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Abstract

Understanding the three-dimensional environment is one of the most important
issues in robotics and computer vision. For this purpose, sensors such as a lidar, a
ultrasound, infrared devices, an inertial measurement unit (IMU) and cameras are used,
individually or simultaneously, through sensor fusion. Among these sensors, in recent
years, researches for use of visual sensors, which can obtain a lot of information at a
low price, have been actively underway.

Understanding of the 3D environment using cameras includes depth restoration,
opticalscene flow estimation, and visual odometry (VO). Among them, VO estimates
location of a camera and maps the surrounding environment, while a camera-equipped
robot or person travels. This technology must be preceded by other tasks such as path
planning and collision avoidance. Also, it can be applied to practical applications such
as autonomous driving, augmented reality (AR), unmanned aerial vehicle (UAV) con-
trol, and 3D modeling.

So far, researches on various VO algorithms have been proposed. Initial VO re-
searches were conducted by filtering poses of robot and map features. Because of the
disadvantage of the amount of computation being too large and errors are accumulated,
a method using a keyframe was studied. Traditional VO can be divided into a feature-
based method and a direct method. Methods using features obtain pose transformation
between two images through feature extraction and matching. Direct methods directly
compare the intensity of image pixels to obtain poses that minimize the sum of photo-
metric errors.

Recently, due to the development of deep learning skills, many studies have been



conducted to apply deep learning to VO. Deep learning-based VO, like other fields
using deep learning with images, first extracts convolutional neural network (CNN)
features and calculates pose transformation between images. Deep learning-based VO
can be divided into supervised learning-based and unsupervised learning-based. For
VO, using supervised learning, a neural network is trained using ground truth poses,
and the unsupervised learning-based method learns poses using only image sequences
without given ground truth values.

While existing research papers show decent performance, the image datasets used
in these studies are all composed of high quality and clear images obtained using ex-
pensive cameras. There are also algorithms that can be operated only if non-image in-
formation such as exposure time, nonlinear response functions, and camera parameters
is provided. In order for VO to be more widely applied to real-world application prob-
lems, odometry estimation should be performed even if the datasets are incomplete.
Therefore, in this dissertation, two methods are proposed to improve VO performance
using deep learning.

First, I adopt a super-resolution (SR) technique to improve the performance of VO
using images with low-resolution and noises. The existing SR techniques have mainly
focused on increasing image resolution rather than execution time. However, a real-
time property is very important for VO. Therefore, the SR network should be designed
considering the execution time, resolution increment, and noise reduction in this case.
Conducting a VO after passing through this SR network, a higher performance VO
can be carried out, than using original images. Experimental results using the TUM
dataset show that the proposed method outperforms the conventional VO and other SR

methods.
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Second, I propose a fully unsupervised learning-based VO that performs odometry
estimation, single-view depth estimation, and camera intrinsic parameter estimation
simultaneously using a dataset consisting only of image sequences. In the existing
unsupervised learning-based VO, algorithms were performed using the images and in-
trinsic parameters of the camera. Based on existing the technique, I propose a method
for additionally estimating camera parameters from the deep intrinsic network. In-
trinsic parameters are estimated by two assumptions using the properties of camera
parameters in an intrinsic network. Experiments using the KITTI dataset show that the

results are comparable to those of the conventional method.

keywords: Monocular Visual Odometry, Visual SLAM, Super-resolution, Unsuper-
vised Learning-based Visual Odometry.

student number: 2014-21746
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Chapter 1

Introduction

1.1 Background and Motivation

Three-dimensional environment understanding is a fundamental issue in both robotics
and computer vision. This technique must be preceded for robot autonomy, and it
enables people to obtain a large amount of information. Sensors such as a lidar [3, 4,
5, 6], an ultrasonic [7, 8, 9], an infrared [10, 11], an inertial measurement unit (IMU)
[12, 13], and visual sensors [14, 15, 16] are used individually or as a package, for three-
dimensional environment understanding. Recently, researches using visual sensors that
provide inexpensive and rich information have been actively studied.

Three-dimensional environment understanding using cameras includes depth re-
covery, optical/scene flow estimation, and visual odometry (VO), etc. Among them,
VO draws a map and locates a camera or robot in the drawn map. VO is classified into:
a monocular VO, a stereo VO, a visual inertial odometry (VIO) when using only one
camera, a stereo camera and cameras combined with IMU, respectively.

Analogous techniques to VO are visual simultaneous localization and mapping



(vSLAM) and structure from motion (SfM). vSLAM likewise estimates the odometry
and draws a map using a robot or a camera simultaneously; further, an entire map
optimization procedure is added. Therefore, it can be regarded as methods that map
optimization or loop-closing is added to VO. In SfM, 3D reconstruction of the target
using multiple images is performed. Unlike VO or vSLAM, the images are not always
arranged in time order. It aims at relative positioning of each image in the image set
and an environment reconstruction. SfM, like vSLAM, also involves optimizing the
overall poses and reconstructing object. In SfM, it is difficult to operate in real-time
because it computes the relative position of the whole image set, and mainly works off-
line. There are differences in details as above, but the common feature of VO, vSLAM,
and SfM is that the pose between images is calculated. In fact, vSLAM is sometimes
described as VO + loop closing, and SfM solves the same problem as vSLAM when
images are listed in time order. Therefore, in this dissertation, I describe VO, vSLAM,
and SfM as a group of VO.

Currently, various VO algorithm papers have been proposed to show good per-
formance, but the datasets used in these studies are composed of high-quality clear
images obtained using expensive cameras. Furthermore, odometry estimation is pos-
sible using non-image information such as exposure time, focal length, and principal
length. However, to be widely used in real applications, VO should work properly even
in low-resolution, including noise datasets captured with inexpensive cameras. Also,
the odometry estimation should be successful even if there is a lack of information on
intrinsic parameters that vary from camera to camera during manufacturing.

In this dissertation, I present a method for successful VO using insufficient dataset
information. First, I propose a method of successful VO through super-resolution tech-

niques using low-resolution, noisy datasets taken with low-cost cameras. Unlike the



existing SR methods that focus mainly on increasing the resolution, execution time is
considered in order that VO can be performed in real-time. The SR network increases
resolution and removes noises successfully, which leads to higher performance.

Next, a fully unsupervised method of VO using deep learning is proposed. In the
existing learning-based VO, the VO was performed with image sequences and its in-
trinsic camera parameters. In this dissertation, I propose a method to perform fully
unsupervised learning VO by adding an intrinsic network and inferring intrinsic pa-

rameters in the network.

1.2 Literature Review

Although research on estimating pose transformation between two images had existed
before, the word visual odometry was first used in 2005 by Nister et al [17]. VO can
be divided into three approaches: direct, feature-based, and learning-based VO. In the
early stages of research, feature-based and direct methods were mainly studied. In
recent years, the development of deep learning technology and performance improve-
ment on computing device have led to the use of learning in VO.

Initially, feature-based methods using feature extraction and matching were mainly
studied. Among them, methods of optimizing the feature location on the map and the
pose of the camera using a filter were proposed first [18, 19, 20, 21]. These approaches
performed filtering on all frames, hence these were inefficient compared to a large
amount of computation because there was no significant change between successive
frames. Also, filter-based methods ware difficult to carry out in a large environment
because errors accumulated as the robot moved.

To compensate disadvantages of filter-based approaches, methods updating the



map and camera pose using only selected frames, namely keyframes, has been pro-
posed. This approach needs for more computation in one update, but allows to use
the bundle adjustment [22, 23] which can optimize more accurately. Parallel tracking
and mapping (PTAM) [24] used the keyframe concept and proposed the parallel com-
puting of mapping and feature tracking. This parallel scheme mitigated the effect of
PTAM on frame-rate, which enabled real-time VO. PTAM used features from accel-
erated segment test (FAST) [25] corner as a feature, which was not suitable for place
recognition. Therefore, it worked well in a small environment, but when the large loop
was formed, the relocalization was hardly done and the whole map was not optimized.

Strasdat et al. [26] proposed monocular SLAM using optical flow estimation. They
performed motion-only BA and estimated optical flow by using GPU in the front-end.
then, sliding-window BA optimized entire map in the back-end, which made large
scale monocular SLAM possible. 7-dimensional similarity constraints were optimized
by a graph optimization method when loop detected, and so was scale factor. Further,
Strasdat et al. [27] proposed a more robust loop closing method by using a PTAM as a
front-end and creating a pose graph using a covisibility graph.

Lim et al. [28] performed tracking, mapping, and loop closing using binary robust
independent elementary features (BRIEF) [29] in all tasks. However, due to the limi-
tation of BRIEF, it can only be performed in in-plane environment. This method also
had the inefficiency of re-creating the map at a revisit location because of disability of
reusing the map.

Currently, the representative paper of feature-based VO is ORB-SLAM [30]. This
method performed all tracking, mapping, and loop closing using oriented FAST and
rotated BRIEF (ORB) feature [31]. The ORB feature had fast extraction and matching

speed, and rotation invariance property enabled accurate relocalization and loop clos-



ing so that the entire SLAM can be performed well. They proposed a framework that
efficiently performs tracking, local mapping, and loop closing in three parallel threads.

Feature-based VO methods are robust to photometric and geometric distortion,
such as automatic exposure change, non-linear response function, lens attenuation, and
even rolling shutter effect, because they use geometric prior from feature. However,
this strength prevents from using much of the information provided by images. In
addition, there is a disadvantage in that the algorithm is difficult to perform because
the feature is not extracted when VO is performed in the environment of a simple or
repeated structure [32].

Direct VO estimates the odometry using the intensity of the pixel without any other
geometric prior. This method was also initially performed using a filter. However, the
processing speed of the equipment was insufficient to process all the pixels, so filtering
was performed using only selected pixels. It had not been studied for some time due
to the lack of robustness and accuracy than feature-based VO.

Then in early 2010, dense methods of calculating all the pixels were proposed.
Stuhmer et al. [33] successfully performed dense VO using a handheld camera. Based
on this, dense tracking and mapping (DTAM) [34] performed dense VO by conducting
parallel tracking and mapping as in PTAM. DTAM was able to carry out two tasks in
real-time based on optimization using GPU acceleration.

Pizzoli et al. proposed a regularized monocular depth estimation (REMODE) [35]
that takes into account probabilistic aspects when estimating depth maps. REMODE
obtained a more accurate depth map using Bayesian estimation [36] and convex opti-
mization techniques. This method was also able to perform VO in real time using GPU
acceleration. As such, the dense direct VO is difficult to perform in real-time without

a GPU acceleration because of the computation burden.



