

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. Dissertation of Engineering

Approximate Computing for
Aging Compensation and

Energy-efficient Neural Network
근사 컴퓨팅을 이용한 회로 노화 보상과 에너지

효율적인 신경망 구현

August 2020

Graduate School of Seoul National University
Department of Electrical and Computer Engineering

Heesu Kim

Approximate Computing for
Aging Compensation and

Energy-efficient Neural Network

지도교수 이 혁 재

이 논문을 공학박사 학위논문으로 제출함

2020년 7월

서울대학교 대학원

전기·정보공학부

김희수

김희수의 공학박사 학위논문을 인준함

2020년 7월

위 원 장 김태환 (인)

부위원장 이혁재 (인)

위 원 유승주 (인)

위 원 류수정 (인)

위 원 이진호 (인)

Abstract

Heesu Kim

Department of Electrical and Computer Engineering

College of Engineering

Seoul National University

Approximate computing reduces the cost (energy and/or latency) of compu-

tations by relaxing the correctness (i.e., precision) of computations up to the

level, which is dependent on types of applications. Moreover, it can be real-

ized in various hierarchies of computing system design from circuit level to

application level.

This dissertation presents the methodologies applying approximate com-

puting across such hierarchies; compensating aging-induced delay in logic cir-

cuit by dynamic computation approximation (Chapter 1), designing energy-

efficient neural network by combining low-power and low-latency approximate

neuron models (Chapter 2), and co-designing in-memory gradient descent

module with neural processing unit so as to address a memory bottleneck

incurred by memory I/O for high-precision data (Chapter 3).

The first chapter of this dissertation presents a novel design methodology

to turn the timing violation caused by aging into computation approximation

error without the reliability guardband or increasing the supply voltage. It

can be realized by accurately monitoring the critical path delay at run-time.

The proposal is evaluated at two levels: RTL component level and system

level. The experimental results at the RTL component level show a signifi-

cant improvement in terms of (normalized) mean squared error caused by the

i

timing violation and, at the system level, show that the proposed approach

successfully transforms the aging-induced timing violation errors into much

less harmful computation approximation errors, therefore it recovers image

quality up to perceptually acceptable levels. It reduces the dynamic and static

power consumption by 21.45% and 10.78%, respectively, with 0.8% area over-

head compared to the conventional approach.

The second chapter of this dissertation presents an energy-efficient neural

network consisting of alternative neuron models; Stochastic-Computing (SC)

and Spiking (SP) neuron models. SC has been adopted in various fields to

improve the power efficiency of systems by performing arithmetic computa-

tions stochastically, which approximates binary computation in conventional

computing systems. Moreover, a recent work showed that deep neural net-

work (DNN) can be implemented in the manner of stochastic computing and

it greatly reduces power consumption. However, Stochastic DNN (SC-DNN)

suffers from problem of high latency as it processes only a bit per cycle. To

address such problem, it is proposed to adopt Spiking DNN (SP-DNN) as

an input interface for SC-DNN since SP effectively processes more bits per

cycle than SC-DNN. Moreover, this chapter resolves the encoding mismatch

problem, between two different neuron models, without hardware cost by com-

pensating the encoding mismatch with synapse weight calibration. A resultant

hybrid DNN (SPSC-DNN) consists of SP-DNN as bottom layers and SC-DNN

as top layers. Exploiting the reduced latency from SP-DNN and low-power con-

sumption from SC-DNN, the proposed SPSC-DNN achieves improved energy-

efficiency with lower error-rate compared to SC-DNN and SP-DNN in same

network configuration.

The third chapter of this dissertation proposes GradPim architecture,

ii

which accelerates the parameter updates by in-memory processing which is co-

designed with 8-bit floating-point training in Neural Processing Unit (NPU)

for deep neural networks. By keeping the high precision processing algorithms

in memory, such as the parameter update incorporating high-precision weights

in its computation, the GradPim architecture can achieve high computational

efficiency using 8-bit floating point in NPU and also gain power efficiency by

eliminating massive high-precision data transfers between NPU and off-chip

memory. A simple extension of DDR4 SDRAM utilizing bank-group paral-

lelism makes the operation designs in processing-in-memory (PIM) module

efficient in terms of hardware cost and performance. The experimental results

show that the proposed architecture can improve the performance of the pa-

rameter update phase in the training by up to 40% and greatly reduce the

memory bandwidth requirement while posing only a minimal amount of over-

head to the protocol and the DRAM area.

Keywords: approximate computing, circuit aging, stochastic computing, spik-

ing neural network, in-memory, mixed-precision, neural processing unit

Student Number: 2015-20917

iii

Contents

Abstract i

List of Figures vii

List of Tables x

Chapter 1: Dynamic Computation Approximation for Aging

Compensation 1

1.1 Introduction . 1

1.1.1 Chip Reliability . 1

1.1.2 Reliability Guardband 2

1.1.3 Approximate Computing in Logic Circuits 2

1.1.4 Computation approximation for Aging Compensation . 3

1.1.5 Motivational Case Study 4

1.2 Previous Work . 5

1.2.1 Aging-induced Delay . 5

1.2.2 Delay-Configurable Circuits 6

1.3 Proposed System . 8

1.3.1 Overview of the Proposed System 8

1.3.2 Proposed Adder . 9

1.3.3 Proposed Multiplier . 11

1.3.4 Proposed Monitoring Circuit 16

1.3.5 Aging Compensation Scheme 19

iv

1.4 Design Methodology . 20

1.5 Evaluation . 24

1.5.1 Experimental setup . 24

1.5.2 RTL component level – Adder/Multiplier 27

1.5.3 RTL component level – Monitoring circuit 30

1.5.4 System level . 31

1.6 Summary . 38

Chapter 2: Energy-Efficient Neural Network by Combining Ap-

proximate Neuron Models 40

2.1 Introduction . 40

2.1.1 Deep Neural Network (DNN) 40

2.1.2 Low-power designs for DNN 41

2.1.3 Stochastic-Computing Deep Neural Network 41

2.1.4 Spiking Deep Neural Network 43

2.2 Hybrid of Stochastic and Spiking DNNs 44

2.2.1 Stochastic-Computing vs Spiking Deep Neural Network 44

2.2.2 Combining Spiking Layers and Stochastic Layers 46

2.2.3 Encoding Mismatch . 47

2.3 Evaluation . 49

2.3.1 Latency and Test Error 49

2.3.2 Energy Efficiency . 51

2.4 Summary . 54

Chapter 3: GradPIM: In-memory Gradient Descent in Mixed-

Precision DNN Training 55

3.1 Introduction . 55

3.1.1 Neural Processing Unit 55

3.1.2 Mixed-precision Training 56

3.1.3 Mixed-precision Training with In-memory Gradient De-

scent . 57

v

3.1.4 DNN Parameter Update Algorithms 59

3.1.5 Modern DRAM Architecture 61

3.1.6 Motivation . 63

3.2 Previous Work . 65

3.2.1 Processing-In-Memory 65

3.2.2 Co-design Neural Processing Unit and Processing-In-

Memory . 66

3.2.3 Low-precision Computation in NPU 67

3.3 GradPIM . 68

3.3.1 GradPIM Architecture 68

3.3.2 GradPIM Operations 69

3.3.3 Timing Considerations 70

3.3.4 Update Phase Procedure 73

3.3.5 Commanding GradPIM 75

3.4 NPU Co-design with GradPIM 76

3.4.1 NPU Architecture . 76

3.4.2 Data Placement . 79

3.5 Evaluation . 82

3.5.1 Evaluation Methodology 82

3.5.2 Experimental Results 83

3.5.3 Sensitivity Analysis . 88

3.5.4 Layer Characterizations. 90

3.5.5 Distributed Data Parallelism 90

3.6 Summary . 92

3.6.1 Discussion . 92

Bibliography 113

요약 114

vi

List of Figures

1.1 Impact of the aging-induced delay on an image processing ap-

plication. 4

1.2 Simplified block diagram of the proposed system. 8

1.3 Proposed adders (a) masking type (b) cutting type 10

1.4 4-bit (a) conventional and (b) proposed CSA array multiplier.

Dashed arrows present critical paths and those in (b) present

them before and after the truncation of multiplicand operand.

The red-colored operands are position-changed operands (par-

tial products) in the proposed multiplier. The bottom of (b)

shows detailed changes of the critical paths. 12

1.5 Structure of the proposed monitoring circuits; (a) generic and

(b) dedicated. Delay elements used in each monitoring circuit

are presented at bottom of each. Note that cells for generating

partial products and switch logic are omitted for clarity. 15

1.6 Aging compensation scheme with approximation. 19

1.7 Design methodology of the proposed system. 20

1.8 Critical path delays of the proposed multiplier and two types of

monitoring circuits: (a) generic and (b) dedicated. The shorter

distance between the critical path delays means the lower delay

mismatch and the better monitoring performance. 29

1.9 (a) DCT/IDCT codec blocks and (b) matrix multiplication unit

in DCT and IDCT blocks. 31

vii

1.10 Evaluation of aging compensation of proposed adder with ap-

proximation in image processing application. The value under

the images are PSNR. 32

1.11 Evaluation of aging compensation of proposed multiplier (and

proposed adder) with approximation in image processing appli-

cation. The value under the images are PSNR. 33

1.12 Power and area comparison of DCT/IDCT codec block for con-

ventional and proposed approaches. The proposed approach in-

cludes the proposed adder and multiplier. 36

2.1 Example of stochastic number and their multiplication. AND

and XNOR gates are used for unipolar and bipolar encoding,

respectively. 42

2.2 The histogram shows the distribution of input values to the

activation function in the first layer of SC-DNN for a test image.

The activation function of tanh is drawn on top of the histogram

to show that most of the inputs exist in the saturation regions

of the function. 45

2.3 Topology of SPSC-DNN. The transform layer is placed to emu-

late encoding mismatch between the spiking neuron and stochas-

tic neuron in training phase. SC-DNN and SP-DNN also have

the same topology, except for different type of neuron. Each

layer has 200-500-500-10 neurons, respectively. 48

2.4 X-axis values are in number of steps; each step corresponds to 32

bits in the input bitstream (thus the total length of a bitstream

is 32 × 32 = 1024 bits). 50

viii

2.5 Latency (i.e., length) and energy consumption in SC-DNN, SP-

DNN, and SPSC-DNN for different dataset and target test er-

ror. The effect of EDT is also evaluated. Since SC-DNN cannot

reach the target test error for 1.81% on MNIST and 3.08% on

N-MNIST, it is not included in the graphs on the second and

third rows. 53

3.1 Mixed-precision training with GradPIM. 58

3.2 Modern DDR4 SDRAM internal architecture. 61

3.3 Breakdown of the memory access of ResNet-18 layers with mixed

precision training. 64

3.4 DRAM internal architecture of GradPIM unit. 68

3.5 Example procedure for quantization/dequantization and mo-

mentum SGD algorithm with GradPIM. 72

3.6 NPU architecture of GradPIM. 77

3.7 Address mapping and data placement scheme for GradPIM. . . 80

3.8 Normalized execution time of each layer on various networks

using GradPIM. The filled parts of the bars represent parameter

update phase, and the empty parts of the bars represent the

forward/backward phase. 84

3.9 Energy consumption of various networks using GradPIM. . . . 86

3.10 Command bus utilization (left) and the external/internal mem-

ory bandwidth consumption using GradPIM (right). 87

3.11 Sensitivity to compute-bandwidth ratio (left), minibatch size

(mid), and minibatch size (right). 88

3.12 Layer characterizations. 90

3.13 Projections to distributed training. 91

ix

List of Tables

1.1 Comparison of 32-bit Ripple Carry Adder and Proposed Adder 26

1.2 Comparison of 16-bit Carry Save Adder Array Multiplier and

Proposed Multiplier . 28

2.1 Power (mW) Measured on Stochastic and Spiking Neuron of

Each Layer Where The Number of Inputs of The Neurons in

The 1st, 2nd, 3rd, and 4th Layers is 784, 200, 500, and 500,

Respectively. 53

3.1 Truth Table for GradPIM Commands 75

3.2 NPU Synthesis Results . 82

3.3 DRAM parameters . 83

3.4 GradPIM Layout Results . 85

x

Chapter 1

Dynamic Computation

Approximation for Aging

Compensation

1.1 Introduction

1.1.1 Chip Reliability

Recently the chip reliability problem is getting much worse as the process

technology scales down. Among others, BTI (Bias Temperature Instability) is

a key reliability problem that degrades the chip performance by increasing the

threshold voltage and decreasing the drain current [1]. This incurs chip slow-

down, and after all, generates timing violation errors. In addition, metal-oxide

thin-film transistors suffer fast aging and thus much larger timing variations

in low supply voltage systems. Therefore, aging is a more serious problem in

low power systems such as Internet-of-Things (IoT) or biomedical devices.

1

1.1.2 Reliability Guardband

The conventional approach to compensating for this aging-induced timing vio-

lation error is assigning a reliability guardband to supply voltage [2]. However,

there are many problems in applying this approach to low power design. First

of all, it is a too pessimistic approach since it should assign a relatively large

guardband that can compensate for the chip slowdown after many years (say

10 years) of aging. This approach wastes extra power/area that is unnecessary

during the first 10-years. Second, it is very difficult to determine an accurate

guardband at design-time because the chip slowdown by aging depends on

operating conditions including supply voltage, temperature, and application

scenario. That is, the guardband should be determined by considering the

worst-case operating conditions; it is very risky to determine the guardband

by considering the statistical or balance conditions because it cannot ensure

the normal chip operation in the worst-case conditions. Third, increasing the

supply voltage to secure the guardband makes the aging accelerate.

1.1.3 Approximate Computing in Logic Circuits

Instead of increasing supply voltage and/or using faster (but larger) circuit

as in the conventional approach while maintaining the computation accuracy,

adopting the concept of approximate computing can be a more efficient solu-

tion in applications such as image/video processing, where the output quality

is less sensitive to small errors. Under the assumption that the quality degrada-

tion by the approximation is not large, approximate computing can effectively

increase performance and/or reduce power consumption. Therefore, simpli-

fied or approximate arithmetic (logic) circuits (adders, multipliers) are widely

used to generate acceptable quality results in signal processing applications,

2

especially in image/video processing applications [3, 4, 5, 6].

1.1.4 Computation approximation for Aging Compensation

In this chapter, an approach that enables the system to adapt to aging dy-

namically is presented. Thus, it does not need to add the pessimistic relia-

bility guardband at design-time. Instead, it monitors the aging-induced delay

at run-time and compensate for the increased delay by curtailing the critical

path in a way of minimizing the accuracy loss due to the computation ap-

proximation. Therefore, it is essential to measure the chip slowdown due to

aging and compensate for it adequately at run-time. For the implementation,

the chip performance is measured periodically [7] using on-chip monitor since

the aging is a very slow process. Ideally, this approach does not need to add

any reliability guardbands. Practically, however, a small guardband should

be secured to compensate the delay mismatch between the monitoring cir-

cuit and the actual critical path delay of the target block. The approach also

requires reconfigurable circuits that can adjust the level of approximation.

A design methodology is presented to implement reconfigurable adder and

multiplier that replace conventional adder and multiplier. Since they are the

fundamental arithmetic building blocks for more complex arithmetic circuits,

arithmetic circuits consisting of them also can be implemented following such

design methodology. Note that all aging-induced delays in the system cannot

be compensated by computation approximation. For example, timing errors

in control logic cannot be translated to computation error. For those kinds of

logic, it should be handled by other means such as employing reliable margin,

transistor upsizing, or other forms of redundancy.

3

no aging 1-year aging 10-year aging

PSNR=35.71 PSNR=14.45 PSNR=12.84

Figure 1.1: Impact of the aging-induced delay on an image processing appli-
cation.

1.1.5 Motivational Case Study

The main issue in this case study is whether or not a reliability guardband is es-

sentially required in every circuit design. Conventionally, even in error-tolerant

circuits, the guardband is indispensably required to gain reasonable outputs.

To demonstrate this, the proposed approach that compensates aging-induced

delay dynamically is applied to a image processing system that performs Dis-

crete Cosine Transform (DCT) and Inverse Discrete Cosine Transform (IDCT).

Detailed setup is described in subsection 1.5.1.

To simulate aging effect of circuits, a degradation-aware library (standard

cell libraries), which has been recently proposed and made publicly available [5]

is used. The library is compatible with existing EDA tool flows like Synop-

sys and hence one can directly use them to perform static timing analysis of

a circuit netlist without requiring any modifications. In practice, the library

contains the delay information of standard cells under the effect (i.e., BTI)

that aging has on the electrical characteristics of nMOS and pMOS transis-

tors (e.g., threshold voltage and carrier mobility). Note that even though the

4

degradation-aware library [5] only models BTI, the proposed approach is ag-

nostic to any type of transistor aging (i.e., BTI or HCI) since it just measures

aging-induced delay, then compensates the increased delay, regardless of its

source. In practice, both of BTI and HCI can be modeled jointly during the

cell library characterization [8]. In this work, I focus on the worst-case aging

estimation provided by [5] in which a continuous DC stress is assumed (i.e.,

100% duty cycle) in order to ensure reliability for the entire projected lifetime

(10 years). Therefore, the recovery mechanism of BTI that depends on the

running workload is not considered to provide upper boundary of aging.

As shown in Figure 1.1, removing the guardband in the circuit design re-

sults in a significant quality drop on an image when the circuit first encodes

the image and then decodes it. In such a chain of circuits, errors are increas-

ingly accumulated. The errors first occur in the encoder and then they are

propagated to the decoder which leads to a larger impact on the quality of

the final output image. As process technology advances, this problem becomes

worse and worse because the aging-induced delay by BTI and HCI (Hot Carrier

Injection) increases [9].

1.2 Previous Work

1.2.1 Aging-induced Delay

Many approaches have been studied to avoid aging-induced timing violation

errors. The conventional approach to compensate for the errors is assigning

an additional reliability guardband to supply voltage (or to slack of the crit-

ical path) [2]. However, it is too pessimistic and it is very difficult to deter-

mine an accurate guardband at design-time. In [5], the circuits are optimized

5

against aging through logic synthesis with degradation-aware cell libraries. It

enables the optimization process to select cells with most suitable input slew

and output load capacitance for each set of operating conditions, considering

aging effects. The work in [10] quantifies the impact of aging-induced errors

and approximation errors on quality loss when the guardband is removed. It

replaces the guardband with an equivalent reduction of precision in approxi-

mate computing applications. The aging effects are characterized and applied

at design-time. However, such design-time approaches naturally result in an

over-design. A more aggressive optimization can be done by run-time mea-

surement of the chip slowdown due to aging and compensation. There is a

technique for variation-resilient design that allow timing violation errors and

manage the design reliability dynamically [11]. For measuring the chip slow-

down, many on-chip aging monitors are presented [12, 13, 14, 15]. However, all

these approaches raise the operation voltage to suppress the errors for accurate

computing.

1.2.2 Delay-Configurable Circuits

Approximate computing [4] is a concept to trade-off computation accuracy

for speed (i.e., delay) or energy, thus it can be exploited to alleviate timing

violation errors including those incurred by the aging-induced delay [10]. Es-

pecially, approximate arithmetic circuits such as adders and multipliers have

been widely studied. The approximate circuits can be divided into two cate-

gories: statically configurable and dynamically configurable circuits. The stat-

ically configurable circuits [16, 17, 18, 19, 20] have been proposed, and they

have configuration parameters which enables the trade-off between the compu-

tation precision and the low energy consumption by adjusting approximation

6

level. Some works [18, 19] extensively explore design space for finding an op-

timal point on the trade-off curve. [18] proposes an approximate adder having

fine-grain configuration parameters, providing high flexibility in design space

and the trade-off curve. [19] separates the higher significant bits and the lower

significant bits, and processes them differently using some design alternatives,

which they proposed to avoid errors in the higher significant bits, for better

quality-energy trade-off. However, none of these approaches handle run-time

effects such as the aging-induced delay since they need re-design or re-synthesis

at design-time to change the configuration.

On the other hand, dynamically configurable circuits [21, 22, 23, 24, 25,

26] can be configured to various approximation levels at run-time without

re-synthesis, thus being able to handle the run-time effects. The accuracy-

configurable adder proposed in [21] changes the accuracy of results by select-

ing the operation mode at run-time. It basically outputs approximate results

by cutting propagation path, and if needed, it corrects the errors for accu-

rate results with multiple overlapping sub-adders. The gracefully-degrading

adder in [22] is comprised of fixed structured multiple sub-adder units with

selectable length for carry prediction bits, so it can satisfy a computation qual-

ity requirement varying at run-time. [25, 26] propose dynamically configurable

multipliers that decrease power consumption by disabling switching activities

of inactive sections resulting from the reduced input bit-width determined at

run-time.

Although those circuits are configurable at run-time, they do not con-

sider timing violation errors incurred by run-time effects, but primarily con-

figure the approximate circuit to achieve energy reductions with acceptable

accuracy degradation. Several prior work have specifically targeted timing ef-

7

Monitoring Circuit

Delay information

Control

UnitSwitch

configuration

Proposed

Adder/Multiplier

Proposed

Adder/Multiplier

Target Block

Figure 1.2: Simplified block diagram of the proposed system.

fects [6, 23, 24]. The dynamic voltage accuracy scaling approach proposed

in [23, 24] achieves dynamic voltage overscaling by bit-width reduction un-

der timing constraints. [6] proposes quality and delay configurable circuits to

replace the temperature guardband at run-time. Neither of these approaches

target aging, however.

This work is the first to directly measure and compensate for the aging-

induced delay of basic arithmetic circuits such as adders and multipliers at

run-time. The proposed approximate circuits truncate its least significant bits

(LSBs) to reduce the critical path delay using the measured delay information

at run-time with only a couple of gates overhead.

1.3 Proposed System

1.3.1 Overview of the Proposed System

Figure 1.2 is the simplified block diagram of the proposed system. It comprises

the monitoring circuit, control unit, and the target block. The target block im-

plements a signal processing application such as an image/video codec. it is

considered to use the proposed adder/multiplier in the target block. The mon-

8

itoring circuit outputs the delay information of the adders/multipliers in the

target block under the current operating condition. Then, the control unit can

reduce the critical path delay of the adders/multipliers by truncating LSBs

according to the measured aging-induced delay information. It is performed

using the switches of the adders/multipliers to cut-off their carry propaga-

tion paths. The overhead of the control unit is not too large because it just

translates the 5-bit output of the monitoring circuit into the 4-bit configura-

tion input in a way of counting. As mentioned in the previous section, the

proposed adder/multipliers basically operates as an accurate circuit, but be-

comes an approximate one if some aging is detected by the monitoring circuit.

Detailed explanations of each component in Figure 1.2 are given in the follow-

ing subsections.

