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Abstract

Real-time automatic speech recognition (ASR) on mobile and embedded devices

has been of great interest in recent years. Deep neural network-based automatic speech

recognition demands a large number of computations, while the memory bandwidth

and power storage of mobile devices are limited. The server-based implementation is

often employed, but this increases latency or privacy concerns. Therefore, the need

of the on-device ASR system is increasing. Recurrent neural networks (RNNs) are

often used for the ASR model. The RNN implementation on embedded devices can

suffer from excessive DRAM accesses, because the parameter size of a neural network

usually exceeds that of the cache memory. Also, the parameters of RNN cannot be

reused for multiple time-steps due to its feedback structure. To solve this problem,

multi-time step parallelizable models are applied for speech recognition. The multi-time

step parallelization approach computes multiple output samples at a time with the

parameters fetched from the DRAM. Since the number of DRAM accesses can be

reduced in proportion to the number of parallelization steps, a high processing speed

can be achieved for the parallelizable model.

In this thesis, a connectionist temporal classification (CTC) model is constructed by

combining simple recurrent units (SRUs) and depth-wise 1-dimensional convolution

layers for multi-time step parallelization. Both the character and word piece models are

developed for the CTC model, and the corresponding RNN based language models are

used for beam search decoding. A competitive WER for WSJ corpus is achieved using

the entire model size of approximately 15MB. The system operates in real-time speed

using only a single core ARM without GPU or special hardware.

A low-latency on-device speech recognition system with a simple gated convolu-

tional network (SGCN) is also proposed. The SGCN shows a competitive recognition

accuracy even with 1M parameters. 8-bit quantization is applied to reduce the memory
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size and computation time. The proposed system features an online recognition with a

0.4s latency limit and operates in 0.2 RTF with only a single 900MHz CPU core.

In addition, an attention-based model with the depthwise convolutional encoder

is proposed. Convolutional encoders enable faster training and inference of attention

models than recurrent neural network-based ones. However, convolutional models often

require a very large receptive field to achieve high recognition accuracy, which not

only increases the parameter size but also the computational cost and run-time memory

footprint. A convolutional encoder with a short receptive field length often suffers

from looping or skipping problems. We believe that this is due to the time-invariance

of convolutions. We attempt to remedy this issue by adding positional information

to the convolution-based encoder. It is shown that the word error rate (WER) of a

convolutional encoder with a short receptive field size can be reduced significantly

by augmenting it with positional information. Visualization results are presented to

demonstrate the effectiveness of incorporating positional information. The streaming

end-to-end ASR model is also developed by applying monotonic chunkwise attention.

keywords: Neural networks, Streaming speech recognition, On-device machine

learning

student number: 2015-22786

ii



Contents

Abstract i

Contents iii

List of Tables vi

List of Figures ix

1 Introduction 1

1.1 End-to-End Automatic Speech Recognition with Neural Networks . . 1

1.2 Challenges on On-device Implementation of Neural Network-based

ASR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Parallelizable Neural Network Architecture . . . . . . . . . . . . . . 3

1.4 Scope of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Simple Recurrent Units for CTC-based End-to-End Speech Recognition 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Speech Recognition Algorithm . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Acoustic modeling . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Character-based model . . . . . . . . . . . . . . . . . . . . . 12

2.3.3 Word piece-based model . . . . . . . . . . . . . . . . . . . . 14

2.3.4 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

iii



2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Acoustic models . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 Word piece based speech recognition . . . . . . . . . . . . . 22

2.4.3 Execution time analysis . . . . . . . . . . . . . . . . . . . . 25

2.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Low-Latency Lightweight Streaming Speech Recognition with 8-bit Quan-

tized Depthwise Gated Convolutional Neural Networks 28

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Simple Gated Convolutional Networks . . . . . . . . . . . . . . . . . 30

3.2.1 Model structure . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Multi-time-step parallelization . . . . . . . . . . . . . . . . . 31

3.3 Training CTC AM with SGCN . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Regularization with symmetrical weight noise injection . . . . 34

3.3.2 8-bit quantization . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Experimental setting . . . . . . . . . . . . . . . . . . . . . . 36

3.4.2 Results on WSJ eval92 . . . . . . . . . . . . . . . . . . . . . 38

3.4.3 Implementation on the embedded system . . . . . . . . . . . 38

3.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Effect of Adding Positional Information on Convolutional Neural Networks

for End-to-End Speech Recognition 41

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.1 Effect of receptive field size . . . . . . . . . . . . . . . . . . 46

4.4.2 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . 49

iv



4.4.3 Comparison with other models . . . . . . . . . . . . . . . . . 53

4.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Convolution-based Attention Model with Positional Encoding for Stream-

ing Speech Recognition 55

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 End-to-End Model for Speech Recognition . . . . . . . . . . . . . . 61

5.3.1 Model description . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.2 Monotonic chunkwise attention . . . . . . . . . . . . . . . . 62

5.3.3 Positional encoding . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4.1 Effect of positional encoding . . . . . . . . . . . . . . . . . . 66

5.4.2 Comparison with other models . . . . . . . . . . . . . . . . . 68

5.4.3 Execution time analysis . . . . . . . . . . . . . . . . . . . . 70

5.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Conclusion 72

Abstract (In Korean) 86

v



List of Tables

2.1 The ratio of frames whose decoding stages are skipped due to high

CTC blank output. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 The number of LM operations with the varying number of candidates. 17

2.3 WER and CER in percentage on WSJ eval92 test set. Decoding is

conducted with RNN CLM and HCLM. . . . . . . . . . . . . . . . . 18

2.4 Comparision of the model with non-causal and causal 1-D convolutions.

1-D conv (-a, b) uses a past and b future time-steps to compute the

output of the current time step. . . . . . . . . . . . . . . . . . . . . . 19

2.5 WER and CER in percentage on WSJ eval92 test set when trained with

additional data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 WER and CER on WSJ eval92 when word piece units are used. . . . 22

2.7 Comparison of WER and CER on WSJ eval 92 according to downsam-

pling in the word piece AMs. . . . . . . . . . . . . . . . . . . . . . . 23

2.8 WER and CER on Librispeech test-clean . The models are trained on

LibriSpeech train-clean-100 and train-clean-360. . . . . . . . . . . . 24

2.9 WER on Librispeech test-clean and test-other. The models are trained

on all the LibriSpeech train set (960 hours). . . . . . . . . . . . . . . 24

2.10 Execution time of SRU-AM for 1 second of speech according to the

number of parallelization steps. . . . . . . . . . . . . . . . . . . . . 25

vi



3.1 WER (%) of SGCN trained with the symmetrical weight noise injection.

SN denotes the symmetrical noise injection. The models are trained on

WSJ si-284. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 WER (%) of SGCN trained with symmetrical weight noise injection.

Trained on WSJ si-all (147 hours). . . . . . . . . . . . . . . . . . . . 33

3.3 WER (%) evaluated on the WSJ eval92 test set. . . . . . . . . . . . . 35

3.4 Computation time measured on 900MHz ARM CPU. Only a single

core is used for evaluation. RTF denotes the real-time factor. . . . . . 37

3.5 WER (%) of the SGCN before and after quantization. . . . . . . . . . 37

3.6 RTF with the different number of parallelization steps. . . . . . . . . 39

3.7 Percentage of computation time per the type of operations. . . . . . . 39

4.1 TED-LIUM release 2 results of the models with different filter size.

Pos. denotes that positional encoding is applied. . . . . . . . . . . . . 48

4.2 Experimental results of convolutional models with different sizes. LSTM

and Transformer models are shown for comparison. Decoder is a single-

layer 1000-dimensional LSTM for all the models. . . . . . . . . . . . 54

5.1 Memory size of intermediate buffer required for online speech recog-

nition. L is the sequence length, D is the dimension of layer, k is the

filter width of convolution. For speech recognition, L is usually a few

hundred, while k is about ten. . . . . . . . . . . . . . . . . . . . . . . 57

5.2 TED-LIUM release 2 results of the models with different filter size.

Monotonic chunkwise attention is applied for all models. Pos. denotes

that positional encoding is applied. . . . . . . . . . . . . . . . . . . . 64

5.3 TED-LIUM release 2 results of the models with different attention

algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

vii



5.4 Experimental results with convolutional models of different sizes. LSTM

and Transformer-based models are included for comparison. For all the

models in this table, we use the same decoder consisting of a single

LSTM layer with a 1000 unit size. . . . . . . . . . . . . . . . . . . . 69

5.5 Execution time of encoder for 1 second of speech according to the

computation chunk size. . . . . . . . . . . . . . . . . . . . . . . . . 70

viii



List of Figures

2.1 (a) The architecture of the neural network model used for acoustic

modeling. (b) The system consists of RNN AM, RNN LM, and beam

search decoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 The architecture of the hierarchical recurrent neural network model

used for language modeling. . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Training loss of acoustic models when trained on WSJ SI-284. . . . . 21

2.4 Validation loss of acoustic models when trained on WSJ SI-284 . . . 21

2.5 (a, b): Processing time of the speech recognition system for 1 second of

speech on the single core ARM CPU. The time is evaluated on the WSJ

eval92 dataset. The plot with dashed lines represents the computation

time with 8-bit weights. (c): WERs when different beam width is used. 26

3.1 A SGCN architecture for acoustic modeling. . . . . . . . . . . . . . . 32

3.2 Validation CER curve of the SGCN trained on WSJ si-284. . . . . . . 36

4.1 (a) The attention-based model with 1-D depthwise convolutions and

positional information for encoder. (b) A depthwise convolutional block

and (c) a block with gating structure. . . . . . . . . . . . . . . . . . . 44

4.2 The original transcript and the decoded results with and without the

positional encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

ix



4.3 Test WER on TED-LIUMv2 comparing models with different receptive

field size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 The average edit distance of test set according to the length of transcrip-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 The visualization of encoder output using PCA. The first two principal

components are used for visualization. The points of 92-94th and 214-

216th steps are indicated with text, which correspond to pronunciation

of the word ‘curious’. (a) filter width = 3 (b) filter width = 3 with posi-

tional encoding. (c) filter width = 5 (d) filter width = 5 with positional

encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Attention energy ei (left) and weight αi (right) of models (a) (b)

without and (c) (d) with positional encoding are shown. Darker pixels

indicate higher values. . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 (a) The attention-based model with 1-D depthwise convolutions and

positional information for encoder. (b) A depthwise convolution block.

(c) A block with gating structure. . . . . . . . . . . . . . . . . . . . . 60

5.2 Test WER on TED-LIUMv2 comparing models with different receptive

field sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 The original transcript and the decoded results with and without the

positional encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Attention energy ei (up) and weight αi (down) of models (a) (c) with-

out and (b) (d) with positional encoding are shown. Darker pixels

indicate higher values. ‘DanielKahneman 2010 399.58 417.69.ogg’ in

the test set is used for plotting. . . . . . . . . . . . . . . . . . . . . . 67

x



5.5 The visualization of encoder output using PCA. The first two principal

components are used for visualization. The points of 151-152th and 198-

199th steps are indicated with text, which correspond to pronunciation

of the word ‘and’. (a) filter width = 3 (b) filter width = 3 with positional

encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

xi



Chapter 1

Introduction

1.1 End-to-End Automatic Speech Recognition with Neural

Networks

Deep neural network-based models have greatly improved the accuracy of automatic

speech recognition (ASR) tasks with end-to-end training. Unlike traditional ASR, which

requires the complicated system structure and training processes, the end-to-end ASR

system directly learns the output transcriptions from the input speech. The end-to-end

models include connectionist temporal classification (CTC) [1, 2], attention-based

models [3, 4], and transducers [5, 6, 7]. The end-to-end neural network-based ASR

models have achieved a state-of-the-art accuracy on various large-scale datasets [8].

Neural network-based ASR is usually based on recurrent neural networks (RNNs),

such as long short-term memory (LSTM) [9] or gated recurrent unit (GRU) [10], which

are capable of learning the long-term context of input sequences. The RNN-based

systems demand a huge amount of multiply and add operations, and often contain

more than millions of parameters. This requires excessive memory access and high

computing power. To fix this, model compression techniques are actively studied for

the efficient implementation of the ASR system. The compression algorithms include

quantization [11, 12, 13], pruning [14, 15, 16], and matrix decomposition [17]. However,
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these techniques require additional data rearrangement or dedicated hardware support

[18] to obtain improvement in throughput. Therefore, commercial services in the real

environment usually adopt cloud-based implementations with high-performance GPU

servers.

1.2 Challenges on On-device Implementation of Neural Network-

based ASR

The shortcomings of server-based ASR implementations include the network latency

and privacy concerns resulting from the transfer of users’ data to the server. The server

operating cost is also a problem for the service provider. Consequently, there is a huge

demand for an on-device ASR implementation for the internet of things (IoT) and

mobile devices to overcome the problems of the cloud-based systems.

