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Abstract

Recently, operators are creating services using 5G systems in various fields, e.g.,
manufacturing, automotive, health care, etc. 5G use cases include transmission of
small packets using IoT devices to high data rate transmission such as high-definition
video streaming. When a large-scale IoT device transmits a small packet, power saving
is important, so it is necessary to disconnect from the base station and then establish a
connection through random access to transmit data. However, existing random access
procedures are difficult to satisfy various latency requirements. It is attractive to use
a wide bandwidth of the millimeter wave spectrum for high data rate transmission.
In order to overcome the channel characteristics, beamforming technology is applied.
However, when determining a beam pair between a transmitter and a receiver, interfer-
ence is not considered.

In this dissertation, we consider the following three enhancements to enable 5G
and beyond use cases: (i) Two-step random access procedure for delay-sensitive de-
vices, (ii) self-uplink synchronization framework for solving preamble collision prob-
lem, and (iii) interference-aware beam adjustment for interference coordination.

First, RAPID, two-step random access for delay-sensitive devices, is proposed to
reduce latency requirement value for satisfying specific reliability. When devices, per-
forming RAPID and contention-based random access, coexist, it is important to deter-
mine a value that is the number of preambles for RAPID to reduce random access load.
Simulation results show that RAPID achieves 99.999% reliability with 80.8% shorter
uplink latency, and also decreases random access load by 30.5% compared with state-
of-the-art techniques.

Second, in order to solve preamble collision problem, we develop self-uplink syn-
chronization framework called ESTA. Preamble collision occurs when multiple devices

transmit the same preamble. Specifically, we propose a framework that helps the UE



to estimate the timing advance command using a deep neural network model and to
determine the TA value. Estimation accuracy can achieve 98-99% when subcarrier
spacing is 30 and 60 kHz.

Finally, we propose IBA, which is interference-aware beam adjustment method to
reduce interference in millimeter wave networks. Unlike existing methods of reduc-
ing interference by scheduling time and frequency resources differently, interference
is controlled through beam adjustment. In IBA, it is important to reduce search space
of finding new beam pair to reduce interference. In practical, it is impossible to search
beam pair of all combinations. Therefore, through Monte Carlo method, we can re-
duce search space to achieve local optimum. IBA achieve enhancement of lower 50%
throughput up to 50% compared with only applying beam adjustment.

In summary, we propose a two-step random access, a self-uplink synchronization
framework, and interference-aware beam adjustment for 5G and beyond use cases.
Through these researches, we achieve enhancements of network performance such as

latency and throughput compared with state-of-the-art techniques.

keywords: Fifth-generation (5G), random access, load analysis, supervised
learning, millimeter wave, network simulator-3, and beam management.
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Chapter 1

Introduction

1.1 5G Vision, Applications, and Keywords

One of the main challenges for operators is how to address new growth opportunities
in the highly competitive telecommunications market. An example of growth opportu-
nity is to pursue industrial digitization through 5th generation (5G) systems. Recently,
operators are making services using 5G systems in various field, e.g., manufacturing,
automotive, healthcare, etc. As shown in Fig. 1.1, services such as smart construc-
tion site and smart factory are have been launched by integrating information technol-
ogy (IT) systems with traditional industries such as manufacturing and construction.
The connected car is also a use case where operators are investing heavily due to the
development of self-driving cars. In this use case, the car connected to the network pro-
vides various services, e.g., infotainment and high density (HD) 3-dimensional (3D)
map.

In smart industry such as smart construction site, a number of Internet of things
(IoT) devices are expected to improve productivity and safety. With the increasing
number of 10T devices, machine-type communication (MTC) has become an impor-
tant use case of 5G systems. Since MTC devices are mostly disconnected from next-

generation nodeB (gNB) for power saving, random access procedure is required for
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* Massive connection * Analog beamforming

Figure 1.1: Representative examples of 5G services and keywords.

devices to transmit data. If many devices try random access simultaneously, pream-
ble collision problem occurs, thus causing latency increase. In an environment where
delay-sensitive and delay-tolerant devices coexist, the contention-based random ac-
cess procedure cannot satisfy latency requirements of delay-sensitive devices. Firstly,
therefore, we propose RAPID, a novel random access procedure, which is completed
through two message exchanges for the delay-sensitive devices.

Meanwhile, after finalizing Release 15 specifications for the 5G new radio (NR)
in June 2018, the 3GPP worked on not only technical improvements over the previous
release but also the introduction of new features in Release 16. One of the new features
is the use of two-step random access channel (2-step RACH) that enhances contention-
based random access with respect to radio resource control connection setup and re-
sume procedures. We need to look into details of 2-step random access defined in
3GPP Release 16. We also briefly introduce recent literature related to 2-step ran-
dom access. Among the challenges derived from the above random access schemes,
we focus on how a user equipment (UE) performs self-uplink synchronization with
the gNB to resolve preamble collisions, which occur when multiple UEs transmit the
same preamble. Specifically, we propose a framework that helps the UE to estimate

the timing advance (TA) command using a deep neural network (DNN) model and to

2 -':l:-ﬁ-! _k‘l_'!l _ -I_-l i e ]



determine the TA value.

HD 3D map and real time HD video streaming for connected cars are require high
data rate transmission. 5G NR utilize millimeter Wave (mmWave) spectrum providing
wide bandwidth to support these services. At such high frequencies compared to sub-
6 GHz, propagation properties are different, with less diffraction, higher penetration
losses, and in general higher path losses. This can be compensated for by having more
antenna elements both at the transmitter and receiver, to be used for narrower antenna
beams. In order to overcome degradation, analog beamforming is introduced, which
forms a beam at specific locations through antenna processing in the analog domain.

The ultimate task of beam management is, under these conditions, to establish and
retain a suitable beam pair, that is, a transmitter-side beam direction and a correspond-
ing receiver-side beam direction that jointly provide good connectivity. However, the
current beam management determines the beam pair considering only the link between
the transmitter and the receiver. Therefore, we propose a new beam adjustment method,

which control beam pair after beam adjustment to coordinate interference.

1.2 Overview of Existing Approach

A number of random access procedures for MTC devices have been studied [1]. The
authors in [2] proposed prioritized random access with dynamic access barring to sup-
port various quality-of-service (QoS). In [3], the authors proposed a new random ac-
cess scheme considering characteristics of RACH structure for MTC devices defined
in 3GPP. These approaches decrease latency for random access by reducing preamble
collision probability during random access. Although two-step random access spec-
ified in 3GPP [4] reduces the procedures from four to two, there is still preamble
collision problem when the number of UEs trying to random access increases.

In general, TA estimation for a UE is performed at gNB based on the time of arrival

of random access preamble. The authors in [5] proposed spatial averaging-based TA



estimation at gNB to support initial random access in high user density scenarios.
In 5G NR, accurate knowledge is a key requirement for services such as emergency
and autonomous driving. Therefore, 3GPP specified positioning support for 5G NR,
and several solutions are provided [6]. However, the proposed solutions use addition
reference signals for measuring time difference of arrival of signals.

As the mmWave network becomes denser, co-channel interference becomes a fac-
tor limiting performance [7]. To overcome this, many studies have been conducted
to overcome interference through scheduling by dividing frequency resources or time
resources [7], [8]. However, since this approach uses time-frequency resources sepa-
rately, it may not be possible to obtain the maximum throughput performance. In addi-
tion, since most of the previous studies were assumed to be omni-directional receivers,

the environment, which is affected by interference, was artificially created.

1.3 Main Contributions

1.3.1 RAPID: Two-Step Random Access

We propose a contention resolution-based random access (RAPID), which is complete
random access procedures using two messages.

Contributions of RAPID are summarized as follows:

* We propose a new random access procedure, RAPID, for delay-sensitive UEs to

reduce the uplink latency.

* We develop access pattern analyzer (APA) which predicts traffic characteristics

of UEs to efficiently use radio resources while UEs perform RAPID procedure.

* Markov chain model is developed to analyze random access load of random
access procedures. We also develop an optimization problem to find the optimal

number of preambles for RAPID through the analysis.



¢ We evaluate latency and random access load of RAPID through system-level
simulation, and validate that the proposed scheme outperforms state-of-the-art

technologies.

With these contributions, the RAPID can be used for delay-sensitive MTC devices.

1.3.2 EsTA: Self-Uplink Synchronization

To help a UE to determine its own TA value, we propose EsTA, a framework helps
a UE to determine its own TA value. Specifically, we design EsTA to achieve the
following goals: (a) it estimate the location of UE coarsely (TA command) to determine
TA value. (b) it estimate the TA command by only using reference signal received
power without other contexts.

Two key contributions of this chapter can be summarized as follows:

* We tackle the preamble collision problem cause by recent 2-step random access

schemes.
* We propose a framework for TA command estimation using a DNN model and
TA value determination for each UE.
1.3.3 1IBA: Interference-Aware Beam Fine Adjustment

To coordinate interference in SG mmWave networks, we propose IBA, a interference-
aware beam adjustment.

We claim the following major contributions:

* We propose a interference-aware beam adjustment to coordinate interference in

5G mmWave networks.

* We reduce search space of beam pairs for IBA so that the additional adjustment

is done as soon as possible.



1.4 Organization of the Dissertation

The rest of the dissertation is organized as follows.

Chapter 2 presents RAPID, contention resolution-based random access procedures
using context ID. RAPID completes the random access procedure by exchanging two
messages using access stratum (AS) context ID of UE. We then develop an optimiza-
tion problem to obtain the number of preambles for RAPID based on random access
load analysis. Next, we provide simulations and mathematical analysis considering
mMTC devices,and demonstrate that RAPID can support delay-sensitive UEs by sat-
isfying more strict latency requirement.

In Chapter 3, we present EsTA, a self-uplink synchronization framework. First,
we introduce not only 2-step random access defined 3GPP but also recent literature to
tackle the preamble collision problem. Next, we describe the self-uplink synchroniza-
tion framework that allow a UE to determine it TA value using DNN model.

Chapter 4 presents IBA, a beam adjustment method that coordinates interference
in 5G mmWave networks. First, we present overall procedures of IBA and challenges
in perspective of search space size of beam pairs. We then look at how to reduce
the search space of beam pairs during IBA. Next, we provide simulation results and
demonstrate that IBA can increase throughput by reducing interference.

Finally, Chapter 5 concludes the dissertation with the summary of contributions

and discussion on the future work.



Chapter 2

RAPID: Contention Resolution-based Random Access

Procedure using Context ID for IoT

2.1 Introduction

In recent years, 3GPP mobile communication systems have evolved in a different di-
rection than ever before in order to provide services for MTC devices [9]. With the
development of various services such as eHealth, smart city, and smart factory, the
number of MTC connections is expected to grow to 3.3 billion by 2021 [10]. In light
of this prediction, 3GPP specifies mMTC as a new use case of the 5G communication
systems [11].

MTC devices are battery powered and may be located out of people’s reach. There-
fore, reducing power consumption of MTC devices is essential to extend their lifetime.
In long term evolution-advanced (LTE-A) system, if a UE does not perform any oper-
ation for certain amount of time, gNB releases connection with the UE, i.e., releases
radio resource control (RRC) connection. The connection between gNB and core net-
work for the UE is also released. This state is called RRC_IDLE state. The UE in
RRC_IDLE state transits to RRC_CONNECTED state to transmit or receive data, by

involving a number of message exchanges. However, such transition incurs large ran-
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Figure 2.1: Uplink packet transmission in RRC_INACTIVE state and its latency com-
ponents.

dom access load for MTC UEs, which frequently transmit small size packets. There-
fore, a new RRC state, i.e., RRC_INACTIVE state, is proposed as a primary sleeping
state prior to RRC_IDLE state [12, 13], and is included in the 3GPP standards [14].
Fig. 2.1 shows uplink packet transmission when a UE is in RRC_INACTIVE
state. At time t;, an uplink packet is generated in the UE. Because the UE is in
RRC_INACTIVE state, random access procedure is needed to establish a RRC con-
nection. If gNB receives the packet successfully at time ¢, uplink latency' is simply
computed as to — t;. We can divide uplink latency into two parts. Control plane (CP)
latency is the amount of time to transit from RRC_INACTIVE to RRC_CONNECTED
state. Therefore, ¢3 is the time when random access procedure is completed. user
plane (UP) latency is the amount of time required for transmitting packets when the
UE is active, i.e., in RRC_CONNECTED state. The contention-based random access
defined in LTE-A increases CP latency as the number of UEs increases. This is because
many UEs simultaneously attempt contention-based random access, thus resulting in

a preamble collision problem.

'In this paper, we observe the uplink latency only in the radio access network (RAN), i.e., between
UE and gNB.




In this paper, we propose RAPID, a novel random access procedure to support
delay-sensitive UEs by reducing CP latency. In addition, we develop APA that works
in the RRC layer. APA determines traffic characteristics of MTC UEs for gNB to
efficiently use radio resources during RAPID operation.

The key idea beneath RAPID is to reduce the number of message exchanges from
four to two. One of the components to achieve this purpose is allocating preambles for
RAPID by decreasing preambles for contention-based random access.? For each pro-
cedure, random access load needed for random access increases according to the de-
crease of the number of preambles for each random access. For this reason, when UEs
performing contention-based random access or RAPID coexist, it is important to deter-
mine the number of preambles for RAPID. Therefore, we analyze random access load
of random access procedures, i.e., contention-based random access and RAPID, using
a Markov chain model to determine the optimal number of preambles for RAPID (or
preambles for contention-based random access).

