creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. Dissertation

Hardware Friendly Neural Network
Architecture and Accelerator Design for
Efficient Inference

o

58490 222 95t ShEYo] Mg A4 72 o
714:7] A

August 2020

Department of Electrical and Computer Engineering
College of Engineering
Seoul National University

Joonsang Yu

2 A e

SECRIL WATIOMAL LIMINVERSTY

Hardware Friendly Neural Network
Efficient Inference

Architecture and Accelerator Design for

]

ol

20204 7

oR

2020 74

)
)
)
)
)

—_——_——] —] —

(@)
i
o
i
(@)
i
o
v
o
L

(
(
(
(
(

o

—

Nu

o o of) ol o
—_c
0+Mﬂ
oF I+ oF oF oF

||||||

2 A e

SECRIL WATIOMAL LIMINVERSTY

Abstract

Joonsang Yu
Dept. of Electrical and Computer Engineering
The Graduate School

Seoul National University

Deep learning is the most promising machine learning algorithm, and it is already
used in real life. Actually, the latest smartphone use a neural network for better pho-
tograph and voice recognition. However, as the performance of the neural network
improved, the hardware cost dramatically increases. Until the past few years, many
researches focus on only a single side such as hardware or software, so its actual cost
is hardly improved. Therefore, hardware and software co-optimization is needed to
achieve further improvement. For this reason, this dissertation proposes the efficient
inference system considering the hardware accelerator to the network architecture de-
sign.

The first part of the dissertation is a deep neural network accelerator with stochas-
tic computing. The main goal is the efficient stochastic computing hardware design
for a convolutional neural network. It includes stochastic ReLU and optimized max
function, which are key components in the convolutional neural network. To avoid the
range limitation problem of stochastic numbers and increase the signal-to-noise ratio,
we perform weight normalization and upscaling. In addition, to reduce the overhead of
binary-to-stochastic conversion, we propose a scheme for sharing stochastic number
generators among the neurons in the convolutional neural network.

The second part of the dissertation is a neural architecture transformation. The
network recasting is proposed, and it enables the network architecture transformation.

The primary goal of this method is to accelerate the inference process through the

transformation, but there can be many other practical applications. The method is based
on block-wise recasting; it recasts each source block in a pre-trained teacher network
to a target block in a student network. For the recasting, a target block is trained such
that its output activation approximates that of the source block. Such a block-by-block
recasting in a sequential manner transforms the network architecture while preserving
accuracy. This method can be used to transform an arbitrary teacher network type to
an arbitrary student network type. It can even generate a mixed-architecture network
that consists of two or more types of block. The network recasting can generate a
network with fewer parameters and/or activations, which reduce the inference time
significantly. Naturally, it can be used for network compression by recasting a trained
network into a smaller network of the same type.

The third part of the dissertation is a fine-grained neural architecture search. In-
heritedNAS is the fine-grained architecture search method, and it uses the coarse-
grained architecture that is found from the cell-based architecture search. Basically,
fine-grained architecture has a very large search space, so it is hard to find directly. A
stage independent search is proposed, and this method divides the entire network to
several stages and trains each stage independently. To break the dependency between
each stage, a two-point matching distillation method is also proposed. And then, oper-
ation pruning is applied to remove the unimportant operation. The block-wise pruning
method is used to remove the operations rather than the node-wise pruning. In addi-
tion, a hardware-aware latency penalty is proposed, and it covers not only FLOPs but

also memory access.

keywords: Stochastic Computing, Deep Neural Network Accelerator,
Network Compression, Network Transformation, Neural Architecture Search

student number: 2015-20950

ii

Contents

Abstract

Contents

List of Figures

List of Tables

1

2

Introduction
1.1 DNN Accelerator with Stochastic Computing
1.2 Neural Architecture Transformation

1.3 Fine-Grained Neural Architecture Search

Background

2.1 StochasticComputing

2.2 Newral Network
2.2.1 Network Compression
2.2.2 Neural Network Accelerator

2.3 Knowledge Distillation

2.4 Neural Architecture Search

DNN Accelerator with Stochastic Computing

3.1 Motivation e e e e

iii

iii

vi

xi

o N S SR

o

10
10
13
17
19

3.1.1 Multiplication Error on Stochastic Computing 23

3.1.2 DNN with Stochastic Computing 24
3.2 Unipolar SC Hardware for CNN 25
3.2.1 Overall Hardware Design. 25
3.2.2 Stochastic ReLU function 27
3.2.3 Stochastic Max function, 30
3.2.4 Efficient Average Function 36
3.3 Weight Modulation for SC Hardware 38
3.3.1 Weight Normalization for SC 38
3.3.2 Weight Upscaling for Output Layer 43
3.4 Early Decision Termination 44
3.5 Stochastic Number Generator Sharing 49
3.6 Experiments e e 53
3.6.1 Accuracy of CNN using Unipolar SC 53
3.6.2 SynthesisResult 57
3.7 Summary e 58
Neural Architecture Transformation 59
4.1 Motivation oL e 59
4.2 Network Recasting 61
4.2.1 Recasting from DenseNet to ResNet and ConvNet 63
4.2.2 Recasting from ResNetto ConvNet 63
423 CompresSion i e e e e 63
424 Block Training 65
4.2.5 Sequential Recasting and Fine-tuning 67
43 Experimentso 69
4.3.1 Visualization of Filter Reduction 70
432 CIFAR 71
433 ILSVRC2012 73
__Jx_',; 1

v

4.4 Summary e e e 76

5 Fine-Grained Neural Architecture Search 77
5.1 Motivationo e e e 77
5.1.1 Search Space Reduction Versus Diversity 77

5.1.2 Hardware-Aware Optimization 78

5.2 ImheritedNAS 79
5.2.1 Stage Independent Search 79

5.2.2 Operation Pruning 82

5.2.3 Entire Search Procedure 83

5.3 Hardware-aware Penalty Design 85

54 EBXperiments i e e e e e e 87
5.4.1 Fine-Grained Architecture Search 88

54.2 Penalty Analysis 90

5.5 Summary e 92

6 Conclusion 93
Abstract (In Korean) 113

_Jx_i'! O_ 11

2 A e

SECRIL WATIOMAL LIMINVERSTY

2.1

2.2
23

3.1

3.2

33

3.4

35

List of Figures

Stochastic computing multipliers. (a) Stochastic multiplication in unipo-
lar encoding with range [0, 1]. (b) Stochastic multiplication in bipolar
encoding withrange [—1,1].
Simplified knowledge distillation method.
Example of gradient-based neural architecture search and continuous

relaxation. e

Mean absolute errors for multiplications of two 10-bit streams in stochas-
tic computing. (a) Unipolar encoding (AND gate error). (b) Bipolar
encoding (XNOR gateerror).
Convolutional neural network based on stochastic computing. (a) A
simplified convolutional neural network consisting of convolutional,
pooling, and fully connected layers. (b) Structure of a stochastic com-
puting neuron, which can be used for both convolutional and fully-
connected layers. (c) Max pooling hardware structure.
Simplified integrated-and-fire (IF) neuron in spiking neural networks.
Stochastic ReLLU function based on finite state machine. (a) State dia-

gram of SReLU. (b) Results of SReLLU and saturated ReL.U for 3, 000

random inputs.(c) Mean error of SReL.U to approximate saturated ReLU.

Stochastic max function. (a) The conventional stochastic max func-

tion. (b) Our proposed stochastic max function (SMax).

vi

17

21

24

26
28

29

3.6

3.7

3.8

39

3.10

3.11

3.12

3.13
3.14
3.15

3.16
3.17

Results of the stochastic max functions for 1,000 random bitstream
pairs. (a) The conventional stochastic max function. (b) Our proposed
stochastic max function (SMax). 33
Error of stochastic max functions. (a) The previous work. (b) Our pro-
posed max function. Lo 34
Mean absolute errors of 2-input max operation and 2 X 2 max pooling
hardware. X-axis means the length of input/output bitstreams. 35
The scaled adder hardware. 36
2 x 2 stochastic average function. (a) The conventional stochastic av-
erage pooling function (scaled adder). (b) Our proposed stochastic av-
erage function (SAvg).o 37
Mean absolute errors of 2-input average operation and 2 x 2 average
pooling hardware. X-axis means the length of input/output bitstreams. 39
Distribution of activations (output values) for each layer. The number
of activations is normalized to the number of neurons in each layer,
and zero activations are not counted. (a) Comparison of distributions

for each layer when max normalization is applied. (b) Comparison of

different normalization schemes. 42
Distribution of top-2 differences for misclassified images. 44
Early decision termination steps. Ground truth is 2 in both cases. . . . 45

Simplified sharing of a random number generator among the different
stochastic number generators. 49
Stochastic number generator sharing method for the convolutional layer. 51

Stochastic number generator sharing method for the fully-connected

vii

3.18

3.19

3.20

3.21

4.1

4.2

4.3

Test error for CIFAR-10 dataset. The test error of floating-point is
16.14%. In SC, test error is minimized when both 99.55% normal-
ization and weight upscaling are used, and its test error is 16.43%. In
addition, test error becomes 17.08% when RNG sharing is applied to
fully-connected layer. L. 54
Early decision termination result on CIFAR-10 dataset. More than half
of the test data can be classified with lower than 2°-bit precision, but
20% of the data still require 2'°-bit precision. 55
Early decision termination result on MNIST dataset. Almost test data
can be correctly classified with 26-bit precision. 55
Synthesis result of conventional bipolar neuron and proposed unipolar
neuron. (a) Area comparison of bipolar and unipolar neuron. LFSR is
used to calculate area in all neuron. (b) Energy consumption of each

neuron. All circuit execute 2'0(=1024)-bits. 57

ResNet and DenseNet Top-1 validation errors for different numbers
of multiplications (/eft) and inference times (right). To measure the
inference time, single NVIDIA Titan X (Pascal) is used and batch size

is set to 16. DenseNet has much fewer multiplications than ResNet,

Basic concept of the network recasting. The target block of the student
network is trained by mimicking the source block of the teacher network. 61
Block recasting of a dense block into a basic block (Case 1) and a
convolution block (Case 2). The basic block has shorter inference time
than the dense block because it has much smaller activation load. The
convolution block is even faster than the basic block, but its capacity

is much smaller and so it can cause accuracy loss. 62

viii

4.4 Block recasting of a residual block—basic block (Case 1) and bottle-

neck (Case 2)— into a convolution block. The recasting of the basic

block keeps the same number of input and output channels. However,

since the bottleneck block uses a smaller number of channels for the

feature extraction, we recast it into a convolution block that has the

same number of input and output channels as the original 3 x 3 con-

volution. oL 62
4.5 Examples of the VGG-16 and WRN-28-10 compression. Both exam-

ple shows recasting of the first layer in each network. 64
4.6 Dimension mismatch and proposed block training method. The dimen-

sion mismatch happens when the source block is recast into a smaller

target block. The next block is used to match the dimension of output

activation. After rebuilding the next block, both blocks are trained by

minimizing Lpse(Wr, Ws). o o oo oo oo 66
4.7 Example of sequential recasting for ResNet-50. All blocks are recast in

this example. In each step, the target block and the next block (shaded

blocks) are initialized randomly and trained by minimizing L,,,s¢ (W7, Ws). 68
4.8 Example of the mixed-architecture network. It has both residual and

denseblock. L 68
4.9 Visualization of filters in the first layer of AlexNet (/eff) and a student

network (right). Redundant filters are removed after network recasting. 70

ix

5.1

5.2

53

54

The overall process of InheritedNAS. First, coarse-grain architecture
is searched. After then the fine-grain architecture is searched with pre-
trained coarse-grain architecture. To reduce the search space, we di-
vide and train the network using the knowledge distillation, and the
teacher network gives layer-wise/stage-wise hints to the student net-
work for the fine-grain architecture search. Each super cell has its own

architecture parameters, so each block has intrinsic architectures after

The two-point matching distillation. This method can break the de-
pendency from s-th to (s+1)-th stage, so each stage can be trained
independently. Lo
Forward propagation for the connectivity parameters 6. The probabil-
ity of connection is calculated with the sigmoid function, and it works
as the scaling factor of each operation.
Comparison of searched architecture. (left) The normal cell of DARTS.
(right) The first block of our searched network (OS1).

2 A e

SECRIL WATIOMAL LIMINVERSTY

3.1
32
33
34

4.1
4.2

4.3

4.4

4.5

5.1
52
53

List of Tables

Accuracy and gate count comparison for max function 35
Accuracy and gate count comparison for average pooling 39
Average signal-to-noise ratio for different normalizations 42

Comparison with previous works in terms of configuration and test error 56

Candidates for the network recasting 66
Error rates (%) of architecture transform results on CIFAR datasets
(B/M: billion/million) o 72
Error rates (%) of compression results on CIFAR datasets (B/M: bil-
lion/million) 73
Error rate (%) of network recasting results on ILSVRC2012 (B/M:
billion/million, I/B: image/batch) 74

Comparison of error rate (%) with previous works on ILSVRC2012

(B/M: billion/million) 75
Experimental results of InheritedNAS 89
Architecture search results through the hardware penalties 90
Latency onthe CPUand GPU 91

Xi

2 A e

SECRIL WATIOMAL LIMINVERSTY

Chapter 1

Introduction

Nowadays, we live in the ear of big data, and almost global companies use them for
technological advancements and people’s convenience. Deep learning (DL) is consid-
ered the most popular and promising machine learning (ML) algorithm, and it is also
the most famous big data application. In recent image classification challenges, a con-
volutional neural network (CNN), which is a kind of deep neural network (DNN) archi-
tecture, is widely used and achieves the highest classification accuracy. Several CNN
architectures have been introduced to achieve even higher accuracy [1, 2, 3, 4, 5, 6],
and the networks become deeper and deeper to take the exponential advantage of depth
[7]. To train a deep network, He et al. [4] proposed the residual network (ResNet),
which consists of the summation of identity mapping and output of convolutional lay-
ers. It helps to propagate gradients from the top layer to bottom layer, so it can alleviate
the vanishing gradient problem. In addition, ResNet shows top-5 accuracy (probabil-
ity of having the right answer in the top-5 predictions) higher than 95%, and top-1
accuracy higher than 80% [4], exceeding the capability of a human.

To achieve state-of-the-art accuracy, many network architectures and training meth-
ods are proposed, but it causes the inefficiency on inference. Deeper network architec-
tures help to achieve higher accuracy, but those require a huge amount of computation.

A DNN consists of an enormous number of multiply-and-accumulate (MAC) oper-

ations for matrix-vector multiplication, which is very inefficient on the conventional
hardware. In addition, several previous works show that DNN has tremendous redun-
dancy, and it can be removed easily [8]. So, it is important to achieve the speed up and
energy consumption by removing the redundancy. Moreover, hardware aware network

architecture design is required for further optimization.

1.1 DNN Accelerator with Stochastic Computing

To reduce the computational cost while maintaining a reasonable level of accuracy,
various kinds of methods have been introduced. For example, the fixed-point hard-
ware is widely used [9] because it is much cheaper than floating-point hardware. Note,
however, that fixed-point number representation has a much narrower dynamic range
than the floating-point counterpart, and thus the hardware should be designed care-
fully to avoid overflow or underflow. Alternatively, analog computing can be adopted
to perform the MAC operations at a cost lower than that of conventional digital hard-
ware [10]. A memristor crossbar is an example of analog matrix-vector multiplica-
tions, which has been shown to have a huge improvement in terms of performance and
energy consumption over digital implementations.

Approximate computing is another way of reducing computational cost by sac-
rificing accuracy. The concept fits well with DNNs, since sacrificing a certain level
of accuracy for the internal computations of a DNN does not necessarily degrade its
prediction quality. Stochastic computing (SC) can be considered as approximate com-
puting; it has several advantages over conventional fixed-point computation and analog
computation. First, compared with fixed-point, SC multiplier has a smaller hardware
footprint, lower power consumption, and lower latency. Thanks to those characteris-
tics, more neurons can be integrated into the same area compared to the conventional
fixed-point hardware. Secondly, SC requires a smaller number of conversions than

analog. DNNs using analog MAC hardware typically require digital-to-analog con-

version and analog-to-digital conversion much more pervasively, i.e., before and after
every MAC layer. The conversion overhead of SC, on the other hand, can be confined
to primary inputs (binary-to-stochastic), weight parameters (binary-to-stochastic), and
primary outputs (stochastic-to-binary) [11]. In addition, SC allows dynamic change
of precision without any hardware modification [12]. This characteristic of SC can be
exploited to considerably reduce the latency of SC DNN at no increase in hardware
cost [11].

There have been several attempts to design efficient SC hardware for DNNS, tar-
geting fully-connected networks [11] as well as CNN [13, 14, 15, 16, 17]. However,
the previous SC DNN designs have two main problems. First, they do not scale well
in terms of recognition accuracy beyond the MNIST dataset. The MNIST consists of
simple high-contrast gray-scale handwritten digit images. Actually, each pixel has an
8-bit value, but 80.9% of the pixels have value 0, and 7.4% of the pixels have value
250 or larger. On the other hand, general object recognition datasets such as CIFAR-10
and ImageNet have three channels with many mid-range pixels making it really diffi-
cult to classify them, which is why there is no reported result yet on those datasets in
the previous SC DNN papers. Second, they incur large overhead due to the conversion
of fixed-point data and weights into stochastic bitstreams, which significantly reduces
energy- and area-efficiency of SC DNNG.

In the first part of the dissertation (Section 3), we address the three central problems
of SC DNNs by proposing the following set of novel techniques. First, we propose to
use unipolar encoding for SC DNN designs, which can help reduce random errors of
SC and make SC DNN more accurate. We also propose a set of unipolar SC-based
hardware modules, such as SReLU and Smax, which are SC versions of ReLU and
max, respectively. Second, we propose data-driven weight normalization and weight
upscaling tailored for SC DNNs. Thirdly, to minimize the conversion overhead associ-
ated with SC, we propose a novel SNG (stochastic number generator) sharing scheme.

Through our experiments, we show that our SC DNN achieves significantly im-

proved recognition accuracy and efficiency compared with the state-of-the-art result.
In terms of recognition accuracy, our optimized version achieves 16.43% test error on
CIFAR-10, which is very close to the floating-point test error. In terms of efficiency,
we show that, with the proposed SNG sharing scheme, a fully-connected neuron and
a convolutional neuron need only 47.5% and 16.2% area, respectively, compared with
the conventional SC neuron without sharing. In addition, our experiments show that
the energy efficiency of the fully-connected and convolutional neurons can be made

5.3x and 9.2x higher, respectively, by using the proposed sharing scheme.

1.2 Neural Architecture Transformation

As mentioned before, deeper network architectures help to achieve higher accuracy,
but those have a huge amount of parameters and computation redundancies. In con-
ventional neural network training, L1 or L2 (weight decay) regularization is used to
improve the generalization performance. Both methods decrease the weight values, so
weights become close to zero. For this reason, most weight values are located in the
near-zero area, and those hardly affect the final prediction. Actually, many filters can-
not extract the meaningful features [18], so those can be removed. To obtain an efficient
network, the network compression method is introduced by removing the redundan-
cies of the trained network. The weight and filter pruning methods are introduced to
remove redundant filter [8, 19], and they remove the weight or filter whose absolute
value is smaller than the given threshold value. The pruning can reduce the network
size effectively, so other pruning approaches are proposed for further reduction.

On the other hand, there are architectural approaches that are designing the com-
putation efficient network. Szegedy et al. [2] propose the inception module, and it
supports several filter size of convolution. 3 X 3 and 5 X 5 require many multiplica-
tions, so they introduce the 1 x 1 convolution to reduce the number of multiplications.

1 x 1 convolution is used before the main convolution, and it reduces the number of

activation channels. By using 1 x 1 convolution, we can reduce not only the number
of multiplications but also the number of weight parameters. For this reason, recent
networks use 1 x 1 convolutions [4, 6].

However, in many cases, both pruning and 1 x 1 convolution cannot reduce the
inference time effectively. First, the pruning method can reduce the model size effec-
tively, but its actual speedup is much smaller than the compression ratio. Weight prun-
ing method can remove unimportant parameters, but the filter becomes sparse matrix
after pruning. The sparse matrix is hard to accelerate on conventional hardware such as
CPU and GPU. Second, 1 x 1 convolution causes more memory access, so it increases
the actual inference time. Memory access already occupies the most of inference time,
but 1 x 1 convolution causes the growth of the memory access. Actually, even if the
number of multiplication and parameters is small enough, the network can take a much
longer time for the inference.

In the second part of the dissertation (Section 4), we focus on the inference time
reduction rather than parameter and multiplication reduction. To reduce the inference
time, we propose the network recasting method by transforming the network archi-
tecture for a smaller activation load. We transform the network architecture through
the block-wise recasting of source blocks into target blocks. The recasting is done by
training the target block to mimic the output activation of the source block, so the ac-
curacy can be preserved after recasting. We can obtain a mixed-architecture network
by recasting parts of the trained network. By the mixed-architecture network, we mean
a network having multiple types of the block that can exploit the advantages of individ-
ual block types within a single network. In addition, we can use the network recasting
method for network compression by recasting each block to a smaller one of the same
type. We have achieved up to 3.2x actual speedup with 0.22% top-5 accuracy loss on
ILSVRC2012 dataset by the DenseNet-121 recasting.

1.3 Fine-Grained Neural Architecture Search

Recently, neural architecture search (NAS) is proposed to design network architecture
automatically. NAS is one of the automated machine learning (AutoML) research,
and it finds the neural network architecture with the neural network. Zope et al. [20]
propose the first modern NAS algorithm, and it can find architecture using the deep
reinforcement learning (RL). The overall process is similar to the design space ex-
ploration, but the deep RL can reduce the search space effectively. The evolutionary
algorithm also can reduce the search space, so it is also combined with NAS algorithm
[21]. However, those method requires a huge amount of time because every network
architecture has to be trained during the search process. To reduce the search time,
Liu et al. [22] propose the gradient-based NAS approach. Gradient-based NAS is find-
ing the network architecture with conventional cross-entropy loss. This method trains
network only one time, so it can reduce search time dramatically.