The memory access overhead often becomes the main bottleneck of on-device

neural network-based ASR. Typically, neural network-based ASR requires 1 to 10

Giga arithmetic operations per second. This range of computational cost is affordable

by single-core CPUs when optimized with single instruction multiple data (SIMD)

operations. However, memory accesses are still major issues. Usually, the parameter

size of the speech recognition model is larger than 100 MB, which is far more than the

available cache size of CPUs. When computing RNN, the weights should be fetched

from the main memory to cache every input frame since it requires the previous time-

step output for the current computation. Although a large number of memory accesses

can be hidden by multi-stream parallel processing in server-based implementation, this

approach is not feasible for on-device implementations where usually targets a single

user.
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1.3 Parallelizable Neural Network Architecture

To avoid memory access issues of RNNs, the parallelizable models are often employed

instead. Conventional RNNs such as an LSTM [9] have a feedback structure on the

matrix-vector multiplication, which must be computed serially for the single stream.

Since matrix-vector multiplication is the most computation-intensive operation, the com-

putation of a single sequence is inefficient for the RNN. Recent studies have proposed

the simplified RNN structures which have feedback on element-wise computations

only. The simplified RNNs include strongly-typed recurrent unit [19], Quasi-RNN [20],

simple recurrent unit (SRU) [21], and gated impulse linear recurrent (GILR) unit [22].

These RNNs have shown a solid performance for natural language processing, such

as language modeling or machine translation. They also have a far faster training and

inference speed when compared to LSTM or GRU. However, these models have a

worse accuracy than conventional RNNs. We consider that the simplified recurrence is

inadequate to learn the long-term context required for the speech recognition task.

Besides recurrent models, fully convolutional neural networks have also been used

for sequence learning. They achieved a good performance on machine translation

[23, 24, 25], language modeling [26], and speech recognition [27]. More recently, self-

attention based models [28] have been proposed and widely been used for sequential

tasks. These models have also achieved for the end-to-end speech recognition task.

However, these models require a large size of the receptive field for learning the long-

term context for the speech recognition task. This increases the computational overhead

and memory footprint for the convolution and self-attention-based models, which makes

it difficult for these models to be used in memory-constrained devices.

1.4 Scope of Dissertation

As discussed in previous sections, there are a lot of challenges in developing the on-

device ASR system, which mainly comes from the inefficient utilization of cache. In
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this study, a method to develop memory-efficient on-device ASR using a parallelizable

neural network structure is proposed.

This dissertation is organized as follows. In Chapter 2, a simple recurrent unit (SRU)

is applied to CTC-based speech recognition. As discussed in Section 1.3, SRU has low

recognition performance when applied to the end-to-end speech recognition. SRU is

considered to have a lack of capacity in learning the long-term context. To compensate

for simplified recurrence, depthwise convolutions are used to increase the receptive

field of SRU. It is shown that SRU with 1-D depthwise convolution has lower WER

than unidirectional LSTM. RNN-based language models are applied for beam search

decoding. A competitive WER for WSJ corpus is achieved using the entire model size

of around 15MB. The system operates in real-time speech using only a single core

ARM without GPU or special hardware.

In Chapter 3, a 1MB memory footprint ASR model is developed, which could be

applied for always-on speech recognizer or keyword spotting. To reduce the memory

size, a depthwise convolution-based structure is used. The model shows a competitive

recognition accuracy even with 1M parameters. 8-bit quantization is also applied to

further reduce the memory footprint and computation time. The proposed system

features the online recognition fulfilling the 0.4s latency limit, operating with the

real-time factor of 0.2 by utilizing only a single 900MHz CPU core.

The attention-based end-to-end speech recognition models usually have lower WER

than CTC-based models when the external LM is not available. In Chapter 4, a method

to train attention-based models with convolutional encoders is proposed. Convolutional

models often require a very large receptive field to achieve high recognition accuracy,

which not only increases the parameter size but also the computational cost and run-

time memory footprint. A convolutional encoder with a short receptive field length can

suffer from looping or skipping problems when the input utterance contains the same

words as nearby sentences. We believe that this is due to the insufficiency of positional

information. We try to remedy this problem by adding positional information to the
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convolution-based encoder. It is shown that WER of attention-based models with a

convolutional encoder is reduced by augmenting it with positional encoding.

The conventional attention-based models are difficult to use for streaming speech

recognition since it needs the entire input sequence to be processed before generating

the first output label. To overcome this problem, local attention, such as the monotonic

chunkwise attention [29] has been proposed. In Chapter 5, the convolutional encoder

is applied to the monotonic chunkwise attention-based model. The receptive field size

for convolutional encoder is reduced with the method proposed in Chapter 4, which is

crucial for reducing the working memory for streaming speech recognition.

The materials of Chapter 2 and 3 were previously published by the author in [30, 31],

respectively. In addition, Chapter 4 and 5 have been submitted to InterSpeech 2020 and

Advances in Neural Information Processing Systems (NeurIPS 2020).
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Chapter 2

Simple Recurrent Units for CTC-based End-to-End Speech

Recognition

2.1 Introduction

Recently, neural network technology has greatly improved the accuracy of automatic

speech recognition (ASR), and many applications are being developed for smartphones

and intelligent personal assistants. Many researches on end-to-end speech recognition

are being conducted to replace the hidden Markov model (HMM) based technique which

has been used for many years. The end-to-end models with neural networks include

connectionist temporal classification (CTC)-trained recurrent neural networks (RNN) [1,

2], encoder-decoder architectures [4, 3], and RNN transducers [5, 6]. Although HMM-

based algorithms can be considered arithmetically efficient, they demand many irregular

memory accesses and a large memory foot-print usually exceeding a few hundred MBs.

In contrast, RNN based ASR has the advantage of low memory footprint; however, it

demands numerous arithmetic operations for real-time inference. Consequently, server-

based ASR implementations are mostly used for real services, which however has the

problem of response delay and user privacy issues. Therefore, there is a huge demand

for on-device ASR implementation not only for smartphones but also for many internet
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of things (IoT) devices [32].

There have been many researches on accelerating the inference of neural networks

by employing special-purpose hardware or GPUs. Our estimate of a fully neural network

based single user speech recognition demands about 1 Giga arithmetic operations per

second, which is not a formidable barrier because a single instruction multiple data

(SIMD) instruction can conduct four to eight arithmetic operations at a time and the

clock frequency of a CPU is around 1 GHz. The real problem is the cache misses

because the model size of RNN, which is over 10 MB for most ASR, is usually much

larger than the cache size of embedded CPUs. For example, ARM Cortex-A57 has a 2

MB L2 cache at most. Due to the sequential nature of RNN, the parameters should be

fetched from the DRAM at each time step, which implies continuous cache misses. In

GPU or server-based implementations, this problem is hidden by batch or multi-stream

parallel processing.

In embedded devices, however, only one stream is executed, because it usually

targets a single user. To solve the memory access problem, we apply multi-time step

parallel processing for which multiple consecutive frames are computed concurrently,

and the number of DRAM accesses can be reduced in proportion to the number of

parallelization steps. Unfortunately, the multi-time step parallelization cannot be applied

to popular RNN structures, such as long short-term memory (LSTM) [9] or gated

recurrent unit (GRU) [10], because they contain complex input-output dependencies.

Recent studies demonstrated linear RNNs with simplified feedback, which can be used

for multi-time step parallelization [20, 21, 22, 19]. Quasi RNN (QRNN) and simple

recurrent unit (SRU) are a kind of linear RNNs. However, when applied to acoustic

modeling, the accuracy with linear RNN was not as good as that of LSTM RNN. We

combined depth-wise 1-dimensional (1-D) convolution with linear RNN and obtained

very good accuracy exceeding that of LSTM with a comparable parameter size.

The developed speech recognition system employs RNN based language models

(LMs) instead of n-gram based ones. Character and word piece based LMs are used
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for beam search decoding. In addition, we also try hierarchical character LM (HCLM)

for improved performance, and by which we can achieve an accuracy comparable to

Deep Speech 2 [2] for Wall Street Journal (WSJ) corpus, with 10 times less parameters.

The RNN LMs are based on LSTM or GRU because multiple streams are executed

concurrently for beam search decoding. We reduce the overhead of DRAM accesses by

executing multiple streams of RNN LMs at a time, where the stream size depends on

the beam search width. For efficient beam search decoding, we early prune the output

symbols of low probability in the acoustic model (AM).

The implementation operates in real-time on the ARM Cortex-A57 based embedded

system without GPU support. The model size of the proposed speech recognition system

including CTC-AM and RNN LM is about 15 MB with 8-bit parameters which is far

smaller than that of conventional HMM-based systems.

This chapter is organized as follows. In Section 2.2, we review the related works

and recently proposed RNNs. We introduce the proposed speech recognition system in

Section 2.3. The experimental results including the execution time analysis are shown

in Section 2.4. Section 2.5 concludes this chapter.

2.2 Related Works

Most mobile speech recognition methods have relied on WFST (weighted finite state

transducer) based algorithms mainly because of their low arithmetic requirements [33].

However, a WFST network usually demands a foot-print of more than a few hundred

MB because of the integrated n-gram based LM. Scattered and unaligned memory

accesses also hinder efficient implementation of WFST networks.

Recently, fully neural network based speech recognition, which combines RNN

based AM and LM, has drawn considerable attention. For efficient implementation of

RNN, several model compression techniques have been developed, such as pruning

[14], quantization [11], and matrix decomposition [17]. However, these techniques need
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efficient data rearrangement and decompression; therefore, they are not explored in this

work. However, they can be combined with the proposed method. We applied 8-bit

quantization to further reduce the execution time and the model size.

Recently, quasi RNN (QRNN) and simple recurrent unit (SRU) were developed for

the purpose of fast training and inference of very long sequences [20, 21]. These RNNs

only employ simple feedback that can be represented as linear recurrence equations,

and allow not only fast training but also multi-time step parallel inference. QRNN

showed a good performance comparable to LSTM in language modeling and machine

translation.

Convolutional neural networks (CNNs) have also been used for sequence learning,

such as machine translation [23, 24], language modeling [26], and speech recognition

[27]. CNN has the advantage of parallel processing because there is no dependency

between the input and output. However, CNN usually requires a large amount of feature

maps, while RNN only needs to store the current cell and output state vectors in each

layer. In this sense, we consider that RNN is more advantageous compared to CNN for

on-device inference if multi-time step parallelization can be applied for memory access

reduction.

2.3 Speech Recognition Algorithm

The target speech recognition system in this work consists of CTC-trained AM, RNN

LM, and beam search decoder. In particular, we have developed two models; one is

based on character as the output units of AM and LM, and the other is based on word

piece units [34]. The word piece model is advantageous for real-time execution because

the AM can operate at a low frame rate. In this section, we describe each component of

the system in detail.
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Figure 2.1: (a) The architecture of the neural network model used for acoustic modeling.

(b) The system consists of RNN AM, RNN LM, and beam search decoding.

2.3.1 Acoustic modeling

The proposed AM architecture is shown in Figure 2.1 (a); it is composed of two 2-D

convolutional layers, six recurrent layers, and the final fully connected layer. The output

labels are either graphemes (characters) or word pieces. The AM RNN is trained with

CTC loss [35]. The input of the convolutional layer consists of three 2-D feature maps

with the time and frequency axes, and each feature map is formed with the mel-filter

bank output, its delta, or double-delta. We employed two 2-D convolutional layers

with a filter size of 5, as proposed in [2, 36]. The 2-D convolutional layers not only

improve the recognition performance but also down-sample the input frames by two.

Thus, the down-sampling in the convolutional layers not only reduces the computational

complexity of the recurrent layers in AM but also simplifies the decoding.

The developed model contains six recurrent layers, and each layer consists of 1-D

convolution unit and SRU. The recurrent layers adopt SRU which only employs cell-

state feedback [21]. Given an input vector xt ∈ Rdin , the output ht ∈ RN and the cell

state ct ∈ RN is computed in SRU as depicted in Eq. (1). Inspired from ifo-pooling of
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QRNN, we replaced (1− ft) to input gate it [20]. We refer this as i-SRU in this work.

In our experiments, adding the input gate not only improves the robustness in training

of SRU but also leads to a lower error rate. We also explored the location of tanh in our

preliminary experiments, and found that locating tanh as shown in Eq. (2.2) yielded

slightly better results.