1.3.2 Proposed Adder

The proposed adder structure is based on ripple carry adder, which is the

most cost/power-efficient adder among conventional adders. It shows the low-

est power consumption and the best power-delay product metric, compared to

other conventional accurate adders [16]. So, it has been widely chosen for the

low power design. However, in a conventional ripple carry adder, errors in the

most significant part (called MSP errors) are generated when the carry signal

cannot be propagated to the MSP positions during one clock period due to

the aging-induced delay. Such MSP errors are much more critical than errors

in the least significant part (called LSP errors), especially when the sign bit

in the 2’s complement representation is involved in the errors.

To resolve this problem, two types of adders—masking and cutting— are

proposed to prevent MSP errors. Figure 1.3 shows the structure of the two

9

Critical path

@ mask[2] = 1’b0

mask[3] mask[2] mask[1] mask[0]

4-bit switch

CinCout

sum[31]

FA

a[31] b[31]

FA

sum[2]

a[2] b[2]

FA

sum[1]

a[1] b[1]

FA

sum[0]

a[0] b[0]

FA

sum[4]

a[4]b[4]

FA

sum[3]

a[3] b[3]

(a) Masking type.

Critical path

@ cut[3] = 1’b0

CinCout

cut[0]

4-bit switch

FA

a[31]b[31]

sum[31]

FA

a[0] b[0]

sum[0]

cut[1]

FA

a[1] b[1]

sum[1]

cut[2]

FA

a[2] b[2]

sum[2]

cut[3]

FA

a[3] b[3]

sum[3]

FA

a[4] b[4]

sum[4]

(b) Cutting type.

Figure 1.3: Proposed adders (a) masking type (b) cutting type .

10

proposed adders. The difference from the conventional adder is that the pro-

posed adders have a 4-bit switch to cut-off the carry propagation path. These

circuits reduce the critical path delay according to the configuration input

value from the control unit. The masking type adder truncates some LSBs

of the adder input to cut-off the carry propagation path, while the cutting

type adder directly blocks the carry propagation from some LSBs. (those two

types of gating are named to “truncation” afterwards.) For example, in case

of masking type adder, when setting the configuration input to “mask[3:0]

= 4’b1011”, the carry-out (CO) of the third full adder (FA) is always zero.

Then the critical path becomes shorter; the new critical path is from a[3] to

sum[31] (red arrow in Figure 1.3a). Also, in case of cutting type adder, when

setting the configuration input to “cut[3:0] = 4’b0111”, the carry out of the

fourth FA is always gated not to propagate it into the next (fifth) FA. They

are configured dynamically at run-time, only when the aging-induced delay is

detected by the monitoring circuit. The blocking of carry propagation in these

examples may generate many LSP errors instead of a few critical MSP errors.

In Figure 1.3, we can see only the 4-bit switch to cut-off the carry propa-

gation path. However, the optimal number of bits depends on the maximum

amounts of the delay increase due to aging, which in turn depends on oper-

ating conditions and process technology. Detailed explanations determining it

are given in Section 1.4.

1.3.3 Proposed Multiplier

The proposed multiplier structure is based on Baugh-Wooley multiplier [27]

which supports unsigned and signed parallel multiplication and I call it Carry-

Save-Adder (CSA) array multiplier (see Figure 1.4a) in this chapter because

11

HA
𝑎2𝑏1

FA
𝑎2𝑏2

FA
𝑎1𝑏3

FA
𝑎0𝑏3

HA

𝑎2𝑏0

𝑎1𝑏1

FA
𝑎1𝑏2

HA

𝑎1𝑏0

𝑎0𝑏1

FA
𝑎0𝑏2

𝑎0𝑏0

FA
𝑎2𝑏3

FA

𝑃6𝑃7

FA

𝑃5

HA

𝑃4 𝑃3 𝑃2 𝑃1 𝑃0

𝑎3𝑏0

HA
𝑎3𝑏1

HA
𝑎3𝑏2

1

HA
𝑎3𝑏3

FA

1

C
S

A
 a

rr
ay

V
ec

to
r-

m
er

g
in

g
 a

d
d
er

Partial products

𝑎𝑏 = 𝐴𝑁𝐷(𝑎, 𝑏)

𝑎𝑏 = 𝑁𝐴𝑁𝐷(𝑎, 𝑏)

Critical path

(a) Conventional CSA array multiplier.

FA
𝑎2𝑏1

𝒂𝟎𝒃𝟑

FA
𝑎2𝑏2

HA HA

HA

𝑎2𝑏0

𝑎1𝑏1

FA
𝑎1𝑏2

HA

𝑎1𝑏0

𝑎0𝑏1

FA
𝑎0𝑏2

𝑎0𝑏0

HA

FA

𝑃6𝑃7

FA

𝑃5

HA

𝑃4 𝑃3 𝑃2 𝑃1 𝑃0

𝑎3𝑏0

FA
𝑎3𝑏1

𝒂𝟏𝒃𝟑

FA
𝑎3𝑏2

𝒂𝟐𝒃𝟑

1

HA

FA

1

(no truncation)

(𝑎0 = 0, 1-bit trunc.)

(𝑎1, 𝑎0 = 0, 2-bit trunc.)

Critical paths

Partial products

𝑎𝑏 = 𝐴𝑁𝐷(𝑎, 𝑏)

𝑎𝑏 = 𝑁𝐴𝑁𝐷(𝑎, 𝑏)

FA FA HA HA FA FA FA
SUM SUM SUM

CO CO CO

FA FA HA FA FA FA
SUM SUM

CO CO CO

FA FA HA FA FA
SUM

CO COCO

SUM

SUM

SUM

𝑎1𝑏3 𝑎0𝑏3𝑎2𝑏3𝑎3𝑏3

(b) Proposed CSA array multiplier.

Figure 1.4: 4-bit (a) conventional and (b) proposed CSA array multiplier.
Dashed arrows present critical paths and those in (b) present them before and
after the truncation of multiplicand operand. The red-colored operands are
position-changed operands (partial products) in the proposed multiplier. The
bottom of (b) shows detailed changes of the critical paths.

12

the main part of the multiplier is a CSA array, which has array structure

with full adders (FAs) and half adders (HAs). The CSA array performs the

partial product additions propagating values from the upper rows to bottom

rows through diagonal arrows (carry-out) and vertical arrows (sum). The other

part of the multiplier is the vector-merging adder, which performs the carry

propagations to transform the outputs of the CSA array into a binary form. I

consider this to be a representative multiplier, since the CSA array multiplier

is a base structure of many parallel and power-delay optimized multipliers

including [28] and [29], which employ [30] and/or Wallace-tree algorithm [31]

along with the CSA array multiplier structure.

In order to cut the critical path by truncating the LSBs, two types of

truncation, masking and cutting, can be considered as for the adder. However,

masking is selected for the proposed multiplier, because there are many wires in

between rows of CSA array making delay paths rather complex, thus requiring

many AND cells to cut them if cutting type is chosen.

When applying the masking truncation, truncation happens in either mul-

tiplicand (ai’s in Figure 1.4) or multiplier operand (bi’s in Figure 1.4). If

truncation occurrs in the LSBs of multiplier operand, it eliminates value prop-

agation delay in the CSA array by forcing the outputs (carry-out and sum) of

the corresponding FAs/HAs to be fixed since the truncation fixes the inputs of

the FAs/HAs to either “0” or “1”. For example, if 2 bits of LSBs of multiplier

operand (b0 = 0, b1 = 0) is truncated as in Figure 1.4a, all outputs (carry-out

and sum) of the FAs/HAs of the first row in the CSA array are fixed to either

“0” or “1” depending on their inputs fixed for b0 or b1. Thus, the delay path

through the first row is not on the critical path now. In the same way, as the

number of truncated bits increases, the critical path delay decreases.

13

On the other hand, if the LSBs of a multiplicand operand is truncated , the

partial products including sign bits (a3 or b3) in the conventional CSA array

multiplier (Figure 1.4a) hinders the critical path reduction. For example, if a0

is truncated to be “0”, then a0b3 is always “1”, and thus the purple arrow in

Figure 1.4a can be either “0” or “1” according to the input of vertical arrow

(the input of diagonal arrow is always “0” due to a0 = 0). Therefore, the

critical path delay is not affected by the truncation. If fixing the value of the

purple arrow to “0” happens, the critical path delay can be shortened since

the carry-out of the purple HA is fixed to “0”. To achieve this, I change the

position of operand-bits from a lower row to higher rows as represented by

solid red-arrows and red operand-bits in Figure 1.4b, and exchange the FA

and HA cells according to the position changes. Note that these changes do

not alter the computation results. Now, if 1-bit in LSP is truncated (a0 = 0),

the purple arrow is fixed to “0”. Hence the critical path is changed to the blue-

dashed arrows from the red-dashed arrows as depicted in Figure 1.4b. For 2-

bit truncation (a0 = 0, a1 = 0), the critical path becomes gray-dashed arrows.

Note also that this position changes of operands do not cost any overhead,

since the number of FAs and HAs is unchanged.

I choose to truncate multiplicand operand, because it can reduce the crit-

ical path delay starting from 1-bit truncation. On the other hand, if I choose

to truncate multiplier operand, the minimum number of LSBs that can reduce

the critical path delay is 2 bits since 1-bit truncation cannot fix the outputs of

every FA/HA on the first row. Therefore, truncating the multiplicand operand

shows better efficiency in terms of the trade-off between reduction of critical

path delay and errors of computation approximation. It also enables to handle

the initial stage of aging with 1-bit truncation.

14

Test

Pulse

Delay ChainControl

Block

Test

Pulse

Sample Clock

Encode

Block
Output

[31:0]

Target

System

Clock
Out

[4:0]

Sample Clock

F/F

Output[0]

FA

Sample Clock

F/F

Output[31]

FA

FA
CO

1 0

0

Delay elements

(a) Generic monitoring circuit corresponding to 32-bit ripple carry adder.

Test

Pulse

Delay ChainControl

Block

Test

Pulse

Sample Clock

Encode

Block
Output

[30:0]

Target

System

Clock

Out

[4:0]

Sample Clock

F/F

Output[0]

FA FA

Sample Clock Output[29]

F/F

Sample Clock

F/F

Output[30]

HA

FA

SUM

FA
CO

0 0

1 0

0

HA

SUM

0

HA
CO

1

Delay elements

(b) Dedicated monitoring circuit corresponding to 16-bit CSA array multiplier.

Figure 1.5: Structure of the proposed monitoring circuits; (a) generic and
(b) dedicated. Delay elements used in each monitoring circuit are presented
at bottom of each. Note that cells for generating partial products and switch
logic are omitted for clarity.

15

1.3.4 Proposed Monitoring Circuit

The monitoring circuit is a key component to determine the quality and effec-

tiveness of the proposed system. More accurate aging-induced delay measure-

ment makes the quality degrade more gracefully with approximation. On the

other hand, the inaccurate measurement might bring excessive quality degra-

dation from LSP errors or still incur MSP errors, in spite of using the run-time

monitoring system. The dynamic approach gives better quality results than

static approach under the assumption that the sensor/monitor gives accurate

delay information.

Monitoring circuits is designed to be used for the proposed adder/multiplier

based on the state-of-the-art monitoring circuit [7]. Figure 1.5 shows the de-

tailed structure of the monitoring circuits designed for the 32-bit adder and

the 16-bit multiplier. Both of them consist of three main blocks: delay chain,

control block, and encode block. Delay chain is an array of delay elements,

each of which represents an element of the critical path of the target circuits.

The monitoring circuit proposed in [7] is a generic monitoring circuit which

uses unit delay elements to measure increased delay. It computes the ratio of

the number of delay elements which are not reachable in a clock cycle over

the total number of the delay elements. Therefore, it is applicable to any

target circuits including the ones proposed here. However, the resolution of

delay adjustment can be a problem. In [7], while they control the continuous

value (i.e. supply voltage) to adjust the circuit delay, it handles a discrete

value, which is the number of truncation bits in target circuits. Therefore, the

delay elements should be designed to be aligned with the unit of truncation.

This type of monitoring circuit is called as dedicated monitoring circuit. The

other parts of the dedicated monitoring circuit except for the comprising delay

16

elements are equal to the generic monitoring circuit.

The monitoring circuits operate as follows. First, the control block gener-

ates a test pulse and sample clock signals by using the target system clock.

While the test pulse signal propagates through the delay chain, the sample

clock samples it to see how many delay elements are propagated through

within one clock period. Then the outputs of the flip-flops (a string of 1’s

followed by a string of 0’s) are encoded to 5-bit delay output information. For

example (Figure 1.5a), at the initial year (0-year without the guardband), the

output [31:0] is always 32’hffff_ffff. However, if the input pulse signal can-

not propagate through the whole delay chain within one clock period due to

the aging-induced delay, it becomes 32’h7fff_ffff, 32’h3fff_ffff, 32’h1fff_ffff or

32’h0fff_ffff as the amount of delay increases. Based on this output informa-

tion from the monitoring circuit, the control unit can truncate the LSBs of

the target circuit according to the amount of propagation path beyond a clock

cycle. Note that some input bits of the delay elements (FAs/HAs) are fixed to

either “0” or “1” in order to make them bypass the test pulse.

In the case of the proposed adder, it consists of “FA-CO (FA carry-out)”

propagation path only in their critical path, so if FA-CO is chosen as a unit

delay element for the monitoring circuit, the dedicated monitoring circuit has

a structure of the generic monitoring circuit. Practically, two-input NAND,

NOR, XOR cells comprises a delay element and a flip-flop (F/F) is appended

to each of the delay element as depicted in Figure 1.5a. As a result, the whole

delay chain has completely the same cell composition as the critical path of the

proposed adder (i.e., ripple carry adder). That is why the monitoring circuit

can measure the aging-induced delay of the adder accurately. The number of

delay elements depends on the number of adder bits. In case of the proposed

17

multiplier, as shown in Figure 1.4, the critical path of CSA array multipliers

contains four types of propagation paths that exist in FAs and HAs. They

are “FA-SUM” path consisting of two XOR cells, “FA-CO” path consisting of

an XOR, an AND, and an OR cells, “HA-SUM” path consisting of one XOR

cell, and “HA-CO” path consisting of one AND cell as depicted in Figure 1.5b.

Therefore, four types of delay elements corresponding to each propagation path

are designed, then they constitute a delay chain by connecting themselves in

the reverse order of LSBs truncation. For example, as shown in the bottom

right of Figure 1.4b, after the 1-bit truncation, the critical path is shortened

as the amount of “HA-SUM” delay (upper shaded delay path) and after the

2-bit truncation, the critical path is further shortened as the amount of “FA-

SUM” (bottom shaded delay path). Therefore, “HA-SUM” delay element is

placed in the end of the delay chain and a “FA-SUM” delay element in front

of the “HA-SUM” delay element as shown in Figure 1.5b. Unlike the adder

where the generic and the dedicated monitors have the same structure, the

generic and the dedicated monitor of the multiplier have different structures,

their performance will be compared in subsection 1.5.3. The number of delay

elements on the delay chain depends on multipliers number of operand-bits.

Note that in the delay chains, the delay elements for generating partial

products (an AND or a NAND) and switch logic (an AND) are omitted.

However, they can be considered by placing equivalent delay elements in the

delay chain or using a small guardband.

The monitoring circuit is required to have switching activity similar to that

of the target circuits for having closely correlated aging characteristics. How-

ever, checking whether aging-induced delay incurs timing violation, involving

fetching output values of delay elements into flip-flops, is not required to be

18

Control Unit

Monitoring Circuit
Proposed Adder/Multiplier

Measure delay increase

information by aging

Y

Determine # of LSBs

to be truncated

Aging?
N

Operate as approximate

adder/multiplier

Operate as

accurate adder/multiplier

Figure 1.6: Aging compensation scheme with approximation.

performed at all times, because aging is a very slow process with alternating

phases of stress and recovery. Also, the delay measured by the monitoring cir-

cuit should be calibrated to get pure aging-induced delay independent to the

process, voltage, and temperature variations that are also measured by own

monitors [32].

1.3.5 Aging Compensation Scheme

Figure 1.6 illustrates the proposed aging compensation scheme using compu-

tation approximation. At 0-year (no aging), the proposed adder/multiplier of

target block operate as accurate adder/multiplier. At the same time, the mon-

itoring circuit periodically gives the delay information to the control unit. If an

aging-induced timing violation error is detected, the control unit determines

the number of LSBs to be truncated by the amount of delay increase due to

aging. Then the proposed adder/multiplier operate as approximate ones by

truncating some LSBs. When the delay by aging further increases, the con-

trol unit conpart1/figures the adder/multiplier to truncate more LSBs. This

scheme is automatically operated at run-time.

19

Ripple Carry Adder/

CSA Array Multiplier

Synthesis

Implement

Proposed Adder/Multiplier &

Monitoring Circuit &

Control Unit

Aging-induced Delay

Information

Timing Analysis

Standard Cell Library

(Degradation-unaware)

Degradation-aware Cell

Library [5]

Determine

Max. # of LSBs

for Truncation

Integrate

Monitoring Circuit &

Control Unit

into Target Block

Replace Conventional

Adder/Multiplier

with Proposed

Adder/Multiplier

in Target Block

Figure 1.7: Design methodology of the proposed system.

1.4 Design Methodology

In order to apply the proposed scheme, it is required to implement the pro-

posed adder/multiplier and monitoring circuit for a given design specification

and process technology. The design methodology of the proposed system is

shown in Figure 1.7. The flow chart on the left-hand side shows the design

analysis steps for the proposed system implementation, and the flow chart

on the right-hand side shows the design integration steps to integrate the pro-

posed circuits into the target block design. It is very easy to plug the proposed

methodology into a conventional design flow.

In the design analysis steps, a ripple carry adder and a CSA array multi-

plier are synthesized as the reference adder/multiplier structure with general

standard (degradation-unaware) cell library, which does not consider any ag-

ing effects. With static timing analysis, the aging-induced delay is measured

by comparing the critical path delay before and after the aging. The criti-

cal path delay after aging is analyzed with degradation-aware library [5] as

mentioned in subsection 1.1.5. Note that even though the design methodology

20

requires to develop a degradation-aware library for each technology, it is a

one-time effort for each technology and not application-specific. Therefore, it

can be reused for any design in the same technology. In addition, during the

cell library creation several corners and several operating conditions are typi-

cally considered. Therefore, having an extra corner that describes the library

behavior after aging would not lead to a significant increase in complexity.

Based on the measured aging-induced delay, the maximum number of LSBs

to be truncated for aging compensation can be determined during the expected

lifetime. Just one simulation run is enough to determine the maximum number

of LSBs (MaxBits) to be truncated during the expected lifetime (10 years) of

the target circuit since if a few more bits are added on the simulated MaxBits,

it can sufficiently cover the whole range of the truncation. That is because

MaxBits is the upper bound of the coarse-grain (bit-wise) truncation and a

few more bits (2-3 bits) on the switch logic cost only a few more gates, such

as ANDs and NANDs. It is noteworthy that the reference circuits do not have

a switch logic, and thus the reference designs have shorter critical path delay

than the proposed circuits. However, it also can be sufficiently covered by

MaxBits since the switch logic has only a gate cell delay.

Next, in the design integration steps, the monitoring circuit, control unit,

and the proposed adder/multiplier are implemented according to the speci-

fication determined in the previous steps. Then, the monitoring circuit and

the control unit are integrated into the target block. Finally, the conventional

adder/multiplier is replaced with the proposed adder/multiplier in the target

block.

There are some important guidelines to correlate the delay characteristics

between the delay chain of the monitoring circuit and the critical path of the

21

proposed adder/multiplier. As the cell delay is mainly affected by process,

voltage, and temperature (PVT), it is very important to make the PVT con-

ditions of the monitoring circuit same as that of the adder/multiplier in the

target block. This PVT matching directly relates to the accuracy improve-

ment of the proposed system. The guidelines are; First, the monitoring circuit

should share the same supply voltage rail with the adder/multiplier in the tar-

get block to correlate them closely in terms of delay characteristics and aging

process, both of which are voltage dependent. Second, the monitoring circuit

should be placed closely to the target block because the delay variation due

to on-chip process variation is too large to be ignored in an advanced process

technology and the temperature inside one chip can vary over a range of tens

of degrees at the worst-case when either of monitoring circuit or target circuit

is located at the hotspot region whereas the other is located at the cool (idle)

region. These guidelines are mandatory for better delay correlations between

the monitoring circuit and the adder/multiplier in the target block, and thus

they should be followed carefully when integrating the monitoring circuit into

a chip.

In practice, even when following the guidelines, any remaining PVT mis-

matches between the monitoring circuit and the adder/multiplier in the target

block need to be compensated by employing a small guardband. The PVT

mismatches can in general result in mismatches in the calibration for the pure

aging-induced delay mentioned in subsection 1.3.4 as well as aging degree of

the monitor and target circuits. For the case of temperature, which has the

largest effect on delays, assuming a worst-case temperature difference of 2 ◦C

between the monitor and target circuits results in a maximum 1.8% difference

in delays [6] and a negligible difference in aging degree over 10 years [33] that

22

have to be covered by a guardband. In addition, the switching activity differ-

ences, when the monitor circuit is shared across the target circuits, also have

to be covered by a guardband.

There are several approaches to estimate and bound such margins and

guardbands. To estimate PVT mismatches and guardbands, the result of

standard intra-chip PVT variation analysis, which is supported by Process

Design Kits (PDKs) with analysis tools and statistical information for vary-

ing PVT conditions of the underlying technology, can be utilized. The PDKs

and statistical information are provided by foundry companies. Given PVT

mismatches, degradation-aware cell libraries characterized for different PVT

operating points can be used to analyze both the direct delay impact and the

indirect impact on aging and aging-induced delays under different PVT con-

ditions of monitor and target circuit. The designer can apply the estimated

guardband by adding the worst-case difference in six or three sigma values

obtained from the analysis and/or the statistical data. Note that one does not

need to analyze all pairs of target and monitoring circuits in a chip. Estimat-

ing mismatches and guardbands can be done conservatively to determine the

worst-case scenario over a chip (if necessary, a domain). Finally, to further

contain mismatches and required guardbands, one can implement the sensor

(i.e., monitor) using standard cells that are the most susceptible to aging. In

such a case, the reading and predictions from the sensor will be conservative.

From the hardware overhead point of view, this aging compensation sys-

tem does not generate a large area overhead. Compared to the conventional

ripple carry adder and CSA array multiplier, the overhead of the proposed

adder/multiplier can be ignored because a couple of AND and NAND cells

are added to cut-off the carry propagation path. The monitoring circuit and

23

the control unit are very simple logics. In addition, this system does not require

voltage scaling when the delay increases, because it compensates for the aging-

induced delay increase by computation approximation. So, it does not incur

additional power consumption due to the voltage scaling for the assignment

of the reliability guardband.

For the logic that cannot be compensated by computation approximation

(e.g., control logic), the designer can use the degradation-aware cell library to

synthesize them for aging compensation [5]. This ensure that the synthesized

netlist consistently does not violate timing constraints even at the maximum

age that the cell library is characterized for. Since the cell library provides

worst-case delay information incurred by aging effects, the synthesis tool will

generate a circuit that will meet constraints under such maximum-age delays.