For the convergence, many NAS algorithms restrict the search space. Cell-based
architecture search finds cell architecture and reuses them over the entire network.
It has a much smaller search space compared with the whole architecture search, so
it is much easier. However, a cell-based approach reduces the diversity of each cell,
so it can reduce the optimization chance. According to the position in the network,
each layer has a different characteristics. For example, the bottom layers have large
input and output activation, and the top layers have large parameters. By adopting the
proper structure, parameter, and memory overhead can be relaxed. ProxylessNAS [23]
and FBNet [24] allow the layer-wise search space by using the simpler cell structure
for the convergence.

In the last part of the dissertation (Section 5), we proposed InheritedNAS, the fine-
grained architecture search method. The proposed method gives diversity for each
block, so the network can achieve a higher accuracy or more efficient inference. To
obtain the fine-grained architecture, we propose the stage independent architecture

search, which can reduce the complexity of search space preserving the block diver-

sities. In addition, we also proposed the operation pruning, which is the operation
removing method. This method estimates the importance of each operation and prunes
the less important operations. The operation pruning optimizes each block and helps
to achieve a more efficient network. On the other hand, we also proposed the mixed
penalty that consists of FLOPs and memory access for hardware-aware architecture
search. This penalty also keeps the block diversity and helps to find hardware friendly

block designs.

Chapter 2

Background

2.1 Stochastic Computing

The stochastic computing (SC) is the digital hardware design scheme, and it is based
on the probability theorem. SC uses the bitstream to express the number, and it is
called the stochastic number. The bitstream consists of only 0 and 1, and the proba-
bility of emerging 1 means the actual value of a stochastic number. Only one bit (0 or
1) can be observed in every cycle, and the bits emerge during the several cycles. For
example, nine 1s and one Os are observed during ten cycles, the value of this stochastic
number becomes 9/10 in the binary system. If every bit is 1 or 0 in a bitstream, this
value becomes 1 or 0 in the binary system. Therefore stochastic number has a range
limitation form O to 1, and it is also the same as the probability. By generating the 1s
with probability p, it means that stochastic number has p value in the binary system.
Basically, an additional sign bit is required for the negative value because there is no
negative probability. Therefore, the number of bit lines becomes twice due to the addi-
tional sign bit. However, the additional bit line is can be saved when 0 bit is regarded
as —1. For the same example, the value becomes (9 — 1)/10 when there are nine 1s
and one 0. In this case, the lower limit of the stochastic number becomes —1. There-

fore, the value of stochastic number and its range limitation is changed according to

1,1,1,1,1,0,1,1,1,1 (9/10)
0,0,1,0,0,0,0,1,0,0 (2/10)
0,0,1,0,0,0,0,1,0,0 (2/10)

()

1,1,1,1,1,0,1,1,1,1 (8/10)
0,0,1,0,0,1,0,1,0,0 (-4/10)
0,0,1,0,0,0,0,1,0,0 (-6/10)
(b)

Figure 2.1: Stochastic computing multipliers. (a) Stochastic multiplication in unipolar
encoding with range [0, 1]. (b) Stochastic multiplication in bipolar encoding with range
[—1, 1].

the meaning of O bit. The former case is called as the unipolar encoding, and the latter
case is the bipolar encoding.

SC has a very small hardware footprint compared with the binary system. For
example, multipliers can be implemented with only one gate in SC. Figure 2.1 shows
the multiplier of SC for the unipolar and bipolar encoding. In unipolar encoding, single
AND gate work as the multiplier. The value of the upper bitstream is 9/10, so 1 is
generated with a probability 0.9, and 1 is also generated with a probability 0.2 in the
lower bitstream. So, the probability that both bitstreams have 1 bit is 0.9 x 0.2, and this
is the same with AND gate operation. The XNOR gate is used for the multiplication in
the bipolar encoding. Likewise, the scaled addition and subtraction are implemented
with only one multiplexer, so those also have a very small hardware footprint. Thanks
to this characteristic, SC is used in the signal processing hardware [25, 26, 27, 28, 29].
The edge detection logic can be implemented using only two XOR gates and one MUX
[25], and gamma-correction logic also consists of one OR gate and one DFF [26].

Another advantage of SC is that the computation precision can be changed without
any hardware modifications. The precision of the stochastic number and computation
logics is directly related to bitstream length. So, the precision of the given number can
be adjusted by changing the bitstream length. When the bitstream length is reduced to

on—1 s precision is also reduced to n — 1-bit. In addition, the precision of arithmetic

logics depends on the precision of given input bitstreams, so the bitstream length has to
be changed to adjust the precision of the entire hardware. Thanks to this characteristic,
the concept of the progressive precision is introduced [25]. The quality (or prediction
accuracy) of processing result is improved according to the computation cycles. The
decision time is can be reduced when simple data (or operation) is given. For example,
in the edge-detection, the sharp edges can be found easily, so the computation cycles

of sharp edges can be reduced effectively.

2.2 Neural Network

The neural network is a kind of machine learning algorithm. The artificial neural net-
work (ANN) mimics the behaviors of the neuron [30], and it was widely used for the
regression problem because ANN can approximate any kind of function [31]. After
introducing the backpropagation [32], the deep neural network (DNN) can be trained.
As the depth of the neural network increases, the DNN achieves much higher predic-
tion accuracy for the classification problem. These days, the DNN shows the state-of-
the-art result for the many artificial intelligence areas compared with other machine
learning algorithms. However, the computation cost and inference time also increase
according to the network depth. To solve this problem, there is a lot of researches in

both software and hardware aspects.

2.2.1 Network Compression

For the software approach, the network compression method is proposed to reduce the
DNN model size and its inference time. The network depth and width dramatically in-
creases to improve the prediction accuracy, but the actual improvement is much smaller
than the network expansion. Therefore, many researchers have been focusing on the
redundancy of the trained network. To reduce the network size, the weight pruning,

and quantization methods are introduced [33, 34, 8]. Moreover, the matrix decompo-

10

sition method also used to reduce the parameter by using a low-rank approximation
technique [35]. Nowadays, many researches focus on the network pruning and the
quantization method and reduce the model size preserving the accuracy of the trained

network.

Pruning

To reduce the search space or running time, the pruning method had been widely used
in the various research areas. Han et al. [8] propose a weight pruning method, which
removes useless weight connections. It is the first approach introducing the pruning
method to neural network research. The basic concept of the first weight pruning is
that the near-zero weight can be removed with any significant accuracy loss. After
pruning, the removed weights are never used. To give the degree of freedom, the other
works reuse the pruned weights. Guo et al. [36] introduce the pruning mask, which de-
cides the pruning candidates. The mask is determined in every pruning epoch, and the
pruned weight can be revived. Han et al. [37] also propose a re-initialization method,
and it means that the pruning weights are revived with random initial values. This
re-initialized weight can improve the prediction accuracy after the fine-tuning. Fur-
thermore, the filter-wise pruning methods are also proposed [19, 38, 39, 40, 41]. In
previous observation, several filters do not extract the meaningful features [18], and
it can be removed with the group lasso regularization [42, 43]. Some previous ap-
proaches for the filter pruning are similar to the weight pruning method [19, 44]. The
average percentage of zeros (APoZ) and the sum of absolute value are used to esti-
mate the importance of each filer, and filters are pruned iteratively according to the
estimated importance. Luo et al. [39] propose an activation-based pruning method,
where pruning candidates are determined by the squared error of activations. They as-
sume that small activation is not important for classification because it barely affects
higher-level feature extraction. In recent work, Lin et al. [40] use reinforcement learn-

ing (RL) to prune filters according to the input data. This work introduces runtime

11

neural pruning that removes the filters using deep Q-network for each input data in
runtime. Basically, these filter pruning methods achieve faster inference on a GPU,
but still have limitations in compression; the methods for estimating the importance
of filters should be designed manually with prior knowledge, and nonetheless, those

methods cannot find redundant filters effectively due to a great deal of complexity.

Quantization

Another network compression approach is the quantization, and it can be used for the
weight as well as activation value. The neural network does not require high com-
putation precision, because it generates the decision probability [45]. The differences
between the first and the second probable class are commonly large enough for the
correct classification. In other words, those input data can be classified with lower pre-
cision when the computation error is smaller than the difference. By reducing the com-
putation precision, the network size also can be reduced because it depends on the total
memory of the weight values. Moreover, the computation cost also can be reduced ac-
cording to the computation precision. For this reason, lots of the network quantization
methods are proposed for efficient inference. The homogeneous quantization method is
firstly proposed and it shows high compression results with reasonable accuracy loss
[46]. The stochastic rounding method is proposed to use a much lower computation
precision [47]. Han et al. [48] propose the weight sharing based quantization method,
which can be used to achieve much higher compression ratio by using Huffman en-
coding. The layer-wise quantization methods are introduced for further improvement
and those researches reveal that the input and output layer requires high precision but
other layers can be quantized much lower precision [49, 50]. To reduce the model size
extremely, the ternary weight and binary weight quantization methods are proposed
[34, 51, 52]. Recently, many researches use the additional loss function to alleviate
the accuracy loss in the quantization process. The explicit loss-error-aware Quantiza-

tion (ELQ) is proposed to ternarize or binarize the weight value with much smaller

12

accuracy loss [53]. The ELQ considers both the weight approximation error and its
impact on the cross-entropy loss, so it can help to preserve the prediction accuracy.
The learnable quantization method is also introduced [54], and the new quantization
parameters are included in the training process. Furthermore, the automated quantiza-
tion method is also proposed [55]. By using the deep reinforcement learning algorithm

(the actor-critic model proposed by [56]), the quantization levels are determined.

2.2.2 Neural Network Accelerator

DNN consists for a huge amount of multiplications and accumulations (MACs). For
example, the number of multiplication is 4.09 billion in ResNet-50 model [4]. There
is a tremendous amount of computation, so it spend a very long time in conventional
computer architecture. However, the multiplication and accumulation emerge regu-
larly, and its computation pattern is fixed when the network is chosen. For this reason,
it can be accelerated easily by increasing the parallel computation, so many DNN ac-
celerators are introduced. In addition, the network compression methods can help to
achieve much faster inference, so the compression-aware accelerator design is very

important.

Conventional Binary System

First of all, the DianNao [57] is designed to increases the utilization of the processing
elements (PE) by using a tiling approach, and it achieves much higher speed-up com-
pared with the conventional GPU architecture. And, the Eyeriss propose the spatial
architectures that based on the CNN row stationary dataflow [58]. The systolic array
is used to improve the efficiency of the convolution/fully-connected operation for the
data center [59]. For further improvement, the network compression methods are con-
sidered to design the accelerator. The weight pruning can remove the connections of
neurons, but it makes the sparse matrix so it is hard to be accelerated in conventional

GPU architecture. However, it is easy to implement skipping operation for the zero

13

weights, so DNN accelerator can achieve further speed-up and energy-saving [60].
Most of the activation values also become zero due to the ReLU activation function
that is widely used in modern neural network architecture. Another previous work pro-
pose both zero weight and activation skipping hardware, and they also solve the load
imbalance problem caused by lots of zero values [61]. DNN accelerators also exploit
quantized weight and activation values. Basically, a huge amount of area and energy
consumption can be reduced by using the fixed-point rather than floating-point hard-
ware [57]. The mixed-precision hardwares are proposed to use the advantages of the
layer-wise quantization. The bit-serial hardware is proposed to support varying the bit
precision [62]. The bit-flexible hardware also is proposed, and it used the bunch of
2-bit arithmetic operations to supporting the power-of-2 bitwidth operations [63]. By
combining the quantization with sparsity, the DNN accelerator shows a much pow-
erful result compared with conventional computer architecture [64]. In recent works,
the prediction method is also used for further improvement. The SnaPEA architec-
ture used the reordering and sampling method to predict the pre-activation values [65].
They calculate the partial sum of the convolution, and they skip the remaining op-
eration when the temporal partial sum becomes smaller than zero. The ComPEND
architecture also focuses on zero value prediction, but they change the two’s comple-
ment operation [66]. The two’s complement value consists of the large negative value
and smaller positive values to express the negative. They invert this composition, and
they calculate positive first, and then stop operation when the partial sum drops below
zero. The convolution is used in the spatial domain, so it has local similarity. By using
this characteristic, several works focus on the value prediction and its hardware for

spatial domain [67].

Analog System

To implement a lower precision accelerator, an analog circuit can help to reduce area

and energy consumption. The ISAAC proposes the memristor crossbar array archi-

14

tecture for the multiply-accumulate (MAC) operation [10]. For the MAC operation,
digital-to-analog conversion and analog-to-digital conversion are required, but it has
a huge amount of area and energy consumption overhead. They solve those problems
by using the flipped form of the weight values, and it reduces ADC size effectively.
The Prime architecture uses ReRAM crossbar array similar to ISAAC, but it chooses
processing-in-memory (PIM) architecture for its implementation [68]. The PipeLayer
proposes the highly parallel design according to the parallelism granularity and weight

duplication by exploiting the inter-layer parallelism [69].

Stochastic Computing System

Approximate computing is another way of reducing computational cost by sacrificing
accuracy. The concept fits well with DNN, since sacrificing a certain level of accuracy
for the internal computations of a DNN does not necessarily degrade its prediction
quality. SC can be considered as approximate computing; it has several advantages
over conventional fixed-point computation and analog computation. First, compared
with fixed-point, SC multiplier has a smaller hardware footprint, lower power con-
sumption, and lower latency. Thanks to those characteristics, more neurons can be
integrated into the same area compared to the conventional fixed-point hardware. Sec-
ondly, SC requires a smaller number of conversions than analog. DNN using analog
MAC hardware typically requires digital-to-analog conversion and analog-to-digital
conversion much more pervasively, i.e., before and after every MAC layer. In addition,
SC allows dynamic change of precision without any hardware modification [12]. For
those reasons, many previous works attempt to implement the SC DNN accelerator.
SC logics for the neural computation is proposed [70], and ANN is implemented
with proposed logics [71]. However, only a single layer ANN model can be imple-
mented, and SC cannot be used for the modern DNN model. SC has computation
error and it is amplified pass through the many layers in DNN, so it cannot classify

any given data. In addition, SC logics proposed in previous work [70] only support

15

only a single-input case. To solve those problems, the weight scaling method and new
stochastic hyperbolic tangent are proposed [11], and it is the first full SC hardware for
the modern DNN. In addition, they also use the progressive precision characteristic
of SC and propose the early decision termination method to considerably reduce the
latency of SC DNN at no increase in hardware cost. The DSCNN architecture supports
SC-CNN, and they propose the improved version of single input stochastic hyperbolic
tangent function [13]. After then, many CNN architectures with full SC logics are pro-
posed. The SC-DCNN propose the optimized SC MAX pooling logic and reorganize
the structure of convolutional neuron by switching the activation function and pooling
operation [14]. To achieve a more efficient SC-DNN accelerator, li et al. [15] inves-
tigate the relationship and accuracy result for the MUX based inner product, parallel
counter-based inner product, and order of activation function and pooling operation.
The new version of SC tanh logic and SC ReL.U function logics are proposed and those
hardwares can improve the energy efficiency [16].

On the other hand, partial SC hardwares are also proposed. For the partial SC hard-
ware, the binary-to-stochastic and stochastic-to-binary conversion is needed similar to
the analog DNN accelerator. The SC-MAC hardware is proposed to solve conversion
overhead, and it also improves the multiplication accuracy by reducing the effect of
stochastic error [72]. They use the thermal coding for one stochastic number so it
only requires down counter for the multiplication. And it shows similar accuracy with
conventional SC multiplication because the randomness of other value is still guaran-
teed. The dynamic precision scaling technique is also proposed to change the precision
in runtime [73]. The other work proposes the differential Multiply-and-Accumulate
(DMAC) logics, and it helps to achieve the much higher speed-up compared with the
previous SC-MAC hardware [74].

16

Teacher

Input | l =l logit,

Y

Y

I
I

=

Student

Figure 2.2: Simplified knowledge distillation method.
2.3 Knowledge Distillation

To train a smaller network with higher accuracy, mimic learning and knowledge dis-
tillation (KD) are introduced [75, 76]. These methods train a smaller network called
student network using logits of a large network called feacher network. The teacher
network was trained by minimizing cross-entropy loss that is widely used in conven-
tional neural network training, and then the student network is trained by following
the logits of the teacher network. The logits of the teacher network is considered as
the soft target values, so it is much easier to follow the logit values rather than the
original labels as shown in Figure 2.2. To follow the behavior of teacher network, Ba
and Caruana [75] trains a student network by minimizing L2 loss between logits of
student and teacher networks. Hinton at al. [76] uses logits of the teacher network to
generate the soft target, and train the student network by minimizing cross-entropy loss
with the soft target. Both works achieve a higher accuracy than conventional training
method by using the proposed method, and Hinton at al. [76] also obtains the network
that has the accuracy of the ensemble model. It is hard to train a deep student network

due to the vanishing-gradient problem, so several KD methods have been proposed

17

to train a deep student network [77, 78]. Romero at al. [77] propose the hint training
method that trains the student network with a convolutional regressor. They use a thin-
ner and deeper student network, and train half of the student network by following the
teacher network. Due to the dimension of the feature map is not matched, they use
convolutional regressor and then train student network. After then, they also use the
KD method for training of the entire network. Their method shows the higher accu-
racy compared with the original KD method, and they also show reasonable training
result for the deeper network without any shortcut path. Luo et al. [78] also propose the
method to train the deeper network. They also use a feature map of a hidden layer, but
they use an additional path from the hidden layer to the output layer for gradient prop-
agation. It also shows a better result compared with the conventional backpropagation
method.

Recently, the KD method is widely used for the various areas; network compres-
sion, quantization, and network transformation. For the network compression, the ac-
tivation matching method is widely used [79, 80]. The activation matching is a kind
of hint training, but they never use the convolutional regressor. Zagoruyko et al. [79]
introduce the attention transfer method to reduce the number of residual blocks while
conserving the accuracy. The attention map is the channel-wise accumulation result in
the feature map, and it shows the effective points in forward propagation. By follow-
ing the attention map of the teacher network, the student network also can follow the
behavior of the teacher network. They show the layer reduction of ResNet [4], and it
shows a much better result compared with conventional training. Yim et al. [80] also
propose the residual block reduction method using the relationship between input and
output activations. Rather than the attention map, they propose the flow of the solution
process (FSP), and this concept mimics the teaching method of a real-world teacher.
In the real-world, the teacher does not give the solution, but they show the process
to reach the solution. Similar to the real-world teacher, they give the relationship of

input and output feature map to the student network. By mimicking the FSP, the stu-

18

dent network can be trained well. For the quantization, KD can also be applied easily
[81, 82, 83]. Mishra et al. [81] use the low precision network as the student network,
and it mimics the behavior of the teacher network similar to the original KD method.
They show several kinds of quantization methods with KD, and the fine-tuning method
achieves the best result. The fine-tuning method use a fully trained teacher and student
network and then apply quantization. To restore the accuracy, the student network is
fine-tuned by minimizing KD loss. Polino et al. [82] propose the differentiable quanti-
zation method, and it optimizes the location of quantization points. They define the dif-
ferentiable quantization function, the quantization precision can be determined through
the standard SGD. Their quantization process consists of the differentiable quantiza-
tion and quantized distillation. After the quantization, they also use the KD method
to recover the accuracy loss. For the network transformation, several previous works
show the noticeable results [84, 85, 86]. Furlane et al. [84] firstly show the possibility
of KD between different network architecture. They show the ResNet training result
using logits of DenseNet, and it shows a better result compared with conventional
backpropagation. Heo et al. [85] also show that KD can be applied between different
network architecture. Li et al. [86] use the KD for the neural architecture search (NAS)

application.

2.4 Neural Architecture Search

The neural architecture search (NAS) is the method to find better neural network ar-
chitecture using the neural network itself. It is one of the automated machine learning
research areas (AutoML), and Zoph and Le [20] propose the first NAS method. They
propose the controller network using RNN, and it is trained to find network archi-
tecture. The controller generates the architecture hyperparameters such as filter size,
stride, the number of output channels, the number of layers, etc. The network is built

with the generated architecture hyperparameters, and it is trained to estimate valida-

19

tion accuracy. The validation accuracy is used to calculate the reward value to train the
controller network, so it works as the environment in reinforcement learning. The con-
troller is trained to increase the reward, and finally it can find the reasonable network
architecture and shows good validation accuracy. To find better network architecture,
the concept of a cell structure is proposed [87, 88]. The cell is the building block of
network, and the network consists of several cells. This concept is already widely used
for the network architecture design. For example, DenseNet [6] consists of the dense
block and ResNet [4] also consists of residual or bottleneck block. Thanks to the con-
cept of cell structure, the search space is dramatically reduced. They only find two
kinds of cell; normal cell and reduction cell [87]. Training of the controller becomes
much easier than previous work because the search space is much smaller.

The evolutionary algorithm is used to find neural network topology [89]. They
firstly use the evolutionary algorithm for the network search, and it only covers the
simple multi-layer perceptron. Liu et al. [90] propose an architecture search algo-
rithm with the evolutionary algorithm for modern CNN architecture. They combine
the evolutionary algorithm with the cell structure, and they only use a single cell as the
network building block. To reduce the feature map size, they use the separable con-
volution with stride 2 that is proposed in [91]. Real et al. [21] combined evolutionary
algorithm with the cell structure, and find normal and reduction cell. They find the net-
work that has higher accuracy and lower computation cost compared with RL based
architecture search. Elsken et al. [92] propose multi-objective architecture search for
evolutionary architecture search, it covers accuracy, inference time, and the number of
parameters.