Engel et al. Proposed a semi-dense method [37] that uses only pixels with large
gradients instead of all pixels. Engel et al. Published a large-scale direct SLAM (LSD-
SLAM) [38] by performing SLAM in a large environment in this way. Since the LSD-
SLAM used only the selected pixel, the computational amount was greatly reduced,
enabling real-time VO with only the CPU.

Based on LSD-SLAM, CNN-SLAM [39] was proposed to add depth estimation by
convolutional neural network (CNN) [40]based deep learning. This method proceeded
by creating a depth map with deep learning-based single-view depth estimation only
for keyframes and then correcting the depth while driving. In the case of CNN-SLAM,
the absolute scale was recovered when depth estimation was performed, and since the
depth map was generated irrespective of previous frames, the scale ambiguity problem
and pure rotation problem, which are essential problems of monocular VO, can be
alleviated.

Engel et al. proposed a direct sparse odometry (DSO) [41] that performs VO with
more sparse pixels than LSD-SLAM. In DSO, they tried to obtain the actual intensity
value of the pixel so that the photometric distortion, a weak point of direct VO was
considered. DSO carried out photometric calibration taking account into the non-linear
response function, vignetting, irradiance, and exposure time, which allowed more ac-
curate odometry estimation.

In recent years, due to the development of learning technology and the emergence
of equipment that can train deep networks, deep learning is applied in various fields of
robotics and computer vision to improve performance remarkably. Taking advantage of
this trend, deep learning is also being applied in the field of VO. In learning-based VO,
it can be divided into supervised learning that informs ground truth and unsupervised

learning that estimates odometry using only image and camera parameters.



Wang et al. proposed DeepVO [42], which estimates the odometry of consecutive
image sequences using supervised learning. DeepVO focused on that datasets consist
of a continuous image (video) in time order, and then performed feature extraction with
CNN and VO with deep RCNN structure through a recurrent neural network (RNN).
Based on DeepVO, lyer et al. [43] improved the performance of VO by considering
geometric consistency.

At a time similar to DeepVO, Ummenhofer et al. proposed DeMoN [44], a tech-
nique for finding depth and the transformation matrix between two images by taking
two images as input using a deep network. They did this with supervised learning.
DeMon was able to estimate depth and motion by estimating optical flow in the net-
work, similar to FlowNet [45], and they could interact with each other to improve their
performance.

After the successful implementation of VO using supervised learning, a method
of performing VO by unsupervised learning method has been proposed. In the case of
unsupervised VO, after performing single-view depth and pose estimation, image is
generated similarly to view synthesis, and the difference between the original image is
set loss, which is used in learning. To estimate the depth map, FlowNet [45], DispNet
[46], Godard et al. [47] are used and there are also methods for estimating and using
optical flow [48].

The first VO using unsupervised learning is the SfMLearner proposed by Zhou et
al. [49]. SfMLearner used the network structure of DispNet when performing single-
view depth estimation and tried to improve accuracy by using multi-scale method.
They also added an explainability network that masks occlusion areas or dynamic
objects between images, making them robust to dynamic environments.

Next, Li et al. proposed UnDeepVO [50] as a similar concept. UnDeepVO did not



use existing depth estimation technique, but also created a depth map using a network
of encoder-decoder types. The difference between this technique is that the depth is
trained using a stereo camera to maintain the left-right consistency, and the test pro-
ceeds to a monocular camera. This method has the advantage that the absolute scale
can be estimated from odometry and depth, unlike other unsupervised VOs.

Yin et al. proposed GeoNet [51] to estimate optical flow in depth and pose. This
method consists of three networks: DepthNet, PoseNet, and FlowNet. The network that
estimates the depth and pose is called a rigid structure reconstructor. Geonet learned
it first and then learns ResFlowNet which estimates the residual optical flow. GeoNet
can consider occlusion or dynamic objects in the image through optical flow estimation
and can improve performance.

Almalioglu et al. proposed GANVO [52] using generative adversarial network
(GAN) [53]. There is also an encoder-decoder-type depth generator. Like deepVO,
pose regression is performed by adding RNN structure to CNN. Using this depth map
and pose, view reconstruction is performed to generate an image that estimates the
original target image. After that, learning is progressed by using GAN loss that distin-
guishes the target image from the image created in the discriminator network.

As described above, a lot of VO techniques using deep learning have been pub-
lished. Recently, unsupervised learning-based VO especially has been studied a lot
and shows good performance. The advantage of using unsupervised learning is that
multiple datasets can be used because learning can proceed without ground truth data.
In the case of unsupervised VO, learning is progressed only with image sequence and
camera parameter. Based on this scheme, if the camera parameter can also be esti-
mated and the VO can be performed, the VO using fully unsupervised learning can be

performed. The overall flow of the VO literature is shown in Fig. 1.1
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1.3 Contributions

In this dissertation, I propose a method for robustly performing VO, even if the dataset
is incomplete, by using deep learning-based methods, and ultimately describe how
successful VO is performed even only with image sequences.

In Chapter 3, a method to improve the performance of VO by applying super-
resolution techniques to low-resolution and noisy datasets is proposed. The contribu-

tions in this chapter are as follows:

e Given a low-resolution and noisy dataset, a target resolution must be set to raise
the resolution. Thus, comprehensive experiments were conducted at various res-
olutions to find suitable resolution in consideration of VO performance and ex-

ecution time.

o Existing super-resolution techniques focus on higher resolution image quality,
but also apply execution time to VO. I also consider ways to remove noise in the
image. I have designed a super-resolution network that takes these elements into

consideration.

e The super-resolution method that considers not only resolution, but also execu-
tion time and noise, improves the performance of VO when using a low resolu-

tion, noisy dataset.

In Chapter 4, I perform VO using unsupervised learning. In existing unsupervised
learning-based VO literature, VO is performed using image sequences and intrinsic
camera parameters. In this dissertation, I propose a method to perform VO using only
image sequences without given intrinsic parameters. The contributions in this chapter

are as follows:

10



o Intrinsic parameters are estimated by adding an intrinsic network through the
deep neural network, and using these parameters in unsupervised learning-based

VO.

o In the case of the naive intrinsic network, parameters converge to zero or diverge
to infinity. Therefore, I add two assumptions that make the network converge to

the correct value, so that the intrinsic parameter is estimated.

e Fully unsupervised VO, which estimates odometry using only image sequence,

can be performed as a comparable result with existing methods.

1.4 Thesis Structure

The narrative of this dissertation is presented through a series of published works,
prefaced by a review of the current state of the field, and followed by a discussion of
the contributions and conclusions. The dissertation is organized as follows:

Chapter 2 provides mathematical preliminary to improve comprehension of this
dissertation: feature-based, direct and learning-based VO.

Chapter 3 introduces error improvement in VO using super-resolution with low-
resolution and noisy datasets. The proposed SR network makes real-time VO possible
with a lower error even using low-resolution and noisy images.

Chapter 4 introduces a fully unsupervised learning-based VO which uses only
image sequences datasets. In this chapter, the proposed network for fully unsupervised
learning-based single-view depth, camera pose and intrinsic camera parameters esti-
mation are provided.

Chapter 5 summarizes and discusses the main contributions of this dissertation,

11



including the research outcomes and keypoints. Applications and future works are also

indicated.
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Chapter 2

Mathematical Preliminaries of Visual Odometry

VO is a technique of estimating odometry by obtaining translation and rotation be-
tween images when two or more images are given. This chapter explores the mathe-

matical preliminaries of feature-based, direct, and learning-based VO.

2.1 Feature-based VO

Feature-based VO calculates the pose transformation matrix by obtaining the essential
matrix or fundamental matrix using features extracted from both images. In the case
of monocular VO, since only one camera is used, scale cannot be estimated when
estimating odometry and mapping. As shown in Fig. 2.1, there are objects ol and 02
that differ in size by two times. When O; images are taken at the distance of d; and
ds, and O images are taken at the distance d} = 2d; and d’2 = 2d>, the same images
are captured. Like this, despite different sized objects, the same images are obtained
if the ratio of distance and size is the same. Therefore, additional information must be
needed to get an absolute scale.

If two images, I; and I», were taken from two different places, as shown in Fig.

13



Figure 2.1: Scale ambiguity limitation of monocular VO

2.2, let p; and p2 be the coordinates of the pixel projected on each image. The essential
matrix is a 3 X 3 matrix E that satisfies the following essential constraint (or epipolar

constraint) [55, 56]:
p1Ep2 =0, (2.1)

where p and p* are represented to homogeneous coordinates of each normalized
image plane. As shown in Fig. 2.2, when the rotation between two cameras is R and

translation is t, the essential matrix is expressed as:

where ¢« is the matrix representation of the cross product with t. Since the essential
matrix has 5 degrees of freedom, at least five point-pairs are required to obtain it.
The 8-point algorithm, 5-point algorithm, 4-point algorithm, or 3-point algorithm are

,Q-I_J-r] 1T
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Figure 2.2: Diagram of the epipolar geometry [54].

called according to the number of points-pairs required when obtaining the essential
matrix [57, 58, 59, 60, 61]. The algorithm with less than the minimum required pair is
calculated by applying an additional constraint.

The essential matrix is a matrix calculated on the normalized image plane. The
equation representing the geometric relationship between the actual pixel coordinates
of two images in consideration of camera parameters is called a fundamental matrix.

When the focal lengths of the camera are called f, and f,,, and the principal points are
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¢ and ¢y, the intrinsic matrix is represented as:

fac 0 ¢
K=1p9 fy ey |- 2.3)
0 0 1

With Eq. (2.3) and the essential matrix, the fundamental matrix is expressed as:

F=(K"TEK™, (2.4)

E=KTFK.

Therefore, the fundamental matrix is obtained first, the essential matrix can be
calculated. Computing the fundamental matrix using the corresponding points requires
at least seven pairs of matching if the camera parameters are not known.

The rotation and translation can be obtained from the Essential matrix by suing
singular value decomposition (SVD) [62, 63, 64]. Through SVD, the essential matrix

can be expressed as follows:
E=UsVT, (2.5)

where U and V' are 3 by 3 orthogonal matrices, and ¥ is a 3 by 3 diagonal matrix with
the first and the second diagonal components as singular values of E' and the third
diagonal component equal to zero. In Eq. (2.2), t« is the skew-symmetric matrix and
R is the rotation matrix. The skew-symmetric matrix t« must have two singular values
which are equal and another which is zero. The multiplication of the rotation matrix
does not change the singular values which means that also the essential matrix has two

singular values which are coincident with those of t.
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Next, let TV be:

0 -1 0 0 10
W=1[1 o o|lwithw=wl=|_1 0 o (2.6)
0 0 1 0 0 1

Then, [t;] and R is calculated as follows:

ts] = UWRUT, (2.7)
R=Uuw vl
Using the obtained [t,], R and given py, po, the actual coordinate P = (z,y,2)”

of Fig. 2.2 can be computed by triangulation [65].