Besides, conventional types of aging compensation schemes also can be also

used (e.g., up-sizing the transistors and increasing supply voltage).

1.5 Evaluation

1.5.1 Experimental setup

Two experiments are conducted to evaluate the proposed system and scheme.

First, two types (masking and cutting) of 32-bit proposed adder and one type

(masking) of 16-bit multiplier are implemented and they are evaluated with

randomly generated inputs. The 100K random inputs are generated with nor-

mal distributions using $dist_normal() functions in Verilog since the random

inputs with normal distribution have similar characteristics with the actual

input extracted from an image encoder/decoder block [5]. Mean and stan-

dard deviation values in [34] are used for this test input generation. Next, the

24

proposed system and scheme with real application environment is evaluated.

The experiment with DCT and IDCT circuits, which encode and decode input

images that are widely used for image codec applications, is performed. The

output port of DCT is directly connected to the input port of IDCT to en-

code and then decode the input image file and see the impact of aging-induced

delay on the image quality. The two different monitoring circuits for adders

and multipliers are used to measure the aging-induced delay. Note that the

monitoring circuits can be shared by operators (adder/multiplier) of the same

kind in the same block while the granularity of blocks varies from design to

design.

Synopsys Design Compiler (N-2017.09-SP4) is employed with compile_ultra

option to synthesize the RTL codes of the proposed adder/multiplier with the

degradation-aware cell libraries, based on the 45nm Nangate process technol-

ogy [5]. To prevent the re-arrangement of the gate-level structure by Design

Compiler, the bottom-up synthesis methodology (i.e., Hierarchical design) is

used: Firstly, adder and multiplier are synthesized with the same clock pe-

riod longer than the point that incurs the structure re-arrangement. Then,

a target block (i.e., MAC unit) synthesized by integrating the synthesized

adder and multiplier with the target clock period (2.65ns), while applying

set_dont_touch option on the adder and multiplier not to re-arrange the syn-

thesized netlist.

Synopsys Prime Time (J-2014.06-SP3) is employed for the static timing

analysis and power estimation of the synthesized netlist under aging. the tim-

ing information is analyzed while changing the configuration of the 4-bit switch

with the “set_case_analysis” command. Gate-level simulation is performed

with Mentor ModelSim, in order to analyze the MSE, NMSE and error rate

25

Table 1.1: Comparison of 32-bit Ripple Carry Adder and Proposed Adder

Aging Time year 0

Dynamic + Static Power (uW) 53.86

Area

Critical Path Delay (ns) 1.966

Error Rate 0.00%

MSE 0.00

NMSE 0.00

Aging Time year 0

of Truncated LSBs - 0 1 2 0 2 4

Dynamic + Static Power (uW) 56.21 56.03 55.16 53.78 56.62 54.39 51.47

Area

Critical Path Delay (ns) 1.993 2.108 2.044 1.980 2.172 2.040 1.865

Error Rate 0.00 1.54% 75.18% 75.13% 2.89% 75.53% 74.87%

MSE 0.00 4.85E+16 3.85E+16 5.98 8.18E+16 7.68E+16 95.67

NMSE 0.00 1.85E+07 1.39E+07 0.21 2.11E+07 2.17E+07 0.84

Aging Time year 0

of Truncated LSBs - 0 1 2 0 2 4

Dynamic + Static Power (uW) 54.71 54.54 53.13 52.14 55.27 52.86 51.01

Area

Critical Path Delay (ns) 2.032 2.134 2.053 1.972 2.198 2.033 1.865

Error Rate 0.00% 1.53% 50.55% 49.93% 3.02% 51.18% 49.87%

MSE 0.00 4.71E+16 5.20E+16 7.99 8.31E+16 1.14E+17 127.67

NMSE 0.00 1.79E+07 1.99E+07 0.21 2.09E+07 3.51E+07 0.89

157.47

1.85E+07 2.11E+07

161.73

32-bit Proposed Adder - Cutting

year 1 year 10

4.85E+16 8.18E+16

32-bit Proposed Adder - Masking

year 1 year 10

153.22

2.065 2.129

1.54% 2.89%

32-bit Ripple Carry Adder

year 1 year 10

53.70 54.43

by aging-induced delay. Standard delay file (.sdf) is used to consider the aging-

induced delay for the gate-level simulation.

the 256×256 representative images from “video trace library" [35] are used

as the input images. The Peak Signal-to-Noise Ratio (PSNR) metric is used

for the evaluation of image quality. In the following subsection, image quality

changes at year 0 and year 10 with/without the proposed compensation scheme

will be presented. These results are generated by gate-level simulation with

the degradation-aware cell libraries [5].

26

1.5.2 RTL component level – Adder/Multiplier

The two types (masking and cutting) of the proposed 32-bit adders and one

type (masking) of the proposed 16-bit multiplier, which can be configured

to truncate four bits in LSBs at maximum, are implemented. The maximum

number of truncated bits in LSBs is so decided because the delay increase by

10-year aging (about 8%) can be sufficiently compensated by 4-bit truncation

for the adder and 3-bit truncation for the multiplier. In terms of the accuracy

at the component level, the aforementioned error metrics (MSE, NMSE and

error rate) are used.

Table 1.1 shows the comparison of power, area, and critical path delay

between the conventional 32-bit ripple carry adder and the two types of the

proposed adders. The conventional ripple carry adder generates aging-induced

timing violation errors when the reliability guardband is not included. The

error rate increases up to 1.54% (year 1) and 2.89% (year 10) and MSP errors

incur high MSE and NMSE, which is due to the critical path delay increase

by about 5.03% (year 1) and 8.29% (year 10). More than half of the aging-

induced delay occurs within the first year, which is about 60% of the total

delay increase by aging during the expected lifetime.

The critical path delay decreases by configuring the switch to cut-off the

carry propagation path. At year 1, the critical path delay of 2-bit truncation is

smaller than that of no truncation at year 0. It means that the 1-year’s aging-

induced delay can be compensated by the 2-bit truncation, and it eliminates

the MSP errors. On the other hand, 1-bit truncation at year 1 cannot elim-

inate MSP errors perfectly, so it still shows high error values (i.e., MSE and

NMSE). At 10-year, however, it is required to truncate four bits, because 2-bit

truncation is not enough to recover the critical path delay. When the delay

27

Table 1.2: Comparison of 16-bit Carry Save Adder Array Multiplier and Pro-
posed Multiplier

Aging Time year 0

Dynamic + Static Power (uW) 661.90

Area

Critical Path Delay (ns) 2.223

Error Rate 0.00%

MSE 0.00

NMSE 0.00

Aging Time year 0

of Truncated LSBs 0 1 2 0 2 3

Dynamic + Static Power (uW) 665.30 662.80 645.20 621.90 660.40 619.90 596.20

Area

Critical Path Delay (ns) 2.250 2.370 2.338 2.200 2.435 2.264 2.169

Error Rate 0.00% 5.72% 47.45% 70.00% 10.55% 70.14% 81.68%

MSE 0.00 1.86E+17 5.84E+16 126.41 2.44E+17 2.19E+16 632.06

NMSE 0.00 7.46E+15 1.77E+15 0.83 1.10E+16 1.79E+14 4.12

year 1 year 10

1414.32

1.35E+17 2.12E+17

7.63E+15 8.10E+15

16-bit Proposed Multiplier - Masking

16-bit CSA Array Multiplier

year 1 year 10

4.35% 8.97%

659.40 657

1409.53

2.342 2.407

is compensated, the error values decrease significantly even though the error

rate (rate of inaccurate sum) increases. Note that this error rate mostly comes

from the LSP errors, so the error values are not large. This experimental re-

sults demonstrate that the proposed adders compensate for the aging-induced

delay with computation approximation gracefully.

Table 1.2 shows that the same analysis can be done on the proposed mul-

tiplier. Without any truncation, after 1-year and 10-year aging, it shows very

high error values due to the timing violation. The increased delay ratios are

5.35% (year 1) and 8.28% (year 10) which are close to that of the adder. How-

ever, the multiplier has a higher error rate than the adder; 1.53% vs 5.72%

(year 1) and 3.02% vs 10.55% (year 10). It means that the multiplier produces

more timing violations than the adder in both of year 1 and year 10. By trun-

cating LSBs, the same benefits as in the adder can be achieved. After 1-year

aging, the multiplier effectively recovers their functionality by truncating two

bits with acceptable approximation error, 0.83 in NMSE. That is because the

28

1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5

0bit 1bit 2bit 3bit 4bit

mult-01y monitor-01y

1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5

0bit 1bit 2bit 3bit 4bit

mult-10y monitor-10y

1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6

0bit 1bit 2bit 3bit 4bitC
ri

ti
ca

l
P

at
h

 D
el

ay

mult-00y monitor-00y

1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6

0bit 1bit 2bit 3bit 4bit

mult-01y monitor-01y

1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6

0bit 1bit 2bit 3bit 4bit

mult-10y monitor-10y

(b) Dedicated monitoring circuit

(a) Generic monitoring circuit

1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5

0bit 1bit 2bit 3bit 4bitC
ri

ti
ca

l
P

at
h

 D
el

ay

mult-00y monitor-00y

Figure 1.8: Critical path delays of the proposed multiplier and two types
of monitoring circuits: (a) generic and (b) dedicated. The shorter distance
between the critical path delays means the lower delay mismatch and the
better monitoring performance.

critical path delay becomes shorter than the delay of no truncation at year

0. After 10-year aging, however, the multiplier needs one more bit (i.e., three

bits in total) to be truncated for acceptable error compensation.

Static power is always reduced due to aging since the aging increases the

threshold voltage of transistors. However, dynamic power depends on the cir-

cuit design and application, and thus it can increase or decrease by aging [36].

In the experiment, the total power of the adders slightly decreases at year 1

but increases at year 10. However, for the multipliers, total power consistently

decreases as aging proceeds. In case of the proposed adder/multiplier, a cou-

ple of additional AND or NAND cells are inserted for the switch logic. Due

to these small overheads, the delay, area, and power consumption increase a

little bit compared to the reference circuit. However, as more LSBs get trun-

cated, the power consumption gradually decreases since the cut-off paths stop

switching after the truncation.

29

1.5.3 RTL component level – Monitoring circuit

the two types of monitoring circuit are introduced in subsection 1.3.4. One

is the generic monitoring circuit which contains homogeneous delay elements.

The other is the dedicated monitoring circuit which contains target-dependent

heterogeneous delay elements. Because the adder contains homogeneous delay

components (FA-CO) on its critical path, its delay can be accurately measured

by a generic monitoring circuit. On the other hand, because the multiplier

contains heterogeneous delay components (FA-CO, FA-SUM, HA-CO, and

HA-SUM) on its critical path, it is inefficient to use a generic monitoring

circuit to measure the its delay. To demonstrate this, critical path delay of the

proposed multiplier is measured with the two types of monitoring circuit.

The requirement of feasible monitoring circuit is that its delay should be

longer than that of the target circuit at every aging stages and for any number

of truncated bits. That requires the monitoring circuit to have some amount

of margin. However, if monitoring circuits have an excessive margin than is

necessary, it can cause unnecessary truncation in the target circuit. To make

matters worse, the excessive margin may impose slow circuit. Therefore, tight

margin is essential for better monitoring circuits.

Figure 1.8 shows the critical path delays of the multiplier and the two types

of monitoring circuits while increasing the number of truncated bits at year 0,

year 1, and year 10 of aging using the degradation aware library [5]. Figure 1.8a

is for the generic monitoring circuit, and Figure 1.8b is for the dedicated mon-

itoring circuit. If comparing the two graphs, we can notice that the differences

of the critical path delays between the multiplier and the monitoring circuit

are bigger for the case of the generic monitoring circuit in Figure 1.8a.

The generic monitoring circuit has a line with a constant negative slope

30

Multiplier

Adder

register

register

(a) (b)

DCT

Encoded

image

IDCT

Figure 1.9: (a) DCT/IDCT codec blocks and (b) matrix multiplication unit
in DCT and IDCT blocks.

as it contains homogeneous delay elements. To meet the monitoring circuit

requirement described above, in Figure 1.8a, the line of monitoring circuit

should be placed above the line of the multiplier when 1-bit is truncated. As

a result, it imposes excessive margin for the other number of truncated bits.

On the other hand, in case of the dedicated monitoring circuit, as shown in

Figure 1.8b, the delay curve of the dedicated monitoring circuit follows that of

the multiplier very closely on every number of truncated bits and aging years

while keeping the requirement described above. As a result, it requires less

margin than that of the generic monitoring circuit.

1.5.4 System level

To evaluate the proposed system and scheme at the system level, DCT/IDCT

codec blocks (See Figure 1.9) which encode and then decode the images from

“video trace library" [35] are used. With this experiment, the feasibility of

the proposed system in a real image processing application are shown. In

31

1-year aging

10-year aging

11.36dB 42.06dB 12.16dB 45.73dB

14.45dB 35.49dB 13.47dB 35.60dB

13.04dB 41.85dB 14.32dB 45.60dB

12.84dB 35.55dB 11.12dB 37.18dB

2-bit truncationno compensation

Cameraman Foreman

Carphone Salesman

Carphone Salesman

Cameraman Foreman

no compensation 4-bit truncation

2-bit truncationno compensation

2-bit truncationno compensation 2-bit truncationno compensation

no compensation 4-bit truncation no compensation 4-bit truncation

no compensation 4-bit truncation

Figure 1.10: Evaluation of aging compensation of proposed adder with ap-
proximation in image processing application. The value under the images are
PSNR.

32

1-year aging

10-year aging

10.18dB 35.76dB 9.80dB 35.45dB

13.00dB 36.82dB 12.96dB 38.93dB

13.19dB 41.08dB 12.30dB 42.26dB

9.99dB 25.85dB 9.96dB 36.62dB

no compensation

Cameraman Foreman

Carphone Salesman

Carphone Salesman

Cameraman Foreman

no compensation 3-bit truncation

2-bit truncation no compensation 2-bit truncation

no compensation 2-bit truncationno compensation 2-bit truncation

no compensation 3-bit truncation no compensation 3-bit truncation

no compensation 3-bit truncation

Figure 1.11: Evaluation of aging compensation of proposed multiplier (and
proposed adder) with approximation in image processing application. The
value under the images are PSNR.

33

the matrix multiplication unit of the blocks, each of a multiplier and an adder

occupies a pipeline stage. different monitoring circuits to each of the adder and

the multiplier are integrated. Experiments for the adder and the multiplier are

performed independently, then a experiment for the combination of the two,

which is a MAC unit, is performed.

Figure 1.10 shows the experimental results for the adder. Note that in this

experiment, a delay-optimized multiplier (having high power consumption) in-

stead of the proposed multiplier employ is utilized so that the adder is on the

critical path. As shown in the figure, the four images show similar degradation

due to the aging. For example, PSNR of “Cameramen" is degraded down to

14.45dB after 1-year aging and 12.84dB after 10-year aging, respectively. It

means that without the proposed scheme the reliability guardband is essen-

tially required even in error-tolerant applications, such as image processing,

which do not immediately fails by timing violation at the cost of quality degra-

dation. The fact that most of the aging occurs within the initial 1 year of the

expected lifetime is also confirmed as observed in the RTL component level

analysis.

In the proposed system, the aging-induced delay can be compensated for

with computation approximation. For example, in case of 1-year aging, PSNR

of “Cameramen" is recovered to 35.49dB by 2-bit truncation as shown in Fig-

ure 1.10. In case of 10-year aging, more bits should be truncated in order to

recover the image quality. As shown in the figure, 4-bit truncation can recover

PSNR of “Cameramen" to 35.55dB. These results indicate that the proposed

system can dynamically compensate for the aging-induced delay with com-

putation approximation at run-time, based on the delay information from the

monitoring circuit (e.g. 2-bit truncation after 1-year aging and 4-bit truncation

34

after 10-year aging).

Next, a experiment for the 16-bit proposed multiplier is performed. Fig-

ure 1.10 shows the experimental results for the multiplier on the four images.

Without compensation, multiplier’s degradation in PSNR is more severe than

that of the adder at equal aging stages, because the rate of timing violations

in the multiplier is higher as mentioned in subsection 1.5.2. The compensation

recovers PSNR up to acceptable levels by the computation approximation at

both 1-year and 10-year aging stages, except for the 3-bit truncation for the

“Cameraman" at 10-year aging, whose glitches are caused by the LSP errors of

truncation. The reason why these glitches appear only in the case of the multi-

plier and not in the case of the adder, is that the truncation of the multiplier is

directly applied to input images since the multiplications are performed earlier

than the additions as shown in Figure 1.9b. The input images are represented

as 8-bit integers, therefore truncation of 3 bits out of 8 bits may incur large

approximation errors. On the other hand, truncation of the adder is performed

on the results of the multiplier which have less significance in their LSBs.

After the independent experiments for each component, the adder and the

multiplier, the experiment on the combination of the two, which is a MAC

unit, is performed. In the DCT/IDCT codec block, the pipeline stage of the

multiplier is directly followed by that of the adder in a MAC unit as shown in

Figure 1.9b. The experimental results for the MAC unit, where aging effects

on both the adder and the multiplier are considered, are equal to those of the

multiplier in Figure 1.10. There are two reasons for this. First, as you can see

in Figure 1.9b, a MAC operation operates in the order of multiplication and

addition, therefore, the changes in the multiplier output affect the input of

the adder directly. For example, if a monitoring circuit truncates two bits of

35

1 1 1
0.952 0.975

1.008

0.888
0.943 0.959

0.786

0.892

1.008

0

0.2

0.4

0.6

0.8

1

1.2

Dynamic Power Static Power Area

Conventional Approach (Guardbanded)

Conventional Approach (Closed-loop DVS)

Conventional Approach (Reliability-aware [5])

Proposed Approach

N
o

rm
al

iz
ed

 P
o

w
er

an
d

 A
re

a

Figure 1.12: Power and area comparison of DCT/IDCT codec block for con-
ventional and proposed approaches. The proposed approach includes the pro-
posed adder and multiplier.

the multiplicand operand of the multiplier, the output of multiplier always has

two “0" bits in their LSBs which is conceptually equal to 2-bit truncation for

the following adder. Therefore, in this case, the truncation of the adder up to

two bits does not have any effect. Second, the adder has shorter critical path

delay than the multiplier in the proposed system as shown in Table 1.1 and

Table 1.2, and thus the number of truncation bits of the adder is always fewer

than that of the multiplier. By such two reasons, the compensation effect of

the MAC unit is determined by that of the multiplier in the proposed system.

Figure 1.12 summarizes the DCT/IDCT codec block’s power and area

comparisons over the four approaches: Guardbanded, Closed-loop Dynamic

Voltage Scaling (DVS), the Reliability-aware synthesis from [5], and the pro-

posed approaches. First, here, the way of employing guardband is increasing

operating voltage instead of decreasing the clock frequency. Therefore, all cir-

36

cuits including the proposed approach operate at the same clock frequency.

The Reliability-aware approach is synthesized with the degradation-aware li-

brary (at 10-year) [5] while the others including the proposed approach are

synthesized with the degradation-unaware library, which is a subset of the

degradation-aware library at 0-year. Note that the proposed approach is bet-

ter when it is synthesized with the degradation-unaware library since the

degradation-aware library implicitly contains aging guardband in their delay

that is not required in the proposed approach. The pessimistic guardband at

design-time is employed in the Guardbanded approach, and the reduced guard-

band estimated as in [5] in the Reliability-aware approach. By contrast, the

Closed-loop DVS and the proposed approaches dynamically compensate the

aging-induced delay by raising operating voltage and adjusting computation

approximation, respectively.

The proposed approach reduces the dynamic and static power by 21.45%

and 10.78%, respectively, compared to the Guardbanded approach. As the de-

lay increases by aging, the Closed-loop DVS approach consumes more power

than the proposed approach since it dynamically raises voltage to prevent the

aging-induced timing violation errors. The Reliability-aware approach shows

lower power consumption than the Closed-loop DVS approach because the for-

mer allows the circuit to operate at lower voltage compared to the latter during

almost all of the lifetime, but it still shows worse result than the proposed ap-

proach which basically does not need guardband. The proposed approach and

the Closed-loop DVS have only 0.8% of the area overhead due to the moni-

toring circuits and control units. In conclusion, in this system, the proposed

approach achieves large power reduction with negligible area overhead and

acceptable image quality degradation.

37

1.6 Summary

In this chapter, it is proposed that a novel aging compensation scheme and sys-

tem, consisting of monitoring circuits, control units, and configurable adder/multiplier.

It dynamically reduces the precision of the adder/multiplier by monitoring

the aging-induced delay at run-time. The proposed adder/multiplier turns nu-

merically significant MSP errors to less significant LSP errors. That is why

the proposed system avoids significant image quality degradation without the

costly reliability guardband in an image processing application. In addition,

the proposed design methodology can be applied to any other circuits as well

as ripple carry adders and CSA array multipliers, provided that they can be

configured to trade-off the accuracy with delay. In an advanced process tech-

nology, the effects of aging on a circuit delay can be much more serious and

thus such a dynamic compensation method for mitigating the reliability prob-

lem becomes more important. The proposed system can effectively resolve the

problem with acceptable computation accuracy degradation, while maintain-

ing low power consumption.

The design methodology currently relies on applying set_dont_touch on

individual adders and multipliers constraints during synthesis. This reduces

flexibility during global optimization and can result in sub-optimal results es-

pecially in final layouts obtained after place and route (P&R). Properly dealing

with this issue is one of the future works. To mitigate this issue, hierarchical

design, which combines block-level implementation and optimization, cloning

of blocks from a master block, and systemic methods for assembling the blocks

at the whole chip level with well-designed algorithms (block-aware re-routing

and aligning blocks at top design), can be utilized. Such hierarchical design has

38

been used widely in industry for scalability reasons and is officially supported

by industry-level commercial P&R tools (e.g., Cadence Innovus).

39

Chapter 2

Energy-Efficient Neural

Network by Combining

Approximate Neuron Models

2.1 Introduction

2.1.1 Deep Neural Network (DNN)

Recent researches on DNNs (Deep Neural Networks) have demonstrated un-

precedented performance in various fields, such as computer vision, speech

recognition, and so on, which was not possible decades ago due to insufficient

computing power available at that time. Over the last decade, however, the

computing power has increased dramatically, and computer systems of today

provide an enough level of throughput to realize quite complex DNNs. In par-

ticular, GPUs (Graphics Processing Units) [37] are the most powerful device

to compute floating-point matrix operations that occupy the majority of DNN

operations. However, high power consumption of GPUs is still a problem in

40

power-constrained systems such as embedded systems.

2.1.2 Low-power designs for DNN

In order to provide high computation throughput with low cost and power,

many studies have proposed specialized hardware implementations of DNNs.

For example, hardware implementations with ASIC [38] or FPGA [39] have

tried to reduce their cost by using fixed-point operations, which require smaller

area and lower power than floating-point operations. The drawback of such

approaches is that it can cause overflow or underflow problems during com-

putation because of the narrow dynamic range compared with floating-point

operations, and thus degrade the inference accuracy. Another research [40] has

adopted a dynamic fixed-point concept for DNNs, which dynamically changes

the fixed-point range (i.e., radix point) according to overflow rate. In their

work, the radix point of each group is determined during training phase.