One-shot architecture search is one of the neural architecture searches, which train
all operations and select proper operation after training [93, 94, 95, 96, 22]. Basically,
a one-shot search reuses the trained weight parameter for final prediction. The differ-
entiable architecture search is one of the one-shot architecture searches, which is found

network architecture by training itself. Liu et al. [22] propose the concept of gradient-

20

Figure 2.3: Example of gradient-based neural architecture search and continuous re-
laxation.

based architecture search (DARTS), and it can reduce the network search time dra-
matically. Previous RL-based and evolutionary search requires a huge amount of time
to train each candidate network. However, gradient-based architecture searches train
weight parameters, and it also search network architecture concurrently. Due to the
network architecture is discrete, it is hard to train the network architecture with con-
ventional training loss. To solve this problem, DARTS propose continuous relaxation
for the operation selection. They replace the discrete selection with softmax function,
and train architecture parameter to find proper architecture as shown in Figure 2.3.
A gradient-based search takes a few GPU days to find network architecture, and it is
much faster than previous RL-based search. For this reason, the gradient-based search
is widely used in recent work. To improve the performance and efficiency of DARTS,
several methods are proposed. ProxylessNAS reduces the memory consumption by
using binarization method, so it can support a large-scale tasks (e.g. ImageNet) [23].
DARTS has to compute all operations for the training, so its memory consumption
is proportionate to the number of operations. Actually, DARTS uses 8 operations for
each edge, so its memory consumption is about 8 times compared with the standard
network. Due to this characteristic, DARTS cannot find large-scale network directly.
To solve this problem, ProxylessNAS select operation according to the probability,

and then train architecture parameters with the binarization method [97]. In forward

21

propagation, the operation is binarized, and the selected operation is only calculated.
In backward propagation, the gradient is calculated the same as conventional back-
propagation, and architecture parameters are updated for selected operation as well
as non-selected operation. ProxylessNAS also propose the latency penalty, and it can
help to find a faster network for the given hardware. They measured the latency of each
block for the given hardware (GPU and mobile CPU), and use those measured value
for the latency penalty. FBNet [24] and FBNetV2 [98] use similar approaches, but
FBNetV2 also support spatial and channel dimension search. The previous gradient-
based search uses pre-defined spatial and channel dimensions, and those are regarded
as the trainable parameters in FBNetV2. They propose a channel masking method to
determine channel dimension dynamically, and resolution subsampling is used for the
spatial dimension. They use several masks that have different size, and one mask is se-
lected according to the gradient descent similar to gradient-based operation selection.
Recently, several works focus on the latency constraint in the network architecture
search. ProxylessNAS and FBNet show the latency estimation method using the lin-
ear combination of every block. However, this method cannot estimate the latency of
complex network architecture such as DARTS. For this reason, Xu et al. [99] propose
the latency prediction model (LPM), and it can predict the latency of the determined
network using architecture configuration. By using LPM, latency becomes a differen-

tiable term, so it can be applied for the latency penalty.

22

Chapter 3

DNN Accelerator with Stochastic Computing

3.1 Motivation

3.1.1 Multiplication Error on Stochastic Computing

In stochastic computing, a multiplier can be implemented with a single AND gate
for unipolar encoding and a single XNOR gate for bipolar encoding as we mentioned
Section 2.1. The two input stochastic bitstreams are multiplied by a multiplier (AND
or XNOR gate), generating outputs cycle by cycle (one bit at a cycle), which is similar
to bit-serial logic. The multiplication results are close to the accurate ones but may
have some stochastic errors. Figure 3.1 shows the multiplication errors for the two
encodings; each point represents the absolute error averaged over 1, 000 multiplication
results. The error is maximized when both input values are 0.5 in unipolar encoding,
while it is maximized when they are O in bipolar. In both cases, the maximum error
occurs at the center, but the mean absolute error of the bipolar case is 3.76 times higher

than that of the unipolar case.

23

0.02
— |
S S
— —
w 0.01 w
S\
eSS SIS
NN
! SN

3:‘:‘\‘{{\\\\

(a) b)

Figure 3.1: Mean absolute errors for multiplications of two 10-bit streams in stochastic
computing. (a) Unipolar encoding (AND gate error). (b) Bipolar encoding (XNOR gate
error).

3.1.2 DNN with Stochastic Computing

Sigmoid, hyperbolic tangent, and ReLLU are commonly used activation functions in
DNNs, but ReLLU is most popular because it suffers less from the gradient vanishing
problem during the backward propagation in a training phase [100], and so deeper
networks can be better trained.

When using ReLLU in SC hardware, unipolar encoding can be a better choice, be-
cause ReLU generates many zero activations (during the forward propagation, ReLU
generates (at the output when the input is negative). Actually, more than 50% ac-
tivation values are 0 when ReL.U is used [61], so zero values have to be multiplied
with weights in the next layer. In bipolar encoding, zero multiplication error is the
biggest, and zero value also maximizes switching activity in the hardware. However,
zero multiplication is accurate in unipolar encoding, and there is no switching activ-
ity. Therefore, unipolar encoding is well-matched with ReLLU, and better than bipolar

encoding in terms of computation accuracy and energy consumption.

24 o

|

I

U

For those problems, unipolar encoding can be a better choice than bipolar encod-
ing. By using unipolar encoding, we can compute near-zero values with a much smaller
stochastic error. In addition, we can use unipolar encoding without additional sign bit
due to the ReLLU function. ReLU function removes all negative values, so every ac-
tivation value becomes positive. Thanks to this characteristic, we can save a bit-line
and improve computation accuracy at the same time. For those reasons, we choose the

unipolar encoding for the SC DNN designs, and it is well-matched with DNN.

3.2 Unipolar SC Hardware for CNN

3.2.1 Overall Hardware Design

A CNN consists of three major layers: convolutional layer, pooling layer, and fully-
connected (FC) layer. The feature maps of an input image are extracted by the convo-
lutional layer. After that, the pooling layer reduces the size of each feature map, which
is directly related to the amount of computation. And then, the FC layer classifies
the input image with the resulting feature maps. Figure 3.2(a) illustrates a simplified
network and the order of the three basic layers. The layers can be stacked to make a
stacked network (deep neural network), which is widely used these days to classify
more complex images and to improve the classification accuracy. For example, LeNet-
5 [32] is a famous network for MNIST dataset; it consists of two convolutional layers,
two pooling layers, and two FC layers.

The convolutional layer and the FC layer are two main layers where most of the
computations take place. Each of the layers typically contains many neurons and each
neuron basically performs MAC operations regardless of the layer types. Actually, we
can implement the FC layer with the convolutional layer when its filters cover all pix-
els of input feature map. Thus the two layers can be implemented with neurons of the
same structure. Figure 3.2(b) shows the SC hardware structure of such a neuron. The

neuron consists of AND gates for multiplications, a parallel counter for accumulation,

25

(b) (©

Figure 3.2: Convolutional neural network based on stochastic computing. (a) A sim-
plified convolutional neural network consisting of convolutional, pooling, and fully
connected layers. (b) Structure of a stochastic computing neuron, which can be used
for both convolutional and fully-connected layers. (¢) Max pooling hardware structure.

26

and a stochastic ReLU module for activation. Stochastic bitstreams coming from the
previous layer are multiplied with weight bitstreams using the AND gates. The input
bitstreams are always positive or 0 because of ReLLU, but the weight values can be
negative; thus, the sign of a multiplication result will be the same as the sign of the
weight. Therefore, for the multiplication result, we can make the AND gate calculate
only the magnitude in unipolar encoding and then take the sign of the weight. For the
accumulation of the multiplication results, we use two small adder trees per neuron,
one for the group of negative multiplication results and the other for that of positive
ones. Because the sign of a multiplication result depends only on the weight fixed by
the training, the grouping of the multiplication results is also fixed and the implemen-
tation can be easy and efficient. Each adder tree for accumulation is implemented by
a parallel counter. In every cycle, the counters count the number of ones in the mul-
tiplication results to generate negative and positive sums. The two sums are added
together to obtain the final accumulation result for the corresponding cycle. Finally,
the output activation bitstream is generated by the stochastic ReLU (SReL.U) function.
SReLU generates positive unipolar streams from the accumulated values (refer to Sec-
tion 3.2.2 for the details). Figure 3.2(c) illustrates the max pooling layer consisting of
several stochastic max (Smax) functions. In this paper, we mainly use the 2 X 2 max
pooling to implement networks for CIFAR-10 and MNIST datasets because 2 x 2 is
a popular size for a max pooling layer (refer to Section 3.2.3 for the details). For the
efficient average pooling, we also proposed designing method and we will cover its

detail in Section 3.2.4.

3.2.2 Stochastic ReLU function

The basic concept of SReLU is inspired by the integrate-and-fire (IF) neuron in spiking
neural networks (SNN) [101]. Figure 3.3 illustrates the behaviors of integrate-and-fire
neuron. The IF neuron integrates all input spikes into its own membrane voltage, and

increase or decrease the membrane voltage according to the synaptic weight values. If

27

/ ’ Threshold \

Membrane

I
I
Voltage |
|

| 1 1] == -
TN Spiking \ || |,

| I ncuron (2) Fire (Generate)

(1) Integrate

Figure 3.3: Simplified integrated-and-fire (IF) neuron in spiking neural networks.

the resulting membrane voltage becomes larger than a preset threshold, an output spike
is generated, and the membrane voltage is decreased by the threshold value. Otherwise,
the membrane voltage remains the same. SReLLU is an FSM (finite state machine) that
mimics the three key operations of the IF neuron: integration, output generation, and
decrement. The integration of the input spikes coming from the parallel counter is
implemented as a transition to a higher state in SReLU. Differ from the IF neuron,
SReLU just integrates accumulated value with its state (membrane voltage) because
the weighted sum is covered by AND gates and parallel counter. If the resulting state is
higher than the threshold after the integration, the output bit becomes 1, and a transition
is made to a lower state to mimic decrement of the membrane voltage. Otherwise, the
output bit becomes 0 and no state transition occurs.

Figure 3.4(a) illustrates the state diagram of SReLU. Each state works as the cor-
responding membrane voltage. Among the N states, the (/N/2 — 1)-th state represents

0 volt, and the lower states and the upper states represent negative values and positive

28

decrement

—} —) — X
O e
~X ~X
I 5
Y=0 | Y=1
(a)
17 0.1
O SReLU
0.8} RelLU
3 0.05
206 C
c <
-]
2047 .
o 0
0.2}
0 -G : : -0.05 : : :
-1 0 1 2 -1 0 1 2
Weighted sum Weighted sum

(b) ©

Figure 3.4: Stochastic ReLLU function based on finite state machine. (a) State diagram
of SReLU. (b) Results of SReLU and saturated ReLU for 3,000 random inputs.(c)
Mean error of SReLLU to approximate saturated ReLU.

A & Tl 8} 3

29 o g

values, respectively. The number of states is determined based on the number of input
bitstreams so that the FSM can cover the dynamic range of the incoming accumulation
result. According to our experience, it is sufficient to set the number of states to twice
the number of input bitstreams. For the sake of efficient implementation, we set the
number of states to power of two.

We set the threshold for output spike generation to half of the highest state value.
Then the decision to fire a spike depends only on the MSB of the state value. Thus, in
every cycle, the SReLLU module first checks the MSB of its own state value. If it is 1,
the module lowers the state by the threshold value. Then the input value (accumulation
result) is added to the state. Note that the output is always the same as the MSB of the
state value and thus no additional hardware is needed.

Figure 3.4(b) shows the comparison between SReLLU and conventional ReLU with
saturation, and Figure 3.4(c) shows mean error of SReLLU function. 3,000 random
bitstreams are used to calculate the outputs and the mean errors. The maximum value
of SC bitstream is 1 because of range limitation, so the SReLLU output cannot express
numbers larger than 1. For this reason, as shown in Figure 3.4(b), the output is saturated
to 1 when the weighted sum is larger than 1. However, the error due to saturation is not
really an issue since the problem can be alleviated by applying normalization, which
will be explained in Section 3.3. The accuracy of negative and linear regions is more
important than that of the saturation region, but as shown in Figure 3.4(c), the errors

are much smaller in those regions.

3.2.3 Stochastic Max function

Figure 3.5(a) illustrates the stochastic max function was proposed in [29]. The basic
concept of the previous max function is that A increases and B decreases the state
of the hyperbolic tangent. This is the reason why B is inverted. And then, A or B is
randomly selected with the even probability. It means that we can compare two values

by computing average value. If A is larger than B, the state become higher than middle

30

point. Conversely, the state become lower than middle point when B is larger than A.
The stochastic number generators (SNGs) is used to implement those behavior, but it
occupies most of its area. For example, an SNG based on a linear feedback shift register
(LFSR), which is the most popular digital random number generator, requires 54 gates
(NAND-2 equivalent) occupying about 48% of the max function area. We propose an
optimized stochastic max (Smax) function shown in Figure 3.5(b) to reduce the SNG
overhead. The basic concept of Smax is updating only the difference of the two input
SC bitstreams. The difference can be easily calculated with a single XOR gate. In
Figure 3.5(b), for example, if A and B are different, the Tanh module (implemented
as an FSM) is enabled to update its own state. The input from A to Tanh works as a
bipolar-encoded number, so 1 increases the state and 0 decreases it. Thus, if A is larger,
Tanh tends to stay on the high state side; if B is larger, it tends to stay on the low state
side. The Mux in Figure 3.5(b) selects A when Tanh is at a state higher than half of the
highest state. When the enable value is 0 (i.e., A and B are the same), Tanh does not

update its state.

31

Stochastic
number
Clock —+> generator | P=0-5

oo

(b)

Figure 3.5: Stochastic max function. (a) The conventional stochastic max function. (b)
Our proposed stochastic max function (SMax).

32

S
s
8!
55
st
W

0.5

Max value
Max value

(a) (b)

Figure 3.6: Results of the stochastic max functions for 1,000 random bitstream pairs.
(a) The conventional stochastic max function. (b) Our proposed stochastic max func-
tion (SMax).

Figure 3.6 shows the max function results for both previous work and our proposed
hardware. To check the functionality of each logic, we generated 1,000 random bit-
stream pairs for each point. The proposed hardware do not have any random selection
logic, but its result is very similar to the previous work in every point. In addition,
Figure 3.7 shows the computation errors of each hardware. Figure 3.6(a) shows mean
absolute errors for the previous stochastic hardware. The result of the previous hard-
ware shows irregular errors for every points. This phenomenon is caused by the random
selection operation. If the larger value is selected more than the smaller value, error
can decreases. However, the max operation error can also increases when the smaller
value is selected more. For this reason, the error of the previous hardware depends
on the randomly generated selection bitstream. The proposed hardware does not have
random selection, so its accuracy only depends on the input bitstreams. Figure 3.6(b)
shows the computation errors of the proposed hardware. Compared with the previous
work, the proposed hardware shows the smaller errors for the every point. Moreover,
the proposed hardware shows more regular error patterns. Thanks to this characteristic,

5 4 &) 8t
33 e

%107 x107°

Error

(a) (b)

Figure 3.7: Error of stochastic max functions. (a) The previous work. (b) Our proposed
max function.

we can handle the computation errors more easily.

By using the cascade max function hardware as shown in Figure 3.2(c), we can
design the 2 x 2 max pooling hardware for DNN. Figure 3.8 shows the absolute mean
errors for the max operation and the 2 X 2 max pooling. The solid line means the
standard max operation that select the larger bitstream when two input bitstreams is
given. The dashed line shows the error of the 2 x 2 max pooling for each hardware.
The proposed hardware shows the similar to the previous hardware for the every bit-
stream length. Table 3.1 compares the mean absolute error and gate count (NAND-2
equivalent) for two hardware. The previous hardware requires 111 gates, and the pro-
posed hardware requires only 58 gates. We can save 54 gates by using the proposed
hardware (removing SNG), and only 6 gates are required for the XNOR gate and AND
gate (enable logic). Therefore, the proposed hardware only have 58 gates, and it is just

52% of the previous hardware.

&) i

34 o

\ Previous (2)
| — — —Previous (2x2)
Ours (2)
\ — — —Ours (2x2)

Absolute error

SC 2% bits
(a)

Figure 3.8: Mean absolute errors of 2-input max operation and 2 x 2 max pooling
hardware. X-axis means the length of input/output bitstreams.

Table 3.1: Accuracy and gate count comparison for max function

Error Gate count

Input 2 2 x2 2 2x2

Previous work [29] 0.0018 0.0082 111 333
Proposed 0.0018 0.0080 58 174

35

Stochastic
Clock| number
—> generator

(a)

Figure 3.9: The scaled adder hardware.

3.2.4 Efficient Average Function

We can simply implement average pooling by using conventional scaled adder logic.
Figure 3.9 illustrates the scaled adder. We can compute scaled addition for given val-
ues by selecting randomly. In this example, we set the probability to 0.5, so we can
obtain averaged value. According to the probability value, this hardware can compute
weighted sum for given input bitstreams. For example, if the probability is 0.75, output
becomes (A + 3B) /4.

To implement average pooling hardware, we can use 4 input mux and two SNGs
as shown in Figure 3.10(a). We can obtain averaged result when probability of both
SNGs is 0.5. However, the SNGs occupy about 94% of total average pooling area.
To reduce SNG overhead, we also proposed new stochastic average pooling hardware
(SAvg). Figure 3.10(b) illustrates the proposed SAvg hardware. The basic concept of
the proposed hardware is sequential selection. We use the simple counter to select input
values, and it has only 11 gates (two SNGs have 108 gates in Figure 3.10(a). Actually,
sequential selection may cause the computation error. However, its computation error
depends on the correlation between the input bitstreams. If the given input bitstreams
are uncorrelated, we can obtain similar result with the scaled adder implementation. In
addition, the computation errors that comes from the correlation can also be reduced

when the number of inputs increases. By increases the number of input values, the

36

:Clock number

I —> generator

I Stochasticf

I .
2-bit
Clock Counlter

Figure 3.10: 2 x 2 stochastic average function. (a) The conventional stochastic average
pooling function (scaled adder). (b) Our proposed stochastic average function (SAvg).

37

randomness also increases and correlations are also decreases, so computation errors
decreases.

Figure 3.11 shows the mean absolute errors for both average pooling hardware.
In this experiment, we use two or four input bitstreams is randomly generated, so the
inputs are not highly correlated. The proposed hardware shows the very similar result
to the conventional hardware for both 2 and 2 x 2 (4) inputs experiments. If the inputs
are highly correlated, the error of the proposed hardware may increases. However,
every arithmetic hardware in SC is vulnerable to the correlation, so it always have
to be controlled for the accuracy of overall hardware. For this reason, we does not
concern the accuracy for the high correlation case. Table 3.2 shows the exact number
for the error of both hardware and gate counts. Both hardware have similar errors but
the proposed hardware has much smaller number of gates (NAND-2 equivalent). The
proposed hardware does not have SNG, so we can reduce the area effectively. Actually,
the proposed hardware has only 8 gates for the 2 average operation and 18 gates for
the 2 x 2 average pooling operation. Compared with the scaled adder based average
pooling, the proposed hardware has 3.4% and 1.6% area for 2 and 2 x 2 average

pooling, respectively.

3.3 Weight Modulation for SC Hardware

3.3.1 Weight Normalization for SC

As mentioned in Section 3.2.2, the SReL.U output cannot express values larger than 1.
However, the problem can be avoided if we can scale down the input value of SReLLU.
Note that the ReLU function f is homogeneous of degree 1 when scaling factor « is a

positive real number, i.e.,

flax) = af(z). 3.1

Thus, by scaling the input value with an arbitrary positive real number, one can also

scale the output value by the same factor. In other words, one can make the maximum

38

0.14r
N Previous (2)
0.12 NN\ — — — Previous (2x2)
\\\ Ours (2)
. 01rf — — —Ours (2x2)
o
© 0.081
L
=
2 0.06
<
0.04
0.02
O 1
5 6 7 8 9 10
sc 2X its

(a)

Figure 3.11: Mean absolute errors of 2-input average operation and 2 X 2 average
pooling hardware. X-axis means the length of input/output bitstreams.

Table 3.2: Accuracy and gate count comparison for average pooling

Error Gate count

Input 2 2x2 2 2x2

Scaled adder 0.0162 0.0204 58 115
Proposed 0.0162 0.0209 8 18

39

output value bounded above by 1, through the normalization of the input values with
the maximum possible output value that could be obtained without normalization. In

addition, composite functions can also be normalized as follows

fila) fo(Bz:) = aBfi (Y2 fa(i)), (3.2)

where « and [are positive real numbers. By using this property, the maximum output
values of each layer can be normalized to 1. Moreover, this normalization effect can
be obtained by normalizing weight values. Therefore, the saturated ReLLU function
can be used with normalized weights for the inference in stochastic computing. The
weight normalization results in down-scaled outputs, but it is not a problem since the
classification accuracy does not depend on the absolute output values but depends on
their relative differences.

The weight normalization was introduced for SNN [102]. Basically, SNNs also
suffer from the range limitation problem similar to SC, since the spike rate is bounded
above by the maximum rate. Thus, max normalization is proposed to solve this prob-
lem. For this, all weights are normalized (down-scaled) with the maximum value
among the outputs in each layer, so that the maximum output becomes 1.

In SNN, the max normalization also has the effect of normalizing the spike rates. If
the spike rate is too low, input information would not be propagated well to the output
and the system could be slowed down. This problem can also be avoided by the max
normalization. In this case, the weights are up-scaled. In [103], 99.9% normalization is
proposed to increase the rates more aggressively and thus further accelerate the SNN
inference. 99.9% normalization means that weights are normalized by the 99.9% of
the maximum output value. Thus, the output values that belong to the top 0.1% are
saturated to 1.

In our SC hardware design, we consider stochastic error as an additional factor.
SC hardware has stochastic errors for arithmetic operations, and the impact of the

errors has to be minimized to maintain the classification accuracy. When max normal-

40

ization is applied, most output values of each layer become close to 0 as shown in
Figure 3.12(a). In this case, stochastic errors may affect the accuracy more seriously
since the signal levels are relatively low. To reduce the impact of the stochastic er-
rors, output values can be up-scaled by normalizing more aggressively. Figure 3.12(b)
compares the results of three different normalizations for layer 5. It shows that 99.9%
and 99.55% normalizations considerably decrease the number of near-zero activations
compared to the max normalization.

By using the 99.9% and 99.55% normalizations, many output values are scaled
up, and thus the number of saturated values increases, thereby degrading the accuracy.
As a metric to show the effect of trade-offs between stochastic errors and saturation

errors, we define signal-to-noise ratio (SNR) as follows.

