in bad

performance. Therefore, after padding, there are D input channels (from the first

channel to Dth channel) on the first layer, D channels (from the second channel to

(D+1)th channel) on the second layer and so on until k layers. K neighboring

channels were stacked together, then each channel of the new stacked input was

made sure it contained k neighboring channels and was convoluted by one kernel at

the same time. If the kernel size is CDx3x1x for the 1-D temporal convolution,

DTK x1xx for the 1-D depthwise convolution, while keeping the same number of

parameters, the MACs of 1-D temporal convolution is /9'C (assume k=3 t=9
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C’=12, but all of the kernel size in TC-ResNet are 9x1 , therefore the value of this
is about 4 ) times of 1-D depthwise convolution.

Fig.6 Compare traditional 2-D convolution with
1-D temporal convolution.

Fig.7 Compare 1-D temporal convolution with
1-D depthwise convolution

2.3 Residual Simple Depthwise ConvNet

As mentioned-above in section 1.3.3, the model merely used depthwise

convolution neural network (DS-CNN), and performed better than the mainstream

recurrent neural networks, including LSTM and GRU. However, the accuracy was

not that high enough compared to state-of-the-art model. The newly proposed
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model, TC-ResNet in section 1.3.2, achieved the highest accuracy with 96.6%

using ResNet14 with multiplier 1.5 (multiplier is used to expend channels in each

block). It proved that ResNet architecture improves the accuracy, the only problem

was that ResNet consumes a lot of parameters and memory. Therefore, we adopted

the advantages of depth-wise convolution and residual network. The whole

architecture of our model is shown in Fig 8. The audio signal after the

preprocessing produced a speech feature representation, which is the input of the

neural network. The first layer is a 1-D depthwise convolution followed by 3(for

DC-ResNet8) or 6(for DC-ResNet14) blocks in which there are two 1-D depthwise

convolutions connected with one residual connection. If the channels between the

previous layer and the following layer are different, the stride of the first layer

inside a block would be set to 2 and stride-2 1x1 kernel sized normal convolution

module would be added into residual connection.

Fig.8 The Whole Architecture of DC-ResNet
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2.4 Experiments and Results

Dataset we used in this task is Google Speech Command Dataset(GSC) [23], which

is specially designed for device controlling tasks. There are about 65000 recordings

of 30 words, each of them being a second long. Among them, 10 of them are

keywords and the rest are fillers, and all are labeled as ‘_unknown_’. In this

experiment, there is one more class, which is the background, necessitating a total

of 11 to 12 classifications. This dataset is used for training, validation and test, and

the proportion of these three parts are 8:1:1 respectively.

The preprocessing of the data followed the previous study. Each one-second

raw audio is decomposed into a sequence of frames by a window with length of 30

ms and shifted by 10ms stride at each time for feature extraction. We utilized 40

dimension MFCC feature representations for each frame, and stack them over time-

axis.

First of all, we found the best base channels, without multiplier, according to

the settings in the previous study. We set k=5 t=9 to find the best base model.

N_channels = [40,50,80,110] was chosen as the base model as shown in Table1.

Table 1 Finding the base channel list.

Secondly, we used the multiplier to extend the number of channels. The

experiments indicated that setting k as 1.5 improves accuracy the most, with

relatively fewer parameters.
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Table 2 Various multiplier K attempts.

Thirdly, the accuracy and the number of parameters were computed with

different values of K and T. Table 3 displays the results with different values of K

and T. Nearly 10 cases with k = 3,5,7 and t = 7,9,11,13 were tested. These results

display the best ones chosen in each K, which used the values of K=3 and T=9. It

had an accuracy of 96.49%, while TC-ResNet had 96.6%(only 0.11% dropout).

However, merely half the parameters were required.

Table 3 Results of different 1-D depthwise convolution kernel size.
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Chapter 3

Robustness of Efficient Keyword Spotting

3.1Weight Noise Injection

KWS is considered as a neural network based classification task, and we used the

cross entropy for Keyword Spotting training. As proved in [16, 10], appropriately

injecting noise into weights in training stage helps toavoid over fitting and being

easily stuck in narrow local minima in the losssurface. Thereby, it helps to achieve

a higher accuracy more or less. We were able to achieve the improvement of

performance in our experiment. There are several different ways to operate weight

injections such as Gaussian noise, uniform noise and smooth out. In this

experiment we chose the uniform noise injection.

Traditional stochastic gradient descent method to update parameters:
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After the noise was injected :

Where B is the batch size, and ‘η’ is the learning rate. In this

noise injection, ‘α’ is the scale factor of noise injected into weights, and ‘n’ is

exactly the noise vector which is randomly produced via uniformly distribution.

The value of this noise was determined by the standard deviation of all the

parameter weights. Through these efforts, our simple depthwise convolutional

neural network was able to maintains a comparable accuracy, much less parameters,

smaller model size, and faster speed.

In this part, I utilized the same dataset as the GSC mentioned above. Noise

injection did improve the accuracy by 0.1% in our task, as shown in Table 4.

Through a lot of experiments, we decided to use 0.03 as the scale factor ‘α’ in

Table 5.

Table 4. Results of the models trained with the single weight injection. SW
denotes the single weight injection, Acc denotes the accuracy.
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Table 5. Results of different noise scales. n denotes the noise
scale, k,t represent the height and the weight of kernel size.

3.2 Experiments on Two Different GSCs

We trained and evaluated our model on an English dataset Google Speech

Commands (GSC) [17], which is specially designed for controlling tasks on device.

Three are two versions of this, and we experimented on each group. There are two

versions of this dataset, and we performed two groups of experiments on these.

10 keywords of these two versions are the same: ‘yes’, ‘no’, ‘left’, ‘right’, ‘on’,
‘off’, ‘go’, ‘stop’, ‘up’, ‘down’.

3.2.1. Standard GSC

This version of GSC dataset is composed of 64752 recordings from various people

for total 30 words, including 10 keywords, and the rest 20 words noted as fillers.

Each recording is a one second long speech signal, and composed of only one

word.Therefore, the classification classes in this experiment are 11 or10 keywords,

all the other 20 fillers are collectively referred to as ”unknown”. According to

the .txt files of validation and testing, the whole dataset is divided into three parts:

51088 recordings for training, 6798 recordings are used as validation set, and the

rest 6833 recordings for evaluation.
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3.2.2. Augmented GSC

This version of GSC dataset is composed of 64727 recording, and each of them is

one second long and composed of 30 words. Experiments performed in section 2.4

and section 3.1 used this dataset. Furthermore, following Google’s implementation

[17], data was augmented with background noise. In addition to the 11 classes

above, the 12th class, ’silence’ was also produced. According to the .txt files of

SHA-1 hashed name, the dataset is split into training, validation, and test datasets

with 22246, 3093 and 3081 files respectively.