2.1.3 Stochastic-Computing Deep Neural Network

SC-DNN (Stochastic-Computing DNN) [41] is another promising alternative to

low-power DNN hardware implementation. It represents values using stochas-

tic numbers in a bitstream form, corresponding to binary numbers of other

conventional hardware. Stochastic numbers typically take one of two different

encodings: unipolar and bipolar encoding (see Figure 2.1). The unipolar en-

coding represents a value as the probability of a bit in the bitstream to be ‘1’,

and thus the value has range [0, 1]. On the other hand, the bipolar encoding

represents a value as (probability of a bit to be ‘1’) − (probability of a bit to be

‘0’). Thus the value has range [-1, 1]. The benefit of using stochastic number

representations is that traditional binary logic implementations of arithmetic

41

𝐴: 1001011010 (5/10)

𝐵: 0110111010 (6/10)
𝐴 ∗ 𝐵: 0000011010(3/10)

𝐴: 110101111011 (6/12)

𝐵: 100010100010 (−4/12)
𝐴 ∗ 𝐵: 101000100110(−1/6)

Figure 2.1: Example of stochastic number and their multiplication. AND and
XNOR gates are used for unipolar and bipolar encoding, respectively.

operations such as multiplications and additions can be replaced with much

simpler stochastic logic implementations. For example, a stochastic multiplier

can be implemented by using a single AND (or XNOR) gate for unipolar (or

bipolar) encoding. In unipolar encoding, for example, a value is represented by

the probability of observing ‘1’s in a bitstream and an AND operation of two

stochastic numbers (bitstreams) gives the probability of both stochastic num-

ber having ‘1’ (i.e., it gives the product of the two probability values, provided

that the two bitstreams are independent), as can be seen in Figure 2.1.

Another important benefit of using stochastic number representations in

an SC-DNN is the flexibility of precisions, or progressive precision [42]. The

floating- and fixed-point implementations have predefined precisions deter-

mined at design time. On the other hand, the precision of stochastic com-

puting (both unipolar and bipolar) is flexible because it is determined by the

length of the bitstream for a stochastic number. In other words, the preci-

sion of stochastic computing can be increased/decreased in proportion to the

increase/decrease of the bitstream on the same hardware hardware design.

Therefore, SC-DNNs can change their precision dynamically without addi-

tional hardware cost [41].

42

2.1.4 Spiking Deep Neural Network

It has been shown that the behavior of an IF (Integrate-and-Fire) spiking

neuron (spiking neuron in short throughout this chapter) can be modeled as

a ReLU (Rectified Linear Unit) activation neuron [43]. The IF spiking neuron

can be formulated in two steps as follows:

(Step 1. Update membrane voltage)

Vmem,j = Vmem,j +
∑

i

Wij × δij

(Step 2. Check firing condition)

Vmem,j =


Vreset, if Vmem,j > Vth

Vmem,j , otherwise

where Vmem,j is membrane voltage of the j-th neuron, i is an index of

neurons in the preceding layer, Wij is the weight of a synapse connecting

the i-th neuron of the preceding layer to the j-th neuron in the current layer,

and δij indicates the incoming spike through the corresponding synapse. Vreset

and Vth represent reset voltage and threshold voltage, respectively. the value

of Vreset is set to Vmem,j −Vth as was done in [44]. In the first step, the spiking

neuron takes input spikes through synapses multiplied by their weights and

then accumulates those values into the membrane voltage. In the second step,

43

if the membrane voltage exceeds the predefined threshold voltage, the neuron

fires a spike to their output synapses. After firing the spike, the membrane

voltage resets to Vreset. Those operations are performed in a continuous time

domain in biological neurons, but in this chapter, spiking neurons are modeled

to operate in a discrete manner.

The spiking neuron processes the inputs δij having value ‘0’ or ‘1’. ‘0’

means no spike, and ‘1’ means spike firing. It is similar to unipolar encoding

in stochastic computing. Therefore, each discrete time slot can be matched to

a bit of each stochastic number, and set the length of a stochastic number the

same as the number of time slots. a spiking layer is made with spiking neurons,

and it constructs a SP-DNN (SPiking DNN) by stacking themselves.

2.2 Hybrid of Stochastic and Spiking DNNs

2.2.1 Stochastic-Computing vs Spiking Deep Neural Network

Compared to SC-DNN, SP-DNN has some advantages. First, it has shorter

latency to reach the same level of accuracy. While a stochastic neuron processes

only a bit at a time, a neuron in SP-DNN processes multiple bits at a time

(a single bit can be used for an incoming spike, but multiple bits are used for

internal IF operations.) According to the experiment in [41], SC-DNN requires

bitstream length of 1024 to archive accuracy close to that of a floating-point

DNN (i.e., test error 2.41% for the MNIST dataset). In contrast, it is observed

that SP-DNN processes a spike represented by a single bit as if it had a

multiple-bit value, since every time a spike comes into a neuron, a multiple-bit

weight value is accumulated to the membrane voltage. Therefore, the latency

required to achieve the same level of accuracy is shorter than that of SC-DNN.

44

8 6 4 2 0 2 4 6 8

inputs

0
5

10
15
20
25
30

co
u
n
ts

1.0

0.5

0.0

0.5

1.0

ta
n
h

Figure 2.2: The histogram shows the distribution of input values to the acti-
vation function in the first layer of SC-DNN for a test image. The activation
function of tanh is drawn on top of the histogram to show that most of the
inputs exist in the saturation regions of the function.

Secondly, SP-DNN provides a better interface to the sensors that generate

raw input data. Typical bio-inspired event-driven sensors (a.k.a. neuromor-

phic sensors) [45] generate event data in the form of spikes, so as to enable

spiking-based device to process them immediately. The work in [46] made

neuromorphic handwritten dataset (i.e., N-MNIST) by recording the MNIST

handwritten dataset using a neuromorphic sensor called ATIS [45]. It is rea-

sonable to consider the MNIST dataset as ideally recorded image and the

N-MNIST as raw input data. A major difference between the two datasets is

their value range. The MNIST has [0, 255] value range of gray-scale in the

original dataset but it is normalized to [0, 1] by dividing the values with 255.

However, in reality the value is concentrated in a very narrow range. In the

case of N-MNIST, for example, all the values are in the range of [0, 0.17]. This

is due to the characteristics of actual sensors.

The neuromorphic sensor generates data as a sequence of spikes, which

looks like unipolar encoding for stochastic computing. However, the SC-DNN

is better implemented using bipolar encoding to represent negative weights.

45

Thus the input in the form of unipolar encoding should be converted to bipolar

encoding when SC-DNN is to be used. That conversion is linear mapping

through mapping function f(x) = 2x − 1. It transforms the original value

range of [0, 1] to [-1, 1]. The problem of this approach is that the values after

the transformation are severely biased toward -1 (in the case of N-MNIST, the

values will reside only in [-1, -0.66]). As shown in Figure 2.2, the problem still

exists at the input of the activation function (tanh is used for the activation

function) after multiplication with weights and accumulation. Most of the

inputs are located in the saturation region of the activation function, which

makes the training phase stick in a local minimum.1

2.2.2 Combining Spiking Layers and Stochastic Layers

Based on the observations discussed in subsection 2.1.4, a spiking layer is

introduced in SC-DNN to shorten the latency and avoid accuracy drop due

to input data conversion. Basically, both of them have relatively low power

compared with other conventional DNN implementations (e.g., GPU based

DNN). As mentioned in subsection 2.1.3, in stochastic computing, the funda-

mental arithmetic operations can be conducted efficiently with simple gates.

The operations in a spiking neuron do not require a multiplier. Instead, it

just accumulates the synapse weight on incoming spike and then sends out an

outgoing spike when the accumulated value (i.e., membrane voltage) exceeds

the threshold. The proposed scheme combines spiking neurons and stochastic

neurons for a synergy effect, while trying not to lose their advantages. In order

to maintain the efficiency, only the first layer in SC-DNN is replaced with a
1Indeed, floating-point DNN for N-MNIST with spike frequencies converted to floating-

point numbers gives accuracy of 96.25%, but if floating-point numbers are transformed to
f(x) = 2x − 1, then the accuracy is degraded down to 92.09%.

46

spiking layer as depicted in Figure 2.3. That is because the spiking layer is

more expensive than a stochastic layer in terms of power consumption. More-

over, it is also observed that only a single layer placed in the front is enough

to alleviate the problem caused by the data format conversion for the raw

input data as discussed in subsection 2.2.1. Placed at the most front end of

the network, the spiking layer extracts features of input data and sends the

output spikes to the following stochastic layers, which enables the Spiking and

Stochastic DNN (SPSC-DNN) to have shorter latency than SC-DNN.

The work in [41] proposes the EDT (Early Decision Termination) method,

which exploits probabilistic independence of each bit composing a stochas-

tic number, i.e., a fraction of the bitstream for a stochastic number also

holds the value information of the number. For example, a stochastic num-

ber ‘11010011001101110100’ represents ‘0.55’ (i.e., 11/20) in the unipolar en-

coding. When only the first 10 bits are shown , ‘1101001100’, it represents

‘0.50’ (i.e., 5/10) which is close to ‘0.55’. Thus, it is sometimes good enough to

evaluate only a fraction of a stochastic number depending on the accuracy re-

quirement. The proposed scheme can also exploit the EDT method to further

shorten the latency.

Another motivation is the similarity of encoding. As mention in subsec-

tion 2.1.4, the sequence of spikes is similar to unipolar encoding, no explicit

conversion is needed. The implicit conversion to bipolar encoding is explained

in the following subsection.

2.2.3 Encoding Mismatch

Since they use different types of encoding, there is an encoding mismatch in

that they translate bitstreams as value. Therefore, there should be a converter

47

Spiking Neuron

Stochastic Neuron

𝒍𝒂𝒚𝒆𝒓𝟏
(200)

𝒍𝒂𝒚𝒆𝒓𝟐
(500)

𝒍𝒂𝒚𝒆𝒓𝟑
(500)

𝒍𝒂𝒚𝒆𝒓4
(10)

𝒕𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎

Figure 2.3: Topology of SPSC-DNN. The transform layer is placed to emu-
late encoding mismatch between the spiking neuron and stochastic neuron in
training phase. SC-DNN and SP-DNN also have the same topology, except for
different type of neuron. Each layer has 200-500-500-10 neurons, respectively.

that coordinates the mismatch. For example, if a spiking neuron sends out

‘1011001101’ bitstream meaning 0.6 in unipolar encoding, but the stochastic

neuron will translate it as 0.2 as follows:

unipolar : P (X = 1) = 6/10 = 0.6

bipolar : P (X = 1) − P (X = 0) = 6/10 − 4/10 = 0.2

where P (X = k) is probability of a bit X to be ‘k’.

In order to avoid additional hardware, inconsistency is resolved by adjust-

ing the synapse weights, which is done in the training phase. The proposed

approach is inserting a transform layer between the spiking layer and following

stochastic layer as can be seen in Figure 2.3. The transform layer is designed

48

based on the relationship between the two encodings, which can be expressed

as P (X = 1) − P (X = 0) = 2P (X = 1) − 1, which equals to relationship

as in subsection 2.1.4. Since the relationship is a linear transformation, the

transform layer can be easily integrated in the training phase. According to

the experiment, it emulates the inconsistency between the different encodings

quite well. Since it is introduced only for training phase, it should be removed

after the training. As a result, it will not exist in actual hardware implemen-

tation.

2.3 Evaluation

All experiments are conducted on SC-DNN, SP-DNN and the proposed SPSC-

DNN. They are synthesized with identical topology (i.e., same number of

stacked layers and same number of neurons within each layer), except for

the type of each neuron.

2.3.1 Latency and Test Error

Since the precision is proportional to the length of bitstream for stochastic

and spiking DNNs, the test error (i.e., the rate of failed classification on test

dataset) decreases as the bitstream becomes longer. the DNNs are evaluated

on both of MNIST and N-MNIST as shown in Figure 2.4. As expected, the

test error of SP-DNN decreases faster than other two. SPSC-DNN decrease

slower than SP-DNN, but much faster than SC-DNN. Among the three im-

plementations, SPSC-DNN achieves the lowest test error, 1.65% and 2.90%

on MNIST and N-MNIST, respectively. As already explained, SC-DNN shows

degraded accuracy to raw input data like N-MNIST.

49

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

step, stepsize = 32

0

2

4

6

8

10

T
e
st

 e
rr

o
r

(%
)

Test error on MNIST

SCDNN

SPDNN

SPSCDNN

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

step, stepsize = 32

0

10

20

30

40

50

T
e
st

 e
rr

o
r

(%
)

Test error on N-MNIST

SCDNN

SPDNN

SPSCDNN

Figure 2.4: X-axis values are in number of steps; each step corresponds to 32
bits in the input bitstream (thus the total length of a bitstream is 32 × 32 =
1024 bits).

50

In order to compare the three schemes while considering the length and test

error simultaneously, the target test error is set to 2.00% and 1.81% (SC-DNN

could not achieve the error rate of 1.81%) for MNIST and 3.08% (again,

SC-DNN could not achieve the error rate of 3.0%) for N-MNIST, and then

compare the length (i.e., latency) which is required to achieve the target test

error. Those lengths are shown in Figure 2.5.

2.3.2 Energy Efficiency

In order to evaluate energy efficiency, a spiking neuron and a stochastic neuron

are synthesized for each layer. Synopsys Design Compiler and TSMC 45nm

technology library are used for the synthesis. The spiking neuron consists of

MUXs controlled by the incoming spikes (if there is a spike, the weight is

added; otherwise, 0 is added) and an accumulator for membrane voltage. On

the other hands, the stochastic neuron consists of SNGs (Stochastic Number

Generators) for converting binary numbers to stochastic numbers, XNORs for

multipliers, a simple counter to add stochastic numbers, and an FSM for tanh

function. The SNGs dominate in power consumption within a stochastic neu-

ron. They consume about 70% of the overall energy according to the synthesis

results. The recent work [47] proposed Spintastic which exploits spintronic

technology to implement an energy-efficient SNG that is seven times better

than the conventional SNG based on CMOS. It is used in experiments. For

synapse weights, 10 bits fixed-point numbers are used. After the synthesis,

their power (see Table 2.1) is measured, and the energy consumed in each of

the networks approximately is calculated by extrapolation as follows:

51

ESC = (Pstoc,1L1 + Pstoc,2L2 + Pstoc,3L3 + Pstoc,4L4) × TSC

ESP = (Pspike,1L1 + Pspike,2L2 + Pspike,3L3 + Pspike,4L4) × TSP

ESP SC = (Pspike,1L1 + Pstoc,2L2 + Pstoc,3L3 + Pstoc,4L4) × TSP SC

where ESC , ESP , and ESP SC denote the energy of SC-DNN, SP-DNN, and

SPSC-DNN, respectively. Pstoc,i and Pspike,i denote the power of stochastic

and spiking neuron, respectively, in the i-th layer. Li denotes the number of

neurons consisting of the i-th layers and TSC , TSP , and TSP SC denote the

latency until they reach the target test error. Both neurons are synthesized

with the same frequency (i.e., 1GHz), and thus the relative comparison of

latency can be done by the length. The calculated energy of them is shown in

Figure 2.5. The power consumption is highest in SP-DNN, but it shows the

best performance in terms of latency. SC-DNN consumes the lowest power but

suffers from the longest length. Those observations say that there is a trade-

off between the power consumption and length. SPSC-DNN is standing in

the middle of them. Energy is measured considering the power consumption

and the length simultaneously, For the relatively high test error target of

2.0% on MNIST, SP-DNN reaches the target much faster than the others, so

SPSC-DNN shows slightly lower energy efficiency when the EDT is applied.

However, for 1.81% on MNIST and 3.08% on N-MNIST, SPSC-DNN shows

the best energy efficiency.

52

Table 2.1: Power (mW) Measured on Stochastic and Spiking Neuron of Each
Layer Where The Number of Inputs of The Neurons in The 1st, 2nd, 3rd, and
4th Layers is 784, 200, 500, and 500, Respectively.

Neuron Type P.,1 P.,2 P.,3 P.,4

Spike (Pspike,.) 37.60 12.69 22.02 22.02
Stochastic (Pstoc,.)1 9.85 2.45 5.19 5.19

1 with Spintastic SNG.

SCDNN SPDNN SPSCDNN
0

5

10

15

20

25

30

35

40

N
o
rm

a
liz

e
d
 L

a
te

n
cy

Length on MNIST, test error:2.0%

W/O EDT

W/ EDT

SCDNN SPDNN SPSCDNN
0

1

2

3

4

5

6

7

8

9

N
o
rm

a
liz

e
d
 E

n
e
rg

y

Energy on MNIST, test error:2.0%

W/O EDT

W/ EDT

SPDNN SPSCDNN
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 L

a
te

n
cy

Length on MNIST, test error:1.81%

W/O EDT

W/ EDT

SPDNN SPSCDNN
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 E

n
e
rg

y

Energy on MNIST, test error:1.81%

W/O EDT

W/ EDT

SPDNN SPSCDNN
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 L

a
te

n
cy

Length on N-MNIST, test error:3.08%

W/O EDT

W/ EDT

SPDNN SPSCDNN
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 E

n
e
rg

y

Energy on N-MNIST, test error:3.08%

W/O EDT

W/ EDT

Figure 2.5: Latency (i.e., length) and energy consumption in SC-DNN, SP-
DNN, and SPSC-DNN for different dataset and target test error. The effect of
EDT is also evaluated. Since SC-DNN cannot reach the target test error for
1.81% on MNIST and 3.08% on N-MNIST, it is not included in the graphs on
the second and third rows.

53

2.4 Summary

We notice in this work that SP-DNN has shown much shorter latency than

SC-DNN. Furthermore, they have similar encoding for the representation of

values using bitstreams. However, to combine the two schemes for a better

performance, the issue of encoding mismatch should be addressed. By inserting

a transform layer, they can be combined successfully without accuracy drop,

and the combined DNN (SPSC-DNN) shows shorter latency than SC-DNN

and lower energy consumption than SP-DNN.

54

Chapter 3

GradPIM: In-memory

Gradient Descent in

Mixed-Precision DNN

Training

3.1 Introduction

3.1.1 Neural Processing Unit

Training a deep neural network (DNN) is a time-consuming process. For in-

stance, training the widely-used ResNet-50 [48] on ImageNet dataset [49] re-

quires about a week of GPU time for training. Building a specialized neural

processing unit (NPU) is a promising approach for achieving both speedup and

energy efficiency. As DNN emerges as one of the most significant applications

of the era, a number of NPU designs are being proposed for both inference

55

and training [50, 51, 52, 53, 54, 55, 56].

One important issue in designing an NPU is minimizing its memory band-

width requirements. By naively executing DNNs on hardware, one would suf-

fer from the heavy traffic caused by repeated memory accesses on the same

data. Hence, a large stream of work on NPUs is focused on maximizing data

reuse. For example, many accelerators [50, 52, 57, 58, 53, 54] propose different

dataflow models that handle data reuse problem by loop reordering and careful

address mapping to the PE array. Minibatch serialization [59], BN fission and

fusion [60], and layer fusion [61] fall into the class of inter-layer optimizations

that finds opportunities of data reuse by applying inter-layer optimizations to

increase the amount of data reuse.

3.1.2 Mixed-precision Training

One major direction that NPU technology is heading toward is mixed-precision

training [62, 63, 64, 65, 66]. Mixed precision training performs numeric opera-

tions in low precision while keeping a copy of their master weights in high preci-

sion. It can preserve training accuracy while reducing computational costs and

memory bandwidth consumption. NVIDIA TensorCore [67] is a direct example

of a mixed-precision training algorithm that is being applied to GPUs today.

It performs 16-bit operations and 32-bit accumulation to obtain a performance

boost. Such techniques are being extensively used in many cases [68, 69], con-

tributing to the reduction in DNN training cost. There are also a few attempts

aimed at further reducing training data precision to 8 bits [62, 63]. By apply-

ing techniques such as custom floating-point representation and chunk-based

accumulations, quantization error can be mitigated to achieve almost no ac-

curacy loss with 8-bit datapaths.

56

However, the common consensus is that the master weights need larger

precision, while the gradients are the most forgiving to the quantization errors,

as demonstrated in [66] with 16-bit training with 32-bit master weights. [62]

is one popular work which uses 8-bit floating point format for all executions,

but keeps the master weight at 16 bits to mitigate the swamping effect [70]. In

[62], techniques called chunk-based accumulation and floating point stochastic

rounding are introduced, where the former organizes the order of the additions

to reduce the average gap of range between the two add operands, and the

latter alleviates the loss coming from a smaller number being added to a larger

number. Later, [64] suggested improved rules for loss scaling and stochastic

rounding, and [63] proposes a custom floating point format that provides a

better dynamic range for the training. In addition, there is work on using a

hybrid of floating point and fixed point precision [65] because low precision

fixed point format has better precision than floating point format but lacks

the dynamic range.

In this work, the proposed NPU adopts 8-bit floating point training while

maintaining 32-bit fixed point master weight, which stably provides a good

accuracy with relatively low hardware cost. Also, it adopts widely used tech-

niques such as chunk-based accumulation, and custom floating point formats

for DNN training.

3.1.3 Mixed-precision Training with In-memory Gradient De-

scent

The proposed NPU is configured to process 8-bit floating-point MAC opera-

tions along with a best-effort minimization of memory bandwidth consumption

by using on-chip memories and applying inter-layer optimizations. Counter-

57

DRAM Cells

NPU Core Forward Backward

Layer block

GradPIM

On-chip Memory

Forward Backward Update

Raw
Traffic

Filtered
Traffic

Off - chip DRAM

Off - chip DRAM

DRAM Cells

GradPIMOff - chip DRAM

NPU Core Forward Backward

Layer block

On-chip Memory

Forward Backward Update

Raw
Traffic

Filtered
Traffic

Off - chip DRAM

To/From
Host

Ro
w

 D
ec

od
er

Sense Amplifiers

Column Decoder

Bi
tli

ne
 (B

L)

Wordline (WL)

Cell

Bank

GradPIM Unit

Bank Group I/O Gating

Bank Group 0

Bank B Bank C Bank DBank A

GradPIM Unit

Bank Group I/O Gating

Bank Group 1

Bank F Bank G Bank HBank E

Global I/O Gating

GradPIM Unit

Bank Group I/O Gating

Bank Group 2

Bank KBank JBank I Bank L

GradPIM Unit

Bank Group I/O Gating

Bank Group 3

Bank OBank NBank M Bank P

Mat

Bank Group I/O Gating

Bank Group
Bank

A
Bank

B
Bank

C
Bank

②Parallel Arithmetic

①Scaled Read

③
W

rit
eb

ac
k

D

Par. ALU

Quantization
Register

Temporary
Registers

X

Figure 3.1: Mixed-precision training with GradPIM.

intuitively, after applying the state-of-the-art data reuse techniques, the pa-

rameter update phase of the training is identified as the bottleneck of DNN

training. From reading and writing high precision master weights and the

associated parameters, the parameter update phase consumes up to about

50% of the memory bandwidth consumption and 25% of the execution time.

