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Abstract

Understanding the three-dimensional environment is one of the most important

issues in robotics and computer vision. For this purpose, sensors such as a lidar, a

ultrasound, infrared devices, an inertial measurement unit (IMU) and cameras are used,

individually or simultaneously, through sensor fusion. Among these sensors, in recent

years, researches for use of visual sensors, which can obtain a lot of information at a

low price, have been actively underway.

Understanding of the 3D environment using cameras includes depth restoration,

opticalscene flow estimation, and visual odometry (VO). Among them, VO estimates

location of a camera and maps the surrounding environment, while a camera-equipped

robot or person travels. This technology must be preceded by other tasks such as path

planning and collision avoidance. Also, it can be applied to practical applications such

as autonomous driving, augmented reality (AR), unmanned aerial vehicle (UAV) con-

trol, and 3D modeling.

So far, researches on various VO algorithms have been proposed. Initial VO re-

searches were conducted by filtering poses of robot and map features. Because of the

disadvantage of the amount of computation being too large and errors are accumulated,

a method using a keyframe was studied. Traditional VO can be divided into a feature-

based method and a direct method. Methods using features obtain pose transformation

between two images through feature extraction and matching. Direct methods directly

compare the intensity of image pixels to obtain poses that minimize the sum of photo-

metric errors.

Recently, due to the development of deep learning skills, many studies have been

i



conducted to apply deep learning to VO. Deep learning-based VO, like other fields

using deep learning with images, first extracts convolutional neural network (CNN)

features and calculates pose transformation between images. Deep learning-based VO

can be divided into supervised learning-based and unsupervised learning-based. For

VO, using supervised learning, a neural network is trained using ground truth poses,

and the unsupervised learning-based method learns poses using only image sequences

without given ground truth values.

While existing research papers show decent performance, the image datasets used

in these studies are all composed of high quality and clear images obtained using ex-

pensive cameras. There are also algorithms that can be operated only if non-image in-

formation such as exposure time, nonlinear response functions, and camera parameters

is provided. In order for VO to be more widely applied to real-world application prob-

lems, odometry estimation should be performed even if the datasets are incomplete.

Therefore, in this dissertation, two methods are proposed to improve VO performance

using deep learning.

First, I adopt a super-resolution (SR) technique to improve the performance of VO

using images with low-resolution and noises. The existing SR techniques have mainly

focused on increasing image resolution rather than execution time. However, a real-

time property is very important for VO. Therefore, the SR network should be designed

considering the execution time, resolution increment, and noise reduction in this case.

Conducting a VO after passing through this SR network, a higher performance VO

can be carried out, than using original images. Experimental results using the TUM

dataset show that the proposed method outperforms the conventional VO and other SR

methods.
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Second, I propose a fully unsupervised learning-based VO that performs odometry

estimation, single-view depth estimation, and camera intrinsic parameter estimation

simultaneously using a dataset consisting only of image sequences. In the existing

unsupervised learning-based VO, algorithms were performed using the images and in-

trinsic parameters of the camera. Based on existing the technique, I propose a method

for additionally estimating camera parameters from the deep intrinsic network. In-

trinsic parameters are estimated by two assumptions using the properties of camera

parameters in an intrinsic network. Experiments using the KITTI dataset show that the

results are comparable to those of the conventional method.

keywords: Monocular Visual Odometry, Visual SLAM, Super-resolution, Unsuper-

vised Learning-based Visual Odometry.

student number: 2014-21746
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Chapter 1

Introduction

1.1 Background and Motivation

Three-dimensional environment understanding is a fundamental issue in both robotics

and computer vision. This technique must be preceded for robot autonomy, and it

enables people to obtain a large amount of information. Sensors such as a lidar [3, 4,

5, 6], an ultrasonic [7, 8, 9], an infrared [10, 11], an inertial measurement unit (IMU)

[12, 13], and visual sensors [14, 15, 16] are used individually or as a package, for three-

dimensional environment understanding. Recently, researches using visual sensors that

provide inexpensive and rich information have been actively studied.

Three-dimensional environment understanding using cameras includes depth re-

covery, optical/scene flow estimation, and visual odometry (VO), etc. Among them,

VO draws a map and locates a camera or robot in the drawn map. VO is classified into:

a monocular VO, a stereo VO, a visual inertial odometry (VIO) when using only one

camera, a stereo camera and cameras combined with IMU, respectively.

Analogous techniques to VO are visual simultaneous localization and mapping
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(vSLAM) and structure from motion (SfM). vSLAM likewise estimates the odometry

and draws a map using a robot or a camera simultaneously; further, an entire map

optimization procedure is added. Therefore, it can be regarded as methods that map

optimization or loop-closing is added to VO. In SfM, 3D reconstruction of the target

using multiple images is performed. Unlike VO or vSLAM, the images are not always

arranged in time order. It aims at relative positioning of each image in the image set

and an environment reconstruction. SfM, like vSLAM, also involves optimizing the

overall poses and reconstructing object. In SfM, it is difficult to operate in real-time

because it computes the relative position of the whole image set, and mainly works off-

line. There are differences in details as above, but the common feature of VO, vSLAM,

and SfM is that the pose between images is calculated. In fact, vSLAM is sometimes

described as VO + loop closing, and SfM solves the same problem as vSLAM when

images are listed in time order. Therefore, in this dissertation, I describe VO, vSLAM,

and SfM as a group of VO.

Currently, various VO algorithm papers have been proposed to show good per-

formance, but the datasets used in these studies are composed of high-quality clear

images obtained using expensive cameras. Furthermore, odometry estimation is pos-

sible using non-image information such as exposure time, focal length, and principal

length. However, to be widely used in real applications, VO should work properly even

in low-resolution, including noise datasets captured with inexpensive cameras. Also,

the odometry estimation should be successful even if there is a lack of information on

intrinsic parameters that vary from camera to camera during manufacturing.

In this dissertation, I present a method for successful VO using insufficient dataset

information. First, I propose a method of successful VO through super-resolution tech-

niques using low-resolution, noisy datasets taken with low-cost cameras. Unlike the
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existing SR methods that focus mainly on increasing the resolution, execution time is

considered in order that VO can be performed in real-time. The SR network increases

resolution and removes noises successfully, which leads to higher performance.

Next, a fully unsupervised method of VO using deep learning is proposed. In the

existing learning-based VO, the VO was performed with image sequences and its in-

trinsic camera parameters. In this dissertation, I propose a method to perform fully

unsupervised learning VO by adding an intrinsic network and inferring intrinsic pa-

rameters in the network.

1.2 Literature Review

Although research on estimating pose transformation between two images had existed

before, the word visual odometry was first used in 2005 by Nister et al [17]. VO can

be divided into three approaches: direct, feature-based, and learning-based VO. In the

early stages of research, feature-based and direct methods were mainly studied. In

recent years, the development of deep learning technology and performance improve-

ment on computing device have led to the use of learning in VO.

Initially, feature-based methods using feature extraction and matching were mainly

studied. Among them, methods of optimizing the feature location on the map and the

pose of the camera using a filter were proposed first [18, 19, 20, 21]. These approaches

performed filtering on all frames, hence these were inefficient compared to a large

amount of computation because there was no significant change between successive

frames. Also, filter-based methods ware difficult to carry out in a large environment

because errors accumulated as the robot moved.

To compensate disadvantages of filter-based approaches, methods updating the
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map and camera pose using only selected frames, namely keyframes, has been pro-

posed. This approach needs for more computation in one update, but allows to use

the bundle adjustment [22, 23] which can optimize more accurately. Parallel tracking

and mapping (PTAM) [24] used the keyframe concept and proposed the parallel com-

puting of mapping and feature tracking. This parallel scheme mitigated the effect of

PTAM on frame-rate, which enabled real-time VO. PTAM used features from accel-

erated segment test (FAST) [25] corner as a feature, which was not suitable for place

recognition. Therefore, it worked well in a small environment, but when the large loop

was formed, the relocalization was hardly done and the whole map was not optimized.

Strasdat et al. [26] proposed monocular SLAM using optical flow estimation. They

performed motion-only BA and estimated optical flow by using GPU in the front-end.

then, sliding-window BA optimized entire map in the back-end, which made large

scale monocular SLAM possible. 7-dimensional similarity constraints were optimized

by a graph optimization method when loop detected, and so was scale factor. Further,

Strasdat et al. [27] proposed a more robust loop closing method by using a PTAM as a

front-end and creating a pose graph using a covisibility graph.

Lim et al. [28] performed tracking, mapping, and loop closing using binary robust

independent elementary features (BRIEF) [29] in all tasks. However, due to the limi-

tation of BRIEF, it can only be performed in in-plane environment. This method also

had the inefficiency of re-creating the map at a revisit location because of disability of

reusing the map.

Currently, the representative paper of feature-based VO is ORB-SLAM [30]. This

method performed all tracking, mapping, and loop closing using oriented FAST and

rotated BRIEF (ORB) feature [31]. The ORB feature had fast extraction and matching

speed, and rotation invariance property enabled accurate relocalization and loop clos-
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ing so that the entire SLAM can be performed well. They proposed a framework that

efficiently performs tracking, local mapping, and loop closing in three parallel threads.

Feature-based VO methods are robust to photometric and geometric distortion,

such as automatic exposure change, non-linear response function, lens attenuation, and

even rolling shutter effect, because they use geometric prior from feature. However,

this strength prevents from using much of the information provided by images. In

addition, there is a disadvantage in that the algorithm is difficult to perform because

the feature is not extracted when VO is performed in the environment of a simple or

repeated structure [32].

Direct VO estimates the odometry using the intensity of the pixel without any other

geometric prior. This method was also initially performed using a filter. However, the

processing speed of the equipment was insufficient to process all the pixels, so filtering

was performed using only selected pixels. It had not been studied for some time due

to the lack of robustness and accuracy than feature-based VO.

Then in early 2010, dense methods of calculating all the pixels were proposed.

Stuhmer et al. [33] successfully performed dense VO using a handheld camera. Based

on this, dense tracking and mapping (DTAM) [34] performed dense VO by conducting

parallel tracking and mapping as in PTAM. DTAM was able to carry out two tasks in

real-time based on optimization using GPU acceleration.

Pizzoli et al. proposed a regularized monocular depth estimation (REMODE) [35]

that takes into account probabilistic aspects when estimating depth maps. REMODE

obtained a more accurate depth map using Bayesian estimation [36] and convex opti-

mization techniques. This method was also able to perform VO in real time using GPU

acceleration. As such, the dense direct VO is difficult to perform in real-time without

a GPU acceleration because of the computation burden.
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Engel et al. Proposed a semi-dense method [37] that uses only pixels with large

gradients instead of all pixels. Engel et al. Published a large-scale direct SLAM (LSD-

SLAM) [38] by performing SLAM in a large environment in this way. Since the LSD-

SLAM used only the selected pixel, the computational amount was greatly reduced,

enabling real-time VO with only the CPU.

Based on LSD-SLAM, CNN-SLAM [39] was proposed to add depth estimation by

convolutional neural network (CNN) [40]based deep learning. This method proceeded

by creating a depth map with deep learning-based single-view depth estimation only

for keyframes and then correcting the depth while driving. In the case of CNN-SLAM,

the absolute scale was recovered when depth estimation was performed, and since the

depth map was generated irrespective of previous frames, the scale ambiguity problem

and pure rotation problem, which are essential problems of monocular VO, can be

alleviated.

Engel et al. proposed a direct sparse odometry (DSO) [41] that performs VO with

more sparse pixels than LSD-SLAM. In DSO, they tried to obtain the actual intensity

value of the pixel so that the photometric distortion, a weak point of direct VO was

considered. DSO carried out photometric calibration taking account into the non-linear

response function, vignetting, irradiance, and exposure time, which allowed more ac-

curate odometry estimation.

In recent years, due to the development of learning technology and the emergence

of equipment that can train deep networks, deep learning is applied in various fields of

robotics and computer vision to improve performance remarkably. Taking advantage of

this trend, deep learning is also being applied in the field of VO. In learning-based VO,

it can be divided into supervised learning that informs ground truth and unsupervised

learning that estimates odometry using only image and camera parameters.
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Wang et al. proposed DeepVO [42], which estimates the odometry of consecutive

image sequences using supervised learning. DeepVO focused on that datasets consist

of a continuous image (video) in time order, and then performed feature extraction with

CNN and VO with deep RCNN structure through a recurrent neural network (RNN).