The entire process of feature-based VO using the essential matrix is shown in Fig.
2.3. First, take two images as input and perform feature extraction on each image and
matching corresponding features to find hundreds to thousands of point pairs. Next,
calculate the relative pose of the camera using RANSAC, as indicated by the block in
Fig. 2.3. Inside RANSAC, first, the corresponding n-point pairs are randomly deter-
mined and then the essential matrix and the pose transformation matrix are calculated.
When the acquired pose transformation is applied to other point pairs, if the number
of inlier is sufficient, use it as it is, and if not, select the n-point pairs again and repeat
until the number of inlier is above threshold. The coordinates of inlier points are ob-
tained by triangulation with this pose. Feature-based VO is performed in that obtained

successive poses estimate odometry, and coordinates of points draw a map.

2.2 Direct VO

Direct VO is a method of directly using the intensity of a pixel without extracting fea-

tures from the image. Given two frames ¢ and j, the intensity differences are obtained
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Figure 2.3: Pipeline of the typical feature-based VO.
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by warping the pixel p; C ¢ to the pixel p; = p}. Apply this warping to other pix-
els in 7 to calculate the difference sum and then calculate the pose transformation that
minimizes it.

In this section, matrice are represented by bold and capital letters and vectors are
represented by bold and lower case letters. The 3D pose transform T € SE(3) is

represented by rotation R and translation t as follows:

R t
W= with R € SO(3) and t € R3. (2.8)

01

Using above T directly in optimization is aggravate both efficiency and accuracy
aspects, so the corresponding element & € se(3) of Lie algebra is used to minimize
the number of variables. Since 6-DoF pose, & € RS. The relation between £ € se3 and

T € SE(3) is an exponential mapping and its inverse:

T = exp52(3) (5) < E = logse(S) (T), (29)

where the transformation when moving the point from frame ¢ to frame j is denoted
by & ji
Further, 3D projective warp function is defined by image point p = (p,, py)7, in-
verse depth d, and the transformation &. First, projecting the point (x, vy, z) = (pg/d, py/d,1/d)

of the world coordinate to another frame (2,y’, y’) as follows:

x pe/d
Yy py/d
= CXPse(3) (é) (2.10)
2 1/d
1 1
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Using this, warp function w can be written as:

x' )2
w(p,d.&) = | y//2 (2.11)
1/2
Use the projective warp function as above to find the intensity difference and resid-
ual of the pixel. Let intensity of pixel p; of frame i be I;(p;) for frame i, j. Given the

inverse depth map D; and the transformation matrix §;;, the residuals of p; are:
rp; = 1i(pi) — Lj(w(pi, D(pi), §;:)) (2.12)

Pose can be calculated by finding a value that minimizes the squared sum of the
residuals. Assuming the set of pixels €25 to be optimized is a subset of the image
domain {2, the squared sum of the residuals is:

E(&) =) rp.(€)> (2.13)

sE;

If Q2 is defined as all image pixels, it becomes dense VO, and as the number
of pixels used therein becomes semi-dense, sparse VO. 6-DoF pose & is calculated
through optimizing above error function. The most widely used optimization technique
is the Gauss-Newton method. This method starts from initial state & ©) and proceeds
to iteration by calculating left-multiplied increment & (") In the Lie-manifold domain,

pose concatenation operator ® : se(3) x se(3) — se(3) us defined as follows:

§ri = iy © &ji = logsps) (expse(B) (€17) - eXPse(3) (Ekj)) : (2.14)

Using this, the Jacobian matrix of £ (") and the Hessian matrix of E are:

de @ £™

H=J"J withJ =
Oe

e=0
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where J is the derivative of the stacked residual vector r = (r1,79,. .. ,rn)T. After

this, the left-multiplied increment is calculated as follows:
5™ = —(H)"137r (5)(”>) . (2.16)
The new estimation is then obtained by multiplication with the computed update
et — e g ¢, (2.17)

Repeat the above process until get the final pose &.

In VO problems, outliers occur due to occlusion or the presence of dynamic ob-
jects. To compensate this, more robust optimization can be performed to outlier by
adding weight to Gauss-Newton optimization technique. First, for each iteration, the

weight matrix W is calculated as follows:
W= {w) =W <5<">) with wy € [0, 1]. (2.18)
Multiplying this weight by each residual, the weighted error function is:

E(&) =) wi(&)rp. (&) (2.19)

sEQ);

Finally, the update is calculated as:

¢ = —(JTWI) "1 3TWr (5)<">) . (2.20)

2.3 Learning-based VO

In learning-based VO, it can be divided into the method of supervised learning using

the ground truth pose and the method of unsupervised learning without using it.
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Figure 2.4: Network structure of the basic RNN.

2.3.1 Supervised learning-based VO

Supervised learning-based VO is a method of estimating odometry by which learn
given ground truth. In VO, the learning is done with the ground truth of 6 DoF pose.
When the ground truth of the rotation expressed in Euler angles and the translation are

¢ and t, respectively, the loss function is set:
Loss = |[t — t[| + x|¢ — 9|15, .21)

where t and gAi) are estimated translation and rotation respectively, and « is a weight
constant.

The supervised learning-based methods are intuitive and convenient, and it is pos-
sible to learn to the absolute scale, which was not estimated in monocular VO. How-
ever, the disadvantage is that the number of datasets and the difficulty of creating a
new dataset are limited in learning.

In deep learning-based VO techniques, since the input are images, the feature is
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first extracted through the CNN layers. Using these extracted features, 6-DoF pose can
be estimated by using CNN further or using the fully connected layer. However, these
methods are not accurate so that additional techniques are used.

The first is a more robust estimation using RNNs that process continuous informa-
tion because the image sequence consists of the time order. The basic RNN structure
is shown in Fig. 2.4. In addition to the input x; and output y; in RNN, there is a
hidden state indicated by h;. Because this hidden state contains information from the
beginning of the sequence, more information can be considered when the input is in

chronological order. The update expressions for h; and y; are:

hy = A (tha:t + Wynhi—1 + bh) (2.22)

Yt = Whyht + by7

where A is an element=wise non-linear activation function, such as sigmoid or hyper-
bolic tangent.

In traditional RNN, all previous states are remembered and passed to the next
state, which causes an incorrect estimation if an outlier or incorrect information is
included. Therefore, in recent years, long short term memory (LSTM) [66] one of
RNN structures is mainly used. This structure includes forget gates, which can take
into account outdated or incorrect information from previous states. The structure of
LSTM is shown in Fig. 2.5.

The structure is more complicated than the traditional RNN, and a new variable
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Figure 2.5: Network structure of the basic LSTM.
memory cell ¢; is added. The update expressions of LSTM in time ¢ are:

it = 0 (Wayixe + Whihi—1 + b;) (2.23)
it =0 (Wypae + Wiphi—1 + by)

g¢ = tanh (Wagae + Wighi—1 + by)
a=h[Oca1+uOg

ot = 0 (Waomt + Whohi—1 + bo)

hy = o4 ® tanh(c;)

where ©®, @ is element-wise product and sum of two vectors, ¢ and tanh are sigmoid
and hyperbolic tangent non-linearity, respectively, and W, b are corresponding weight
matrices and bias vectors, respectively. As described above, a pose estimate can be
performed by passing features extracted from the CNN through a deep RNN structure.

The second method is to estimate the depth or optical flow as well as the pose, and

make them interact with each other to increase accuracy. This method first estimates
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depth, optical flow and pose through the network. Then, the second image is generated
using the first image and the estimated values, and the pose is estimated once again.
This approach can improve the accuracy because the estimated pose can be corrected

once more.

2.3.2 Unsupervised learning-based VO

In unsupervised learning-based VO, odometry and depth are estimated without the
ground truth pose and depth. This method has the advantage that it is easy to obtain
training data because it does not require ground truth. However, there is a disadvantage
that it is difficult to estimate the absolute scale, which is one of the disadvantages of
monocular VO. The overall scheme of the unsupervised learning-based VO is shown
in Fig. 2.6

In unsupervised VO, not only pose but also depth estimation is essential. The input
consists of two or more images. One image is called the target image I; and the others
are called the source image ;. Therefore, both the pose and the depth network are
included in the deep network structure by default. Both networks show a CNN-based
structure. A pose network reduces dimension to six by CNN. In a depth network, an
encoder-decoder structure is mainly used.

If the depth value of the target image and the pose of the source image are known,
the target image can be synthesized from the source image. When the image created
using source images is called I,, the target image [; is compared to this image. The
technique of artificially creating an image between several images using these images

is called view synthesis. Since this similar concept is used, this method is also called
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Figure 2.6: Pipeline of the typical unsupervised learning-based VO.

view synthesis supervision. View synthesis loss is given as follows:

Loss =7 > D(I«(p), 1:(p)), (2.24)

where D(I1, I2) is a function that can evaluate the similarity of two images I; and
I. Examples of D(1;,I5) used in Eq. (2.24) are Li-norm, Le-norm, or structural

f A=t ot
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similarity (SSIM) [47]. A SSIM of two images I; and I5 is calculated as follows:

(2M11 Hr, + Cl)(201112 + 02)

SSIM (I, Iy) = :
(u?l + “?2 + 61)(0'?1 + 0?2 + ¢2)

(2.25)

where 1, is the average of I, o, is the variance of I, and o, , is the covariance of I
and Is.

To calculate Eq. (2.24), I need to know which pixel p; of I; corresponds to the
pixel ps of I;. When the given camera intrinsic matrix and the estimated depth map
are K and ﬁt, respectively, and estimated relative poses of I; and I are Ttﬁ s, the pg

corresponding to p; can be calculated as follows:
ps = KTy Dy(pr) K 'py (2.26)

Note that the coordinate of ps will be calculated as a real number instead of an
integer. To take this into account, the interpolated values are used with the surrounding

four pixel values as shown in Fig. 2.7. This can be expressed as:

&
A
= .
&

Dt

Figure 2.7: Intensity interpolation method using four neighbor pixels.
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L(ps) = iwﬁs(pg), with iwi =1 (2.27)

i=1 i=1
where w’ is linearly proportional to d; as shown in Fig. 2.7. An loss may suddenly
increase in the part where the intensity of the pixel changes rapidly such as object
contours. This problem deteriorate the accuracy of depth and pose estimation, hence it
should be considered. Many studies deal with it by adopting the additional smoothness
loss, which reduces the effect of sudden changes of intensity. In addition, many papers

have tried to perform robust VO by adding network to consider occlusion or dynamic

object. Similarly to this way, I perform an unsupervised learning-based VO.
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Chapter 3

Error Improvement in Visual Odometry Using Super-

resolution

3.1 Introduction

In robotics, robust odometry estimation is essential for the robot autonomy. To find
the odometry of a robot, various algorithms were introduced by combining one or
several sensor information. Among various sensors, visual ones are being actively used
because they can provide rich information about the environment at the low-cost. The
technique for estimating odometry using only RGB cameras is called visual odometry
(VO); it is called monocular VO if only one camera is used. VO has been studied
actively in robotics and computer vision fields [67, 68, 69], and it has begun to be
utilized to various application, such as unmanned aerial vehicle control, 3D modeling,
augmented reality, and autonomous driving cars.