SNR — Signal

3.3
Noise (3-3)

Binary
- ‘Binary — SC'7
where Binary is the binary computation result and SC is the stochastic computation re-
sult. We assume that binary computation result is the correct value. Thus, bigger SNR
means more tolerance to the noise. To compare the SNR values of different normal-
ization schemes, we calculate average SNR (ASNR) over 1,000 test images for each
layer.

Table 3.3 compares ASNR values for different normalization schemes. It shows
that the max normalization has the worst ASNR values. As the number of saturated
values increases, the ASNR values increase due to reduced stochastic errors, but if
it is increased too aggressively (99% normalization), the ASNR values decrease due
to saturation errors. According to our experiment, we find that the ASNR values are

maximized at around 99.55%.

41

0.8 0.8
Layer 1 Max
. 06| Layer 2 - 0.6 — — 99.9%
o Layer 4 o —-—-99.55%
S 0.4 Layer 5 S 0.4
I Layer 7 ™
0.2 0.2
*@.\s_‘_
0 L 0 L e
0 01 02 03 04 0 01 02 03 04
Output value Output value

(a) (b)
Figure 3.12: Distribution of activations (output values) for each layer. The number of
activations is normalized to the number of neurons in each layer, and zero activations
are not counted. (a) Comparison of distributions for each layer when max normaliza-

tion is applied. (b) Comparison of different normalization schemes.

Table 3.3: Average signal-to-noise ratio for different normalizations

Layer

Method 1 2 4 5 7

Max Norm. 1.89 197 1.78 145 1.53
99.9% Norm. 3.55 3.77 3.35 246 2.59
99.55% Norm. 4.02 3.67 3.40 2.64 2.82
99% Norm. 3.82 335 3.19 258 2.75

&) i

42 o

3.3.2 Weight Upscaling for Output Layer

Most of the ReLU-based networks do not use ReLLU in the output layer, so its weight
can be up-scaled to improve ASNR. Actually, the output layer is more important than
other layers because its result is directly used for classification. To improve ASNR in
the output layer, all weights of the output layer can be fully up-scaled. ASNR is im-
proved since the output values increase while the level of noise generated by stochastic
errors in the output layer remains about the same. Note that there is no saturation prob-
lem since there is no ReLU in the output layer. However, since each weight value is
represented by a stochastic number, the weight upscaling is limited to 1. For example,
when weights are [0.1 —0.5 0.35], up-scaled weights become [0.2 —1 0.7] and the
scaling factor is 2.

An SC network may classify an image differently from a conventional binary net-
works due to stochastic errors. The problem can be alleviated by weight upscaling
since it improves ASNR and thus the effect of stochastic errors is reduced. However,
ASNR is not a good metric to show the improvement since it is averaged over all test
images and over all neurons in the output layer. To show more clearly how the weight
upscaling improves classification accuracy, we introduce the concept of fop-2 differ-
ence, which is the difference between the highest and the second highest output values.
It is important because it indicates the reliability of the decision made by the network;
if the difference is large, it is highly probable that the decision of selecting the top class
(the class having the highest output value) is correct.

For the investigation, we calculate the difference in the output layer for 1,000 test
images for two SC networks, one without upscaling and the other with upscaling.
We also calculate the difference for a conventional binary network as a reference.
Figure 3.13 shows the distribution of top-2 difference for the test images classified
differently from the conventional binary network (we expect to obtain the same classi-
fication results for both SC and binary networks when the top-2 differences are large,

because it is directly related to the reliability of the decision). As expected, the mis-

43

40 1
% No scale
% — — Up-scaled
£20F
©
H*

O J
0 0.05 0.1 0.15 0.2 0.25 0.3

Top-2 difference
Figure 3.13: Distribution of top-2 differences for misclassified images.

classified images are concentrated in the region of low top-2 difference. By upscaling
the weights in the output layer, some of those images become correctly classified, and
thus the accuracy is restored to some extent. However, as shown in the figure, many
images still remain misclassified since they are mostly affected by the stochastic errors

generated in the previous layers.

3.4 Early Decision Termination

The precision of the stochastic number and arithmetic functions in SC is directly re-
lated to the bitstream length. In other words, the precision of SC hardware can be
adjusted by changing the computation cycles because it decides the bitstream length.
As we briefly mentioned in Section 2.1, we can change the precision of computation
without any hardware modification. This characteristic is called progressive precision
[12]. The early decision termination (EDT) is the technique exploits this characteristic
for the fast inference in SC hardware [11]. By using EDT, we can classify the easy
images with low precision and the hard images with high precision. Due to precision
depends on computation cycle, we can reduce the inference time for the easy images.
In previous work, the precision granularity of EDT is set to 32 bits. In every EDT step
(32 bits), we make a decision for the confidently classified images. If the confidence is

low, we run more steps until its confidence is high enough.

44

30

20

10

indino Jahej isg|

abelane Buinow

-
<

0 30

2

10

indjno Jahej ise)

abelane Buinow

o

ualipelb

01

Xewyos

EDT steps

EDT steps

(@)

)

b

(

Figure 3.14: Early decision termination steps. Ground truth is 2 in both cases.

45

Figure 3.14 illustrates the output values and its statistics for the easy and hard
examples. In the easy example, the output value of second neuron (class number 2)
always higher than the others. However, the prediction for the hard image is reversed
according to the EDT steps. To classify correctly for the all kinds of images, several
statistical approaches are used.

First, we calculate the moving average values. If the output values are fluctuated,
correct decision is very hard. the moving average works as a low-pass filter, so the
fluctuation (high frequency noise) can be reduced. The equation of moving average
follows,

MA.; =«a- Logits.; + (1 —) - MA (i-1) (3.4)

where c indicates a class index; Logits.; means the logit value for class c in EDT step
i; MAc1 = Yen; «is empirically set to 0.35. The second row of Figure 3.14 shows
the moving average result, and it becomes smoother. And then, we use the gradient
value to bring decision time forward. The gradient value indicates the trend of output,
so it shows that what values are increasing or decreasing. The final top-1 class (most
probable class) will be changed when the gradient of some other class is much higher
than that of the current top-1 class. In other words, the output value of some other
class steeply increases, more than that of the top-1 class. As shown in the third row
of Figure 3.14, the gradient value of the final prediction is much higher than that of
the primitive prediction. In addition, the gradient trends shows the final prediction
beforehand, so we can reduce the EDT step using this characteristic. To reflect the

gradient trends, we defines the objective value in each EDT step as follows,

Oc,i = MACJ‘ + - Gradc,i, 3.5

where Grad,; is the gradient value of class c in the i-th step; 3 is a weight factor.
Finally, we use the softmax function to convert the objective values to class categorical

probabilities, which is the same as the classification process of conventional neural

46

network.
eoc K

Zk Ok’

As shown in the fourth row of Figure 3.14, the normalized value of a candidate

SM,; = (3.6)

class represents its relative strength. For example, class 2 dominates other classes in
case of Figure 3.14(a), and thus it can be selected as the final decision in an early EDT
step. However, for a complex input as shown in Figure 3.14(b), more complex decision
rules are needed for an efficient classification.

Algorithm 1 shows the proposed decision rules. In line 7, it processes an EDT step
(i.e., 32 bits) to make a decision and its softmax value is calculated by (3.6). If index
of the largest value is changed, accumulated value (gapgccum) 1S reset as shown in line
9-10. The current gap between the largest and the second largest value of softmax
(gapeyrr) is calculated in line 12 and the gap is accumulated into gapgccum, in line 13.
With the current gap and the accumulated value, we apply three decision rules. First,
if the current gap is larger than max threshold (7'h,,,4.), the class having the largest
softmax value is selected as the final decision as shown in line 20-22. Secondly, if
the current gap is larger than min threshold (7'h,,;,) and increases gradually during
threshold number of steps (1'hstep), We also select the class having the largest soft-
max value in line 23-25. Thirdly, if the gap is lower than the min threshold but the
accumulated value is higher than a threshold (1" hqccum), We select the class having the
largest softmax value. Four threshold values (T'haz, Thmin, Thstep, and Thaceum)
are empirically set to 0.4, 0.12, 5, and 3, respectively. If the class is not decided until
the last EDT step, the class of largest softmax is selected as a general decision process
in line 33. The portion of the four kinds of decision rule (current gap dominant, grad-
ual increment, accumulative, and general decision) are 29.82%, 60.33%, 7.65%, and

2.20%, respectively, in our experiment.

47

Algorithm 1 Mixed Threshold Decision

I1'S M4, is the largest value of softmax SM,. ;.

I1'S Msecona s the 2nd largest value of softmax SM.. ;.

/1 idx a2 s the index of SM,,,qz.

Il gapeyrr s defined as SMy,q — S Mgecond-

Il Ngtep 1s the maximum number of EDT steps.

' Thinazs Thin, Thstep, and T'hgeeum are user-defined thresholds.
OUTPUT: Y is a final decision

1: 1dZprev_maz < 0 /I idx e, value from previous step.
2: gaPgccum < 0 /l accumulated value of gap.
3: gapprey < 0 // gap from previous step.
4: countgtep < 0 // incremental count.
5:

6: for i =1 to Ny, do

7. [idZmaz, SMmaz, S Msecond) <— run_single_step()

8:

9: if idZimar # 1dTprev mas then

10: 9aPaccum < 0

11:

12: 9apeurr < SMmaz — S Msecond

13: 9APaccum < 9APaccum + 9GPcurr

14:

15: if gapeyrr > 9aPprev then

16: count step < countgiep + 1

17: else

18: countgstep < 0

19:

20: if gapeyrr > Thinas then

21: Y + idxmas

22: return

23: i gapeurr > Thipin && countgsiep > T'hsiep then

24: Y < idzes

25: return

26: if gapaccum > Thaceum then

27: Y < idrpmes

28: return

29:

30: tdTprev.maz < 1dTmaz

3L 9aPprev < 9APcurr

32:

33: Y < idTmax /I early decision failed.

| |

48

Binary number (A) /131 1
" Comp —— SC bit-stream (X)
SNG1
m
Binary number (B) 7 1
" Comp —— SC bit-stream (Y)
Random |— SNG2
number
Clock —> generator

Figure 3.15: Simplified sharing of a random number generator among the different

stochastic number generators.

3.5 Stochastic Number Generator Sharing

The overhead of stochastic number generator (SNG) is one of the most serious prob-
lems because its area and power consumption are much larger than those of other SC
circuit elements. A conventional SNG consists of an m-bit random number generator
(RNG) and an m-bit comparator, and is used to convert a conventional m-bit binary
number to a 2™-bit stream. For the inference with SC hardware, each of primary in-
put, primary output, and all weights require an SNG to generate SC bitstreams from
binary numbers. Therefore, SNG have to be used for every input connection to gener-
ate weight bitstreams, so it occupies huge amount of area. For instance, a 10-bit linear
feedback shift register (LFSR) based SNG requires 105 gates (NAND-2 equivalent)
whereas an AND gate takes only 1.5 equivalent gates; according to our experiment,
SNGs take about 85% of total area in a 200 input neuron. There are several researches
on efficient RNG designs [104, 105] to reduce the SNG overhead. Since it is hard to
implement an efficient RNG using conventional digital logic, [104] exploits the ran-
dom switching behavior of a nanomagnet, and [105] uses the characteristics of random

telegraph noise (RTN). Both of them can generate random numbers more efficiently

49

than a conventional LFSR based RNG. Another research focuses on sharing an RNG
among different SNG [106] as shown in Figure 3.15. This method can generate SC
bitstreams with only one RNG, but the SC bitstreams generated by a shared RNG are
highly correlated. In SC, correlation between bitstreams can adversely affect the be-
havior of SC arithmetic operations [107], e.g., AND multiplication accuracy can be
severely degraded if the two inputs have high correlation.

To reduce the number of SNGs in a CNN, we exploit the relationship between
correlation in SC and CNN arithmetic operations. In a neuron, the inputs are multi-
plied with the weights, accumulated, and fed to the activation function. Our SC de-
sign first multiplies input bitstreams with weight bitstreams, accumulates products,
and then calculates the neuron output bitstream using SReLLU function. The correla-
tion between input and weight bitstreams can severely impact the accuracy of AND
operation, so weights and inputs must be generated using different RNGs. In addition,
different input-weight pairs must use different RNGs to avoid a biased accumulation
result. For example, if an RNG is shared by multiple weights, the distribution of 1s or
Os will be biased column-wise, and thus can cause degeneration of SReLU accuracy.
Therefore, RNG sharing within a single neuron (intra-neuron RNG sharing) degrades
SC arithmetic accuracy, and thus should be avoided.

On the other hand, inter-neuron RNG sharing may not cause much accuracy degra-
dation. In a convolutional layer, local input features of a layer are fetched from the
previous layer with a sliding window with weights (i.e., filter weights) as shown in
Figure 3.16. Each location of the window has its own neuron and the input features
fetched at a location are fed to the corresponding neuron. The neurons using the same
window can share the weight bitstreams provided that the sharing does not generate
correlated outputs. Since the primary inputs and weight bitstreams are uncorrelated,
the correlation between the inputs and the weight bitstreams is not a problem for the
first layer (we assume that the primary inputs are not correlated with each other), and

thus each neuron in the first layer can generate accurate outputs. We observe that the

50

SC

neuron

|
AN

ncuron

Figure 3.16: Stochastic number generator sharing method for the convolutional layer.

Wi

W I SC
RNG Ws neuron
RNG
RNG W

W ncuron

3

Figure 3.17: Stochastic number generator sharing method for the fully-connected layer.

51

generated output bitstreams are also uncorrelated with each other even though they
share the same weight bistreams. This is because the inputs to individual neurons are
different due to the sliding of the window and the randomness of the output bitstream
is determined by the combination of the inputs as well as the weight bitstreams. For-
tunately, inputs are changed according to the location of the sliding window, and thus
different neurons have uncorrelated inputs (overlapped window is not a problem since
the neurons will have different order of inputs) at least for the first layer (we assume
that the primary inputs are uncorrelated). The uncorrelated output bitstreams are fed
to the second convolutional layer, which in turn allows the neurons in the second layer
to generate uncorrelated output bistreams with shared weight bitstreams. In this way,
weight bitstreams can be shared among the neurons that use the same filter in a convo-
lutional layer without accuracy drop.

In an FC layer, correlation among weight bitstreams for different neurons can af-
fect the accuracy of the next layer since the neurons have the same input bitstreams.
Figure 3.17 illustrates the RNG sharing method for the FC layer. However, its impact
can be alleviated when networks are pruned, since different neurons will have connec-
tions to a different (possibly overlapped) set of neurons in the previous layer, and thus
the randomness of their output bitstreams increases. Thanks to this property, RNG can
also be shared in FC layers.

We apply different RNG sharing schemes to convolutional and FC layers. Because
the weights are shared in a convolutional layer, the entire set of SNGs for a filter
can be shared, i.e., the weight bitstreams for a sliding window are shared among all
neurons, one for each placement of the sliding window. However, weights are not
shared in an FC layer, so the RNG (not entire SNG) sharing scheme proposed in [106]
is used. In this case, RNGs used for a neuron are shared by other neurons, but different
comparators are used to generate their own weight bitstreams as shown in Figure 3.15.
By applying the proposed SNG and RNG sharing, orders of magnitude reduction of
the number of both SNGs and RNGs can be achieved.

52

3.6 Experiments

For the experiment, we use CIFAR-10 and MNIST dataset. CIFAR-10 consists of
60,000 32 x 32 RGB images of real objects in 10 classes. Among them, 50,000
are training images and 10, 000 are test images. MNIST consists of 70,000 28 x 28
grayscale handwritten digit images. Among them 60, 000 are for training and 10, 000
are for test.

The proposed SC networks consist of SReLU and Smax modules presented in this
paper, and 2'°-bit stream is used for both CIFAR-10 and MNIST experiments. All the
neurons in the convolutional and FC layers are designed as shown in Figure 3.2. In the
output layer, there is no SReLLU function, so it consists of AND gates for multiplica-
tions and parallel counters for accumulations. For the accuracy simulation, software
RNG is used to generate SC bitstreams, and SNG sharing is applied to every convolu-

tional layer.

3.6.1 Accuracy of CNN using Unipolar SC

The networks used in the CIFAR-10 experiment have 2Conv-1Max-2Conv-1Max-2FC
layers, and zero padding is not used. The convolutional layers have 32, 32, 64, and 64
filters, respectively, and all the filters have 3 x 3 sliding window with a stride of 1. The
max pooling layers have a 2 x 2 sliding window with a stride of 2, and the FC layers
consist of 512 and 10 neurons, respectively. The networks are trained and pruned with
floating-point computations, and the SC hardware is used only for inference.

Figure 3.18 shows test error of both floating-point and proposed SC on CIFAR-10.
The test error of SC is 23.40%, which is 7.26% point higher than that of floating-point,
when max normalization is used. When 99.9% normalization is applied, its test error
becomes much lower but still higher than the floating-point case by more than 1%
point. The proposed 99.55% normalization lowers the test error to 16.84% and further

lowers down to 16.43% with weight upscaling. The test error becomes slightly larger

53

;\340
5 23.40%
= 20+ 16.14% 17.48% 16.84% 16.43% 17.08%
)
2
— O
FP Max 99.9% 99.55% 99.55% FC

+upscale shared

Figure 3.18: Test error for CIFAR-10 dataset. The test error of floating-point is 16.14%.
In SC, test error is minimized when both 99.55% normalization and weight upscaling
are used, and its test error is 16.43%. In addition, test error becomes 17.08% when

RNG sharing is applied to fully-connected layer.

when RNG is shared in the FC layers. Its degeneration comes from the correlation
effect mentioned in Section 3.5, but the gap with the floating-point case is lower than
1%.

Figure 3.19 shows the result of early decision termination (EDT) applied to the
CIFAR-10 dataset. One EDT step consists of 32 bits, so there are 32 EDT steps be-
cause 2'0-bit stream is used. Many images still need 2'° precision for classification,
but Figure 3.19 shows that more than half of the input images can be classified with
lower than 2° precision. Compared with the baseline SC having accuracy of 17.08%,
the application of EDT decreases the accuracy by only 0.09% point but the energy
consumption decreases to 50.6%.

In the MNIST experiment, a LeNet-5 network with 1Conv-1Max-1Conv-1Max-
2FC layers is used. The convolutional layers have 20 and 50 filters, respectively, and
all the filters have a 5 x 5 sliding window with a stride of 1. The max pooling layers
have a 2 x 2 sliding window with a stride of 2. There are 500 and 10 neurons in FC
layers, respectively. The LeNet-5 network is also trained and pruned with floating-
point computations.

The test error of the proposed SC network is 0.81%, while the test error of the

A= dfsl
54 = A

1200 T E— T T T T 1 o
} . ©
< 800) [ISuccess il ©
S I il 105 &
5 o
s 400 Test error: 17.17% T 2
Q H Norm. Energy : 0.506 8
0 L Lo | 0 [| 0
5 10 15 20 25 30
EDT steps

Figure 3.19: Early decision termination result on CIFAR-10 dataset. More than half of
the test data can be classified with lower than 2°-bit precision, but 20% of the data still

require 2'0-bit precision.

8000 B T T T T T 1 o
/ [ISuccess| {08 &
©) o
= -Fall 106 q>)
E 4000 | 4 =
(@] . (o) 104 =
“ Test error: 0.88% >
Norm. Energy: 0.093 0.2 ;E—,
|_| O oo =L 1 1 1 1 O
0 = 0
5 10 15 20 25 30
EDT steps

Figure 3.20: Early decision termination result on MNIST dataset. Almost test data can

be correctly classified with 25-bit precision.

e A
55 i

Table 3.4: Comparison with previous works in terms of configuration and test error

Configuration Test error
SC Designs Encoding Activation Pooling MNIST CIFAR-10
ICCD 16 [13] Bipolar Tanh Avg 3.65% -
ASPLOS 17 [14] Bipolar Tanh Max 1.74% -
DATE 17 [15] Bipolar Tanh Max 1.06% -
IJCNN 17 [16] Bipolar ReLU Avg 1.69% -
Proposed SC Unipolar ReLU Max 0.88% 17.17%

floating-point network is 0.77%. There is only 0.04% point difference between the
two networks. MNIST consists of images that have very high contrast as mentioned in
Section 1.1, so it does not need high precision. Figure 3.20 shows the EDT result of
MNIST, and it also shows that MNIST can be classified with only very low precision.

Table 3.4 compares the proposed approach with the previous ones. All the previous
networks use LeNet-5 with bipolar encoding, and only [16] uses ReLLU function. The
proposed unipolar SC not only well classifies the CIFAR-10 images, but also classifies
the MNIST images with the lowest test error. The accuracy improvement of the pro-
posed SC network over the previous ones on the MNIST dataset is not big, but it can
be much bigger on CIFAR-10. The reasoning is as follows. The multiplication error
in bipolar encoding is 3 times higher than that of unipolar encoding as shown in Fig-
ure 3.1. Figure 3.19 and Figure 3.20 show that CIFAR-10 requires much more accurate
computation than MNIST. In addition, deep networks with hyperbolic tangent cannot
be well trained because of the gradient vanishing problem. Even if ReL.U is used, its
accuracy can be degenerated seriously because of zero multiplication error mentioned
in Section 3.1.1. Thus, our approach can work better for a bigger network for more

difficult classification problems.

56

x10%

<2
s
~ 1
®
Q
< 0 [
Bipolar Unipolar Unipolar Unipolar
+FC shared +Conv shared
(@)
—~ 30
=
=20 [_ILFSR
& I VITJ-SNG
o 10
[
L 0 |- |- |_|I- |
Bipolar Unipolar Unipolar Unipolar

+FC shared +Conv shared
(b)

Figure 3.21: Synthesis result of conventional bipolar neuron and proposed unipolar
neuron. (a) Area comparison of bipolar and unipolar neuron. LFSR is used to calcu-

late area in all neuron. (b) Energy consumption of each neuron. All circuit execute

210(=1024)-bits.