Based on DeepVO, Iyer et al. [43] improved the performance of VO by considering

geometric consistency.

At a time similar to DeepVO, Ummenhofer et al. proposed DeMoN [44], a tech-

nique for finding depth and the transformation matrix between two images by taking

two images as input using a deep network. They did this with supervised learning.

DeMon was able to estimate depth and motion by estimating optical flow in the net-

work, similar to FlowNet [45], and they could interact with each other to improve their

performance.

After the successful implementation of VO using supervised learning, a method

of performing VO by unsupervised learning method has been proposed. In the case of

unsupervised VO, after performing single-view depth and pose estimation, image is

generated similarly to view synthesis, and the difference between the original image is

set loss, which is used in learning. To estimate the depth map, FlowNet [45], DispNet

[46], Godard et al. [47] are used and there are also methods for estimating and using

optical flow [48].

The first VO using unsupervised learning is the SfMLearner proposed by Zhou et

al. [49]. SfMLearner used the network structure of DispNet when performing single-

view depth estimation and tried to improve accuracy by using multi-scale method.

They also added an explainability network that masks occlusion areas or dynamic

objects between images, making them robust to dynamic environments.

Next, Li et al. proposed UnDeepVO [50] as a similar concept. UnDeepVO did not
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use existing depth estimation technique, but also created a depth map using a network

of encoder-decoder types. The difference between this technique is that the depth is

trained using a stereo camera to maintain the left-right consistency, and the test pro-

ceeds to a monocular camera. This method has the advantage that the absolute scale

can be estimated from odometry and depth, unlike other unsupervised VOs.

Yin et al. proposed GeoNet [51] to estimate optical flow in depth and pose. This

method consists of three networks: DepthNet, PoseNet, and FlowNet. The network that

estimates the depth and pose is called a rigid structure reconstructor. Geonet learned

it first and then learns ResFlowNet which estimates the residual optical flow. GeoNet

can consider occlusion or dynamic objects in the image through optical flow estimation

and can improve performance.

Almalioglu et al. proposed GANVO [52] using generative adversarial network

(GAN) [53]. There is also an encoder-decoder-type depth generator. Like deepVO,

pose regression is performed by adding RNN structure to CNN. Using this depth map

and pose, view reconstruction is performed to generate an image that estimates the

original target image. After that, learning is progressed by using GAN loss that distin-

guishes the target image from the image created in the discriminator network.

As described above, a lot of VO techniques using deep learning have been pub-

lished. Recently, unsupervised learning-based VO especially has been studied a lot

and shows good performance. The advantage of using unsupervised learning is that

multiple datasets can be used because learning can proceed without ground truth data.

In the case of unsupervised VO, learning is progressed only with image sequence and

camera parameter. Based on this scheme, if the camera parameter can also be esti-

mated and the VO can be performed, the VO using fully unsupervised learning can be

performed. The overall flow of the VO literature is shown in Fig. 1.1
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Figure 1.1: Evolution of the VO
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1.3 Contributions

In this dissertation, I propose a method for robustly performing VO, even if the dataset

is incomplete, by using deep learning-based methods, and ultimately describe how

successful VO is performed even only with image sequences.

In Chapter 3, a method to improve the performance of VO by applying super-

resolution techniques to low-resolution and noisy datasets is proposed. The contribu-

tions in this chapter are as follows:

• Given a low-resolution and noisy dataset, a target resolution must be set to raise

the resolution. Thus, comprehensive experiments were conducted at various res-

olutions to find suitable resolution in consideration of VO performance and ex-

ecution time.

• Existing super-resolution techniques focus on higher resolution image quality,

but also apply execution time to VO. I also consider ways to remove noise in the

image. I have designed a super-resolution network that takes these elements into

consideration.

• The super-resolution method that considers not only resolution, but also execu-

tion time and noise, improves the performance of VO when using a low resolu-

tion, noisy dataset.

In Chapter 4, I perform VO using unsupervised learning. In existing unsupervised

learning-based VO literature, VO is performed using image sequences and intrinsic

camera parameters. In this dissertation, I propose a method to perform VO using only

image sequences without given intrinsic parameters. The contributions in this chapter

are as follows:
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• Intrinsic parameters are estimated by adding an intrinsic network through the

deep neural network, and using these parameters in unsupervised learning-based

VO.

• In the case of the naive intrinsic network, parameters converge to zero or diverge

to infinity. Therefore, I add two assumptions that make the network converge to

the correct value, so that the intrinsic parameter is estimated.

• Fully unsupervised VO, which estimates odometry using only image sequence,

can be performed as a comparable result with existing methods.

1.4 Thesis Structure

The narrative of this dissertation is presented through a series of published works,

prefaced by a review of the current state of the field, and followed by a discussion of

the contributions and conclusions. The dissertation is organized as follows:

Chapter 2 provides mathematical preliminary to improve comprehension of this

dissertation: feature-based, direct and learning-based VO.

Chapter 3 introduces error improvement in VO using super-resolution with low-

resolution and noisy datasets. The proposed SR network makes real-time VO possible

with a lower error even using low-resolution and noisy images.

Chapter 4 introduces a fully unsupervised learning-based VO which uses only

image sequences datasets. In this chapter, the proposed network for fully unsupervised

learning-based single-view depth, camera pose and intrinsic camera parameters esti-

mation are provided.

Chapter 5 summarizes and discusses the main contributions of this dissertation,
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including the research outcomes and keypoints. Applications and future works are also

indicated.
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Chapter 2

Mathematical Preliminaries of Visual Odometry

VO is a technique of estimating odometry by obtaining translation and rotation be-

tween images when two or more images are given. This chapter explores the mathe-

matical preliminaries of feature-based, direct, and learning-based VO.

2.1 Feature-based VO

Feature-based VO calculates the pose transformation matrix by obtaining the essential

matrix or fundamental matrix using features extracted from both images. In the case

of monocular VO, since only one camera is used, scale cannot be estimated when

estimating odometry and mapping. As shown in Fig. 2.1, there are objects o1 and o2

that differ in size by two times. When O1 images are taken at the distance of d1 and

d2, and O2 images are taken at the distance d′1 = 2d1 and d′2 = 2d2, the same images

are captured. Like this, despite different sized objects, the same images are obtained

if the ratio of distance and size is the same. Therefore, additional information must be

needed to get an absolute scale.

If two images, I1 and I2, were taken from two different places, as shown in Fig.
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Figure 2.1: Scale ambiguity limitation of monocular VO

2.2, let p1 and p2 be the coordinates of the pixel projected on each image. The essential

matrix is a 3× 3 matrix E that satisfies the following essential constraint (or epipolar

constraint) [55, 56]:

p1Ep2 = 0, (2.1)

where p and p‘ are represented to homogeneous coordinates of each normalized

image plane. As shown in Fig. 2.2, when the rotation between two cameras is R and

translation is t, the essential matrix is expressed as:

E = [t×]R, (2.2)

where t× is the matrix representation of the cross product with t. Since the essential

matrix has 5 degrees of freedom, at least five point-pairs are required to obtain it.

The 8-point algorithm, 5-point algorithm, 4-point algorithm, or 3-point algorithm are
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𝑃 = (𝑥, 𝑦, 𝑧)𝑇

𝑝1 𝑝2
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𝐶1 𝐶2

Figure 2.2: Diagram of the epipolar geometry [54].

called according to the number of points-pairs required when obtaining the essential

matrix [57, 58, 59, 60, 61]. The algorithm with less than the minimum required pair is

calculated by applying an additional constraint.

The essential matrix is a matrix calculated on the normalized image plane. The

equation representing the geometric relationship between the actual pixel coordinates

of two images in consideration of camera parameters is called a fundamental matrix.

When the focal lengths of the camera are called fx and fy, and the principal points are
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cx and cy, the intrinsic matrix is represented as:

K =


fx 0 cx

0 fy cy

0 0 1

 . (2.3)

With Eq. (2.3) and the essential matrix, the fundamental matrix is expressed as:

F = (K ′−T )EK−1, (2.4)

E = KTFK.

Therefore, the fundamental matrix is obtained first, the essential matrix can be

calculated. Computing the fundamental matrix using the corresponding points requires

at least seven pairs of matching if the camera parameters are not known.

The rotation and translation can be obtained from the Essential matrix by suing

singular value decomposition (SVD) [62, 63, 64]. Through SVD, the essential matrix

can be expressed as follows:

E = UΣV T , (2.5)

where U and V are 3 by 3 orthogonal matrices, and Σ is a 3 by 3 diagonal matrix with

the first and the second diagonal components as singular values of E and the third

diagonal component equal to zero. In Eq. (2.2), t× is the skew-symmetric matrix and

R is the rotation matrix. The skew-symmetric matrix t× must have two singular values

which are equal and another which is zero. The multiplication of the rotation matrix

does not change the singular values which means that also the essential matrix has two

singular values which are coincident with those of t×.

16



Next, let W be:

W =


0 −1 0

1 0 0

0 0 1

 with W−1 = W T =


0 1 0

−1 0 0

0 0 1

 (2.6)

Then, [tx] and R is calculated as follows:

[tx] = UWΣUT , (2.7)

R = UW−1V T .

Using the obtained [tx], R and given p1, p2, the actual coordinate P = (x, y, z)T

of Fig. 2.2 can be computed by triangulation [65].

The entire process of feature-based VO using the essential matrix is shown in Fig.

2.3. First, take two images as input and perform feature extraction on each image and

matching corresponding features to find hundreds to thousands of point pairs. Next,

calculate the relative pose of the camera using RANSAC, as indicated by the block in

Fig. 2.3. Inside RANSAC, first, the corresponding n-point pairs are randomly deter-

mined and then the essential matrix and the pose transformation matrix are calculated.

When the acquired pose transformation is applied to other point pairs, if the number

of inlier is sufficient, use it as it is, and if not, select the n-point pairs again and repeat

until the number of inlier is above threshold. The coordinates of inlier points are ob-

tained by triangulation with this pose. Feature-based VO is performed in that obtained

successive poses estimate odometry, and coordinates of points draw a map.

2.2 Direct VO

Direct VO is a method of directly using the intensity of a pixel without extracting fea-

tures from the image. Given two frames i and j, the intensity differences are obtained
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Figure 2.3: Pipeline of the typical feature-based VO.
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by warping the pixel pi ⊂ i to the pixel pj = p′i. Apply this warping to other pix-

els in i to calculate the difference sum and then calculate the pose transformation that

minimizes it.

In this section, matrice are represented by bold and capital letters and vectors are

represented by bold and lower case letters. The 3D pose transform T ∈ SE(3) is

represented by rotation R and translation t as follows:

W =

R t

0 1

 with R ∈ SO(3) and t ∈ R3. (2.8)

Using above T directly in optimization is aggravate both efficiency and accuracy

aspects, so the corresponding element ξ ∈ se(3) of Lie algebra is used to minimize

the number of variables. Since 6-DoF pose, ξ ∈ R6. The relation between ξ ∈ se3 and

T ∈ SE(3) is an exponential mapping and its inverse:

T = expse(3)(ξ)⇐⇒ ξ = logse(3)(T), (2.9)

where the transformation when moving the point from frame i to frame j is denoted

by ξji.