3.2.3 Experiments and Results

Experimental settings followed the setup in the previous work [15]. The window

size and the stride was set up as 30ms and 10ms, respectively. Finally, the 40-

dimension MFCC features were extracted. When training models, we set the

dropout probability was 0.5, weight decay was 0.001, and applied 0.03 scaled

weigh injection to optimize the loss. Learning rate started from 0.1 and dropped by

1/10 every 10k iterations, each models trained for 30k iterations in total.

According to the different datasets, the experimental results were separated into

two groups. First group was the comparisons among DC-ResNet, TC-ResNet,

ResNet15and DS-CNN, using the augmented GSC dataset. Second group was the

comparisons among DC-ResNet, TDNN-SWSA, ResNet15 experimented on

standard GSC dataset.

Table 6 illustrates several different architectures. We found that our model

(DC-ResNet14) keeps a comparable accuracy with the state-of-the-art model,

consuming the least parameters, and the merely 3.39M FLOPs [24] instead of

Multipliers displayed by the other two models. Table 7 focuses on the latency

between two models. We tested the real inference time using Tensorflow Lite

Android benchmark tool. The value 8.4 is different from 5.7 in paper because we

tested the inference time on other mobile device, the Samsung Galaxy S6 Edge.
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In Table 7, DC-ResNet responds 17.5% faster than the latest model, with the best

performances so far, and maintains a high accuracy, and at the same time, our

model only employed 1/2 of the parameters.

Table 8 displays diverse architectures tested on Standard GSC. Compared to

the ResNet15, the accuracy of DC-ResNet dropped slightly. However when we

traded off these three metrics illustrated on the table together, it was still fairly

acceptable. Particularly, the FLOPs. FLOPs of DC-ResNet is half of TC-ResNet,

1/6000 of ResNet15.

Table 6. Results of various models on augmented GSC

Table 7. The performance results for DC-ResNet and TC-ResNet

Table 8. Results of various models on a standard GSC
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3.3 FRR and FAR in a Third Dataset

3.3.1 FRR and FAR

In KWS system, besides the four main metrics introduced above, receiver

operating characteristic (ROC) curve, and area under the curve (AUC) are also

crucial. In KWS, x-axis of ROC is the false alarm rate (far), y-axis is the false

reject rate (frr), AUC is the area under the ROC curve.

False alarm rate is the same as the false positive rate (fpr). False reject rate is

also same as the false negative rate (fnr). Summing the false negative rate up with

true positive rate is 1, where true positive rate is the recall rate. i.e.:

False alarm rate = False positive rate = FP / N = FP / (FP + TN)

False reject rate = False negative rate = FN / P = FN / (FN + TP)

= 1- True positive rate = 1- recall rate

(‘T(/F)P(/N)’ is the number of True(/False) Positive (/Negative) samples )

3.3.2 Third GSC

This third GSC was modified from the augmented GSC in 3.2.2. In the previous

augmented GSC, there are only 6 background noises in the dataset, such as pink

noise, white noise, do the dishes, etc... These are all silent noise. In the real world,

there is much more audio speech noise. Therefore, we added 6 more real life

background noise files, including the TED speech, CNN news, White house

briefing, etc.... Most of them are conversation-s across different ages, genders,

different accents, and tried our best to cover variant speech features.

Testing on augmented data challenging. As shown in Table 9, the accuracy of

both models decreased by around 1.14%.
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Table 9. The test accuracy (on)/(not on) third-augmented real life data. (“On”
means trained and tested on third GSC. Otherwise, only trained on third GSC,

tested on test set of augmented GSC in 3.2.2)

3.3.3 Experiments and Results

In the first experiment, the model was trained on third - augmented real life dataset,

but tested on normal augmented dataset in 3.2.2. We attained one tested TC-

ResNet ROC, and one tested DC-ResNet ROC, as plotted in Fig 9, respectively. As

shown in Fig 10 and Fig 11, we trained and tested both models on third -

augmented real life dataset for 5 times. From the figures below, we can find that

they are fairly similar in AUC, AUC of both the two models are around

0.998~0.999. Although more background noise was injected, the trend of the

scatter distribution did not have a dramatic change, as shown in Fig11, which

proves robustness. At last, we compared the best TC-ResNet ROC and the best

DC-ResNet ROC, in Fig 12. Our model DC-ResNet is the one at lower space,

which is slightly better than TC-ResNet.
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Fig 9. TC-ResNet ROC & DC-ResNet ROC tested on no augmented GSC

Fig 10. TC-ResNet ROC tested on augmented GSC 5 times
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Fig 11.DC-ResNet ROC tested on augmented GSC 5 times

Fig 12. The comparison between the best TC-ResNet and the best
DC-ResNet ROC tested on augmented GSC
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Chapter 4

Conclusions

In this work, we compared various state-of-the-art KWS systems, including TC-

ResNet, TDNN-SWSA, ResNet15, and DS-CNN. We also proposed a simple

depthwise convolutional neural network, which greatly reduced the number of

parameters, especially the computations, which is at most 300 times less than some

of the existing models, and almost 3 to 5 times less than the state-of-the-art model.

1-D depthwise convolution utilized in this task is different from 2-D

convolution and other types of 1-D convolution. The most preeminent advantage of

it is that it drastically lowers FLOPs. Nevertheless, such small size with 12K

parameters still cuts at least half of the FLOPs than other models. However, FLPOs

are not directly proportional to the speed. When they are several, several hundreds

or even several thousands times less, and at the same time other factors keep the

same or even better, it means a lot. Without computational overhead, it meets the

requirement of using on a real time. Finally, it achieved 17.5% increased speed

compared to the fastest model, when it was tested on Samsung Galaxy S6 Edge.

For testing the robustness of the model, we adopted three different datasets:

pure speech commands sets, silent noise augmented sets and the last one, training

and tested on real life noise augmented sets.

In conclusion, this experiment can be a promising demonstration, implying a

possibility of further implementations for the future.
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Abstract

키워드 스팟팅(KWS)은 현재의 음성 기반 휴먼-컴퓨터 상호작용에서 중

요한 역할을 하며 스마트 기기에서 널리 사용되고 있다. 신경망의 급속

한 발달로 음성인식, 음성 합성, 화자인식 등 여러 음성 처리 분야에 걸

친 어플리케이션에서 큰 성과를 거뒀다. 다양한 음성 처리 분야에서 강

점을 보이고 있는 인공 신경망은 KWS를 위한 시스템에도 매력적인 선

택이 되었다.