Moreover, even though the computational intensity is very low, there has to

be a dedicated high precision datapath for the high-precision parameter up-

dates in the NPUs. Keeping the master weight in a fixed-point is one way to

reduce the hardware cost [71], but becomes a burden to the NPU in both pro-

cessing and transferring of high-precision data. Unlike the other parts of the

training process, the operations involved within the update phase have been

overlooked in many designs. Those operations are relatively simple, and there

is not much room for further optimizations. However, being both simple and

memory-intensive makes this an excellent target for processing-in-memory.

To this end, GradPIM is proposed, a fixed-function PIM with parameter-

update logic within the DRAM die. Conceptually, it is attempted to isolate

58

the memory traffic associated with the parameter update phase within the

memory with GradPIM (Figure 3.1), similar to the forward and backward

traffics being isolated within the NPU by data reuse techniques.

The bank group I/O gating is identified as the ideal place for placing the

parameter update logic. By placing registers next to the bank group I/O gat-

ing, each bank group is effectively decoupled from the global DRAM structure.

With careful data arrangements, a set of DDR-based PIM operations, which

can perform parameter updates using the internal parallelism of the DRAM,

is implemented.

GradPIM is designed to be a simple extension from the existing DDR4

protocol [72]. The design is non-invasive to the DRAM cell arrays and places

only a small additional module along with the peripherals. Those modules

are fully controlled by the memory controller using a reserved command (i.e.

RFU), and thus GradPIM can be considered a DDR-compatible device rather

than functioning as an independent accelerator.

3.1.4 DNN Parameter Update Algorithms

Majority of DNNs rely on a family of gradient descent as the parameter up-

date algorithm. In the simplest form of SGD (stochastic gradient descent), all

parameters in the network are updated towards the negative direction of the

gradient at the end of each minibatch execution. The update can be formulated

as below:

θt+1 = θt − ηgt (3.1)

where gt is the gradient vector over the current minibatch and η is the learn-

ing rate. To gain faster convergence and/or better accuracy, many advanced

59

parameter update algorithms have been proposed. For example, SGD with

momentum [73] is formulated as below.

vt = αvt−1 − ηgt (3.2)

θt+1 = θt + vt (3.3)

where α is a momentum decaying factor and v is the momentum. The momen-

tum works as a damping factor, and makes the convergence faster. If weight

decay term β is used in addition, Eq 3.2 becomes

vt = αvt−1 − η(βθt + gt) (3.4)

There are a few more parameter update algorithms worth mentioning such as

Adam [74], AdaGrad [75], NAG [76] or RMSprop [77]. For example, RMSprop

is formulated by

E[g2]t = γE[g2]t−1 + (1 − γ)g2
t (3.5)

θt+1 = θt − η√
E[g2]t + ε

gt (3.6)

These algorithms all exhibit element-wise computations and has a rela-

tively low number of computations per element. However, they usually require

higher precision especially due to their small hyperparameters (e.g., η = 0.01).

Thus, this can easily become the bandwidth bottleneck in the mixed-precision

training.

60

DRAM Cells

NPU Core Forward Backward

Layer block

GradPIM

On-chip Memory

Forward Backward Update

Raw
Traffic

Filtered
Traffic

Off - chip DRAM

Off - chip DRAM

DRAM Cells

GradPIMOff - chip DRAM

NPU Core Forward Backward

Layer block

On-chip Memory

Forward Backward Update

Raw
Traffic

Filtered
Traffic

Off - chip DRAM

To/From
Host

Ro
w

 D
ec

od
er

Sense Amplifiers

Column Decoder

Bi
tli

ne
 (B

L)

Wordline (WL)

Cell

Bank

GradPIM Unit

Bank Group I/O Gating

Bank Group 0

Bank B Bank C Bank DBank A

GradPIM Unit

Bank Group I/O Gating

Bank Group 1

Bank F Bank G Bank HBank E

Global I/O Gating

GradPIM Unit

Bank Group I/O Gating

Bank Group 2

Bank KBank JBank I Bank L

GradPIM Unit

Bank Group I/O Gating

Bank Group 3

Bank OBank NBank M Bank P

Mat

Bank Group I/O Gating

Bank Group
Bank

A
Bank

B
Bank

C
Bank

②Parallel Arithmetic

①Scaled Read

③
W

rit
eb

ac
k

D

Par. ALU

Quantization
Register

Temporary
Registers

X

Figure 3.2: Modern DDR4 SDRAM internal architecture.

3.1.5 Modern DRAM Architecture

The modern DRAM architecture is a result of multi-decade effort of continu-

ously increasing cell density and bandwidth at the same time. Figure 3.2 shows

the modern DDR4 SDRAM architecture, except for the ‘GradPIM Unit’s that

is proposed to be added. a DRAM is composed of multiple banks, which are

2D arrays of 1T1C cells. To increase the area efficiency, a row of cells in a

bank share a wordline (WL), which is used to select the row that should be

activated. A vertical set of cells in a bank share a pair of bitlines (BL, BLB)

that is used to deliver the data from/to the cells. When a row is activated, the

small charge stored within each cell flows out to the bitline and is caught by

a row of sense amplifiers. The sense amplifiers restore the cell capacitor to its

original values, and this takes tRAS time units to complete.

To read data from the activated row, a few bits (column) are chosen.

After tRCD from the beginning of an activation, data could be read from the

activated row. A few bits (columns) are chosen and are propagated through

the I/O gating and to the off-chip data bus. Even though each bank can

operate independently, the I/O gating circuitry is shared among them, and

each column read command occupies the I/O gating for tCCD time units.

61

Therefore a back-to-back column read command has to be spaced with tCCD.

Also, the data occupies the off-chip data bus for tBURST time units. tCCD

and tBURST are usually set to be 4 cycles, providing 64 bytes of data in a

burst1. After tCL of latency from the assertion of a read command, the data

burst starts on the data bus. In the case of a column write, the data flows in

the opposite direction. The memory controller can place the data on the bus

tCWL time units after the write command assertion, and the I/O gating is

again occupied after tCCD time units.

If a different row has to be accessed for read or write commands, the

current row has to be deactivated (precharged) and a new row has to be

opened. However, if a previous read or write command is on-going on a column,

the row has to remain open for tRTP or tWR time units after the previous

read/write command respectively, because the row has to provide the data for

a read, or has to wait for the data to be restored for a write.

An important concept introduced since DDR4 [72] is bank groups. To keep

up the internal fetch speed with the increasing off-chip data rate, multiple

banks (2,4, or 8) form a bank group, and the I/O gating is partitioned into

bank group I/O gating and global I/O gating. The result is that if consec-

utive column reads/writes are asserted to two different bank groups, the ac-

cesses only share the global I/O gating, and still can be spaced with 4 cycles

(=tCCD_S) as in previous generations (i.e., DDR3 [78]). However, if those

accesses are to the single bank group, the data occupies both the bank group

I/O gating and the global I/O gating, and the two accesses now have to be

scheduled with a longer interval (=tCCD_L) in-between. Usually, tCCD_L is

25% to 100% longer than tCCD_S.
1In fact, multiple chips co-operate as a rank to provide 64 bytes in a 4 cycle burst. the

details are omitted for brevity.

62

With the introduction of bank groups, there are two kinds of opportunities

for in-DRAM processing-in-memory (PIM) technologies to make use of. First,

bank-level parallelism exploits the fact that each bank can be independently

activated, and a single bank alone can provide more than half the bandwidth of

the off-chip data bus (the ratio depends on tCCD_L). Thus, a DDR4 SDRAM

chip with 16 banks has more than 8x bank-internal bandwidth, multiplied

by the number of ranks per channel. On the other hand, each bank group

can also provide more than half the bandwidth of the off-chip bus. Therefore

there is more than 2x (for DDR4) or 4x (for DDR5) bank group-internal

bandwidth, again multiplied by the number of ranks. Each bank group has

access to multiple banks and therefore provides an opportunity to work with

multiple open rows in separate banks, which would not have been possible

when working only with bank parallelism.

3.1.6 Motivation

subsec:3.1.1.motivation Most NPU designs are focusing on maximizing MAC

utilization and minimizing memory traffics during the forward and the back-

ward passes. In full-precision training, the traffics from activation values dom-

inate the entire memory traffics and the execution time, making the above

strategy promising. However, with mixed-precision training, the portion of the

memory accesses from parameter updates dramatically increase because the

parameter update is the only phase that reads and writes the high-precision

master parameters from/to the memory, which is 4x the amount of low-

precision values (in the 8bit/32bit mixed-precision case).

Furthermore, the state-of-the-art data reuse techniques [61, 59, 60] can

reduce the off-chip memory accesses during the forward and backward pass.

63

 ‐

 10.00

 20.00

 30.00

 40.00

 50.00

Breakdown of Memory Access (ResNet‐18)

Fwd Bact Bwgt Pup

(MB)

Figure 3.3: Breakdown of the memory access of ResNet-18 layers with mixed
precision training.

With such techniques, the portion of the parameter update memory traffics

rises to nearly half of the entire training. Figure 3.3 shows the breakdown of

the amount of memory accesses in training a batch of ResNet-18, in MB. The

bars are divided into forward pass (Fwd), backward pass activations (Bact),

backward pass weights (Bwgt), and parameter updates (Pup). For maximiz-

ing the data reuse, MBS (MiniBatch Serialization) [59] and BNFF (Batch-

Normalization Fission and Fusion) [60] are applied to reduce the inter-layer

data traffic. As the network advances to later layers, the portion of the mem-

ory traffic caused by parameter updates becomes significant. In the last block,

the weight parameter updates take as much as 80.5% of memory traffics. The

total portion of the update phase is 45.9%, which is where GradPIM is tar-

geted at. This is in line with the analysis in [79] which reports that offloading

packing and quantizing the data to a PIM module can bring a great amount

of speedup and energy gain on various applications including TensorFlow Mo-

bile [80]. GradPIM isolates most of the update traffics within the bank group,

64

and the NPU only needs to send the 8-bit scaled gradient to the memory.

This leads to a significant amount of execution time and energy reduction, as

will be demonstrated in Section 3.5. The portion of traffic in the update phase

depends on the ratio of activations and the weight parameters. As the applica-

tion fields of DNNs expand towards non-CNN workloads such as AlphaGo [81]

(playing boardgames) or MLP [82] (general classification and regression prob-

lems), we have found that the portion of the weight parameters rises especially

for those emerging non-vision DNN applications.

3.2 Previous Work

3.2.1 Processing-In-Memory

Placing a logic inside DRAM is not entirely new, and in fact has a long his-

tory of work accumulated over a few decades. Starting from execube [83] in the

1990s, there has been much work on integrating processor and memory on a

single die [84, 85, 86, 87], but without commercial success. The idea of PIM re-

vived in mid-2010s, with the aid of 3D stacking technology. By placing a logic

die underneath a few memory dies, processing logic could be placed together

with the memory cells without having to share the same silicon technology

of the memory that slows down the processing speed [88, 89, 90, 91, 92, 93].

Meanwhile, there were attempts to exploit the inherent structure of the exist-

ing DDR family to perform a certain class of executions [94, 95, 96, 97, 98, 99].

UpMem [100] has fabricated a processor within a memory die and claims that

it can obtain a multifold speedup of the various applications.

65

3.2.2 Co-design Neural Processing Unit and Processing-In-

Memory

DNN as a surging application is another strong driving force towards mem-

ory with computing capability. For example, Neurocube [101] is a PIM

for executing Neural network using a 3D stacked memory and Tensor-

DIMM [102] organizes a specialized DIMM targeting gather and reduction

to speedup embedding lookups and tensor manipulations. One major stream

of work is at modifying the cell array structure to perform massively par-

allel operations needed for DNNs. Such an idea has been proposed for

DRAM [103, 104, 105, 106, 107], SRAM [108, 109, 110, 111], and emerging

memories [112, 113, 114, 115, 116, 117, 118, 119]. However, these technologies

all require changing the cell structure itself, and implementing on top of the

legacy technologies is complicating (e.g., DDR4/5 protocol).

Compared to most of the PIM solutions above, the GradPIM is a cheaper,

easily realizable solution. Solutions such as [103, 104, 105, 106, 107] involve re-

designing the DRAM core cell array. While these solutions are certainly better

at performance, they are much harder to realize as a product. On the other

hand, GradPIM only alters the datapath at the global I/O gating, requiring

only a small amount of change in the circuitry. We believe approaches similar

to GradPIM has more potential to be accepted to the industry in the nearer

future as they fit more smoothly to the current DRAM standards.

BGLP [120] is another work worth mentioning since it exhibits a related

idea with the proposal. While not essentially a processing-in-memory work, it

decouples the bank group from the other parts of the DRAM. The difference

with this work is that they use the buffers to relax the scheduling restrictions,

and tries to increase the utilization of the internal banks.

66

This work is similar to TensorDIMM [102], which organizes a specialized

DIMM targeting embedding lookups and tensor manipulations. However, Ten-

sorDIMM requires the use of buffer chips to the memory channel, and utilizes

only the rank internal bandwidth and requires adding more ranks for the

speedup. GradPIM can achieve more speedup as shown in Section 3.5 by uti-

lizing the bank group level parallelism.

3.2.3 Low-precision Computation in NPU

For efficient execution of DNNs, NPU designs are starting to adopt low-

precision executions into the datapaths. Nvidia TensorCore [67] is one direct

example of a hardware capable of mixed-precision execution that can be found

on the market. [121] proposes an interesting idea where most of the computa-

tion is operated within the low-precision units, and a few outliers that require

high-precision are specially handled to achieve high energy efficiency. Bina-

rized neural networks (BNNs) are also popular targets for efficient executions

at the lower extreme, and there have been many NPUs [122, 123, 124], and

PIMs [103, 104, 106, 105, 113] specially designed for BNNs. This work also

encloses 8-bit datapaths to perform low-precision MACs, but the proposal has

a novelty in that it co-design the NPU along with the PIM memory, and split

the computation for efficiently isolating the traffic within the NPU and the

memory.

67

DRAM Cells

NPU Core Forward Backward

Layer block

GradPIM

On-chip Memory

Forward Backward Update

Raw
Traffic

Filtered
Traffic

Off - chip DRAM

Off - chip DRAM

DRAM Cells

GradPIMOff - chip DRAM

NPU Core Forward Backward

Layer block

On-chip Memory

Forward Backward Update

Raw
Traffic

Filtered
Traffic

Off - chip DRAM

To/From
Host

Ro
w

 D
ec

od
er

Sense Amplifiers

Column Decoder

Bi
tli

ne
 (B

L)

Wordline (WL)

Cell

Bank

GradPIM Unit

Bank Group I/O Gating

Bank Group 0

Bank B Bank C Bank DBank A

GradPIM Unit

Bank Group I/O Gating

Bank Group 1

Bank F Bank G Bank HBank E

Global I/O Gating

GradPIM Unit

Bank Group I/O Gating

Bank Group 2

Bank KBank JBank I Bank L

GradPIM Unit

Bank Group I/O Gating

Bank Group 3

Bank OBank NBank M Bank P

Mat

Bank Group I/O Gating

Bank Group
Bank

A
Bank

B
Bank

C
Bank

②Parallel Arithmetic

①Scaled Read

③
W

rit
eb

ac
k

D

Par. ALU

Quantization
Register

Temporary
Registers

X

Figure 3.4: DRAM internal architecture of GradPIM unit.

3.3 GradPIM

3.3.1 GradPIM Architecture

Figure 3.4 shows the architecture of GradPIM unit. a GradPIM unit is placed

at each bank group, next to the local I/O gating. At the heart of GradPIM is

the temporary registers next to the local I/O gating. The temporary registers

effectively decouples the local I/O gating and the global I/O gating, hence

enabling the bank-group level parallelism. Data is read to or written from the

temporal registers, instead of having to occupy the global I/O gating or the

external data bus. Also, the vector operation required for the update phase is

performed in executing DNNs.

Another benefit of placing the GradPIM unit next to the bank group I/O

gating is that it has access to multiple banks. That means, unlike a few previous

PIM approaches [96, 95] which performs operations within a bank, GradPIM

can operate on multiple rows concurrently at a time. This is essential for work-

68

ing with multiple arrays of variables, which would otherwise cost expensive row

activation each time a column of different array has to be accessed.

GradPIM logic mainly includes three components: Registers, scaler, and

parallel arithmetic unit.

• Registers are used to store intermediate results and have the same width

of the global sense amplifiers (i.e., 64 Bytes in total for a rank). Two tem-

porary registers are placed per GradPIM unit to be used for source and

destinations of the arithmetic operations, and one quantization register

exclusively for storing the 8bit quantized values.

• Scaler is used to scale the data with pre-defined hyperparameters, e.g.,

default learning rate. The scaler is placed between the bank group I/O

and the registers, and performs element-wise multiplications.

• Parallel arithmetic unit is used to perform element-wise computations

within the update phase, such as the additions in Eq. 3.4. In the current

version of GradPIM, it supports simple additions and subtractions.

3.3.2 GradPIM Operations

With the components, the operations that GradPIM perform are classified

into three categories as below:

1. Scaled read loads a column of data into a register from the cells through

the sense amplifiers. While loading to the registers, those values are

scaled by certain hyperparameter, such as η, α or β as in Equation 3.4.

Since those scaling values are mostly fixed constants that have broadly

accepted values in practice, four scaler values are pinned to an id to

each value. To simplify the scaler, the scaler values are approximated in

69

2n ± 2m and implemented with combinations of shifters and adders. The

values of n and m assigned to each opcode can be programmed with

MRW (Mode Register Write) command in case the user needs to use

different set of values.

2. Parallel operations performs arithmetic operations from the registers

and puts the result into another register similar to AVX-512 VPADDD [125]

instruction. Currently, GradPIM supports add, sub, quantization, and

dequantization to create the partial terms of Equation 3.4 or execute

conversion between 8-bit and 32-bit values. Quantization and dequan-

tization processes either read data from one of the temporary registers

and write to the quantization register (quantization), or the other way

around (dequantization). This decision is made since the 8-bit values

stay four times longer in the register, and using a register exclusively for

storing them greatly simplifies the data and control path circuit design

(see Figure 3.5 for details).

3. Writeback After the operations for the optimizers are complete, the

result has to be written back. This corresponds to the second half of the

DDR column write command, where the register data is written to the

global sense amplifier and to the cells.

3.3.3 Timing Considerations

To allow the memory controller to schedule the GradPIM commands along

with the existing commands, each GradPIM command has to mingle with the

timing parameters. timings are kept for each command as below.

The scaled read is similar to the column read operation in the ordinary

70

DDR protocol [72], but the data is placed to one of the registers instead of the

data bus and therefore does not limit the scheduling of other commands with

tBURST. In an attempt to maintain close consistency with the existing DDR

commands, the memory controller regards the operation as complete after

tCCD_L. In DDR protocol, tCCD_L represents the bandwidth that a bank

or a bank group is capable of providing. Because the scaled read operation also

reads the data from the banks, it is reasonable to assign the same tCCD_L

to read data and be stored in the register. Also, tRTP is still preserved since

the sense amplifiers need to provide the data from the cells. Please note that

the scaled read occupies only the local bank group I/O gating and thus does

not interfere with the other scaled read commands in different bank groups.

The parallel arithmetic operations happen completely out of the conven-

tional DRAM logic and is not governed by the existing timing parameters.

To account for the parallel ALU being occupied, an extra timing parameter

tPIM, which takes the worst case execution time for the arithmetic operations

into account, is introduced. This timing parameter does not interfere with any

other commands, but tPIM prohibits other arithmetic operations from taking

place within the same bank group.

Writeback operation can be considered as the latter half of the existing

write command. Instead of the data bus, the data is coming from one of

the registers. Therefore the writeback operation is not affected by tCWL or

tBURST, but the tCCD_L is kept as in the scaled read as the bank group

I/O gating is occupied. tWR has to comply if the row is to be closed after the

writeback since the data propagate into the row through the sense amplifiers.

71

𝒈
଴ 𝒈 ଵ

𝒈
ଶ 𝒈 ଵ

𝒈

ଷ

𝒈
ଶ

𝒈
ଷ

൅
𝜶

𝒗 𝒕
ି

ଵ
െ

𝜼𝒈
𝒕

𝜂𝛽
𝜃 ୲

𝒗 𝒕

𝜃 ୲

𝜃 ୲
ା

ଵ

𝒗 𝒕

𝜃 ୲
ା

ଵ

ro
w

 𝒈

①
②

③

④

⑤ ⑥

ro
w

 𝒗

ro
w

 𝜽

𝜶
𝒗 𝒕

ି
ଵ

𝜼𝒈
𝒕

𝑹
𝒆𝒈

𝟎

𝑹
𝒆𝒈

1

൅
൅

D

ro
w

 Q
ሺ𝒈

ሻ

ro
w

 𝒈

𝒈
଴

𝑹
𝒆𝒈

𝟎

𝑹
𝒆𝒈

1

D
D

𝑹
𝒆𝒈

Q
Qሺ

𝒈
ሻ

D

①

②

ParameterUpdateDequantization

Ti
m
e

Ac
tiv

at
ed

 R
ow

Te
m
p.
 R
eg

is
te
r

Q
ua

nt
. R

eg
is
te
r

൅
Ad

d/
Su

b
𝑸

Q
ua

nt
iz
at
io
n

𝜽 ଴

ro
w

 Q
ሺ𝜽

ሻ

ro
w

 𝜽

𝜽 ଴

𝑹
𝒆𝒈

𝟎

𝑹
𝒆𝒈

1

𝑹
𝒆𝒈

Q

𝑸
①

②

Quantization

Qሺ
𝜽ሻ

𝜽 ଵ

𝜽 ଶ

𝜽 ଵ

𝜽 ଷ

𝜽 ଶ

𝜽 ଷ

𝑸
𝑸

𝑸

D
D
eQ

ua
nt
iz
at
io
n

Fi
gu

re
3.
5:

Ex
am

pl
e
pr
oc
ed

ur
e
fo
r
qu

an
tiz

at
io
n/

de
qu

an
tiz

at
io
n
an

d
m
om

en
tu
m

SG
D

al
go

rit
hm

w
ith

G
ra
dP

IM
.

72

3.3.4 Update Phase Procedure

To execute the update phase with GradPIM, the NPU first writes the low-

precision gradients to the memory, and dequantization is performed to convert

them to high-precision values to be used in the parameter update. Second, the

parameter update algorithm is executed as in Eq. 3.3 and Eq. 3.4. Finally,

quantization is performed on the updated master weights to convert them

to a lower precision, allowing the NPU to read them in the next step. This

section shows how these are done sequentially using the operations described

in subsection 3.3.2.