In this chapter, we claim the following four major contributions.

* We propose a new random access procedure, RAPID, for delay-sensitive UEs in

RRC_INACTIVE state to reduce the uplink latency.

* We develop APA which predicts traffic characteristics of UEs to efficiently use radio

resources while UEs perform RAPID procedure.

* Markov chain model is developed to analyze random access load of random access
procedures. We also develop an optimization problem to find the optimal number of

preambles for RAPID through the analysis.

* We evaluate latency and random access load of RAPID through system-level simu-
lation, and validate that the proposed scheme outperforms state-of-the-art technolo-

gies.

The sum of the number of preambles for RAPID and contention-based random access is fixed.



The rest of the chapter is structured as follows. In Section 2.2, we introduce the
RRC states, random access procedure in LTE-A, and uplink latency addressed in this
chapter. We also discuss the related work. RAPID and APA are detailed in Section 2.3
and Section 2.4, respectively. In Section 2.5, we analyze random access load of random
access procedures, and develop an optimization problem to find the number of pream-
bles for RAPID. We then evaluate the performance of RAPID via simulation under the
environment where mMTC UEs exist in Section 2.6. Finally, the paper concludes in

Section 2.7.

2.2 Background

2.2.1 RRC State

In the LTE-A system, only two RRC states are defined, i.e., RRC_CONNECTED and
RRC_IDLE states. If UE is in RRC_IDLE state, RRC connection must be established to
allow the UE to transfer data to gNB. Therefore, uplink latency required in RRC_IDLE
state is larger than in RRC_CONNECTED state. gNB uses an inactivity timer to man-
age the RRC state of each UE.

Fig. 2.2 shows RRC states and characteristics of each state in the 5G system. In
the 5G system, RRC_INACTIVE state is introduced [14]. The main characteristics of
the new state are as follows. First, while the RRC connection is released, both UE
and gNB keep the context information of UE’s RRC connection, such as UE capa-
bilities and security context. When releasing the RRC connection, the gNB allocates
an Access Stratum (AS) context ID to the UE in order to activate context informa-
tion when resuming the RRC connection [15]. Second, connections between the gNB
and core network for UE remain alive. These properties provide a way to reduce the
latency for establishing the RRC connection when UE is in RRC_INACTIVE state.
Since RRC_INACTIVE state is used as the primary sleeping state, the gNB should

have a new inactivity timer to convert the RRC state from RRC_CONNECTED to

10 Ao LH
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Figure 2.2: RRC state machine and state transition in the 5G system: Solid rectangles
and arrow represent RRC states and state transition of the LTE-A system, respectively.
Dashed rectangle and arrows are newly added in the 5G system.

RRC_INACTIVE.

2.2.2 Random Access Procedure

In the LTE-A system, there are two types of random access procedures, i.e., contention-
based and contention-free [16].

Contention-based random access: This procedure is initiated by a UE when a gNB
does not allocate a preamble to the UE. It consists of four steps, and details are as

follows.

1. Preamble transmission: The UE transmits a preamble randomly selected from
a set of preambles for contention-based random access. The time when the UE
transmits the preamble is determined by a list of allowed time slots allocated by the

gNB.

2. RAR: The gNB, successfully receiving the preamble, transmits random access re-
sponse (RAR) including timing advancement value for adjusting the uplink syn-
chronization and uplink resource allocation information for a RRC connection re-
sume request message. The gNB and the UE use random access-radio network tem-
porary identifier (RA-RNTI) to transmit and receive RAR, respectively. Specifi-

cally, when transmitting (or receiving) RAR, the gNB scrambles (or the UE de-
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scrambles) bits for error check of control channel with RA-RNTI which is deter-
mined by time-frequency resources of preamble transmitted by the UE. The gNB
also includes the received preamble ID in the RAR so that the UE can identify
whether the RAR is for itself or not. If the UE does not receive the RAR for certain
amount of time, i.e., the size of RAR window, the UE tries random access again after

performing a backoff procedure.

3. RRC connection resume request: The UE transmits the RRC connection resume
request message using uplink resources allocated through the RAR. If two or more
UEs simultaneously send the same preamble, UEs transmit RRC connection resume
request messages using the same uplink resources. This is because the UEs have the
same RA-RNTI, and thus receive the same RAR. In this case, it is difficult for the

gNB to successfully decode RRC connection resume request message of each UE.

4. RRC connection setup: If the gNB successfully receives the third message, it sends
a RRC connection setup message including cell-RNTI (C-RNTI) to identify the UE
in the cell. As UE successfully receives the fourth message, the random access
procedure is completed. However, if the UE does not receive the fourth message for
certain amount of time, i.e., the value of contention resolution timer becomes zero,

the UE tries random access again.

Contention-free random access: This procedure is performed when the gNB assigns
a preamble to the UE transitioning to a RRC_INACTIVE state. The preamble is se-
lected from a set of preambles for contention-free random access. The gNB that suc-
cessfully received the preamble transmits the RAR as in the case of contention-based
random access. Contention-free random access is completed through exchanging two

messages because the preamble does not collide.
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Table 2.1: Latency components of contention-based random access.

No. Description Time (ms)

1 Average delay due to RACH scheduling period 0.25

2 RACH preamble transmission 0.5

3 Preamble detection and RAR transmission 1.5

4 UE processing delay 1.25

5 RRC connection resume request transmission 0.5

6 gNB processing delay 1

7 RRC connection setup transmission 0.5

8 UE processing delay 3
Total latency 8.5

2.2.3 Uplink Latency in RRC_INACTIVE State

In RRC_INACTIVE state, when an uplink packet is generated, UE must perform ran-
dom access for resuming the RRC connection. Table 2.1 shows contention-based ran-
dom access procedure and its latency components [17]. We set the transmit time inter-
val (TTT) value to 0.5 ms.? In this case, the CP latency becomes 8.5 ms assuming that
the processing time is reduced by one-fourth compared with the LTE-A [17]. With this
assumption, the UP latency* becomes 3 ms. Therefore, the uplink latency is 11.5 ms. If
the number of UEs performing contention-based random access increases, the uplink
latency even increases further due to preamble collisions, thus increasing the latency
requirement that can be satisfied. In the case of contention-free random access, be-
cause the procedure is completed in two steps, uplink latency becomes 6.5 ms, i.e.,
the CP latency is 3.5 ms (No. 14 in Table 2.1) and the UP latency is 3 ms. However,
it is impossible for a large number of UEs to perform contention-free random access

because the number of preambles is required to be equal to the number of UEs.

3We assume subcarrier spacing is 30 kHz which is doubled compared with the LTE-A [18]. Therefore,
TTI value is 0.5 ms that is halved compared with the LTE-A.

“The UP latency value is the time from when UE transmits the buffer status report (BSR) message to
when gNB successfully receives the data [19].
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2.2.4 Related Work

In recent years, many studies have proposed random access procedures for MTC de-
vices [1]. We review two representative random access schemes [2], [3]. We also intro-
duce 2-step random access discussed in 3GPP temporary documents [20], [21]. Lastly,
we discuss sparse code multiple access (SCMA) [22], one of non-orthogonal multiple
access schemes.

Prioritized random access: The main idea of this technique is allocating different
random access resources for each access class and preventing a large number of UEs
from performing random access procedure at the same time. Specifically, it is possi-
ble to reduce the competition by allocating different subframe numbers according to
each UE’s class. Based on this idea, prioritized random access with dynamic access
barring (PRADA) is proposed [2]. PRADA is proven to be superior to access class
barring [23] in terms of random access success probability and average latency. How-
ever, since PRADA does not reduce contention among UEs in the same access class,
it is difficult to satisfy the latency requirement of delay-sensitive UEs.

Random access for low cost-MTC: 3GPP RAN working group introduced a new
random access channel (RACH) structure for low cost-MTC (LC-MTC) [3]. RACH
for LC-MTC consists of multiple narrow band channels. Each channel has a pair of
physical RACH (PRACH) and downlink control channel. The authors of [3] propose
a new random access scheme using characteristics of the new RACH structure. In this
scheme, using different PRACHSs, multiple UEs can transmit the same preamble with-
out collision. Also, gNB transmits separate RARs through multiple downlink control
channels to reduce the collision of uplink resources. Although this scheme achieves
low CP latency by reducing collision probability, it requires four message exchanges
which are identical to contention-based random access. Therefore, we reduce the num-
ber of massage exchanges from four to two in RAPID to achieve lower CP latency.
2-step random access: In the 3GPP RAN working group, simplified contention-based

random access with 2-step is defined [4]. 2-step random access has the advantage of
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reducing latency by simplifying the existing contention-based random access proce-
dures. In the first step of 2-step random access, a UE transmits a preamble with pay-
load, i.e., control message or data, using uplink resources randomly selected by UEs.
In this case, however, it is possible for the first-step messages from different UEs to
collide. Especially, because the probability of collision increases as the number of
UEs increases, the 2-step random access proposed in [20], [21] cannot support delay-
sensitive UEs. The difference between RAPID and 2-step random access is whether
the collision problem can be resolved in two message exchanges. That is, we solve the
collision problem in RAPID to achieve lower CP latency.

SCMA: Uplink grant-free transmission based on SCMA allows UEs to transmit data
in an arrive-and-go manner. Different UEs may use the same radio resource, but use
different codebooks and pilot sequences. In this case, a gNB is able to detect the
data as long as different codebooks (or pilot sequences) are used [22]. For SCMA
operation, uplink synchronization should be maintained with RRC connection estab-
lished. However, for UEs in RRC_INACTIVE state, RRC connection is released and
uplink synchronization is also lost. Therefore, SCMA is not appropriate for UEs in

RRC_INACTIVE state.

2.3 RAPID: Proposed Random Access Procedure

2.3.1 Overview

We propose RAPID to overcome the limitations of the conventional random access
procedures which are mentioned in Section 2.2.3. The key feature of RAPID is to com-
plete the random access procedure by exchanging only two messages. RAPID enables

this by using AS context ID for the following two procedures:
* Selection of the preamble and the set of allowed slot numbers to transmit preamble

* Scrambling of error check bits for control channel when sending RAR
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Table 2.2: List of frequently-used parameters.

Symbol Description

n(S) Total number of preambles

n(Scp) | Number of preambles for contention-based random access
n(Ser) Number of preambles for RAPID

id AS context ID
pid Preamble ID
% UE index
I Received uplink packet index

Tp RACH period
Tind Offset index
tTTI TTI value

tup UP latency
tr Inactivity timer value for transition to RRC_INACTIVE state

tr—1 Reception time of the r-th uplink packet

Nep The number of UEs performing contention-based random access
Ner The number of UEs performing RAPID
Neq The number of UEs whose traffic type is ED among N, UEs

In the proposed scheme, different UEs would try random access by selecting the
same preamble in the same slot. However, contention can be resolved by sending dif-
ferent RARs scrambled by AS context ID of each UE. Therefore, RAPID is a con-
tention resolution-based Random Access Procedure using AS context /D. The detailed
description of RAPID is provided in the following subsections. Table 2.2 provides the

list of parameters used in this paper along with their definition.

2.3.2 Criterion of Applying RAPID

The existing random access cannot satisfy the latency requirement of a UE according
to the number of UEs served by a gNB. Therefore, the gNB should determine the ran-
dom access method for the UE in consideration of latency requirement and the number
of UEs served by the gNB. The gNB notifies this information to the UEs via the AS
context ID. That is, the AS context ID includes information whether to apply RAPID
or not. For example, if the most significant bit of AS context ID° is zero, RAPID

should be used. Otherwise, the contention-based random access procedure should be

>We assume that AS context ID consists of enough bits to cover the number of UEs we handle.



Preamble ID: 0 49 50 59 60 63

n(S)=64 Contention-based Contention-free RAPID

(a) Preamble classification

1slot=0.5ms Slot number

0 1 2 3 4 5 6 7 8 9

peﬁéjc(%)* in dC;f;s(eTtmd) Set of allowed slot numbers
1 1 0,1,2,3,4,56,7,8,9
2 1 0,2,4,6,8
2 2 1,3,5,7,9
3 1 1,4,7
3 2 2,58
3 3 3,6,9

*The unit of RACH period is the number of slots

(b) RACH period and offset index

Figure 2.3: Preamble set and RACH time resources.

used. We assume that contention-free random access procedure is not used for UEs in

RRC_INACTIVE states.

2.3.3 Preamble Set and RACH Period Allocation

A UE selects a preamble and a set of allowed slot numbers to transmit preamble using
AS context ID. For this purpose, gNB must inform UE of n(S.,) representing the
number of preambles for RAPID and T, representing RACH period using a broadcast
message. The RACH period is the interval between slot numbers that UE can transmit
the preamble. Fig. 2.3(a) shows an example of preamble allocation to support RAPID.
We consider a total n(,S) of preambles where n(S) = 64 and allocate 10 preambles for
contention-free random access [2]. In addition, we allocate four preambles for RAPID.

Fig. 2.3(b) represents sets of allowed slot numbers according to each 7;,. We consider
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three types of 7}, values. Offset index, denoted by 7},q, is defined to distinguish the
sets of allowed slot numbers when 7, is fixed. For example, when T, = 3, T},q can

range from one to three.