그러나 애플리케이션 환경은 스마트폰, 패드 및 일부 스마트 홈 기

기를 포함한 소형 스마트 기기들이 대부분이기 때문에, 신경 네트워크

아키텍처들은 KWS 시스템을 설계할 때 이러한 스마트 기기의 제한된

메모리와 계산 용량을 고려해야 한다. 동시에 실시간, 사용자 친화적, 높

은 정확도로 대응하려면 낮은 대기 시간을 유지할 수 있어야 한다. 또한

KWS는 다른 업무와 달라 상시 온라인 상태에서 이용자의 호출을 기다

려야 하기 때문에 KWS 애플리케이션의 전력 예산도 크게 제한된다.

메인스트림 신경망 모델 중에는 과거 DNN, CNN, RNN, 그리고 서로의

조합이 주로 KWS에 사용되면서 최근에는 Attention 기반 모델도 점점

인기를 끌고 있다. 그 중에서도 CNN은 정확성과 견고성, 병렬처리가 뛰

어나 KWS에서 널리 채택되고 있다.

본 연구에서는 효율적인 키워드 스팟팅을 지원하는 신경망 모델인 신

플 콘볼루션 네트워크를 제시한다. 높은 정확도를 유지하기 위한 중간

과정으로 보다 컴팩트한 residual 네트워크와 노이즈 인식 훈련법을 주

로 사용한다. ResNet은 좋은 성능을 얻기 위해 항상 수십만 개의 매개

변수를 필요로 하기 때문에, 우리 모델에서는 한정된 자원을 가진 스마

트 기기에 더 적합할 수 있도록 depthwise 콘볼루션 네트워크를 사용하

여 파라미터 수를 줄이는 법을 제시한다. 마지막으로 실제 모바일 기기

인 삼성 갤럭시 S6 엣지에서 제안된 모델의 실제 추론 시간(즉, 지연 시

간)을 측정하였다. 온라인 상 공개된 Google 음성 명령 데이터 집합이
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모델을 평가하는 데 사용되었다. 결과는 제시된 모델이 기존 모델보다

약 1/2 의 매개변수와 계산 횟수를 훨씬 적게 사용한다는 것을 보여주

며거의 동일한 정확도로 속도가 17.5 % 빠르며 6.9ms에 도달했다. 훨씬

작은 메모리 소모로도 다른 최신 KWS 모델을 능가하는 96.59%의 높은

정확도를 유지하고 있다.
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Abstract 
 
Keyword spotting (KWS) plays an important role in the current speech-based 

human-computer interaction, and is widely used on smart devices. With the rapid 

development of neural networks, various applications in speech related fields such 

as speech recognition, speech synthesis and speaker recognition have achieved 

great performances. Neural networks have become attractive choices for KWS 

architectures because of their good performance in speech processing. 

However, since the application environment is mostly in small smart devices 

including smart phones, tablets and smart home devices, neural network 

architectures must consider the limited memory and computation capacity of these 

smart devices when designing a KWS system . At the same time, the KWS system 

should be able to maintain low latency in order to respond in real time. In addition, 

KWS is different from other tasks, because it needs to be always online and waiting 

for the call from the users, therefore, the power budget of the KWS application is 

also greatly restricted. 

Among the mainstream neural network models, FCDNN (fully connected 

deep neural network), CNN (convolutional neural network), RNN (recurrent neural 

network) and the combination of them are mainly used for KWS in the past. 

Recently, attention-based models have become more and more popular. Among 

them, CNN is widely adopted in KWS, because of its excellent accuracy, 

robustness, and parallel processing capacity. Parallel processing capacity is 

essential for low-power implementations. 

In this work, we present a neural network model-Simple Depthwise 

Convolutional Network, which supports an efficient keyword spotting. We mainly 

focus on a more compact Residual Network, and apply noise injection as an 

intermediate process to maintain high accuracy. Typically, ResNet always requires 

several hundred thousands parameters to achieve good performance. In our model, 

we employ depthwise convolutional neural networks to decrease the number of 

parameters, so that it can be more suitable for smart devices with limited resources. 

Finally, our model is tested on a real mobile device Samsung Galaxy S6 Edge, 
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reality in the real inference time (that is, latency) of about 6.9ms, which is 17.5% 

faster than the state-of-the-art model TC-ResNet. The publicly available Google 

Speech Commands dataset is used to evaluate the models. The results show that we 

only use about one half of the parameters and at most 300 times fewer number of 

computations than the original base model, meanwhile, much smaller memory 

footprint yet maintain the 96.59% comparable high accuracy which outperforms 

the other state-of-the-art KWS models.  
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Chapter 1 
 

 

 

Introduction   
 

 

 

1.1 Keyword Spotting System (KWS) 
 

The rapid development of neural networks has made artificial intelligence possible, 

and has achieved good results in processing speech and images [1,2]. Neural 

network(NN) based KWS has achieved great popularity in the recent years 

[3,4,5,6,7,8]. The accuracy of machine recognition basically exceeds that of human 

recognition. As the most basic and direct way to interact with machines, speech 

plays an extremely critical role in artificial intelligence systems. In recent years, it 

has been used by major technology companies in the world for daily interaction on 

smart devices or smart homes. Speech recognition is mostly performed in the 

servers of service providers after the user's voice is transmitted. However, this 

server-based speech recognition has drawn attention regarding security and privacy. 

This is because the user's voice has been transmitted to the server, making it 

vulnerable to external attacks, and possibly leaking personal information to the 

outside [9]. In order to alleviate these concerns, on-device speech applications are 

needed. Before performing speech recognition, the device needs to be woken up 

and detect several predefined keywords. These predefined short contents consist of 
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several characters called keywords. This process of detecting keywords by the 

device is called keyword spotting. 

Keyword spotting is the first step of human-computer interaction based on 

speech. Thus, it is very important to detect the keywords very accurately, so that 

subsequent speech recognition can be activated. Then it is possible to perform 

interactive task operations. The process of keyword spotting is actually divided into 

these following steps: First, the device needs to stay online at all times, waiting for 

the user to give a call. When the user speaks out the keyword, the online device can 

receive audio signals in real time to quickly detect if it is recognized as a keyword,  

the device will wake up from the standby state to enter the interactive preparation 

state [10]. 

As introduced above, simply speaking, in some terms, keyword spotting is 

actually a simplified version of speech recognition. However, there is no decoding 

part like a language model, and the final task is to complete a classification task. In 

a typical process of keyword spotting using a neural network model, the entire 

system is roughly divided into two processes, as shown in Fig 1. The first one is the 

acoustic feature extractions, and the other one is the classification process based on 

the neural network model. 
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Fig 1. End to End keyword spotting system 

 

The first step is the feature extractions, which is actually the same as that in 

speech recognition. The arriving speech signal is passed to the feature extraction 

module. If the speech signal length is L, a window function of length w is added, 

and s is the stride size. T frames are always obtained. Each frame extracts F-

dimensional speech features through Mel-Frequency Cepstral Coefficients (MFCC) 

or Mel-Frequency Cepstral Banks (MFFB). Then, the entire input speech signal is 

converted into FTx  feature graph. In the second step, the two-dimensional 

feature matrix obtained above is transmitted to the classifier module. Finally the 

probability of the output category is obtained through the neural network model. 