Further, 3D projective warp function is defined by image point p = (px, py)T , in-

verse depth d, and the transformation ξ. First, projecting the point (x, y, z) = (px/d, py/d, 1/d)

of the world coordinate to another frame (x′, y′, y′) as follows:

x′

y′

z′

1


= expse(3)(ξ)



px/d

py/d

1/d

1


(2.10)
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Using this, warp function w can be written as:

w(p, d, ξ) =


x′/z′

y′/z′

1/z′

 (2.11)

Use the projective warp function as above to find the intensity difference and resid-

ual of the pixel. Let intensity of pixel pi of frame i be Ii(pi) for frame i, j. Given the

inverse depth map Di and the transformation matrix ξji, the residuals of pi are:

rpi = Ii(pi)− Ij(w(pi, D(pi), ξji)) (2.12)

Pose can be calculated by finding a value that minimizes the squared sum of the

residuals. Assuming the set of pixels Ωs to be optimized is a subset of the image

domain Ω, the squared sum of the residuals is:

E(ξ) =
∑
s∈Ωi

rps(ξ)2. (2.13)

If Ωs is defined as all image pixels, it becomes dense VO, and as the number

of pixels used therein becomes semi-dense, sparse VO. 6-DoF pose ξ is calculated

through optimizing above error function. The most widely used optimization technique

is the Gauss-Newton method. This method starts from initial state ξ(0) and proceeds

to iteration by calculating left-multiplied increment ξ(n). In the Lie-manifold domain,

pose concatenation operator ⊗ : se(3)× se(3) −→ se(3) us defined as follows:

ξki = ξkj ⊗ ξji = logSE(3)

(
expse(3)(ξkj) · expse(3)(ξkj)

)
. (2.14)

Using this, the Jacobian matrix of ξ(n) and the Hessian matrix of E are:

H = JTJ with J =
∂ε⊗ ξ(n)

∂ε

∣∣∣∣
ε=0

, (2.15)
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where J is the derivative of the stacked residual vector r = (r1, r2, . . . , rn)T . After

this, the left-multiplied increment is calculated as follows:

δξ(n) = −(H)−1JT r
(
ξ)(n)

)
. (2.16)

The new estimation is then obtained by multiplication with the computed update

ξ(n+1) = δξ(n) ⊗ ξ(n). (2.17)

Repeat the above process until get the final pose ξ.

In VO problems, outliers occur due to occlusion or the presence of dynamic ob-

jects. To compensate this, more robust optimization can be performed to outlier by

adding weight to Gauss-Newton optimization technique. First, for each iteration, the

weight matrix W is calculated as follows:

W = {wk} = W
(
ξ(n)

)
with wk ∈ [0, 1] . (2.18)

Multiplying this weight by each residual, the weighted error function is:

E(ξ) =
∑
s∈Ωi

wk(ξ)rps(ξ)2. (2.19)

Finally, the update is calculated as:

ξ(n) = −(JTWJ)−1JTWr
(
ξ)(n)

)
. (2.20)

2.3 Learning-based VO

In learning-based VO, it can be divided into the method of supervised learning using

the ground truth pose and the method of unsupervised learning without using it.
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Figure 2.4: Network structure of the basic RNN.

2.3.1 Supervised learning-based VO

Supervised learning-based VO is a method of estimating odometry by which learn

given ground truth. In VO, the learning is done with the ground truth of 6 DoF pose.

When the ground truth of the rotation expressed in Euler angles and the translation are

φ and t, respectively, the loss function is set:

Loss = ‖t̂− t‖22 + κ‖φ̂− φ‖22, (2.21)

where t̂ and φ̂ are estimated translation and rotation respectively, and κ is a weight

constant.

The supervised learning-based methods are intuitive and convenient, and it is pos-

sible to learn to the absolute scale, which was not estimated in monocular VO. How-

ever, the disadvantage is that the number of datasets and the difficulty of creating a

new dataset are limited in learning.

In deep learning-based VO techniques, since the input are images, the feature is
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first extracted through the CNN layers. Using these extracted features, 6-DoF pose can

be estimated by using CNN further or using the fully connected layer. However, these

methods are not accurate so that additional techniques are used.

The first is a more robust estimation using RNNs that process continuous informa-

tion because the image sequence consists of the time order. The basic RNN structure

is shown in Fig. 2.4. In addition to the input xt and output yt in RNN, there is a

hidden state indicated by ht. Because this hidden state contains information from the

beginning of the sequence, more information can be considered when the input is in

chronological order. The update expressions for ht and yt are:

ht = Λ (Wxhxt +Whhht−1 + bh) (2.22)

yt = Whyht + by,

where Λ is an element=wise non-linear activation function, such as sigmoid or hyper-

bolic tangent.

In traditional RNN, all previous states are remembered and passed to the next

state, which causes an incorrect estimation if an outlier or incorrect information is

included. Therefore, in recent years, long short term memory (LSTM) [66] one of

RNN structures is mainly used. This structure includes forget gates, which can take

into account outdated or incorrect information from previous states. The structure of

LSTM is shown in Fig. 2.5.

The structure is more complicated than the traditional RNN, and a new variable

23



𝜎 𝑡ℎ 𝜎

𝜎

𝑡ℎ

𝑥𝑡−1 𝑥𝑡 𝑥𝑡+1

ℎ𝑡−1 ℎ𝑡

𝑐𝑡−1 𝑐𝑡

𝑜𝑡

𝑖𝑡𝑔𝑡
𝑓𝑡

Figure 2.5: Network structure of the basic LSTM.

memory cell ct is added. The update expressions of LSTM in time t are:

it = σ (Wxixt +Whiht−1 + bi) (2.23)

it = σ (Wxfxt +Whfht−1 + bf )

gt = tanh (Wxgxt +Whght−1 + bg)

ct = ft � ct−1 + it � gt

ot = σ (Wxoxt +Whoht−1 + bo)

ht = ot � tanh(ct)

where �,⊕ is element-wise product and sum of two vectors, σ and tanh are sigmoid

and hyperbolic tangent non-linearity, respectively, and W, b are corresponding weight

matrices and bias vectors, respectively. As described above, a pose estimate can be

performed by passing features extracted from the CNN through a deep RNN structure.

The second method is to estimate the depth or optical flow as well as the pose, and

make them interact with each other to increase accuracy. This method first estimates

24



depth, optical flow and pose through the network. Then, the second image is generated

using the first image and the estimated values, and the pose is estimated once again.

This approach can improve the accuracy because the estimated pose can be corrected

once more.

2.3.2 Unsupervised learning-based VO

In unsupervised learning-based VO, odometry and depth are estimated without the

ground truth pose and depth. This method has the advantage that it is easy to obtain

training data because it does not require ground truth. However, there is a disadvantage

that it is difficult to estimate the absolute scale, which is one of the disadvantages of

monocular VO. The overall scheme of the unsupervised learning-based VO is shown

in Fig. 2.6

In unsupervised VO, not only pose but also depth estimation is essential. The input

consists of two or more images. One image is called the target image It and the others

are called the source image Is. Therefore, both the pose and the depth network are

included in the deep network structure by default. Both networks show a CNN-based

structure. A pose network reduces dimension to six by CNN. In a depth network, an

encoder-decoder structure is mainly used.

If the depth value of the target image and the pose of the source image are known,

the target image can be synthesized from the source image. When the image created

using source images is called Îs, the target image It is compared to this image. The

technique of artificially creating an image between several images using these images

is called view synthesis. Since this similar concept is used, this method is also called
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Figure 2.6: Pipeline of the typical unsupervised learning-based VO.

view synthesis supervision. View synthesis loss is given as follows:

Loss =
∑
s

∑
p

D
(
It(p), Îs(p)

)
, (2.24)

where D(I1, I2) is a function that can evaluate the similarity of two images I1 and

I2. Examples of D(I1, I2) used in Eq. (2.24) are L1-norm, L2-norm, or structural
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similarity (SSIM) [47]. A SSIM of two images I1 and I2 is calculated as follows:

SSIM(I1, I2) =
(2µI1

µI2
+ c1)(2σI1I2

+ c2)

(µ2
I1

+ µ2
I2

+ c1)(σ2
I1

+ σ2
I2

+ c2)
, (2.25)

where µI is the average of I , σI is the variance of I , and σI1I2
is the covariance of I1

and I2.

To calculate Eq. (2.24), I need to know which pixel pt of It corresponds to the

pixel ps of Is. When the given camera intrinsic matrix and the estimated depth map

are K and D̂t, respectively, and estimated relative poses of It and Is are T̂t→s, the ps

corresponding to pt can be calculated as follows:

ps = KT̂t→sD̂t(pt)K
−1pt (2.26)

Note that the coordinate of ps will be calculated as a real number instead of an

integer. To take this into account, the interpolated values are used with the surrounding

four pixel values as shown in Fig. 2.7. This can be expressed as:

𝑝𝑡
𝑝𝑠

𝑑1

𝑑2

𝑑3
𝑑4

Figure 2.7: Intensity interpolation method using four neighbor pixels.
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Is(ps) =

4∑
i=1

wiIs(p
i
s), with

4∑
i=1

wi = 1 (2.27)

where wi is linearly proportional to di as shown in Fig. 2.7. An loss may suddenly

increase in the part where the intensity of the pixel changes rapidly such as object

contours. This problem deteriorate the accuracy of depth and pose estimation, hence it

should be considered. Many studies deal with it by adopting the additional smoothness

loss, which reduces the effect of sudden changes of intensity. In addition, many papers

have tried to perform robust VO by adding network to consider occlusion or dynamic

object. Similarly to this way, I perform an unsupervised learning-based VO.
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Chapter 3

Error Improvement in Visual Odometry Using Super-

resolution

3.1 Introduction

In robotics, robust odometry estimation is essential for the robot autonomy. To find

the odometry of a robot, various algorithms were introduced by combining one or

several sensor information. Among various sensors, visual ones are being actively used

because they can provide rich information about the environment at the low-cost. The

technique for estimating odometry using only RGB cameras is called visual odometry

(VO); it is called monocular VO if only one camera is used. VO has been studied

actively in robotics and computer vision fields [67, 68, 69], and it has begun to be

utilized to various application, such as unmanned aerial vehicle control, 3D modeling,

augmented reality, and autonomous driving cars.

Since VO utilizes only cameras, the performance of the camera and the quality of

images greatly affect the result. Although plenty of image sequence datasets for VO

research exist online, most of them are acquired by expensive high-resolution (HR)
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Figure 3.1: Comparison of results of VO using LR and noisy with HR and noise-free

image sequences. Red lines in right images denote paths of cameras.

and low-noise cameras. In order to adopt VO in various applications, it is necessary

to maintain their performance even if low-resolution (LR) and noisy cameras, which

are often equipped in mobile platforms, are used. However, when using an LR and

noisy image sequence, the performance of VO is remarkably reduced as displayed in

Fig. 3.1. In VO result of using LR and noisy images, tracking procedure is lost while

a camera moves, which leads to a catastrophic failure.

In this dissertation, I exploit a super-resolution (SR) technique to convert an LR

and noisy image into an HR and low-noise image for achieving a successful VO.

Among various SR approaches, the deep learning-based one, which has recently shown

better performance, is adopted. Conventional SR structures are challenging to apply
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this chapter because of two main problems. The first problem is the excessive execu-

tion time due to the too deep network. The second problem arises from the poor noise

removal performance that is owing to their network structure. Therefore, I propose

a new deep neural SR architecture that can achieve the low-error and real-time VO.

Experimental results show that the performance of VO using SR image sequences is

better than that of the conventional methods using LR and noisy image sequences.

The rest of this chapter is organized as follows: Section II looks at related work

of VO and SR. Section III describes the process of finding a resolution suitable for

VO through experiments and the proposed network structure of SR. Section IV sum-

marizes the experimental results and their analysis. Finally, Section V concludes this

chapter and discusses the future work.

3.2 Related Work

3.2.1 Visual Odometry

Estimating odometry using a visual sensor had been studied previously, but the word

visual odometry was only coined by Nister et al. [17] in 2004. VO can be divided

into the feature-based method and the direct method. Feature-based methods utilize

the feature extraction and the feature matching, which were the main stream in the

early VO research. Initially, feature locations and camera poses of all frames were

estimated by filters [18, 21]. These approaches caused too much computation while

little new information was obtained, since consecutive frames were frequently captured

in the immediate vicinity. To alleviate this problem, PTAM [24] estimated poses of the

chosen frames, namely keyframes. Moreover, it dealt with tracking and mapping in

parallel threads, and enabled real-time VO successfully in small environments. Today,
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the most representative feature-based literature is probably ORB-SLAM [70, 30]. The

feature used in [30] was ORB, which is based on FAST, and it can be extracted and

matched faster than those of using SIFT or SURF. [30] exploited the same feature in

all SLAM tasks of its framework - tracking, mapping, relocalization and loop-closing,

which resulted in more efficient, simple, and reliable system than the conventional

methods.

The feature-based VO is robust to various problems caused in the image acquisition

process, such as an automatic exposure change, a non-linear response function, lens

attenuation and even a rolling shutter effect. However, in low-texture areas, such as

simple corridors or walls, feature extraction is difficult to achieve and this leads to the

failure of estimating odometry.