Since VO utilizes only cameras, the performance of the camera and the quality of
images greatly affect the result. Although plenty of image sequence datasets for VO

research exist online, most of them are acquired by expensive high-resolution (HR)
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Figure 3.1: Comparison of results of VO using LR and noisy with HR and noise-free

image sequences. Red lines in right images denote paths of cameras.

and low-noise cameras. In order to adopt VO in various applications, it is necessary
to maintain their performance even if low-resolution (LR) and noisy cameras, which
are often equipped in mobile platforms, are used. However, when using an LR and
noisy image sequence, the performance of VO is remarkably reduced as displayed in
Fig. 3.1. In VO result of using LR and noisy images, tracking procedure is lost while
a camera moves, which leads to a catastrophic failure.

In this dissertation, I exploit a super-resolution (SR) technique to convert an LR
and noisy image into an HR and low-noise image for achieving a successful VO.
Among various SR approaches, the deep learning-based one, which has recently shown

better performance, is adopted. Conventional SR structures are challenging to apply

30



this chapter because of two main problems. The first problem is the excessive execu-
tion time due to the too deep network. The second problem arises from the poor noise
removal performance that is owing to their network structure. Therefore, I propose
a new deep neural SR architecture that can achieve the low-error and real-time VO.
Experimental results show that the performance of VO using SR image sequences is
better than that of the conventional methods using LR and noisy image sequences.
The rest of this chapter is organized as follows: Section II looks at related work
of VO and SR. Section III describes the process of finding a resolution suitable for
VO through experiments and the proposed network structure of SR. Section IV sum-
marizes the experimental results and their analysis. Finally, Section V concludes this

chapter and discusses the future work.

3.2 Related Work

3.2.1 Visual Odometry

Estimating odometry using a visual sensor had been studied previously, but the word
visual odometry was only coined by Nister et al. [17] in 2004. VO can be divided
into the feature-based method and the direct method. Feature-based methods utilize
the feature extraction and the feature matching, which were the main stream in the
early VO research. Initially, feature locations and camera poses of all frames were
estimated by filters [18, 21]. These approaches caused too much computation while
little new information was obtained, since consecutive frames were frequently captured
in the immediate vicinity. To alleviate this problem, PTAM [24] estimated poses of the
chosen frames, namely keyframes. Moreover, it dealt with tracking and mapping in

parallel threads, and enabled real-time VO successfully in small environments. Today,
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the most representative feature-based literature is probably ORB-SLAM [70, 30]. The
feature used in [30] was ORB, which is based on FAST, and it can be extracted and
matched faster than those of using SIFT or SURF. [30] exploited the same feature in
all SLAM tasks of its framework - tracking, mapping, relocalization and loop-closing,
which resulted in more efficient, simple, and reliable system than the conventional
methods.

The feature-based VO is robust to various problems caused in the image acquisition
process, such as an automatic exposure change, a non-linear response function, lens
attenuation and even a rolling shutter effect. However, in low-texture areas, such as
simple corridors or walls, feature extraction is difficult to achieve and this leads to the
failure of estimating odometry.

In direct approaches, pixel intensities are used directly rather than features. Di-
rect methods warp pixels from one image to another, and then obtain a transformation
between images that minimizes the sum of intensity differences. DTAM [34] and RE-
MODE [35] optimized the whole pixels to perform VO densely, thus they were hard
to achieve the real-time execution except powerful GPU devices. To reduce this com-
putational burden, Schops et al. [37] proposed a semi-dense manner which used pixels
with high intensity gradient. Based on [37], Engel et al. [38] proposed LSD-SLAM that
performed visual SLAM in real-time using single CPU in a large scale environment.
Furthermore, Engel et al. [41] proposed a direct sparse odometry (DSO), the state-of-
the-art direct VO literature, using more sparse pixels than LSD-SLAM. DSO improved
the performance of VO by estimating the exact pixel intensity value considering the
exposure time, the response functions and the lens attenuation of the image.

The direct VO, since intensities of the pixel are directly used, is performed based

on more information than feature-based methods, hence the algorithm can be per-
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formed well in the low-texture region. However, because it uses low-level information,

it is vulnerable to distortions which easily arise from the image acquisition process.

3.2.2 Super-resolution

SR is the one of image restoration techniques that generates an HR image from an LR
image. Initially, SR was done by simple interpolation using sampling theories [71, 72],
however these approaches were difficult to predict the detailed parts of an image. As
an improvement, methods of learning a function that matches a pair of LR image and
HR image were presented. These methods include neighbor embedding [73, 74] and
sparse coding [75, 76]. Similarly, learning the transformation of patches using internal
similarity [77, 78] were proposed.

Recently, SR research has made great progress in performance by employment
of deep learning techniques. Dong et al. [79, 80] proposed the first work to intro-
duce the idea of applying a convolutional neural network (CNN) [40] to SR. Their
method, named SRCNN, conducted an SR in an end-to-end manner utilizing a CNN
network which consisted of three convolutional layers. However, the shallow network
converged slowly and had not been able to learn many nonlinearities. VDSR [81, 82]
claimed that the deeper network makes the better image quality and used twenty con-
volutional layers to improve the SR performance. Also, VDSR added the input image
to the output of the last layer to train the residual only, which made the convergence
time shortened. Around the same time, He et al. [83] proposed ResNet that performed
well in the classification and the detection, which are other computer vision fields, by
learning the residual in the middle of the network. Using ResNet structure and a gener-
ative adversarial network, Ledig et al. [84] proposed SRResNet. However, ResNet was

not an optimal structure for SR since it was designed for different purposes. Therefore,
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EDSR [85] removed unnecessary modules in ResNet structure, which led to advance-
ment in performance.

Although SR algorithms mainly focus on increasing the resolution, removing noise
is also considered in the proposed SR network. Furthermore, the time elapsed for pass-

ing deep network is taken into account since I intend to combine SR with VO.

3.3 SR-VO

In this dissertation, I have improved the direct VO, whose performance is more sensi-
tive to the image quality than that of the feature-based VO. All VO used in experiments

for this chapter is DSO, the state-of-the-art algorithm among direct algorithms.

3.3.1 VO performance analysis according to changing resolution

The performance of VO highly depends on the image resolution. Apparently, the
higher the resolution, the better the VO performance, but the number of addressable
frames per second (fps) also decreases. Therefore, it is necessary to find the optimal
resolution with a smaller error while guaranteeing an appropriate fps. To find this res-
olution, each sequence of the TUM dataset [86] was tested five times with various
resolutions for analyzing time and error. The error metric utilized is root mean square
error (RMSE). Since the scale and the direction are changed every time VO is exe-
cuted, the estimated and the ground truth poses must be adjusted before calculating
RMSE. Let poses be p; = {zi, i, 2} fori = 1---n at timestep 7. Estimated and the

estp. and 9'p;, respectively. The direction

ground truth poses are then represented by
(rotation), the origin, and the relative scale are factors that have to be aligned before

computing RMSE.
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First, the rotation matrix is calculated by using singular value decomposition as

follows:
R=UV', (3.1)

where U and V' are orthogonal matrices composed of singular vectors of the cross-
covariance of {¢*p,} and {9'p,}. Next, to identify the origins, new poses are set as

follows:

est ; — (est

pi — E[*'X))R,

I'p; =9 p, — B[ X], (3.2)

where F[X] is the expectation of X . The relative scale s = s4;/Scs¢, the last alignment,

is recovered by following equation:

o — i [”pil] (3.3)
= . .
>ie [l
Finally, RMSE is calculated as follows:
1 n
RMSE = |~ ||*tp; -5 =" pi|* (3.4)
i=1

Obtained by above manner, RMSEs of various resolutions and sequences are displayed
in Fig. 3.2.

From the figure, the lower the resolution, the higher the RMSE value, as expected.
Note that RMSE of back sequences (after 17) are smaller than those of front sequences.
This is because the configuration of the TUM dataset. Previous sequences are typically
captured in indoor environments with small scale rooms and corridors, and sequences
after 17 are either large scale indoor (with high ceilings and lobby) or outdoor envi-

ronments. Also, the first part of the sequence is a complex path, while the second part
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Figure 3.2: RMSE of various resolutions of all sequences. One grid means the average

of five repeated experiments.

is a simple path that makes one large loop. This difference can be attributed to the dif-
ference in the RMSE. The execution time and RMSE changes with the resolution are
shown in Fig. 3.3. The ratio of the width to the height of the image is 4:3 and x-axis
in Fig. 3.3 denotes width of a image. From the left graph in Fig. 3.3, RMSE value
decreases drastically at low resolution but gradually converges and eventually makes
no big difference after 704 x 528. In the case of time, the average time of conducting
VO increases as the resolution increases. Therefore, using 704 x 528 resolution, I can
confirm that VO can be performed at 23.67fps with low error. Hence, in the remainder

of this chapter, I experimented with SR learned to 704 x 528.
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Figure 3.3: RMSE (left) and elapsed time per frame (right) variation with resolution

changes. Red dot denotes chosen suitable resolution for VO.

3.3.2 Super-Resolution Network

Among various SR approaches, some algorithms can increase the input resolution to
arbitrary values, but others can acquire only integer multiples of the input resolution.
The former methods upsample to the desired resolution by the bicubic interpolation
and then pass CNN networks to get an SR image [79, 81]. In the latter methods, up-
sampling processes are in the middle of the network hence they cannot obtain the
arbitrary resolution [84, 85]. In this chapter, I need to perform SR with 704 x 528 res-
olution from arbitrary LR image. Therefore, methods which cannot acquire arbitrary
output resolutions like EDSR and SRResNet are not appropriate for our algorithm,
thus SRCNN and VDSR are only applied. Network structures of SRCNN, VDSR and
the proposed are depicted in Fig. 3.4.