In addition to the end-to-end neural network-based KWS system described 

above, the traditional method also uses the keyword/filler hidden Markov model 
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(HMM) for recognition [11，12], as shown in Fig 2. The key to this type of system 

is the decoding module on the lower side of Fig. 2. It is similar to the decoder in 

the HMM based speech recognizer. It also utilizes the Viterbi algorithm to obtain 

the optimal path, but it is similar to LVCSR (large-scale vocabulary continuous 

speech recognition). The difference from the speech recognition system is the 

specific construction of the decoding network. The decoding network in speech 

recognition contains all the words in the dictionary, while the wake-up decoding 

network contains the keyword and filler words on the upper side of Fig.2. The 

words excluding the keywords are all included in the filler path, and not every 

word will have a corresponding path. Such a network will be much smaller than a 

typical speech recognition network. When decoding keywords in a targeted manner, 

there are fewer optional paths, allowing the improvement of decoding speed. All of 

the other decoded candidates follow the same method to complete the overall 

framework. Although this method has achieved a reasonable performance in 

accuracy, it is still difficult to train, and it also requires a lot of computation  

process. Other technologies, such as RNN, are significantly better than HMM-

based KWS in terms of accuracy [13]. Since RNNs have to wait for the previous 

steps, the structure demands a large delay, which is not ideal for KWS requiring a  

real-time response. Therefore, this article implements the variant network of CNN 

to perform KWS tasks. 
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Fig 2. The Topology of HMM based keyword spotting system 
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1.2 Challenges in Keyword Spotting  
 

As introduced in chapter 1.1, keyword spotting is usually considered as the first 

step of the human-machine interaction, mostly used on smart devices. There are 

basically four metrics for KWS. 

The recall rate recalls to the number of times that it was correctly awakened as 

a percentage of the total number of times the keyword was detected. This value is 

better when it is larger. 

The false alarm rate refers to the probability of keywords that should not be 

detected. A better the performance can be achieved with a lower value. 

The real time factor is also one of the four metrics for KWS, which represents 

the response speed of the equipment. 

Lastly, the power metrics is another metric for KWS. It is essential for portable 

devices.  

Regarding the four metrics described above, there were some notable 

challenges. That is the trade-off between high accuracy and low power 

consumption, or high accuracy and low latency. In this thesis, we not only focus on 

the accuracy, but also pay attention on the latency. Usually power consumption is  

mainly affected by the capacity of hardware of devices and architecture of models 

we designed, which requiring us to deeply compress our model, so that less 

parameters and computations are demanded. However at the same time, this model 

should be able to maintain a high accuracy and faster speed comparable to that of 

the state-of-the-art models. 

 

 

 

1.3 Neural Network Architecture for Small-Footprint KWS 
 

There are some neural network architectures that are suitable for the on-device 

small footprint KWS. Among the mainstream neural network architectures, 

convolutional neural network (CNN) based models and ResNet based models show 
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fairly great performances, especially the models outperform in accuracy [14,15] 

and showing low latency [15]. However, all of these ResNet models in previous 

studies consume quantities of parameters, doing lots of computations as the cost of 

pursuing high accuracy. As a result, the response speed is slowed by a considerable 

amount. The trade-off of these metrics is crucial for KWS, since KWS is 

commonly used on resource restrained devices. In this section, several latest 

researches will be explored including the architecture using self-attention which 

gained popularity in speech recognition, time delay neural network, temporal 

convolution combined with ResNet, and lastly with depthwise convolution. 

 

 

1.3.1 TDNN-SWSA 

 

This network is the time delay network with shared weight self-attention (TDNN-

SWSA) [16]. TDNN is known as a classic network architecture and has achieved 

great success in recent speech recognition tasks [17]. In this study, they used 

TDNN here to capture local features, and shorten the length of the input before 

feeding it into the self-attention module. In addition, three matrices in the self-

attention module [18] share the same matrix and are projected into the same single 

space. In this way, the number of parameters diminished sharply.  

The schematic of the TDNN based subsampling is as shown in Fig 3. The 

length of the input is shortened to (Tin − w + 1)/k, where w is the length of the 

TDNN window Eq.(1) and Eq.(2) show the differences between the two different 

attention methods.  
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Fig.3 The schematic of TDNN-SWSA 

 

 

The innovation of TDNN is the usage of the self-attention to share weights. In 

order to reduce the total number of parameters.  

The traditional way of self attention is as follows:  

 

          
 

 

While the SWSA is represented as: 

 

                   
 

 

A shared weight matrix replaces three different matrices which correspond to 

queries, keys and values. In this way, the number of parameters are reduced sharply 
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into 12k, only 1/20 of ResNet15, although there is some accuracy sacrifice. 

 

 

1.3.2 TC-ResNet 
 

TC-ResNet refers to Temporal Convolutional - Residual Networks [15]. 

Convolutional neural network (CNN) based KWS tasks have shown outstanding 

accuracy. This model applied temporal convolution, i.e. 1D convolution along the 

temporal dimension and took MFCC features as the input, as shown in Fig 4. 

Compared with 2D convolution, the output feature map size of temporal 

convolution is much smaller, which contributes to the drastic reduction of the 

computational burden in the next layers and its fast implementation. Another CNN 

architecture adopted is ResNet, specifically, ResNet8 and ResNet14. They changed 

the kernel size into 3x1 and 9x1, and expanded some channels in some of the 

model experiments. 

By using temporal convolution, the burden of computation was lessened and 

the kernel looked at the whole range of frequency to improve the performance. TC-

ResNet achieved the best accuracy in the model TC-ResNet14-1.5 with 96.6%. 

However the downsides of using large size of ResNet are consuming hundreds of 

thousands of parameters and requiring lots of computations, which leads to a large 

model size and increase in the inference time. 

 

 

1.3.3 DS-CNN 
  

DS-CNN refers to the depthwise separable convolutional neural network (DS-CNN) 

[19]. Depthwise separable CNN here is based on the implementation of stacking n 

many pure depthwise separableconvolutioins. A DS-CNN is composed of one 

depthwise convolution decomposes 3-D convolutions into 2-D convolutions, and 

one pointwise convolution which follows the depthwise convolution. Each 

convulotion was followed by a batch normalization [20] and the (Relu) activation 

function. N many DS-CNNs were stacked together to build up a DS-CNN model. 

The usage of depthwise and pointwise convolution made wider and deeper systems 

possible, even in the resource-constrained devices. Furthermore, 8bit quantization 
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was performed here to compress the model size. We can take the advantage of 

efficiency in number of parameters, operations and model size. 