In direct approaches, pixel intensities are used directly rather than features. Di-

rect methods warp pixels from one image to another, and then obtain a transformation

between images that minimizes the sum of intensity differences. DTAM [34] and RE-

MODE [35] optimized the whole pixels to perform VO densely, thus they were hard

to achieve the real-time execution except powerful GPU devices. To reduce this com-

putational burden, Schops et al. [37] proposed a semi-dense manner which used pixels

with high intensity gradient. Based on [37], Engel et al. [38] proposed LSD-SLAM that

performed visual SLAM in real-time using single CPU in a large scale environment.

Furthermore, Engel et al. [41] proposed a direct sparse odometry (DSO), the state-of-

the-art direct VO literature, using more sparse pixels than LSD-SLAM. DSO improved

the performance of VO by estimating the exact pixel intensity value considering the

exposure time, the response functions and the lens attenuation of the image.

The direct VO, since intensities of the pixel are directly used, is performed based

on more information than feature-based methods, hence the algorithm can be per-
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formed well in the low-texture region. However, because it uses low-level information,

it is vulnerable to distortions which easily arise from the image acquisition process.

3.2.2 Super-resolution

SR is the one of image restoration techniques that generates an HR image from an LR

image. Initially, SR was done by simple interpolation using sampling theories [71, 72],

however these approaches were difficult to predict the detailed parts of an image. As

an improvement, methods of learning a function that matches a pair of LR image and

HR image were presented. These methods include neighbor embedding [73, 74] and

sparse coding [75, 76]. Similarly, learning the transformation of patches using internal

similarity [77, 78] were proposed.

Recently, SR research has made great progress in performance by employment

of deep learning techniques. Dong et al. [79, 80] proposed the first work to intro-

duce the idea of applying a convolutional neural network (CNN) [40] to SR. Their

method, named SRCNN, conducted an SR in an end-to-end manner utilizing a CNN

network which consisted of three convolutional layers. However, the shallow network

converged slowly and had not been able to learn many nonlinearities. VDSR [81, 82]

claimed that the deeper network makes the better image quality and used twenty con-

volutional layers to improve the SR performance. Also, VDSR added the input image

to the output of the last layer to train the residual only, which made the convergence

time shortened. Around the same time, He et al. [83] proposed ResNet that performed

well in the classification and the detection, which are other computer vision fields, by

learning the residual in the middle of the network. Using ResNet structure and a gener-

ative adversarial network, Ledig et al. [84] proposed SRResNet. However, ResNet was

not an optimal structure for SR since it was designed for different purposes. Therefore,
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EDSR [85] removed unnecessary modules in ResNet structure, which led to advance-

ment in performance.

Although SR algorithms mainly focus on increasing the resolution, removing noise

is also considered in the proposed SR network. Furthermore, the time elapsed for pass-

ing deep network is taken into account since I intend to combine SR with VO.

3.3 SR-VO

In this dissertation, I have improved the direct VO, whose performance is more sensi-

tive to the image quality than that of the feature-based VO. All VO used in experiments

for this chapter is DSO, the state-of-the-art algorithm among direct algorithms.

3.3.1 VO performance analysis according to changing resolution

The performance of VO highly depends on the image resolution. Apparently, the

higher the resolution, the better the VO performance, but the number of addressable

frames per second (fps) also decreases. Therefore, it is necessary to find the optimal

resolution with a smaller error while guaranteeing an appropriate fps. To find this res-

olution, each sequence of the TUM dataset [86] was tested five times with various

resolutions for analyzing time and error. The error metric utilized is root mean square

error (RMSE). Since the scale and the direction are changed every time VO is exe-

cuted, the estimated and the ground truth poses must be adjusted before calculating

RMSE. Let poses be pi = {xi, yi, zi} for i = 1 · · ·n at timestep i. Estimated and the

ground truth poses are then represented by estpi and gtpi, respectively. The direction

(rotation), the origin, and the relative scale are factors that have to be aligned before

computing RMSE.
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First, the rotation matrix is calculated by using singular value decomposition as

follows:

R = UV ′, (3.1)

where U and V are orthogonal matrices composed of singular vectors of the cross-

covariance of {estpi} and {gtpi}. Next, to identify the origins, new poses are set as

follows:

estp′i = (estpi − E[estX])R,

gtp′i =gt pi − E[gtX], (3.2)

whereE[X] is the expectation ofX . The relative scale s = sgt/sest, the last alignment,

is recovered by following equation:

s =

∑n
i=1

∥∥gtpi

∥∥∑n
i=1 ‖estpi‖

. (3.3)

Finally, RMSE is calculated as follows:

RMSE =

√√√√ 1

n

n∑
i=1

‖estp′i · s−gt p′i‖
2. (3.4)

Obtained by above manner, RMSEs of various resolutions and sequences are displayed

in Fig. 3.2.

From the figure, the lower the resolution, the higher the RMSE value, as expected.

Note that RMSE of back sequences (after 17) are smaller than those of front sequences.

This is because the configuration of the TUM dataset. Previous sequences are typically

captured in indoor environments with small scale rooms and corridors, and sequences

after 17 are either large scale indoor (with high ceilings and lobby) or outdoor envi-

ronments. Also, the first part of the sequence is a complex path, while the second part
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Figure 3.2: RMSE of various resolutions of all sequences. One grid means the average

of five repeated experiments.

is a simple path that makes one large loop. This difference can be attributed to the dif-

ference in the RMSE. The execution time and RMSE changes with the resolution are

shown in Fig. 3.3. The ratio of the width to the height of the image is 4:3 and x-axis

in Fig. 3.3 denotes width of a image. From the left graph in Fig. 3.3, RMSE value

decreases drastically at low resolution but gradually converges and eventually makes

no big difference after 704× 528. In the case of time, the average time of conducting

VO increases as the resolution increases. Therefore, using 704× 528 resolution, I can

confirm that VO can be performed at 23.67fps with low error. Hence, in the remainder

of this chapter, I experimented with SR learned to 704× 528.
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Figure 3.3: RMSE (left) and elapsed time per frame (right) variation with resolution

changes. Red dot denotes chosen suitable resolution for VO.

3.3.2 Super-Resolution Network

Among various SR approaches, some algorithms can increase the input resolution to

arbitrary values, but others can acquire only integer multiples of the input resolution.

The former methods upsample to the desired resolution by the bicubic interpolation

and then pass CNN networks to get an SR image [79, 81]. In the latter methods, up-

sampling processes are in the middle of the network hence they cannot obtain the

arbitrary resolution [84, 85]. In this chapter, I need to perform SR with 704× 528 res-

olution from arbitrary LR image. Therefore, methods which cannot acquire arbitrary

output resolutions like EDSR and SRResNet are not appropriate for our algorithm,

thus SRCNN and VDSR are only applied. Network structures of SRCNN, VDSR and

the proposed are depicted in Fig. 3.4.

As shown in figure, SRCNN and VDSR have three and twenty convolutional lay-

ers, respectively. I first analyze the noise removing property of two conventional net-
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Figure 3.4: Comparison of super-resolution networks of VDSR, SRCNN, and the pro-

posed
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works. SRCNN has too shallow CNN layers to get rid of noises. In VDSR, the input

image is added to the image that passed the last convolutional layer. This enables the

network to learn only high-frequency parts hence improves the performance and ac-

celerates the convergence. However, since the input image is added at the end, noises

contained in the input are not totally eliminated.

Computation times are concerned with the number of operations in SR networks.

Assuming equal input sizes, operation numbers of convolutional layers are propor-

tional to fi × k × fo, where fi, fo, k are input and output feature numbers and the

kernel size, respectively. Calculating the number of operations of SR networks in this

manner, SRCNN and VDSR are operated with about 8.1k and 660k operations, re-

spectively; these numbers are reflected in the runtime of algorithms. Comparing the

execution times of the two algorithms, the SRCNN operates at 144 fps with an aver-

age of 6.92ms per frame and the VDSR operates at 19.5 fps with an average of 51.4ms

per frame. The execution time of VDSR is slower than that of DSO, which means that

real-time VO with SR is unavailable. On the other hand, SRCNN is faster than enough

so, more convolutional layers could be added.

As a result, I design SR using nine convolutional layers, which operates with about

260k operations. The proposed network adds a convolutional layer at the beginning

and the end to prevent direct propagation of noise from the input image to the output. I

constructed the network using residual blocks, and constant scaling is applied to each

residual block. The equation presents the residual blocks as follows:

Res(x) = c(W1σ(W1x) + x), (3.5)

where x and Res(x) are the input and the output of the residual block, c is a scaling

constant, σ and W1 denote the ReLU function and a convolutional layer with 3 × 3
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kernel sizes and 64 filters, respectively. The total equations of the proposed network

are as follows:

y = W2(W1Res
3(W1x) +W1x), (3.6)

where W2 denotes a convolutional layer with 3× 3 kernel size and 1 filter.

3.4 Experiments

3.4.1 Super-Resolution Procedure

Training SR

In this dissertation, I used the monocular visual odometry dataset [86] provided by

Technical University of Munich. This dataset consists of 50 sequences, including in-

door and outdoor environment and the number of total images is 190,576. To perform

SR, ten sequences (i.e. 5, 10, ..., 50) in multiples of 5 were set as the test data, and

the remaining 40 sequences were used as the training data. The number of the training

images is 154,256 and that of the test is 36,320. The original resolution of this dataset

is 1280× 1024, so 704× 528, which is the ground truth resolution of SR, is obtained

by using bicubic downsampling. In training data, the resolution of the original image

was downsampled to 320× 240 and 192× 144. Therefore, the scale of SR is 2.2 and

3.6563, respectively. Furthermore, to make noisy images, salt and pepper noises are

added on downsampled images with 0.4% of whole pixels.

Training details are as follows: The image patch used in the training was a 44× 44

grayscale image. The Adam optimizer the L2 function were used as the optimizer

and the Loss function, respectively. The batch sizes were 32, 4, and 8 for SRCNN,

VDSR, and the proposed method, respectively, depending on the memory capacity
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of the graphics card. The initial learning rate was set to 10−4, and it was divided by

10 after every 10 epochs. All methods were trained until convergence. The epochs

required for learning were SRCNN of 60, VDSR and the proposed network of 40. I

configured methods as python language and utilized NVIDIA GTX 1080 Ti GPU.

Testing SR

I tested the proposed networks on the part of the TUM monocular dataset. I compared

our method with bicubic, SRCNN, and VDSR. For SRCNN and VDSR, I utilized our

own learning outcomes. Table 3.1 shows a quantitative result that presents average of

peak signal-to-noise ratio (PSNR), structural similarity (SSIM) and computation time

of SR methods.

Table 3.1: Average PSNR, SSIM and time results of Super-Resolutions

PSNR SSIM time(ms)

bicubic 30.00 0.856 0.646

320× 240 SRCNN 32.62 0.892 5.633

images VDSR 32.94 0.899 51.14

proposed 34.41 0.913 27.18

PSNR SSIM time(ms)

bicubic 27.95 0.808 0.463

192× 144 SRCNN 29.46 0.832 8.208

images VDSR 29.61. 0.844 51.58

proposed 30.93 0.856 26.26

The proposed method shows the best performance in both PSNR and SSIM, fol-
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lowed by VDSR, SRCNN, and bicubic in order. In terms of time, the average elapsed

time of VDSR per image is the longest, 51.36ms, which is slower than processing

speed of DSO. Bicubic and SRCNN was maintained at over 100fps, and the proposed

method showed a speed at about 37fps. The bicubic method is faster than other meth-

ods since it simply interpolates neighboring pixels to increase the resolution unlike

using a deep neural network. Results of CNN-based SR methods are shown in ac-

cordance with the operation numbers of networks as analyzed in section 3.3.2. For

qualitative comparison, a few SR results are shown in Fig. 3.5 and Fig. 3.6. I zoomed

in and compared images.

As seen in Fig. 3.5 and Fig. 3.6, results of learning-based methods show more

keen boundary than that of the bicubic interpolation. In noise removing, the noises

of the bicubic result are not eliminated and rather the size is expanded, since it is an

interpolation method. Also, noises are not completely removed in the SRCNN and

VDSR results, whereas the proposed method eliminates almost all noises.

In left images in Fig. 3.5 and Fig. 3.6, which are results of SRs using 192 × 144

images. The result of the bicubic shows much larger noises than that of the 320× 240.

Results of learning-based models are seemed sharp contours, but noises remain in

outcomes of SRCNN and VDSR.