SRU:

x̂t = Wzxt + bz,

ft = σ(Wfxt + bf ),

ot = σ(Woxt + bo),

ct = ft � ct−1 + (1− ft)� x̂t,

ht = ot � tanh (ct) + (1− ot)� xt

(2.1)

i-SRU:

x̂t = tanh (Wzxt + bz),

ft = σ(Wfxt + bf ),

it = σ(Wixt + bi),

ot = σ(Woxt + bo),

ct = ft � ct−1 + it � x̂t

ht = ot � ct + (1− ot)� xt

(2.2)

where Wz,Wf ,Wi,Wo ∈ RN×din and bz,bf ,bi,bo ∈ RN are trainable pa-

rameters. When the i-SRU is trained alone, the resulting WER is significantly worse

than that of LSTM. To overcome this problem, we add a depth-wise 1-D convolutional

layer at the input of each recurrent layer. This needs O(k × din) additional parameters

when the filter width of k is used for the convolution. The number of parameters used

in 1-D convolutional layers is much smaller than that for recurrent layers, which is
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O(N × din). This is similar to QRNN with a filter size of k > 1. However, QRNN

needs O(k ×N × din) parameters. We obtained significant performance improvement

by adding 1-D convolutional layers between the recurrent layers. Specific results are

reported in Section 2.4.

The multi-time step processing converts matrix-vector multiplications into matrix-

matrix multiplications. The weight matrix is reused for T time steps with a single

parameter fetch from the DRAM, by which the execution time and power consumption

can be greatly reduced. The multi-time step computation is shown in Eq. (3), where T

is the number of parallelization steps.


z1 z2 ... zT

i1 i2 ... iT

f1 f2 ... fT

o1 o2 ... oT

 =


Wz

Wi

Wf

Wo


(
x1 x2 ... xT

)
(2.3)

2.3.2 Character-based model

RNN based LMs show quite high performance when compared to statistical n-gram

based LMs. When AM employs characters as the output unit, a dictionary or character-

level LM (CLM) can be used for reducing the word error rate (WER) [37]. The CLM

only supports 30 labels; therefore, the input and output layers are very simple. In

addition, the CLM does not have the out-of-vocabulary (OOV) problem. We do not

use the word-level LM (WLM) because it has the OOV problem and consumes a large

number of parameters at the output softmax layer. Instead of adopting WLM, we use the

hierarchical character-level LM (HCLM) for further improving the performance [38].

Note that the HCLM consists of two RNN modules: one operates with the character

clock and the other with the word clock. Because the RNN modules operate with the

word-clock, the HCLM can show very low bit-per-character (bpc) performance.
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Figure 2.2: The architecture of the hierarchical recurrent neural network model used for

language modeling.

The LMs are used in beam search decoding, and the maximum number of LMs

that operate simultaneously depends on the beam size, which is between 32 and 128 in

this system. This suggests the use of multi-stream parallel processing to improve the

execution speed of LMs. Note that multi-stream parallel processing executes multiple

sequences concurrently, while multi-time step parallel processing, which is adopted in

AM RNN, computes multiple output samples at a time. Thus, conventional RNN, such

as LSTM or GRU models, can be used for LM design. We need to save the context

of all the LMs during the beam search decoding. GRU has fewer states to keep than

LSTM. Therefore GRU can reduce memory consumption in the decoding stage.
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2.3.3 Word piece-based model

We have also developed a word piece model based ASR to reduce the complexity

further by lowering the frame rate. The word piece model includes very frequently used

words, sub-words, and characters [34]. The number of word pieces used in this system

is 500 and 1,000. The word piece model does not have the OOV problem because any

word can be constructed using sub-words or characters. The performance of the word

piece LM can be better than that of CLM because a word piece is usually composed of

several characters, which implies an ability to predict longer dependency than CLM.

The word piece model is very advantageous for reducing the complexity because the

AM with word piece can operate at a slower rate when compared to the AM with

character. In addition to the frame rate down-sampling at the convolutional layer, we

apply down-sampling in the recurrent layers also. However, word piece model training,

especially for AM, demands much more data because there are an increased number of

labels.

2.3.4 Decoding

For inference, we find the sequence of label y, which maximizes Q(y) for a given input

feature x1:T , by combining the output of AM PCTC and LM PLM as follows

Q(y) = log(PCTC(y|x1:T )) + α log(PLM(y)) + β|y| (2.4)

The labels can be either characters or word pieces. We use the beam search decoding

algorithm for incremental speech recognition as proposed in [37]. The computational

complexity of beam search decoding with RNN LM is O(beam width × transcription

length × vocabulary size). To decrease the search space of decoding, we applied two

techniques. First, we skip the decoding process for the current input when the blank

output probability is larger than 0.95. This removes unnecessary search caused by blank

frames [39]. Second, we sort the AM output probability and conduct decoding for top-k

probability labels only. This is especially effective for word piece models because the
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vocabulary size of word pieces is at least 10 times larger than that of the character level

LM. We used k = 10 for word piece model.

The most time-consuming part in the decoding is computing the probability of

PLM (c|l), which is required in the line 17 and 20 of Algorithm 1. Time complexity

of the LM computation is O(B × T × |Σ|), but the actual computation complexity

can be reduced to O(B × |l| × |Σ|) by reusing the result of LM for same inputs.

Skipping consecutive blanks and candidate pruning are applied in line number 5 and 8,

respectively. Table 2.1 shows the ratio of skipped repeated blank frames. The number

of operations of LM per frame according to the number of candidates are shown

in Table 2.2.

2.4 Experimental Results

We present the AM training results on character and word piece models. The decoding

is conducted with RNN LMs. In addition, the execution time is analyzed.

2.4.1 Acoustic models

The most critical part of this research is the development of an AM using linear RNN,

such as SRU or QRNN. In our early experiments, we failed to obtain good performance

by only using SRU or QRNN for recurrent layers. Therefore, we needed to try many

different RNN structures, thus each training should not take much time. We constrained

the number of parameters to be approximately 12M. The models used for performance

evaluation include the conventional LSTM, SRU, Gated ConvNet, and GILR-LSTM

[22]. In addition, we trained each model with the 1-D convolution at the input. The

width of 1-D convolution is set to 15, which seems to be the optimum number at our

experiments. Note that the 1-D convolution considers 7 past (-7) and 7 future (+7)

time-steps unless specified otherwise. We used uni-directional models because this

implementation is intended for online speech recognition. Bi-directional models for
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Input: AM output probability matrix PCTC ∈ R|Σ|×T , beam width B, number

of search candidates k, language model weight α, insertion bonus γ,

vocabulary Σ

1 Aprev = {φ}, PCTC(blank|x1:0) = 1

2 for t = 1 to T do

3 if PCTC(blank|x1:t−1) ¿ 0.95 and PCTC(blank|x1:t) ¿ 0.95 then

4 continue

5 end

6 Anext = {}, K = top-k labels in Σ according to value of PCTC(c|x1:t)

7 for l in Aprev do

8 for c in K do

9 if c = blank then

10 pnb(l) = pnb(l)PCTC(blank|x1:t)

11 pb(l) = (pnb(l) + pb(l))PCTC(blank|x1:t)

12 else

13 l+ = concat(l, c)

14 if c = lend then

15 pnb(l
+) = pb(l)PCTC(c|x1:t)γPLM (c|l)α

16 pnb(l) = pb(l)PCTC(c|x1:t)

17 else

18 pnb(l
+) = (pb(l) + pnb(l))PCTC(c|x1:t)γPLM (c|l)α

19 end

20 end

21 add l+ to Anext

22 end

23 end

24 assign top-B of Anext to Aprev

25 end
Algorithm 1: Prefix beam search in proposed system.
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Table 2.1: The ratio of frames whose decoding stages are skipped due to high CTC

blank output.

Acoustic model Downsampling ratio Percentage of skipping

WSJ - Character ×2 33.8%

WSJ - Word piece ×4 44.33%

Libri - Word piece ×8 20.23%

Table 2.2: The number of LM operations with the varying number of candidates.

Number of candidates 20 30 40 100

LM operations / frame 4.365 4.488 4.593 4.820

i-SRU and LSTM are also included for performance comparison.

We used Wall Street Journal (WSJ) SI-284 training set (81 hours) for the fast evalu-

ation of AMs. A 40-dimensional log mel-frequency filterbank feature was extracted

from the raw speech data. The feature vectors were sampled every 10 ms with 25 ms

Hamming window. We applied batch normalization [40] to the first two convolutional

layers and variational dropout [41] to every output of the recurrent layer for regulariza-

tion. Adam optimizer [42] was applied for training. We used an initial learning rate of

3e-4, and the learning rate was reduced to half if the validation error was not lowered

for consecutive 8 epochs. Gradient clipping with a maximum norm of 4.0 was applied.

For comparison, we trained all the models with identical hyper-parameter setting. All

the experiments are performed with TensorFlow [43].

The trained models were evaluated on WSJ eval92 set. The beam search decoding

was conducted using the same CLM or the same HCLM. The CLM used for decoding

consists of two-layer 512-dimensional LSTM. The HCLM has four recurrent layers,

where two layers are assigned to the word-level modeling [38]. RNN LM was trained
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Table 2.3: WER and CER in percentage on WSJ eval92 test set. Decoding is conducted

with RNN CLM and HCLM.

Greedy CLM HCLM

Model Params. CER WER CER WER CER WER

6x800 SRU 10.62M 26.94 82.56 13.24 29.68 7.94 15.41

6x700 i-SRU 10.92M 12.70 45.22 7.04 18.90 4.90 12.27

6x800 SRU, 1-D conv 10.69M 6.06 22.16 3.48 9.53 1.97 4.90

6x700 i-SRU, 1-D conv 10.98M 5.26 19.07 2.70 7.30 2.01 4.90

6x1000 i-SRU, proj, 1-D conv 14.14M 5.85 21.60 3.00 7.80 2.27 5.17

4x600 LSTM 10.85M 7.29 24.88 5.35 14.27 3.70 8.75

4x600 LSTM, 1-D conv 10.88M 6.95 23.57 5.80 15.22 3.10 7.01

4x840 LSTM, proj, 1-D conv 12.01M 7.78 26.80 4.88 12.26 3.36 7.60

6x300 Gated ConvNet 16.38M 8.02 28.65 5.13 13.82 2.98 6.74

4x550 GILR-LSTM 11.34M 8.60 31.99 4.86 13.60 2.66 6.35

4x550 GILR-LSTM, 1-D conv 11.37M 7.15 26.06 4.44 11.92 2.38 5.45

bidirectional models

6x400 i-SRU, 1-D conv 11.52M 4.90 17.30 2.94 7.90 1.97 4.87

4x350 LSTM 10.70M 5.88 20.17 3.46 9.41 2.57 5.89
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Table 2.4: Comparision of the model with non-causal and causal 1-D convolutions. 1-D

conv (-a, b) uses a past and b future time-steps to compute the output of the current

time step.

Greedy CLM HCLM

Model CER WER CER WER CER WER

6x700 i-SRU, 1-D conv (-7, 7) 5.26 19.07 2.70 7.30 2.01 4.90

6x700 i-SRU, 1-D conv (-14, 0) 5.70 20.18 3.12 8.47 2.30 5.32

6x700 i-SRU, 1-D conv (-7, 0) 6.10 21.96 2.99 7.69 2.35 5.55

Table 2.5: WER and CER in percentage on WSJ eval92 test set when trained with

additional data.

Greedy CLM HCLM

Model Params. CER WER CER WER CER WER

6x700 i-SRU, 1-D conv 11.0M 4.13 18.02 2.54 6.04 1.51 3.73

6x1000 i-SRU, proj, 1-D conv 14.1M 3.80 14.70 2.19 6.20 1.48 3.70

4x600 LSTM, 1-D conv 10.9M 4.35 13.90 3.72 10.15 2.55 5.92

4x840 LSTM, proj, 1-D conv 12.0M 5.76 20.15 3.54 9.25 2.53 5.79

Deep Speech 2 100M WER 3.60 with 5-gram LM
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on WSJ LM training text. We randomly selected 5% of WSJ LM training text to the

valid set, and another 5% to the test set. The remaining 90% of the text is used for

training RNN LM. The RNN LM reported 1.20 of bit-per-character (bpc) on the test

set, while the HCLM showed a bpc of 1.07 on the test set. The decoding was conducted

with a beam width of 128.

Table 2.3 shows the CER and WER performance of the RNN models trained with

the WSJ SI-284 training set. To denote the projection, ‘proj’ is used for each RNN

model. The size of the projection-layer is a half of the RNN dimension. For example,

the LSTM with the layer size of 840 employs the projection dimension of 420. The table

includes the results of greedy, CLM, and HCLM based decoding. Here, we can find

that i-SRU with 1-D convolution performs much better than LSTM. The performance

of SRU with 1-D convolution is not much different from that of i-SRU with 1-D

convolution. In this table, we can also find that HCLM helps considerably in reducing

the CER and WER for all models.

Since the 1-D convolution layers consider the future inputs for improved per-

formance, the output is not generated immediately. We trained i-SRU with causal

depth-wise 1-D convolutions and the results are shown in Table 2.4. The performances

of some other models that employ different observation windows are also shown. Note

that the WER of the model with the causal 1-D convolution is still much lower than

that of LSTM.