 

 

 

1.4  Simple Depthwise Convolutional Neural Network for 

Efficient KWS 
 

Through the previous study, we recommend a simple depthwise convolutional 

neural network for footprint KWS. Simple depthwise separable convolutional 

neural network is the simplest form of depthwise convolution, combined with 

residual neural network and we utilized this architecture in training our model. 

Simple Depthwise Convolutional Network consists of 1-D depthwise 

convolution part and a ResNet part. ResNet-based KWS systems showed great 

performance. In order to keep a high accuracy, we used ResNet. The issue in 

utilizing ResNet that required solving was that it consumed too many parameters. 

To resolve this, we applied another way of implementing the 1-D depthwise 

separable convolutional neural network. Depthwise convolution is advantageous 

since it requires less parameters, making it different from the traditional 

convolutions. However, the lack of pointwise convolution makes it difficultto 

expand the feature map, resulting in an accuracy not as good as before. In order to 

make it learn neighboring channels, we chose simple depthwise convolution by 

looking through K channels (in our model, it means K features) and using T length 

as one input. In addition, we applied noise injection into weights, which improved 

accuracy at some level, since training with noise injection was helpful in finding a 

wide range of local minima in loss surface, and also avoid overfitting. Lastly, we 

trained on three different KWS datasets to make our system more robust. 

Through this method, our simple depthwise convolutional neural network was 

able to maintain the best accuracy, while occupying much less parameters, smaller 

model size and faster speed . 
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1.5 Outline of the Thesis 

 

More details about our recommended model will be introduced in the following 

pages. And the rest of this dissertation are organized as follows. In Chapter 2, 

simple depthwise convolution is illustrated, including the structure of simple 

depthwise convolution, its contribution and the results of some experiments when 

choosing the basic settings. Chapter 3 focuses on simple depthwise convolution 

with noise injection, the experiments on three different datasets, and the 

comparisons with the state-of-the-art models, especially on the accuracy, speed, the 

number of parameters and the computations. The last chapter gives a conclusion of 

the entire thesis. 
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Chapter 2 
 

 

 

Simple Depthwise Convolutional Neural Network 
 

 

 

This chapter includes four sections, and the first three are the introduction of basic 

models : the traditional depthwise separableconvolution, simple expanded 

depthwise convolution, and recommended network combined. The last part is 

composed of experiments and results of this model compared with other various 

networks . 

 

 

2.1 Depthwise ConvNet 

  

Depthwise ConvNet is the variant of traditional convolutional network, which is 

popular and has been employed in various fields such as in machine translation, 

computer vision and speech recognition [21,22].  

Depthwise convolution as shown in Fig.5 is a part of depthwise separable 

convolution which was inspired from MobileNet [22]. The other part is pointwise 

convolution, as shown in Fig.6. Unlike conventional convolution operations, one 

convolution kernel of Depthwise Convolution single channel kernel is responsible 

for only one input channel. If the number of input channels is N, there must be N 

many channels or multiple of N many channels. Besides, each kernel is a single-
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channel. Every time, the single-channel kernel convolutes with the corresponding 

single channel of the input. Therefore, a N-channel input is processed to generate N 

feature maps (if there is same padding, the size is the same as the input layer).  

While in the conventional convolution, each convolution kernel operates 

simultaneously with every channel of the input.   

 

 

 

 
Fig.4 Depthwise convolution in depthwise separableconvolution 

 
 

 

 

 

 

    
Fig.5 Pointwise convolution in depthwise separableconvolution 
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The output feature map of depthwise convolution cannot be extended. It is the 

input of pointwise convolution, and pointwise convolution operates the same 

convolution as depthwise convolution does, after which combining the output 

feature maps together as one new feature map. In this way, the model is able to 

effectively use feature information of different channels at the same spatial position.  

 

 

 

2.2 Simple Depthwise ConvNet   
 

First is the 1-D temporal convolutional neural network, rather than the 2-D 

convolutin in the left side of Fig.6. TC-ResNet chose to do 1-D convolution along 

the time axis in the right side of Fig.6 . If the kernel size is Cx1x33x  for 2-D 

convolution, 'x3x1x CD  for 1-D temporal convolution, when they keep the same 

number of parameters, the MACs of 2-D convolution is is f/3xC  (C is 160, f is 

40, here) times of 1-D temporal convolution. Thereby, 1-D convolution needs 

much less parameters and computations than 2-D convolution.  

Simple Depthwise Convolutional Network is illustrated as the 1-D depthwise 

convolution as shown in the right side of Fig.7, which is different from the 

conventional depthwise convolution part of depthwise separableconvolution, and is 

slightly different from the 1-D temporal convolution mentioned above. 1-D 

depthwise convolution also convolutes along the time axis. Although the height of 

the kernel is not 1 but k, it is still 1-D convolution, because we set the kernel size to 

1xxTK . The reason why we stacked K here is that pure depthwise convolution 

cannot obtain the information from other channels, which may result in bad 

performance. Therefore, after padding, there are D input channels (from the first 

channel to Dth channel) on the first layer, D channels (from the second channel to 

(D+1)th channel) on the second layer and so on until k layers. K neighboring 

channels were stacked together, then each channel of the new stacked input was 

made sure it contained k neighboring channels and was convoluted by one kernel at 

the same time. If the kernel size is CDx3x1x  for the 1-D temporal convolution, 

DTK x1xx  for the 1-D depthwise convolution, while keeping the same number of 

parameters, the MACs of 1-D temporal convolution is /9'C  (assume k=3 t=9 



 

 １５

C’=12, but all of the kernel size in TC-ResNet are 9x1, therefore the value of this 

is about 4 ) times of 1-D depthwise convolution.  

 

 

 

 
Fig.6 Compare traditional 2-D convolution with  

1-D temporal convolution. 
 

 

 
 

Fig.7 Compare 1-D temporal convolution with 

1-D depthwise convolution 

 

 

 

2.3 Residual Simple Depthwise ConvNet  

 

As mentioned-above in section 1.3.3, the model merely used depthwise 

convolution neural network (DS-CNN), and performed better than the mainstream 

recurrent neural networks, including LSTM and GRU. However, the accuracy was 

not that high enough compared to state-of-the-art model. The newly proposed 
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model, TC-ResNet in section 1.3.2, achieved the highest accuracy with 96.6% 

using ResNet14 with multiplier 1.5 (multiplier is used to expend channels in each 

block). It proved that ResNet architecture improves the accuracy, the only problem 

was that ResNet consumes a lot of parameters and memory. Therefore, we adopted 

the advantages of depth-wise convolution and residual network. The whole 

architecture of our model is shown in Fig 8. The audio signal after the 

preprocessing produced a speech feature representation, which is the input of the 

neural network. The first layer is a 1-D depthwise convolution followed by 3(for 

DC-ResNet8) or 6(for DC-ResNet14) blocks in which there are two 1-D depthwise 

convolutions connected with one residual connection. If the channels between the 

previous layer and the following layer are different, the stride of the first layer 

inside a block would be set to 2 and stride-2 1x1 kernel sized normal convolution 

module would be added into residual connection. 