3.4.2 VO with SR images

Experiments were carried out for two resolutions of 320 × 240 and 192 × 144 and

for four SR methods - bicubic, SRCNN, VDSR, and the proposed - compared with

VO using LR images. RMSE and the frequency variations of each method are shown

in Table 3.2 and Table 3.3. Note that the bicubic method produces worse result than

the LR image. This is a problem with the interpolation method. The bicubic method
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Figure 3.5: Super-resolution outcomes of bicubic, SRCNN, VDSR and the proposed

network
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Table 3.2: Results of the RMSE and the fps processed by DSO and SR of 320 × 240

images

LR image bicubic SRCNN VDSR proposed

RMSE fps RMSE fps RMSE fps RMSE fps RMSE fps

Seq. 5 1.1214 40.16 1.209 34.75 1.200 37.82 1.184 13.81 0.803 21.26

Seq. 10 0.427 40.92 0.505 33.10 0.487 36.12 0.224 13.58 0.152 20.63

Seq. 15 1.934 27.27 1.894 23.89 1.746 26.85 1.503 11.88 1.658 16.63

Seq. 20 0.343 30.08 0.347 26.46 0.341 29.87 0.343 12.34 0.118 17.84

Seq. 25 0.459 30.70 0.485 26.02 0.441 29.52 0.388 12.23 0.109 17.64

Seq. 30 0.491 27.60 0.509 24.27 0.491 27.78 0.502 11.90 0.250 16.82

Seq. 35 0.392 33.70 0.494 30.54 0.413 33.54 0.414 13.15 0.129 19.60

Seq. 40 0.191 33.77 0.195 26.77 0.195 29.00 0.192 12.35 0.191 17.98

Seq. 45 0.134 30.34 0.133 25.46 0.128 28.92 0.138 12.18 0.117 17.38

Seq. 50 0.199 28.51 0.196 23.94 0.198 26.43 0.196 11.90 0.136 16.66

Avg. 0.578 32.31 0.597 28.61 0.564 30.59 0.509 13.06 0.366 18.24

interpolates pixel intensities when conducting upsampling, which results in the effect

of smoothing the image. In DSO, the optimization is performed using pixels with high

intensity gradient. Hence, when the image is smoothed, the gradient becomes low and

the number of available pixels is reduced. Therefore, bicubic interpolation can be seen

as inappropriate when performing VO.

On the other hand, since learning-based SRs restore the detailed part of the im-

age, they show better VO performance. Overall, the results of the proposed method
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Table 3.3: Results of the RMSE and the fps processed by DSO and SR of 192 × 144

images

LR image bicubic SRCNN VDSR proposed

RMSE fps RMSE fps RMSE fps RMSE fps RMSE fps

Seq. 5 1.105 44.81 1.125 35.54 1.070 38.62 1.209 14.32 1.172 21.55

Seq. 10 1.047 44.37 3.885 33.90 4.005 36.85 0.633 14.03 0.604 20.94

Seq. 15 1.874 29.21 1.953 25.42 1.927 28.13 1.976 12.45 1.586 17.36

Seq. 20 0.343 33.08 0.347 27.44 0.343 30.15 0.345 12.86 0.333 18.28

Seq. 25 0.604 36.45 0.598 27.42 0.607 30.51 0.472 12.98 0.550 18.27

Seq. 30 0.508 32.33 0.499 25.20 0.490 28.46 0.515 12.59 0.336 17.26

Seq. 35 0.456 43.14 0.506 30.15 0.514 33.96 0.493 13.29 0.379 19.44

Seq. 40 0.193 36.97 0.197 27.10 0.193 30.12 0.194 12.58 0.187 18.13

Seq. 45 0.156 38.94 0.148 27.37 0.149 30.99 0.146 12.80 0.137 18.25

Seq. 50 0.185 39.10 0.178 26.60 0.181 29.21 0.200 12.61 0.191 17.90

Avg. 0.647 37.84 0.943 27.52 0.948 31.70 0.618 12.53 0.548 18.74

showed lowest RMSE, but other methods were better in a few sequences. This is be-

cause uncertainties happened in the process of choosing pixels utilized in optimization.

If the number of pixels above the gradient threshold exceeds the designated maximum

number, arbitrary pixels are chosen thus randomness occur.

In the frequency aspect, the bicubic and SRCNN are faster than even using HR

images directly. This is because pixels used in DSO is less when using the bicubic and

SRCNN SR images, resulting in optimization process shortened. The proposed method
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showed about 18fps in both resolutions which is five fps lower than frequency using

HR images. As a result, the result of the proposed method is the best performance in

RMSE and is suitable for real-time VO.

RMSE variations of each method are shown in Fig. 3.7 and Fig. 3.8. The unmarked

part of the bicubic192 result in Fig. 3.7 is that the algorithm fails because it completely

misses the path during the VO. In other parts, It can be seen that the bicubic192 method

produces also worse results than the LR image as explained above.

The qualitative VO results are shown in Fig. 3.9 to Fig. 3.18. The results of using

HR and noise-free image sequence showed that both the paths and the environment

LR192
Bicubic192
SRCNN192
VDSR192
proposed192

LR192
Bicubic192
SRCNN192
VDSR192
proposed192

LR320
Bicubic320
SRCNN320
VDSR320
proposed320

LR320
Bicubic320
SRCNN320
VDSR320
proposed320

Figure 3.7: RMSE variations of DSO using different image sequences. Right column

enlarged images of red boxes in left images shows the large difference region.
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Figure 3.8: Comparison of VO results of the RMSE versus time performances

reconstructions were clean. On the other hand, using LR & noisy and bicubic+192×

144 images caused tracking lost in many sequences. This problem occurs since LR and

noisy images lacked the number of pixels used for optimization. SRCNN results also

suffered from the wrongly estimated scale but less than using LR & noisy or bicubic

images. Results of using the VDSR showed similar to those of using HR and noise-

free, but a little skew of the path existed and failed to return to the same location.

Finally, the results of the proposed method showed quite similar output with those of

using HR and noise-free images, though reconstruction points spread widely.
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HR & noise free images LR & noisy images Bicubic + 192 × 144

SRCNN + 192 × 144 VDSR + 192 × 144 proposed + 192 × 144

Figure 3.9: VO results of sequence 5 using various image sets

HR & noise free images LR & noisy images Bicubic + 192 × 144

SRCNN + 192 × 144 VDSR + 192 × 144 proposed + 192 × 144

Figure 3.10: VO results of sequence 10 using various image sets
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HR & noise free images LR & noisy images Bicubic + 192 × 144

SRCNN + 192 × 144 VDSR + 192 × 144 proposed + 192 × 144

Figure 3.11: VO results of sequence 15 using various image sets

HR & noise free images LR & noisy images Bicubic + 192 × 144

SRCNN + 192 × 144 VDSR + 192 × 144 proposed + 192 × 144

Figure 3.12: VO results of sequence 20 using various image sets
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HR & noise free images LR & noisy images Bicubic + 192 × 144

SRCNN + 192 × 144 VDSR + 192 × 144 proposed + 192 × 144

Figure 3.13: VO results of sequence 25 using various image sets

HR & noise free images LR & noisy images Bicubic + 192 × 144

SRCNN + 192 × 144 VDSR + 192 × 144 proposed + 192 × 144

Figure 3.14: VO results of sequence 30 using various image sets
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HR & noise free images LR & noisy images Bicubic + 192 × 144

SRCNN + 192 × 144 VDSR + 192 × 144 proposed + 192 × 144

Figure 3.15: VO results of sequence 35 using various image sets

HR & noise free images LR & noisy images Bicubic + 192 × 144

SRCNN + 192 × 144 VDSR + 192 × 144 proposed + 192 × 144

Figure 3.16: VO results of sequence 40 using various image sets
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HR & noise free images LR & noisy images Bicubic + 192 × 144

SRCNN + 192 × 144 VDSR + 192 × 144 proposed + 192 × 144

Figure 3.17: VO results of sequence 45 using various image sets

HR & noise free images LR & noisy images Bicubic + 192 × 144

SRCNN + 192 × 144 VDSR + 192 × 144 proposed + 192 × 144

Figure 3.18: VO results of sequence 50 using various image sets
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3.5 Summary

In this chapter, I propose a method to improve the low-performance of VO when using

LR and noisy image sequences. I designed an SR network that deals with noises and

execution time as well as resolution increment differently from other SR techniques.

The proposed SR makes the image quality increase, which leads to a successful VO

result. Experimental results show that the performance of the proposed method is better

than that of conventional VO. This work can be utilized to real applications, such as

the augmented reality and the autonomous driving since VO performs well even when

a low-cost camera is used.
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Chapter 4

A Visual Odometry Enhancement Method Using Fully

Unsupervised Learning

4.1 Introduction

In robotics, various mainstreams are studied in order to perform scene understand-

ings, such as simultaneous localization and mapping (SLAM), structure from motion

(SfM), scene/optical flow estimation, visual odometry (VO) and depth estimation. Be-

yond others, odometry estimation is the key technique for autonomous system, as the

method estimates the pose of the mobile agent. In order to achieve the accurate pose

estimation with various sensors such as IMU, GPS, LIDAR and cameras, tremendous

works have been conducted. Because of the characteristics of mono camera such as

portable, fast and its price, monocular VO attracts attentions of robotics field and is

adopted to applications such as unmanned aerial vehicles, 3D modeling, augmented

reality and autonomous driving.

Traditional methods for VO mainly obtain odometry in the form of transformation

matrix, by finding correspondence of point features or pixels. With the recent advent
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of deep learning, direct estimation methods using neural network structure have been

conducted. Especially, unsupervised learning approaches have shown remarkable re-

sults during past three years [49, 52]. These approaches estimate pose transformation

between target image and source images, and the depth image simultaneously; using

predicted pose and depth, predicted target image is calculated from source images, and

training loss is defined as the error (or difference) between target image and predicted

target image.

However, from traditional VO estimations to unsupervised learning methods, it is

inevitable to assume that camera intrinsic parameters are known which are determined

by the physical characteristics of the mono camera. Therefore, inspired by previous

unsupervised VO estimations, I propose a method that estimates not only 6-DOF pose

and depth but also intrinsic parameters. In order to achieve fully unsupervised learning

method for VO, our single network predicts camera parameters from given sequences.

I also exploit the concepts of explainability in [49] for masking the areas of dynamic

objects or occluded regions in single scene. The overview of the proposed framework

is shown in Fig. 4.1.

Since the explainability image and the depth image have the same resolutions as

input images, the proposed networks are constructed as encoder-decoder structures.

By adding auxiliary networks on top of each encoders, 6-DOF pose and 4-DOF real

values for camera intrinsic parameters are estimated.

The rest of this chapter is organized as follows: Section II introduces overview of

the related work of traditional, learning-based VO and single-view depth estimation.

Section III describes our approach to establishing fully unsupervised learning and the

proposed network structure. Section IV summarizes comprehensive experimental re-

sults and analysis. Finally, Section V concludes this chapter.
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Figure 4.1: The framework of the proposed method. Intrinsic parameters, a depth map,

6-DOF poses and a explainability map are estimated simultaneously only using an

image sequence.

4.2 Related Work

4.2.1 Traditional Visual Odometry

Odometry estimation using visual sensor has been conducted since past decades, and

is firstly referred as visual odometry by Nister et al. [17], 2004. Previous methods

for VO are performed by using extracted features and pose filters [18, 21]. Without

any considerations of similar scenes in sequence, it is inefficient since the proposed
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algorithm applied pose filters to every images in a sequence. In PTAM [24] and ORB-

SLAM [30, 70], keyframe [87] selection and parallel processing are adopted in order

to estimate pose thus efficient VO estimated can be achieved.

Compared to the feature-based VO, direct VO achieves odometry by calcuating the

transform which minimizes the differences of pixel intensity between two images [34,

35]. In order to relieve the computational burden and achieve real-time performance,

[37, 38, 41] propose semi-dense direct VO which exploits only the pixels with large

gradients to the neighboring ones.