We compared the train and valid loss curves of some selected models. The peaks

in training curves are due to curriculum-like learning scheduling. SRU without 1-D

convolution was not trained well. LSTM converged faster than other models but it

reached local minimum quickly. Training loss of i-SRU was reduced faster than SRU,

while they showed the similar valid loss in the end of training.

Since the amount of data is critical, we further trained two selected models, i-SRU

and LSTM, using all the available speaker independent data in the WSJ corpus to

improve the WER. This corresponds to approximately 167 hours of speech. The results

20



0 20 40 60 80 100 120 140

50

100

150

200

250

300

Epochs

C
T

C
L

os
s

SRU with 1-D conv.
i-SRU with 1-D conv.

SRU
LSTM

Figure 2.3: Training loss of acoustic models when trained on WSJ SI-284.

0 20 40 60 80 100 120 140

50

100

150

200

250

300

Epochs

C
T

C
L

os
s

SRU with 1-D conv.
i-SRU with 1-D conv.

SRU
LSTM

Figure 2.4: Validation loss of acoustic models when trained on WSJ SI-284
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Table 2.6: WER and CER on WSJ eval92 when word piece units are used.

Greedy WPLM

Model CER WER CER WER

6x700 i-SRU, 1-D conv 7.37 17.95 6.73 10.50

4x600 LSTM, 1-D conv 9.34 22.56 8.47 15.64

6x700 i-SRU, 1-D conv, additional data 5.47 14.38 3.11 8.28

4x600 LSTM, 1-D conv, additional data 6.57 15.32 4.53 11.48

are shown in Table 2.5. WER of DeepSpeech2 is included for comparison, which

is trained with more than 10,000 hours of data and the decoding is performed using

5-gram LM.

2.4.2 Word piece based speech recognition

We trained the i-SRU with 1-D convolutional layer on the word piece model with a

vocabulary size of 500. We also trained the LSTM model with the same setting to

compare the CER and WER. We added the time-convolution with a stride of two just

before the last two recurrent layers. This incurs x4 down-sampling in total. Decoding

was conducted under a beam width of 64 with the word piece-level LM. The word piece

LM consists of two layers of 512-dimensional LSTM, which has the same structure as

that of RNN LM in Section 2.4.1.

The CER and WER for the word piece models are listed in Table 2.6. We noticed

that the word piece models show higher WER when compared to the character-based

models. One possibility is the data sparsity problem due to the small amount of training

data in WSJ SI-284. To relieve this problem, we trained the word piece models using all

speaker independent data in WSJ training set, which has 167 hours of data. We could

22



Table 2.7: Comparison of WER and CER on WSJ eval 92 according to downsampling

in the word piece AMs.

Greedy WPLM

Model CER WER CER WER

x2 in conv. layer 7.02 18.95 6.05 10.93

x4 in conv. layer 8.05 20.24 6.55 11.83

x2 in conv. layer, x2 in recurrent layer 7.37 17.95 6.00 10.50

x4 in conv. layer, x2 in recurrent layer 10.30 25.58 7.83 13.99

obtain fairly reduced WER as shown in the table.

The difference between WER and CER in the word piece models is much smaller

when compared to that in character based models. This suggests that WER improvement

by beam search decoding is less significant in the word piece models. This leads

to a smaller beam width in the decoding process, which also reduces the decoding

complexity.

One advantage of employing the word piece unit is the possibility of more aggressive

down-sampling. We analyzed the effect of down-sampling on WER in Table 2.7. The

additional down-sampling is located in the second 2-D convolutional layer or before

the last two recurrent layers. The lowest WER is reported when a down-sampling of 2

is applied to both the 2-D convolutional layer and the recurrent layer. Increasing the

down-sampling ratio is very beneficial in reducing the decoding complexity.

We also trained our system using a larger dataset, Librispeech Corpus [46]. The AMs

were trained with train-clean-100 and train-clean-360. The training hyperparameters

were exactly the same with the setting in Section 2.4.1. We trained both the character and

word piece models. The word piece vocabulary sizes were 500 and 1,000, respectively.

Two-layer 600-dimensional GRU was employed for RNN LM. The results of WERs
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Table 2.8: WER and CER on Librispeech test-clean . The models are trained on

LibriSpeech train-clean-100 and train-clean-360.

Greedy RNN LM

Model Params. CER WER CER WER

4x600 LSTM, character 10.85M 8.49 26.10 7.34 21.80

6x700 i-SRU, 1-D conv, character 10.98M 6.21 20.41 5.66 13.78

6x700 i-SRU, 1-D conv, word piece-500 11.30M 6.72 17.10 4.67 9.98

6x700 i-SRU, 1-D conv, word piece-1000 11.65M 6.62 16.16 4.42 9.61

Table 2.9: WER on Librispeech test-clean and test-other. The models are trained on all

the LibriSpeech train set (960 hours).

Model Params. test-clean test-other LM type

6x700 i-SRU, 1-D conv 12M 9.02 23.60 RNN LM

12x1000 i-SRU, 1-D conv 36M 5.73 15.96 RNN LM

Gated ConvNet [27] 208M 4.8 14.5 4-gram LM

4x1024 bidirectional GRU [44] 75M 5.4 14.7 4-gram LM

Encoder-decoder [45] 150M 3.82 12.76 RNN LM
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Table 2.10: Execution time of SRU-AM for 1 second of speech according to the number

of parallelization steps.

Parallelization Step 1 2 4 8 16 32

Computation time 1.2129 0.6098 0.3065 0.2064 0.1524 0.1174

on test-clean are shown in Table 2.8. The word piece model shows better performance

than the character-level model unlike the WSJ dataset. This shows that the word piece

model could be better if larger training dataset is available.

We further trained a large model with all the LibriSpeech training data (960 hours),

which includes train-other-500. For the large model, we added 1-D convolutions at the

input of every two SRU layers. The projection layers are used in each output of SRU

layer. The word piece model with a vocabulary size of 1,000 is used. The WERs of the

model are reported in Table 2.9. Ours achieves competitive WER compared to other

models in recent works. Note that our model is unidirectional and has a far less number

of parameters than other ones.

2.4.3 Execution time analysis

We present the implementation results of the proposed speech recognition models on

the ARM Cortex-A57 based embedded system. The ARM CPU has 80 KB L1 data

cache and 2,048 KB L2 cache. OpenBLAS library [47] is used for the optimization of

computation. Table 5.5 shows the execution time of 6x700 i-SRU with 1-D convolution

in Table 2.3 according to the number of multi-time steps for parallelization. When the

number of parallel steps is 8, the execution time of AM for one second of speech is

reduced to 0.2 sec, showing a speed-up of 6 times when compared to the single step

execution.

Figure 2.5 shows the execution time estimate of the character and word piece models
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(b) Word piece-level model.

Beam 32 64 128

character 6.24 6.15 6.04

word piece 8.28 8.28 8.26

character (8-bit) 6.47 6.33 6.30

word piece (8-bit) 8.97 8.97 8.96

(c) WER with different beam width.

Figure 2.5: (a, b): Processing time of the speech recognition system for 1 second of

speech on the single core ARM CPU. The time is evaluated on the WSJ eval92 dataset.

The plot with dashed lines represents the computation time with 8-bit weights. (c):

WERs when different beam width is used.

when the beam widths are 32, 64, and 128. The 6x700 i-SRU with 1-D convolution is

used for AM of the system. Decoding is conducted with CLM or WPLM explained

in Section 2.3.2. We also present the execution time when 8-bit weights are used

for computation. For 8-bit implementation, gemmlowp library [48] is employed. The

additional down-sampling allows the word piece model to run much faster than the
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character based model. Furthermore, the word piece model demands a much smaller

beam width than the character model. By decreasing the beam width from 128 to 32,

the computation time can be reduced to less than half while the difference in WER is

only about 0.02%. Therefore, the word piece model is more advantageous for real-time

speech recognition.

2.5 Concluding Remarks

Real-time automatic speech recognition (ASR) on embedded CPUs is studied by

integrating end-to-end trained acoustic RNN, character or word piece language model

RNN, and efficient decoding algorithm. To reduce the DRAM access overhead, we

apply multi-frame parallel processing for the AM RNN, and develop high accuracy

CTC-trained AM using simple recurrent units (SRUs) combined with 1-dimensional

convolution at the input. We develop two ASR models; one employs character-based

AM operating at 20 msec frame rate, and the other uses the word piece based AM

that operates at the frame rate of 40 msec. The character based model shows very

high accuracy on WSJ corpus when combined with the hierarchical character language

model. The word piece based model shows x2 of the real-time speed on an ARM CPU

mainly due to x4 down-sampling of the word piece AM. This study can be applied to

all single stream or small batch-size implementation of ASR regardless of the platform,

such as GPU or special-purpose hardware.
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Chapter 3

Low-Latency Lightweight Streaming Speech Recogni-

tion with 8-bit Quantized Depthwise Gated Convolutional

Neural Networks

3.1 Introduction

Deep neural network-based acoustic models have greatly improved the accuracy of

automatic speech recognition (ASR) [49, 2, 3]. Neural network-based ASR requires a lot

of computations, which demands high memory bandwidth and power consumption for

the real-time operation. Server-based implementations are mostly employed to address

these issues. However, data transfer between server and edge devices can result in high

latency and privacy issues. Also, the connectivity to the network must be guaranteed to

use the server-based service. Therefore, it is important to develop an on-device ASR

system that can operate in real-time even with limited computing resources [50].

Recurrent neural networks (RNNs), such as an LSTM [9] or GRU [10], have

been widely used for acoustic modeling. RNNs have feedback from the output of the

previous time-steps and it is advantageous in learning from long sequences such as

speech. However, the computation of a single sequence is difficult to parallelize because

of the temporal dependency due to the feedback structure. This results in ineffective
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cache utilization because the weights cannot be reused for multiple time-steps. This

especially matters for on-device applications where the cache capacity is often less than

the parameter size of neural network models.

Recently, easily parallelizable models such as convolutional neural networks (CNNs)

[24] or quasi-RNNs (QRNNs) [20] are actively studied for the sequential tasks. For the

speech recognition, fully convolutional networks were trained with the connectionist

temporal classification (CTC) and they showed a lower word error rate (WER) than

RNN-based models [27, 51]. However, these structures suffer from the large parameter

size when a wide structure is adopted for acoustic modeling. Depthwise convolutions

can be used to reduce the complexity of a CNN or a QRNN. The models with depthwise

convolutions are successfully applied to CTC- [30, 52] and attention-based models

[53].

In this chapter, the implementation of an on-device streaming end-to-end speech

recognition system with the simple gated convolutional network (SGCN) [52] is pro-

posed. This design is intended for low-cost ARM CPU based implementations sup-

porting SIMD (Single Instruction Multiple Data) instructions. In comparison, SGCN

is more advantageous to other architectures when the number of parameters is lim-

ited. The model is trained with CTC [35], which is suitable for online decoding. The

training method with symmetrical noise injection is applied to obtain high accuracy.

8-bit quantization is employed to further reduce the memory bandwidth and use SIMD

instructions. This design is intended for low-cost ARM CPU based implementations

supporting SIMD (Single Instruction Multiple Data) instructions. The proposed system

features streaming inference, where the intermediate outputs are available before the

end of input is given. The 1.2MB end-to-end ASR model is obtained, which operates in

0.2 RTF (five times the speed of real-time) with only a single 900MHz CPU core. The

proposed system has a WER lower than 20% on WSJ eval92 without any LM.

This chapter is organized as follows: In Section 2, the structure of SGCN is ad-

dressed. In Section 3, the methods to train and quantize SGCN for CTC acoustic
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modeling are described. The experimental results are shown in Section 4. Section 5

concludes the chapter.

3.2 Simple Gated Convolutional Networks

3.2.1 Model structure

The gated convolutional network (GCN) is a non-recurrent network architecture which

has been successfully applied to sequential tasks, such as language modeling [26],

translation [24], and speech recognition [27]. GCN employs a gating mechanism similar

to the output gate of the LSTM. When the input xt ∈ RD is given, the output of GCN

ht is computed as follows:

ht = f(
t+d∑

i=t−W+1+d

Vixi + b)� σ(
t+d∑

i=t−W+1+d

Uixi + c), (3.1)

where Vi,Ui ∈ RD×D and b, c ∈ RD are trainable variables. σ is a sigmoid

function for gating. We used ReLU for activation function f . W and d denote the width

and delay of GCN. Computation of ht does not have any dependencies on ht−1, and

the outputs for multiple time-steps can be computed simultaneously.

GCNs can only consider a finite range of context which is limited by the filter width.

To apply GCNs to speech recognition, a filter wider than 15 time-steps is often used.

The number of parameters and computations for GCN is approximately 2WD2 and is

proportional to the width. This drastically increases the parameter size of CNN for an

on-device application.