Dequantization

Figure 3.5 (Top) shows the procedure for performing dequantization. It is as-

sumed that the rows for the quantized gradients Q(g) and the dequantized

gradients g are already open on different banks within a bank group so that

they can be open at the same time, and the procedure is as follows: 1 A

column of Q(g) is loaded into the quantize register. 2 A 1/4 column of the

Q(g) is dequantized and the resulting column is written to a temporary reg-

ister. The dequantzation command specifies which 1/4 of the column should

be read from the quantize register and which temporary register to write to

(please see subsection 3.3.5). Then the gradient (g) is written back to the

corresponding row, and 2 is repeated four times until the entire column had

been dequantized. The procedure is repeated for the consecutive columns of

g.

One thing to note is that the entire procedure does not experience any row

buffer miss except for when a new row is opened for next data accesses (like

a cold miss in a cache) because a unit is placed in the local I/O of the bank

73

group.

Parameter Update

Figure 3.5 (middle) shows the procedure for conducting the update phase with

GradPIM using momentum SGD [73] algorithm as in Eq 3.3, 3.4 as a simple

example.

It is also assumed that the rows for weight parameters θ, momentum v and

gradients g are already open on different banks within a bank group so that

they can be open at the same time. 1 A column of gt and vt−1 are loaded to

the temporary registers, scaled by η and α using scaled_rd operation. 2 The

scaled values in the two registers above are processed with parallel_add. 3 A

column of θt is loaded into a temporary register, scaled by ηβ. 4 Parallel_add

is performed once again, creating vt in EQ 3.4. 5 Writeback is performed from

the register with vt to the open row for v. 6 Similarly, a column of θt+1 is

generated by Equation 3.3 and written back to the row storing θ. Finally, 1

- 6 is repeated for consecutive columns of g, v and θ until the entire row has

been processed.

This procedure also requires no unnecessary row activations as in the de-

quantization case. In the case of the more complicated algorithm where more

than one momentum is used per weight parameter, the required number of

concurrent open rows might increase, but there are four banks per bank group

in typical DDR4/5 SDRAMs and it is enough to cover all per-weight values

in most of the SGD-based parameter update algorithms to my knowledge.

74

Table 3.1: Truth Table for GradPIM Commands

Func.
Signal Op0 Op1 Param0 Param1 Src/Dst

Scaled Read L L Scale ID Dst
DeQuant H L Src Position Dst
Quant H H Dst Position Src
Writeback L H L L Src
Q. Reg L H H L RD/WR
Add L H H H Dst
Sub L H L H Dst

Quantization

Figure 3.5 (Bottom) shows the procedure for performing dequantization. As

the last step, the master weight parameters are quantized to a low precision,

so that the NPU can read them during the forward and backward phase.

The procedure is similar to dequantization, but the order is opposite. 1 A

column of master weight parameters are loaded to a temporary register, and

quantization is performed. It fills a quarter of the quantization register, so

this is repeated four times. 2 Each time the quantization register becomes

full, it is written back to the row with Q(θ). It is repeated for the consecutive

columns of θ.

3.3.5 Commanding GradPIM

This work utilizes the RFU (Reserved for Future Use) commands in exist-

ing DDR4 protocol [72] to realize the GradPIM commands. According to the

standard, there are a number of configurable command signals used for RFU

operations. Since all the commands require addresses for bank groups, banks,

rows, and columns, it leaves five signals left for configuring GradPIM com-

75

mands 2.

Table 3.1 shows the truth table for the commands added for GradPIM.

For scaled read, 2 bits are assigned for the id of the scaler value and 1 bit

for the destination register id. For quantization and dequantization, 2 bits

are assigned to designate which quarter of the quantize register has to be

accessed, and another bit for the src/dst temporary register id. For writeback

and parallel ops, only 1 bit is assigned to denote the src or dst register id.

Parallel ops do not require src register ids since there are only two temporary

registers that are both used as operands. With quantization register control,

since there is only one register, a single bit is assigned for wr/rd.

In case more fields are needed to support additional operations for future

extensions, an extra command signal can be added or unused command com-

binations which are not explicitly stated as RFUs, but not claimed by the

standard can be occupied. This would cause slightly more overhead to com-

plicate the command decoder design, but would provide a plenty of command

signals for enough flexibility.

3.4 NPU Co-design with GradPIM

3.4.1 NPU Architecture

A NPU used here is designed based on Diannao [53] as shown in Figure 3.6.

Modern NPUs often utilize systolic array structures for MACs. However, sys-

tolic arrays necessitate performing additions in a sequential way that often

suffers from numerical stability problem when using low-precision values due
2These are A12/BC_n, A17, A13, A11 and A10/AP. Please refer to [72] for more details.

In the case of DDR5, the effective number of free bits increase to six as there are four RFU
commands with four free bits each [126]

76

M
e
m
o
ry
 C
o
n
tr
o
lle

r

W
r
B
u
f

Local Buffer
Local Buffer A

Mac Array

G
lo
b
al
 B
u
ff
e
r

C
o
l2
Im

+

Lo
ca
l B

u
ff
e
r

Lo
ca
l B

u
ff
e
r
(O

u
t)

NPU

Im2Col
Local Buffer

Local Buffer B

Fr
o
m
/T
o

Figure 3.6: NPU architecture of GradPIM.

77

to swamping [70]. A popular way of solving this on low-precision training is

chunk-based additions [62], which gradually adds up the elements in chunks

so that there is less divergence between the exponents of the partial sums.

For such reason, the MAC array of the proposed NPU is composed of 128

adder trees where each tree receives 128 pairs of 8-bit values and calculates

the sum of products to output one 8-bit activation.

To feed the MAC array with continuous stream of data, we adopt the

widely used im2col-col2im data flow that converts the input activations into

a Toeplitz matrix so that convolution operations can be handled with matrix

multiplications as in CuDNN and a few NPUs [59, 127]. The input matrices

are partitioned into 128x128 blocks that fit the local buffer to maximize data

reuse.

To keep the MAC array utilization high, the widely used im2col-col2im

data flow is adopted as in CUDNN and a few NPUs [59, 127]. The input ma-

trices are partitioned into 128x128 blocks so that the local buffer can maximize

the data reuse from the global buffer.

There are two sets of input local buffers (one for weight parameters and

the other for activations in forward pass) and a set of output local buffers per

adder tree. Each input buffer holds the 128x128 elements of the block, which is

equal to the size of inputs of the MAC array. The output buffer also has a width

of 128x128 bits, matching the size of the partial sum of the resulting matrix

block. Each input and output local buffer is double-buffered to maintain the

throughput while reading/writing from/to the global buffer. Each cycle, the

local buffer of weight parameters provides a row of blocked matrix to each

tree, and the activation local buffer provides a column of the blocked matrix

to each adder tree. At the end of each cycle, the columns in the local buffer

78

rotate, making a different match between the rows and the columns to be

multiplied. This is analogous to the weight-stationary dataflow [57, 58] often

used in systolic array architectures [52, 55, 50]. When the partial sum for the

entire block is complete, the value is written back to the global buffer, while

processing of the next block proceeds, using the values prepared in the other

side of the double-buffers.

In order to avoid the memory traffic explosion due to the im2col scheme,

a dedicated module is placed for performing im2col between the global buffer

and the activation local buffer. The module creates a block of matrix from the

image-format activations in the global buffer and writes to the activation local

buffer. The global buffer aggregates a few matrix blocks to form a macroblock

so that it can hold the right amount of data at a time. The calculated output

blocks coming from the MAC arrays are accumulated in the global buffer.

When processing is done for the macroblock, it is sent to the DRAM through

the write buffer. In case of the backward phase, a dedicated col2im module is

used between the global buffer and the write buffer, performing the inverse of

an im2col required for the backward pass.

3.4.2 Data Placement

Conventional DRAM subsystems integrate multiple devices to form a data

bus with a large width. Consequently, 64-bit data are split into 4, 8 or 16 bits

and interleaved among each chip for x4, x8, x16 devices respectively. However,

GradPIM requires the entire 32bit within a device in order to perform vector

operations. And, the non-interleaving data arrangement scheme is used as

in [128, 96] where consecutive bits are placed within each device. This puts an

entire word into a device and allows for element-wise operations

79

Bank (2) Row (16) B Group (2) Column (10) Bytes (3)Addr

Bank 0

Bank Group 1

Bank 1

Bank 2

Bank 3

Bank 0

Bank Group 2

Bank 1

Bank 2

Bank 3

Bank 0

Bank Group 3

Bank 1

Bank 2

Bank 3

Bank 0

Bank 1

Bank 2

Bank 3

Bank Group 0

Figure 3.7: Address mapping and data placement scheme for GradPIM.

Some considerations are needed for the address mapping to avoid bank-

group and bank conflicts. Except for the simple SGD optimizer, update phase

requires more than one arrays per parameter (e.g., θ and v in Eq 3.3) for

computation. Reading them are sequential, but incurs a cumbersome problem

for GradPIM. When the two arrays of values are placed in two different bank

groups, it requires an inter-bank communication, which is unsupported by

GradPIM because it would occupy the global shared data bus within the

DRAM chips. On the other hand, if the two arrays are placed within a single

bank, it is a trivial case of a bank conflict. It would require alternating row

activations for accessing each array.

Therefore, it is necessary to ensure that the corresponding elements of the

arrays are placed within the same bank group, but different banks. It can

be solved by carefully designing the address mapping. Figure 3.7 shows the

address mapping for GradPIM. To enable maximum bank-group level paral-

lelism, bank-group interleaving is adopted, so that multiple bank groups can

operate concurrently. The bank ids within the bank groups are assigned to

80

the MSB of the addresses. This makes sure that multiple different arrays can

always be placed in distinct banks. When allocating the arrays such as θ or

v, they are aligned to the bank boundary, so that the items at the match-

ing positions always stay within the same bank group. In the case of the

quantized weight parameters, it is impossible to perfectly align them with the

non-quantized weight parameters, because their elements differ in width while

the number of elements are the same. If they are aligned to the beginning of

the array, they will not be present in the same bank group anymore, violating

the GradPIM operation requirements. To solve the problem, it is chosen to

utilize only the first quarter of the row for the quantized weights. By doing

this, even though it wastes the DRAM capacity, it do not waste the off-chip

bandwidth. The GradPIM operation will run without a problem because the

column id of the elements do not have to match as long as they are placed

within the same bank group and different bank. Multiple channels or multiple

ranks are not considered in this section, but the channel or rank bits can be

placed between the bank group bits and the bank bits as long as it does not

violate the same bank group, different bank criteria. Additionally, bank-group

bits are placed at the lowest position right after bytes so as to activate each

GradPIM in bank-groups as soon as possible.

To exploit the effect of data mapping to the programming model, we as-

sume that the API and device driver provide a device-side allocation function

supporting separation between data structures, similar to multi-stream fea-

tures in SSDs [129]. Therefore the user only specifies that each data structure

should be stored to different banks, without being exposed to the indices of

the physical banks or bank groups. In the current setting, we assume that the

NPU has its dedicated memory attached with GradPIM. However, GradPIM

81

can also be used when the host and the NPU share the memory by assigning

certain memory region to the NPU, similar to pinned memory in CUDA [130].

3.5 Evaluation

3.5.1 Evaluation Methodology

The proposed NPU is implemented by an in-house simulator written in Sys-

temC [131]. GradPIM has been modeled by extending DRAMSim 3.0 [132],

and it is faithfully modeled that the timing of GradPIM operations as ex-

plained in subsection 3.3.3 while keeping the existing timings posed by the

existing DDR protocol.

To verify the NPU, it has been synthesized in Verilog HDL at 1GHz using

Nangate 45nm open cell library [133]. I have ensured the timing closure and

the functionality then drew the power consumption of the NPU. The synthesis

results for NPU components are presented in Table 3.2. I have used a DRAM

based on DDR4-2133 with 4 ranks having 4 bank groups and 4 banks per

bank group. and taken the timing parameters from [134]. The energy and

timing parameters used in the paper are displayed in Table 3.3. To model

the overhead of the GradPIM logic within the memory, it is conducted that

a layout of the GradPIM unit over the DRAM constraint of 3 metal layers

and core utilization of 70% using the 45nm process and scaled it to 32nm.

Table 3.2: NPU Synthesis Results

Module Area (mm2) Power (W)
Datapath 19.89 14.33
Global Buffer 18.30 4.05
Local Buffers 3.08 0.71
Total 41.27 19.09

82

The area and energy measured is shown in Table 3.4. Compared to an x8 8Gb

DDR4-SDRAM device, it consumes only 0.01% area overhead to the DRAM,

corresponding to about 1Mb DRAM cells. I followed [135] to model the partial

energy needed for read/write within the bank group (IDDpre). For the off-chip

links, the DRAM power calculator from Micron [136] have been used.

The proposed design has been evaluated with two versions of ResNet (18-

and 50- layers), Mobilenet [137], MLP [82] and AlphaGo Zero [81] to represent

various types of DNN workloads. The results are shown in Figure 3.8 - 3.10.

In the figure, the filled parts of the bar represent parameter update phase,

and the empty parts of the bars represent the forward/backward phase. For

the baseline, the proposed NPU, with 8 bit datapaths with dedicated 32 bit

update units within the NPUs is used.

3.5.2 Experimental Results

Performance. Figure 3.8 (Top) shows the execution time of the chosen net-

works with minibatch size 32 (128 for MLP). The layers are grouped into a

few blocks with similar characteristics for brevity. The leftmost bar shows the

Table 3.3: DRAM parameters

Spec. DDR4-2133
Timing (Cycles) Value Current (mA) Value
tCK 0.94ns Vdd 1.2V
tCL 16 IDD0 75
tRCD 16 IDD2P 25
tRP 16 IDD2N 33
tRAS 36 IDD3P 39
tCCD_L 6 IDD3N 44
tCCD_S 4 IDD4W 225
tPIM 5 IDD4R 225
tFAW 23 IDDpre 98

83

0.
00

0.
20

0.
40

0.
60

0.
80

1.
00

1.
20

Block0

Block1

Block2

Block3

Block4

FC

Total

Block0

Block1

Block2

Block3

Block4

FC

Total

Block0

Block1

Block2

Block3

Block4

FC

Total

Input

H1

H2

Output

Total

Conv

Residual

Policy

Head

Total

Re
sN

et
‐1
8

Re
sN

et
‐5
0

M
ob

ile
N
et

M
LP

Al
ph

aG
oZ

er
o

N
or
m
al
ize

d
Ex
ec
ut
io
n
Ti
m
e

Ba
se
lin

e
G
ra
dP

IM
‐D
R

TD
G
ra
dP

IM
‐B
D

Fi
gu

re
3.
8:

N
or
m
al
iz
ed

ex
ec
ut
io
n
tim

e
of

ea
ch

la
ye
ro

n
va
rio

us
ne

tw
or
ks

us
in
g
G
ra
dP

IM
.T

he
fil
le
d
pa

rt
so

ft
he

ba
rs

re
pr
es
en
t

pa
ra
m
et
er

up
da

te
ph

as
e,

an
d
th
e
em

pt
y
pa

rt
s
of

th
e
ba

rs
re
pr
es
en
t
th
e
fo
rw

ar
d/

ba
ck
wa

rd
ph

as
e.

84

baseline, where the NPU has dedicated 32bit modules to execute the update

phase including adders and quantize/dequantize units to convert between the

precisions.

The second bar, noted ‘GradPIM-DR’ shows the GradPIM architecture

directly controlled by the memory controller on the NPU. The third bar, ‘TD’

represents a design similar to TensorDIMM [102] where a buffer chip is added

between the NPU and the memory, and the GradPIM units are placed within

the buffer chips. The last bar ‘GradPIM-BD’ represents a design where Grad-

PIM is placed on a buffered DIMM, and the commands to control the Grad-

PIM units are sent from the buffer chip. This alleviates the command bus

contention, and allows a fair comparison of GradPIM with TensorDIMM. The

execution times are normalized to the baseline execution time of the most

time-consuming block within each network, while the ‘total’ is separately nor-

malized to the baseline execution time on the entire network.

Compared to the baseline, GradPIM-DR achieves around 2.25× higher

performance for the parameter update phase from being able to utilize the

bank group internal bandwidth of the DRAM. For the entire training, the

overall speedup is about 24.8% in geometric mean as it is governed by the Am-

dahl’s law. with GradPIM-DR, the bottleneck is at the limited command rate

Table 3.4: GradPIM Layout Results

Module Area (µm2) Power (mW)
Adder 320.1 0.058
Quantize 275.4 0.056
Dequantize 244.8 0.041
Scaler 606.1 0.159
Registers (×3) 206.7 0.04
Total 8267.8 1.74

85

 ‐

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

Bl
oc
k0

Bl
oc
k1

Bl
oc
k2

Bl
oc
k3

Bl
oc
k4 FC

Bl
oc
k0

Bl
oc
k1

Bl
oc
k2

Bl
oc
k3

Bl
oc
k4 FC

Bl
oc
k0

Bl
oc
k1

Bl
oc
k2

Bl
oc
k3

Bl
oc
k4 FC

In
pu

t
H
1

H
2

O
ut
pu

t
Co

nv
Re

si
du

al
Po

lic
y

H
ea

d
H
ea

d

ResNet‐18 ResNet‐50 MobileNet MLP AlphaGoZero

Normalized Energy Consumption

ACT RD WR PIM

Ba
se
lin

e
G
ra
dP

IM

Figure 3.9: Energy consumption of various networks using GradPIM.

(Section 3.3.5). TD and GradPIM-BD alleviate the problem by using buffered

DIMMs and sending the commands from the buffer devices. TD achieves 24.9%

speedup in geometric mean. However, it’s speedup is limited by the amount of

rank-level parallelism. GradPIM-BD achieves 39.2% speedup overall, by being

able to utilize all the bank group level parallelism.

Energy Consumption. The energy consumption from the memory is shown

in Figure 3.9. The energy saving is almost proportional to the speedup as

the saving is mostly from reduced external bandwidth usage, which translates

to less data bus switching. As can be seen from the breakdown, most of the

energy reduction is coming from the reduced amount of read/write. For the

parameter update phase, the baseline NPU has to read the high precision

master weight, perform the update, and write the master weight back to the

memory, all occupying the off-chip bus. However, the data occupying the data

bus with GradPIM is the low-precision gradient, one way only. Therefore, the

proposed model benefits from two sources of savings: the lower bit width, and

86

 ‐
 50

 100
 150
 200
 250
 300
 350
 400
 450

Command Bus Utilization

Baseline GradPIM‐DR GradPIM‐BD
(%)

 ‐

 20

 40

 60

 80

 100

 120

Memory Bandwidth
Baseline GradPIM‐DR‐Int
TensorDIMM‐Int GradPIM‐BD‐int

(GBps)

Figure 3.10: Command bus utilization (left) and the external/internal memory
bandwidth consumption using GradPIM (right).

not having to read but only having to write the data. The activation consumes

almost the same amount of energy between the baseline and GradPIM since

GradPIM does not change the amount of data read from the DRAM array.

In fact, the memory footprint is exactly the same, and the slight differences

comes from change in access order. Please note that using GradPIM does not

cause the number of activations to violate the tFAW constraint. Despite the

increase in the internal reads, most of them result in row hits. Although not

included in the paper, the experiments have been conducted to verify that

relaxing tFAW to infinity incurs negligible difference in performance.

Bottleneck Analysis. Figure 3.10 (right) shows the external and internal

bandwidth consumption of the DRAM during the update phase to get a deeper

look. The baseline NPU’s external bandwidth consumption during the update

phase is around 15GBps, reaching near the theoretical maximum of 17.1GBps.

The internal bandwidth of the baseline is trivially the same and omitted from

the figure. On the other hand, the internal bandwidth consumption of Grad-

PIM on average is 25GBps, far higher than that of the baseline. This reasons

87

 ‐

 100

 200

 300

 400

 500
Sensitivity to Precision

8b/32b 8b/16b 16b/32b

(Speedup, %)

100

150

200

0.01 0.1 1 10 100
Ops/MemBW

Sensitivity to Compute/MemBW

DDR‐2133 DDR‐3200 HBM

(Speedup, %)

G
V1

00 Scaledeep

TPUv2

TPUv1
G
A1

00
 ‐

 50
 100
 150
 200
 250
 300
 350

Sensitivity to Batch Size

16 32 64
(Speedup, %)

Figure 3.11: Sensitivity to compute-bandwidth ratio (left), minibatch size
(mid), and minibatch size (right).

from each GradPIM unit working independently on each bank group, and this

is the source of speedup and the energy consumption. We found that the bottle-

neck is at the command bus reaching near 100% as shown in Figure 3.10 (left),

which shows that the command bus utilization is near 100% with GradPIM-

DR for all networks, blocking any further internal bandwidth increase. With

GradPIM-BD, the commands are generated from the buffer chip and thus it

alleviates command bus bottleneck. It consumes around 95GBps, more than

3.5× the internal bandwidth compared to GradPIM-DR. However, Figure 3.10

(left) shows that its command bus utilization is still almost at the maximum,

blocking any further internal bandwidth usage.

3.5.3 Sensitivity Analysis

Compute/bandwidth ratio. Figure 3.11 (left) shows the speedup sensitivity

with respect to the ratio between the ops provided by the MAC array and the

DRAM bandwidth, measured from multiple MAC array size (64x64-512x512)

and multiple DDR4 data rate (DDR4 2133-3200 and HBM). The speedups are

measured from AlphaGoZero. The X axis shows the ratio between the ops and

the memory bandwidth. The ratios of a few NPUs [55, 138, 139, 140, 141] have

been marked. For a fair comparison, I have used the metric of operations per

88

second (compute) divided by activation item per second (memory bandwidth)

to take different target precisions into account.

As Ops/BW gets higher, GradPIM achieves more speedup due to the in-

creased dependency on the effective memory bandwidth. The figure shows that

GradPIM achieves meaningful speedups (20-80%) for a range that covers that

of the chosen NPUs, but the speedup diminishes as the ratio approaches that

of the GPUs (<10%).

Minibatch Size. While the minibatch size does not affect the speedup of

GradPIM over the update phase, it directly affects the portion of the update

phase in the entire training. Figure 3.11 (mid) shows the change in the overall

speedup coming from the batch size. While the overall speedup relative to the

baseline at the same minibatch size does not change by a large amount, it

shows a continuous trend where the smaller batch size leads to more speedup.

Thus GradPIM has better potential for speedup with smaller batchsizes. As

seen in Section 3.5.5, this will help improve the scaling efficiency for distributed

deep learning.

Sensitivity to mixed precision levels. Figure 3.11 (right) shows the dif-

ferent speedups when the 8/16 or 16/32 mixed precision is used instead of

8/32 as in the default setup. While the speedup of GradPIM highly depends

on the ratio between the low-precision and the high-precision representations,

the setting of 8/16 bit and 16/32 bit system still provides a meaningful amount

of speedup of 30.0% and 33.3%, respectively. 8bit training is still not at the

mature status, and 16/32 bit mixed precision training is still what’s domi-

nant on the field. However, I envision that as the technology advances, lower

precision would be utilized more often in favor of GradPIM.