3.6.2 Synthesis Result

We synthesize one SC neuron with 200 inputs for the conventional bipolar network
as well as the proposed SC network. In unipolar encoding, the proposed SNG shar-
ing scheme is applied to both convolutional neuron and FC neuron. The FC neuron
requires its own comparators to generate its weight bitstreams, but the convolutional
neuron does not need its own comparators because weights are shared. Thus, the hard-
ware cost of the convolutional neuron is much lower than that of the FC neuron. To
synthesize each type of the neurons, TSMC 45nm technology library and Synopsys
Design Compiler are used. An LFSR is used to calculate the area, and LFSR and MTJ-

SNG [104] are used for comparison of energy consumption.

57 o

|

I

U

Figure 3.21 shows the synthesis result in terms of area and energy consumption,
and total delay of the entire neuron is 0.6 ns. Without SNG sharing, the unipolar neuron
has similar area compared with the bipolar neuron. When SNG is shared, area of the FC
and convolutional neurons is decreased to 47.5% and 16.2%, respectively, compared
with the bipolar neuron. When LESRs are used, the FC neuron and the convolutional
neuron with SNG sharing respectively have 5.3 x and 9.2 higher energy efficiency,
compared with the bipolar neuron. When MTJ-SNGs are used, they still have 2.4 x

and 2.7 x higher energy efficiency, compared with the bipolar neuron.

3.7 Summary

In this work, we proposed new hardware designs and methods to implement CNN
hardware using unipolar SC. We proposed SReLLU and Smax function, and also pro-
pose SNG sharing scheme in CNN, which can reduce the SNG overhead. In addition,
we also propose 99.55% weight normalization and weight upscaling scheme to im-
prove SNR of SC operations. Our experimental results show that the accuracy of the
SC network is close to that of the floating-point network on MNIST and CIFAR-10
datasets. Our approach outperforms the previous ones on MNIST. Our synthesis re-
sult also shows the efficiency of the proposed SC network in terms of area and energy

consumption.

58

Chapter 4

Neural Architecture Transformation

4.1 Motivation

Deeper network architectures help to achieve higher accuracy, but those have a huge
amount of parameters and computation redundancies. To design a compact network
architecture, the 1 x 1 convolution is added [2, 4, 6]. The additional 1 x 1 convolution
reduces the number of channels of output activation. The number of parameters and
multiplications in the 3 x 3 convolution is also reduced thanks to the 1 x 1 convolution.
For this reason, the bottleneck block in ResNet and dense block in DenseNet use the
1 x 1 convolution for the parameter and multiplication reduction.

However, the bottleneck and dense block actually increase inference time even
though the number of multiplications is reduced. Figure 4.1 shows the number of
multiplications and actual inference time for three models of ResNet and DenseNet.
ResNet-50 has a number of multiplications similar to that of ResNet-34 thanks to the
1 x 1 convolution, but it takes 1.8 x longer than ResNet-34. This is because the bot-
tleneck block of ResNet has four times larger activation map compared with the basic
residual block, so it causes four times more activation load from off-chip memory. Al-
though DenseNet has a much smaller number of parameters and multiplications com-

pared with ResNet, its inference time is much longer than that of ResNet. DenseNet has

59

<28} ' —A—ResNet <28} [—2—ResNet
So7t | —©—DenseNet-BC °:/27 | ResNet-34 —o— DenseNet-BC
© 26 [DenseNet-121 | ResNet-34 226t DenseNet-121
e 25 c25f DenseNet-169|
'% 24 -DenseNet-169 ResNet-50 '-% 24 ResNet-50 e
2231 223}
S 22} I Densell\let-201 ResNet-101 s 22t Res'\l(at-101DenseNet—201-
0 2 4 6 8 0 20 40 60
multiplications » 102 inference time (ms)

Figure 4.1: ResNet and DenseNet Top-1 validation errors for different numbers of
multiplications (left) and inference times (right). To measure the inference time, single
NVIDIA Titan X (Pascal) is used and batch size is set to 16. DenseNet has much fewer
multiplications than ResNet, but its inference time is much longer.

much smaller total activations than ResNet, but the actual activation load of DenseNet
is much larger than that of ResNet because the layers in DenseNet use output activa-
tions of all previous layers and thus actual activation load is much larger than the total
activation size.

In this work, we focus on the inference time reduction rather than parameter and
multiplication reduction. To reduce the inference time, we propose the network recast-
ing method by transforming the network architecture for a smaller activation load. We
transform the network architecture through the block-wise recasting of source blocks
into target blocks. The recasting is done by training the target block to mimic the out-
put activation of the source block, so the accuracy can be preserved after recasting.
We can obtain a mixed-architecture network by recasting parts of the trained network.
By the mixed-architecture network, we mean a network having multiple types of the
block that can exploit the advantages of individual block types within a single net-
work. In addition, we can use the network recasting method for network compression

by recasting each block to a smaller one of the same type.

60

Matching (Mimicking)

R

Output activation Output activation

T 256-d T 256-d
Unknown Source . Target Function
. Recasting .
function block block approximator
T 64-d T 64-d

Teacher network Student network

Figure 4.2: Basic concept of the network recasting. The target block of the student

network is trained by mimicking the source block of the teacher network.

4.2 Network Recasting

The network recasting method recasts a pre-trained network into a network of differ-
ent type and/or size. Figure 4.2 illustrates the basic concept of the proposed network
recasting method. Given the pre-trained teacher network, we transform each block
(source block) in the teacher network into a new block (target block) of pre-defined
type and size in the student network. The transformation is done by training the target
block to generate output activations similar to those of the source block. We call this
process block recasting. In this process, the source block can be considered as an un-
known function, and the target block can be considered as a functional approximator
similar to a multi-layer perceptron [31]. After recasting all candidate blocks, we ob-
tain the student network, which is faster than the teacher network while preserving the

functionality or accuracy. We call the entire process network recasting.

61

T 256-d T 256-d T 256-d
Dense block Basic Convolution
block block
Recasting
— or

T 64-d

Source

Figure 4.3: Block recasting of a dense block into a basic block (Case 1) and a convo-
lution block (Case 2). The basic block has shorter inference time than the dense block
because it has much smaller activation load. The convolution block is even faster than

the basic block, but its capacity is much smaller and so it can cause accuracy loss.

T 64-d T 256-d T 64-d
Basic Bottleneck Convolution
block block block

Ixl Recasting
—

or

1x1

Figure 4.4: Block recasting of a residual block—basic block (Case 1) and bottleneck
(Case 2)— into a convolution block. The recasting of the basic block keeps the same
number of input and output channels. However, since the bottleneck block uses a
smaller number of channels for the feature extraction, we recast it into a convolu-
tion block that has the same number of input and output channels as the original 3 x 3

convolution.

62

4.2.1 Recasting from DenseNet to ResNet and ConvNet

The DenseNet has a lot of activation load due to the dense connection, and by re-
casting the dense block into a basic residual block (we call the basic residual block
as basic block for simplicity), we can reduce the inference time. We consider a basic
block consisting of two 3 X 3 convolution and shortcut as shown in Figure 4.3. Even
though the basic block has more parameters and multiplications than the dense block,
its activation load is much smaller and thus it is much faster. For more inference time
reduction, we can recast the dense block into a single convolution block, although it
can cause more accuracy loss because it has a very small capacity. Figure 4.3 shows

the two examples of recasting the first dense block in DenseNet-121.

4.2.2 Recasting from ResNet to ConvNet

Figure 4.4 illustrates the block recasting of a residual block into a convolution block.
In the basic block, local features are extracted from the input activations using 3 X
3 filters, and thus, we recast the basic block into a 3 x 3 convolution block. Since
the new convolution block has the same number of filters as the original basic block,
the dimension of the output activations is not changed. However, in bottleneck block
recasting, the dimension of the output activation is reduced as shown in Figure 4.4
(Case 2) for the first bottleneck block of ResNet-50. Although the output activation
becomes smaller, the number of linearly independent features is not changed because
the second 1 x 1 convolution in the source block just combines its input activations
linearly to extend the dimension of output activation. Therefore, the next block in the

student network still can reconstruct similar activation map.

4.2.3 Compression

The network recasting can be used to compress the large network while preserving
accuracy. In this case, we assume that the network has redundancy such as ineffectual

filters and redundant filters. An ineffectual filter denotes a filter that cannot extract any

63

Ws* = argmin Lmse(Wr, Ws)

T 160-d T 160-d

Ws* = argmin Lmse(WT, WS) Next (rg)‘ilxitlt)
A A
T 6d-d T 64-d 160-d 32-d
T t
Next Next aree
(rebuilt)
A
4 64-d 4 26-d
3x3, 64 3x3, 26
(source) (target)
T 3-d T 3-d 16-d 16-d
Teacher Student Teacher Student

Figure 4.5: Examples of the VGG-16 and WRN-28-10 compression. Both example
shows recasting of the first layer in each network.

meaningful feature, and a redundant filter denotes a filter that extracts a feature very
similar to the one extracted by some other filter or a feature that can be obtained by
combining features from other filters. To remove those filters, previous approaches use
APoZ [44], sum of absolute values of a filter [19], or influence on next activations
[39, 38] as the criteria, but redundant filters cannot be founded with those approaches.
A possible approach is to find such redundant filters by checking the similarity be-
tween every pair of filters. However, it requires a huge amount of computations for
similarity check and does not guarantee a good result. Instead, we recast a given source
block into a smaller target block that has the same type as the source block. Figure 4.5
illustrates the proposed compression examples for the convolutional block and resid-
ual block. Then we train the target block and the next block to reconstruct the output
activation of the next block with smaller number of filters. If the next block can re-
construct a similar output activation, the new target block can extract effective features
for reconstruction. A convolution block can recast into another convolution block that

has a smaller number of filters as shown in Figure 4.5 (left). Then we train both the

64

new convolution block and the next block to reconstruct the original activation map of
the source next block. After training, we can obtain a more effective filter set without
any similarity or effectiveness check criteria. We also apply the same method to resid-
ual network. In this case, we reduce the number of the convolutional filters inside the
residual block. Especially, the reduction block that convolution with stride 2 has more

layer, so we also reduce its channels.

4.2.4 Block Training

For the target block to work properly, it should be trained with the source block as the
teacher. We can easily train the target block by approximating the output activations to
those of the source block if both blocks have the same dimension of output activations.
However, dimension mismatch happens in the block recasting especially when we re-
duce the number of channels for network size reduction. Table 4.1 shows the recasting
cases that we handle in this paper. To avoid the dimension mismatch problem, when
training a target block, we train the target block together with the next block by ap-
proximating the output activations of the next block as shown in Figure 4.6. The next
block is rebuilt from the corresponding source block by reducing the filter size when
the target block has a smaller number of channels. Both the target block and the next
block are initialized randomly and trained to minimize the loss of mean-square error

(MSE) between teacher’s and student’s activations given by,
1
Lomse(Wr, W) = | Al Wr) = A(w; W), (@.1)

where A means the activation of the next block, and z is the input data. W and Wg
indicate parameters of teacher network and student network, respectively. N denotes

the size of an output activation of the next block.

65

T 256-d

Ws*=argmin Lmse(Wr, Ws)

T 256-d

Dimension mismatch
Next block Next block
(rebuilt)
T 256-d T 64-d T 256-d T 64-d
Source Target Source Target
block block block block
T 64-d T 64-d T 64-d T 64-d
Teacher Student Teacher Student

Figure 4.6: Dimension mismatch and proposed block training method. The dimension

mismatch happens when the source block is recast into a smaller target block. The

next block is used to match the dimension of output activation. After rebuilding the

next block, both blocks are trained by minimizing L,,,se (W7, Wy).

Table 4.1: Candidates for the network recasting

Recasting Type Source Target Dimension
Dense Basic Preserved
. Dense Convolution Preserved
Transformation . .
Basic Convolution Preserved
Bottleneck Convolution Reduced
Compression Basic Basic Reduced
p Convolution Convolution Reduced

66

4.2.5 Sequential Recasting and Fine-tuning

To recast the entire network, we apply the block recasting method sequentially. Fig-
ure 4.7 shows an example of sequential recasting method. The type and dimension
of the first (target) block of the student network are determined, and then the second
block is rebuilt from the second block of the teacher network; if there is no dimension
mismatch, the second block will be the same as that of the teacher network. The two
blocks are initialized randomly and trained by minimizing L,,s.(Wr, Wg). Now, the
second block becomes the target. Thus, its type and dimension are determined, the
third block is rebuilt, and both blocks are initialized randomly. To train the second and
third blocks, we reuse the trained first block. The first block is already trained in the
previous step, but it still has approximation errors. We can reduce the effect of its errors
by training both the previous and current blocks. Therefore, three blocks are trained
in the second step by minimizing L,se(W7, Wyg). This process is continued for the
following blocks until the last block is recast as a new block. We can select arbitrary
blocks as candidates for recasting so that the student network can consist of multiple
types of block.

For example, the student network can have both residual and dense blocks when
only the first dense block is recast into a residual block. We call the network that
has multiple types of block as mixed-architecture network, and Figure 4.8 shows an
example of the mixed-architecture network. The mixed-architecture network can have
advantages of both blocks. For example, by mixing dense blocks and residual blocks,
we can obtain a mixed-architecture network that is faster than DenseNet and has fewer
parameters than ResNet.

The block-by-block sequential recasting has two advantages. First, the function-
ality of each block is much simpler than that of the whole network. Thus, it is easier
to approximate the functionality of each block. By approximating each of easier sub-
functions, we can finally obtain the student network with smaller approximation error.

Secondly, sequential recasting can alleviate the vanishing-gradient problem. When the

67

Ws*=argmin Lmse(Wr, Ws)
T 1000-d T 1000-d

. Classifier
Classifier et
T 20438-d T 512-d
Block 16 Block 16
Ws*=argmin Lmse(Wr, Ws) (source) (target)
T 256-d Tzss-d T 2048-d T 512-d
. Block 3 Block 3 : :
Ws*:argmln Lmse(WT, WY) (rebuilt) o o

T 256-d T 256-d T 256-d T 64-d 256-d 64-d

Block 2 Block2 | —» Block 2 Block2 | *** —> Block 2 Block 2
(rebuilt) (source) (target) (source) (target)

T 256-d T 64-d T 256-d T 64-d T 256-d T 64-d
Block 1 Block 1 Block 1 Block 1
(source) (target) Block 1 (trained) Block 1 (trained)

T64—d T64—d T 64-d T 64-d T 64-d T 64-d

Teacher Student Teacher Student Teacher Student

Figure 4.7: Example of sequential recasting for ResNet-50. All blocks are recast in
this example. In each step, the target block and the next block (shaded blocks) are

initialized randomly and trained by minimizing L,,s.(Wr, Wg).

Bottom Top
_» : _} “Cat”
Residual blocks Dense blocks Classifier

Figure 4.8: Example of the mixed-architecture network. It has both residual and dense

block.

68

source block is recast as a convolution block, the student network cannot be trained
well due to the gradient vanishing. However, sequential recasting has very short gra-
dient paths from the output activation to the target block, so it can be trained well.
Therefore, we can obtain the student network with higher accuracy using sequential
recasting.

After finishing sequential recasting, we use the knowledge distillation approach to
fine-tune the student network. There are approximation errors after sequential recast-
ing, and we can reduce the effect of those errors by training the whole network. We
train the student network with logits of the teacher network and ground truth. Thus,

our knowledge distillation (KD) loss is defined by
‘Ck‘d(WTa WS) = £mse,logit(V[/va WS) + Ece(ytruev WS)a (4~2)

where L;se 10git 18 the MSE loss for the logits, and L. is the cross-entropy loss be-
tween the given label ¥, and softmax output of the student network that is parame-

terized by Wi.

4.3 Experiments

We conducted several experiments for the network recasting. For the experiments,
we used CIFAR and ILSVRC2012 dataset and four kinds of network architectures;
ResNet [4], Wide ResNet (WRN) [5], DenseNet [6], and VGG-16 [108]. We adopted
batch normalization [109] for all networks, because it was also effective for block-
wise training. The network recasting was implemented on the PyTorch framework.
We used the Xavier initializer [110] in all experiments. We used SGD with Nesterov
momentum [111] to train the teacher network and used Adam optimizer [112] for
the network recasting. In addition, we trained the student network with KD and back

propagation from scratch using SGD with Nesterov momentum for the comparison.

69

Figure 4.9: Visualization of filters in the first layer of AlexNet (left) and a student

network (right). Redundant filters are removed after network recasting.

4.3.1 Visualization of Filter Reduction

The network recasting can be used for network compression; it can remove redundant
filters as well as ineffectual filters. To show the filter reduction, we compressed only
the first layer of AlexNet and visualized the filter set in Figure 4.9. The first layer of
the original AlexNet had 64 filters, but we decreased the number to 25 in the student
network. Then we trained the first block of the student network for eight epochs, and
fine-tuned the entire student network; the learning rates for the recasting of the first
block and the fine-tuning were 0.0005 and 0.0001, respectively. Every five epochs,
the running rates were divided by 10. Figure 4.9 shows filters extracted from the first
layers of the teacher and student networks. Filters of the teacher network consist of
many ineffectual and redundant filters, but those are eliminated as shown in Figure 4.9.
In addition, the student network achieves the top-1 error of 44.20% and the top-5
error of 21.54%. The top-1 and the top-5 errors increase by only 0.72% and 0.61%,
respectively. Note that it is hard to remove many filters without accuracy loss because
AlexNet has a relatively large (11 x 11) filters. The filter size is related to the dimension
of filter vector, and many more filters are required to span the vector space as the filter
size increases. As expected, we could remove many more filters on both VGG-16 and
A erysta
70 e

ResNet, which have only 3 x 3 filters.

4.3.2 CIFAR

For CIFAR dataset, we used ResNet-56, ResNet-83, WRN-28-10, DenseNet-100, and
VGG-16. Especially, ResNet-83 has the same number of blocks with ResNet-56, but
consists of bottleneck blocks. In addition, we used a modified version of VGG16,
which has only one hidden fully-connected layer with 512 neurons. Teacher networks
were trained from scratch using back propagation. We used CIFAR-10 and 100 dataset
with the standard data augmentation, which consists of four pixel zero-padding and
random cropping, and horizontal flipping with 0.5 probability.

In CIFAR experiments, we recast all blocks of teacher networks, so there is no
mixed-architecture result. We counted the number of parameters, multiplications, and
activation loads for the convolution operation. Especially, we reported the activation
load of a single image in Table 4.2. Table 4.2 shows the architecture transformation re-
sults. The network recasting achieved similar accuracy with the teacher network, and
activation access is reduced significantly. It shows lower test error compared to other
methods in all network architectures. When networks were recast into a plain convo-
lutional network, the network recasting achieved much lower test error compared with
both KD and back propagation. The sequential recasting can alleviate the vanishing-
gradient problem, so its results outperformed the others.

We also compressed the VGG-16 and WRN-28-10 using the network recasting.
In this experiment, source blocks were recast into 2.5x and 5x smaller blocks in
VGG-16 and WRN-28-10, respectively. Table 4.3 shows compression results of both
networks. The network recasting achieved the smallest accuracy loss compared with
other methods. Especially, network recasting achieved 1.58% and 3.57% lower test
error compared with KD and back propagation in VGG-16 compression on CIFAR-
100.

The born again network (BAN) proposed by [84] also trains ResNet student using

71

Table 4.2: Error rates (%) of architecture transform results on CIFAR datasets (B/M:

billion/million)
Method Type C10+ C100+ Params Mults Acts/image
ResNet-56
Baseline 7.02 30.89 0.85M (1.0x) 125.75M (1.0x) 0.56M(1.0x)
Recasting Conv 6.75 32.14 0.41M (2.1x) 61.78M (2.0x) 0.27M(2.0x)
KD Conv 9.43 33.22 041IM(2.1x) 61.78M (2.0x) 0.27M(2.0x)
Backprop Conv 10.61 37.85 0.41M(2.1x) 61.78M (2.0x) 0.27M(2.0x)
ResNet-83
Baseline 6.34 28.13 0.83M (1.0x) 125.09M (1.0x) 1.69M(1.0x)
Recasting Conv 690 31.04 0.41M (2.0x) 61.78M (2.0x) 0.27M(6.2x)
KD Conv 8.95 32.75 041IM((2.0x) 61.78M (2.0x) 0.27M(6.2x)
Backprop Conv 9.77 37.14 0.41M (2.0x) 61.78M (2.0x) 0.27M(6.2x)
WRN-28-10
Baseline 4.06 19.54 36.45M (1.0x) 5.24B (1.0x) 2.52M(1.0x%)
Recasting Conv 411 19.74 4.86M (7.5%) 1.17B (4.5x) 0.90M(2.8x%)
KD Conv 4.40 19.94 4.86M (7.5x%) 1.17B (4.5x) 0.90M(2.8%)
Backprop Conv 4.67 20.90 4.86M (7.5%) 1.17B (4.5x) 0.90M(2.8x%)
DenseNet-100

Baseline 511 23.62 0.74M (1.0x) 0.29B (1.0x) 4.41M(1.0x)
Recasting Basic 4.91 22.39 2.53M (0.3%x) 0.77B (0.4x) 0.89M(4.9x%)
KD Basic 471 22.71 2.53M (0.3%x) 0.77B (0.4x) 0.89M(4.9x%)
Backprop Basic 5.39 24.57 2.53M (0.3%x) 0.77B (0.4x) 0.89M(4.9x%)
Recasting Conv 6.82 25.60 0.87M (0.9%) 0.19B (1.5x) 0.51M(8.6x)
KD Conv 6.75 26.52 0.87™ (0.9x%) 0.19B (1.5x) 0.51M(8.6x%)
Backprop Conv 8.11 30.05 0.87M (0.9%) 0.19B (1.5x) 0.51M(8.6x)

72

Table 4.3: Error rates (%) of compression results on CIFAR datasets (B/M: bil-

lion/million)
Method Type C10+ CI100+ Params Mults Acts/image
VGG-16
Baseline 6.85 28.80 14.71IM(1.0x) 313.20M(1.0x) 0.31M(1.0x)
Recasting Conv 831 31.56 2.36M(6.2x) 50.63M(6.2x) 0.13M(2.4x)
KD Conv 9.24 33.14 2.36M(6.2x) 50.63M(6.2x) 0.13M(2.4x)
Backprop Conv 8.71 35.13 2.36M(6.2x) 50.63M(6.2x) 0.13M(2.4x)
WRN-28-10
Baseline 4.06 19.54 36.45M(1.0x) 5.24B(1.0x) 2.52M(1.0x)
Recasting Basic 5.18 24.13 1.46M(24.9%) 0.21B(24.5x) 0.52M(4.9%)
KD Basic 5.48 25.28 1.46M(24.9%) 0.21B(24.5x) 0.52M(4.9%)
Backprop Basic 5.39 25.78 1.46M(24.9%) 0.21B(24.5x) 0.52M(4.9x)

logits of DenseNet teacher. However, they proposed only switching DenseNet with
ResNet, and the test error of BAN will be higher than that of network recasting be-
cause BAN only uses the KD method as shown in Table 4.2 and 4.3. We propose any to
any architecture transformation, and deep student networks that have only convolution
blocks can also be trained well by applying sequential recasting because it can alle-
viate the vanishing-gradient problem. In addition, we also propose mixed-architecture

network, which can also be trained well by using the proposed network recasting.