2.3.4 Preamble Transmission

Using AS context ID, UE selects a preamble ID, denoted by pid, from the given pream-
ble set and determines a offset index to transmit the selected preamble.

Preamble selection: Using n(.S) and n(S.;) broadcast by gNB, the preamble ID of
the ¢-th UE is calculated by

pid(i) = n(S) — 1 — (id(7) — 1) mod n(Se), .1)

where id(7) represents the i-th UE’s AS context ID in decimal and mod is modulo
operation. The zero value is not assigned to id(7), and each pid(7) is one of the values
from n(S) — n(Ser) to 63. Since UE selects the preamble using AS context ID, gNB
does not need to use additional resources to inform the preamble ID that UE will use
in RRC_INACTIVE state.

Offset index selection: Using n(S.,) and T}, broadcast by gNB, the offset index of the
t-th UE is given by

(id(i) — 1) mod (n(Ser)T})
n(Ser)

Thua(i) = +1. (2.2)
The numerator value of the floor function input can have an integer from 0 to n(Se; )1, —
1. If we divide this value by n(S.;) and apply the floor function, the output of the func-
tion has an integer value from O to 7,,—1. Therefore, we add one at the end to determine
Tina (i) in (2.2). The UE transmits the selected preamble in the slot number closest to a
slot in which traffic is generated among the set of allowed slot numbers corresponding

to T‘ind .
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UE gNB

| 6

Inactivity timer Time (ms) 560 561 562 563
[RRC_CONNECTED|  — time out elslolilz2]3]4]5]
” A
Allocate AS context ID (id=13) Slot number Preamble reception (t=1 +T-a)
| RRC_INACITVE | Step one Step two
. X . Traffic characteristics
Preamble (pid=63) id | pid| T - p
Type | ¢ T a
RAR for id=13 2l b2 - 1 - 1 -
6 2 ED - - -
13 1 PU 512 50 1
RRC_CONNECTED | o] |3 [PuTs25] 50 |05
RRC connection resume 21 3 PU | 530 | 49.8 | 1.25
complete with BSR 1 1 PU | 515 | 51.3 ] 0.75

Figure 2.4: Overall RAPID procedure of UE whose AS context ID is 13 and process
of selecting UEs to receive RAR.

2.3.5 RAR Transmission

After receiving preambles for RAPID, gNB transmits one or more RARs® to candidate
UEs that could send the preambles received by gNB. When transmitting RARs for
each UE, gNB scrambles error check bits of control channel for each RAR with id of
each candidate UE, respectively. Therefore, UE can successfully receive the RAR by
descrambling error check bits of control channel with allocated id. It is important to
send RARs to UEs having high probability of sending the preamble. Therefore, the
gNB should select UEs to receive the RAR through two steps as shown in Fig. 2.4. In

this example, we consider n(S¢;) = 4 and T}, = 3.

1. Step one: The gNB has a table that contains allocated AS context ID, preamble
ID, offset index, and traffic characteristics. The gNB filters UEs that could send the

preamble based on the received preamble and the slot number at which the preamble

8Since MTC UEs covered in this paper are fixed in position, timing advancement value obtained when
UE first accesses to gNB is applied. To this end, the timing advancement value of UE should be stored in
AS context.



is received. In Fig. 2.4, for example, the preamble with pid = 63 is received at slot
number one, and hence, UEs whose id = 1,13 could send the preamble (Shaded

region in Step one columns in Fig. 2.4).

2. Step two: In this step, the gNB additionally exploits the traffic characteristics to
predict UEs more precisely. For this purpose, we develop APA to estimate the traf-
fic characteristics, i.e., traffic type, estimated traffic period, and margin value. We
consider two traffic types, i.e., periodic update (PU) and event driven (ED) [24]. The
PU traffic continuously generates uplink packets with a constant period, 7. It should
be noted that T is a separate parameter not related to RACH period, i.e., T},. The ED
traffic follows a Poisson process traffic model with an arrival rate, Aoq. In case of
the PU traffic, the gNB exploits T representing estimated traffic period and « rep-
resenting margin value obtained from APA. If preamble reception time, denoted by
t, satisfies the equation below, the gNB transmits RAR for that UE (Shaded region

in Step two columns in Fig. 2.4).

t>t+T—a, (2.3)

where ¢’ is the most recent time at which the gNB receives the preamble for a success-
ful random access procedure. In case of ED traffic, the gNB always transmits RAR
because of the difficulty of predicting traffic characteristics. In Fig. 2.4, the gNB trans-
mits the RAR to UE whose id is 13 because its traffic characteristics satisfy (2.3). The
detailed procedures that APA obtains the traffic characteristics are further described in
Section 2.4.

UEs who perform RAPID do not carry out backoff procedure if random access is
failed due to channel error or APA operation error. This is because the latency require-

ment of the delay-sensitive UE should be satisfied using RAPID procedure.
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2.3.6 AS Context ID Allocation

gNB allocates AS context ID (id) to UE when its inactivity timer value becomes zero
as shown in Fig. 2.4. Allocating id to a specific UE means that gNB determines pream-
ble ID (pid) and offset index (7;,q) the UE will use. Therefore, the way to allocate id
should reflect the following two elements for reducing random access load and satis-

fying latency requirement.
e Traffic type of UE

* Slot numbers at which gNB receives uplink packets from UE in RRC_CONNECTED

state

If PU traffic UE and ED traffic UE’ are allocated the same preamble, random
access load increases because gNB always sends RAR when receiving preamble al-
located to the ED traffic UE. Therefore, gNB should allocate different preambles de-
pending on the traffic type of UE. For example, all PU traffic UEs are allocated a com-
mon preamble, and each ED traffic UE is randomly allocated one preamble among the
remaining n(Se;) — 1 preambles.

In case of PU traffic UE, slot numbers at which gNB receives uplink packets are
also considered. For instance, when 7;, = 3, the maximum waiting time for PU traf-
fic UE to transmit preamble is four slots, i.e., 2 ms when ¢1T7 is 0.5 ms. This value
could affect the satisfaction of latency requirement for delay-sensitive UEs. There-
fore, gNB selects 7,4 based on slot numbers receiving uplink packets when UE is
in RRC_CONNECTED state. The procedure of determining 7j,q is detailed in Sec-
tion 2.4.4. Otherwise, in case of ED traffic UE, because it is difficult to predict traffic
characteristics, gNB randomly allocates candidate values of 7},4 to UEs.

In short, when gNB receives uplink packets from a UE, gNB first determines pid

and 73,4 based on the UE’s traffic type and the slot numbers at which the uplink packets

"PU (or ED) traffic UE is the UE whose traffic type is the PU (or ED).
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are received, respectively. After that, gNB randomly selects id among the candidate

IDs mapped to the given pid and Tj,q.

2.3.7 Number of Preambles for RAPID

As the number of preambles for RAPID, i.e., n(S.;), increases, fewer ED traffic UEs
are allocated to the same pid and 7i,q. Therefore, random access load caused by
both unnecessary RAR transmissions and unnecessary uplink resource allocation for
RRC connection resume request messages decreases as n(Sc;) increases. On the other
hand, random access load for contention-based random access increases by increasing
n(Ser). This is because the total number of two types of preambles, i.e., n(Sc,) +
n(Se;), is fixed at 54. For a given scenario, it is therefore of great importance to de-
termine the optimal n(S;) considering such trade-off relationship. For this purpose,
in Section 2.5, we analyze random access load of two random access procedures, i.€.,
contention-based random access and RAPID, and develop an optimization problem to

determine 7n(Sc;).

2.4 Access Pattern Analyzer

2.4.1 Overview

APA predicts traffic characteristics of each UE to help gNB allocate AS context ID to
UE and send RAR messages during RAPID operation. As mentioned in Section 2.3.2,
the gNB determines whether RAPID is applied to each UE in consideration of latency
requirement. APA initially estimates the traffic type of each delay-sensitive UE, so
that we define an initial phase in APA. The dashed arrows in Fig. 2.5 represent the
operation in the initial phase. The traffic type is estimated based on the uplink packet
reception time (Section 2.4.2). Ti,q should be determined to allocate AS context ID.
For this purpose, we define offset index decision procedure (Section 2.4.4). After the

initial phase, if the traffic type is PU, APA estimates the traffic period and margin value
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Figure 2.5: Overall APA operation.

of the corresponding UE (Section 2.4.2 and 2.4.3).

2.4.2 APA Operation

During the initial phase, UEs are in RRC_CONNECTED state, and APA obtains recep-
tion time values of uplink packets. Algorithm 1 shows the detailed procedure estimat-
ing the traffic type. At first, RRC inactivity timer for transition to RRC_INACTIVE
state, denoted by ¢, is set to Tipi. APA stores the time value of ¢,_1(i) when gNB
receives the 7-th uplink packet from the ¢-th UE (line 5). To estimate the time to re-
ceive the preamble after the initial phase, we keep track of the r-th preamble reception
time using ¢/, (#) which is calculated using ¢,_1(¢) (line 6). Specifically, UP latency,
denoted by ¢, is subtracted from the ¢,_1(¢), and then TTI value, denoted by t71,
is added to indicate the preamble reception time. When more than two uplink pack-
ets from the i-th UE are received, i.e., r > 2, the estimated traffic period of the ¢-th
UE, denoted by T, (7), is calculated by linear regression (L R) using a normal equa-

tion (line 9) [25]. For 7 uplink packets of the i-th UE, the normal equation is defined
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Algorithm 1 APA operation for the i-th UE.

Initialize:
1: t7 < Tint, 7 < 0
During initial phase:

2: while ¢t; # 0 do
3 if New uplink packet is received then
4 r—r+1
5: tr—1(i) < current time
6 t;fl(i) = tr_l(i) — tup + t1T1
7 if r > 2 then
8 6(3) = (1), -t (D))"
9: t6(i), Tr—1(i) < LR(r,t(3))
10: end if
11: if r = Ry, then ~
12: o = Var(T1(i), - -, Try,—1(%))
13: if 02 < §;;, then
14: UE has PU traffic type
15: k* <~ MAS(t(i), Rn) > Algorithm 2
16: else
17: UE has ED traffic type
18: end if
19: tr <17
20: break
21: end if
22: else
23: tr < tr —to1r1
24: end if

25: end while
26: if r < Ry, then
27: UE has ED traffic type, t; < 17
28: end if
After initial phase for PU traffic UE:
29: if Preamble for the i-th UE is received then

30: ttemp (i) ¢ current time

31: if Random access succeed then
32: r—r—+1

33: 1 (i) < ttemp(7)

) ) T
() = (60t (1)
35: t6(1), Tr—1(i) < LR(r,t(7))
36: end if
37: end if
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O = LR(r t(i)) = (X7X) "Xt (i),

10 (i)

11 th (i (2.4)
X = o= | T

1 r—1 (i)

where (-)7 and (-)~! represent transpose and inverse of a matrix, respectively. The
result of LR, denoted by ©, is a 2 x 1 vector, which is (f{)(i), Tr,l(i)>T, where #}(i)
is the estimated initial uplink packet reception time of the ¢-th UE.

When the number of received packets becomes Ry}, the traffic type is estimated
based on the variance of the stored estimated traffic period values (lines 11-18). If
the UE’s estimated traffic type is PU, Algorithm 2 is called to determine 73,4 of the
UE (line 15). After the traffic type of UE is estimated, t; is set to 77, which is much
smaller than 7Tjy;;. This is for making the UE go to RRC_INACTIVE state. If the traffic
type of UE can not be estimated until the timeout of initial inactivity timer, whose
value is set to Tiyit, the UE is considered having ED traffic type (line 27).8

After the initial phase, for the PU traffic UE, APA updates the estimated traffic
period and the estimated initial uplink packet reception time (line 35). For this purpose,
the time when UE receives preamble in the successful RAPID procedure is stored to

t_ (line 33).

$Many MTC applications have periodic traffic with 1" values much longer than Tipnit /Ren. T could
be in the order of hours, days, or even months. By the way, these applications have latency requirements
that can be supported by contention-based random access [26].
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2.4.3 Margin Value

Accurate period estimation is difficult due to channel errors. Therefore, a margin value

is required and it is given by

, R=>2, 2.5

t;*—l — (l% + (r— 1)TR_1>

1 R
QORp—1 = R Z
r=1

where ff) is the output of (2.4) and R is the number of ¢/._; samples. If we have a total

/
r—1»

of R samples of ¢ generalization of (2.3) is given by

t>th  +Tr1—ar, R>2. (2.6)

2.4.4 Offset Index Decision

As mentioned in Section 2.3.6, gNB determines a UE’s pid using the traffic type ob-
tained from APA. For ED traffic UEs, gNB randomly selects one of candidate values of
Ting. For PU traffic UEs, gNB should determine 7;,4 considering slot numbers receiv-
ing uplink packets. For this purpose, gNB needs to know a set of allowed slot numbers
in which UE will transmit preamble. We refer to this set of allowed slot numbers as
the most accessed set, denoted by sgx.