4.2.2 Single-view Depth Recovery

Single-view or monocular depth estimation is technique to predict a dense depth image

from a single RGB image. Initially, depth was predicted by using position and direction

estimation of the plane in the image [88, 89]. Sexena et al. [89] proposed a Make3D

technique that over-segments the input image into the patches and then estimates posi-

tion and normal vector of the planes in each patch. However, the patch-based model is

hardly to model the thin structure because each patch does not include the context of

the entire image. Liu et al. [90] presented superpixel over-segmentation on the image

with a learning-based method using CNN, which succeeded in improving accuracy

of depth prediction. Karsch et al. [91] attempt to produce more consistent image level

predictions by copying whole depth images from a training set. Ladicky et al. [92] also

added semantic information in the previous research to improve performance of depth

prediction per pixel.

In order to achieve end-to-end training model for depth estimation, [2, 93] exploits

deep neural network and estimate depth image from raw pixel values, rather than uses

over-segmentation or hand-crafted features. They adopted multi-scale deep networks
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for dense depth estimation. Thanks to the success of depth recovery using this method,

end-to-end model with raw pixels has been actively developed. Li et al. [94] utilizes

conditional random field (CRF) as a post-processing, Cao et al. [95] adopts classifi-

cation loss instead of regression to estimate depth value by interval, and Laina et al.

[96] performs depth estimation using berHu loss function for a robustness to outliers.

However, these end-to-end models require high quality and pixel-aligned ground truth

depth as a training data.

Therefore, unsupervised learning methods without training data have also been

studied. [97] presented a single-view depth estimation using the projection error of

images obtained from a calibrated stereo camera as a supervision. Deep3D [98] also

suggested a unsupervised learning with the concept of view synthesis - estimating the

right view from the left view. Similarly, Godard et al. [47] succeeded in improving

performance by adding a constraint of left-right consistency.

4.2.3 Supervised Learning-based Visual Odometry

Direct estimation methods using deep learing have been proposed [42]. In order to

exploit the sequentiality of the image sequence, this method uses RCNN, which is the

combination of recurrent neural network (RNN) and CNN. With this framework, Iyer

et al. [43] propose the enhanced VO estimation network with geometric consistency.

Turan et al. [99] introduce deep EndoVO by applying VO using RCNN to endoscopic

robots. To achieve the accurate VO estimation, Flowdometry [48] take the advantage

of the optical flow from FlowNet [45]. In addition to the above methods, DeMoN [44]

performs various tasks such as depth, surface normal and optical flow estimation by

supervised learning scheme.
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4.2.4 Unsupervised Learning-based Visual Odometry

The methods for VO trained in supervised manner have limitation that datasets with

ground truth trajectories are necessary. Since annotating robot path takes a lot of effort

and time-consuming, SfMLearner [49] suggests a method with unsupervised learning.

In SFMLearner, depth images for source images, and the pose for target image are

estimated from DispNet and additional network respectively. Using source images, and

estimated depth images and pose, predicted target image is synthesized; the difference

between predicted target image and original target image is exploited as training loss,

thus supervision training can be achieved. To handle the areas of dynamic objects and

occluded part, the algorithm masks the single scene using explainability.

In addition to SFMLearner, GeoNet [51] adds ResFlowNet structure and estimate

VO and optical flow together, which gives the higher performance than SFMLearner.

GanVO [52] exploits generative adversarial network (GAN) [53] structure, in order

to generate more realistic synthesized images of predicted target image. The above

methods are basically for monocular camera system, and it is challenging to estimate

the absolute scale of the predicted pose. To overcome the problem, similar to [47],

UnDeepVO [50] trains the model using left-right consistency of stereo camera, and

achieves VO including scale prediction by testing the model with single image.

In this section, I describe network structure and loss functions for estimating cam-

era pose, depth, and intrinsic parameters in unsupervised manner. Similar to the pre-

vious studies based on unsupervised learning, the proposed network takes image se-

quence as input and reconstructs target image using predicted depth, pose, intrinsic pa-

rameters and source images. The overview of the proposed network structure is shown

in Fig. 4.2.
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Figure 4.2: The proposed architecture for training our model. The change of sizes of

convolutional and upconvolutional blocks indicates width/height changes by the factor

of 2, and the number of channels moves opposite (When the block size gets bigger, the

number of channels gets smaller).
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4.2.5 Architecture Overview

To consider the areas of dynamic objects and occlusion regions, I exploit the ex-

plainability concept as in [49]. The encoder-decoder structure is used for single-view

depth and explainability estimation, which requires pixel-based estimation. I adopt the

concatenation-based skip connection to synchronize the resolutions of input and output

images.

4.3 Methods

Poses and intrinsic parameter regression is conducted by two additional structures

which are on top of the encoders of the explainability network and depth network, re-

spectively. The pose network estimates the 6-DOF pose: translation (x, y, z) and Euler

angles (θ, φ, ψ). Intrinsic parameters network outputs four real numbers which com-

prise the intrinsic matrix. The details of the intrinsic parameters regression is described

in Sec. 4.3.2.

4.3.1 Predicting the Target Image using Source Images

Similar to the previous studies based on unsupervised learning, I use the pixel-wise

differences between the target image It and the synthesis image Îsi generated from the

source images (Is1 , Is2 , ...) as the main loss. In other words, the proposed network is

trained in order to minimize the difference between target image and predicted target

one. The pixel-wise difference is calculated with pixel-wise correspondence, which

can be defined by depth Dt of target image and transformation Tt→s between target

and source images. Let pt be a pixel of target image, and ps be of source image corre-
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sponding to pt. Then estimated pixel ps can be expressed as the following:

ps ∼ K̂T̂t→sD̂t(pt)K̂
−1pt. (4.1)

Since the value of ps is not an integer, the intensity value of Îs(ps) is obtained by

weighted sum of four adjacent pixel intensities according to the distance. In order

to alleviate the correspondence ambiguity problem occurred by dynamic object and

occlusion, I can define pixel-wise difference loss with explainability function Es(p)

as:

Lpw =
∑
s

∑
p

Ês(p)
∣∣∣It(p)− Îs(p)∣∣∣ . (4.2)

To avoid the trivial solution ês = 0 of (2), regularization loss Lreg is added [49].

When ps is located in a low-texture region or far from the estimated value, train-

ing is hardly converged. To handle this problem, the loss is calculated at multi-scale.

Smoothness loss is also added so that gradients can be transferred directly to a wide

area. Consequently, the total training loss is given as:

Ltotal =
∑
m

(
Lm
pw + λms Lsmooth + λr

∑
s

Lreg(Êm
s )

)
, (4.3)

where m indexes one of the multi-scale, λs and λr are loss weights of smoothness loss

and explainability regularization, repectively.

4.3.2 Intrinsic Parameters Regressor

The proposed network predicts intrinsic camera parameters to estimate odometry us-

ing only image sequence. When I train the proposed network to estimate the intrinsic

parameters directly, intrinsic parameters tend to be diverged toward negative values

which should be positive. In order to restrict the outputs of the intrinsic network, I
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applied ReLU activation and an absolute function. However, I found that all parame-

ters were converged to 0 in the case of ReLU activation and hardly converged in case

of absolute function since both positive and negative values lead to the same results

which makes network confusing. I thus tried exponential function to make output val-

ues always positive. When using exponential function, all parameters raised from zero

slowly, but stopped at local minima far below from the ground truth values. As a result,

I added two prior assumption by analyzing intrinsic parameters in Table 4.1 and Table

4.2 as follows:

• The values of fx and fy are similar.

Table 4.1: Intrinsic parameter sets of resized KITTI raw dataset

fx fy cx W/2 cy H/2

date1 241.67 246.28 204.17 208 59.00 64

date2 240.30 244.60 205.31 208 62.45 64

date3 241.38 245.85 201.75 208 62.12 64

date4 239.93 244.62 204.23 208 63.35 64

date5 240.97 244.72 203.54 208 63.05 64

Table 4.2: Intrinsic parameter sets of resized CityScape dataset

fx fy cx W/2 cy H/2

City group 1 424.22 473.41 205.68 192 107.24 107

City group 2 423.09 463.86 196.72 192 107.67 107

City group 3 425.32 465.10 196.62 192 108.52 107
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• The values of cx and cy are similar to W/2 and H/2, respectively.

where W and H are image width and height of images, respectively. Let outputs of the

intrinsic parameters network be o1, o2, o3, and o4, respectively. The intrinsic parame-

ters are expressed as follows:

fx = exp(o1) + b, (4.4)

fy = fx + α · tanh(o2), (4.5)

cx =

(
1

2
+ β · tanh(o3)

)
W, (4.6)

cy =

(
1

2
+ β · tanh(o4)

)
H, (4.7)

where α and β are real number constants.

Note that fx and fy are similar values; fx = f is calculated using o1, and fy =

fx + δf where δf is obtained from o2. Since the focal length of camera used in the

experiment is a positive value, fx is defined by taking an exponential function on o1

and adding a positive real value b as a bias. Fy is obtained by adding δf = α ·tanh(o2)

to fx, while setting α considering the difference from fx.

The principal point (cx, cy) is the result of adding (δcx, δcy) to the center of the

image (0.5W, 0.5H). This value is estimated using o3 and o4 as (δcx, δcy) = (β ·

tanh(o3) ·W,β · tanh(o4) ·H). Using (fx, fy, cx, cy), I utilize the following camera

intrinsic matrix K in Eq. (4.1).

K =


fx 0 cx

0 fy cy

0 0 1

 (4.8)
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4.4 Experiments

KITTI raw/odometry dataset [1] was used in training and test processes for evaluat-

ing our method. I implemented the deep network with publicly available Tensorflow

framework [100]. All conv/upconv layers except prediction layers are followed by

ReLU activation and batch normalization. For a training, Adam optimizer optimized

weights of our network with parameters β1 = 0.9, β2 = 0.999, learning rate of 0.002

and mini-batch size of 8. Images used in training were resized to 128 × 416, and one

input batch consisted of five consecutive stacked images. λs and λr in Eq. (4.3) is set

to 0.5/m, 0.2, respectively, where m denotes the downscaling factor corresponding

to scale. The network was trained and tested on a NVIDIA GTX 1080 Ti GPU. Our

model was built upon SfMLearner [49] framework to estimate intrinsic parameters

additionally.

4.4.1 Monocular Depth Estimation

Like [49, 51, 52], I used the KITTI raw dataset by the split of Eigen et al. [2] for

training and test of the monocular depth estimation. Also, static frames and visually

similar frames were excluded as in [49, 51]. I set a sequence length to five while other

unsupervised researches set this value to three, since model fell into local minima

easily when sequence length of three. A few examples of depth estimation is depicted

in Fig. 4.3 and Fig. 4.4.

As shown in Fig. 4.4, our method detect thin structure well and show comparable

performance with SfMLearner. However, even in the top three rows, smoothness of

depth was unstable and it was maximized in Fig. 4.5. In many depth maps estimated

by our trained model, roads right front of the car were wrongly estimated to distant
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objects.

As shown in Table 4.3, our monocular depth estimation performance was meaning-

fully lower than that of SfMLearner. The reason for above results is that there exists

many failed cases like Fig. 4.5, which is led from the errors of intrinsic parameters

estimation.

4.4.2 Visual Odometry

The VO evalution is conducted through KITTI odometry dataset. I used the pre-trained

weights on KITTI raw dataset, and trained on KITTI odometry sequence 00-08, then

test using sequence 09-10. Unlike calculating absolute trajectory error (ATE) on 5-

frame snippets in other literature, I first recovered full trajectory then computed ATE.

In monocular VO, a scale and a direction of the trajectory are structurally unfixed.

Table 4.3: Monocular depth estimation results on KITTI dataset [1] by the split of

Eigen et al. [2].

[49]
[49]

updated
GeoNet proposed

Abs Rel 0.208 0.183 0.153 0.296

sq Rel 1.768 1.595 1.328 6.175

RMSE 6.856 6.709 5.737 8.453

RMSE log 0.283 0.270 0.232 0.364

δ < 1.25 0.678 0.734 0.802 0.642

δ < 1.252 0.885 0.902 0.934 0.840

δ < 1.253 0.957 0.959 0.972 0.920
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Input SfMLearner GeoNet Mine

Figure 4.3: Qualitative results of successful single-view depth estimation on KITTI [1]

using the split of Eigen et al. [2].
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Input SfMLearner GeoNet Mine

Figure 4.4: Qualitative results of failed single-view depth estimation on KITTI [1]

using the split of Eigen et al. [2].
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Figure 4.5: Plots of trajectories aligned to the ground truth. Paths are plotted by top-

view.
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Therefore, it is necessary to align predicted trajectory to the ground truth before cal-

culating errors. The alignment consists of three steps 1) the rotation, 2) the origin, and

3) the scale. First, a rotation is calculated by single value decomposition of the cross-

covariance matrix of the ground truth and predicted trajectory. Second, the origin is

identified by subtracting the difference of medians of two trajectories. Finally, a rela-

tive scale calculated by distances of trajectories from origin is multiplied, then compute

ATE errors. Pose estimation results of two sequences are plotted and summarized Fig.