As shown in figure, SRCNN and VDSR have three and twenty convolutional lay-

ers, respectively. I first analyze the noise removing property of two conventional net-
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works. SRCNN has too shallow CNN layers to get rid of noises. In VDSR, the input
image is added to the image that passed the last convolutional layer. This enables the
network to learn only high-frequency parts hence improves the performance and ac-
celerates the convergence. However, since the input image is added at the end, noises
contained in the input are not totally eliminated.

Computation times are concerned with the number of operations in SR networks.
Assuming equal input sizes, operation numbers of convolutional layers are propor-
tional to f; X k X f,, where f;, f,, k are input and output feature numbers and the
kernel size, respectively. Calculating the number of operations of SR networks in this
manner, SRCNN and VDSR are operated with about 8.1k and 660k operations, re-
spectively; these numbers are reflected in the runtime of algorithms. Comparing the
execution times of the two algorithms, the SRCNN operates at 144 fps with an aver-
age of 6.92ms per frame and the VDSR operates at 19.5 fps with an average of 51.4ms
per frame. The execution time of VDSR is slower than that of DSO, which means that
real-time VO with SR is unavailable. On the other hand, SRCNN is faster than enough
so, more convolutional layers could be added.

As aresult, I design SR using nine convolutional layers, which operates with about
260k operations. The proposed network adds a convolutional layer at the beginning
and the end to prevent direct propagation of noise from the input image to the output. I
constructed the network using residual blocks, and constant scaling is applied to each

residual block. The equation presents the residual blocks as follows:

Res(x) = ¢(Wro(Wix) + x), (3.5)

where x and Res(x) are the input and the output of the residual block, c is a scaling

constant, o and W7 denote the ReLU function and a convolutional layer with 3 x 3
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kernel sizes and 64 filters, respectively. The total equations of the proposed network

are as follows:
y = Wo (W1 Res?(Wix) + Wix), (3.6)

where W5 denotes a convolutional layer with 3 x 3 kernel size and 1 filter.

3.4 Experiments

3.4.1 Super-Resolution Procedure
Training SR

In this dissertation, I used the monocular visual odometry dataset [86] provided by
Technical University of Munich. This dataset consists of 50 sequences, including in-
door and outdoor environment and the number of total images is 190,576. To perform
SR, ten sequences (i.e. 5, 10, ..., 50) in multiples of 5 were set as the test data, and
the remaining 40 sequences were used as the training data. The number of the training
images is 154,256 and that of the test is 36,320. The original resolution of this dataset
is 1280 x 1024, so 704 x 528, which is the ground truth resolution of SR, is obtained
by using bicubic downsampling. In training data, the resolution of the original image
was downsampled to 320 x 240 and 192 x 144. Therefore, the scale of SR is 2.2 and
3.6563, respectively. Furthermore, to make noisy images, salt and pepper noises are
added on downsampled images with 0.4% of whole pixels.

Training details are as follows: The image patch used in the training was a 44 x 44
grayscale image. The Adam optimizer the £, function were used as the optimizer
and the Loss function, respectively. The batch sizes were 32, 4, and 8 for SRCNN,

VDSR, and the proposed method, respectively, depending on the memory capacity
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of the graphics card. The initial learning rate was set to 10™%, and it was divided by
10 after every 10 epochs. All methods were trained until convergence. The epochs
required for learning were SRCNN of 60, VDSR and the proposed network of 40. I

configured methods as python language and utilized NVIDIA GTX 1080 Ti GPU.

Testing SR

I tested the proposed networks on the part of the TUM monocular dataset. I compared
our method with bicubic, SRCNN, and VDSR. For SRCNN and VDSR, I utilized our
own learning outcomes. Table 3.1 shows a quantitative result that presents average of
peak signal-to-noise ratio (PSNR), structural similarity (SSIM) and computation time

of SR methods.
Table 3.1: Average PSNR, SSIM and time results of Super-Resolutions

PSNR | SSIM | time(ms)

bicubic 30.00 | 0.856 0.646

320 x 240 | SRCNN 32.62 | 0.892 5.633

images VDSR 3294 | 0.899 51.14

proposed | 34.41 | 0.913 27.18

PSNR | SSIM | time(ms)

bicubic 27.95 | 0.808 0.463

192 x 144 | SRCNN 29.46 | 0.832 8.208

images VDSR 29.61. | 0.844 51.58

proposed [ 30.93 | 0.856 26.26

The proposed method shows the best performance in both PSNR and SSIM, fol-
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lowed by VDSR, SRCNN, and bicubic in order. In terms of time, the average elapsed
time of VDSR per image is the longest, 51.36ms, which is slower than processing
speed of DSO. Bicubic and SRCNN was maintained at over 100fps, and the proposed
method showed a speed at about 37fps. The bicubic method is faster than other meth-
ods since it simply interpolates neighboring pixels to increase the resolution unlike
using a deep neural network. Results of CNN-based SR methods are shown in ac-
cordance with the operation numbers of networks as analyzed in section 3.3.2. For
qualitative comparison, a few SR results are shown in Fig. 3.5 and Fig. 3.6. I zoomed
in and compared images.

As seen in Fig. 3.5 and Fig. 3.6, results of learning-based methods show more
keen boundary than that of the bicubic interpolation. In noise removing, the noises
of the bicubic result are not eliminated and rather the size is expanded, since it is an
interpolation method. Also, noises are not completely removed in the SRCNN and
VDSR results, whereas the proposed method eliminates almost all noises.

In left images in Fig. 3.5 and Fig. 3.6, which are results of SRs using 192 x 144
images. The result of the bicubic shows much larger noises than that of the 320 x 240.
Results of learning-based models are seemed sharp contours, but noises remain in

outcomes of SRCNN and VDSR.

3.4.2 VO with SR images

Experiments were carried out for two resolutions of 320 x 240 and 192 x 144 and
for four SR methods - bicubic, SRCNN, VDSR, and the proposed - compared with
VO using LR images. RMSE and the frequency variations of each method are shown
in Table 3.2 and Table 3.3. Note that the bicubic method produces worse result than

the LR image. This is a problem with the interpolation method. The bicubic method
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Table 3.2: Results of the RMSE and the fps processed by DSO and SR of 320 x 240

images

LR image

bicubic

SRCNN

VDSR

proposed

RMSE

ps

RMSE

fps

RMSE

fps

RMSE

ps

RMSE

fps

Seq. 5

1.1214

40.16

1.209

34.75

1.200

37.82

1.184

13.81

0.803

21.26

Seq. 10

0.427

40.92

0.505

33.10

0.487

36.12

0.224

13.58

0.152

20.63

Seq. 15

1.934

27.27

1.894

23.89

1.746

26.85

1.503

11.88

1.658

16.63

Seq. 20

0.343

30.08

0.347

26.46

0.341

29.87

0.343

12.34

0.118

17.84

Seq. 25

0.459

30.70

0.485

26.02

0.441

29.52

0.388

12.23

0.109

17.64

Seq. 30

0.491

27.60

0.509

24.27

0.491

27.78

0.502

11.90

0.250

16.82

Seq. 35

0.392

33.70

0.494

30.54

0.413

33.54

0.414

13.15

0.129

19.60

Seq. 40

0.191

33.77

0.195

26.77

0.195

29.00

0.192

12.35

0.191

17.98

Seq. 45

0.134

30.34

0.133

25.46

0.128

28.92

0.138

12.18

0.117

17.38

Seq. 50

0.199

28.51

0.196

23.94

0.198

26.43

0.196

11.90

0.136

16.66

Avg.

0.578

32.31

0.597

28.61

0.564

30.59

0.509

13.06

0.366

18.24

interpolates pixel intensities when conducting upsampling, which results in the effect

of smoothing the image. In DSO, the optimization is performed using pixels with high

intensity gradient. Hence, when the image is smoothed, the gradient becomes low and

the number of available pixels is reduced. Therefore, bicubic interpolation can be seen

as inappropriate when performing VO.

On the other hand, since learning-based SRs restore the detailed part of the im-

age, they show better VO performance. Overall, the results of the proposed method
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Table 3.3: Results of the RMSE and the fps processed by DSO and SR of 192 x 144

images

LR image

bicubic

SRCNN

VDSR

proposed

RMSE

fps

RMSE| fps

RMSE| fps

RMSE

fps

RMSE

fps

Seq. 5

1.105

44.81

1.125 |35.54

1.070 |38.62

1.209

14.32

1.172

21.55

Seq. 10

1.047

44.37

3.885 33.90

4.005 |36.85

0.633

14.03

0.604

20.94

Seq. 15

1.874

29.21

1.953 |25.42

1.927 |28.13

1.976

12.45

1.586

17.36

Seq. 20

0.343

33.08

0.347 |27.44

0.343 |30.15

0.345

12.86

0.333

18.28

Seq. 25

0.604

36.45

0.598 [27.42

0.607 |30.51

0.472

12.98

0.550

18.27

Seq. 30

0.508

32.33

0.499 [25.20

0.490 |28.46

0.515

12.59

0.336

17.26

Seq. 35

0.456

43.14

0.506 |30.15

0.514 |33.96

0.493

13.29

0.379

19.44

Seq. 40

0.193

36.97

0.197 [27.10

0.193 |30.12

0.194

12.58

0.187

18.13

Seq. 45

0.156

38.94

0.148 27.37

0.149 |30.99

0.146

12.80

0.137

18.25

Seq. 50

0.185

39.10

0.178 |26.60

0.181 |29.21

0.200

12.61

0.191

17.90

Avg.

0.647

37.84

0.943 |27.52

0.948 |31.70

0.618

12.53

0.548

18.74

showed lowest RMSE, but other methods were better in a few sequences. This is be-

cause uncertainties happened in the process of choosing pixels utilized in optimization.

If the number of pixels above the gradient threshold exceeds the designated maximum

number, arbitrary pixels are chosen thus randomness occur.

In the frequency aspect, the bicubic and SRCNN are faster than even using HR

images directly. This is because pixels used in DSO is less when using the bicubic and

SRCNN SR images, resulting in optimization process shortened. The proposed method
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showed about 18fps in both resolutions which is five fps lower than frequency using
HR images. As a result, the result of the proposed method is the best performance in
RMSE and is suitable for real-time VO.

RMSE variations of each method are shown in Fig. 3.7 and Fig. 3.8. The unmarked
part of the bicubic192 result in Fig. 3.7 is that the algorithm fails because it completely
misses the path during the VO. In other parts, It can be seen that the bicubic192 method
produces also worse results than the LR image as explained above.