Algorithm 2 shows how to determine k* using t in (2.4). Firstly, we define s
(where 1 < k < T,,) to investigate frequency of each set (line 2). In case of T}, = 1,
because there is only one offset index, k* is one (line 4). If T}, = 2 or 3, for all the
values of ¢/._, in t, we can obtain value k, which is the index of the set containing the
received slot number (lines 6-25). Especially, when T}, = 3, if the received slot number
is zero, i.e., temp is zero, k = 1 is appropriate to make waiting time minimum (line 16).
Lastly, £* is the value of k with the largest value s (line 27). We name this algorithm
most accessed set (MAS), which is a procedure to find 7}, = £*. In addition, a proper

Ry, value should be chosen to obtain £* according to the value of 7}, e.g., when
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Algorithm 2 MAS: procedure to determine k*.

Input:

1: t, Rin
Initialize:

2: s < OforVk (1 <k <T))
Call by Algorithm 1

3: switch 7}, do
4: case 1 break
5: end case
6: case 2
7: for r + 1...R;;, do
8: k <+ (t;~71/tTTI — 1) mod Tp +1
9: S < s+ 1
10: end for
11: end case
12: case 3
13: for r < 1...R;, do
14: temp < t;_l/tTTI -1
15: if temp = 0 then
16: k+1
17: else
18: k < temp mod T,
19: if £ = 0 then
20: k+ 3
21: end if
22: end if
23: Sp ¢ s+ 1
24: end for
25: end case

26: end switch
27: k¥ = argmax s,
k

T, = 2, Ry, should be an odd number.

2.5 Random Access Load Analysis

We analyze random access load of two types of random access, i.e., contention-based
random access (4-step RA) and RAPID as presented in Section 2.3.7. We define ran-

dom access load as the number of scheduled signals including both the untransmitted



Other Smart factory
applications applications

[ = 4stepRA RAPID |

Figure 2.6: System model.

signals after unnecessary resource allocation and the transmitted signals. We also de-
velop an optimization problem to determine the number of preambles for RAPID, i.e.,

n(Ser), using the analysis result.

2.5.1 System Model

We consider a scenario whereby many MTC UEs in RRC_INACTIVE state transmit
uplink packets. Each UE has one application with one of two types of latency require-
ments, i.e., delay-sensitive or delay-tolerant [27], [28]. As shown in Fig. 2.6, UEs run-
ning smart factory applications are delay-sensitive devices [29]. The UEs with smart
factory applications should use RAPID to meet the latency requirement. The latency
requirements of other applications are delay-tolerant such that UEs with those appli-
cations perform 4-step RA. The UEs performing 4-step RA should succeed random
access procedures within the maximum number of random access opportunities. Un-
der this scenario, we analyze random access load of each random access procedure
to find the optimal number of preambles for RAPID, i.e., n(S¢;). We employ Markov
chain to model each random access procedure. In the proposed model, the following

assumptions are made.
* We assume packet arrival process follows Poisson [30].

* In 4-step RA, physical random access channel is available in every slot [30].
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(a) Model for 4-step RA (b) Model for RAPID

Figure 2.7: Markov chain models for random access procedures.

e In 4-step RA, collision of control messages, i.e., RRC connection request, occurs

with constant and independent probability [31].

» Radio resources used for random access procedures are enough to serve the UEs

trying each random access.’

2.5.2 Markov Chain Model for 4-Step RA

Fig. 2.7(a) shows the Markov chain model for 4-step RA to analyze random access
load, where there are three types of states, i.e., RRC_CONNECTED, RRC_INACTIVE,
and random access procedure states. The state Sy ¢ represents RRC_CONNECTED
state. A UE in this state transmits uplink packets and a gNB operates inactivity timer
of which value is denoted by ¢; for that UE. The state Sy ; represents RRC_INACTIVE
state, where the UE waits for the generation of uplink packet. Rest of the states, Sy, ,,’s
(where 1 < m < M and 1 < n < 4), represent 4-step RA procedure. Index m is the

number of random access attempts, and M is the maximum number of random access

°In LTE system, downlink control channel resources for random access are limited [32]. For MTC
application, however, enough resources for downlink control channel should be guaranteed to improve
the random access performance [3,33].
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opportunities. Index n represents each step of 4-step RA presented in Section 2.2.2.

For a UE in the state Sy ¢, if an uplink packet is generated before the timer value
t1 becomes zero, the UE stays in that state. On the other hand, if nothing happens until
1 becomes zero, a state transition takes place from Sg ¢ to Sp ;. For the UE in the state
So,1, if an uplink packet is generated, the state is transferred from Sy 7 to Sy 1. Since
the packet arrival process follows a Poisson process, inter-packet arrival time follows
an exponential distribution, denoted by X ~ Exp(\.p,), where Ay, is the packet arrival
rate of the UE performing 4-step RA. We can obtain transition probability values for
So.c and So 1 as pc = 1 — e Aeplturtti) and p; = e~ Aeb?TTI respectively. In the m-th
random access trial, if the UE fails to transmit (or receive) message for 4-step RA, the
state is transferred from Sy, ,, to Sy, +1,1. When m = M, if the UE fails, the next state
is So 1.

We define transition probability in each step of 4-step RA as follows.

* pm,1: This value means preamble detection probability, i.e., 1 — ™, where m
indicates the m-th preamble transmission [30], [32]. Even if multiple UEs transmit
the same preamble and collision occurs, the gNB can detect the preamble if at least

one preamble transmission succeeds without channel error.

* py and p4: These values represent successful downlink control messages recep-
tion ratio. For these messages, because gNB uses very low modulation and coding

scheme with high transmission power, we consider p2 = ps ~ 1 [30].10

* p3: This value means successful transmission probability of RRC connection resume
request message. p3 = (1—pco1) (1 —pen ), Wwhere pg, is channel error, can be reduced

to 1 — peol because of 1 — pep = 1 like po and py.

%We validate this value is appropriate by comparing simulation using channel model [34] in Sec-
tion 2.5.6.
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The collision probability, denoted by p..1, is determined as

]Vcb_1 Ncb _ 1

Pcol = Z Tj(l - T)NCb_l_j
i=1 J 2.7)

(- 0mm) )

where Ny, is the number of UEs performing 4-step RA and 7 means the probability
that a UE successfully transmits a preamble in one slot. Eq. (2.7) represents the prob-
ability that when one UE selects a preamble, at least one of the other UEs successfully
transmit the same preamble in the same slot.

We denote 7y, 5, as stationary probability of state Sy, ,,. First, g ; is obtained as

(1 —pc)moc+ mari(l —para)
1—pr
> neo Tz (1 = pn)
1—pr

o] =
(2.8)
+

We can simply calculate 717 = 7o (1 — pr). Next, we define f(m) and g(m) to

represent stationary probabilities of 7, 1 and 7, , (Where 2 < n < 4), respectively.

f(m) = Tm,1
71'0,1(1—]9])7 m:17
=\ f(m — 1)<1 — Pm—1,1 +Pm—-1,1

x(1—pa+ Y3 12hpi(d pz))), m > 2,

:Zﬂ-m,n
n=2
_pmlf +meZHpj

n=2j=2

= pm1f(m 1+ZHPJ

n=2j=2

(2.9)
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Because the sum of stationary probabilities of all states is one, we can obtain the fol-

lowing equation using (2.9).

M 4
mo,c + 7o, + Z Zﬂ'm,n =1,

m=1n=1
M

7700+7r01+z m)+g(m)) =1, (2.10)

m=1

M 3 n
7To,c+7ro,1+2f(m) L+ pma 1+2Hpj =1
m=1

n=2j=2

Eq. (2.10) is the function of p, so that 7y ¢ can be derived in terms of pc.. The
other stationary probabilities of all states are also derived in terms of p.,1. Meanwhile,
7 also represents the proportion of time in successful preamble transmission of the

states Sy, 1 (where 1 < m < M). Therefore, 7 is obtained as

T = Z T 1tTTIPm 1, 2.11D)

Ttot

where T} is the average holding time for all states, i.e.,
M 4
Tior = m0.0To.c + T0sTor + D Y TmnTmn, (2.12)

m=1n=1

where T}, ,, is the holding time for each state .Sy, ,,. Tp ¢ is calculated by [35, Eq. (9)]

To,c = E[min (X, tup + t7) |

:/ P(min (X, typ + t7) > z)da
0

tupttr tup+tr
= / P(X > x)dx = / e ATy
0 0

_ 1 (1_€7xcb(tup+t1)>
>\Cb ’

(2.13)

where X is a random variable representing inter-packet arrival time. Because preamble
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transmission is possible in every slot, Tg 1 is 711, which is the slot length.

The remaining state holding time values can be calculated using Table 2.1. Each
state holding time consists of two components, i.e., when each step (index n) of the
random access procedure succeeds (p,) or fails (1 — p,,). Therefore, the states .Sy, ,,

with same n have the same holding time value. The holding time of the state Sy, 1 is

T = t111Pm,1 + (t111 + WRAR + BWaye) (1 — P 1), (2.14)

where WraR is the RAR window size, and BWy, is the average value of backoff

window size. The holding time of the state .S, o is written as
Tm,2 = 1.5py + (WRAR + BWan) (1 — pg). (2.15)

The value 1.5 is the time value of preamble detection and RAR transmission (No. 3 in

Table 2.1). The holding time of the state .Sy, 3 is obtained as
Tn,3 = 1.75p3 + (1.75 4+ Wies + BWayg) (1 — p3), (2.16)

where Wi is the contention resolution timer value. The value 1.75 is the sum of UE
processing delay and RRC message transmission time (No. 4-5 in Table 2.1). Lastly,

the holding time of the state Sy, 4 is
T = 4.5ps + (Wres + BWaye) (1 — pa). (2.17)

The value 4.5 contains gNB processing delay, RRC message transmission time, and
UE processing delay (No. 6-8 in Table 2.1).

The value 7 can be obtained by solving system of equations with unknown vari-
ables p.o and 7, i.e., (2.7) and (2.11). Specifically, the right-hand side of (2.11) is
changed to the formula in terms of 7. Then, we select the intersection point with

Yy = T, i.e., left-hand side of (2.11), to obtain 7. Finally, we can calculate p., and
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all stationary probabilities using 7.

2.5.3 Average Random Access Load for 4-Step RA

In 4-step RA, random access load for each state transition is one except for four tran-
sitions, i.e., transitions from Sy ¢ and Sp ;. For each state S, ,,, random access load
is 1 X T npn + 1 X Ty (1 — pn) = Tmn. (When n is one, py, is replaced by py, 1.)

Therefore, the average random access load for 4-step RA is obtained as

M 4

E[La) = Ti)t D T (2.18)

2.5.4 Markov Chain Model for RAPID

Fig. 2.7(b) shows the Markov chain model for RAPID. We only investigate random
access load for ED traffic UEs. This is because one of n(S.,) is always allocated to
PU traffic UEs, while n(S;:) — 1 preambles are used for ED traffic UEs as mentioned
in Section 2.3.7. Thus, changing n(Sc) only affects the random access load for ED
traffic UEs. The model for RAPID also has three types of states like the model for
4-step RA. Because RAPID procedure is completed within two steps, the difference
from the model for 4-step RA is that the maximum value of n is two.

The inter-packet arrival time of ED traffic also follows an exponential distribution,
i.e., X' ~ Exp(Aeq), Where \oq is packet arrival rate of the ED traffic UE. Therefore,
the value of pl is 1 — e~ Aedltur®t1) and p/, is e~ eaTptrT1 Tt should be noted that, in

the exponent of p, we use ng instead of 7},. TZ’, is introduced to represent the average
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interval of state transitions from Sy ; and given as'!

T,  T,=1,2,
=1" P (2.19)

p
10/3, T,=3.

The value of transition probability, po, is the same as the value for 4-step RA,
but p’m1 is different from the value of p,, 1. In RAPID, we consider the number of
UEs allocated to the same offset index and preamble. When & UEs transmit the same
preamble in the same slot, if at least one preamble transmission is successful, the gNB
can transmit one or more RARs. Therefore, in RAPID, preamble detection probability

for a UE transmitting the m-th preamble is obtained as

(2.20)

where Nyg(j) is the average number of UEs transmitting the j-th preamble at the

same time. The value Nyg(j) is

Nug(j) = pe(4)k, (2.21)

where pi(7) is the probability that &k UEs transmit the same preamble simultaneously,

i.e., transmit the j-th preamble transmission at the same time, when one UE transmits

"For the state So,1, a state transition occurs at the allowed slots. In RAPID, however, the number
of slots between two consecutive allowed slots is not always equal to 7},. For instance, if the packet is
generated in slot number seven when T}, = 3 and Ti,q = 1, preamble is transmitted in the next slot
number one.
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a preamble in a particular slot.

= B , k-1
pi(j) = [Nran] —1 < Ly (1—pj1,1)>

o slot
k=1 e (2.22)
T [Nrar]—k
1———(1-p_
% ( slotavg( Pj 1’1)> ’

where NRag is the average number of ED traffic UEs uniformly allocated to the
combinations of offset indices and the number of preambles that ED traffic UEs use,
which is

v o Nea
NRAR = max (Tp ) 1) 1) . (2.23)

slotayg 1s the average number of slots for which one packet is generated for a UE, so
that SlOtan = 1/()\edtTTI)-
Ty.n 1S the stationary probability of state Sy, ,,. As we did in Section 2.5.2, 7 ; is
obtained as
/ (1 _p/c)ﬂé),c +7T§\/[,1(1 _p9\4,1) +7T§\/[,2(1 —p2)

= = : (2.24)
1

and 7} 1 is 7 ; (1 — p}). We also define f’(m) to represent the stationary probability

of state Sy, ;.