4.3.3 ILSVRC2012

For ILSVRC2012 dataset, we used the pre-trained ResNet-50, DenseNet-121, and
VGG-16 available from forchvision which is one of the PyTorch packages. These pre-
trained networks were used as the teacher networks. We recast the blocks of ResNet-50
into convolution blocks, and the blocks of DenseNet-121 into basic blocks. In addition,
we recast only parts of these networks to obtain mixed-architecture networks. In Ta-
ble 4.4, Recasting(C) indicates that the student network only has convolution blocks,
and Recasting(C+Ry;:) denotes that the student network has both convolution and bot-

tleneck blocks. In the same way, Recasting(Rys) and Recasting(Rys+D) denotes that

73

Table 4.4: Error rate (%) of network recasting results on ILSVRC2012 (B/M: bil-
lion/million, I/B: image/batch)

Method Topl Top5 Params Mults Acts/I Time/l Time/B
ResNet-50
Baseline 23.85 713 25.50M 4.09B 11.57M 6.16ms 107.17ms
Recasting(C) 30.74 10.39 10.29M 1.71B 253M 2.12ms 37.21ms
Recasting(C+Rp) 25.00 7.71 21.72M 240B 3.69M 3.79ms 49.97ms
KD(C+Ryt) 27.00 830 21.72M 2.40B 3.69M 3.79ms 49.97ms
DenseNet-121
Baseline 25.57 8.03 7.89M 2.75B 16.52M 12.73ms 111.31ms

Recasting(Ryps) 26.42 825 32.23M 8.15B 5.32M 3.95ms 81.17ms
Recasting(Rys+D) 24.87 7.59 1042M 5.72B 9.15M 9.40ms 88.94ms

KD(Rys+D) 2490 765 1042M 5.72B 9.156M 9.40ms 88.94ms
VGG-16
Baseline 26.63 850 138.34M 15.47B 15.09M 6.17Tms 200.47ms

Recasting(C_P) 2825 941 81.93M 4.73B 827 3.45ms 116.45ms
Recasting(C_A) 30.05 10.38 120.61M 3.12B 3.30M 3.6lms 63.52ms

the student networks consist of only basic blocks and both basic blocks and dense
blocks, respectively. KD(C+Ry;) and KD(Rys+D) have the same network architecture
as Recasting(C+Ry;) and Recasting(Rys+D) respectively, but those are trained with
only KD method. For the VGG-16 compression, we used two criteria: higher param-
eter reduction (Recasting(C_P)) and higher activation reduction (Recasting(C_A)). In
addition, we measured the actual inference time for all networks on an NVIDIA Titan
X (Pascal) GPU, and batch sizes were set to 1 and 64.

We measured the training time for Recasiting(C+Ry;), KD(C+Ry;), Recasting(Ry;
+D) and KD(Rps+D) to compare the training time and accuracy. Recasting(C+Ry;)
took 7.6 days, and KD(C+Ry;) took 6.3 days on a GPU. Compared to KD(C+Ry;),
Recasting(C+Ry;) took 20% longer, but achieved 2.00%p and 0.59%p improvement in
top-1 and top-5 accuracy, respectively. On the other hand, Recasting(Rps+D) took 3.9
days, while KD(Rys+D) took 8.9 days with similar accuracy. Those results show that
network recasting can achieve higher accuracy with slightly longer training time for a

deep network and shorter training time with similar accuracy for a shallow network.

74

Table 4.5: Comparison of error rate (%) with previous works on ILSVRC2012 (B/M:
billion/million)

Method Topl Top5S Params Mults Acts/batch Speed-up
ResNet-50
Recasting(C+Rp;) 25.00 7.71 21.72M 2.40B 236.16M 2.1x
ThiNet-30 [39] 31.58 11.7 8.66M 1.10B - 1.3x
AutoPruner (r = 0.3) [41] 27.47 8.89 - 1.32B - -
VGG-16
Recasting(C_A) 30.05 10.38 120.61M 3.12B 220.61M 3.2x
ThiNet-Conv [39] 30.20 10.47 131.44M 4.79B - 2.5%
RNP (3x) [40] - 12.42 - - - 2.3x
Channel Pruning (3x) [38] - 11.10 - - - 2.5%
AutoPruner (r = 0.4) [41] 31.57 11.57 - 4.09B - -

As shown in Table 4.4, the network recasting significantly reduced the inference
time in all experiments. Recasting(C) and Recasting(Rys) achieved 2.9x and 3.2x
inference time reduction for a single image compared with original ResNet-50 and
DenseNet- 121, respectively. Moreover, mixed-architecture networks also achieved
significant inference time reduction with smaller accuracy loss. For the batch process-
ing, Recasting(C+Ry;) achieved 2.1 x time reduction with 0.58% top-5 accuracy loss
compared to Baseline, and Recasting(Rys+D) achieved 1.3 x time reduction even with
0.44% higher top-5 accuracy. In particular, Recasting(Rps+D) achieved similar accu-
racy and inference time with 3.1x fewer parameters compared to Recasting(Rys). In
VGG-16 compression, Recasting(C_P) and Recasting(C_A) achieved 1.7 x parameter
reduction and 4.6 x activation reduction with 0.91% and 2.05% top-5 accuracy loss,
respectively. Recasting(C_A) achieved 3.2 x inference time reduction compared to the
baseline.

We compared our results with several previous approaches [39, 38, 40, 41]. For the
comparison, we used batch inference time because previous approaches have reported
inference time only for the batch processing. Table 4.5 shows that the network recast-
ing achieved much higher inference time reduction. In ResNet-50, Recasting(C+Ry;)

achieved lower error rate and much higher actual speedup compared with ThiNet [39].

75

ThiNet only reduced filters and multiplications in 3 x 3 convolution of bottleneck
blocks, so it cannot accelerate the inference effectively because activation load is still
large. However, the network recasting can reduce the activation load effectively, so
it achieved 2.1x actual speedup with smaller accuracy loss. AutoPruner does not
mention actual-speedup, but we can guess that our network recasting result is much
faster than their AutoPruner result because they cannot remove the 1 x 1 convolution
[41] . For the VGG-16 compression, the network recasting also achieves much higher
speedup with lower error rate compared to previous approaches. It also achieves higher

parameter and multiplication reduction with similar accuracy compared to others.

4.4 Summary

In this paper, we proposed network recasting as a universal method for network archi-
tecture transformation. This method can accelerate network inference by transform-
ing the network (teacher) to a more efficient one (student). We could recast residual
and dense blocks into convolution and residual blocks, respectively, to achieve much
higher actual speedup at small accuracy loss. By recasting blocks sequentially, the
student network can be trained well even though there is no shortcut or dense connec-
tion. In addition, our method can recast arbitrary blocks, thereby producing a mixed-
architecture network. The mixed-architecture networks produced as such achieved
2.1x inference time with 0.58% top-5 accuracy loss compared to original ResNet-50,
and also achieved 1.3 x inference time reduction with 0.44% higher top-5 accuracy
on DenseNet-121 recasting. We also applied the network recasting for the purpose of
compression and achieved higher compression ratio and speedup compared to previ-
ous approaches. Our method can be applied to various kinds of network architecture

to transform it into various kinds of target network architecture.

76

Chapter 5

Fine-Grained Neural Architecture Search

5.1 Motivation

5.1.1 Search Space Reduction Versus Diversity

To find neural network architecture automatically, several NAS algorithms are pro-
posed. In NAS research, the most critical problem is that search space is tragically
large. For example, when we want to find 10 layer network architecture and each layer
has 8 candidates, the search space becomes more than 1 billion (8!°). To solve those
problems, the cell-level design method is introduced [87, 88]. The cell is the basic
building block of network architecture, and it is repeated several times. It can dramat-
ically reduce the search space because we only have to find one cell structure. Thanks
to this idea, several kinds of network search can be used for the NAS. Liu et al. [90]
propose AmoebalNet, and they find two kinds of cells (normal and reduction) using
the evolutionary algorithm. The gradient-based network search is also proposed [22],
and it finds not only network architecture but also weight parameters. Especially, the
gradient-based network search only takes several GPU days to find network architec-
ture, so many researches are proposed to improve the performance of the gradient-
based search.

The cell-based repeating structure cannot reflect positional information. According

77

to the position, activation size and the number of filters are changed, so block charac-
teristic is totally different. The bottom layers (close to the input data) have large input
activation and small filters, but the top layers (close to logits) has small input activa-
tion and large filters. In addition, the filter also extracts different abstraction level of
features according to the position. For the bottom layers, filter extract low-level fea-
tures (edges, colors, spiral, etc), and the filter of top layers extract high-level features
(flamingo, pelican school bus, etc) [18]. For this reason, we have to free from cell level
search to build more efficient network architecture.

To reduce the search space preserving the diversity of each block, a simpler struc-
ture is used. ProxylessNAS [23] and FBNet [24] use the inverted residual block [113],
and vary the kernel size and expansion ratio. The inverted residual block is much sim-
pler than the DARTS cell, so they achieve a layer-wise architecture search. Moreover,
the final architecture consists of several inverted residual blocks, and those are cas-
caded. Thanks to this characteristic, it is easy to measure and estimate the latency of
the final network. They measure the latency of each operation and use the weighted
average value of the measured latency for the latency estimation. However, a more

complex search space is needed to find a much better architecture.

5.1.2 Hardware-Aware Optimization

To design efficient network architectures, many architectures are proposed. ResNet
is adapt the 1 x 1 convolutions to reduce FLOPs [4], and DenseNet achieves further
reduction by using dense connections [6]. In addition, several mobile target architec-
tures are also proposed for the FLOPs reduction [114, 113, 115]. However, FLOP
count cannot reflect actual latency as we mentioned in Section 4.1. Yang et al. [116]
propose the energy-aware pruning method, and they focus on not only weights and
MAC:s but also feature map. Memory access requires much higher energy compared
with arithmetic operations [57], and it is related to both the number of weights and

feature map size. By reducing the feature map size and layer, the pruned network has

78

much higher energy efficiency. Chen et al. [117] also proposed another energy-aware
pruning method, and they use layer-wise pruning. The energy consumption of each
layer is totally different, so they apply a different pruning ratios for each layer. For
example, many previous works focus on the weight compression ratio, so it is highly
biased for the fully-connected layer. However, convolutional layers consume most of
the energy, and it is also not evenly distributed. Those researches show that efficient
network architecture cannot be found with only one component. Therefore, a more

sophisticated estimation method is needed for efficient network architecture.

5.2 InheritedNAS

We propose the novel fine-grained differentiable neural architecture search (Inherited-
NAS), and it is a secondary searching method from the coarse-grained searched archi-
tecture. Without any search space reduction, it is impossible to search the network that
has a layer-wise search space, so we reduce search space by using cell-based architec-
ture. First, we find cell-based network architecture with previous approaches such as
DARTS, and then we find new network architecture with a layer-wise search space by
using hints from the searched cell-based architecture. Figure 5.1 illustrates the over-
all process of InheritedNAS. In this paper, we call the cell-based architecture as the
coarse-grained architecture, and layer-wise searched architecture as the fine-grained

architecture.

5.2.1 Stage Independent Search

The convergence of architecture search depends on the complexity of the search space.
If the given search space is too large, the gradient-based NAS algorithm is diverged,
so it is very important to design search space. To search the fine-grained architecture,
we divide the network according to the activation size (stage) to reduce the complexity

of the search space. We build and train searched cell-based architecture, and we build

79

Softmax Softmax

!

|
Normal | 1.,

A A
I
24
LKD
[}
Build [>
Network Normal L
KD
Super Cell
Norml
Image Image
Teacher Network Student Network

Reduction Cell (Pretrained)

Stage 1: Coarse-grained architecture search ~ Stage 2: Fine-grained architecture search

Figure 5.1: The overall process of InheritedNAS. First, coarse-grain architecture is
searched. After then the fine-grain architecture is searched with pretrained coarse-
grain architecture. To reduce the search space, we divide and train the network using
the knowledge distillation, and the teacher network gives layer-wise/stage-wise hints
to the student network for the fine-grain architecture search. Each super cell has its

own architecture parameters, so each block has intrinsic architectures after search.

80

Student’s

Activation k-1 k
MSE + MSE

Teacher’s

Activation k-1 k

Figure 5.2: The two-point matching distillation. This method can break the dependency

from s-th to (s+1)-th stage, so each stage can be trained independently.

the fine-grained architecture with the super cell rather than the searched normal or
reduction cell. After then, we find each network architectures of the divided stage as
shown in Figure 5.1. Each divided stage has its own search space, and search space is
independent from each other because those are trained independently. For this reason,
the convergence of the NAS is related the maximum complexity of given search spaces
rather than that of the entire search space. For instance, there are eight super cells in
the network, and it is divided into three stages ([2, 2, 4]]). The maximum complexity
of the search is determined by the last stage that has four super cells. The other stages
have two super cell, and it can be searched successfully when the NAS for the last
stage is converged. Therefore, we only have to consider the maximum complexity of
search spaces.

In the fine-grained architecture search stage, the coarse-grained architecture is con-
sidered as a teacher network. The teacher network gives the input data and targets (in-

termediate activations) to the fine-grained architecture (student network) as shown in

81

Figure 5.1. Looking into the super cell architecture, it requires two input activations
from previous and before previous cell, and it gives an output activation to next and
after next cell. To train each stage independently, this input and output dependency has
to be modified. For this reason, we give two intermediate activations of the teacher net-
work to the student network as the inputs and train each stage by minimizing the MSE
loss for two output activations as shown in Figure 5.2. We call this training method as
the two-point matching distillation. For the more stable training, we match the size of
two output activation, because the scale of MSE loss can be changed according to the
activation size. The sizes of two output activation are the same when the network is
divided according to the stage. If another division method is used, the activation sizes

have to be concerned carefully.

5.2.2 Operation Pruning

To determine the final architecture, the previous work retains the top-k operations
among all non-zero operation for each node [22]. For instance, each node chooses top-
2 strongest operations, so there are eight edges per cell in the experiments of previous
work. However, this method eliminates the chance to find more diverse network ar-
chitecture, and zero operation (disconnection) never appears. For further optimization,
we propose the operation pruning, and it removes less important operation similar to
previous parameter pruning. To the best of our knowledge, this is the first work prun-
ing operation rather than weights or filters. After training architecture parameters is
finished, the most probable operation is selected for each edge, and network architec-
ture is determined. And then, we train the weight parameters from scratch and also
train the connectivity parameters. The connectivity parameter is introduced to deter-
mine the connection of each edge, and it is converted to the connection probability.
Figure 5.3 illustrates the forward propagation of the connectivity parameter. To relax
the discrete characteristic, we use the connection probability, and it is multiplied to the

output of the operation. The connection probability is calculated by using the sigmoid

82

Sigmoid (o)

Figure 5.3: Forward propagation for the connectivity parameters 6. The probability of
connection is calculated with the sigmoid function, and it works as the scaling factor

of each operation.

function that is used to convert parameters to probabilities. After training, we remove
the less important filters that have a smaller connection probabilities. To give more
diversity, we apply the block-wise pruning that considers all candidates in the block.
In this work, we remove the six operations in each block according to the connection
probabilities. Thanks to the block-wise pruning, various architectures can be found.
For example, some node does not have any input edges, so it always generates zero
activation. The previous work cannot remove the nodes, but the proposed method can
remove them. After connectivity of each edge is determined, we remove the operations
according to the connectivity parameters, and then also remove the redundant opera-
tions, which has zeros as its inputs because every input edge is disconnected. In this

case, it never affects prediction, so it can be removed without any accuracy loss.

5.2.3 Entire Search Procedure

The InheritedNAS consists of two training stages as we mentioned in Section 5.2. The
first training stage is the coarse-grained architecture search, and it is the same with pre-
vious work [22]. The second training stage is the fine-grained architecture search, and
it consists of two sub-stages. We train the architecture parameter to find proper oper-

ations for each edge and then remove unimportant operations. Algorithm 2 shows the

83

Algorithm 2 InheritedNAS

Create super network with weights w, and coarse-grained architecture parameter o,

while not converged do
Train weight parameter w,. by descending the V,. Lo g (we, ar)
Train architecture parameter . by descending the VLo g (we, o)

Build coarse-grained architecture N, based on the trained a.
Train N, by descending the V,,, Lop(w,)

Create super network with weights wy and fine-grained architecture parameter oy
while not converged do

Train weight parameter wy by descending the V., , Lprp(wy, ay)

Train architecture parameter oy by descending the Vo, Lpxp(wy, o)
Build fine-grained architecture Ny based on the trained oy
Initialize w ¢ and add connectivity parameter ¢
while not converged do

Train weight parameter wy by descending the V., L p(wy, 0)

Train connectivity parameter # by descending the Vo Ly p(wy, 6)

Remove operations based on the trained # and redundant operations

detail of InheritedNAS. Weight and architecture parameters are separately trained for
stable training. To search the coarse-grained architecture, conventional cross-entropy
loss (Lcg) is used. And, we use parallel knowledge distillation loss (Lpxp) for the
stage independent search. The stage-wise training is applied with two point matching

distillation (L7 pp), so our parallel knowledge distillation loss is defined by,

Lrip(wy,ap) =Y Lrpp(SL,Sh) (5.1)
=1
- ZS:Z e - 472 (5.2)
= (Ae,ApE(SESE) N 2

where w indicates the the weight and oy denotes architecture parameter of the fine-
grained architecture. s is the number of stages, and S, S} are outputs of the ¢-th
stage for coarse-grained (c) and fine-grained (f) architecture, respectively. A., Ay

also means the activation of coarse-grained and fine-grained architecture, and N is

84

the number of elements in the activation. After stage-wise training, the fine-grained
architecture is built based on the trained architecture parameters, and it also contains
a new connectivity parameter 6. The next sub-stage is operation pruning, the fine-
grained architecture is trained by minimizing the conventional knowledge distillation

loss (Lx p), and it defines as:
*CKD(wfy 9) — EMSE(O(Xa wC)v O(X7 ’lUf, 9)) + ECE(}/tT'LLE’ O(Xa wfa 9))7 (53)

where £)ssE is the mean square error loss. o is the output logits, and X and Y;rue de-
note the input data and its target, respectively. After operation pruning, the architecture

search is finished.

5.3 Hardware-aware Penalty Design

The fine-grained architecture search gives further optimization chance in terms of in-
ference accuracy, time, and energy consumption. As we mentioned Section 5.1, the op-
eration can have different characteristics according to its position, so choosing proper
operation is very important. For this reason, we use the hardware-aware penalty to re-
tain proper operations, and it is applied during both the stage independent search and
the operation pruning. In this work, we focus on the FLOPs and memory access to

obtain the hardware friendly architecture.

FLOPs Penalty

Applying penalty to total FLOPs is the most easiest way to improve the performance
of the hardware. Inference time is naturally reduced by reducing the number of multi-
plication. To obtain the FLOPS, we only consider the weighted operation; convolution
and linear (fully-connected layer). Batch normalization (BN) also has an arithmetic
operation, but it can be merged to weighted operation because it is frozen in inference

[103]. Each edge has several operations during the architecture search, so exact FLOPs

85

value is not determined. For this reason, we use the expected FLOPs values, and it is

calculated the weight average of operations.

E[FLOPs| =) " p; x F¢(op,). (5.4)

i
p; is the probability of the ¢-th architecture parameter, and it is considered as the weigh
value for i-th operation (op;). Iy indicates the flops calculation function. This method

is the same as the latency prediction model in ProxylessNAS [23].

Memory Access Penalty

As the complexity of network architecture increases, FLOPs based optimization re-
search show very small inference time reduction [39]. Previous work shows that the
number of multiplication is not directly related to inference time [118]. Due to FLOPs
cannot reflect hardware performance properly [118], we add an additional penalty term
to reflect the effect of memory access. As we mentioned in Section 4.1, memory ac-
cess is very important for the actual hardware. There are also many researches that
report memory access takes most of the energy and computation time both inference
and training [58, 119, 120]. For this reason, we also propose a new penalty that consid-
ers memory access to find hardware friendly network architecture. Basically, weight
parameter and activation cause memory access, so those are used to estimate the total
memory access. In CPU and GPU, operations run layer-by-layer, and both activation
function and batch normalization are also considered as a single layer. However, ac-
tivation function and batch normalization can be merged to the convolutional layer in
the inference accelerator as we mentioned before. To support both hardware character-
istic, we design the two expectation mode; individual and unified. Similar to expected

FLOPs, the weighted average is used for the expected memory access.