89

100

200

400

800

0.01 0.1 1 10 100 1000
W/A Ratio

Speedup wrt. W/A Ratio
ResNet18 ResNet50 MobileNet MLP AlphaGoZero

(Speedup, %)

Figure 3.12: Layer characterizations.

3.5.4 Layer Characterizations.

To study the relation between the layer characterizations and the speedups ob-

tained by GradPIM, I have plotted the speedups according to the weight/activation

ratio on Figure 3.12 with both the X/Y axis in log scale. The plot shows a

clear correlation between the weight/activation ratio and the speedup. Usu-

ally, for the convolutional layers from the earlier stages of the networks, there

are large activation fields, with relatively small filters and the speedup for

them are generally small. For the layers from the later stages of the networks,

the activation maps get smaller due to the result of repetitive pooling and the

striding convolutions. These layers and FC layers often exhibit a very high

weight/activation ratio, and the speedup gets larger.

3.5.5 Distributed Data Parallelism

One popular way to improve the training performance is through decentral-

ized distributed data parallelism [142, 143], which allows using multiple nodes

to run the exact same model which different portions of the minibatch. This

90

0

40

80

120

160

Resnet‐18 ResNet‐50 MobileNet MLP AlphaGoZero

Distributed Data Parallelism

Baseline Pup Baseline F/B Baseline Comm.

(Mcycles)

Figure 3.13: Projections to distributed training.

provides another opportunity for GradPIM. By applying distributed data par-

allelism it parallelizes the forward and backward pass of the training, but the

parameter update phase is performed independently at each NPU, which is

almost equivalent to the sequential portion of the application. Also, the all-

reduce [144] communication pattern required in the distributed data paral-

lelism for the gradient sharing includes another set of element-wise operations

that can be mapped to GradPIM.

To find out the potential for GradPIM to work for distributed data parallel

distributed learning, I projected the experimental results to see the perfor-

mance gain over the same network, with a modest number of 4 nodes, each

taking 8 inputs from 32 inputs in the minibatch. I have assumed the nodes

are connected in a torus-like network with 100Gbps connections [69] with HW

supporting NI as in [145]. In Figure 3.13, the communication time is depicted

as Comm. for the baseline and GradPIM in the legend. Due to the smaller ef-

fective batch size per node, GradPIM shows much better scalability compared

to the baseline, and the performance is ALMOST 2× better than the baseline

with distributed training.

91

3.6 Summary

This work have proposed GradPIM, a processing-in-memory design based on

the extension of the DDR4 protocol along with an NPU designed to work

with GradPIM for mixed-precision training. This work have demonstrated that

GradPIM can speed up the update phase of the DNN training up to around

40%, leading to overall 20% performance gain according to the setup. GradPIM

poses only a negligible overhead to the DRAM and can be fully controlled by

extending the DDR memory controllers. Even though the proposed design is

based on DDR4 SDRAM, it is believed that the same design can be adapted to

other memories such as HBM, HMC or GDDR. It is expected to show similar

speedups or improvement if more bankgroup numbers is exploited in advanced

memory technologies toward high-performance NPUs.

3.6.1 Discussion

Supporting Other Kinds of Parameter Update Algorithms: This work

have demonstrated that GradPIM works on SGD with momentum and a

weight decay term. Some algorithms such as NAG [76] can be supported with

GradPIM naturally in the same way demonstrated in this work. However,

there are other kinds of parameter update algorithms used in practice with

more complexity. For example, Adagrad [75] and RMSProp [77] use a decaying

average of the square gradients, and Adam [74] takes second order momen-

tum into account. These extra values require access to adjacent rows in a bank

group concurrently. Since momentum SGD utilizes only 3 banks, there is room

for another bank to join the computation for that extra row. In an unlikely

rare case where the number of rows to be opened exceeds the number of banks

92

per bank group (four in our setting), the computation can be split into mul-

tiple passes, so that three rows are accessed and the intermediate values are

stored in another row for the next pass. It would require activating and read-

ing the data multiple times, while causing only small overhead on the overall

performance.

Using per-bank unit instead of per bank group: As it is described in

Section 3.3.1, a GradPIM unit is placed per each bank group to allow parallel

operations with multiple rows. Another option that can be considered is to

place a unit per bank. Since it is not allowed to have multiple rows open at

the same time, the multiple series of data has to be placed in an array-of-

structures, so that they can be accessed in a single row. While it would give

PIM to process them with high bandwidth, the NPU will have trouble writing

the gradient into the memory. Consequently, the overhead from writing the

gradient with certain stride would outweigh the benefits of using PIM.

Learning Rate Scheduling: One could raise question about how to apply

learning rate scheduling, as a fixed learning rate is assumed in this work. Grad-

PIM can be extended to support varying learning rate with slightly more logic

added. Scaling the values each time by 2 can be easily implemented using a

shifter. For more complicated scheduling such as cosine [146] or polynomial

decay [147], it may be chosen to approximate the decaying function as com-

puting the exact value of them is expensive. Another way would be to utilize

the mode register and let the NPU provide the new learning rate value, at the

expense of some performance overhead.

93

Bibliography

[1] S Novak, C Parker, D Becher, M Liu, M Agostinelli, M Chahal,

P Packan, P Nayak, S Ramey, and S Natarajan. Transistor aging and

reliability in 14nm tri-gate technology. In 2015 IEEE International Re-

liability Physics Symposium, pages 2F–2. IEEE, 2015.

[2] John Keane and Chris H Kim. Transistor aging. IEEE Spectrum,

48(5):28–33, 2011.

[3] Vaibhav Gupta, Debabrata Mohapatra, Sang Phill Park, Anand Raghu-

nathan, and Kaushik Roy. Impact: imprecise adders for low-power ap-

proximate computing. In Proceedings of the 17th IEEE/ACM interna-

tional symposium on Low-power electronics and design (ISLPED), pages

409–414. IEEE Press, 2011.

[4] Jie Han and Michael Orshansky. Approximate computing: An emerging

paradigm for energy-efficient design. In 2013 18th IEEE European Test

Symposium (ETS), pages 1–6. IEEE, 2013.

[5] Hussam Amrouch, Behnam Khaleghi, Andreas Gerstlauer, and

Jörg Henkel. Reliability-aware design to suppress aging. In

ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6.

IEEE, 2016.

94

[6] Behzad Boroujerdian, Hussam Amrouch, Jörg Henkel, and Andreas Ger-

stlauer. Trading off temperature guardbands via adaptive approxima-

tions. In 2018 IEEE 36th International Conference on Computer Design

(ICCD), pages 202–209. IEEE, 2018.

[7] Jongho Kim, Kiyoung Choi, Yonghwan Kim, Wook Kim, Kyungtae Do,

and Jungyun Choi. Delay monitoring system with multiple generic mon-

itors for wide voltage range operation. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 26(1):37–49, 2018.

[8] Hussam Amrouch, Victor M van Santen, Thomas Ebi, Volker Wen-

zel, and Jörg Henkel. Towards interdependencies of aging mechanisms.

In Proceedings of the 2014 IEEE/ACM International Conference on

Computer-Aided Design, pages 478–485. IEEE Press, 2014.

[9] C Prasad, KW Park, M Chahal, I Meric, SR Novak, S Ramey, P Bai, H-Y

Chang, NL Dias, WM Hafez, et al. Transistor reliability characterization

and comparisons for a 14 nm tri-gate technology optimized for system-

on-chip and foundry platforms. In 2016 IEEE International Reliability

Physics Symposium (IRPS), pages 4B–5. IEEE, 2016.

[10] H. Amrouch, B. Khaleghi, A. Gerstlauer, and J. Henkel. Towards aging-

induced approximations. In ACM/EDAC/IEEE Design Automation

Conference (DAC), pages 1–6, June 2017.

[11] Swaroop Ghosh and Kaushik Roy. Parameter variation tolerance and

error resiliency: New design paradigm for the nanoscale era. Proceedings

of the IEEE, 98(10):1718–1751, 2010.

[12] V Huard, F Cacho, A Benhassain, and C Parthasarathy. Aging-aware

95

adaptive voltage scaling of product blocks in 28nm nodes. In 2016 IEEE

International Reliability Physics Symposium (IRPS), pages 7C–2. IEEE,

2016.

[13] Hassan Mostafa, Mohab Anis, and Mohamed Elmasry. Nbti and pro-

cess variations compensation circuits using adaptive body bias. IEEE

transactions on semiconductor manufacturing, 25(3):460–467, 2012.

[14] Minki Cho, Stephen T Kim, Carlos Tokunaga, Charles Augustine, Jay-

deep P Kulkarni, Krishnan Ravichandran, James W Tschanz, Muham-

mad M Khellah, and Vivek De. Postsilicon voltage guard-band reduction

in a 22 nm graphics execution core using adaptive voltage scaling and dy-

namic power gating. IEEE Journal of Solid-State Circuits, 52(1):50–63,

2016.

[15] Jiangyi Li and Mingoo Seok. Robust and in-situ self-testing tech-

nique for monitoring device aging effects in pipeline circuits. In

ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6.

ACM, 2014.

[16] Ning Zhu, Wang Ling Goh, Weija Zhang, Kiat Seng Yeo, and Zhi Hui

Kong. Design of low-power high-speed truncation-error-tolerant adder

and its application in digital signal processing. IEEE transactions on

very large scale integration (VLSI) systems, 18(8):1225–1229, 2009.

[17] Hamid Reza Mahdiani, Ali Ahmadi, Sied Mehdi Fakhraie, and Caro

Lucas. Bio-inspired imprecise computational blocks for efficient vlsi im-

plementation of soft-computing applications. IEEE Transactions on Cir-

cuits and Systems—Part I: Regular Papers, 57(4):850–862, 2009.

96

[18] Muhammad Shafique, Waqas Ahmad, Rehan Hafiz, and Jörg Henkel. A

low latency generic accuracy configurable adder. In ACM/EDAC/IEEE

Design Automation Conference (DAC), pages 1–6. IEEE, 2015.

[19] Jin Miao, Ku He, Andreas Gerstlauer, and Michael Orshansky. Mod-

eling and synthesis of quality-energy optimal approximate adders. In

Proceedings of the International Conference on Computer-Aided Design,

pages 728–735. ACM, 2012.

[20] Honglan Jiang, Cong Liu, Leibo Liu, Fabrizio Lombardi, and Jie Han. A

review, classification, and comparative evaluation of approximate arith-

metic circuits. ACM Journal on Emerging Technologies in Computing

Systems (JETC), 13(4):60, 2017.

[21] Andrew B Kahng and Seokhyeong Kang. Accuracy-configurable adder

for approximate arithmetic designs. In ACM/EDAC/IEEE Design Au-

tomation Conference (DAC), pages 820–825. ACM, 2012.

[22] Rong Ye, Ting Wang, Feng Yuan, Rakesh Kumar, and Qiang Xu. On

reconfiguration-oriented approximate adder design and its application.

In 2013 IEEE/ACM International Conference on Computer-Aided De-

sign (ICCAD), pages 48–54. IEEE, 2013.

[23] Bert Moons and Marian Verhelst. Dvas: Dynamic voltage accuracy scal-

ing for increased energy-efficiency in approximate computing. In 2015

IEEE/ACM International Symposium on Low Power Electronics and

Design (ISLPED), pages 237–242. IEEE, 2015.

[24] Daniele Jahier Pagliari and Massimo Poncino. Application-driven syn-

thesis of energy-efficient reconfigurable-precision operators. In 2018

97

IEEE International Symposium on Circuits and Systems (ISCAS), pages

1–5. IEEE, 2018.

[25] J. Wang, S. Kuang, and Y. Chuang. Design of reconfigurable low-power

pipelined array multiplier. In 2006 International Conference on Com-

munications, Circuits and Systems, volume 4, pages 2277–2281, June

2006.

[26] M. de la Guia Solaz, W. Han, and R. Conway. A flexible low power

dsp with a programmable truncated multiplier. IEEE Transactions on

Circuits and Systems—Part I: Regular Papers, 59(11):2555–2568, Nov

2012.

[27] Charles R Baugh and Bruce A Wooley. A two’s complement paral-

lel array multiplication algorithm. IEEE Transactions on computers,

100(12):1045–1047, 1973.

[28] I. S. Abu-Khater, A. Bellaouar, and M. I. Elmasry. Circuit techniques for

cmos low-power high-performance multipliers. IEEE Journal of Solid-

State Circuits, 31(10):1535–1546, Oct 1996.

[29] K. Bhardwaj, P. S. Mane, and J. Henkel. Power- and area-efficient ap-

proximate wallace tree multiplier for error-resilient systems. In Fifteenth

International Symposium on Quality Electronic Design, pages 263–269,

March 2014.

[30] Andrew D Booth. A signed binary multiplication technique. The

Quarterly Journal of Mechanics and Applied Mathematics, 4(2):236–240,

1951.

98

[31] Christopher S Wallace. A suggestion for a fast multiplier. IEEE Trans-

actions on electronic Computers, 0(1):14–17, 1964.

[32] Lionel Vincent, Philippe Maurine, Edith Beigné, Suzanne Lesecq, and

Julien Mottin. Temperature and fast voltage on-chip monitoring using

low-cost digital sensors. In VARI: Workshop on CMOS Variability, 2013.

[33] Hussam Amrouch, Seyed Borna Ehsani, Andreas Gerstlauer, and Jorg

Henkel. On the efficiency of voltage overscaling under temperature and

aging effects. IEEE Transactions on Computers, 2019.

[34] I-Ming Pao and Ming-Ting Sun. Modeling dct coefficients for fast video

encoding. IEEE Transactions on Circuits and Systems for Video Tech-

nology, 9(4):608–616, 1999.

[35] Patrick Seeling and Martin Reisslein. Video transport evaluation with

h. 264 video traces. IEEE Communications Surveys & Tutorials,

14(4):1142–1165, 2011.

[36] Hussam Amrouch, Subrat Mishra, Victor van Santen, Souvik Mahap-

atra, and Jörg Henkel. Impact of bti on dynamic and static power:

From the physical to circuit level. In 2017 IEEE International Reliabil-

ity Physics Symposium (IRPS), pages CR–3. IEEE, 2017.

[37] Nvidia Corp. Whitepaper gpu-based deep learning inference : A perfor-

mance and power analysis. Technical report, Nvidia Corp., 2015.

[38] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji

Chen, and Olivier Temam. DianNao: A small-footprint high-throughput

accelerator for ubiquitous machine-learning. In Proceedings of the In-

99

ternational Conference on Architectural Support for Programming Lan-

guages and Operating Systems, pages 269–284, 2014.

[39] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei

Ma, Sarma Vrudhula, Jae-sun Seo, and Yu Cao. Throughput-optimized

OpenCL-based FPGA accelerator for large-scale convolutional neural

networks. In Proceedings of the International Symposium on Field-

Programmable Gate Arrays, pages 16–25, 2016.

[40] Matthieu Courbariaux, Jean-Pierre David, and Yoshua Bengio. Training

deep neural networks with low precision multiplications. In Workshop

Contribution at International Conference on Learning Representations,

2015.

[41] Kyounghoon Kim, Jungki Kim, Joonsang Yu, Jungwoo Seo, Jongeun

Lee, and Kiyoung Choi. Dynamic energy-accuracy trade-off using

stochastic computing in deep neural networks. In Proceedings of the

Design Automation Conference, pages 124:1–124:6, 2016.

[42] Armin Alaghi and John P Hayes. Survey of stochastic computing. ACM

Transactions on Embedded Computing Systems, 12:92, 2013.

[43] Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii

Liu, and Michael Pfeiffer. Fast-classifying, high-accuracy spiking deep

networks through weight and threshold balancing. In Proceedings of the

International Joint Conference on Neural Networks, pages 1–8, 2015.

[44] Peter U Diehl, Bruno U Pedroni, Andrew Cassidy, Paul Merolla, Emre

Neftci, and Guido Zarrella. Truehappiness: Neuromorphic emotion

recognition on TrueNorth. arXiv preprint arXiv:1601.04183, 2016.

100

[45] Christoph Posch, Daniel Matolin, and Rainer Wohlgenannt. A QVGA

143 dB dynamic range frame-free PWM image sensor with lossless pixel-

level video compression and time-domain CDS. IEEE Journal of Solid-

State Circuits, 46(1):259–275, 2011.

[46] Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish

Thakor. Converting static image datasets to spiking neuromorphic

datasets using saccades. Frontiers in Neuroscience, 9:437, 2015.

[47] Rangharajan Venkatesan, Swagath Venkataramani, Xuanyao Fong,

Kaushik Roy, and Anand Raghunathan. Spintastic: Spin-based stochas-

tic logic for energy-efficient computing. In Proceedings of the Design,

Automation & Test in Europe Conference, pages 1575–1578, 2015.

[48] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In CVPR, 2016.

[49] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.

Imagenet: A large-scale hierarchical image database. In CVPR, 2009.

[50] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss:

An energy-efficient reconfigurable accelerator for deep convolutional neu-

ral networks. IEEE journal of solid-state circuits, 52(1):127–138, 2016.

[51] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial archi-

tecture for energy-efficient dataflow for convolutional neural networks.

In ISCA, 2016.

[52] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao

Luo, Xiaobing Feng, Yunji Chen, and Olivier Temam. Shidiannao: Shift-

ing vision processing closer to the sensor. In ISCA, 2015.

101

[53] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji

Chen, and Olivier Temam. Diannao: A small-footprint high-throughput

accelerator for ubiquitous machine-learning. In ASPLOS, 2014.

[54] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang,

Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun, et al. Dadiannao: A

machine-learning supercomputer. In MICRO, 2014.

[55] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav

Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,

Al Borchers, et al. In-datacenter performance analysis of a tensor pro-

cessing unit. In ISCA, 2017.

[56] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli,

Rangharajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W

Keckler, and William J Dally. SCNN: An accelerator for compressed-

sparse convolutional neural networks. ISCA, 2017.

[57] Srimat Chakradhar, Murugan Sankaradas, Venkata Jakkula, and Srihari

Cadambi. A dynamically configurable coprocessor for convolutional neu-

ral networks. In ISCA, 2010.

[58] Vinayak Gokhale, Jonghoon Jin, Aysegul Dundar, Berin Martini, and

Eugenio Culurciello. A 240 g-ops/s mobile coprocessor for deep neural

networks. In CVPR, 2014.

[59] Sangkug Lym, Armand Behroozi, Wei Wen, Ge Li, Yongkee Kwon, and

Mattan Erez. Mini-batch serialization: CNN training with inter-layer

data reuse. SysML, 2019.

102

[60] Wonkyung Jung, Daejin Jung, Sunjung Lee, Wonjong Rhee, Jung Ho

Ahn, et al. Restructuring batch normalization to accelerate CNN train-

ing. SysML, 2019.

[61] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. Fused-

layer CNN accelerators. In MICRO, 2016.

[62] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and

Kailash Gopalakrishnan. Training deep neural networks with 8-bit float-

ing point numbers. In NeurIPS, 2018.

[63] Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath

Venkataramani, Vijayalakshmi Viji Srinivasan, Xiaodong Cui, Wei

Zhang, and Kailash Gopalakrishnan. Hybrid 8-bit floating point (HFP8)

training and inference for deep neural networks. In NeurIPS, 2019.

[64] Naveen Mellempudi, Sudarshan Srinivasan, Dipankar Das, and Bharat

Kaul. Mixed precision training with 8-bit floating point. arXiv preprint,

2019.

[65] Dipankar Das, Naveen Mellempudi, Dheevatsa Mudigere, Dhiraj

Kalamkar, Sasikanth Avancha, Kunal Banerjee, Srinivas Sridharan,

Karthik Vaidyanathan, Bharat Kaul, Evangelos Georganas, et al. Mixed

precision training of convolutional neural networks using integer opera-

tions. In ICLR, 2018.

[66] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos,

Erich Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii

Kuchaiev, Ganesh Venkatesh, et al. Mixed precision training. ICLR,

2018.

103

[67] Tensor Cores in NVIDIA Volta Architecture | NVIDIA.

[68] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong,

Feihu Zhou, Liqiang Xie, Zhenyu Guo, Yuanzhou Yang, Liwei Yu, et al.

Highly scalable deep learning training system with mixed-precision:

Training imagenet in four minutes. NeurIPS, 2018.

[69] Hiroaki Mikami, Hisahiro Suganuma, et al. Imagenet/resnet-50 training

in 224 seconds. arXiv preprint, 2018.

[70] Nicholas J Higham. The accuracy of floating point summation. SIAM

Journal on Scientific Computing, 14(4):783–799, 1993.

[71] Xi Chen, Xiaolin Hu, Hucheng Zhou, and Ningyi Xu. Fxpnet: Training

a deep convolutional neural network in fixed-point representation. In

IJCNN, 2017.

[72] DDR4 SDRAM specification.

[73] Ning Qian. On the momentum term in gradient descent learning algo-

rithms. Neural networks, 12(1):145–151, 1999.

[74] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic

optimization. ICLR, 2015.

[75] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient meth-

ods for online learning and stochastic optimization. Journal of machine

learning research, 12(Jul):2121–2159, 2011.

[76] Yurii Nesterov. A method for unconstrained convex minimization prob-

lem with the rate of convergence o(1/k2). In Doklady an ussr, volume

269, pages 543–547, 1983.

104

[77] T. Tieleman and G. Hinton. Lecture 6.5 - rmsprop, coursera: Neural

networks for machine learning.

[78] DDR3 SDRAM specification.

[79] Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata

Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela,

Allan Knies, Parthasarathy Ranganathan, et al. Google workloads for

consumer devices: Mitigating data movement bottlenecks. In ASPLOS,

2018.

[80] Tensorflow: Mobile.

[81] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou,

Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai,

Adrian Bolton, et al. Mastering the game of go without human knowl-

edge. Nature, 550(7676):354–359, 2017.

[82] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.

Gradient-based learning applied to document recognition. Proceedings

of the IEEE, 86(11):2278–2324, 1998.

[83] Peter M Kogge. EXECUBE-A new architecture for scaleable MPPs. In

ICPP, 1994.

[84] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm,

Kimberly Keeton, Christoforos Kozyrakis, Randi Thomas, and Kather-

ine Yelick. A case for intelligent RAM. IEEE Micro, 17(2):34–44, 1997.

[85] Yi Kang, Wei Huang, Seung-Moon Yoo, D Keen, Zhenzhou Ge, V Lam,

105

P Pattnaik, and J Torrellas. FlexRAM: toward an advanced intelligent

memory system. In ICCD, 1999.

[86] Ken Mai, T Paaske, N Jayasena, R Ho, WJ Dally, and M Horowitz.

Smart Memories: a modular reconfigurable architecture. In ISCA, 2000.

[87] Graham Kirsch. Active Memory: Micron’ s Yukon. In IPDPS, 2003.

[88] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung

Choi. A scalable processing-in-memory accelerator for parallel graph

processing. In ISCA, 2015.

[89] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. PIM-

enabled instructions: a low-overhead, locality-aware processing-in-

memory architecture. In ISCA, 2015.