The qualitative VO results are shown in Fig. 3.9 to Fig. 3.18. The results of using

HR and noise-free image sequence showed that both the paths and the environment

RMSE results of using 192x144

—e—LR192
—o— Bicubic192

~#—SRCNN192 ’,,’ —+—|R192
16 4+ VDSR192 pad =& Bicubic192
~&— proposed192 s ~&-SRCNN192
14 e - VDSR192
Al o proposed192.
w2 L
g 1 /’/
-
o -

§ 10 15 20 25 30 35 40 45 B0 vmmeeeo_
sequence

RMSE results of using 320x240

2 —— LR320
~#- Bicubic320
18 ~é— SRCNN320 L ——LR320
4 - VDSR320 el - Bicubic320
~&-— proposed320 L7 ~e~SRCNN320
// +-VDSR320
P @ proposed320

sequence

Figure 3.7: RMSE variations of DSO using different image sequences. Right column

enlarged images of red boxes in left images shows the large difference region.
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Figure 3.8: Comparison of VO results of the RMSE versus time performances

reconstructions were clean. On the other hand, using LR & noisy and bicubic+192 x
144 images caused tracking lost in many sequences. This problem occurs since LR and
noisy images lacked the number of pixels used for optimization. SRCNN results also
suffered from the wrongly estimated scale but less than using LR & noisy or bicubic
images. Results of using the VDSR showed similar to those of using HR and noise-
free, but a little skew of the path existed and failed to return to the same location.
Finally, the results of the proposed method showed quite similar output with those of

using HR and noise-free images, though reconstruction points spread widely.
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SRCNN + 192 x 144 VDSR + 192 x 144 proposed + 192 x 144

Figure 3.9: VO results of sequence 5 using various image sets

SRCNN + 192 x 144 VDSR + 192 x 144 proposed + 192 x 144

Figure 3.10: VO results of sequence 10 using various image sets
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SRCNN + 192 x 144 VDSR + 192 x 144 proposed + 192 x 144

Figure 3.11: VO results of sequence 15 using various image sets

SRCNN + 192 x 144 VDSR + 192 x 144 proposed + 192 x 144

Figure 3.12: VO results of sequence 20 using various image sets
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Figure 3.13: VO results of sequence 25 using various image sets

HR & noise free images LR & noisy images Bicubic + 192 x 144

a4 S

SRCNN + 192 x 144 VDSR + 192 x 144 proposed + 192 x 144

Figure 3.14: VO results of sequence 30 using various image sets
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SRCNN + 192 x 144 VDSR + 192 x 144 proposed + 192 x 144

Figure 3.15: VO results of sequence 35 using various image sets

SRCNN + 192 x 144 VDSR + 192 x 144 proposed + 192 x 144

Figure 3.16: VO results of sequence 40 using various image sets
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Figure 3.17: VO results of sequence 45 using various image sets

HR & noise free images LR & noisy images Bicubic + 192 x 144

SRCNN + 192 x 144 VDSR + 192 x 144 proposed + 192 x 144

Figure 3.18: VO results of sequence 50 using various image sets
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3.5 Summary

In this chapter, I propose a method to improve the low-performance of VO when using
LR and noisy image sequences. I designed an SR network that deals with noises and
execution time as well as resolution increment differently from other SR techniques.
The proposed SR makes the image quality increase, which leads to a successful VO
result. Experimental results show that the performance of the proposed method is better
than that of conventional VO. This work can be utilized to real applications, such as
the augmented reality and the autonomous driving since VO performs well even when

a low-cost camera is used.
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Chapter 4

A Visual Odometry Enhancement Method Using Fully

Unsupervised Learning

4.1 Introduction

In robotics, various mainstreams are studied in order to perform scene understand-
ings, such as simultaneous localization and mapping (SLAM), structure from motion
(StM), scene/optical flow estimation, visual odometry (VO) and depth estimation. Be-
yond others, odometry estimation is the key technique for autonomous system, as the
method estimates the pose of the mobile agent. In order to achieve the accurate pose
estimation with various sensors such as IMU, GPS, LIDAR and cameras, tremendous
works have been conducted. Because of the characteristics of mono camera such as
portable, fast and its price, monocular VO attracts attentions of robotics field and is
adopted to applications such as unmanned aerial vehicles, 3D modeling, augmented
reality and autonomous driving.

Traditional methods for VO mainly obtain odometry in the form of transformation

matrix, by finding correspondence of point features or pixels. With the recent advent
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of deep learning, direct estimation methods using neural network structure have been
conducted. Especially, unsupervised learning approaches have shown remarkable re-
sults during past three years [49, 52]. These approaches estimate pose transformation
between target image and source images, and the depth image simultaneously; using
predicted pose and depth, predicted target image is calculated from source images, and
training loss is defined as the error (or difference) between target image and predicted
target image.

However, from traditional VO estimations to unsupervised learning methods, it is
inevitable to assume that camera intrinsic parameters are known which are determined
by the physical characteristics of the mono camera. Therefore, inspired by previous
unsupervised VO estimations, I propose a method that estimates not only 6-DOF pose
and depth but also intrinsic parameters. In order to achieve fully unsupervised learning
method for VO, our single network predicts camera parameters from given sequences.
I also exploit the concepts of explainability in [49] for masking the areas of dynamic
objects or occluded regions in single scene. The overview of the proposed framework
is shown in Fig. 4.1.

Since the explainability image and the depth image have the same resolutions as
input images, the proposed networks are constructed as encoder-decoder structures.
By adding auxiliary networks on top of each encoders, 6-DOF pose and 4-DOF real
values for camera intrinsic parameters are estimated.

The rest of this chapter is organized as follows: Section II introduces overview of
the related work of traditional, learning-based VO and single-view depth estimation.
Section III describes our approach to establishing fully unsupervised learning and the
proposed network structure. Section IV summarizes comprehensive experimental re-

sults and analysis. Finally, Section V concludes this chapter.
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Figure 4.1: The framework of the proposed method. Intrinsic parameters, a depth map,
6-DOF poses and a explainability map are estimated simultaneously only using an

image sequence.

4.2 Related Work

4.2.1 Traditional Visual Odometry

Odometry estimation using visual sensor has been conducted since past decades, and
is firstly referred as visual odometry by Nister et al. [17], 2004. Previous methods
for VO are performed by using extracted features and pose filters [18, 21]. Without

any considerations of similar scenes in sequence, it is inefficient since the proposed
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algorithm applied pose filters to every images in a sequence. In PTAM [24] and ORB-
SLAM [30, 70], keyframe [87] selection and parallel processing are adopted in order
to estimate pose thus efficient VO estimated can be achieved.

Compared to the feature-based VO, direct VO achieves odometry by calcuating the
transform which minimizes the differences of pixel intensity between two images [34,
35]. In order to relieve the computational burden and achieve real-time performance,
[37, 38, 41] propose semi-dense direct VO which exploits only the pixels with large

gradients to the neighboring ones.

4.2.2 Single-view Depth Recovery

Single-view or monocular depth estimation is technique to predict a dense depth image
from a single RGB image. Initially, depth was predicted by using position and direction
estimation of the plane in the image [88, 89]. Sexena et al. [89] proposed a Make3D
technique that over-segments the input image into the patches and then estimates posi-
tion and normal vector of the planes in each patch. However, the patch-based model is
hardly to model the thin structure because each patch does not include the context of
the entire image. Liu et al. [90] presented superpixel over-segmentation on the image
with a learning-based method using CNN, which succeeded in improving accuracy
of depth prediction. Karsch et al. [91] attempt to produce more consistent image level
predictions by copying whole depth images from a training set. Ladicky et al. [92] also
added semantic information in the previous research to improve performance of depth
prediction per pixel.

In order to achieve end-to-end training model for depth estimation, [2, 93] exploits
deep neural network and estimate depth image from raw pixel values, rather than uses

over-segmentation or hand-crafted features. They adopted multi-scale deep networks
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for dense depth estimation. Thanks to the success of depth recovery using this method,
end-to-end model with raw pixels has been actively developed. Li et al. [94] utilizes
conditional random field (CRF) as a post-processing, Cao et al. [95] adopts classifi-
cation loss instead of regression to estimate depth value by interval, and Laina et al.
[96] performs depth estimation using berHu loss function for a robustness to outliers.
However, these end-to-end models require high quality and pixel-aligned ground truth
depth as a training data.

Therefore, unsupervised learning methods without training data have also been
studied. [97] presented a single-view depth estimation using the projection error of
images obtained from a calibrated stereo camera as a supervision. Deep3D [98] also
suggested a unsupervised learning with the concept of view synthesis - estimating the
right view from the left view. Similarly, Godard et al. [47] succeeded in improving

performance by adding a constraint of left-right consistency.

4.2.3 Supervised Learning-based Visual Odometry

Direct estimation methods using deep learing have been proposed [42]. In order to
exploit the sequentiality of the image sequence, this method uses RCNN, which is the
combination of recurrent neural network (RNN) and CNN. With this framework, Iyer
et al. [43] propose the enhanced VO estimation network with geometric consistency.
Turan et al. [99] introduce deep EndoVO by applying VO using RCNN to endoscopic
robots. To achieve the accurate VO estimation, Flowdometry [48] take the advantage
of the optical flow from FlowNet [45]. In addition to the above methods, DeMoN [44]
performs various tasks such as depth, surface normal and optical flow estimation by

supervised learning scheme.
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4.2.4 Unsupervised Learning-based Visual Odometry

The methods for VO trained in supervised manner have limitation that datasets with
ground truth trajectories are necessary. Since annotating robot path takes a lot of effort
and time-consuming, SfMLearner [49] suggests a method with unsupervised learning.
In SFMLearner, depth images for source images, and the pose for target image are
estimated from DispNet and additional network respectively. Using source images, and
estimated depth images and pose, predicted target image is synthesized; the difference
between predicted target image and original target image is exploited as training loss,
thus supervision training can be achieved. To handle the areas of dynamic objects and
occluded part, the algorithm masks the single scene using explainability.

In addition to SFMLearner, GeoNet [51] adds ResFlowNet structure and estimate
VO and optical flow together, which gives the higher performance than SFMLearner.
GanVO [52] exploits generative adversarial network (GAN) [53] structure, in order
to generate more realistic synthesized images of predicted target image. The above
methods are basically for monocular camera system, and it is challenging to estimate
the absolute scale of the predicted pose. To overcome the problem, similar to [47],
UnDeepVO [50] trains the model using left-right consistency of stereo camera, and
achieves VO including scale prediction by testing the model with single image.