E[Memory| = Zpi x Fp,(op;). (5.5)

86

Mixed Penalty

We also propose a mixed penalty that consists of both FLOPs and memory access. The

mixed penalty is defined as:
E[Mix| = - E[FLOPs| 4 3 - E[Memory], (5.6)

where o and 3 are hyperparameter, and it decide the optimization direction. Each
hardware has a different characteristic, so For example, CPU has few arithmetic logic
units (ALUs), so FLOPs reduction can be a better choice than memory access reduc-
tion. Conversely, GPU has many ALUs, and memory access reduction can be more
important when the average utilization of ALUs is low. Therefore, hardware-specific

network architecture can be searched by adjusting o and 3.

5.4 Experiments

We conducted several experiments to see the convergence and performance of the In-
heritedNAS, and applied several kinds of hardware-aware penalty to check the perfor-
mance on the hardware. The InheritedNAS was implemented on the PyTorch frame-
work. For the experiments, we used the CIFAR-10 and CIFAR-100 dataset, and cutout
[121] and the standard data augmentation, which consists of four pixel zero-padding
and random cropping, and horizontal flipping with 0.5 probability. We initialize the
network with Xavier initializer [110]. we use the SGD with Nesterov momentum [111]
for the weight parameter training, and use the Adam optimizer [112] for the architec-
ture and connectivity parameter training. We used the network architecture that was
found in DARTS [22] as the coarse-grained architecture. For the architecture search,
we use the operation set; 3 x 3 and 5 x 5 depthwise separable convolution, 3 x 3 and
5 x b dilated separable convolution, 3 X 3 max pooling, 3 X 3 average pooling, identity,

and zero. This operation set is the same as that of the previous work [22]. However,

87

in this set, memory-intensive operations also have huge amount of computations. The
depthwise separable convolutions have much larger FLOPs and memory access com-
pared with the dilated separable convolutions. Actually, FLOPs penalty is a more harsh
constraint than the memory penalty. Therefore, FLOPs penalty shows the best result
on every item; FLOPs, parameters, activations, and inference time. For this reason, we
introduce new operation set; 3 x 3 and 5 x 5 depthwise separable convolution, 3 x 3
and 5 x 5 standard convolution, 3 X 3 max pooling, 3 X 3 average pooling, identity, and
zero. The depthwise separable convolution has smaller FLOPs compared with standard
convolution, but it has much larger memory access due to the activations. We call the

former set as OS1, and the latter set is OS2.

5.4.1 Fine-Grained Architecture Search

For the fine-grained architecture search, we used the network that consists of eight
blocks. The coarse-grained architecture is consists of normal and reduction cell that
were found in DARTS, and the fine-grained architecture search has eight super cell. We
trained the fine-grained architecture for 200 epochs in both stage independent search
and operation pruning. The learning rates of the SGD were starting 0.1, and it was
divided by 5 at the 60, 120, and 150 epoch. For the architecture parameter, the learn-
ing rates were starting at 0.001, and there was no learning rate drop. Three kinds of
penalties (None, FLOPs, and Memory) are used to check the maximum accuracy of
the searched network and the effect of the penalty.

Table 5.1 shows the our experimental results. In OS1 The fine-grained architec-
ture shows the 92.31% accuracy, and it achieved the 0.8%p higher accuracy compared
with the coarse-grained architecture. The performance improvement comes from block
diversity as we mentioned before. By applying the penalty term, accuracy slightly de-
creases but it still comparable. In addition, hardware characteristics are much more im-
proved compared with DART and non penalized architecture. For the FLOPS penalty

result shows the smallest FLOPs, parameter, and activation.

88

Table 5.1: Experimental results of InheritedNAS

Model Penalty Accuracy FLOPs Parameter Activation

DARTS[22] - 91.56 4295M 0.30M 1.63 M

- 92.31 4989 M 0.38M 1.46 M
Ours (OS1) FLOPs 91.82 3343M 021 M 1.03 M
Memory 91.13 3838M 0.256 M 1.07M

- 92.67 257.66M 2.33M 0.63 M
Ours (OS2) FLOPs 92.02 3410M 018M 0.86 M
Memory 92.03 22546M 1.89M 0.60 M

3x3 SepConv

Figure 5.4: Comparison of searched architecture. (leff) The normal cell of DARTS.
(right) The first block of our searched network (OS1).

In OS2, all searched network shows a higher accuracy compared with previous
work result. Without the penalty, the number of FLOPs is much higher because stan-
dard convolution is much better for the accuracy compared with separable convolution.
For this reason, it achieved the highest accuracy, and its accuracy is the 1.1% higher
than previous work. The other penalized networks also achieved a higher accuracy
than previous work and OS1.

Figure 5.4 illustrates the searched architecture of DARTS and our searched net-
work. DARTS uses the node-wise operation selection, so it has a regular pattern for

each edge. However, our method has more diversity for each node, and several nodes

&9

Table 5.2: Architecture search results through the hardware penalties

a, f Accuracy FLOPs Parameter Activation

Operation Set: OS1

1.00,0.00 91.82 3343M 021 M 1.03 M
0.75,0.25 92.05 39.44M 0.25M 1.21M
0.50,0.50 91.89 33.13M 021 M 0.97"M
0.25,0.75 92.09 39.21M 0.25M 1.20M
0.00,1.00 91.13 38.38M 0.256 M 1.07M

Operation Set: OS2

1.00,0.00 92.02 3410M 0.18M 0.86 M
0.75,0.25 92.21 68.82M 0.38M 0.74 M
0.50,0.50 91.99 91.12M 0.52M 0.72M
0.25,0.75 92.08 143.00M 0.90M 0.7TM
0.00,1.00 92.03 22546M 1.89M 0.60 M

can be discarded. Figure 5.4 (right) shows the the first block of our searched network,
and the third node has no input operations. In this case, there is no operation for the
third node, and it only generates the activation that consists of only zero value. We also

can remove those node to further optimization, so it is our future work.

5.4.2 Penalty Analysis

We conducted several experiments to check the diversity of searched architectures
according to the penalty. In this experiment, FLOPs penalty, memory access penalty,
and three kinds of mixed penalties are used. We divided the penalty range to the 0.25
granularity, so there are three mixed penalties. Each expected penalties are normalized
to FLOPs and memory access of the coarse-grained architecture, and it makes training

more stable.

90

Table 5.3: Latency on the CPU and GPU

CPU GPU

a, B image batch image batch

Operation Set: OS1

1.00,0.00 3126 ms 115791 ms 13.80 ms 14.63 ms
0.75,0.25 34.90ms 1273.25ms 15.44ms 16.27 ms
0.50,0.50 31.57ms 1183.96ms 13.54ms 14.43 ms
0.25,0.75 35.83ms 1353.46ms 15.31ms 16.31 ms
0.00,1.00 35.29ms 1394.95ms 14.88ms 15.86 ms

Operation Set: OS2

1.00,0.00 17.09ms 397.76 ms 13.48 ms 14.17 ms
0.75,0.25 17.16 ms 341.10ms 14.45ms 14.70 ms
0.50,0.50 16.72ms 353.26ms 13.70ms 14.19 ms
0.25,0.75 19.12ms 393.10ms 15.66 ms 16.06 ms
0.00,1.00 16.63ms 393.19ms 13.28 ms 13.43 ms

Table 5.2 shows the InheritedNAS results for the given penalties. o and 8 mean
the coefficient for the memory and FLOPs in 5.6. In OS1, every searched architec-
ture show the very similar number of FLOPs and memory footprint for all penalties.
The number of FLOPs is related to the parameter and activation, so the network has
the smallest FLOPs and memory when « and (8 are 1 and 0 respectively. In OS2 the
searched architectures show much more differences according to the penalty. When «
becomes larger, FLOPs decreases, and activation increases. The number of parameters
is directly related to the FLOPs in this operation set. For this reason, hardware penalty
shows much obvious characteristics in OS2.

In addition, we measured the latency of the searched network on the Intel Xeon

91

E5-1680 v4 CPU and NVIDIA Titan X (Pascal) GPU, and batch size was set to 1
(image) and 128 (batch). Table 5.3 shows the latency of each architecture. In OS1, the
searched architecture with FLOPs penalty has the smallest FLOPs, memory access,
so it shows the best result on both CPU and GPU. FLOPs penalty still shows the best
result in the batch processing.

However, in OS2, inference time trends of single image and batch processing are
totally different. For the single image processing, memory access is more important
because the arithmetic operation is too small to hide memory access. In batch pro-
cessing, CPU and GPU show a different result. FLOPs reduction shows a better result
on the CPU, and this result comes from parallelism. CPU has much smaller paral-
lelism, so it requires much more time for the arithmetic operations. Memory access
time can be hidden, so FLOPs much affect the inference time. Conversely, GPU has
much more parallelism, so memory access time still requires much more time. There-

fore, the penalty has to be designed according to the hardware parallelism.

5.5 Summary

In this work, we proposed the InheritedNAS, which is the fine-grained architecture
search method. We propose the stage independent search method that can reduce the
search space effectively. To break the dependency of each stage, two-point matching
distillation method is proposed, and it helps to stabilize the training dynamic. By using
those methods, we can obtain the fine-grained architecture, which has higher accuracy
compared with previous coarse-grained architecture. Moreover, we also proposed the
hardware-aware penalty to find efficient network architecture for the target hardware.
Experimental results show that the inference time of searched architecture can be re-

duced effectively with the proposed penalty.

92

Chapter 6

Conclusion

In this dissertation, we proposed the designing technique for both neural network ac-
celerator and network architecture. Conventional designs have several limitation and
inefficiency for the inference. The neural network has a huge amount of arithmetic
operations, so it is very inefficient on conventional hardware such as CPU and GPU.
And, previous neural network compression methods do not concern the actual hard-
ware characteristic, so its inference is still inefficient after the compression. More-
over, previous neural architecture search algorithms find the network that has a regular
pattern, so the positional characteristic of each layer is not a concern. The proposed
techniques alleviate those limitations and help to achieve efficient inference.

First, we proposed the neural network accelerator based on the stochastic com-
puting. The stochastic computing has very small multiplication hardware, but it has
computation errors. This characteristic prevents to support of the deeper network and
complex dataset because its multiplication error is amplified according to the number
of layers. To solve this problem, the unipolar encoding is used, and it can reduce the
multiplication error effectively. In addition, we proposed the stochastic ReLU func-
tion and new stochastic max function, which occupy about half of the previous max
function area. The weight modulation method is proposed to increase the SNR of SC

hardware, and it can improve the inference accuracy dramatically. Moreover, we also

93

proposed the random number generator sharing technique to reduce the area overhead.
Our experiments show that the accuracy of the SC network becomes close to that of
the floating-point network on MNIST and CIFAR-10 datasets, and the proposed hard-
ware outperforms the previous SC-based hardware in terms of the accuracy, prediction
time, area, and energy consumption.

Second, we proposed the network recasting that enables the network architecture
transformation. Several previous works achieve significant network compression, but
its actual speedup is much smaller than the compression ratio. This problem is caused
by the network architecture, so it cannot be solved if architecture is maintained. Our
proposed method changes the network architecture itself, so further improvement can
be achieved. The proposed method can accelerate inference by transforming the net-
work into a more efficient one. To train the efficient network, we proposed the block
training and sequential recasting method. In addition, our method can recast the arbi-
trary blocks, so a mixed-architecture can be found. The mixed-architecture networks
produced as such achieved 2.1x inference time with 0.58% top-5 accuracy loss com-
pared to original ResNet-50, and also achieved 1.3 inference time reduction with
0.44% higher top-5 accuracy on DenseNet-121 recasting. The proposed method also
can be used for the network compression, and we also achieved a higher compression
ratio and speedup compared to previous compression approaches.

Third, we propose InheritedNAS, which is the fine-grained network architecture
search method. To automate the network architecture design, the neural architecture
search method is proposed. However, the previous NAS method only finds the normal
and reduction cell, so its diversity is significantly small. To enlarge the search space
preserving the convergence, we proposed the fine-grained architecture search method.
The proposed method gives a chance to find network architecture on the more large
search space, and it also preserves the convergence. The stage independent search can
reduce the search space effectively, and it also helps to stabilize the training dynamics.

To break the dependency of each stage, we also proposed the two-point matching dis-

94

tillation method. In addition, we also propose the hardware-aware penalty, and it helps
to choose the operation for efficient inference on the hardware. Our experiments show

that our result gives a further optimization chance, and latency is effectively reduced.

95

[1]

Bibliography

M. Lin, Q. Chen, and S. Yan, “Network in network,” in Proceedings of the

International Conference for Learning Representations (ICLR), Apr. 2014.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Jun. 2015, pp. 1-9.

G. Larsson, M. Maire, and G. Shakhnarovich, “Fractalnet: Ultra-deep neural
networks without residuals,” in Proceedings of the International Conference for

Learning Representations (ICLR), Apr. 2017.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Jun. 2016, pp. 770-778.

S. Zagoruyko and N. Komodakis, “Wide residual networks,” in Proceedings of
the British Machine Vision Conference (BMVC), Sep. 2016, pp. 87.1-87.12.

G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely con-
nected convolutional networks,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Jul. 2017, pp. 4700—4708.

I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT
press Cambridge, 2016, vol. 1.

96

[8]

[10]

[11]

[12]

[13]

[14]

S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections
for efficient neural network,” in Proceedings of the Advances in Neural Infor-

mation Processing Systems (NeulPS), Dec. 2015, pp. 1135-1143.

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally,
“EIE: Efficient inference engine on compressed deep neural network,” in Pro-
ceedings of the ACM/IEEE Annual International Symposium on Computer Ar-
chitecture (ISCA), Jun. 2016, pp. 243-254.

A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan,
M. Hu, R. S. Williams, and V. Srikumar, “ISAAC: A convolutional neural net-
work accelerator with in-situ analog arithmetic in crossbars,” in Proceedings
of the ACM/IEEE Annual International Symposium on Computer Architecture
(ISCA), Jun. 2016, pp. 14-26.

K. Kim, J. Kim, J. Yu, J. Seo, J. Lee, and K. Choi, “Dynamic energy-accuracy
trade-off using stochastic computing in deep neural networks,” in Proceedings

of the Annual Design Automation Conference (DAC), Jun. 2016, p. 124.

A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM Transactions
on Embedded computing systems (TECS), vol. 12, no. 2, p. 92, May 2013.

Z. Li, A. Ren, J. Li, Q. Qiu, Y. Wang, and B. Yuan, “DSCNN: hardware-
oriented optimization for stochastic computing based deep convolutional neural
networks,” in Proceedings of the IEEE International Conference on Computer

Design (ICCD), Oct. 2016, pp. 678-681.

A. Ren, J. Li, Z. Li, C. Ding, X. Qian, Q. Qiu, B. Yuan, and Y. Wang, “SC-
DCNN: highly-scalable deep convolutional neural network using stochastic
computing,” in Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), Apr.
2017.

97

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Z.Li, A.Ren, J. Li, Q. Qiu, B. Yuan, J. Draper, and Y. Wang, “Structural design
optimization for deep convolutional neural networks using stochastic comput-

ing,” in Proceedings of the Design, Automation & Test in Europe Conference &

Exhibition (DATE), Mar. 2017, pp. 250-253.

J. Li, Z. Yuan, Z. Li, C. Ding, A. Ren, Q. Qiu, J. Draper, and Y. Wang,
“Hardware-driven nonlinear activation for stochastic computing based deep
convolutional neural networks,” in Proceedings of International Joint Confer-

ence on Neural Networks (IJCNN), May 2017.

V.T. Lee, A. Alaghi, J. P. Hayes, V. Sathe, and L. Ceze, “Energy-efficient hybrid
stochastic-binary neural networks for near-sensor computing,” in Proceedings
of the Design, Automation & Test in Europe Conference & Exhibition (DATE),
Mar. 2017, pp. 13-18.

J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson, “Understanding neu-
ral networks through deep visualization,” in Proceedings of the International

Conference on Machine Learning Workshop (ICML Workshop), Jul. 2015.

H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters for
efficient convnets,” in Proceedings of the International Conference for Learning

Representations (ICLR), May 2016.

B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learning,”
in Proceedings of the International Conference for Learning Representations

(ICLR), May 2017.

E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution for image
classifier architecture search,” in Proceedings of the Thirty-Third AAAI confer-
ence on artificial intelligence (AAAI), vol. 33, 2019, pp. 4780—4789.

98

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture search,’

in Proceedings of the International Conference for Learning Representations

(ICLR), May 2019.

H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture search on
target task and hardware,” in Proceedings of the International Conference for

Learning Representations (ICLR), May 2019.

B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia,
and K. Keutzer, “Fbnet: Hardware-aware efficient convnet design via differen-
tiable neural architecture search,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2019, pp. 10 734-10742.

A. Alaghi, C. Li, and J. P. Hayes, “Stochastic circuits for real-time image-
processing applications,” in Proceedings of the Annual Design Automation Con-

ference (DAC), 2013, pp. 1-6.

W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, “An architecture for
fault-tolerant computation with stochastic logic,” IEEE transactions on comput-

ers (TC), vol. 60, no. 1, pp. 93-105, 2010.

M. H. Najafi and M. E. Salehi, “A fast fault-tolerant architecture for sauvola
local image thresholding algorithm using stochastic computing,” IEEE Trans-
actions on Very Large Scale Integration Systems (TVLSI), vol. 24, no. 2, pp.
808-812, 2015.

A. Alaghi and J. P. Hayes, “Fast and accurate computation using stochastic cir-
cuits,” in Proceedings of the Design, Automation & Test in Europe Conference

& Exhibition (DATE). 1EEE, 2014, pp. 1-4.

P. Li and D. J. Lilja, “Using stochastic computing to implement digital image
processing algorithms,” in Proceedings of the IEEE International Conference

on Computer Design (ICCD), Oct. 2011, pp. 154-161.

99

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

S. KLEENE, “Representations of events in nerve nets and finite automata,” Au-

tomata Studies [Annals of Math. Studies 34], 1956.

K. Hornik, “Approximation capabilities of multilayer feedforward networks,”

Neural networks, vol. 4, no. 2, pp. 251-257, 1991.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel, “Backpropagation applied to handwritten zip code recognition,’

Neural Computation, vol. 1, no. 4, pp. 541-551, 1989.

M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. De Freitas, “Predicting pa-
rameters in deep learning,” in Proceedings of the Advances in Neural Informa-

tion Processing Systems (NeulPS), 2013, pp. 2148-2156.

K. Hwang and W. Sung, “Fixed-point feedforward deep neural network design
using weights+ 1, 0, and- 1,” in Proceedings of IEEE Workshop on Signal Pro-
cessing Systems (SiPS). 1EEE, 2014, pp. 1-6.

E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploiting
linear structure within convolutional networks for efficient evaluation,” in Pro-

ceedings of the Advances in Neural Information Processing Systems (NeulPS),

2014, pp. 1269-1277.

Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient DNNs,”
in Proceedings of the Advances in Neural Information Processing Systems

(NeulIPS), Dec. 2016, pp. 1379-1387.

S. Han, J. Pool, S. Narang, H. Mao, E. Gong, S. Tang, E. Elsen, P. Vajda,
M. Paluri, J. Tran et al., “Dsd: Dense-sparse-dense training for deep neural
networks,” in Proceedings of the International Conference for Learning Rep-

resentations (ICLR), Apr. 2017.

100

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep neural
networks,” in Proceedings of the IEEE International Conference on Computer

Vision (ICCV), Oct. 2017, pp. 1389-1397.

J.-H. Luo, J. Wu, and W. Lin, “ThiNet: A filter level pruning method for deep
neural network compression,” in Proceedings of the IEEE International Con-

ference on Computer Vision (ICCV), Oct. 2017, pp. 5058-5066.

J. Lin, Y. Rao, J. Lu, and J. Zhou, “Runtime neural pruning,” in Proceedings of
the Advances in Neural Information Processing Systems (NeulPS), Dec. 2017,
pp. 2181-2191.

J.-H. Luo and J. Wu, “AutoPruner: An end-to-end trainable filter pruning
method for efficient deep model inference,” arXiv preprint arXiv: 1805.08941,
2018.

W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity in
deep neural networks,” in Proceedings of the Advances in Neural Information

Processing Systems (NeulPS), 2016, pp. 2074-2082.

S. Scardapane, D. Comminiello, A. Hussain, and A. Uncini, “Group sparse reg-
ularization for deep neural networks,” Neurocomputing, vol. 241, pp. 81-89,

2017.

H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Network trimming: A data-driven
neuron pruning approach towards efficient deep architectures,” arXiv preprint

arXiv: 1607.03250, 2016.

G. Dundar and K. Rose, “The effects of quantization on multilayer neural net-
works,” IEEE Transactions on Neural Networks, vol. 6, no. 6, pp. 1446-1451,
1995.

101

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep convolutional
networks using vector quantization,” in Proceedings of the International Con-

ference for Learning Representations (ICLR), Apr. 2015.

S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning
with limited numerical precision,” in Proceedings of the International Confer-

ence on Machine Learning (ICML), 2015, pp. 1737-1746.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding,” in Proceed-
ings of the International Conference for Learning Representations (ICLR), Apr.

2016.

M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet
classification using binary convolutional neural networks,” in Proceedings of
the European Conference on Computer Vision (ECCV). Springer, 2016, pp.
525-542.

E. Park, J. Ahn, and S. Yoo, “Weighted-entropy-based quantization for deep
neural networks,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2017, pp. 5456-5464.

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized
neural networks,” in Proceedings of the Advances in Neural Information Pro-

cessing Systems (NeulPS), 2016, pp. 4107-4115.

——, “Quantized neural networks: Training neural networks with low precision
weights and activations,” The Journal of Machine Learning Research, vol. 18,

no. 1, pp. 6869—-6898, 2017.

A.Zhou, A. Yao, K. Wang, and Y. Chen, “Explicit loss-error-aware quantization
for low-bit deep neural networks,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2018, pp. 9426-9435.

102

[54]

[55]

[56]

[57]

[58]

[59]

[60]

S. Jung, C. Son, S. Lee, J. Son, J.-J. Han, Y. Kwak, S. J. Hwang, and C. Choi,
“Learning to quantize deep networks by optimizing quantization intervals with
task loss,” in Proceedings of the IEEE Conference on Computer Vision and

Fattern Recognition (CVPR), 2019, pp. 4350-4359.