4.5 and Table 4.4.

As shown in Fig. 4.5, GeoNet results show big differences from ground truth tra-

jectories. It leads far higher ATE values than those of other methods as shown in Table

4.4. In Fig. 4.5, a trajectory of the SfMLearner may seem to be closer with the ground

truth than mine. However, unlike the qualitative results, our ATE of sequence 09 is

lower than that of SfMLearner. This may be the endemic problem of KITTI odometry

estimation that errors are accumulated on y-axis. Since this dataset was captured using

driving car, y-component of translation is relatively small, thus a small error on y-axis

occur easily. Hence, as sequence proceeds, errors on y-axis accumulate that is hard to

see on top-view. In a nutshell, the proposed method showed comparable performance

Table 4.4: Absolute trajectory errors of KITTI odometry dataset sequence 09 and se-

quence 10.

Method Seq. 09 Seq. 10

SfMLearner 27.099 13.382

GeoNet 189.28 55.408

proposed 23.046 24.228
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Figure 4.6: Plots of aligned trajectories of KITTI sequence 11 and 12. Paths are plotted

by top-view.
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Figure 4.7: Plots of aligned trajectories of KITTI sequence 13 to 14. Paths are plotted

by top-view.
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Figure 4.8: Plots of aligned trajectories of KITTI sequence 15 and 16. Paths are plotted

by top-view.
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Figure 4.9: Plots of aligned trajectories of KITTI sequence 17 to 18. Paths are plotted

by top-view.

75



−100 −50 0 50 100 150 200
0

50

100

150

200

250

300

350

400  
Sequence 19

x (m)

 

z
 (

m
)

SfMLearner

proposed

−50 0 50 100 150 200
0

200

400

600

800

1000  
Sequence 20

x (m)

 

z
 (

m
)

SfMLearner

proposed

Figure 4.10: Plots of aligned trajectories of KITTI sequence 19 and 20. Paths are plot-

ted by top-view.
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Figure 4.11: A plot of aligned trajectories of KITTI sequence 21. Paths are plotted by

top-view.

to SfMLearner which uses given intrinsic parameters.

The results of sequence 11 to 21 is shown in Fig. 4.6 to Fig. 4.11. Since ground

truth trajectories of above sequences were not provided and results of GeoNet were

too bizarre, I plotted only SfMLearner and the proposed method. Although there are

differences in detail, it can be seen that overall shapes are similar between SfMLearner

and the proposed method.

4.4.3 Intrinsic Parameters Estimation

Since the network of intrinsic parameters estimation has a part shared with the depth,

the tests were conducted on KITTI raw datasets and CityScape datasets. In KITTI
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datasets, there are five sets of intrinsic parameters by collecting data for five dates,

2011-09-26, 2011-09-28, 2011-09-29, 2011-09-30, and 2011-10-03.

In CityScape datasets three sets of intrinsic parameters exist because data is collected

in many cities. I called these three sets to city group 1, 2, 3. The City group 1 consists

of Aachen, Bremen, Cologne, Darmstadt, Dusseldorf, Jena, Stuttgart, Tubingen, Ulm,

Weimar, and Zurich, and the city group 2 consists of Bochum and Strasbourg, lastly

the city group 3 consists of Hamburg, Hanover, Krefeld, and Monchengladbach. Ex-

periments was performed by images resized to 128× 416 and 214× 384 in KITTI and

CityScape, respectively, hence intrinsic parameters were also downscaled to the same

scaling factor as follows:

(f resizex , cresizex ) = sdx · (fx, cx)

(f resizey , cresizey ) = sdy · (fy, cy),

where sdx and sdy are downscaling factors of each axes of the corresponding dataset.

Considering the values of ground truth intrinsic parameters in datasets, I set b = 180,

α = 15, β = 15, W = 416, and H = 128 in Eq. (4.4) to Eq. (4.7). The predicted

intrinsic parameters and percentage errors are shown in Table 4.5 and Table 4.6.

As shown in Table 4.5 and Table 4.6, all parameter values indicate similar errors

regardless of date. In the estimated focal lengths, the errors of fx and fy are 12.00%

and 12.47%, respectively. When I looked at these values during training, they started

at nearby b = 180, went up and converged to our results. In addition, when lowering

the b of Eq. (4.4), intrinsic parameters did not increase by stopping at lower values

than the our results. With this, it can be seen that there exists many local minima in

focal length learning.

In the principal point, the average errors of cx and cy are 2.23% and 9.40%, re-
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spectively. As a matter of fact, both cx and cy are similar in absolute error, but the per-

centage error is lower because the ground truth of cx is higher than that of cy. These

two values do not deviate significantly from W
2 and H

2 given as biases in Eq. (4.6)

and Eq. (4.7). The ground truth focal lengths are relatively far from initial values than

the principal point, therefore the focal lengths are mainly learned. Due to errors of the

estimated intrinsic parameters, the performance of our depth and odometry estimation

might be lower than that of SfMLearner which has learned with these values.
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Table 4.5: Ground truth, predicted camera parameters and percentage errors of five

dates. date1, date2, date3, date4, and date5 in the table denote 2011-09-26,

2011-09-28, 2011-09-29, 2011-09-30, and 2011-10-03, respectively.

fx fy cx cy

GT 241.67 246.28 204.17 59.00

09-26 Pred. 212.36 214.74 208.28 67.78

error(%) 12.13 12.81 2.01 14.88

GT 240.30 244.60 205.31 62.45

09-28 Pred. 215.04 215.76 208.20 67.46

error(%) 10.51 11.79 1.40 8.04

GT 241.38 245.85 201.75 62.12

09-29 Pred. 209.84 215.48 208.60 67.78

error(%) 13.07 12.35 3.40 9.12

GT 239.93 244.62 204.23 63.35

09-30 Pred. 212.94 215.25 208.20 67.84

error(%) 11.25 12.01 1.95 7.09

GT 240.97 244.72 203.54 63.05

10-03 Pred. 209.55 211.94 208.38 68.03

error(%) 13.04 13.39 2.38 7.89

total avg. error (%) 12.00 12.47 2.23 9.40
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Table 4.6: Ground truth, predicted camera parameters and percentage errors of three

city groups.

fx fy cx cy

GT 424.22 473.41 205.68 107.24

Group 1 Pred. 401.65 413.54 198.45 107.88

error(%) 5.32 12.65 3.52 0.60

GT 423.09 463.86 196.72 107.67

Group 2 Pred. 409.61 412.95 193.86 109.72

error(%) 3.19 10.98 1.45 1.90

GT 425.32 465.10 196.62 108.52

Group 3 Pred. 406.75 410.31 192.19 107.22

error(%) 4.37 11.78 2.25 1.20

total avg. error (%) 4.29 11.80 2.41 1.23
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this dissertation, I proposed two methods to enhance VO performance using deep

learning. First, I propose a super-resolution (SR) technique to improve the performance

of VO using images with low resolution and noises. Since the target resolution of the

SR must be set, a suitable resolution for VO was obtained through comprehensive

experiments. Experimental results show reasonable VO execution time and error when

using 704 × 528 resolution. Therefore, SR increased low-resolution images to 704 ×

528 and then VO was performed. SR is designed using deep neural network. The

existing SR techniques focus on the method of improving the resolution of the image

and give little consideration to execution time. However, because the real-time property

is important for VO, the execution time of the SR should not be too long. Among the

SR techniques using deep learning, SRCNN, which was initially proposed, consists of

three CNN layers, so the execution time was very short, but the performance of SR

was insufficient. The recently proposed VDSR consists of twenty CNN layers and the
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performance of SR was good, but it was difficult to operate in real-time when combined

with VO due to the slow execution time. Therefore, in this dissertation, SR and VO

were performed in real-time using nine CNN layers. The network was designed using

the residual block, which is part of the ResNet structure, and added one CNN layer

each in front of the input and output to reduce the effects of noise.

I evaluated the proposed method using the TUM dataset. As a comparative ex-

periment, bicubic interpolation, SRCNN, and VDSR were used. The PSNR results

of increasing the resolution from 320 × 240 to 704 × 528 of the bicubic, SRCNN,

VDSR, and the proposed method were: 30.00, 32.62, 32.94, and 34.41, respectively.

Also, those of increasing resolution from 192× 144 to 704× 528 were: 27.95, 29.46,

29.61, and 30.93, respectively, which denoted that the proposed method showed the

best performance in both resolutions. Comparing LR & noisy images with SR images

obtained by the proposed network, RMSEs of VO were 0.578 and 0.366, respectively

in case of the 320 × 240; and 0.647 and 0.548 in case of the 192 × 144. As a result,

the proposed method reduced RMSE 36.68% in the 320 × 240 case and 15.30% in

the 192× 144 case. RMSEs of VO using other SR methods are higher than that of the

proposed method as shown in chapter III. The maximum fps of VO with the proposed

SR method were 18.24 and 18.74 in resolutions 320×240 and 192×144, respectively,

which means it can be performed in real-time.

Second, I propose a fully unsupervised learning-based VO that performs VO, sin-

gle image depth recovery, and camera internal parameter estimation using a dataset

consisting only of consecutive images. In previous unsupervised learning-based VO

methods, the target image and the source images are set as input to estimate the depth

map of the target image and 6-DoF poses between the target image and source im-

ages. With the poses and the depth map estimated through the network, training is
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conducted by comparing the intensities of the target view pixels with those of corre-

sponding source view pixels. In this process, the camera parameter matrix is given.

Based on these techniques, I proposed a method for estimating camera parameters

by adding a deep intrinsic network. However, the parameters estimated by the intrin-

sic network tended to diverge or converge to zero. To alleviate this problem, I used

the characteristics of the camera in which the focal lengths fx and fy are similar to

each other and that cx and cy are similar to W/2 and H/2, respectively. The two

assumptions above helped the estimated intrinsic parameters approach to the correct

values. Estimating camera parameters in this way, fx, fy, cx, and cy showed errors of:

12.00%, 12.47%, 2.23%, and 9.40%, respectively. RMSEs of VO are calculated using

the KITTI dataset sequence 9 and 10. As a result, RMSEs of SfMLearner are 23.046

and 24.228 in sequence 9 and 10, respectively, and those of the proposed method are

27.099 and 13.382. The proposed method shows a lower error in sequence 10 and a

higher error in sequence 9, which means the proposed method shows comparable VO

result with existing methods which use a ground truth intrinsic parameter matrix.

In this dissertation, we propose two methods using deep learning to perform VO on

two insufficient datasets. It is difficult to obtain an image sequence, such as a research

dataset, that is obtained with high quality equipment and provides all of the detailed

information (exposure time, non-linear function, and camera parameters etc.) of the

measured equipment. Using the proposed method, VO performance is enhanced when

insufficient datasets are used.
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5.2 Future Work

In this dissertation, I used the KITTI dataset to verify a fully unsupervised learning-

based VO. This data was taken on five different days with different intrinsic parameters

for each day. However, the camera parameters were not very different from each other.

Also, the images in the KITTI dataset are horizontally long, which are not common

from what people usually get. In the future, I will look into how the proposed method

works using various datasets. Since the network is fully convolutional, it can be well

applicable to learn with other datasets. In order to facilitate learning, I study the rela-

tionship between the images and intrinsic parameters to provide prior to learning.

Furthermore, I will research about domain adaptation (DA) [101, 102] to learn

more robust networks for datasets. DA is used for training regarding the relation be-

tween different feature domains and it works in different domains, using the results of

learning in other domains. If the domain is set by an image sequence and DA learning

is used, suitable performance will be seen as using the images taken by other cameras.