In this section, I describe network structure and loss functions for estimating cam-
era pose, depth, and intrinsic parameters in unsupervised manner. Similar to the pre-
vious studies based on unsupervised learning, the proposed network takes image se-
quence as input and reconstructs target image using predicted depth, pose, intrinsic pa-
rameters and source images. The overview of the proposed network structure is shown

in Fig. 4.2.
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Figure 4.2: The proposed architecture for training our model. The change of sizes of

convolutional and upconvolutional blocks indicates width/height changes by the factor

of 2, and the number of channels moves opposite (When the block size gets bigger, the

number of channels gets smaller).
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4.2.5 Architecture Overview

To consider the areas of dynamic objects and occlusion regions, I exploit the ex-
plainability concept as in [49]. The encoder-decoder structure is used for single-view
depth and explainability estimation, which requires pixel-based estimation. I adopt the
concatenation-based skip connection to synchronize the resolutions of input and output

images.

4.3 Methods

Poses and intrinsic parameter regression is conducted by two additional structures
which are on top of the encoders of the explainability network and depth network, re-
spectively. The pose network estimates the 6-DOF pose: translation (x, y, z) and Euler
angles (0, ¢, ). Intrinsic parameters network outputs four real numbers which com-
prise the intrinsic matrix. The details of the intrinsic parameters regression is described

in Sec. 4.3.2.

4.3.1 Predicting the Target Image using Source Images

Similar to the previous studies based on unsupervised learning, I use the pixel-wise
differences between the target image I; and the synthesis image I s; generated from the
source images (s, , Is,, ...) as the main loss. In other words, the proposed network is
trained in order to minimize the difference between target image and predicted target
one. The pixel-wise difference is calculated with pixel-wise correspondence, which
can be defined by depth D; of target image and transformation 7;_,s between target

and source images. Let p; be a pixel of target image, and ps be of source image corre-
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sponding to p;. Then estimated pixel ps; can be expressed as the following:
ps ~ KTy Di(p) K~ pr. 4.1

Since the value of p, is not an integer, the intensity value of I, (ps) is obtained by
weighted sum of four adjacent pixel intensities according to the distance. In order
to alleviate the correspondence ambiguity problem occurred by dynamic object and
occlusion, I can define pixel-wise difference loss with explainability function Es(p)

as:

Lyw =Y 3 EB) [1o) ~ L) 42)

To avoid the trivial solution é5 = 0 of (2), regularization loss L., is added [49].

When p; is located in a low-texture region or far from the estimated value, train-
ing is hardly converged. To handle this problem, the loss is calculated at multi-scale.
Smoothness loss is also added so that gradients can be transferred directly to a wide
area. Consequently, the total training loss is given as:

Liotal = Z <L;)rzlu + Aganmooth + )\7‘ Z Lfeg (EALT)) ) (43)

m

where m indexes one of the multi-scale, A; and A, are loss weights of smoothness loss

and explainability regularization, repectively.

4.3.2 Intrinsic Parameters Regressor

The proposed network predicts intrinsic camera parameters to estimate odometry us-
ing only image sequence. When I train the proposed network to estimate the intrinsic
parameters directly, intrinsic parameters tend to be diverged toward negative values

which should be positive. In order to restrict the outputs of the intrinsic network, I

I ey 1
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applied ReLU activation and an absolute function. However, I found that all parame-
ters were converged to 0 in the case of ReLLU activation and hardly converged in case
of absolute function since both positive and negative values lead to the same results
which makes network confusing. I thus tried exponential function to make output val-
ues always positive. When using exponential function, all parameters raised from zero
slowly, but stopped at local minima far below from the ground truth values. As a result,
I added two prior assumption by analyzing intrinsic parameters in Table 4.1 and Table

4.2 as follows:

e The values of f, and f, are similar.

Table 4.1: Intrinsic parameter sets of resized KITTI raw dataset

fCC fy Cy W/2 Cy H/2

datel | 241.67 | 246.28 | 204.17 | 208 | 59.00 | 64

date2 | 240.30 | 244.60 | 205.31 | 208 | 62.45 | 64

date3 | 241.38 | 245.85 | 201.75 | 208 | 62.12 | 64

date4 | 239.93 | 244.62 | 204.23 | 208 | 63.35 | 64

dateS | 240.97 | 244.72 | 203.54 | 208 | 63.05 | 64

Table 4.2: Intrinsic parameter sets of resized CityScape dataset

fa Ty Cx W/2 Cy H/2

City group 1 | 424.22 | 473.41 | 205.68 | 192 | 107.24 | 107

City group 2 | 423.09 | 463.86 | 196.72 | 192 | 107.67 | 107

City group 3 | 425.32 | 465.10 | 196.62 | 192 | 108.52 | 107
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e The values of ¢, and ¢, are similar to W/2 and H/2, respectively.

where W and H are image width and height of images, respectively. Let outputs of the
intrinsic parameters network be o1, 02, 03, and o4, respectively. The intrinsic parame-

ters are expressed as follows:

fo = exp(o1) + D, (4.4)
fy = fu + a - tanh(oy), (4.5)
e = (; + 5. tanh(03)) W .6)
cy = (; + 8- tanh(04)) H, (4.7)

where « and (3 are real number constants.

Note that f, and f, are similar values; f, = f is calculated using o1, and f, =
fo + 6f where df is obtained from o09. Since the focal length of camera used in the
experiment is a positive value, f, is defined by taking an exponential function on o;
and adding a positive real value b as a bias. F), is obtained by adding § f = «-tanh(o2)
to fz, while setting o considering the difference from f,.

The principal point (c,, ¢,) is the result of adding (dc,,dcy) to the center of the
image (0.5W,0.5H). This value is estimated using 03 and o4 as (dcz,dcy) = (B -
tanh(o3) - W, 5 - tanh(o4) - H). Using (fz, fy, ¢z, ¢y), I utilize the following camera

intrinsic matrix K in Eq. (4.1).

fr 0 ¢
K=10 fy ¢y (4.3)
0 0 1
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4.4 Experiments

KITTI raw/odometry dataset [1] was used in training and test processes for evaluat-
ing our method. I implemented the deep network with publicly available Tensorflow
framework [100]. All conv/upconv layers except prediction layers are followed by
ReLU activation and batch normalization. For a training, Adam optimizer optimized
weights of our network with parameters 51 = 0.9, B2 = 0.999, learning rate of 0.002
and mini-batch size of 8. Images used in training were resized to 128 x 416, and one
input batch consisted of five consecutive stacked images. A; and A, in Eq. (4.3) is set
to 0.5/m, 0.2, respectively, where m denotes the downscaling factor corresponding
to scale. The network was trained and tested on a NVIDIA GTX 1080 Ti GPU. Our
model was built upon SfMLearner [49] framework to estimate intrinsic parameters

additionally.

4.4.1 Monocular Depth Estimation

Like [49, 51, 52], I used the KITTI raw dataset by the split of Eigen et al. [2] for
training and test of the monocular depth estimation. Also, static frames and visually
similar frames were excluded as in [49, 51]. I set a sequence length to five while other
unsupervised researches set this value to three, since model fell into local minima
easily when sequence length of three. A few examples of depth estimation is depicted
in Fig. 4.3 and Fig. 4.4.

As shown in Fig. 4.4, our method detect thin structure well and show comparable
performance with SfMLearner. However, even in the top three rows, smoothness of
depth was unstable and it was maximized in Fig. 4.5. In many depth maps estimated

by our trained model, roads right front of the car were wrongly estimated to distant
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objects.

As shown in Table 4.3, our monocular depth estimation performance was meaning-
fully lower than that of SfMLearner. The reason for above results is that there exists
many failed cases like Fig. 4.5, which is led from the errors of intrinsic parameters

estimation.

4.4.2 Visual Odometry

The VO evalution is conducted through KITTI odometry dataset. I used the pre-trained
weights on KITTI raw dataset, and trained on KITTI odometry sequence 00-08, then
test using sequence 09-10. Unlike calculating absolute trajectory error (ATE) on 5-
frame snippets in other literature, I first recovered full trajectory then computed ATE.

In monocular VO, a scale and a direction of the trajectory are structurally unfixed.

Table 4.3: Monocular depth estimation results on KITTI dataset [1] by the split of

Eigen et al. [2].

[49]
[49] GeoNet proposed
updated
Abs Rel 0.208 0.183 0.153 0.296
sq Rel 1.768 1.595 1.328 6.175
RMSE 6.856 6.709 5.737 8.453
RMSE log 0.283 0.270 0.232 0.364
0 < 1.25 0.678 0.734 0.802 0.642
§ < 1.252 0.885 0.902 0.934 0.840
§<1.253 0.957 0.959 0.972 0.920
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Input SfMLearner GeoNet Mine

Figure 4.3: Qualitative results of successful single-view depth estimation on KITTI [1]

using the split of Eigen et al. [2].
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Input SfMLearner GeoNet Mine

Figure 4.4: Qualitative results of failed single-view depth estimation on KITTI [1]

using the split of Eigen et al. [2].
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Figure 4.5: Plots of trajectories aligned to the ground truth. Paths are plotted by top-

View.
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Therefore, it is necessary to align predicted trajectory to the ground truth before cal-
culating errors. The alignment consists of three steps 1) the rotation, 2) the origin, and
3) the scale. First, a rotation is calculated by single value decomposition of the cross-
covariance matrix of the ground truth and predicted trajectory. Second, the origin is
identified by subtracting the difference of medians of two trajectories. Finally, a rela-
tive scale calculated by distances of trajectories from origin is multiplied, then compute
ATE errors. Pose estimation results of two sequences are plotted and summarized Fig.
4.5 and Table 4.4.

As shown in Fig. 4.5, GeoNet results show big differences from ground truth tra-
jectories. It leads far higher ATE values than those of other methods as shown in Table
4.4. In Fig. 4.5, a trajectory of the SfMLearner may seem to be closer with the ground
truth than mine. However, unlike the qualitative results, our ATE of sequence 09 is
lower than that of SfMLearner. This may be the endemic problem of KITTI odometry
estimation that errors are accumulated on y-axis. Since this dataset was captured using
driving car, y-component of translation is relatively small, thus a small error on y-axis
occur easily. Hence, as sequence proceeds, errors on y-axis accumulate that is hard to

see on top-view. In a nutshell, the proposed method showed comparable performance

Table 4.4: Absolute trajectory errors of KITTI odometry dataset sequence 09 and se-

quence 10.

Method Seq. 09 Seq. 10
SfMLearner 27.099 13.382
GeoNet 189.28 55.408
proposed 23.046 24.228
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Figure 4.6: Plots of aligned trajectories of KITTI sequence 11 and 12. Paths are plotted

by top-view.
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Figure 4.7: Plots of aligned trajectories of KITTI sequence 13 to 14. Paths are plotted

by top-view.
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Figure 4.8: Plots of aligned trajectories of KITTI sequence 15 and 16. Paths are plotted

by top-view.