 

               
Fig.8 The Whole Architecture of DC-ResNet 
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2.4 Experiments and Results 
 

Dataset we used in this task is Google Speech Command Dataset(GSC) [23], which 

is specially designed for device controlling tasks. There are about 65000 recordings 

of 30 words, each of them being a second long. Among them, 10 of them are 

keywords and the rest are fillers, and all are labeled as ‘_unknown_’. In this 

experiment, there is one more class, which is the background, necessitating a total 

of 11 to 12 classifications. This dataset is used for training, validation and test, and 

the proportion of these three parts are 8:1:1 respectively. 

   The preprocessing of the data followed the previous study. Each one-second 

raw audio is decomposed into a sequence of frames by a window with length of 30 

ms and shifted by 10ms stride at each time for feature extraction. We utilized 40 

dimension MFCC feature representations for each frame, and stack them over time-

axis. 

First of all, we found the best base channels, without multiplier, according to 

the settings in the previous study. We set k=5 t=9 to find the best base model. 

N_channels = [40,50,80,110] was chosen as the base model as shown in Table1. 

 

 

Table 1  Finding the base channel list. 

 
 

Secondly, we used the multiplier to extend the number of channels. The 

experiments indicated that setting k as 1.5 improves accuracy the most, with 

relatively fewer parameters. 
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Table 2 Various multiplier K attempts. 

 
 

   Thirdly, the accuracy and the number of parameters were computed with 

different values of K and T. Table 3 displays the results with different values of K 

and T. Nearly 10 cases with k = 3,5,7  and t = 7,9,11,13 were tested. These results 

display the best ones chosen in each K, which used the values of K=3 and T=9. It 

had an accuracy of 96.49%, while TC-ResNet had 96.6%(only 0.11% dropout). 

However, merely half the parameters were required. 

 

 

Table 3 Results of different 1-D depthwise convolution kernel size. 
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Chapter 3 
 

 

 

Robustness of Efficient Keyword Spotting  
 

 

 

3.1 Weight Noise Injection 
 
KWS is considered as a neural network based classification task, and we used the 

cross entropy for Keyword Spotting training. As proved in [16, 10], appropriately 

injecting noise into weights in training stage helps toavoid over fitting and being 

easily stuck in narrow local minima in the losssurface. Thereby, it helps to achieve 

a higher accuracy more or less. We were able to achieve the improvement of 

performance in our experiment. There are several different ways to operate weight 

injections such as Gaussian noise, uniform noise and smooth out. In this 

experiment we chose the uniform noise injection. 

Traditional  stochastic  gradient  descent  method  to  update parameters: 
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After the noise was injected : 

 

      
Where  B  is  the  batch  size, and ‘η’ is  the  learning  rate. In this 

noise injection, ‘α’ is the scale factor of noise injected into weights, and ‘n’ is 

exactly the noise vector which is randomly produced via uniformly distribution. 

The value of this noise was determined by the standard deviation of all the 

parameter weights. Through these efforts, our simple depthwise convolutional 

neural network was able to maintains a comparable accuracy, much less parameters, 

smaller model size, and faster speed. 

In this part, I utilized the same dataset as the GSC mentioned above. Noise 

injection did improve the accuracy by 0.1% in our task, as shown in Table 4. 

Through a lot of experiments, we decided to use 0.03 as the scale factor ‘α’ in 

Table 5. 

 

Table 4. Results of the models trained with the single weight injection. SW 

denotes the single weight injection, Acc denotes the accuracy. 
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Table 5. Results of different noise scales. n denotes the noise 

scale, k,t represent the height and the weight of kernel size. 

 
 

 

 

3.2 Experiments on Two Different GSCs 
 

We trained and evaluated our model on an English dataset Google Speech 

Commands (GSC) [17], which is specially designed for controlling tasks on device. 

Three are two versions of this, and we experimented on each group. There are two 

versions of this dataset, and we performed two groups of experiments on these. 

   10 keywords of these two versions are the same: ‘yes’, ‘no’, ‘left’, ‘right’, ‘on’, 

‘off’, ‘go’, ‘stop’, ‘up’, ‘down’. 

 

 

3.2.1. Standard GSC 
 

This version of GSC dataset is composed of 64752 recordings from various people 

for total 30 words, including 10 keywords, and the rest 20 words noted as fillers. 

Each recording is a one second long speech signal, and composed of only one 

word.Therefore, the classification classes in this experiment are 11 or10 keywords, 

all the other 20 fillers are collectively referred to as ”unknown”. According to 

the .txt files of validation and testing, the whole dataset is divided into three parts: 

51088 recordings for training, 6798 recordings are used as validation set, and the 

rest 6833 recordings for evaluation. 
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3.2.2. Augmented GSC 

 
This version of GSC dataset is composed of 64727 recording, and each of them is 

one second long and composed of 30 words. Experiments performed in section 2.4 

and section 3.1 used this dataset. Furthermore, following Google’s implementation 

[17], data was augmented with background noise. In addition to the 11 classes 

above, the 12th class, ’silence’ was also produced. According to the .txt files of 

SHA-1 hashed name, the dataset is split into training, validation, and test datasets 

with 22246, 3093 and 3081 files respectively.  

 

 

3.2.3 Experiments and Results 
 

Experimental settings followed the setup in the previous work [15]. The window 

size and the stride was set up as 30ms and 10ms, respectively. Finally, the 40-

dimension MFCC features were extracted. When training models, we set the 

dropout probability was 0.5, weight decay was 0.001, and applied 0.03 scaled 

weigh injection to optimize the loss. Learning rate started from 0.1 and dropped by 

1/10 every 10k iterations, each models trained for 30k iterations in total. 

According to the different datasets, the experimental results were separated into 

two groups. First group was the comparisons among DC-ResNet, TC-ResNet, 

ResNet15and DS-CNN, using the augmented GSC dataset. Second group was the 

comparisons among DC-ResNet, TDNN-SWSA, ResNet15 experimented on 

standard GSC dataset. 

Table 6 illustrates several different architectures. We found that our model 

(DC-ResNet14) keeps a comparable accuracy with the state-of-the-art model, 

consuming the least parameters, and the merely 3.39M FLOPs [24] instead of 

Multipliers displayed by the other two models. Table 7 focuses on the latency  

between  two  models. We tested the real inference time using Tensorflow Lite 

Android benchmark tool. The value 8.4 is different from 5.7 in paper because we 

tested the inference time on other mobile device, the Samsung Galaxy S6 Edge.  