K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware automated
quantization with mixed precision,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2019, pp. 8612-8620.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” in Pro-

ceedings of the International Conference for Learning Representations (ICLR),

Apr. 2015.

T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “DianNao: A
small-footprint high-throughput accelerator for ubiquitous machine-learning,”
in Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Apr. 2014, pp.
269-284.

Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: a spatial architecture for energy-
efficient dataflow for convolutional neural networks,” in Proceedings of the
ACM/IEEE Annual International Symposium on Computer Architecture (ISCA),
2016, pp. 367-379.

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers ef al., “In-datacenter performance analysis of a
tensor processing unit,” in Proceedings of the ACM/IEEE Annual International

Symposium on Computer Architecture (ISCA), 2017, pp. 1-12.

J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and

A. Moshovos, “Cnvlutin: ineffectual-neuron-free deep neural network comput-

103

[61]

[62]

[63]

[64]

[65]

[66]

ing,” in Proceedings of the ACM/IEEE Annual International Symposium on
Computer Architecture (ISCA), 2016, pp. 1-13.

D. Kim, J. Ahn, and S. Yoo, “A novel zero weight/activation-aware hardware
architecture of convolutional neural network,” in Proceedings of the Design,
Automation & Test in Europe Conference & Exhibition (DATE), Mar. 2017, pp.
1462-1467.

P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos,
“Stripes: Bit-serial deep neural network computing,” in 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). 1EEE,
2016, pp. 1-12.

H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and H. Esmaeilzadeh,
“Bit fusion: Bit-level dynamically composable architecture for accelerating
deep neural network,” in Proceedings of the ACM/IEEE Annual International
Symposium on Computer Architecture (ISCA). 1EEE, 2018, pp. 764-775.

A. Delmas Lascorz, P. Judd, D. M. Stuart, Z. Poulos, M. Mahmoud, S. Shar-
ify, M. Nikolic, K. Siu, and A. Moshovos, “Bit-tactical: A software/hardware
approach to exploiting value and bit sparsity in neural networks,” in Proceed-

ings of the International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2019, pp. 749-763.

V. Akhlaghi, A. Yazdanbakhsh, K. Samadi, R. K. Gupta, and H. Esmaeilzadeh,
“Snapea: Predictive early activation for reducing computation in deep convolu-
tional neural networks,” in Proceedings of the ACM/IEEE Annual International

Symposium on Computer Architecture (ISCA). 1EEE, 2018, pp. 662—673.

D. Lee, S. Kang, and K. Choi, “Compend: Computation pruning through early
negative detection for relu in a deep neural network accelerator,” in Proceedings

of the International Conference on Supercomputing (ICS), 2018, pp. 139-148.

104

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

G. Shomron and U. Weiser, “Spatial correlation and value prediction in convo-
lutional neural networks,” IEEE Computer Architecture Letters, vol. 18, no. 1,

pp. 10-13, 2018.

P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “Prime:
A novel processing-in-memory architecture for neural network computation in
reram-based main memory,” in Proceedings of the ACM/IEEE Annual Interna-

tional Symposium on Computer Architecture (ISCA). 1EEE, 2016, pp. 27-39.

L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-based
accelerator for deep learning,” in Proceedings of the IEEE International Sym-
posium on High Performance Computer Architecture (HPCA), Feb. 2017, pp.
541-552.

B. D. Brown and H. C. Card, “Stochastic neural computation. I. computational
elements,” IEEE Transactions on Computers, vol. 50, no. 9, pp. 891-905, Aug.
2002.

——, “Stochastic neural computation. ii. soft competitive learning,” IEEE

Transactions on Computers, vol. 50, no. 9, pp. 906-920, 2001.

H. Sim and J. Lee, “A new stochastic computing multiplier with application
to deep convolutional neural networks,” in Proceedings of the Annual Design

Automation Conference (DAC), 2017, pp. 1-6.

H. Sim, S. Kenzhegulov, and J. Lee, “Dps: dynamic precision scaling for
stochastic computing-based deep neural networks,” in Proceedings of the An-

nual Design Automation Conference (DAC), 2018, pp. 1-6.

R. Hojabr, K. Givaki, S. R. Tayaranian, P. Esfahanian, A. Khonsari, D. Rahmati,
and M. H. Najafi, “Skippynn: An embedded stochastic-computing accelerator
for convolutional neural networks,” in Proceedings of the Annual Design Au-

tomation Conference (DAC). 1EEE, 2019, pp. 1-6.

105

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

J. Ba and R. Caruana, “Do deep nets really need to be deep?” in Proceedings of
the Advances in Neural Information Processing Systems (NeulPS), Dec. 2014,
pp. 2654-2662.

G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural net-
work,” in Proceedings of the Advances in Neural Information Processing Sys-

tems Workshop(NeulPS Workshop), Dec. 2014.

A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio, “Fit-
Nets: Hints for thin deep nets,” in Proceedings of the International Conference

for Learning Representations (ICLR), May 2015.

P. Luo, Z. Zhu, Z. Liu, X. Wang, and X. Tang, “Face model compression by
distilling knowledge from neurons.” in Proceedings of the Thirtieth AAAI con-

ference on artificial intelligence (AAAI), Feb. 2016, pp. 3560-3566.

S. Zagoruyko and N. Komodakis, “Paying more attention to attention: Improv-
ing the performance of convolutional neural networks via attention transfer,”

in Proceedings of the International Conference for Learning Representations

(ICLR), Apr. 2017.

J. Yim, D. Joo, J. Bae, and J. Kim, “A gift from knowledge distillation: Fast
optimization, network minimization and transfer learning,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Jul. 2017, pp. 4133-4141.

A. Mishra and D. Marr, “Apprentice: Using knowledge distillation techniques to
improve low-precision network accuracy,” in Proceedings of the International

Conference for Learning Representations (ICLR), Apr. 2017.

A. Polino, R. Pascanu, and D. Alistarh, “Model compression via distillation
and quantization,” in Proceedings of the International Conference for Learning

Representations (ICLR), May 2018.

106

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

J. Kim, Y. Bhalgat, J. Lee, C. Patel, and N. Kwak, “Qkd: Quantization-aware
knowledge distillation,” arXiv preprint arXiv:1911.12491, 2019.

T. Furlanello, Z. C. Lipton, A. Amazon, L. Itti, and A. Anandkumar, “Born
again neural networks,” in Proceedings of the International Conference on Ma-

chine Learning (ICML), Jul. 2018, pp. 1607-1616.

B. Heo, J. Kim, S. Yun, H. Park, N. Kwak, and J. Y. Choi, “A comprehensive
overhaul of feature distillation,” in Proceedings of the IEEE International Con-

ference on Computer Vision (ICCV), 2019, pp. 1921-1930.

C. Li, J. Peng, L. Yuan, G. Wang, X. Liang, L. Lin, and X. Chang, “Block-
wisely supervised neural architecture search with knowledge distillation,” arXiv

preprint arXiv:1911.13053, 2019.

B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architec-
tures for scalable image recognition,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 8697-8710.

Z. Zhong, J. Yan, W. Wu, J. Shao, and C.-L. Liu, “Practical block-wise neural
network architecture generation,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2018, pp. 2423-2432.

K. O. Stanley and R. Miikkulainen, “Evolving neural networks through aug-
menting topologies,” Evolutionary computation, vol. 10, no. 2, pp. 99-127,

2002.

H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu, “Hierar-
chical representations for efficient architecture search,” in Proceedings of the

International Conference for Learning Representations (ICLR), May 2018.

107

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

F. Chollet, “Xception: Deep learning with depthwise separable convolutions,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2017, pp. 1251-1258.

T. Elsken, J. H. Metzen, and F. Hutter, “Efficient multi-objective neural archi-
tecture search via lamarckian evolution,” in Proceedings of the International

Conference for Learning Representations (ICLR), May 2019.

S. Saxena and J. Verbeek, “Convolutional neural fabrics,” in Proceedings of the
Advances in Neural Information Processing Systems (NeulPS), Dec. 2016, pp.
4053-4061.

A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “Smash: one-shot model ar-
chitecture search through hypernetworks,” in Proceedings of the International

Conference for Learning Representations (ICLR), May 2018.

H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient neural architecture
search via parameters sharing,” in Proceedings of the International Conference

on Machine Learning (ICML), 2018, pp. 4095-4104.

S. Xie, H. Zheng, C. Liu, and L. Lin, “Snas: stochastic neural architecture
search,” in Proceedings of the International Conference for Learning Repre-

sentations (ICLR), May 2019.

M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep
neural networks with binary weights during propagations,” in Proceedings of
the Advances in Neural Information Processing Systems (NeulPS), 2015, pp.
3123-3131.

A. Wan, X. Dai, P. Zhang, Z. He, Y. Tian, S. Xie, B. Wu, M. Yu, T. Xu, K. Chen
et al., “Fbnetv2: Differentiable neural architecture search for spatial and channel
dimensions,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2020.

108

[99]

[100]

[101]

[102]

[103]

[104]

[105]

Y. Xu, L. Xie, X. Zhang, X. Chen, B. Shi, Q. Tian, and H. Xiong,
“Latency-aware differentiable neural architecture search,” arXiv preprint

arXiv:2001.06392, 2020.

X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,”
in Proceedings of the International Conference on Artificial Intelligence and

Statistics (AISTATS), Apr. 2011, pp. 315-323.

Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural networks
for energy-efficient object recognition,” International Journal of Computer Vi-

sion, vol. 113, no. 1, pp. 54-66, 2015.

P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer, “Fast-
classifying, high-accuracy spiking deep networks through weight and threshold
balancing,” in Proceedings of International Joint Conference on Neural Net-

works (IJCNN), Jul. 2015, pp. 1-8.

B. Rueckauer, 1.-A. Lungu, Y. Hu, and M. Pfeiffer, “Theory and tools for the
conversion of analog to spiking convolutional neural networks,” in Proceedings
of the Advances in Neural Information Processing Systems Workshop(NeulPS
Workshop), Dec. 2016.

R. Venkatesan, S. Venkataramani, X. Fong, K. Roy, and A. Raghunathan, “Spin-
tastic: Spin-based stochastic logic for energy-efficient computing,” in Proceed-
ings of the Design, Automation & Test in Europe Conference & Exhibition

(DATE), Mar. 2015, pp. 1575-1578.

X. Chen, L. Wang, B. Li, Y. Wang, X. Li, Y. Liu, and H. Yang, “Modeling
random telegraph noise as a randomness source and its application in true ran-
dom number generation,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), vol. 35, no. 9, pp. 1435-1448, Dec.
2015.

109

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

H. Ichihara, S. Ishii, D. Sunamori, T. Iwagaki, and T. Inoue, “Compact and ac-
curate stochastic circuits with shared random number sources,” in Proceedings
of the IEEE International Conference on Computer Design (ICCD), Oct. 2014,
pp- 361-366.

A. Alaghi and J. P. Hayes, “Exploiting correlation in stochastic circuit design,”
in Proceedings of the IEEE International Conference on Computer Design

(ICCD), Oct. 2013, pp. 39-46.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” in Proceedings of the International Conference for

Learning Representations (ICLR), May 2015.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift,” in Proceedings of the International

Conference on Machine Learning (ICML), Jul. 2015, pp. 448-456.

X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feed-
forward neural networks,” in Proceedings of the International Conference on

Artificial Intelligence and Statistics (AISTATS), May 2010, pp. 249-256.

I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of initial-
ization and momentum in deep learning,” in Proceedings of the International

Conference on Machine Learning (ICML), Jun. 2013, pp. 1139-1147.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Pro-
ceedings of the International Conference for Learning Representations (ICLR),

May 2015.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2:
Inverted residuals and linear bottlenecks,” in Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 4510-
4520.

110

[114]

[115]

[116]

[117]

[118]

[119]

[120]

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural net-

works for mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient
convolutional neural network for mobile devices,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp.
6848-6856.

T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient convolutional
neural networks using energy-aware pruning,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 5687-
5695.

Y. Chen, T.-J. Yang, J. Emer, and V. Sze, “Understanding the limitations of
existing energy-efficient design approaches for deep neural networks,” in Pro-

ceedings of the Conference on Systems and Machine Learning (SysML), 2018.

N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet-v2: Practical guidelines
for efficient cnn architecture design,” in Proceedings of the European Confer-

ence on Computer Vision (ECCV), 2018, pp. 116-131.

Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun
et al., “DaDianNao: A machine-learning supercomputer,” in Proceedings of the
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
Oct. 2014, pp. 609-622.

M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris: Scalable and
efficient neural network acceleration with 3d memory,” in Proceedings of the In-
ternational Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), 2017, pp. 751-764.

111

[121] T. DeVries and G. W. Taylor, “Improved regularization of convolutional neural

networks with cutout,” arXiv preprint arXiv:1708.04552, 2017.

112

oA B gsiA A

JEgole} ALE] T =

°

AF-5]

T

o
pal

M Al 2| (Machine Learning) W'Y % &

Learning)o]] ¥+

do T o o B R’ - 1
FTRTHET WD T TUFPTER 0T D
T Au_)eﬁmmmﬂﬂﬂﬂagﬂwqaoiww%
HoH N B S g mc%m%iﬂ%ﬁegéémka_ewwm
g 45 g .maﬁm%ﬂD@.L_LQE_EE_E__h,_oﬂ%um
2 = 0B RN TR e e o N ow B
‘mﬂ _z_._u Dn_ _,q_lﬂ ‘M o o ‘Bvo M ° dy L_w_ 1r‘_ mﬁl A..__| ‘W X °© ‘mﬂ I~ L@nl N
— T 9 o gE i~ o of L O ou o pw Ko ~0 =
N ol 30 E mﬁ ﬂ_m_| Q n M .AT ~X| H_Al m_m,._ ﬂﬂ 17_A|1_ N J.HH| uhuB =) _IT 1_ﬁl ‘_.__m.o ™
qo.mamw__omoo_e m:ﬁgﬂaﬁoﬂﬂﬁﬁwi%mﬂﬁﬁg%
ﬁﬁwﬂpm%ﬂa:_o mﬂﬁ__loﬂq_%lwuﬁmm%%L_L%owm__mu.oﬂoﬂﬂi_‘m.o
= X AL H_A| _JlJITI_I
Nb n m,dﬂm_xmwa Nwﬂln_m‘_ e_emﬂﬁmﬂuaﬂﬂEMWﬂE ALV@_ T
o T B o B o o = qu 5 mo. o N R
o ol BR P oy o, T B S o T oo =
o~ A -l - ;5 o o = o)
of ™ — — ®W B ﬁn_bl},ma_nvﬂ%}ogﬂ%mm@uei
ﬂm_: ﬂ O, ™ ﬂ.ﬂ — Jw__;ﬁl © >A1_ —_ 1m_|1_ 1:ﬂU :i HT_L Mul/ ﬂ ,_..rlv_ ~~ jo = N
ogﬂaﬁlwm il oz oo BB R aﬂdlmomL_u__OﬁN%cu]LﬂL
153 lal TwlittEe i iTERALC
_nl m. 1) 11_rf lls ‘_ll.ul e o M N ol 1__1_ E._ [B oF m nnv%_uﬂ jo O_E _I_I B m]
Haﬂ%wé,_om%%i%ﬂ&ﬂﬁ]emjﬂmﬂﬁliﬂ
@.mﬂo_a__aﬂi%Egﬂ%%:_alvmmEo_E%é o
ao.mJ.Moﬁﬂﬁ"_ﬂﬂ.ma@r@%:lw_aamm@w%%ﬂao_aﬂu
ﬂm%%o.HE%@%mo%ﬂnﬁ%gﬂH.m&%ao_}o_eegi
KLl it agri T BLE T g DY °oE I g
o_amm_uan oﬂﬂﬁ%uoée_eﬂo.WHLwﬁoﬁﬂ,moﬂo%@moowm
S w2) T L L. £ o =
P2 ERG L O e oW M
g EE LT oop B oK = T oz B M
L.:n. w " 1_.:"_ KA E._ o_a E._ X E._ CrRAS M ‘...__m o ‘,_.rjnm 1_| e 0_1_ _r_l m.u ,M .
.mﬂﬂ%ﬂu%u}.%ﬂne_@lKWﬂHﬂ%ﬁ_ﬂ%mo%mq
TN o> K e BT T om oo oW Ewow © 5
= of < A= up ol % m o ful — g N
o%Hé%HAJﬂ%@_ﬂ,%aﬁﬂﬂggagﬂ,éﬂmﬂ
imoﬂ%ﬂ;ﬂ%mﬂmﬂ@;%%?HE%%%QWﬂ%mi
WO OBR E o oo N R 3= o o oo K AR ﬂmww < A1 =
B oA T B > %luqu%:_eﬂ@:v}%ﬂuﬂ.@a_a
Ao i T S TR~ 4 o 5
o ~ ™ M B oF mom B

113

Alo]an, o] &

LS,
T =

gl

A

1=l
=

2 7P sk 4l

A T2 gL 72 g9lel A(Cel)o] T

{|m
__Oﬂ

1

/\15
[

B!

Al 7]

A

1

A

7

(Input Feature Map)2] 7|1} 7}

5

of ¥

L=
o

%] stepu]el o] 27]

ofujzt w22

e

stk

ok

A=o] 11

E](Penalty) &

L Rk

H: 2015-20950

St
o}

114

	1 Introduction
	1.1 DNN Accelerator with Stochastic Computing
	1.2 Neural Architecture Transformation
	1.3 Fine-Grained Neural Architecture Search

	2 Background
	2.1 Stochastic Computing
	2.2 Neural Network
	2.2.1 Network Compression
	2.2.2 Neural Network Accelerator

	2.3 Knowledge Distillation
	2.4 Neural Architecture Search

	3 DNN Accelerator with Stochastic Computing
	3.1 Motivation
	3.1.1 Multiplication Error on Stochastic Computing
	3.1.2 DNN with Stochastic Computing

	3.2 Unipolar SC Hardware for CNN
	3.2.1 Overall Hardware Design
	3.2.2 Stochastic ReLU function
	3.2.3 Stochastic Max function
	3.2.4 Efficient Average Function

	3.3 Weight Modulation for SC Hardware
	3.3.1 Weight Normalization for SC
	3.3.2 Weight Upscaling for Output Layer

	3.4 Early Decision Termination
	3.5 Stochastic Number Generator Sharing
	3.6 Experiments
	3.6.1 Accuracy of CNN using Unipolar SC
	3.6.2 Synthesis Result

	3.7 Summary

	4 Neural Architecture Transformation
	4.1 Motivation
	4.2 Network Recasting
	4.2.1 Recasting from DenseNet to ResNet and ConvNet
	4.2.2 Recasting from ResNet to ConvNet
	4.2.3 Compression
	4.2.4 Block Training
	4.2.5 Sequential Recasting and Fine-tuning

	4.3 Experiments
	4.3.1 Visualization of Filter Reduction
	4.3.2 CIFAR
	4.3.3 ILSVRC2012

	4.4 Summary

	5 Fine-Grained Neural Architecture Search
	5.1 Motivation
	5.1.1 Search Space Reduction Versus Diversity
	5.1.2 Hardware-Aware Optimization

	5.2 InheritedNAS
	5.2.1 Stage Independent Search
	5.2.2 Operation Pruning
	5.2.3 Entire Search Procedure

	5.3 Hardware-aware Penalty Design
	5.4 Experiments
	5.4.1 Fine-Grained Architecture Search
	5.4.2 Penalty Analysis

	5.5 Summary

	6 Conclusion
	Abstract (In Korean)

<startpage>20
1 Introduction 1
 1.1 DNN Accelerator with Stochastic Computing 2
 1.2 Neural Architecture Transformation 4
 1.3 Fine-Grained Neural Architecture Search 6
2 Background 8
 2.1 Stochastic Computing 8
 2.2 Neural Network 10
 2.2.1 Network Compression 10
 2.2.2 Neural Network Accelerator 13
 2.3 Knowledge Distillation 17
 2.4 Neural Architecture Search 19
3 DNN Accelerator with Stochastic Computing 23
 3.1 Motivation 23
 3.1.1 Multiplication Error on Stochastic Computing 23
 3.1.2 DNN with Stochastic Computing 24
 3.2 Unipolar SC Hardware for CNN 25
 3.2.1 Overall Hardware Design 25
 3.2.2 Stochastic ReLU function 27
 3.2.3 Stochastic Max function 30
 3.2.4 Efficient Average Function 36
 3.3 Weight Modulation for SC Hardware 38
 3.3.1 Weight Normalization for SC 38
 3.3.2 Weight Upscaling for Output Layer 43
 3.4 Early Decision Termination 44
 3.5 Stochastic Number Generator Sharing 49
 3.6 Experiments 53
 3.6.1 Accuracy of CNN using Unipolar SC 53
 3.6.2 Synthesis Result 57
 3.7 Summary 58
4 Neural Architecture Transformation 59
 4.1 Motivation 59
 4.2 Network Recasting 61
 4.2.1 Recasting from DenseNet to ResNet and ConvNet 63
 4.2.2 Recasting from ResNet to ConvNet 63
 4.2.3 Compression 63
 4.2.4 Block Training 65
 4.2.5 Sequential Recasting and Fine-tuning 67
 4.3 Experiments 69
 4.3.1 Visualization of Filter Reduction 70
 4.3.2 CIFAR 71
 4.3.3 ILSVRC2012 73
 4.4 Summary 76
5 Fine-Grained Neural Architecture Search 77
 5.1 Motivation 77
 5.1.1 Search Space Reduction Versus Diversity 77
 5.1.2 Hardware-Aware Optimization 78
 5.2 InheritedNAS 79
 5.2.1 Stage Independent Search 79
 5.2.2 Operation Pruning 82
 5.2.3 Entire Search Procedure 83
 5.3 Hardware-aware Penalty Design 85
 5.4 Experiments 87
 5.4.1 Fine-Grained Architecture Search 88
 5.4.2 Penalty Analysis 90
 5.5 Summary 92
6 Conclusion 93
Abstract (In Korean) 113
</body>