Finally, it is expected to work well even in the form of an image sequence which is not

included in the training data.
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초록

3차원환경에대한이해는로보틱스와컴퓨터비전분야에서굉장히중요한문

제중하나이다.이를위해라이다,초음파,적외선, inertial measurement unit (IMU),

카메라등의센서가개별적으로또는센서융합을통해여러센서가동시에사용되

기도 한다. 이 중에서도 최근에는 상대적으로 저렴한 가격에 많은 정보를 얻을 수

있는카메라를이용한연구가활발히진행되고있다.

카메라를 이용한 3차원 환경 인지는 깊이 복원, optical/scene flow 추정, visual

odometry (VO)등이있다.이중 VO는카메라를장착한로봇혹은사람이이동하며

자신의 위치를 파악하고 주변 환경의 지도를 작성하는 기술이다. 이 기술은 경로

설정, 충돌 회피 등 다른 임무를 수행하기 전에 필수적으로 선행되어야 하며 자율

주행, AR, UAV contron, 3D modelling등실제응용문제에적용될수있다.

현재다양한 VO알고리즘에대한논문이제안되었다.초기 VO연구는 feature를

이용하여 feature와 로봇의 pose를 필터링 하는 방식으로 진행되었다. 필터를 이용

한방법은계산량이너무많고오차가누적된다는단점때문에 keyframe을이용하는

방법이연구되었다.이방식으로 feature를이용하는방식과픽셀의 intensity를직접

사용하는 direct 방식이 연구되었다. feature를 이용하는 방법들은 feature의 추출과

매칭을 이용하여 두 이미지 사이의 pose 변화를 구하며 direct 방법들은 이미지 픽

셀의 intensity를 직접 비교하여 photometric error를 최소화 시키는 pose를 구하는
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방식이다.

최근에는 deep learning 알고리즘의 발달로 인해 VO에도 deep learning을 적용

시키는연구가많이진행되고있다. Deep learning-based VO는이미지를이용한다

른 분야와 같이 기본적으로 CNN을 이용하여 feature를 추출한 뒤 이미지 사이의

pose변화를계산한다.이는다시 supervised learning을이용한방식과 unsupervised

learning을 이용한 방법으로 나눌 수 있다. supervised learning을 이용한 VO는 pose

의 참값을 사용하여 학습을 시키며, unsupervised learning을 이용하는 방법은 주어

지는참값없이이미지의정보만을이용하여 pose를학습시키는방식이다.

기존 VO 논문들은 좋은 성능을 보였지만 연구에 사용된 이미지 dataset들은 모

두 고가의 카메라를 이용하여 얻어진 고화질의 선명한 이미지들로 구성되어 있다.

또한노출시간,비선형반응함수,카메라파라미터등의이미지외적인정보를이

용해야만 알고리즘의 동작이 가능하다. VO가 실제 응용 문제에 더 널리 적용되기

위해서는 dataset이 불완전할 경우에도 odometry 추정이 잘 이루어져야 한다. 이에

본논문에서는 deep learning을이용하여 VO의성능을높이는두가지방법을제안

하였다.

첫번째로는 super-resolution (SR)기법으로저해상도,노이즈가포함된이미지

를 이용한 VO의 성능을 높이는 방법을 제안한다. 기존의 SR 기법은 수행 시간보

다는 이미지의 해상도를 향상시키는 방법에 주로 집중하였다. 하지만 VO 수행에

있어서는실시간성이굉장히중요하다.따라서수행시간을고려한 SR네트워크의

설계하여이미지의해상도를높이고노이즈를줄였다.이 SR네트워크를통과시킨

뒤 VO를 수행하면 기존의 이미지를 사용할 때보다 높은 성능의 VO를 실시간으로

수행할수있다. TUM dataset을이용한실험결과기존의VO기법과다른 SR기법을

적용하였을때보다제안하는방법의성능이더높은것을확인할수있었다.

두 번째로는 연속된 이미지만으로 구성된 dataset을 이용하여 VO, 단일 이미지

깊이추정,카메라내부파라미터추정을수행하는 fully unsupervised learning-based
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VO를 제안한다. 기존 unsupervised learning을 이용한 VO에서는 이미지들과 이미

지를 촬영한 카메라의 내부 파라미터를 이용하여 VO를 수행하였다. 이 기술을 기

반으로본논문에서는 deep intrinsic네트워크를추가하여카메라파라미터까지네

트워크에서 추정하는 방법을 제안한다. 0으로 수렴하거나 쉽게 발산하는 intrinsic

네트워크에 카메라 파라미터의 성질을 이용한 두 가지 가정을 통해 내부 파라미터

를추정할수있었다. KITTI dataset을이용한실험을통해 intrinsic parameter정보를

제공받아진행된기존의방법과유사한성능을확인할수있었다.

주요어: Monocular Visual Odometry, Visual SLAM, Super-resolution, Single-view

Depth Estimation, Unsupervised Learning-based Visual Odometry.

학번: 2014-21746
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의재밌는추억얘기를많이들어서조금더같이지냈으면하는아쉬움이남았어요.
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더길게볼수있겠죠?잘부탁드립니다.

최근금오공대에서교수직을얻으신승환이형.형과의기억은주로게임과술이

떠오르네요. 나이와 연차가 많이 차이나는데도 편하게 대해주시고 술도 많이 사주

셔서감사했습니다.형은연구실에서연구혹은프로젝트미팅할때와같이놀때의

모습이많이달랐던것같아요.집중할때집중하고쉴때확실히쉬는형의모습이

멋있었습니다.지금은멀리떨어져있지만서울오실때연락주셔서종종만났으면

좋겠어요.

저의첫방장이신규호형.온화한성격으로후배들을잘챙겨주시고연구실분위

기를좋게이끌어주신것같아서감사합니다.누구보다더열심히일하시고권위를

세우지 않으면서 구성원들을 잘 따르게 하는 형의 카리스마는 항상 존경스러웠어

요.저도앞으로팀을이끌기회가왔을때형을본받아서제가더많이뛰는리더가

될수있도록노력할게요.

저의 고등학교 선배님이신 지훈이형. 미국에서 잘 지내시고 계신가요. 형이랑

얘기많이하고싶었는데기회가많이없었던것같아서아쉬워요.미국에서연구잘

마치셔서학위무사히마무리하셨으면좋겠습니다.

나랑동갑내기이자연구실에이스였던지웅이.연구도잘했지만조용한가운데

가끔씩 던지는 개그가 재밌어서 분위기도 좋게 만들었던 것 같아. 석사로 졸업해

서 같이 있었던 기간이 짧아 좀 아쉬웠던 것 같아. 나중에 기회가 되면 얘기 많이

나누자.

항상 유쾌하셨던 맏형 훈수형. 새로운 시도를 많이 하시고 즐기시는 성향 때문

인지 형과 같이 있으면 재밌는 일들이 많이 생겼던 것 같아요. 귀여운 두 아들과

지금처럼행복하게사시길바랄게요.

저의연구실두번째방장이었던재도형.제가모르는것을물어봤을때나실수

했을때에도항상웃는모습으로부드럽게잘가르쳐주셔서감사합니다.형의꼼꼼
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하면서철저하게일을처리하시는모습을보며실수가많은저를많이반성했어요.

다시한번방장이셨던동안많은가르침감사드립니다.

요새회사에서두각을드러내고있다고들은진원이형.형의외모에어울리지않

은 엉뚱함이 많이 재미있었어요. 형이랑 301동에서 같이 있을 때 즐겁게 보냈는데

석사 마치고 나가서 아쉬웠어요. 앞으로도 자주 만나서 같이 얘기 나눴으면 좋겠

어요.

최근교수로임용되신또다른선배님이신정현이형.형의둥글둥글한성격으로

선배후배두루친하게지내면서다들좋아했던형으로기억이남아요.졸업한뒤에

도종종불러주셔서맛있는것도많이사주시고감사합니다.저도앞으로받은것들

갚아나가도록할게요.

키 크고 젠틀한 원석이형. 항상 친근하게 먼저 다가와 주셔서 감사하게 생각했

어요. 형이랑은 과제도 같이 하고 사적으로 얘기도 많이 했던 것 같아요. 앞으로도

자주만나고연락주고받았으면좋겠어요.

여름에도긴팔에구두를신고다녔던댄디한준혁이.연구실에서두번째동갑이

었는데 301동에만있어서대화할기회가별로없었던것같아아쉬워.다음에기회

되면만나서얘기많이나누자.

연구실에서 유일하게 동생인 현일이. 동생이라서 그런지 다른 사람들보다 후

배라는 느낌도 많이 받아서 더 편하게 대할 수 있었던 것 같아. 둘이 얘기도 많이

나누고 운동도 같이 하면서 재밌게 지냈던 것 같아. 너는 성실하고 매사에 열심히

하니까어디를가도잘할수있을거야.

막바지에연구실큰형으로역할을해주신현기형.형이랑은 1년차이로입학을

해서 오래 함께 지냈던 것 같네요. 입학한 첫 해에 형 결혼식 축가 반주를 맡아서

함께한건재밌는기억으로남아있어요.형과는과제도같이하고연구하면서밤도

같이 많이 새면서 얘기를 많이 나눌 수 있었던 것 같아요. 맞선배로 오랜 기간 잘

챙겨주셔서감사합니다.
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우리연구실마지막석사졸업생호웅이형.형은대화할때잘웃으면서리액션이

좋아서같이얘기하고싶어지게만들었던것같아요.앞으로도서로소식전하면서

지냈으면좋겠어요.

연구실 마지막 방장이었던 한준이형. 형도 거의 마지막 멤버로 오래 같이 있었

던 것 같아요. 꽤 친했던 것 같은데 막상 단둘이 얘기한 적은 많이 없는 것 같아서

아쉽네요.앞으로서로연락하면서만났으면좋겠어요.

저의입학부터졸업까지홍일점이었던지윤누나.한학기차이로들어와서연구

실마지막까지같이있었네요.누나가편하게대해줘서저도누나한테잘다가가고

얘기도많이할수있었던것같아요.특히마지막학기에누나가있어서의지가많이

된것같아요.앞으로도종종연락하면서좋은소식전하면좋겠어요.

마지막으로 하나뿐인 동기인 현우형. 형한테 직접 말하진 않았지만 형이 동기

여서 정말 좋았어요. 형한테 많은 도움을 받은 것 같은데 해드린 건 별로 없는 것

같네요.지금은멀리있어만나기힘들지만형한국오시면꼭만나서술한잔하고

싶어요.유학생활동안형의연구능력을모두발휘해서좋은업적얻으시길빌어요.

항상건강조심하시고무사히공부마쳐서원하는바이루시길바랄게요.

동기,친구들에게

이제여러분야로흩어진 09학번동기들아.매일단톡방에서소식주고받으며즐

겁게얘기할수있는너네들이있어서참좋았어.자주만나지는못해도만날때마다

항상유쾌하게지낼수있는동기들,앞으로도이관계유지하면서즐겁게지내자.

더 오래돼서 이제는 거의 결혼식때만 보는 항상 자랑스러운 경기과학고등학교

동기들.이제너무여러곳으로뻗어나가다같이만나기는힘들게돼서너무아쉽다.

그래도가끔만났을때우리추억들을얘기하면다시고등학교로돌아가서함께했던

기억들이어제일처럼생각나서즐거웠어.계속좋은소식들전하면서종종만났으
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면좋겠다.

10년째몸담고있는중앙성당청년회친구들.주말마다만나서활동하는게한주

의큰힘이될수있었습니다.지금처럼활동열심히하며제가받았던도움의힘을

다른분들도느낄수있도록노력하겠습니다.

그리고대학원에입학할즈음에만난여자친구지은아.항상옆에서응원해줘서

많은 힘이 됐어. 표현은 안했지만 무슨 일이 있더라도 내 편이 되어 줄 수 있는 사

람이 있어서 든든했어. 덕분에 힘든 시기도 잘 버틸 수 있었던 것 같아. 우리 서로

의지하면서잘지내보자.

가족및친척분들께

가장감사드리고싶은부모님.언제나저를믿어주시고물심양면으로도와주셔

서진심으로감사드립니다.부모님덕분에몇년전부터어머니의핸드폰에저장된

이름처럼박사아들이될수있었습니다.앞으로살아가면서제가받은부모님의은

혜에보답하며효도하도록하겠습니다.

그밖에도여러친척분들의응원이큰힘이되어제가대학원을무사히마칠수

있었던것같습니다.제가받은응원잊지않고겸손하게베풀며살아가도록하겠습

니다.

감사합니다.
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