In Table 7, DC-ResNet responds 17.5% faster than the latest model, with the best 
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performances so far, and maintains a high accuracy, and at the same time, our 

model only employed 1/2 of the parameters. 

Table 8 displays diverse architectures tested on Standard GSC. Compared to 

the ResNet15, the accuracy of DC-ResNet dropped slightly. However when we 

traded off these three metrics illustrated on the table together, it was still fairly 

acceptable. Particularly, the FLOPs. FLOPs of DC-ResNet is half of TC-ResNet, 

1/6000 of ResNet15. 

 

 

Table 6. Results of various models on augmented GSC 

 
 

 

Table 7. The performance results for DC-ResNet and TC-ResNet 

 
 

 

Table 8. Results of various models on a standard GSC 
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3.3 FRR and FAR in a Third Dataset 

 
 

3.3.1 FRR and FAR 
 

In KWS system, besides the four main metrics introduced above, receiver 

operating characteristic (ROC) curve, and area under the curve (AUC) are also 

crucial. In KWS, x-axis of ROC is the false alarm rate (far), y-axis is the false 

reject rate (frr), AUC is the area under the ROC curve. 

False alarm rate is the same as the false positive rate (fpr). False reject rate is 

also same as the false negative rate (fnr). Summing the false negative rate up with 

true positive rate is 1, where true positive rate is the recall rate. i.e.: 

False alarm rate = False positive rate = FP / N = FP / (FP + TN) 

False reject rate = False negative rate = FN / P = FN / (FN + TP) 

              = 1- True positive rate = 1- recall rate 

(‘T(/F)P(/N)’ is the number of True(/False) Positive (/Negative) samples ) 

 

 

3.3.2 Third GSC 
 

This third GSC was modified from the augmented GSC in 3.2.2. In the previous 

augmented GSC, there are only 6 background noises in the dataset, such as pink 

noise, white noise, do the dishes, etc... These are all silent noise. In the real world, 

there is much more audio speech noise. Therefore, we added 6 more real life 

background noise files, including the TED speech, CNN news, White house 

briefing, etc.... Most of them are conversation-s across different ages, genders, 

different accents, and tried our best to cover variant speech features.  

Testing on augmented data challenging. As shown in Table 9, the accuracy of 

both models decreased by around 1.14%. 
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Table 9. The test accuracy (on)/(not on) third-augmented real life data. (“On” 

means trained and tested on third GSC. Otherwise, only trained on third GSC,  

tested on test set of augmented GSC in 3.2.2) 

 
 

 

3.3.3 Experiments and Results 
 

In the first experiment, the model was trained on third - augmented real life dataset, 

but tested on normal augmented dataset in 3.2.2. We attained one tested TC-

ResNet ROC, and one tested DC-ResNet ROC, as plotted in Fig 9, respectively. As 

shown in Fig 10 and Fig 11, we trained and tested both models on third - 

augmented real life dataset for 5 times. From the figures below, we can find that 

they are fairly similar in AUC, AUC of both the two models are around 

0.998~0.999. Although more background noise was injected, the trend of the 

scatter distribution did not have a dramatic change, as shown in Fig11, which 

proves robustness. At last, we compared the best TC-ResNet ROC and the best 

DC-ResNet ROC, in Fig 12. Our model DC-ResNet is the one at lower space, 

which is slightly better than TC-ResNet. 
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Fig 9. TC-ResNet ROC & DC-ResNet ROC tested on no augmented GSC 

 
 

 
Fig 10. TC-ResNet ROC tested on augmented GSC 5 times 
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Fig 11.DC-ResNet ROC tested on augmented GSC 5 times 

 
 

 
Fig 12. The comparison between the best TC-ResNet and the best  

DC-ResNet ROC tested on augmented GSC 
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Chapter 4 
 

 

 

Conclusions  
 

 

 

In this work, we compared various state-of-the-art KWS systems, including TC-

ResNet, TDNN-SWSA, ResNet15, and DS-CNN. We also proposed a simple 

depthwise convolutional neural network, which greatly reduced the number of 

parameters, especially the computations, which is at most 300 times less than some 

of the existing models, and almost 3 to 5 times less than the state-of-the-art model. 

1-D depthwise convolution utilized in this task is different from 2-D 

convolution and other types of 1-D convolution. The most preeminent advantage of 

it is that it drastically lowers FLOPs. Nevertheless, such small size with 12K 

parameters still cuts at least half of the FLOPs than other models. However, FLPOs 

are not directly proportional to the speed. When they are several, several hundreds 

or even several thousands times less, and at the same time other factors keep the 

same or even better, it means a lot. Without computational overhead, it meets the 

requirement of using on a real time. Finally, it achieved 17.5% increased speed 

compared to the fastest model, when it was tested on Samsung Galaxy S6 Edge. 

For testing the robustness of the model, we adopted three different datasets: 

pure speech commands sets, silent noise augmented sets and the last one, training 

and tested on real life noise augmented sets. 

In conclusion, this experiment can be a promising demonstration, implying a 

possibility of further implementations for the future. 



 

 ２９

 

Bibliography 

 
[1]  Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, and Jiashi Feng. 

Dual path networks. arXiv preprint arXiv:1707.01629, 2017.  

 

[2]  W. Xiong, L. Wu, F. Alleva, Jasha Droppo, X. Huang, and Andreas Stolcke. The 

microsoft 2017 conversational speech recognition system. CoRR, abs/1708.06073, 

2017.  

 

[3]  Wang, Z., Li, X., & Zhou, J. (2017). Small-footprint keyword spotting using deep 

neural network and connectionist temporal classifier. arXiv preprintarXiv:1709.03665. 

 

[4]  Sainath, T. N., & Parada, C. (2015). Convolutional neural networks for small-

footprint keyword spotting. In Sixteenth Annual Conference of the International Sp 

eech Communication Association. 

 

[5]  Zhang, Y., Suda, N., Lai, L., & Chandra, V. (2017). Hello edge: Keywordspotting on 

microcontrollers. arXiv preprint arXiv:1711.07128. 

 

[6]  Tang, R., & Lin, J. (2018, April). Deep residual learning for small-footprint key  

word spotting. In 2018 IEEE International Conference on Acoustics, Speech a  n d 

Signal Processing (ICASSP) (pp. 5484-5488). IEEE. 

 

[7]  de Andrade, D. C., Leo, S., Viana, M. L. D. S., & Bernkopf, C. (2018). A neural 

attention model for speech command recognition. arXiv preprint arXiv:1808.0 8929. 

 

[8]  Arik, S. O., Kliegl, M., Child, R., Hestness, J., Gibiansky, A., Fougner, C.,... & Coates, 

A. (2017). Convolutional recurrent neural networks for small-footprint keyword 

spotting. arXiv preprint arXiv:1703.05390. 