ﬂé,[(l_pll)v m =1,
fim) = q f/(m—1)(1 = P14 (2.25)
00, 11(1 = p2)), m > 2.

We also derive the following equation using the property that the sum of all stationary
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probabilities is one.

m=1n=1 (2.26)

Because there is no unknown variable in (2.26), we can obtain 7r6 ¢~ Also, the other

stationary probabilities are calculated.

2.5.5 Average Random Access Load for RAPID

The average random access load for RAPID can be obtained as

M
1 —
BlLed) = 7= > i1 + (26ff(Nrar) — 1)), 2, (227)
tot m=1
where T}, is the average holding time for all states, which is
M 2
Tow =mo.cToc + 700700+ D Y ML (228)
m=1n=1

Té,c is calculated in the same way as T ¢. In the result of (2.13), only Ay, is changed
to Aeq. The holding time for the state S(’]’ ;s T67 ; = tr71T}. The values of holding
time for states S;n’l and S;n’Q are ng’l = tr11Pm,1 + (tr11 + WRAR)(L — Pm,1) and
Tr/n,2 = 2.75py + WraRr(1 — p2), respectively.

For the random access load for state transition from Sy, ; is one, and for state tran-
sition from S,’n’Q, we can exploit the result of (2.23), which is NgaRg. It also represents
the average number of RAR messages a gNB transmits after receiving a preamble.
However, it is not accurate to use the value of Nrag to obtain the average random

access load. This is because when k£ UEs transmit the same preamble in the same slot,

random access load due to multiple RAR transmissions is reduced from one UE’s per-

37 A == 1_'Ié .;t



Table 2.3: System parameters.

Parameter Value Parameter Value
Carrier frequency 2 GHz Avg. backoff window size 5 ms
System bandwidth | 20 MHz | Contention resolution timer | 24 ms
trTI 0.5 ms Tinit 5s
n(Ser) +n(Sep) 54 Tr 5ms
RACH period (7)) | 3 slots Rin 10
RAR window size 2.5 ms Oth 0.1

spective. Therefore, we calculate effective random access load, denoted by eff (]V RAR)>
reflecting the probability that £ UEs transmit the same preamble in the same slot, and

it is calculated by

B REICIR .
eff(Nrar) = > bk s (2.29)
k=1

where pj, is the probability that one or more UEs transmit the same preamble simulta-

neously when one UE transmits a preamble in a particular slot, i.e.,

_ k—1
(NRAR—| -1 T M-1
/ p
= 1—
Dy e 1 SIOtavg nlz::o( pm71)
_ (2.30)

;, M-—1 [Nrar|—k
p

slotayg mz::o(l ~Pm1)

When the average random access load of RAPID is calculated, eff(Ngag) is dou-
bled and then one is subtracted as in (2.27). This means that random access load in-
cludes not only all RAR transmissions but also unnecessary uplink resource allocation
for RRC connection resume request messages except uplink resource allocation for a
UE who transmits a preamble, i.e., this allocation is used for the transmission of an

RRC connection resume request message.

2.5.6 Validation of Analysis

For the validation of analysis, we introduce scenarios that consist of two types of appli-

38 '\-\._i e 1_'Ié )



-
o
™

2 10% %
K -0 o}
< _ - 6 @
— .10l Y 10% ¢
2‘1010 O_-O_—--O"O o0 %
= PRRP-CE o S
o [ R c
8107 104 3
9 o
s —©6— Prob (N= 15,000) g
g 4020 [ —©= Prob (Ve=10,000) =
= --©~+ Prob (Ng=5,000) 102 =
w I Count (N= 15,000) g

‘ ‘ =

-

<
N
@

12 16 20 24 28 32 36
No. of preambles for RAPID
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Figure 2.9: Average random access load for 4-step RA and RAPID (‘Sim’ and ‘Ana’
represent simulation and analysis results, respectively).

cations defined in Section 2.5.1. Table 2.3 summarizes system parameters for analysis
and simulation [36], [37]. Specifically, the parameters related to random access are re-
vised considering the reduced ¢TT1, i.e., 0.5 ms. For the simulation, we create path loss
and shadowing following 3D-urban macro (3D-UMa) model defined in [38]. We also
consider fast fading channel model generated using ITU-R IMT UMa model in [34].
Since we have to find an appropriate number of preambles for RAPID, i.e., n(Sc;),
we first determine the upper bound of n(S,). This is the same way that we find the

minimum number of preambles for 4-step RA to guarantee the reliability of UEs per-
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forming 4-step RA. For this purpose, we observe two values: (i) the failure probability
of 4-step RA for a UE in the analysis and (ii) the total failure count of 4-step RA in the
simulation. The failure probability of 4-step RA is given by

4
Praiteb = Tasa(1 = pma) + > s (1 — pn), (2.31)

n=2

where M is the maximum number of random access attempts, which is 10 [26]. The
total failure count of 4-step RA is the number of failures in all of 10 4-step RA at-
tempts. Fig. 2.8 shows the above two values under the various n(S.;) and the num-
ber of UEs performing 4-step RA, i.e., N,. Traffic arrival rate, i.e., A, is fixed at
1 packet/s. When Ny, is 5,000 or 10,000, the maximum value of total failure count is
under ten, so that we do not present it in Fig. 2.8. When N, and n(S;) are 15,000
and 32, respectively, the value of total failure count starts increasing. That is why, in
certain scenarios, if the number of preambles in 4-step RA, i.e., n(Scp), is smaller
than a certain value, the number of UEs to try random access continues to increase due
to collision, and random access repeatedly fails. Therefore, we determine a threshold
value of the failure probability as 10~7 to prevent the total failure count from starting
to increase. We define the reliability of 4-step RA, which is 1 — P, ¢1,. Therefore,
we only consider n(Sc;) up to the value satisfying the reliability of 4-step RA above
99.99999%.

Fig. 2.9(a) shows the average random access load of 4-step RA for a UE according
to n(Ser). When the number of UEs performing 4-step RA is fixed, we can observe the
average random access load slightly increases as n(Se;) increases. Fig. 2.9(b) shows
the average random access load of RAPID for an ED traffic UE according to n(Sc;).
The number of UEs performing RAPID, denoted by N, is fixed at 1,000. We consider
various ratios of the number of ED traffic UEs to the total number of UEs, which is
Ted = 0.3,0.5,0.7. Traffic arrival rate of ED traffic UE, i.e., Aoq, is 6.8 packet/s [29].

The random access load is reduced as roq decreases and n(S.) increases, because

40 Ao LH



fewer ED traffic UEs are allocated to the same combination of preamble and allowed

slot numbers.

2.5.7 Optimization Problem

We develop the optimization problem for determining n(S;) to minimize the sum of
random access loads of 4-step RA and RAPID for ED traffic UEs. The optimal number
of preambles for RAPID is

argmin E[ch]Ncb + E[Led]Ned
n(Ser)
subject to n(Ser) = 7 (0 < j < 54) (2.32)

—7
Prajiep <1077,

where 10 preambles are assigned for contention-free random access. Therefore, n(S¢;)
can have the value which is from zero to 54. Also, as observed in Section 2.5.6, P, cb
is less than 10~ 7 to satisfy the reliability of 4-step RA above 99.99999%.

Since we cannot represent the objective function by a closed form, the above op-
timization problem should be solved using an exhaustive search. Accordingly, we cal-
culate the values of the objective function depending on n(Sc;), i.e., zero to 54. That
is, the value of the objective function should be calculated up to 55 times. Objective
function consists of two terms. The second term which is (2.27) can be easily obtained
from solving (2.26), which is a linear equation. The first term can be a bottleneck
in terms of computational complexity. As mentioned in Section 2.5.2, the system of
equations composed of (2.7) and (2.11) should be solved. At this time, it can be a
high-order equation depending on N.,. We can obtain computational complexity as
O(n?) by using subdivision algorithm to compute isolating intervals for the real roots
of a n-th order polynomial [39], [40].

The value of the first term in the objective function increases as the number of

preambles for RAPID increases because of increase of the collision probability. On
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Table 2.4: Simulation scenario.

Applications Smart factory | Other types
Traffic type PU ED ED
T or A 50ms | 6.8/s 0.5/s
The number of UEs 1,000 23,000
Ted 0.3,0.5,0.7

the other hand, the value of the second term in the objective function decreases as
the number of preambles for RAPID increases because of decrease of the unneces-
sary RAR transmission. Also, the value of the second term increases as r.q increases
because of increase of unnecessary RAR transmission. The optimal number of pream-
bles for RAPID is the value of n(S.,) that yields the minimum value of the objective

function.

2.6 Performance Evaluation

In this section, we evaluate the performance of RAPID via MATLAB simulation. 4-
step RA, PRADA [2], and LC-MTC random access (LC-MTC RA) [3] presented in

Section 2.2.4 are used as comparison schemes.

2.6.1 Simulation Setup

Table 2.4 shows the parameters of the scenario in order to evaluate RAPID. The total
number of UEs connected with a gNB is 24,000 [36], and the number of UEs with
smart factory application is 1,000. For smart factory application, period of PU traffic
UEs is 50 ms and traffic arrival rate of ED traffic UEs is 6.8 packets/s [29]. Traffic
arrival rate of UEs with the other applications is 0.5 packet/s. The packet sizes of PU
traffic and ED traffic are 125 bytes and 10 bytes, respectively [36]. We use the system

parameters defined in Table 2.3.
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Figure 2.10: The optimal number of preambles for RAPID.

2.6.2 Number of Preambles for RAPID

We now provide the optimal value of n(S.,) for each scenario in Table 2.4 by solv-
ing the optimization problem in (2.32) using MATLAB. Fig. 2.10 shows the value of
objective function according to n(S.) under various ratio of ED traffic UE. First, as
mentioned in Section VI-F, we determine the minimum number of preambles for 4-
step RA ensuring reliability above 99.99999%. In case of our simulation scenario, the
minimum number of preambles for 4-step RA is 18. Thus, we observe the value of
n(Ser) until 36. The appropriate n(.S.;) minimizes the random access load while en-
suring the reliability of 4-step RA. In the rest of simulation for RAPID, therefore, we

set the values of n(Sc;) to 29, 31, and 31 when rq is 0.3, 0.5, and 0.7, respectively.

2.6.3 Performance of RAPID

Latency and Reliability: In general, reliability is defined as the probability that a cer-
tain amount of data from a user device will be successfully transmitted to another peer
within a predetermined time [41]. The predetermined time is uplink latency require-

ment value, which is denoted by L. Accordingly, the reliability can be expressed
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Figure 2.11: Satisfiable latency requirements with various reliability values of PU traf-
fic UEs.

as

Reliability = P(D < Ly), (2.33)

where D is the measured uplink latency. As the reliability is a function of the uplink
latency requirement, we can obtain the corresponding latency requirement value for a
given reliability. We define the value as satisfiable latency requirement with the given
reliability.

Fig. 2.11 shows satisfiable latency requirements with different reliability values of
PU traffic UEs for each scheme. In 4-step RA, we can find the latency requirement
with 99% reliability is larger than 100 ms. In this scenario, it is hard to satisfy the
latency requirement of delay-sensitive UEs by 4-step RA. In the case of PRADA and
LC-MTC RA, the satisfiable latency requirement increases sharply as the reliability
value to be satisfied increases. In RAPID, when roq is 0.7, the satisfiable latency re-
quirement with 99.999% reliability is 14.44 ms, which is 80.8% smaller than that of
LC-MTC RA. The reason for the latency decrease in RAPID is the higher random
access success probability in virtue of multiple RAR transmissions after a successful
preamble transmission from at least one UE among the UEs transmitting the same

preamble. In RAPID, as r.q increases, the satisfiable latency requirement with each
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Figure 2.12: ECDF of uplink latency for smart factory applications when N, =
23,000, N¢; = 1,000, and req = 0.3.

reliability slightly increases. This is because as the value of r.q increases, fewer PU
traffic UEs transmit the same preamble on average, and thus the probability of a suc-
cessful preamble transmission from at least one UE decreases.

Figs. 2.12(a) and 2.12(b) shows empirical cumulative distribution function (ECDF)
of the uplink latency for smart factory applications. In Fig. 2.12(b), uplink latency val-
ues are more distributed between 3 ms and 4 ms than in Fig. 2.12(a) for all schemes. In
case of RAPID, ED traffic UEs stay longer in the initial phase than PU traffic UEs. On
the other hand, in the other schemes, it is possible to have the uplink packet delivered
before the inactivity timer times out for ED traffic UEs. In Fig. 2.12(b), for ED traf-
fic UEs, the satisfiable latency requirement with 99.999% reliability is 18.85 ms. This
value is larger than the value of the PU traffic UE because fewer UEs transmit the same
preamble on average, and thus the probability of a successful preamble transmission
from at least one UE decreases.