Simple gated convolutional networks (SGCNs) employ depthwise convolutions

to reduce the parameter size. In SGCN, the width of 1-D convolutions in GCN is

reduced to 1. Instead, depthwise convolutions are applied to increase the length of the

input context. The depthwise convolution in SGCN consults K neighboring features to

consider the correlation between them. The output of SGCN is computed as following

equations.

30



x′t,k =

K−1∑
j=0

t+d∑
i=t−W+1+d

wi,j · xi,k+j ,

ht = f(Vx′t + b)� σ(Uxt
′ + c).

(3.2)

The number of parameters for the convolution and depthwise convolution are 2D2

and KWD, respectively. In general, D is a few hundred and K is about 5. Therefore,

increasing the width of SGCN has a negligible impact on the total number of parameters.

Figure 3.1 describes the whole structure of SGCN for AM. Two 2-D convolutions

are applied to the input features in frequency- and time-axis. The output of the first

layer was max-pooled with the factor of 2 for down-sampling. The SGCN layers are

stacked on top of the 2-D convolutions. A residual connection is used for every two

SGCN layers.

3.2.2 Multi-time-step parallelization

The multi-time-step parallelization merges matrix-vector multiplications for the multiple

inputs into a single matrix-matrix multiplication as follows.

[x′1,x
′
2, ...,x

′
T ] = V[x1,x2, ...,xT ] (3.3)

With a single fetch from DRAM, the weights can be reused for the T time-step

inputs. The multi-time-step parallelization cannot be applied to the recurrent path in

RNN, where the computation of the previous time-step output must be completed before

the current time-step computation. If the cache size is smaller than the parameter size,

the number of DRAM accesses can be reduced to 1/T by applying the multi-time-step

parallelization.
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Figure 3.1: A SGCN architecture for acoustic modeling.
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Table 3.1: WER (%) of SGCN trained with the symmetrical weight noise injection. SN

denotes the symmetrical noise injection. The models are trained on WSJ si-284.

Model Params. WER

12x190 K=5, W=11 1.09M 21.66

12x190 K=5, W=11 + SN 1.09M 19.90

12x300 K=5, W=11 2.24M 18.30

12x300 K=5, W=11 + SN 2.24M 16.87

Jasper 10x3 [51] 201M 13.3

Table 3.2: WER (%) of SGCN trained with symmetrical weight noise injection. Trained

on WSJ si-all (147 hours).

Model Params. WER

12x190 K=5, W=11 1.09M 18.18

12x190 K=5, W=11 + SN 1.09M 16.76

12x300 K=5, W=11 2.24M 15.30

12x300 K=5, W=11 + SN 2.24M 12.74
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3.3 Training CTC AM with SGCN

3.3.1 Regularization with symmetrical weight noise injection

To obtain higher recognition accuracy, the symmetrical noise injection is applied

during training. Training with noise injection is used to find wider local minima in the

loss surface and avoid overfitting [54, 55]. In the preliminary experiments, applying

symmetrical noise injection for training helps faster convergence than using only a

single noise. Conventional stochastic gradient descent updates the parameters of the

model w as follows:

wt+1 = wt −
η

B

B∑
i=1

∇Li(wt), (3.4)

where B is the number of batches in the training set. For the symmetrical weight noise

injection, w̃t+ = wt + αnt, and w̃t− = wt − αnt are used for training. Weight noise

nt is an uniformly distributed random vector. The magnitude of the noise is determined

from the standard deviation of the weight. We used 0.05 for the scale factor α.

wt+1 = wt −
η

2B

B∑
i=1

∇(Li(w̃t+) + Li(w̃t−)), (3.5)

3.3.2 8-bit quantization

To utilize 8-bit SIMD instructions and lower the memory bandwidth, the weights and

activations of the SGCN model were quantized. TensorFlow Lite [56] was used for

quantization. The quantization step sizes are determined by the minimum and maximum

values. Real values are mapped to quantized values as follows:

Q(x) = (x− offset)/scale+ 128) (3.6)

offset = (min(x) +max(x))/2 (3.7)

scale = (max(x)−min(x))/255 (3.8)
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Table 3.3: WER (%) evaluated on the WSJ eval92 test set.

Model Params. WER

12x190 K=5, W=11, 1200ms latency 1.09M 16.76

12x190 K=5, W=11, 200ms latency 1.09M 18.46

12x190 K=3, W=11, 200ms latency 1.04M 19.28

12x190 K=5, W=9, 200ms latency 1.07M 19.60

12x190 K=3, W=11, 200ms latency 1.02M 19.70

12x180 K=5, W=11, 200ms latency 1.00M 19.77

12x180 K=3, W=11, 200ms latency 0.94M 20.16

4x160 uni. LSTM [52] 0.96M 31.2

4x160 uni. LSTM + d.w. conv. [52] 0.97M 24.1

12x300 K=5, W=11, 1200ms latency 2.24M 12.74
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Figure 3.2: Validation CER curve of the SGCN trained on WSJ si-284.

Retraining-based quantization was applied to reduce the accuracy drop of the

quantized model. First, SGCN models were trained in the floating-point domain. After

the floating-point model was converged, the model was retrained with quantized weights

and activations. The minimum and maximum values for quantization were obtained

during retraining. For retraining, the learning rate schedule identical to that used for

training the floating-point model was utilized. It was found that weight decay was

critical for reducing the performance gap between floating-point and quantized models

when residual connection and depthwise convolution were employed together.

3.4 Experimental Results

3.4.1 Experimental setting

SGCN was trained with connectionist temporal classification (CTC) algorithm. The Wall

Street Journal (WSJ) Corpus [57] was used to train the models. We used two subsets

of WSJ Corpus for training, one is si-284, which is the standard subset for training,
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Table 3.4: Computation time measured on 900MHz ARM CPU. Only a single core is

used for evaluation. RTF denotes the real-time factor.

Model Weight Activation Model Size RTF

12x190 SGCN K=5, W=11 32-bit float 32-bit float 4.30MB 0.469

12x190 SGCN K=5, W=11 8-bit int 32-bit float 1.16MB 0.520

12x190 SGCN K=5, W=11 8-bit int 8-bit int 1.16MB 0.194

12x190 SGCN K=3, W=11 8-bit int 8-bit int 1.08MB 0.191

12x190 SGCN K=5, W=9 8-bit int 8-bit int 1.12MB 0.183

12x180 SGCN K=5, W=11 8-bit int 8-bit int 1.03MB 0.174

Table 3.5: WER (%) of the SGCN before and after quantization.

Model WER

12x190 K=5, W=11, 200ms latency 18.46

12x190 K=5, W=11, 200ms latency, quantized 19.75

and the other is si-all which includes all the speaker-independent data in the corpus.

The amount of data in si-284 and si-all are 81 hours and 147 hours, respectively. The

utterances with verbalized punctuations were excluded from training. A 40-dimensional

log Mel frequency filter-bank with delta and delta-delta is used for the input features.

All the SGCN models in this chapter were trained using the following hyperparam-

eters. For training, a learning rate of 3e-3 was chosen. If the validation error did not

decrease for 8 epochs, the learning rate was decayed by 0.2. After the learning rate

decayed six times, the training was concluded. The Adam optimizer [42] was employed

for training. A model with the lowest validation WER over the whole training processes
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was selected.

3.4.2 Results on WSJ eval92

The results of training with and without the symmetrical noise injection are shown in

Table 3.1 and 3.2. The word error rate (WER) was evaluated on WSJ eval92. 12x190

model denotes that 12 SGCN layers with D = 190 are stacked. The symmetrical noise

injection consistently improved the performance regardless of the size of the model or

training data. For comparison, the WER of recent convolutional CTC model, Jasper

[51], was also shown. Considering the number of parameters, the SGCN model shows

competitive accuracy.

Table 3.3 shows the WER of SGCN models with various architectures. The models

are trained on WSJ si-all. The symmetrical noise injection was applied for training all

the models. For the 200ms latency model, we used d = 5 for the last 2 SGCN layers

and d = 0 for the others. All the SGCN layers in the 1,200ms used d = 5. When K,

W , or dimension of layers were decreased from the 12x190 K=5, W=11 SGCN model,

WER dropped accordingly. In our experiments, dimension of the layers has the largest

impact on recognition performance. For comparison, the WER of LSTMs with similar

model size are shown. The increase of the model size to 2.24M results in the decrease

of WER from 16.76 % to 12.74%. This suggests that the SGCN model can scale-up to

a large size model.

3.4.3 Implementation on the embedded system

For an on-device implementation, the 12x190 K=5, W=11, 200ms latency model is

used. The WER of the model after quantization is reported in Table 3.5.

Table 3.4 reports the computation time and memory size of the SGCN AM. The

computation time is measured on Raspberry Pi 2 model B. The system has 900MHz

ARM Cortex-A7 CPU and 1GB DRAM. The CPU has 256KB L2 cache. For the results

in Table 3.4, 20 frames, which corresponds to 200 ms, of the inputs are computed at
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Table 3.6: RTF with the different number of parallelization steps.

Time steps 200 ms 400 ms 3000 ms

RTF 0.194 0.188 0.179

Table 3.7: Percentage of computation time per the type of operations.

Operation Type Percentage Cumulative Sum

Conv. 70.89% 70.89%

Depthwise Conv. 21.06% 91.95%

Dense 0.46% 92.41%

Etc. (Activation, ...) 7.59% 100%

a time. RTF can be reduced if the number of time steps for parallelization increases

because of memory access reduction. RTF with different parallelization time-steps is

shown in Table 3.6. There is a trade-off between RTF and latency to collect inputs for

parallelization.

Table 3.7 shows the computation time for each block. TensorFlow Lite profiler

was used to measure the computation time. As analyzed in Section 3.2.1, the most

time-consuming operation is the convolutional operation. 71 % of the computation time

was dedicated to the convolutions, while the depthwise convolutions occupied 21%.

3.5 Concluding Remarks

In this chapter, we proposed the on-device streaming ASR system which operates in 0.2

RTF with the 900MHz CPU and 1.2MB memory footprint. The WER on WSJ si-284 is

19.84%, and can be lowered if rescoring with LM is applied. The system is promising
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for applications where the computation and power budgets are very limited, such as a

keyword spotting or always-on speech recognizer.
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Chapter 4

Effect of Adding Positional Information on Convolutional

Neural Networks for End-to-End Speech Recognition

4.1 Introduction

Many automatic speech recognition (ASR) algorithms employ recurrent neural networks

(RNNs) because of their ability to recognize sequences [2, 3, 49]. In particular, attention-

based models are prevalent for ASR [4], and they usually employ RNNs for the encoder

and decoder. However, RNN-based models are very difficult to parallelize, which results

in severe restrictions when implementing them on graphics processing units (GPUs) or

embedded devices for low power and high speed. The efficiency of implementation is

very low, especially when the batch size is very small.

Recently, non-recurrent structures, such as convolution [24] and self-attention

[28], have actively been studied for application to sequential tasks for the sake of

computational efficiency. Because non-recurrent structures can process multiple input

frames at a time, the number of parameter accesses from DRAM can be greatly reduced.

In particular, for speech recognition, convolutional neural networks (CNNs) [27, 51]

and self-attention networks [58] have been successfully applied to attention-based

models and have shown lower word error rate (WER) than RNN-based models. We
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focus on convolution-based models that require only a limited receptive field size for the

input. Note that using a limited-length input for speech recognition is very advantageous

for low-latency system design [59]. Although we focused on attention models that are

not capable of online inference, the proposed method can be extended to streaming

inference when local attentions [29, 60] are applied [61].

Convolutional models for speech recognition often require a large receptive field

length to observe a long input context. Note that the receptive field size is determined

by the filter length in each layer and the depth of the model. WER increases drastically

when the receptive field length is not sufficient. This is mainly due to looping or

skipping problems, which are frequently observed when the encoder of the attention

model contains similar outputs at different time-steps [62]. Employing a large filter size

can help solve this problem, but it demands a large parameter size or computational

overhead. Depth-wise convolutions can be used to reduce the parameter size overhead,

but they cannot solve the large intermediate memory requirement and delay problem

for the input [53, 63, 52]. We consider that the high error rate of models with small

receptive fields is caused by the time-invariant property of convolution. When similar

pronunciation is repeated in the input speech, a convolutional encoder also yields very

close output values. This property can be helpful in terms of generalization, but it results

in unstable attention because the model cannot distinguish similar values at different

time steps.