[90] Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yongwei Wu,

Kang Chen, Christos Kozyrakis, and Xuehai Qian. GraphP: Reducing

communication for pim-based graph processing with efficient data par-

tition. In HPCA, 2018.

[91] Youwei Zhuo, Chao Wang, Mingxing Zhang, Rui Wang, Dimin Niu,

Yanzhi Wang, and Xuehai Qian. GraphQ: Scalable pim-based graph

processing. In MICRO, 2019.

[92] Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L

Greathouse, Lifan Xu, and Michael Ignatowski. TOP-PIM: throughput-

oriented programmable processing in memory. In HPDC, 2014.

[93] Seth H Pugsley, Jeffrey Jestes, Huihui Zhang, Rajeev Balasubramonian,

Vijayalakshmi Srinivasan, A Buyuktosunoglu, A Davis, and F Li. NDC:

106

Analyzing the Impact of 3D-Stacked Memory+ Logic Devices on MapRe-

duce Workloads. In ISPASS, 2014.

[94] Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata

Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu,

Phillip B Gibbons, Michael A Kozuch, et al. Rowclone: fast and energy-

efficient in-dram bulk data copy and initialization. In MICRO, 2013.

[95] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali

Boroumand, Jeremie Kim, Michael A Kozuch, Onur Mutlu, Phillip B

Gibbons, and Todd C Mowry. Ambit: In-memory accelerator for bulk

bitwise operations using commodity dram technology. In MICRO, 2017.

[96] Jinho Lee, Jung Ho Ahn, and Kiyoung Choi. Buffered compares: Exca-

vating the hidden parallelism inside dram architectures with lightweight

logic. In DATE, 2016.

[97] Fei Gao, Georgios Tziantzioulis, and David Wentzlaff. ComputeDRAM:

In-memory compute using off-the-shelf drams. In MICRO, 2019.

[98] Vivek Seshadri, Thomas Mullins, Amirali Boroumand, Onur Mutlu,

Phillip B Gibbons, Michael A Kozuch, and Todd C Mowry. Gather-

scatter DRAM: In-dram address translation to improve the spatial lo-

cality of non-unit strided accesses. In MICRO, 2015.

[99] Shaahin Angizi and Deliang Fan. ReDRAM: A reconfigurable

processing-in-DRAM platform for accelerating bulk bit-wise operations.

In ICCAD, 2019.

[100] Fabrice Devaux. The true processing in memory accelerator. In HCS,

2019.

107

[101] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, and

Saibal Mukhopadhyay. Neurocube: A programmable digital neuromor-

phic architecture with high-density 3d memory. ISCA, 2016.

[102] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. TensorDIMM: A prac-

tical near-memory processing architecture for embeddings and tensor

operations in deep learning. In MICRO, 2019.

[103] Lei Jiang, Minje Kim, Wujie Wen, and Danghui Wang. XNOR-POP: A

processing-in-memory architecture for binary convolutional neural net-

works in wide-io2 DRAMs. In ISLPED, 2017.

[104] Quan Deng, Lei Jiang, Youtao Zhang, Minxuan Zhang, and Jun Yang.

DrAcc: a dram based accelerator for accurate cnn inference. In DAC,

2018.

[105] Chirag Sudarshan, Jan Lappas, Muhammad Mohsin Ghaffar, Vladimir

Rybalkin, Christian Weis, Matthias Jung, and Norbert Wehn. An in-

DRAM neural network processing engine. In ISCAS, 2019.

[106] Shuangchen Li, Dimin Niu, Krishna T Malladi, Hongzhong Zheng, Bob

Brennan, and Yuan Xie. Drisa: A dram-based reconfigurable in-situ

accelerator. In MICRO, 2017.

[107] Hyunsung Shin, Dongyoung Kim, Eunhyeok Park, Sungho Park, Yongsik

Park, and Sungjoo Yoo. McDRAM: Low latency and energy-efficient

matrix computations in DRAM. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 37(11):2613–2622, 2018.

[108] Shaizeen Aga, Supreet Jeloka, Arun Subramaniyan, Satish

108

Narayanasamy, David Blaauw, and Reetuparna Das. Compute

caches. In HPCA, pages 481–492, 2017.

[109] Mingu Kang, Min-Sun Keel, Naresh R Shanbhag, Sean Eilert, and Ken

Curewitz. An energy-efficient VLSI architecture for pattern recognition

via deep embedding of computation in SRAM. In ICASSP, pages 8326–

8330, 2014.

[110] Shihui Yin, Zhewei Jiang, Jae-Sun Seo, and Mingoo Seok. XNOR-

SRAM: In-memory computing SRAM macro for binary/ternary deep

neural networks. IEEE Journal of Solid-State Circuits, 2020.

[111] Amogh Agrawal, Akhilesh Jaiswal, Deboleena Roy, Bing Han, Gopalakr-

ishnan Srinivasan, Aayush Ankit, and Kaushik Roy. Xcel-RAM: Ac-

celerating binary neural networks in high-throughput SRAM compute

arrays. IEEE Transactions on Circuits and Systems I: Regular Papers,

66(8):3064–3076, 2019.

[112] Qing Guo, Xiaochen Guo, Ravi Patel, Engin Ipek, and Eby G Friedman.

AC-DIMM: associative computing with stt-mram. In ISCA, 2013.

[113] Shaahin Angizi, Zhezhi He, and Deliang Fan. ParaPIM: a parallel

processing-in-memory accelerator for binary-weight deep neural net-

works. In ASPDAC, 2019.

[114] Shaahin Angizi, Zhezhi He, and Deliang Fan. Dima: a depthwise CNN

in-memory accelerator. In ICCAD, 2018.

[115] Shuangchen Li, Cong Xu, Qiaosha Zou, Jishen Zhao, Yu Lu, and Yuan

Xie. Pinatubo: A processing-in-memory architecture for bulk bitwise

operations in emerging non-volatile memories. In DAC, 2016.

109

[116] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubra-

monian, John Paul Strachan, Miao Hu, R Stanley Williams, and Vivek

Srikumar. ISAAC: A convolutional neural network accelerator with in-

situ analog arithmetic in crossbars. ISCA, 2016.

[117] Janusz A Starzyk et al. Memristor crossbar architecture for synchronous

neural networks. IEEE Transactions on Circuits and Systems I: Regular

Papers, 61(8):2390–2401, 2014.

[118] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan

Liu, Yu Wang, and Yuan Xie. Prime: A novel processing-in-memory ar-

chitecture for neural network computation in reram-based main memory.

ISCA, 2016.

[119] Mohsen Imani, Saransh Gupta, Yeseong Kim, and Tajana Rosing. Float-

pim: In-memory acceleration of deep neural network training with high

precision. In ISCA, pages 802–815, 2019.

[120] Wongyu Shin, Jaemin Jang, Jungwhan Choi, Jinwoong Suh, and Lee-

Sup Kim. Bank-group level parallelism. IEEE Transactions on Com-

puters, 66(8):1428–1434, 2017.

[121] Eunhyeok Park, Dongyoung Kim, and Sungjoo Yoo. Energy-efficient

neural network accelerator based on outlier-aware low-precision compu-

tation. In ISCA, 2018.

[122] Peng Guo, Hong Ma, Ruizhi Chen, Pin Li, Shaolin Xie, and Donglin

Wang. FBNA: A fully binarized neural network accelerator. In FPL,

2018.

110

[123] Eriko Nurvitadhi, David Sheffield, Jaewoong Sim, Asit Mishra, Ganesh

Venkatesh, and Debbie Marr. Accelerating binarized neural networks:

Comparison of FPGA, CPU, GPU, and ASIC. In FPT, 2016.

[124] Li Jiao, Cheng Luo, Wei Cao, Xuegong Zhou, and Lingli Wang. Acceler-

ating low bit-width convolutional neural networks with embedded fpga.

In FPL, 2017.

[125] Intel® AVX-512 instructions.

[126] DDR5 full spec draft rev0.1.

[127] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen,

John Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient

primitives for deep learning. arXiv preprint, 2014.

[128] Amin Farmahini-Farahani, Jung Ho Ahn, Katherine Morrow, and

Nam Sung Kim. NDA: Near-dram acceleration architecture leverag-

ing commodity dram devices and standard memory modules. In HPCA,

2015.

[129] Changho Choi et al. Multi-stream write SSD. Flash Memory Summit,

2016.

[130] CUDA Nvidia. Nvidia cuda c programming guide. Nvidia Corporation,

120(18):8, 2011.

[131] Preeti Ranjan Panda. SystemC: a modeling platform supporting multi-

ple design abstractions. In ISSS, 2001.

[132] Shang Li, Zhiyuan Yang, Dhriaj Reddy, Ankur Srivastava, and Bruce

111

Jacob. DRAMsim3: a cycle-accurate, thermal-capable DRAM simulator.

Computer Architecture Letters, 2020.

[133] Jesper Knudsen. Nangate 45nm open cell library. CDNLive, EMEA,

2008.

[134] 8Gb: x4, x8, x16 DDR4 SDRAM.

[135] Mike O’Connor, Niladrish Chatterjee, Donghyuk Lee, John Wilson,

Aditya Agrawal, Stephen W Keckler, and William J Dally. Fine-grained

DRAM: energy-efficient DRAM for extreme bandwidth systems. In MI-

CRO. IEEE, 2017.

[136] DDR4 SDRAM system-power calculator.

[137] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and

Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottle-

necks. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 4510–4520, 2018.

[138] Cloud tensor processing units (tpus).

[139] Swagath Venkataramani, Ashish Ranjan, Subarno Banerjee, Dipankar

Das, Sasikanth Avancha, Ashok Jagannathan, Ajaya Durg, Dheemanth

Nagaraj, Bharat Kaul, Pradeep Dubey, et al. Scaledeep: A scalable com-

pute architecture for learning and evaluating deep networks. In ISCA,

pages 13–26, 2017.

[140] Data sheet: Quadro gv100.

[141] Nvidia ampere architecture in-depth.

112

[142] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy dis-

tributed deep learning in tensorflow. arXiv preprint arXiv:1802.05799,

2018.

[143] Dipankar Das, Sasikanth Avancha, Dheevatsa Mudigere, Karthikeyan

Vaidynathan, Srinivas Sridharan, Dhiraj Kalamkar, Bharat Kaul, and

Pradeep Dubey. Distributed deep learning using synchronous stochastic

gradient descent. arXiv preprint arXiv:1602.06709, 2016.

[144] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of

collective communication operations in MPICH. The International Jour-

nal of High Performance Computing Applications, 19(1):49–66, 2005.

[145] Youjie Li, Jongse Park, Mohammad Alian, Yifan Yuan, Zheng Qu,

Peitian Pan, Ren Wang, Alexander Schwing, Hadi Esmaeilzadeh, and

Nam Sung Kim. A network-centric hardware/algorithm co-design to ac-

celerate distributed training of deep neural networks. In MICRO, 2018.

[146] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent

with warm restarts. arXiv preprint, 2016.

[147] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, XiaogangWang, and Jiaya

Jia. Pyramid scene parsing network. In CVPR, 2017.

113

요약

근사 컴퓨팅은 연산의 정확도의 손실을 어플리케이션 별 적절한 수준까지

허용함으로써 연산에 필요한 비용 (에너지나 지연시간)을 줄인다. 게다가, 근사

컴퓨팅은컴퓨팅시스템설계의회로계층부터어플리케이션계층까지다양한계

층에적용될수있다.본논문에서는근사컴퓨팅방법론을다양한시스템설계의

계층에 적용하여 전력과 에너지 측면에서 이득을 얻을 수 있는 방법들을 제안하

였다. 이는, 연산 근사화 (computation Approximation)를 통해 회로의 노화로

인해증가된지연시간을추가적인전력소모없이보상하는방법과 (챕터 1),근사

뉴런모델 (approximate neuron model)을 이용해 에너지 효율이 높은 신경망을

구성하는 방법 (챕터 2), 그리고 메모리 대역폭으로 인한 병목현상 문제를 높은

정확도 데이터를 활용한 연산을 메모리 내에서 수행함으로써 완화시키는 방법을

(챕터 3) 제안하였다.

첫 번째 챕터는 회로의 노화로 인한 지연시간위반을 (timing violation) 설계

마진이나 (reliability guardband) 공급전력의 증가 없이 연산오차 (computation

approximation error)를 통해 보상하는 설계방법론 (design methodology)를 제

안하였다.이를위해주요경로의 (critical path)지연시간을동작시간에정확하게

측정할 필요가 있다. 여기서 제안하는 방법론은 RTL component와 system 단계

에서 평가되었다. RTL component 단계의 실험결과를 통해 제안한 방식이 표준

화된 평균제곱오차를 (normalized mean squared error) 상당히 줄였음을 볼 수

있다. 그리고 system 단계에서는 이미지처리 시스템에서 이미지의 품질이 인지

적으로 충분히 회복되는 것을 보임으로써 회로노화로 인해 발생한 지연시간위반

오차가 에러의 크기가 작은 연산오차로 변경되는 것을 확인 할 수 있었다. 결론

적으로, 제안된 방법론을 따랐을 때 0.8%의 공간을 (area) 더 사용하는 비용을

지불하고 21.45%d의 동적전력소모와 (dynamic power consumption) 10.78%의

정적전력소모의 (static power consumption) 감소를 달성할 수 있었다.

두번째챕터는근사뉴런모델을활용하는고-에너지효율의신경망을 (neural

114

network) 제안하였다. 본 논문에서 사용한 두 가지의 근사 뉴런모델은 확률컴퓨

팅과 (stochastic computing) 스파이킹뉴런 (spiking neuron) 이론들을 기반으로

모델링되었다.확률컴퓨팅은산술연산들을확률적으로수행함으로써이진연산을

낮은 전력소모로 수행한다. 최근에 확률컴퓨팅 뉴런모델을 이용하여 심층 신경

망 (deep neural network)를 구현할 수 있다는 연구가 진행되었다. 그러나, 확

률컴퓨팅을 뉴런모델링에 활용할 경우 심층신경망이 매 클락사이클마다 (clock

cycle) 하나의 비트만을 (bit) 처리하므로, 지연시간 측면에서 매우 나쁠 수 밖에

없는 문제가 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위하여 스파이

킹 뉴런모델로 구성된 스파이킹 심층신경망을 확률컴퓨팅을 활용한 심층신경망

구조와 결합하였다. 스파이킹 뉴런모델의 경우 매 클락사이클마다 여러 비트를

처리할 수 있으므로 심층신경망의 입력 인터페이스로 사용될 경우 지연시간을

줄일 수 있다. 하지만, 확률컴퓨팅 뉴런모델과 스파이킹 뉴런모델의 경우 부호화

(encoding) 방식이 다른 문제가 있다. 따라서 본 논문에서는 해당 부호화 불일치

문제를 모델의 파라미터를 학습할 때 고려함으로써, 파라미터들의 값이 부호화

불일치를 고려하여 조절 (calibration) 될 수 있도록 하여 문제를 해결하였다.

이러한 분석의 결과로, 앞 쪽에는 스파이킹 심층신경망을 배치하고 뒷 쪽애는

확률컴퓨팅 심층신경망을 배치하는 혼성신경망을 제안하였다. 혼성신경망은 스

파이킹 심층신경망을 통해 매 클락사이클마다 처리되는 비트 양의 증가로 인한

지연시간 감소 효과와 확률컴퓨팅 심층신경망의 저전력 소모 특성을 모두 활

용함으로써 각 심층신경망을 따로 사용하는 경우 대비 우수한 에너지 효율성을

비슷하거나 더 나은 정확도 결과를 내면서 달성한다.

세 번째 챕터는 심층신경망을 8비트 부동소숫점 연산으로 학습하는 신경망

처리유닛의 (neural processing unit) 파라미터 갱신을 (parameter update) 메모

리-내-연산으로 (in-memory processing) 가속하는 GradPIM 아키텍쳐를 제안하

였다. GradPIM은 8비트의 낮은 정확도 연산은 신경망처리유닛에 남기고, 높은

정확도를 가지는 데이터를 활용하는 연산은 (파라미터 갱신) 메모리 내부에 둠

115

으로써 신경망처리유닛과 메모리간의 데이터통신의 양을 줄여, 높은 연산효율과

전력효율을 달성하였다. 또한, GradPIM은 bank-group 수준의 병렬화를 이루어

내 높은 내부 대역폭을 활용함으로써 메모리 대역폭을 크게 확장시킬 수 있게

되었다. 또한 이러한 메모리 구조의 변경이 최소화되었기 때문에 추가적인 하

드웨어 비용도 최소화되었다. 실험 결과를 통해 GradPIM이 최소한의 DRAM

프로토콜 변화와 DRAM칩 내의 공간사용을 통해 심층신경망 학습과정 중 파라

미터 갱신에 필요한 시간을 40%만큼 향상시켰음을 보였다.

주요어:근사컴퓨팅,회로노화,확률컴퓨팅,스파이킹-신경망,메모리-내-연산,혼

성-정확도 학습, 신경망처리유닛

학번: 2015-20917

116

	Chapter I: Dynamic Computation Approximation for Aging Compensation
	1.1 Introduction
	1.1.1 Chip Reliability
	1.1.2 Reliability Guardband
	1.1.3 Approximate Computing in Logic Circuits
	1.1.4 Computation approximation for Aging Compensation
	1.1.5 Motivational Case Study

	1.2 Previous Work
	1.2.1 Aging-induced Delay
	1.2.2 Delay-Configurable Circuits

	1.3 Proposed System
	1.3.1 Overview of the Proposed System
	1.3.2 Proposed Adder
	1.3.3 Proposed Multiplier
	1.3.4 Proposed Monitoring Circuit
	1.3.5 Aging Compensation Scheme

	1.4 Design Methodology
	1.5 Evaluation
	1.5.1 Experimental setup
	1.5.2 RTL component level Adder/Multiplier
	1.5.3 RTL component level Monitoring circuit
	1.5.4 System level

	1.6 Summary

	Chapter II: Energy-Efficient Neural Network by Combining Approximate Neuron Models
	2.1 Introduction
	2.1.1 Deep Neural Network (DNN)
	2.1.2 Low-power designs for DNN
	2.1.3 Stochastic-Computing Deep Neural Network
	2.1.4 Spiking Deep Neural Network

	2.2 Hybrid of Stochastic and Spiking DNNs
	2.2.1 Stochastic-Computing vs Spiking Deep Neural Network
	2.2.2 Combining Spiking Layers and Stochastic Layers
	2.2.3 Encoding Mismatch

	2.3 Evaluation
	2.3.1 Latency and Test Error
	2.3.2 Energy Efficiency

	2.4 Summary

	Chapter III: GradPIM: In-memory Gradient Descent in Mixed-Precision DNN Training
	3.1 Introduction
	3.1.1 Neural Processing Unit
	3.1.2 Mixed-precision Training
	3.1.3 Mixed-precision Training with In-memory Gradient Descent
	3.1.4 DNN Parameter Update Algorithms
	3.1.5 Modern DRAM Architecture
	3.1.6 Motivation

	3.2 Previous Work
	3.2.1 Processing-In-Memory
	3.2.2 Co-design Neural Processing Unit and Processing-In-Memory
	3.2.3 Low-precision Computation in NPU

	3.3 GradPIM
	3.3.1 GradPIM Architecture
	3.3.2 GradPIM Operations
	3.3.3 Timing Considerations
	3.3.4 Update Phase Procedure
	3.3.5 Commanding GradPIM

	3.4 NPU Co-design with GradPIM
	3.4.1 NPU Architecture
	3.4.2 Data Placement

	3.5 Evaluation
	3.5.1 Evaluation Methodology
	3.5.2 Experimental Results
	3.5.3 Sensitivity Analysis
	3.5.4 Layer Characterizations
	3.5.5 Distributed Data Parallelism

	3.6 Summary
	3.6.1 Discussion

	Bibliography
	요약

<startpage>14
Chapter I: Dynamic Computation Approximation for Aging Compensation 1
 1.1 Introduction 1
 1.1.1 Chip Reliability 1
 1.1.2 Reliability Guardband 2
 1.1.3 Approximate Computing in Logic Circuits 2
 1.1.4 Computation approximation for Aging Compensation 3
 1.1.5 Motivational Case Study 4
 1.2 Previous Work 5
 1.2.1 Aging-induced Delay 5
 1.2.2 Delay-Configurable Circuits 6
 1.3 Proposed System 8
 1.3.1 Overview of the Proposed System 8
 1.3.2 Proposed Adder 9
 1.3.3 Proposed Multiplier 11
 1.3.4 Proposed Monitoring Circuit 16
 1.3.5 Aging Compensation Scheme 19
 1.4 Design Methodology 20
 1.5 Evaluation 24
 1.5.1 Experimental setup 24
 1.5.2 RTL component level Adder/Multiplier 27
 1.5.3 RTL component level Monitoring circuit 30
 1.5.4 System level 31
 1.6 Summary 38
Chapter II: Energy-Efficient Neural Network by Combining Approximate Neuron Models 40
 2.1 Introduction 40
 2.1.1 Deep Neural Network (DNN) 40
 2.1.2 Low-power designs for DNN 41
 2.1.3 Stochastic-Computing Deep Neural Network 41
 2.1.4 Spiking Deep Neural Network 43
 2.2 Hybrid of Stochastic and Spiking DNNs 44
 2.2.1 Stochastic-Computing vs Spiking Deep Neural Network 44
 2.2.2 Combining Spiking Layers and Stochastic Layers 46
 2.2.3 Encoding Mismatch 47
 2.3 Evaluation 49
 2.3.1 Latency and Test Error 49
 2.3.2 Energy Efficiency 51
 2.4 Summary 54
Chapter III: GradPIM: In-memory Gradient Descent in Mixed-Precision DNN Training 55
 3.1 Introduction 55
 3.1.1 Neural Processing Unit 55
 3.1.2 Mixed-precision Training 56
 3.1.3 Mixed-precision Training with In-memory Gradient Descent 57
 3.1.4 DNN Parameter Update Algorithms 59
 3.1.5 Modern DRAM Architecture 61
 3.1.6 Motivation 63
 3.2 Previous Work 65
 3.2.1 Processing-In-Memory 65
 3.2.2 Co-design Neural Processing Unit and Processing-In-Memory 66
 3.2.3 Low-precision Computation in NPU 67
 3.3 GradPIM 68
 3.3.1 GradPIM Architecture 68
 3.3.2 GradPIM Operations 69
 3.3.3 Timing Considerations 70
 3.3.4 Update Phase Procedure 73
 3.3.5 Commanding GradPIM 75
 3.4 NPU Co-design with GradPIM 76
 3.4.1 NPU Architecture 76
 3.4.2 Data Placement 79
 3.5 Evaluation 82
 3.5.1 Evaluation Methodology 82
 3.5.2 Experimental Results 83
 3.5.3 Sensitivity Analysis 88
 3.5.4 Layer Characterizations 90
 3.5.5 Distributed Data Parallelism 90
 3.6 Summary 92
 3.6.1 Discussion 92
Bibliography 113
요약 114
</body>