Random access load: The bars in Fig. 2.13 show the sum of random access load for
all applications. For each scheme, there are two types of random access load, i.e., nec-
essary and unnecessary. The necessary random access load is the number of signals
used for successful random access. In contrast, unnecessary random access load in-

cludes three types: (i) the signals when random access fails, (ii) the unnecessary RAR
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Figure 2.13: The right-side graph shows the sum of random access load for all appli-
cations.

transmissions to the UEs who do not transmit preamble but have the same preamble
ID and offset index for RAPID, and (iii) the unnecessary uplink resource allocation
for RRC connection resume request messages for the UEs mentioned in (ii). In cases
of 4-step RA, PRADA, and LC-MTC RA, because the ratio of PU traffic UEs who
generate more packets than ED traffic UEs is reduced, the sum of random access load
decreases as r.q increases. However, when RAPID is used for smart factory applica-
tions, the sum of random access load increases as r.q increases because of increasing
of unnecessary RAR transmission.

The necessary random access load of PRADA is higher than that of 4-step RA,
and the unnecessary random access load of PRADA is lower than that of 4-step RA.
This is because PRADA allocates different random access resources to each access
class, and hence, random access success ratio is higher than that of 4-step RA. LC-
MTC RA further increases random access success ratio by decreasing the collision
probability, thus yielding higher necessary random access load than PRADA and 4-
step RA. On the other hand, unnecessary random access load of LC-MTC RA is the
highest among all schemes. This is because LC-MTC RA reduces collisions at the cost

of making a gNB transmit separate RARs through multiple downlink control channels.
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Figure 2.14: Sum of random access load for smart factory applications with and with-
out APA when N, = 1,000 and r.q = 0.3.

In case of RAPID where roq = 0.3, necessary random access load is reduced by 26.1%
compared with PRADA. This is because RAPID requires only two message exchange
procedures. Moreover, unnecessary random access load is decreased by 40.6% com-
pared with PRADA. This is because UEs who perform RAPID do not suffer from
random access failures due to collision. Also, with the help of APA, unnecessary RAR
transmission can be minimized. Compared with PRADA, RAPID reduces the sum of
random access load by 30.5% and 11.9% when r.q is 0.3 and 0.5, respectively. As
Teq increases, the random access load reducing gain of RAPID decreases due to the
increased unnecessary random access load, because more UEs share the same pream-
ble and offset index. When r.q is 0.7, unnecessary random access load is increased
further and the sum random access load of RAPID becomes comparable with that of
4-step RA. RAPID, however, reduces the latency requirements that cannot be satisfied

with comparison schemes.
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2.6.4 Performance of APA

For the validation of APA performance, we consider a scenario consisting of smart
factory application UEs where the number of UEs is 1,000 and r.q = 0.3. We allocate
n(Se;) to 54, which is the maximum value defined in (2.32). In the initial phase, APA
perfectly distinguishes the traffic type of UEs, i.e., PU or ED traffic. In case of PU
traffic UEs, the average of estimated period is 49.99 ms, and the variance is 0.015. It
can be seen that APA accurately predicts the traffic type of UEs and the period of the
PU traffic UEs. Fig. 11 shows the sum of random access load for smart factory appli-
cations and without APA. When APA is not applied, all UEs regardless of traffic types
are uniformly allocated to the combinations of preambles and allowed slot numbers.
When APA is applied, however, the UEs can be classified according to traffic types.
Especially, traffic characteristics of PU traffic UEs can be grasped by APA and un-
necessary random access load can be reduced by 98% compared with RAPID without

APA.

2.7 Summary

We propose RAPID, which is a new random access procedure for delay-sensitive UEs
in RRC_INACTIVE state introduced in 5G. RAPID completes the random access pro-
cedure by exchanging two messages using AS context ID of UE in RRC_INACTIVE
state. We also develop APA for reducing random access load caused by unnecessary
RAR transmission. We then develop an optimization problem to obtain the number
of preambles for RAPID based on random access load analysis. We also validate the
analysis via comparison with simulation results. Through simulations and mathemat-
ical analysis considering mMTC devices, we demonstrate that RAPID can support
delay-sensitive UEs by satisfying more strict latency requirement compared with the

state-of-the-art schemes.
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Chapter 3

EsTA: Self-Uplink Synchronization in 2-Step Random

Access

3.1 Introduction

The 5G system will be the foundation technology for business innovation in various
vertical industries such as smart factories, cars, and smart cities. In June 2018, 3GPP
finalized Release 15 specifications, which are the first 5G NR standard including non-
standalone and standalone modes. In April 2019, mobile operators in South Korea and
the United States launched commercial 5G services. In June 2020, the 3GPP completed
Release 16 including not only technical improvements of Release 15 specifications
but also the introduction of new features. In Release 17, 3GPP is working on the new
features for a wide variety of industry verticals and non-terrestrial access systems to
build out to be substantially more versatile than 4G LTE.

One of the new features in Release 16 is the use of two-step random access chan-
nel (2-step RACH). The 3GPP RAN working groups specify 2-step random access
covering both physical layer and higher layer. 2-step random access potentially of-
fers benefits in the following two scenarios [4]. First, for burst transmission of small

packets, simple random access is attractive for reducing the significant overhead of
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RRC connection setup and resume procedures [14]. Second, for the NR Unlicensed
spectrum (NR-U), reducing the steps of random access helps decrease the latency for
connecting a UE to a gNB since they perform a listen-before-talk procedure for con-
nection step.

In this article, we present the details of 2-step random access in 5G NR, namely
2-step contention-based random access (CBRA), which suffers from preamble colli-
sion when many UEs try channel access. This is because many UEs compete for the
limited number of preambles on the same time-frequency resource called PRACH re-
source. We briefly introduce the existing 2-step random access schemes proposed to
solve the preamble collision problem [42], [43]. Each scheme has pros and cons, so we
present the challenges of the random access schemes. As a means to solve the pream-
ble collision problem, we focus on TA command estimation of a UE for self-uplink
synchronization with the gNB.

Therefore, we propose estimation of timing advance (EsTA), a framework that
helps a UE determine its own TA value. In the proposed framework, an edge RAN
controller trains a simple DNN model on large data consisting of features (Reference
Signal Received Power values) and labels (TA commands). Each UE estimates the TA
command using machine learning, and determines a TA value.

In summary, this chapter includes:

* a comprehensive overview of 2-step CBRA defined in the 5G NR and recently

studied 2-step random access schemes
* adiscussion of the challenges of 2-step random access schemes

* a framework for TA command estimation using a DNN model and TA value

determination for each UE to resolve the preamble collision problem.
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Figure 3.1: CBRA in 5G NR.

3.2 Background

In the 5G NR Release 15, CBRA has the same steps as 4-step CBRA in 4G LTE. To
reduce latency, the 5G NR Release 16 and recent literature simplify the existing CBRA
procedures from four steps to two steps. We overview the 2-step CBRA procedures

defined in the 5G NR and two random access procedures in [42], [43].

3.2.1 Overview of 2-Step CBRA

The RAN working group addresses a simplified 2-step random access as a work item.
This item proposes a common design for unlicensed spectrum as well as licensed spec-
trum. This article focuses on the 2-step CBRA in the licensed spectrum. As shown in
Fig. 3.1, 2-step CBRA has the advantage of reducing latency by simplifying the exist-
ing 4-step CBRA that carries preamble and payload separately. Message A (msgA)
contains a preamble on PRACH and a payload on physical uplink shared channel
(PUSCH). The payload corresponds to the message 3 in 4-step CBRA, which is the

first scheduled uplink transmission [44]. After transmitting a msgA with a preamble,
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a UE waits for a message B (msgB) from the gNB on physical downlink shared chan-
nel (PDSCH) for the configured window. The gNB takes different actions depending

on its reception status of msgA.

* Case 1 The gNB detects the preamble from the UE and successfully decodes
the payload. It notifies the UE of contention resolution by sending a successful

RAR with a TA command which is an integer value greater than or equal to zero.

» Case 2 The gNB detects a single preamble but fails to decode the payload. Using
the preamble reception time, it sends back a fallback RAR to the UE with the

TA command and an uplink grant for the payload retransmission.

* Case 3 The gNB detects multiple identical preambles from UEs. There is no
fallback RAR because the gNB is unable specify the preamble reception time
of each UE. Therefore the gNB transmits a backoff indication to UEs that will

attempt random access again.
* Case 4 The gNB fails to detect the preamble. There is no RAR to the UE.

The UE upon receiving the RAR successfully completes the 2-step CBRA. Upon
receiving the fallback RAR, the UE falls back to 4-step CBRA with message 3 trans-
mission (i.e., payload retransmission). In Case 3, the UE performs a backoff procedure
and retransmits msgA after waiting for the length of the configured window called
RAR window. In Case 4, the UE retransmits msgA after waiting for the length of RAR
window. If 2-step CBRA could not succeed even when the UE trasmits the msgA
‘M’ times, the UE would fall back to 4-step CBRA that starts from the preamble

transmission.

3.2.2 Channel Structure for msgA

Different from the first step in the 4-step CBRA, msgA in 2-step CBRA contains

payload as well as preamble. Therefore, the channel structure for msgA should be
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Figure 3.2: Example of the channel structure for msgA: mapping between preamble
IDs and PRU IDs, and resource size of each PO.

newly defined, which includes mapping between a preamble on a PRACH resource
and a time-frequency resource for the PUSCH payload, time-frequency resource size
of PUSCH, and so on [45].

2-step CBRA uses the preamble format specified in Release 15 [46]. The msgA
preamble set is different from the 4-step CBRA preamble set, but the both pream-
ble sets can be transmitted through the same RACH occasion (RO) or separate ROs.
Fig. 3.2 represents an example of the channel structure for msgA. Two ROs exist in a
RACH slot, and each RO uses 32 preambles for 2-step CBRA. The beam association
rule between synchronization signal block (SSB) and RO of 4-step CBRA [46] is used
for 2-step CBRA as follows. The gNB associates an SSB index with its own RO and/or
preamble. Different SSB indexes indicate different downlink beams of the gNB or dif-
ferent reception beams of the gNB in the case of uplink transmission. Fig. 3.2 shows
that a set of 16 preambles out of 32 preambles is used to represent a specific beam.
For example, if the UE transmits preamble 5 in the second RO, the gNB uses the beam
corresponding to SSB #2 to receive the payload of the msgA.

The payload transmission consists of PUSCH occasions (POs) which span multiple
orthogonal frequency division multiplexing (OFDM) symbols and physical resource
blocks (PRBs). Each PO consists of multiple PUSCH resource units (PRUs), and each

of which contains the following fields:

* PRUID
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* Multiple OFDM symbols and PRBs for uplink transmission

* Association with preamble(s) of a PRACH resource

* Modulation and coding scheme

» Uplink power control related parameters

* Demodulation reference signal (DMRS) port and DMRS sequence.

Fig. 3.2 shows that one PO includes two PRUs, and occupies four RBs in the
frequency domain and seven symbols in the time domain. One PRU is associated with
one or more preambles of a PRACH resource, i.e., preamble ID(s) of a specific RO.
There are two types of resource mapping between preambles of PRACH resource and
a PRU: many-to-one and one-to-one mapping. Fig. 3.2 shows an example of many-to-
one mapping and the mapping ratio, where the number ratio of preamble IDs to a PRU

is two. Preambles 0 and 8 transmitted in an RO for SSB #0 are mapped to PRU ID 0.

3.2.3 TA Handling for the Payload

TA value (NTa) is a negative time offset for the UE to control uplink transmission tim-
ing. An adequate TA value makes uplink transmission better aligned with the symbol
timing at the gNB. In 2-step CBRA, the gNB determines a TA command (7’s) based
on the reception timing of the msgA preamble. Then, the UE calculates a TA value
using the TA command and its numerology (u), i.e., Nta (T4, ) [47].

On the other hand, the TA value for the payload of the msgA is set to zero [45]. The
gNB receives uplink transmissions with different delays depending on the distance be-
tween the UE and the gNB. Basically, OFDM systems mitigate multipath interference
with the help of the cyclic prefix (CP) between two adjacent OFDM symbols. The
case (a) of Fig. 3.3 shows that the sum of round trip delay (RTD) and delay spread (7)
for each UE is less than or equal to the CP. So the gNB can decode OFDM symbols

from different UEs transmitted at the same time. Otherwise, inter-symbol interference
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Figure 3.3: Two cases of the payload reception timing at the gNB.

(IS occurs due to delayed OFDM symbols. Thus, the RAN working group added op-
tional guard period (GP) to the end of each PO illustrated in the case (b) of Fig. 3.3.
The GP ranges from 0 to 3 symbols [45].

Fig. 3.4 represents the number of delayed samples according to the distance from
the gNB and numerologies. When the numerologies are zero, one, and two, the sub-
carrier spacing values are 15, 30, and 60 kHz, respectively. We easily calculate the
number of delayed samples by rounding up the sum of RTD and 7 divided by the
sampling time, i.e., [ (RTD+7)/sampling time| where 7 is 93.325 ns, which is the root
mean square delay spread of 3D-UMa model used in [42]. The sampling time is the in-
verse of the sampling rate, i.e., 1/(NprT X subcarrier spacing) where Nppr is discrete
fourier transform (DFT) size, i.e., 4096. The CP length (Ncp) is 288 in the unit of
the number of samples, indicated by the red line in Fig. 3.4. As the subcarrier spacing

values increase, we can find that environments where the maximum distance values
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Figure 3.4: Number of delayed samples vs. distance from the gNB and numerologies.

from the gNB (or coverages) are over 700, 400, and 200 m, need the GP.