In this study, we analyzed the error pattern when convolutional models only have

small receptive field sizes. Then, we showed that the recognition accuracy of small

receptive-field models can be improved by adding the simplest form of positional

encoding, which is used in the Transformer architecture [64]. The encoder output is

visualized to prove the effectiveness of positional information. The proposed method

improves the accuracy of attention models with convolutional encoders, especially

when the models have small filter sizes. We achieved 10.60% WER on TED-LIUMv2

using the single end-to-end model.
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This chapter is organized as follows: In Section 2, we review the related works

on using positional information for attention-based models. In Section 3, the model

structure and experimental setup are described. Experimental results are shown and

discussed in Section 4. Section 5 concludes the chapter.

4.2 Related Works

The effect of positional information on CNNs for image recognition was recently studied

in [65]. That study showed that a CNN with a large receptive field size inherently learns

positional information; the results of recognition rely heavily on positional information.

They showed that a sufficient receptive field size and zero-padding are required for

convolutional models to learn positional information.

External positional information has been applied since early convolutional models

for sequential tasks. Trainable positional embedding vectors are added to word embed-

dings for training convolutional language models [24]. This approach is not suitable

for speech recognition, where the length of the inputs is longer and varies much by

data. Sinusoidal positional encoding has recently been proposed with Transformer

architecture [28]. Sinusoidal positional encoding can be effective even when the input

sequence is longer than the training data.

Positional information is often considered to help stabilize training attention weights.

Attention feedback [66] and location-based attention [64] use which part of the encoder

output was attended in the past time step to compute current attention weights. Soft-

window pretraining uses auxiliary loss that encourages attention weights to be aligned

with the input time steps [53]. Through our experimental results, we show that applying

positional encoding has a similar effect to these methods without modifying the model

structure or training processes.
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(a)

(b) (c)

Figure 4.1: (a) The attention-based model with 1-D depthwise convolutions and posi-

tional information for encoder. (b) A depthwise convolutional block and (c) a block

with gating structure.
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4.3 Model Description

The attention-based speech recognition model is based on [45], except that 1-D depth-

wise convolutional layers are used for the encoder. Each layer is computed as follows:

x′t,k =

(T−1)/2∑
i=−(T−1)/2

Wi,k · xt+i,k

ht = f(Vx′t + b),

(4.1)

where f is the activation function, and W ∈ RT×D,V ∈ RD×D are trainable variables.

T and D denote the width and output dimensions of a convolution, respectively. For

the encoder, we applied two 2-D convolutions to the input features in the frequency-

and time-axis. The 1-D depth-wise convolutional layers are stacked on top of the 2-D

convolutions as shown in Figure 4.1. We used a residual connection for every two

convolutional layers. Layer normalization [67] was applied after residual connections

for better convergence.

In the decoder, the attention weights αi,t and energies ei,t for the encoder time-step

t and decoder step i are computed as:

ei,t = vTe · tanh(W[si,ht, βi,t])

αi = softmax(ei),
(4.2)

where v is a trainable vector, W is a trainable matrix, si the current decoder state,

and ht denotes the output of the last layer of the encoder. βi,t is the attention weight

feedback which is defined as:

βi,t = σ(vTβht)
i−1∑
k=1

αk,t (4.3)

The attention context vector is given as:

ci =
∑
t

αi,tht. (4.4)

The decoder is a single-layer long short-term memory [9] (LSTM) that is computed as

follows:

si = LSTM(si−1,yi−1, ci−1). (4.5)
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Usually, the positional encoding vector in Transformer architecture [28] is added to

the input of the encoder. For Transformer architecture in speech recognition, a linear

transformation is often applied to positional encoding before being added to the input

[58]. In our experiments, the best performance was obtained when the positional

encoding vector was concatenated to the output of 2D convolutions. We also tried

adding or concatenating it to the output of the convolutional encoders, but it made

training diverge in the initial stage. We used the positional encoding vector as proposed

in [28], which is computed as follows:

pei,2k = sin(i/10000(2k)/Dmodel)

pei,2k+1 = cos(i/10000(2k+1)/Dmodel)
(4.6)

4.4 Experimental Results

The experiments were performed using the RETURNN framework [68]. TED-LIUM

release 2 [69] was used for training, which contains 200 hours of speech. We followed

the data preprocessing pipeline used in [70]. We used a 40-dimensional mel-frequency

cepstral coefficient for the input features, which were extracted every 10 ms with a

25 ms window size. Byte-pair encoding (BPE) [71] with a vocabulary size of 1K was

used for the output labels. The layer-wise pretraining was only applied to LSTM-based

models because it lowers the accuracy when used for convolutional models. The decoder

was a single-layer 1000-dimensional LSTM algorithm for all models. The configuration

files for the experiments are available online.1

4.4.1 Effect of receptive field size

The experimental results of the convolutional models on TED-LIUMv2 are shown

in Table 5.2. A 15x2048 model denotes that 15 SGCN layers with D = 2048 are

stacked. We trained the 15x2048 convolutional model while changing the filter width
1https://github.com/car3936/returnn-exp-jinh
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Transcription (WadeDavis 2003 305.16 327.12)

... depend they have a curious language and marriage rule which is called

linguistic exogamy you must marry someone who speaks a different language and

this is all rooted in the mythological past yet the curious thing is in these

long houses where there are six or seven languages spoken

Without positional encoding

... depend they have a curious things and these long houses where they’re six

or seven languages spoken

With positional encoding

... depend they have a curious language and marriage rule which is called

linguistic exotic me you must marry someone who speaks a different language

and this is all rooted in mythological past get the curious things and these

long houses were there six or seven languages spoken

Figure 4.2: The original transcript and the decoded results with and without the posi-

tional encoding.

47



Table 4.1: TED-LIUM release 2 results of the models with different filter size. Pos.

denotes that positional encoding is applied.

Model WER [%]

dev test

Conv. 15x2048 (T=3) 23.01 18.41

Conv. 15x2048 (T=5) 18.06 15.18

Conv. 15x2048 (T=7) 17.03 14.75

Conv. 15x2048 (T=11) 15.18 12.95

Conv. 15x2048 (T=15) 15.41 13.19

Conv. 15x2048 (T=3) + Pos. 15.75 13.37

Conv. 15x2048 (T=5) + Pos. 15.24 12.58

Conv. 15x2048 (T=7) + Pos. 15.57 13.15

Conv. 15x2048 (T=11) + Pos. 14.78 12.58

Conv. 15x2048 (T=15) + Pos. 14.87 13.14

of depthwise convolutions. We applied max-pooling with a size of 2 for the initial three

convolutional layers. All the models have approximately 84M parameters regardless

of the filter width because the number of parameters for depth-wise convolution is

very small. The results show that positional encoding improved the accuracy of models

consistently, especially for those with small filter sizes. Fig. 5.2 shows the WER of

the models with different receptive field sizes. The length of the receptive field was

calculated as (W–1) × 80ms ×#layers, where W is the filter width. The WER of

the models without positional encoding sharply increased when the receptive field

length was reduced. In comparison, when positional encoding was employed, the WER

was not significantly affected by the length of the receptive field. This result clearly

demonstrates the effect of positional encoding on CNN-based models.

We compared the decoding results of two CNN-based models with and without
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Figure 4.3: Test WER on TED-LIUMv2 comparing models with different receptive

field size.

positional encoding. As shown in Fig. 5.3, the original transcription possesses two

occurrences of ‘curious’ approximately 30 words apart. The decoding result without

positional encoding yields a shortened sentence that skips the words between the two

occurrences of ‘curious’. However, decoding with positional encoding faithfully shows

all the words. Such skipping occurred frequently over the entire test set. Fig. 4.4 shows

a histogram of the number of errors according to the lengths of the transcriptions. We

plot the results of the LSTM and the convolutional models with and without positional

encoding. The number of errors differed significantly in longer sequences that are

more likely to contain repeated words. This suggests that the convolutional model is

vulnerable to skipping problems, and applying positional encoding can alleviate this

issue.

4.4.2 Visualization

We used principal component analysis (PCA) [72] to analyze the effect of positional

encoding on the output of the encoder. Fig. 5.5 shows a visualization of the encoder

outputs of the convolutional models. Each point corresponds to a single time-step output
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Figure 4.4: The average edit distance of test set according to the length of transcription.

of the encoder. We focused on the results of the 92-94th and 214-216th step outputs,

which correspond to the first and second occurrences of ‘curious’, respectively. In Fig.

5.5 (a) and (c), the encoder output of the convolutional models has a similar component

when the input speech contains repeated pronunciation. When positional information

was applied, the encoder outputs were located at a distance, as shown in Fig. 5.5 (b)

and (d). This clearly shows that positional encoding makes the outputs discriminative

when similar words are applied.

The attention energy ei and the attention weight αi in Eq. (3) is plotted in Fig.

5.4. The horizontal and vertical axes correspond to the decoder and encoder time steps,

respectively. The label from transcription is given to the decoder every step for plotting

the attention energy, while the previous output is used for the attention weight. In Fig.

5.4 (a), the energy has a high value in the area indicated by the red box. This causes a

misalignment of attention in the inference time and results in skipping, as shown in Fig.

5.4 (b). In Fig. 5.4 (c), the energy is more concentrated around the diagonal components

compared to Fig. 5.4 (a). This is a desired property when training the attention-based
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(a) (b)

(c) (d)

Figure 4.5: The visualization of encoder output using PCA. The first two principal

components are used for visualization. The points of 92-94th and 214-216th steps are

indicated with text, which correspond to pronunciation of the word ‘curious’. (a) filter

width = 3 (b) filter width = 3 with positional encoding. (c) filter width = 5 (d) filter

width = 5 with positional encoding.
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(a) (b)

(c) (d)

Figure 4.6: Attention energy ei (left) and weight αi (right) of models (a) (b) without

and (c) (d) with positional encoding are shown. Darker pixels indicate higher values.
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model, which prevents the model from diverging in the initial stage of training [53].

4.4.3 Comparison with other models

Table 5.4 shows the results of the convolutional models with large parameter sizes.

The results of LSTM- and self-attention-based models are also shown for comparison.

The experimental results show that using positional encoding improves the accuracy of

deeper structures. Note that bidirectional LSTM and self-attention models consider the

entire context of the input, which is not much desired for deployment. Unidirectional

LSTM has higher WERs than convolutional models with a comparable number of

parameters.

The proposed method can be applied to other convolutional structures. We tried

gated convolution [27], which has been successfully applied to speech recognition tasks.

With gated convolution, we achieved a 10.60% WER on the TED-LIUM v2 test set.

4.5 Concluding Remarks

In this study, we demonstrated that convolutional models with small filter sizes lack the

ability to identify positional information, which incurs looping or skipping problem in

end-to-end speech recognition. By adding explicit positional encoding, we prevented

severe performance degradation of models with small receptive fields. The proposed

method does not require any modification to model structures or training algorithms.

It also has almost no computational overhead. Since convolutional encoders support

fast training and inference, the proposed method is suitable for developing an on-device

low-power speech recognition system.
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Table 4.2: Experimental results of convolutional models with different sizes. LSTM

and Transformer models are shown for comparison. Decoder is a single-layer 1000-

dimensional LSTM for all the models.

Model WER [%] Params.

dev test

Bidir. LSTM 6x1024 [70] 11.7 10.5 161M

Transformer [70] 14.7 12.5 100M

Bidir. LSTM 6x1024 12.65 10.57 161M

Bidir. LSTM 6x1024 + Pos. 17.70 12.35 161M

Unidir. LSTM 6x1536 16.78 14.42 127M

filter width = 3

Conv. 15x2048 23.01 18.41 84M

Conv. 15x2048 + Pos. 15.75 13.37 84M

Conv. 25x2048 + Pos. 14.51 11.89 127M

Gated Conv. 35x1024 + Pos. 14.94 12.73 80M

Gated Conv. 35x1536 + Pos. 13.02 11.04 229M

filter width = 5

Gated Conv. 35x2048 14.14 11.16 313M

Gated Conv. 35x2048 + Pos. 12.81 10.60 313M
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Chapter 5

Convolution-based Attention Model with Positional En-

coding for Streaming Speech Recognition

5.1 Introduction

Recently, the performance of automatic speech recognition (ASR) systems has been

significantly improved by end-to-end neural network techniques [3]. Theses end-to-

end models include connectionist temporal classification (CTC)-based models [1, 2],

attention-based models [3, 4], and recurrent neural network (RNN) or Transformer

transducers [5, 6]. Usually, neural network-based speech recognition models have a

large number of parameters. These models typically require a huge number of arithmetic

operations for inference, which requires excessive memory access. Power consumption

during the inference is also a major challenge. As a result, cloud-based approaches

powered by high-performance servers have been usually adopted for commercial speech

recognition systems. Nevertheless, the shortcomings of these cloud-based approaches

include the network latency, the server operating costs, privacy concerns due to the

transfer of users’ private data to the server, and so on. Therefore, on-device speech

recognition systems have drawn a lot of attention to overcome the aforementioned

problems of the could-based systems. In this chapter, we focus on the attention-based
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model which shows good speech recognition accuracy without external language models

(LMs).