 

[9]  Lee, L., Park, J., & Sung, W. (2019, December). Simple gated convnet for small 

footprint acoustic modeling. In 2019 IEEE Automatic Speech Recognition and 

Understanding Workshop (ASRU) (pp. 122-128).IEEE. 

 

[10] Ian McGraw, Rohit Prabhavalkar, Raziel Alvarez, Montse Gonzalez Ar enas, 

Kanishka Rao, David Rybach, Ouais Alsharif, Ha¸sim Sak, Alexa nder Gruenstein, 

Françoise Beaufays, et al. Personalized speech reco gnition on mobile devices. In 

Acoustics, Speech and Signal Processi ng(ICASSP), 2016 IEEE International 

Conference on, pages 5955–595 9. IEEE, 2016. 

 



 

 ３０

[11] Jay G Wilpon, Lawrence R Rabiner, C-H Lee, and ER Goldman. Automatic 

recognition of keywords in unconstrained speech using hidden markovmodels. IEEE 

Transactions on Acoustics, Speech, and Signal Processing,38(11):1870–1878, 1990.  

 

[12]Richard C Rose and Douglas B Paul. A hidden markov model based         

keyword recognition system. In Acoustics, Speech, and Signal Proce     ssing, 1990. 

ICASSP-90., 1990 International Conference on, pages 12     9–132. IEEE, 1990. 

 

[13] George Tucker, Minhua Wu, Ming Sun, Sankaran Panchapagesan, Ge     ngshen Fu, 

and Shiv Vita ladevuni. Model compression applied to s     mall-footprint keyword 

spotting. In INTERSPEECH, pages 1878–1882,     2016.          

 

[14] R. Tang and J. Lin, “Deep residual learning for small-footprint keyword spotting,” in 

2018 IEEE International Conference on Acoustics, Speech and Signal Processing 

(ICASSP). IEEE, 2018, pp. 5484–5488. 

 

[15] S. Choi, S. Seo, B. Shin, H. Byun, M. Kersner, B. Kim, D. Kim, and S. Ha,“Temporal 

convolution for real-time keyword spotting on mobil e devices,” arXiv preprint 

arXiv:1904.03814, 2019. 

 

[16] Y. Bai, J. Yi, J. Tao, Z. Wen, Z. Tian, C. Zhao, and C. Fan, “A time delay neural 

network with shared weight self-attention for smallfootprint keyword spotting,” Proc. 

Interspeech 2019, pp. 2190–2194, 2019. 

 

[17] S. Myer and V. S. Tomar, “Efficient keyword spotting using time delay neural 

networks,” in Proc. Interspeech 2018, 2018, pp. 1264–1268. [Online].Availabl e: 

http://dx.doi.org/10.21437/Interspeech.2018-1979 

 

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, 

and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information 

Processing Systems 30, 2017, pp. 5998–6008. 

 

[19] Y. Zhang, N. Suda, L. Lai, and V. Chandra, “Hello edge: Keyword spotting on 

microcontrollers,” arXiv preprint arXiv:1711.07128, 2017. 

 

[20] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by 

reducing internal covariate shift,” arXiv preprint arXiv:1502.031 67, 2015. 

 

[21] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely 

efficient convolutional neural network for mobile devices. arXiv preprint 

arXiv:1707.01083, 2017. 

 



 

 ３１

[22] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, 

Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Effificient 

convolutional neural networks for mobile vision applications. arXiv preprint 

arXiv:1704.04861, 2017.  

 

[23] P. Warden. (2017, August) Launching the speech commands dataset. [Online]. 

Available: https://ai.googleblog.com/2017/08/ launching-spe ech-commands-

dataset.html 

 

[24] S. Arik, H. Jun, and G. Diamos, “Fast spectrogram inversionusing multi-head 

convolutional neural networks,” arXiv preprint arXiv:1808.06719, 2018. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 ３２

 

Abstract 
 

키워드 스팟팅(KWS)은 현재의 음성 기반 휴먼-컴퓨터 상호작용에서 

중요한 역할을 하며 스마트 기기에서 널리 사용되고 있다. 신경망의 

급속한 발달로 음성인식, 음성 합성, 화자인식 등 여러 음성 처리 

분야에 걸친 어플리케이션에서 큰 성과를 거뒀다. 다양한 음성 처리 

분야에서 강점을 보이고 있는 인공 신경망은 KWS를 위한 시스템에도 

매력적인 선택이 되었다. 

그러나 애플리케이션 환경은 스마트폰, 패드 및 일부 스마트 홈 

기기를 포함한 소형 스마트 기기들이 대부분이기 때문에, 신경 네트워크 

아키텍처들은 KWS 시스템을 설계할 때 이러한 스마트 기기의 제한된 

메모리와 계산 용량을 고려해야 한다. 동시에 실시간, 사용자 친화적, 

높은 정확도로 대응하려면 낮은 대기 시간을 유지할 수 있어야 한다. 

또한 KWS는 다른 업무와 달라 상시 온라인 상태에서 이용자의 호출을 

기다려야 하기 때문에 KWS 애플리케이션의 전력 예산도 크게 제한된다. 

메인스트림 신경망 모델 중에는 과거 DNN, CNN, RNN, 그리고 서로의 

조합이 주로 KWS에 사용되면서 최근에는 Attention 기반 모델도 점점 

인기를 끌고 있다. 그 중에서도 CNN은 정확성과 견고성, 병렬처리가 

뛰어나 KWS에서 널리 채택되고 있다. 

본 연구에서는 효율적인 키워드 스팟팅을 지원하는 신경망 모델인 

신플 콘볼루션 네트워크를 제시한다. 높은 정확도를 유지하기 위한 중간 

과정으로 보다 컴팩트한 residual 네트워크와 노이즈 인식 훈련법을 

주로 사용한다. ResNet은 좋은 성능을 얻기 위해 항상 수십만 개의 

매개 변수를 필요로 하기 때문에, 우리 모델에서는 한정된 자원을 가진 

스마트 기기에 더 적합할 수 있도록 depthwise 콘볼루션 네트워크를 

사용하여 파라미터 수를 줄이는 법을 제시한다. 마지막으로  실제 

모바일 기기인 삼성 갤럭시 S6 엣지에서 제안된 모델의 실제 추론 

시간(즉, 지연 시간)을 측정하였다. 온라인 상 공개된 Google 음성 명령 
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데이터 집합이 모델을 평가하는 데 사용되었다. 결과는 제시된 모델이 

기존 모델보다 약 1/2 의 매개변수와 계산 횟수를 훨씬 적게 

사용한다는 것을 보여주며거의 동일한 정확도로 속도가 17.5 % 빠르며 

6.9ms에 도달했다. 훨씬 작은 메모리 소모로도 다른 최신 KWS 모델을 

능가하는 96.59%의 높은 정확도를 유지하고 있다. 
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