3.2.4 2-Step Random Access in Recent Literature

In 2-step CBRA, when multiple UEs try channel access, the probability that different
UEs use the identical preamble in the same PRACH resource increases, resulting in
the preamble collision problem. We divide this problem into two cases. First, if more
than two UEs at a similar distance from the gNB transmit the same preamble using the
same RO, the payload transmission would fail even if their preamble transmissions are
successful (Case 2). We refer to this case as the undetected collision problem. Second,
if multiple UEs at different distances from the gNB transmit the same preamble using
the same RO, the gNB detects multiple identical preambles. In this case, the gNB fails
to determine the TA command for each UE (Case 3). This case is called the detected
collision problem.

We have proposed two types of 2-step random access to resolve the preamble col-
lision problem. First, in the contention resolution-based random access [42], the gNB
allocates a unique context ID to each UE. The UE selects and transmits a preamble
from a specific preamble set, using a specific PRACH resource mapped to the context
ID (one-to-many mapping between a subset of PRACH resources and context IDs).
Upon receiving the preamble, the gNB transmits multiple RARs to candidate UEs that

could have sent the preamble. This scheme completes random access by exchanging
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only two messages. In this way, we can solve the undetected collision problem. In ad-
dition, when a detected collision occurs, the gNB uses the TA command for each UE
that was stored during the UE’s first access. However, the shortcoming is that unneces-
sary RAR transmissions to all candidate UEs increase with the number of UEs. Also,
the scheme considers only fixed UEs.

Second, the proposed scheme in [43] enables 2-step random access by represent-
ing a preamble ID by bits and dividing the bits into two parts: ID part and information
part. ID part is dedicated to the single UE, and information part conveys the purpose
of random access and buffer status of the UE. As the existing 64 preambles (corre-
sponding to 6 bits) cannot cover both information and unique IDs for many UEs, we
have proposed a preamble sequence generation method. This scheme does not suffer
from both the undetected collision and detected collision problem because the gNB
can not detect the same preamble at the same time. The limitation is that the preamble
generation is possible only in an ultra-dense network scenario where the cell density

is higher than 1000 cells/km? [43].

3.3 Challenges of 2-Step Random Access

In this section, we present the challenges of 2-step random access introduced in this

article.

3.3.1 Preamble Allocation

For the preamble of msgA, 2-step CBRA uses a disjoint set of preambles from 4-step
CBRA out of 64 preambles, so a preamble allocation problem arises. For preamble
allocation, we consider the incidence ratio between 2-step CBRA and 4-step CBRA in
a specific cell. Similar preamble allocation problems have been studied in our previous
work. In [42], a subset of preambles is allocated to contention resolution-based random

access considering the number of UEs and their traffic characteristics. In [43], each UE
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is assigned a unique ID part and multiple preambles have the same ID.

3.3.2 Resource Mapping for msgA

5G NR has two types of resource mapping between preamble ID(s) of a specific RO
and a PRU: many-to-one and one-to-one. Many-to-one mapping maps two or more
preamble IDs of a specific RO to one PRU ID, while one-to-one mapping maps one
preamble ID of the specific RO to one PRU ID. We select one of two configurations
according to the number of UEs simultaneously attempting 2-step CBRA. If the num-
ber is small, many-to-one mapping is suitable for efficient use of PUSCH resources.
Otherwise, one-to-one mapping is appropriate. The use of many-to-one mapping in-
creases the probability that different UEs use the same PUSCH resource to send their

payloads, resulting in a collision.

3.3.3 DFT Operation in gNB

2-step CBRA uses the TA value of zero for the msgA payload. Thus, the GP may exist
at the end of the PUSCH payload according to the parameters such as the numerol-
ogy, delay spread, and coverage of the gNB. The gNB determines where to locate
DFT windows in the payload including the GP using the preamble reception timing.
For instance, in the case (b) of Fig. 3.3, the gNB measures the difference in timing
of preamble reception between UE 2 and UE 1 greater than the CP length, and so
performs additional DFT operation. Meanwhile, if the UE could transmit the msgA
payload by well determining the TA value for the area it is located at, the GP would be
unnecessary. Then, the gNB takes advantage of resources to transmit and receive other

data.

3.3.4 Detected Collision Problem

The detected collision problem occurs when UEs at different distances from the gNB

send the same preamble. There are two works that solve the detected collision prob-
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Figure 3.5: Overview of the training procedures with the mobility model and topology.

lem [42], [48]. In [42], however, there is a limitation that the approach cannot be ap-
plied to mobile UEs. This limitation can be avoided as each UE estimates the TA
command, and selects and transmits a preamble from a specific set of preambles cor-
responding to the estimated TA command. Upon receiving the preamble from the spe-
cific preamble set, the gNB implicitly notices the TA command of the UE. The authors
in [48] resolve the detected collision problem by transmitting separate RARs under the
assumption that all UEs calculate their own TA value. Applying the approach in [48]
to 2-step CBRA, we can reduce the preamble collision probability. Therefore, we pro-
pose the self-uplink synchronization framework, aiming to overcome these limitations

in the next section.

3.4 EsTA: Proposed Self-UL Synchronization Procedure

The self-uplink synchronization framework that we propose in this section helps a UE

determine a TA value within the timing error limit defined in 5G NR [49].
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3.4.1 Overview

In the proposed framework, the UE estimates the TA command using a DNN model
and reference signal received power (RSRP) values. The input of the DNN is RSRP
values and the output is an estimated TA command (TA). As shown in Fig. 3.5, the
edge RAN controller collects labeled data sets from gNBs, consisting of UEs’ RSRP
values and corresponding TA commands. After training the DNN with data sets, the

edge RAN controller distributes the DNN model to UEs through the gNBs.

3.4.2 Overall Procedures

The procedures for estimating the TA command based on RSRP values are as follows:

* A UE in the RRC connected state [14] periodically reports its RSRP values to
the connected gNB. Then, the gNB periodically sends a set of N RSRP values
and the TA command (label) for each UE to the edge RAN controller. The label
is the same as the TA command reported when the gNB received the latest RSRP
value for a specific set. In Fig. 3.5, RS RP]? represents the j-th RSRP value of
UE 7.

» With sufficiently collected labeled data, the edge RAN controller trains the DNN
model. We consider a network with three hidden layers and one output layer.
Each hidden layer is 200-way fully-connected. The outcome of each hidden
layer is followed by ReLU activation function. The output layer uses softmax
activation whose output is a probability vector for the TA command. We select
a cost function with cross-entropy, and apply the Adam optimization algorithm

for training.

* The edge RAN controller notifies each UE of the information about this model
such as number of layers, weight matrix, and so on. It also updates the DNN

model regularly or when needed.
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Figure 3.6: Performance of the DNN model.

* After receiving the model information, the UE obtains the estimated TA com-

mand from the DNN model and N RSRP values.

We consider the gNB to collect RSRP values directly by measuring the received power
of the sounding reference signal (SRS) using channel reciprocity, i.e., without RSRP

reporting from UEs .

3.4.3 Performance Evaluation

Simulation environments: We use OpenStreetMap (OSM) provided by simulation of
urban mobility (SUMO), linked to the actual map information [50]. SUMO can reflect
real environments including vehicle movements and traffic lights. The total time of

tracing is one hour, and the number of UEs is 155. For the channel model, we create
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the path loss and shadowing following 3D-UMa model, and consider the fast fading
channel model generated using ITU-R IMT UMa model used in [42]. Channel envi-
ronments, i.e., line-of-sight (LOS) or non-LOS (NLOS), are stochastically determined,
depending on the distance between UEs and the gNB. We use the hexagrid topology
for the seven cell deployment as shown in Fig. 3.5. The innermost cell is placed in
the center of the trace map of UEs and the inter-site distance is 500 m. We consider
frequency range 1 [46] because an application using small packets is appropriate for
2-step random access.

Measurement model: As assumed in [51], we simplify the RSRP formula by
considering the assumption of the physical layer that the channel is flat within a PRB.
This means that all resource elements within the PRB have the same power. The RSRP
value is calculated as the sum of all PRBs’ powers for the synchronization signal di-
vided by the number of PRBs [52]. The period for the RSRP update is 5 ms, which is
the shortest period for synchronization signals [46].

TA granularity: When the subcarrier spacing is 15 kHz, the TA granularity is
0.52 ps [47]. Because the TA value should be twice the propagation delay, the distance
corresponding to the TA granularity is 78 m (= 0.52 x 3 x 102 /2). When the subcarrier
spacing values are 30 kHz and 60 kHz, the corresponding distances are 39 m and
19.5 m, respectively. When the DFT size is 4096, the TA granularity is given by 32
time samples regardless of subcarrier spacing. The value 32 is obtained by dividing
the TA granularity by the sampling time for subcarrier spacing.

Accuracy: When measuring the accuracy of TA command estimation, we consider
the UE initial transmission timing error less than or equal to =7, where 7. is the tim-
ing error limit value [49]. When the subcarrier spacing values are 15, 30, and 60 kHz,
the corresponding timing error limit values are 24, 40, and 80 time samples, respec-
tively. For the subcarrier spacing values of 30 and 60 kHz, because the timing error
limit values are greater than the TA granularity, the use of TA values corresponding to

different TA commands from the notified TA command is tolerated. Fig. 3.6(a) shows
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the accuracy of TA command estimation according to the subcarrier spacing and the
number of RSRP values (V) for TA command estimation. As the number of RSRP
values increases, estimation accuracy increases. We find that past RSRP values help
with classification, and estimation accuracy converges when N is 50. The estimation
accuracy increases to 99.6% and 99.1% for 30 and 60 kHz subcarrier spacing values,
respectively, while it is 81.5% for 15 kHz due to its short timing error limit value.

Inference time: We observe the inference time according to the number of hidden
layers to see how the complexity of DNN model affects mobile devices. In Fig. 3.6(b),
as the number of hidden layers (L) increases, the average inference time increases. In
the case of the most recent device, i.e., Galaxy S20+ released in 2020, the average in-
ference time is 0.15 ms when L is set to three in the proposed framework. Because this
value is smaller than the slot length when the subcarrier spacing is 60 kHz (0.25 ms),
the UE can estimate the TA command in one slot after receiving the latest reference
signal.

Battery consumption: Using “Batterystats” tool included in the Android frame-
work, we observe the battery consumption (mAh) of the CPU over time for an applica-
tion that runs the DNN model. We measure the battery consumption of Galaxy S20+
during 100,000 iterative inference operations. Through the measurement, we obtain
the discharge current using battery consumption and application end time, which is
(battery consumption) x3600/(application end time). The discharge current for infer-
ence operation is 65.66—68.76 mA. Then, we can obtain the battery consumption for
one inference operation using the discharge current and average inference time of
Fig. 3.6(b). Fig. 3.6(c) shows the battery consumption for transmission of UE and
one inference operation according to L. The discharge current of the UE for transmis-
sion is 100 mA [53]. When L is set to three in the proposed framework, the UE can
estimate the TA command by consuming about 21% of the battery consumption for
transmission.

Network performance: We perform system-level simulation considering the in-
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ference time as well as the estimation error of the TA command. We use measurements

of the inference time for S20+ (L=3) as shown in Fig. 3.7. Simulation parameters such

as event-driven traffic arrival rate and uplink latency components follow our previous

work [42].

We consider three cases depending on whether to apply the proposed framework

and spatial group-based reusable preamble allocation [48]: i) 2-step CBRA, ii) 2-step

CBRA with the proposed framework (2-step CBRA w/ framework), and iii) 2-step

CBRA with [48] (2-step CBRA w/ [48]). Fig. 3.8 represents the average uplink la-

tency according to the number of UEs (Nyg) for each case. When we apply the pro-

posed framework, i.e., 2-step CBRA w/ framework, the average uplink latency value
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increases further, compared to 2-step CBRA due to errors in the estimation of TA
command and inference time. In the case of 2-step CBRA w/ [48], when the number
of UEs are 100, 500, and 1,000, the average uplink latency values decrease by 0.7%,
2.3%, and 4.4%, respectively. This is because the preamble collision problem occurs

more frequently as the number of UEs attempting 2-step CBRA increases.

3.4.4 Future Research Perspectives

We summarize future research directions as follows.

Performance enhancement: To further reduce symbol errors caused by ISI at the
gNB when multiple UEs transmit the msgA payload with their estimated TA values,
we can apply a rule-based approach combined to the DNN model. This approach helps
a UE determine its TA value more precisely by taking the probability distribution of
the TA command obtained from the DNN model into account.

Generalization: To make the model easily adapt to new environments, we may
adopt meta-learning [54], also known as “learning to learn”. Specifically, by collect-
ing different data sets for diverse network environments and applying a meta-learning
method, e.g., model-agnostic meta-learning (MAML) [54], we can quickly initialize
the model to a state trainable with a few data sets.

Real-world environments: The Android application programming interface (API)
provides the RSRP and TA command (CellSignalStrengthLte class), so we can col-
lect data sets through measurements in real-world environments. We should consider
whether a data set is useful, taking into account its characteristics such as the time

interval for updating RSRP values during measurements.