The main bottleneck of on-device neural network-based ASR is the memory access

overhead [73]. A typical neural network-based ASR model requires around 1 to 10

Giga arithmetic operations per second. The computational cost in this range is usually

not a critical issue these days even for single-core CPUs when optimized with single

instruction multiple data (SIMD) operations. Nonetheless, the cache misses are still

major challenges. Usually the speech recognition model is larger than 100 MB, which

is more than the typical cache size of embedded CPUs. For example, ARM Cortex-A57

has a 2 MB L2 cache at most. When the RNN-based models are employed, which

may be the most widely used structure for speech recognition, the parameters should

be fetched from the DRAM at every time step due to its feedback structure. Each

time step, therefore, these RNN-based models incur continuous cache misses. This

problem may be circumvented by batch or multi-stream parallel processing in server-

based implementations. In on-device implementations, however, only single stream is

available for computation since it usually targets a single user.

To remedy the memory access bottleneck in on-device systems, parallelizable

structures including convolution [24] and simplified recurrent structures [20, 74, 22]

have been actively studied. Self-attention [28] also has advantages in parallelization.

Multiple time-step parallel processing can be applied for these architectures where

multiple consecutive frames are computed concurrently with a single weight fetch from

DRAM. The number of DRAM accesses can be reduced in proportion to the number of

parallelization steps. However, these structures often require a large receptive field size

for speech recognition, which increases the number of parameters and computations.

Also, the large receptive field increases the working memory size for streaming inference

since intermediate results of previous time-steps should be kept.

Table 5.1 compares the working memory sizes of LSTM, convolution, and self-

attention-based models. For the convolution, the last k − 1 frames of the output must
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Table 5.1: Memory size of intermediate buffer required for online speech recognition. L

is the sequence length, D is the dimension of layer, k is the filter width of convolution.

For speech recognition, L is usually a few hundred, while k is about ten.

Model
Working Memory

for Streaming
Typical Value

Intra-Sequence

Parallelism

LSTM 2NLSTMD 98KB X

Convolution kNConvD 245KB O

Self-attention LNSAD 12MB O

be stored when the filter size is k, while RNN only needs to store the current cell and

output state vectors in each layer. Note that the filter size k is usually around 10 ∼

15, but we intend to reduce it to 3. Self-attention requires keeping all the intermediate

values from the beginning, which makes its streaming inference difficult on memory-

constrained devices. Although time-restricted attention [75] can reduce the memory

usage, standard self-attention is often adopted for attention-based speech recognition

[58, 76]. Depthwise convolutions are often applied to reduce the computational overhead

[63, 52]. Nevertheless, this approach cannot reduce the working memory size. Thus, in

this work, we adopt convolutions with limited filter size for on-device applications with

limited memory.

The accuracy of convolutional models decreases drastically when the receptive

field length is reduced. This degradation mainly comes from the looping or skipping

problems in the output label, which are frequently observed when the encoder of the

attention model contains similar outputs at different time-steps [62]. We believe that

this phenomenon is caused by the time-invariant property of convolution. When similar

pronunciation is repeated in the input speech, a convolutional encoder also yields very

close output values. This property can be helpful in terms of generalization, but it
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results in unstable attention because the model cannot distinguish similar values given

at different time steps.

In this chapter, we develop an on-device ASR with convolution-based neural net-

works for the encoder. Especially, it is shown that the recognition accuracy of small

receptive-field models can be improved by adding the simplest form of positional en-

coding, which is used in the Transformer architecture [64]. The comparison of decoding

results and attention weights are shown when the positional information is used or

not. The encoder output is visualized with principal component analysis to prove the

effectiveness of positional information. The proposed method improves the accuracy

of attention models with convolutional encoders, especially when the filter size of the

models is small. Along with the monotonic chunkwise attention [29], the proposed

method is applied to develop online speech recognition models.

This chapter is organized as follows: In Section 2, we review the related works

on end-to-end neural network models for online speech recognition. In Section 3, the

model structure and experimental setup are described. We present experimental results

including analysis on execution time and speech recognition accuracy on TED-LIUMv2

in Section 4. Section 5 concludes the chapter.

5.2 Related Works

Recently, there have been a lot of researches to develop on-device speech recognition

systems with real-time streaming recognition capabilities on resource-limited hardware.

CTC [35] and Transducer-based models [50, 77] are often used for online speech

recognition due to the causality in the decoding. Attention-based models often show

better speech accuracy than the other models. However, conventional global attention

mechanism cannot be employed for online speech recognition since it requires the

encoder output obtained from the entire input sequence to start decoding. The local

attention approaches [29] have been proposed for streaming inference. These approaches

58



have been successfully employed for on-device online speech recognition [61, 78].

Recurrent neural networks such as LSTM [9] or GRU [10] have been often em-

ployed for speech recognition tasks due to their advantages in sequence learning.

However, the computation of the feedback structure of RNNs has inefficient cache

utilization since the weights cannot be reused for multiple-time steps. Therefore, non-

recurrent structures such as Quasi-RNN [20], convolutions [27] or self-attention [28]

are often employed for on-device streaming speech recognition applications. The RNNs

often consider the unlimited future context or recognition accuracy decreases when

the unidirectional structure is applied [79]. The self-attention mechanism is also ac-

tively employed for end-to-end speech recognition [58, 80, 81, 82, 83]. The masked

self-attention is applied to streaming end-to-end speech recognition [76].

Convolutional architectures are often preferred for low-latency speech recognition

system [59, 31]. Convolutional neural networks are applied to various architectures for

ASR tasks [27]. Attention models with convolutional encoder for speech recognition

is studied in [53]. The convolutional model for speech recognition often uses a large

receptive field size, which demands the large parameter size and computational cost.

[53] employs time-depth separable convolution to reduce the computation and memory

overhead. For online speech recognition, the intermediate results should be kept for

accurate results. Therefore, convolutions with large receptive field size requires a large

amount of intermediate buffer, which is inevitably much less efficient for on-device

streaming speech recognition.

In [65], they discuss how convolutional neural networks (CNNs) find out positional

information. This work shows that CNNs with a large receptive field inherently learns

the positional information. Additionally, this work shows that the recognition result

heavily depends on this positional information. They show that a sufficient receptive

field size and zero-padding are required for the convolutional models to learn positional

information.

From the early work of convolutional sequence-to-sequence models [24] for ma-
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(a)

(b)

(c)

Figure 5.1: (a) The attention-based model with 1-D depthwise convolutions and posi-

tional information for encoder. (b) A depthwise convolution block. (c) A block with

gating structure.

chine translation, positional embedding vectors are often trained along with the input

word embedding. However, the importance of positional information is often overlooked

for the convolutional models for speech recognition tasks. For example, [53] does not

include positional embedding for the encoder. It mandates the large filter size for wider

context, additional training and decoding strategy to avoid misalignment in attention.
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5.3 End-to-End Model for Speech Recognition

5.3.1 Model description

The attention-based speech recognition model is based on [45], except that 1-D depth-

wise convolutional layers are used for the encoder. Each layer is computed as follows:

x′t,k =

(T−1)/2∑
i=−(T−1)/2

Wi,k · xt+i,k

ht = f(Vx′t + b),

(5.1)

where f is the activation function, and W ∈ RT×D,V ∈ RD×D are trainable variables.

T and D denote the width and output dimensions of a convolution, respectively. For

the encoder, we apply two 2-D convolutions to the input features in the frequency-

and time-axis. The 1-D depth-wise convolutional layers are stacked on top of the 2-D

convolutions as shown in Figure 5.1. We employ a residual connection for every two

convolutional layers. Layer normalization [67] is applied after residual connections for

better convergence.

In the conventional global soft attention model, the attention weights αi,t and

energies ei,t for the encoder time-step t and decoder step i are obtained by:

ei,t = vTe · tanh(W[si,ht, βi,t])

αi = softmax(ei),
(5.2)

where v is a trainable vector, W is a trainable matrix, si the current decoder state,

and ht denotes the output of the last layer of the encoder. βi,t is the attention weight

feedback which is defined as:

βi,t = σ(vTβht)

i−1∑
k=1

αk,t (5.3)

The attention context vector is given as:

ci =
∑
t

αi,tht. (5.4)
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The decoder is a single-layer long short-term memory [9] (LSTM) that is computed as

follows:

si = LSTM(si−1, [yi−1, ci−1]). (5.5)

5.3.2 Monotonic chunkwise attention

The soft global attention in (5.2) requires the entire input sequence before generating the

first output label. This characteristic is not suitable for streaming inference in speech

recognition. To overcome this problem, several local attention approaches have been

proposed [84, 85, 86]. One of the widely used approaches is Monotonic Chunkwise

Attention (MoCha) [29]. The attention in Mocha consists of monotonic attention and

chunkwise attenton, where monotonic attention determines the location for the decoder

to attend, and the encoder outputs in the location are summed with weights obtained by

chunkwise attention. The monotonic attention approach is described as follows:

ei,t = vTm · tanh(Wm[si,ht])

pi = σ(ei)

zi ∼ Bernoulli(pi)

(5.6)

The monotonic attention location is determined as ti which is the smallest j satisfy-

ing zi,j = 1 and j ≥ ti−1. After ti is obtained from the monotonic attention, chunkwise

attention with chunk size C is computed as follows:

ui,t = vTc · tanh(Wc[si,ht])

αi,t =
exp(ui,t)∑ti

t=ti−C exp(ui,t)
, ti − C ≤ t ≤ ti

ci =

ti∑
t=ti−C

αi,tht.
(5.7)

The sampling process of the monotonic attention is non-differentiable therefore

cannot be trained with back-propagation. Thus, the expected value of ci is used instead
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during the training. Presumably due to this discrepancy between the training and the

inference, it is usually challenging to train a high performance MoCha model. The

training of MoCha models is usually sensitive to the hyper-parameter settings such

as the learning rate and the gradient clipping and easily diverges if the model size is

large or training data is not enough. Therefore, we first train the global attention model,

which is more stable. After the global-attention model is converged, the weights of the

encoder part of the MoCha model are initialized from the this global attention model.

5.3.3 Positional encoding

In the Transformer-based models [28], the positional encoding vector is usually added to

the input vector to the encoder. When these transformer-based models are employed for

speech recognition, a linear transformation is often applied to the positional encoding

before this addition step [58]. In this work, we employ the positional encoding vector

as proposed in [28]:

pei,2k = sin(i/10000(2k)/D)

pei,2k+1 = cos(i/10000(2k+1)/D)
(5.8)

where i and D denote the decoder time step and the hidden dimension of the layer,

respectively. In our experiments, the best performance is achieved when this positional

encoding vector is concatenated to the output of 2D convolutions. In the meanwhile,

when this positional encoding vector is added or concatenated to the output of the

convolutional encoders, the model parameters diverge during the training phase.

Trainable positional embedding vectors are often applied to convolutional models

[24] for natural language processing (NLP) tasks. However, this approach is not appli-

cable to speech recognition tasks since the input sequences in speech recognition are

usually much longer that those in NLP tasks. Additionally, the variation of this input

sequence length is significantly larger in speech recognition.
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5.4 Experimental Results

The experiments were performed using the RETURNN framework [68]. TED-LIUM

release 2 [69] was used for training, which contains 200 hours of speech. We followed

the data preprocessing pipeline used in [70]. We use a 40-dimensional mel-frequency

cepstral coefficient (MFCC) as the input feature, which is extracted every 10 ms with a

25 ms window size. Byte-pair encoding (BPE) [71] with a vocabulary size of 1K was

used for the output labels. The layer-wise pretraining is only applied to LSTM-based

models because it lowers the accuracy when used for convolutional models. The decoder

was a single-layer 1000-dimensional LSTM algorithm for all models. Joint CTC training

[87] is applied when training the global-attention model. The initial learning rate was

8e-3 and decayed with factor of 0.8 if the validation loss is not decreased for 4 epochs.

Table 5.2: TED-LIUM release 2 results of the models with different filter size. Mono-

tonic chunkwise attention is applied for all models. Pos. denotes that positional encoding

is applied.

Model WER [%]

dev test

Conv. 15x2048 (T=3) 18.40 17.57

Conv. 15x2048 (T=5) 17.22 15.62

Conv. 15x2048 (T=7) 16.54 15.10

Conv. 15x2048 (T=11) 14.76 13.28

Conv. 15x2048 (T=3) + Pos. 15.41 13.77

Conv. 15x2048 (T=5) + Pos. 14.10 12.80

Conv. 15x2048 (T=7) + Pos. 15.02 13.18

Conv. 15x2048 (T=11) + Pos. 14.57 13.06
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Figure 5.2: Test WER on TED-LIUMv2 comparing models with different receptive

field sizes.