74 S



600

= SfMLearner
proposed

500 -

400

300 -

z (m)

200 -

100 -

Sequence 17

900
800 -
700 -
600 -
500 -

z(m)

400 -
300 -
200 -
100

= SfMLearner

proposed

40
x (m)

Sequence 18

60

0
-200

-100

0

100
x (m)

200

80 100

300 400

Figure 4.9: Plots of aligned trajectories of KITTI sequence 17 to 18. Paths are plotted
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Figure 4.10: Plots of aligned trajectories of KITTI sequence 19 and 20. Paths are plot-

ted by top-view.
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Figure 4.11: A plot of aligned trajectories of KITTI sequence 21. Paths are plotted by

top-view.

to SfMLearner which uses given intrinsic parameters.

The results of sequence 11 to 21 is shown in Fig. 4.6 to Fig. 4.11. Since ground
truth trajectories of above sequences were not provided and results of GeoNet were
too bizarre, I plotted only SfMLearner and the proposed method. Although there are
differences in detail, it can be seen that overall shapes are similar between SfMLearner

and the proposed method.

4.4.3 Intrinsic Parameters Estimation

Since the network of intrinsic parameters estimation has a part shared with the depth,

the tests were conducted on KITTI raw datasets and CityScape datasets. In KITTI
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datasets, there are five sets of intrinsic parameters by collecting data for five dates,
2011-09-26, 2011-09-28, 2011-09-29, 2011-09-30,and2011-10-03.
In CityScape datasets three sets of intrinsic parameters exist because data is collected
in many cities. I called these three sets to city group 1, 2, 3. The City group 1 consists
of Aachen, Bremen, Cologne, Darmstadt, Dusseldorf, Jena, Stuttgart, Tubingen, Ulm,
Weimar, and Zurich, and the city group 2 consists of Bochum and Strasbourg, lastly
the city group 3 consists of Hamburg, Hanover, Krefeld, and Monchengladbach. Ex-
periments was performed by images resized to 128 x 416 and 214 x 384 in KITTI and
CityScape, respectively, hence intrinsic parameters were also downscaled to the same

scaling factor as follows:

( ;esize7 c;esize) — Sg . (fa:a cx)

(f;"esize’ C;esize) — sg . (fyy Cy),

where sg and sg are downscaling factors of each axes of the corresponding dataset.
Considering the values of ground truth intrinsic parameters in datasets, I set b = 180,
a =15, = 15, W = 416, and H = 128 in Eq. (4.4) to Eq. (4.7). The predicted
intrinsic parameters and percentage errors are shown in Table 4.5 and Table 4.6.

As shown in Table 4.5 and Table 4.6, all parameter values indicate similar errors
regardless of date. In the estimated focal lengths, the errors of f, and f, are 12.00%
and 12.47%, respectively. When I looked at these values during training, they started
at nearby b = 180, went up and converged to our results. In addition, when lowering
the b of Eq. (4.4), intrinsic parameters did not increase by stopping at lower values
than the our results. With this, it can be seen that there exists many local minima in
focal length learning.

In the principal point, the average errors of ¢, and ¢, are 2.23% and 9.40%, re-
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spectively. As a matter of fact, both ¢, and ¢, are similar in absolute error, but the per-
centage error is lower because the ground truth of ¢, is higher than that of c,. These
two values do not deviate significantly from % and % given as biases in Eq. (4.6)
and Eq. (4.7). The ground truth focal lengths are relatively far from initial values than
the principal point, therefore the focal lengths are mainly learned. Due to errors of the
estimated intrinsic parameters, the performance of our depth and odometry estimation

might be lower than that of SfMLearner which has learned with these values.
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Table 4.5: Ground truth, predicted camera parameters and percentage errors of five
dates. datel, date2, date3, date4, and date5 in the table denote 2011-09-26,

2011-09-28, 2011-09-29, 2011-09-30, and 2011-10-03, respectively.

fa: fy Cx Cy

GT 241.67 | 246.28 | 204.17 | 59.00

09-26 Pred. 212.36 | 214.74 | 208.28 | 67.78

error(%) | 12.13 12.81 2.01 14.88

GT 240.30 | 244.60 | 205.31 | 62.45

09-28 Pred. 215.04 | 215.76 | 208.20 | 67.46

error(%) | 10.51 11.79 1.40 8.04

GT 241.38 | 245.85 | 201.75 | 62.12

09-29 Pred. 209.84 | 215.48 | 208.60 | 67.78

error(%) | 13.07 | 12.35 3.40 9.12

GT 23993 | 244.62 | 204.23 | 63.35

09-30 Pred. 212.94 | 215.25 | 208.20 | 67.84

error(%) | 11.25 | 12.01 1.95 7.09

GT 240.97 | 244.72 | 203.54 | 63.05

10-03 Pred. 209.55 | 211.94 | 208.38 | 68.03

error(%) | 13.04 | 13.39 2.38 7.89

total avg. error (%) 12.00 12.47 2.23 9.40
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Table 4.6: Ground truth, predicted camera parameters and percentage errors of three

city groups.

fo Jy Ca Cy

GT 42422 | 473.41 | 205.68 | 107.24

Group 1 Pred. 401.65 | 413.54 | 198.45 | 107.88
error(%) 5.32 12.65 3.52 0.60

GT 423.09 | 463.86 | 196.72 | 107.67

Group 2 Pred. 409.61 | 412.95 | 193.86 | 109.72
error(%) | 3.19 10.98 1.45 1.90

GT 425.32 | 465.10 | 196.62 | 108.52

Group 3 Pred. 406.75 | 410.31 | 192.19 | 107.22
error(%) 4.37 11.78 2.25 1.20
total avg. error (%) 4.29 11.80 2.41 1.23
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this dissertation, I proposed two methods to enhance VO performance using deep
learning. First, I propose a super-resolution (SR) technique to improve the performance
of VO using images with low resolution and noises. Since the target resolution of the
SR must be set, a suitable resolution for VO was obtained through comprehensive
experiments. Experimental results show reasonable VO execution time and error when
using 704 x 528 resolution. Therefore, SR increased low-resolution images to 704 x
528 and then VO was performed. SR is designed using deep neural network. The
existing SR techniques focus on the method of improving the resolution of the image
and give little consideration to execution time. However, because the real-time property
is important for VO, the execution time of the SR should not be too long. Among the
SR techniques using deep learning, SRCNN, which was initially proposed, consists of
three CNN layers, so the execution time was very short, but the performance of SR

was insufficient. The recently proposed VDSR consists of twenty CNN layers and the
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performance of SR was good, but it was difficult to operate in real-time when combined
with VO due to the slow execution time. Therefore, in this dissertation, SR and VO
were performed in real-time using nine CNN layers. The network was designed using
the residual block, which is part of the ResNet structure, and added one CNN layer
each in front of the input and output to reduce the effects of noise.

I evaluated the proposed method using the TUM dataset. As a comparative ex-
periment, bicubic interpolation, SRCNN, and VDSR were used. The PSNR results
of increasing the resolution from 320 x 240 to 704 x 528 of the bicubic, SRCNN,
VDSR, and the proposed method were: 30.00, 32.62, 32.94, and 34.41, respectively.
Also, those of increasing resolution from 192 x 144 to 704 x 528 were: 27.95, 29.46,
29.61, and 30.93, respectively, which denoted that the proposed method showed the
best performance in both resolutions. Comparing LR & noisy images with SR images
obtained by the proposed network, RMSEs of VO were 0.578 and 0.366, respectively
in case of the 320 x 240; and 0.647 and 0.548 in case of the 192 x 144. As a result,
the proposed method reduced RMSE 36.68% in the 320 x 240 case and 15.30% in
the 192 x 144 case. RMSEs of VO using other SR methods are higher than that of the
proposed method as shown in chapter III. The maximum fps of VO with the proposed
SR method were 18.24 and 18.74 in resolutions 320 x 240 and 192 x 144, respectively,
which means it can be performed in real-time.

Second, I propose a fully unsupervised learning-based VO that performs VO, sin-
gle image depth recovery, and camera internal parameter estimation using a dataset
consisting only of consecutive images. In previous unsupervised learning-based VO
methods, the target image and the source images are set as input to estimate the depth
map of the target image and 6-DoF poses between the target image and source im-

ages. With the poses and the depth map estimated through the network, training is
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conducted by comparing the intensities of the target view pixels with those of corre-
sponding source view pixels. In this process, the camera parameter matrix is given.
Based on these techniques, I proposed a method for estimating camera parameters
by adding a deep intrinsic network. However, the parameters estimated by the intrin-
sic network tended to diverge or converge to zero. To alleviate this problem, I used
the characteristics of the camera in which the focal lengths f, and f, are similar to
each other and that ¢, and ¢, are similar to /2 and H/2, respectively. The two
assumptions above helped the estimated intrinsic parameters approach to the correct
values. Estimating camera parameters in this way, f, fy, ¢z, and ¢, showed errors of:
12.00%, 12.47%, 2.23%, and 9.40%, respectively. RMSEs of VO are calculated using
the KITTI dataset sequence 9 and 10. As a result, RMSEs of SfMLearner are 23.046
and 24.228 in sequence 9 and 10, respectively, and those of the proposed method are
27.099 and 13.382. The proposed method shows a lower error in sequence 10 and a
higher error in sequence 9, which means the proposed method shows comparable VO
result with existing methods which use a ground truth intrinsic parameter matrix.

In this dissertation, we propose two methods using deep learning to perform VO on
two insufficient datasets. It is difficult to obtain an image sequence, such as a research
dataset, that is obtained with high quality equipment and provides all of the detailed
information (exposure time, non-linear function, and camera parameters etc.) of the
measured equipment. Using the proposed method, VO performance is enhanced when

insufficient datasets are used.
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5.2 Future Work

In this dissertation, I used the KITTI dataset to verify a fully unsupervised learning-
based VO. This data was taken on five different days with different intrinsic parameters
for each day. However, the camera parameters were not very different from each other.
Also, the images in the KITTI dataset are horizontally long, which are not common
from what people usually get. In the future, I will look into how the proposed method
works using various datasets. Since the network is fully convolutional, it can be well
applicable to learn with other datasets. In order to facilitate learning, I study the rela-
tionship between the images and intrinsic parameters to provide prior to learning.
Furthermore, I will research about domain adaptation (DA) [101, 102] to learn
more robust networks for datasets. DA is used for training regarding the relation be-
tween different feature domains and it works in different domains, using the results of
learning in other domains. If the domain is set by an image sequence and DA learning
is used, suitable performance will be seen as using the images taken by other cameras.
Finally, it is expected to work well even in the form of an image sequence which is not

included in the training data.
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