The experimental results with the convolutional models on TED-LIUMv2 are shown

in Table 5.2. A 15x2048 model denotes that 15 convolutional blocks withD = 2048 are

stacked. We trained the 15x2048 convolutional model while changing the filter width

of depthwise convolutions. We applied max-pooling with a size of 2 for the initial three

convolutional layers. All the models have approximately 84M parameters regardless

of the filter width because the number of parameters for depth-wise convolution is

very small. The results show that positional encoding improved the accuracy of models

consistently, especially for those with small filter sizes. Fig. 5.2 shows the word error

rate (WER) of the models with different receptive field sizes. The length of the receptive

field is calculated by (T − 1) × 80ms × #layers, where T is the filter width. The

WER of the models without positional encoding sharply increases when the receptive

field length is reduced. By comparison, when positional encoding is employed, the

WER is not significantly affected by the length of the receptive field. This result clearly

demonstrates the effectiveness of positional encoding on CNN-based models.
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Transcription ‘DanielKahneman 2010 399.58 417.69.ogg’

... WHAT DEFINES A STORY ARE CHANGES SIGNIFICANT MOMENTS AND ENDINGS ENDINGS ARE VERY VERY

IMPORTANT AND IN THIS CASE YOU KNOW THE ENDING DOMINATED

Without positional encoding

... WHAT DEFINES A STORY ARE CHANGES SIGNIFICANT MOMENTS AND IN THIS CASE THE ENDING DOMINATED

With positional encoding

... WHAT DEFINES A STORY ARE CHANGES SIGNIFICANT MOMENTS AND ENDINGS AND THINGS OF VERY VERY

IMPORTANT AND IN THIS CASE THE ENDING DOMINATED

Figure 5.3: The original transcript and the decoded results with and without the posi-

tional encoding.

5.4.1 Effect of positional encoding

The decoding results show that looping and skipping frequently happen with the

model without the positional encoding. Figure 5.3 shows the example where skipping

occurs only in the model without positional encoding but not in the one with positional

encoding. Figure 5.4 visualize the attention weight for the example. Monotonic attention

energy ei in Eq. (5.6) and attention weight αi,t in Eq. (5.7) are plotted in Figure 5.4.

We plotted ei with the teacher forcing as in the training, while αi,t is plotted when the

previous time-step output is given to the decoder as in the inference. Note that ei has

the most critical effect on determining where to attend in the encoder outputs. In Fig.

5.4 (a) the attention energy has a high value in the area indicated by the red box. This

induces the skipping of attention in the inference time as shown in Fig. 5.4 (b). On the

other hand, The attention energy is more concentrated around the diagonal components

in Fig. 5.4 (c). This suggest that the location is considered for the attention when the

positional encoding is given to the input.

To identify the effect of the positional encoding, we applied the principal component

analysis (PCA) to the output of encoder [72]. Figure 5.5 shows the PCA result of the

model with and without the positional encoding. We obtain this scatter plot using
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(a) (b)

(c) (d)

Figure 5.4: Attention energy ei (up) and weight αi (down) of models (a) (c) without

and (b) (d) with positional encoding are shown. Darker pixels indicate higher values.

‘DanielKahneman 2010 399.58 417.69.ogg’ in the test set is used for plotting.
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(a) (b)

Figure 5.5: The visualization of encoder output using PCA. The first two principal

components are used for visualization. The points of 151-152th and 198-199th steps

are indicated with text, which correspond to pronunciation of the word ‘and’. (a) filter

width = 3 (b) filter width = 3 with positional encoding.

the first two principal components. Each point in the figure corresponds to the single

time-step output of the encoder. Specifically, we analyze the data obtained from the

151-152th and the 198-199th time steps, where the skipping happens. These locations

correspond to the first and second pronunciation of ‘and’, respectively. In Figure 5.5 (a),

encoder outputs contain similar components for repeated words. When the positional

encoding is applied, the outputs are more discriminative as shown in Figure 5.5 (b).

5.4.2 Comparison with other models

Table 5.3 shows the WER of the models with global soft attention and monotonic

chunkwise attention. The model with MoCha has 0.22% higher WER than the one with

global soft attention. The chunk size of more than two does not show any improvement

in terms of WER.

Table 5.4 compares the results of the convolutional models with other structures.

The results with LSTM- and self-attention-based models are included for comparison.

Unidirectional LSTM has higher WERs than convolutional models with a comparable
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Table 5.3: TED-LIUM release 2 results of the models with different attention algorithm.

Model WER [%]

dev test

Conv. 15x2048 (T=5) + (Global Soft Attention) 18.06 15.17

Conv. 15x2048 (T=5) + Pos. (Global Soft Attention) 15.24 12.58

Conv. 15x2048 (T=5) + Pos. (Chunk Size = 2) 14.10 12.80

Conv. 15x2048 (T=5) + Pos. (Chunk Size = 4) 14.17 12.88

Table 5.4: Experimental results with convolutional models of different sizes. LSTM and

Transformer-based models are included for comparison. For all the models in this table,

we use the same decoder consisting of a single LSTM layer with a 1000 unit size.

Model WER [%] Params.

dev test

Global Soft Attention

Transformer [70] 11.7 12.5 100M

Bidirectional LSTM 6x1024 [70] 11.7 10.5 161M

Unidirectional LSTM 6x1536 16.78 14.42 127M

Conv. 15x2048 (T=5) + Pos. 15.24 12.58 84M

Gated Conv. 35x2048 (T=5) + Pos. 12.81 10.60 313M

MoCha

Unidirectional LSTM 6x1536 19.30 17.88 127M

Conv. 15x2048 (T=5) + Pos. 14.10 12.80 84M

Gated Conv. 35x2048 (T=5) + Pos. 12.96 11.20 313M
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Table 5.5: Execution time of encoder for 1 second of speech according to the computa-

tion chunk size.

Model 1sec 0.1sec

LSTM 6x1536 2.07 2.07

Conv. 15x2048 (T = 15) 0.751 1.89

Conv. 15x2048 (T = 3) 0.727 1.75

number of parameters. The proposed method can be applied to other convolutional

structures. We tried gated convolution [27], which has been successfully applied to

speech recognition tasks. The experimental results show that using positional encoding

improves the accuracy of deeper structures. Conv. 15x2048 (T=5) with MoCha models

shows competitive accuracy when compared to global-attention model with a compara-

ble model size. With deeper structure with gated convolution, we obtained a streaming

speech recognition model with a WER of 11.20% on the TED-LIUM v2 test set.

5.4.3 Execution time analysis

The computation time for the encoder is presented in Table 5.5. Real-time factor (RTF)

is measured on Samsung Galaxy S6 device. The system has 2.1GHz ARM Cortex-A57

CPU. TensorFlow Lite Android benchmark tool is used to measure the computation

time. The processing time can be reduced if the computation chunk size increases

because the parallelization factor increases and the number of memory access reduces.

The single stream of input is processed for the measurement.
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5.5 Concluding Remarks

In this chapter, we introduce a new end-to-end streaming speech recognition model

employing the convolutional encoder. It has been frequently observed that convolutional

models with small filter sizes lack the ability to identify the positional information.

This problem is considered to be the primary reason of the looping or skipping prob-

lems in the attention-based end-to-end speech recognition. By explicitly adding the

positional encoding, we successfully resolve these looping and skipping problems

inherent with CNN models with small receptive fields. This proposed method does not

require any modifications to the existing model structures nor the training strategies.

Furthermore, this approach does not incur any noticeable computational overhead.

Experimental results demonstrate that our algorithm has significant advantages over

other approaches based on Transformers or RNNs in terms of WERs, the parameter

size, and the computational cost.
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Chapter 6

Conclusion

In this dissertation, we discussed the implementation of an on-device neural network

based speech recognition system. Several parallelizable neural network architectures

were applied and the efficient training method for the models was proposed.

In Chapter 2, the SRU-based ASR system was developed. SRU has much lower ac-

curacy than LSTM-based models, but achieved a competitive accuracy when combined

with depthwise convolution. The depthwise convolution required a little computational

overhead. The beam search decoding is applied with RNN-based LM. The entire system

has 15MB parameter sizes and runs real-time in a single core CPU. The system has

comparable recognition performance to offline speech recognition model.

An on-device streaming ASR system using depthwise convolution-based models

was proposed in Chapter 3. The memory bandwidth requirements were reduced by

parameter quantization and the multi-time step parallelization technique. The developed

model operates in 0.2 RTF with a 900MHz CPU using only 1.2MB memory footprint

for parameters. The system can be applied when the computation and power budgets

are scarce, such as in keyword spotting and always-on speech recognition.

In chapter 4, it was demonstrated that the convolutional models with small filter

sizes lack the ability to identify positional information. Convolution with a small filter

size incurs looping or skipping problems in end-to-end speech recognition. By adding
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explicit positional encoding, we prevented severe performance degradation of models

with small receptive fields. Since convolutional encoders support fast training and

inference, the proposed method is suitable for developing an on-device low-power

speech recognition system.

In Chapter 5, an end-to-end streaming attention-based speech recognition model

was developed by employing the method proposed in Chapter 4. The proposed method

did not add any noticeable computational overhead, without requiring modification in

the training procedure. Experimental results indicated that the proposed algorithm has

significant advantages over other approaches, such as Transformers or RNNs, in terms

of WERs, the parameter size, and the computational cost. The developed model, with

the parameter size of about 100M, can operate in real-time with a single core ARM

CPU for smartphones, and the inference time is only about one third of the LSTM

RNN-based attention model.
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[69] A. Rousseau, P. Deléglise, and Y. Esteve, “Enhancing the TED-LIUM corpus

with selected data for language modeling and more ted talks.” in LREC, 2014, pp.

3935–3939.

[70] A. Zeyer, P. Bahar, K. Irie, R. Schlüter, and H. Ney, “A comparison of trans-
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초록

최근 모바일 및 임베디드 기기에서 실시간 동작하는 음성 인식 시스템을 개발

하는 것이 큰 관심을 받고 있다. 깊은 인공 신경망 음성인식은 많은 양의 연산을

필요로하는반면,모바일기기의메모리대역폭이나전력은제한되어있다.이러한

한계 때문에 서버 기반 구현이 보통 사용되어지지만, 이는 지연 시간 및 사생활 침

해 문제를 일으킨다. 따라서 모바일 기기 상 동작하는 음성 인식 시스템의 요구가

커지고 있다. 음성 인식 시스템에 주로 사용되는 모델은 재귀형 인공 신경망이다.

재귀형인공신경망의모델크기는보통캐시의크기보다크고피드백구조때문에

재사용이 어렵기 때문에 많은 DRAM 접근을 필요로 한다. 이러한 문제를 해결하

기위해다중시간의입력에대해병렬화가능한모델을이용한음성인식시스템을

제안한다.다중시간병렬화기법은한번의메모리접근으로여러시간의출력을동

시에계산하는방법이다.병렬화수에따라DRAM접근횟수를줄일수있기때문에,

병렬화가능한모델에대하여빠른연산이가능하다.

단순재귀유닛과 1차원컨벌루션을이용한 CTC모델을제시하였다.문자와단

어 조각 수준의 모델이 개발되었다. 각 출력 단위에 해당하는 재귀형 신경망 기반

언어 모델을 이용하여 디코딩에 사용되었다. 전체 15MB의 메모리 크기로 WSJ 에

서높은수준의인식성능을얻었으며 GPU나기타하드웨어없이 1개의 ARM CPU

코어로실시간처리를달성하였다.

또한단순컨벌루션인공신경망 (SGCN)을이용한낮은지연시간을가지는음

성인식시스템을개발하였다. SGCN은 1M의매우낮은변수갯수로도경쟁력있는

인식 정확도를 보여준다. 추가적으로 8-bit 양자화를 적용하여 메모리 크기와 연산
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시간을감소시켰다.해당시스템은 0.4초의이론적지연시간을가지며 900MHz의

CPU상에서 0.2의 RTF로동작하였다.

추가적으로,깊이별컨벌루션인코더를이용한어텐션기반모델이개발되었다.

컨벌루션기반의인코더는재귀형인공신경망기반모델보다빠른처리속도를가

진다.하지만컨벌루션모델은높은성능을위해서큰입력범위를필요로한다.이는

모델크기및연산량,그리고동작시메모리소모를증가시킨다.작은크기의입력

범위를가지는컨벌루션인코더는출력의반복이나생략으로인하여높은오차율을

가진다. 이것은 컨벌루션의 시간 불변성 때문으로 여겨지며, 이 문제를 위치 인코

딩벡터를이용하여해결하였다.위치정보를이용하여작은크기의필터를가지는

컨벌루션모델의성능을높일수있음을보였다.또한위치정보가가지는영향을시

각화하였다.해당방법을단조어텐션을이용한모델에활용하여컨벌루션기반의

스트리밍가능한음성인식시스템을개발하였다.

주요어:인공신경망,온라인음성인식,임베디드기기용머신러닝

학번: 2015-22786
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