3.5 Summary

In 5G NR, the 3GPP included 2-step CBRA to further improve latency for channel

access compared with 4-step CBRA. We introduced the newly defined messages and
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corresponding channel structure for 2-step CBRA. We presented 2-step random access
schemes proposed in the recent literature to tackle the preamble collision problem that
occurs when many UEs try 2-step and 4-step CBRA. We listed the challenges of the 2-
step random access schemes, and proposed the self-uplink synchronization framework
that allows a UE to determine its TA value to solve the preamble collision problem,
using the DNN model. Lastly, we summarized the research directions to improve the

performance of the proposed framework and generalize it for real world environments.
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Chapter 4

IBA: Interference-Aware Beam Adjustment for 5G

mmWave Networks

4.1 Introduction

In the last few years, mmWave communication attracts considerable interest, thanks
to the high data rates enabled by its large available bandwidth [55], [56]. This makes
mmWave a key technology for 5G NR systems. Most of the previous work focused on
developing beamforming technologies between transmitter and receiver. In particular,
research has been conducted to overcome NLOS environment because mmWave com-
munications is the severe propagation attenuation caused by high path loss, shadowing
and blockages [57]. That is, gNBs perform beam selection based on their surrounding
environment.

Meanwhile, as the mmWave network becomes denser, co-channel interference be-
comes a factor limiting performance [7]. To overcome this, many studies have been
conducted to overcome interference through scheduling by dividing frequency re-
sources or time resources [7], [8]. However, since this approach uses time-frequency
resources separately, it may not be possible to obtain the maximum throughput per-

formance. We investigate whether the performance of the beam pair currently in use
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can be improved by simply changing the beam pair when the throughput performance
deteriorates due to interference.

In this chapter, we propose interference-aware beam adjustment (IBA), a method
of beam adjustment to coordinate interference in 5G mmWave networks. Basically, in
5G NR, when determining the beam pair of the link between the transmitter and the
receiver by measuring the received power of beam candidates. Since this process called
beam adjustment takes only the desired link into consideration, it may be vulnerable
to interference. To reduce interference, transmitter or receiver can select other beams
to overcome degradation by interference. The complexity of the IBA depends on the
number of beams used in the beam pair. Because mmWave uses a number of beams,
it is practically impossible to overcome interference by changing all of the beam pair
candidates. Therefore, we introduce reducing search space for finding new beam pair
to coordinate interference.

Rest of this chapter, in Section 4.2, we introduce beam management defined in 5G
NR. In Section 4.3, we notice throughput degradation in simple topology in mmWave
network. Next, in Section 4.4, we present IBA and observe whether the beam search
space can be reduced. Through the observation, in Section 4.5, we demonstrate the

performance of IBA by measuring throughput in an environment with interferers.

4.2 Background

4.2.1 Beam Management in 5G NR

Multi-antenna precoding should realistically allow fine-grained control, including both
phase adjustment and amplitude scaling, of the different antenna elements. For this
purpose, multi-antenna processing at the transmitter side is carried out in the digi-
tal domain before digital-to-analog conversion. However, in the case of operation at
higher frequencies with a large number of closely space antenna elements, fully dig-

ital precoding for each antenna appears to be infeasible [58]. Therefore, the antenna

68 A = TH



X

[] ] []

Initial beam establishment Beam adjustment Beam failure and recovery

Figure 4.1: Beam management in 5G NR.

processing will rather be carried out in the analog domain with focus on beamform-
ing [46].

As analog antenna processing will be carried out on a carrier basis, this also implies
that beamformed transmission can only be done in one direction at a time. Downlink
transmissions to different devices located in different directions relative to gNB must
therefore be separated in time. Likewise, in the case of analog-based receiver-side
beamforming, the receive beam can only focus in one direction at a time. Under these
conditions, beam management is to establish and retain a suitable beam pair, that is, a
transmitter-side beam direction and a corresponding receiver-side beam direction.

Fig. 4.1 represents beam management defined in 5G NR. Initial beam establish-
ment includes the procedures by which a beam pair is initially established between a
gNB and a UE. During initial cell search, the UE receives multiple SS blocks being
transmitted in sequence within different downlink beams. Each such SS block, in prac-
tice the different downlink beams, is associated with a corresponding random access
occasion and preamble. Through the subsequent preamble transmission in random ac-
cess, the gNB identifies the downlink beam acquired by the UE.

Once an initial beam pair has been established, there is a need to regularly adjust
beam pair due to movements and rotations of the UE. Furthermore, even for stationary
UEs, movements of other objects in the environment could block the current beam
pairs. This beam adjustment also include refining the beam shape, for example making

the beam more narrow compared to a relatively wider beam used for initial beam
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establishment [46]. Beam adjustment can be divided into two separate procedures:

* Transmitter beam adjustment: transmitter-side beam adjustment aims at refining

the gNB transmit beam, given the receiver beam currently used at the UE side.

* Receiver beam adjustment: receiver-side beam adjustment aims at finding the

best receive beam, given the current transmit beam.

There are some cases where a currently established beam pair being rapidly blocked
without sufficient time for the beam adjustment to adapt. The 5G NR includes specific
procedures to handle such beam-failure events, also referred to as beam failure recov-
ery. In beam failure recovery, the UE and gNB reselect a beam pair through random

acCCeEss.

4.2.2 System-Level Simulation and 3D Beamforming for SG NR

We use up-to-date network simulator-3 (ns-3)-based system level simulator for 5G
NR [59]. This simulator includes not only NR physical layer abstraction model but
also NR frame structure. However, the three-sector model is not implemented in the
antenna array model, so we added that model function by referring [60]. In this chapter,
we apply 3D beamforming consisting of vertical (/) and horizontal (¢) angles. The
number of vertical angles for both Tx and Rx is 4. The number of horizontal angles
for Tx and Rx is 32 and 8, respectively. Therefore, the number of all combinations is

4096 (=212).

4.3 Motivation

4.3.1 Throughput Degradation by Interference

As shown in Fig. 4.2, we first investigate interference affection under simple two cells

scenario. Inter-site distance (ISD) between two cells is 60 m, and the distance between
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Figure 4.3: Throughput of each UE in two cells.

gNB and UE is 20 m, respectively. Carrier frequency is 28 GHz and the system band-
width is 800 MHz. Each gNB performs downlink transmission with source rate 3 Gb/s.
We observe throughput of each UE while changing the channel condition, i.e., LOS
or NLOS. Fig. 4.3 shows the throughput distribution of each UE with or without in-
terferer. The top line of box plot represents median, which is middle of data set. The
bottom line of box plot is lower quartile, which is 25% of data less than this value. The
bottom of the dashed line is minimum, which is (lower quartile)-1.5 x (inter-quartile
range). The cross mark is outlier, which is less than the minimum.

Fig. 4.3(a) shows the throughput of each UE without interferer. If the channel con-
dition is NLOS, throughput performance is degraded, but 75% of UE 1’s throughput
data represent 2.7 Gb/s. In the case of UE 2, the lower quartile is 2.32 Gb/s. If the
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interferer exists, throughput of UE 2 is more degraded than that of UE 1. Fig. 4.3(b)
shows the lower quartile is 1.76 Gb/s. We notice that although gNBs and UEs use
beamforming technology, UEs located at the cell edge can be affected by interference

from neighboring cells.

4.4 1IBA: Proposed Interference Management Scheme

4.4.1 Overall Procedure

After performing the beam adjustment, a UE determines whether to perform additional
beam adjustment according to the change in the channel quality indicator (CQI) value
and the interference level. If the CQI value does not drop even when the interference
level increases, the throughput performance is maintained, so both values should be
observed at the same time. When the throughput performance degrades by observing
the change in the CQI value and interference level, it is necessary to find a new beam
pair candidate. Therefore, the performance of IBA depends on how quickly it finds the
beam pair to recover CQI value. We need to set an appropriate search space and apply
a new beam pair. In order to get the best performance, it is necessary to apply beam
pairs in all cases (4096), but this is practically impossible. For instance, if we consider
the shortest CQI update period, i.e., 4 slots, it takes more than 4 s to apply and check
all beam pairs when the slot length is 0.25 ms. Therefore, we need to find the local

optimal rather than the global optimal.

4.4.2 Reduction of Search Space

The most efficient way to reduce the search space is to adjust the beam pair of the
desired link. The reason why it is inefficient to adjust the beam pair of the interference
link is that when the number of interference link increases to NV, the complexity be-
comes 4096+, Therefore, we figure out if the throughput of UE 2 in Fig. 4.2 can be

improved by adjusting the beam pair of the desired link. While changing the desired
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Figure 4.4: SINR and CQI of UE 2 when interference link is fixed.

link of the UE 2 that is affected by the interferer, we observe the SINR value of the
UE 2 and corresponding CQIL.

Figs. 4.4(a) and 4.4(b) represent UE 2’s SINR and CQI according to beam pair of
desired link. The optimal beam pair derived from beam adjustment is (61%,, = )=(4,4)
and (07, ¢7X,)=(3,4). The corresponding CQI is 9. If we change 6, from 3 to 4,
CQI changes to 11. Changing 6%, and ¢!* at the same time can also make CQI 11.
Changing both the Tx beam and the Rx beam still takes a lot of time because 4096
beam pairs have to be compared. The UE should inform the gNB to change the Tx
beam. This operation takes more time to apply a new beam pair. Also, the new Tx beam
of the gNB can provide a higher interference level to the UEs of adjacent cells. So, we
observe that changing the Rx beam can generally improve the throughput performance.

Since the change of the CQI value is determined according to the SINR, we sep-
arately observe the gain of the desired link and the interference link determining the

SINR. There are two parameters in Rx beams, which are ™ and ¢™. We observe how
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Figure 4.5: Beamforming gain difference for desired and interference links.

each link gain changes as the above angle changes. There are three cases: i) 6™ ii) ¢',
and iii) both #™ and ¢**.
Fig. 4.5(a) represent the beamforming gain difference (Apy) of desired link when

Rx beam changes. The beamforming gain difference is represented by

ABF = G(927 (z)l) - G(‘gﬁx7 ¢ﬁx)> (41)

where G(0, ¢) is beamforming gain when the vertical and horizontal angles are 6 and
¢, respectively. For the desired link, 05, and ¢4 are the angles of Rx beam determined
by beam adjustment. Through Fig. 4.5(b), we can notice that case iii) is not appropriate
due to significant decrease than other cases. In desired link, desired link reduction trend
is similar for both case 1) and ii).

Fig. 4.5(c) represent Ay of interference link when Rx beam changes. At this time,
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Figure 4.6: Beamforming gain difference according to beam change direction.

fsx and ¢gy are angles of randomly selected Rx beam. This is because interference
gain is randomly determined according to the link between the UE and the interferer.
Through Fig. 4.5(d), we can notice that case ii) is more proper than case i) due to
more decrease in interference. Therefore, we apply the IBA algorithm to change 6™
first before changing ¢™. As shown in Fig. 4.6, we also observe the beamforming
gain difference of interference link according to beam change direction. In the case
of 8™, changing the direction in which the index increases is more likely to reduce
interference than the direction in which the index decreases. In the case of ¢™, the

trend is similar regardless of direction.

4.4.3 Algorithm for IBA

Through the observation in Section 4.4.2, we design the IBA algorithm considering
some options. Table 4.1 shows six options for IBA algorithm. First, the condition under
which the IBA is executed are the interference level is increased and the CQI value
should be lower than before. After the IBA is executed, if the current CQI value is
less than or equal to the previous CQI value, the UE changes the index of the angle
corresponding to the next step. Options 1-3 only change ¢ and options 4-6 change not
only 6 but also ¢ (or both of them in option 6). Other options, except option 2, work

by reusing the Rx beam of the previous step ((n-1)th) in the next step ((n+1)th), unless
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Table 4.1: Options for IBA algorithm.

. Step
Option Angle
P & 1 2 3 4 5
1 (4 +1 -1 +2 | 2
2 0 +1 | 42 | 43 | +4 | 4
3 0 +1 -1
4 6 +1 -1 -
1) - +1 -1
5 6 +1 -1 -
¢ - -1 +1
6 0 +1 -1 +1 -1
1) +1 -1

N
N o
‘

Avg. throughput (Gb/s)
o

4‘\/\ —&—UE1 |

——UE 2
—*—UE3

1 ! ! ! ! !
w/o IBA Opt.1 Opt2 Opt.3 Optd Opt5 Opt6

Figure 4.7: Average throughput according to options for IBA.

performance improves in a particular step (n-th).

To evaluate the options for IBA algorithm, we consider three cells scenario. The

topology follows 3D-UMi model [61], and the IDS is 60 m. Fig. 4.7 represents average

throughput of each UE. We can find that opt. 3 the highest gain, i.e., 3.4-6%, in terms

of average throughput. Therefore, in Section 4.5, we adopt opt. 3 for IBA algorithm.

4.5 Performance Evaluation

Two cells: Fig. 4.8(b) shows the throughput distribution of each UE when applying

IBA. As UE 2 performs IBA, the lower quartile of throughput data is improved by

13.6% compared with only applying beam adjustment. The minimum of throughput
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data is improved 86.5% compared with only applying beam adjustment.

Three cells: Fig. 4.9 represents the throughput distribution of each UE. For each

UE, the leftmost two box plot is the throughput distribution of the lower 50% and the

rest is the throughput distribution of the top 50%. In the case of UE 1, minimum value

of lower 50% increased by 40%. In the case of UE 2, the median value decreased by

2% in the top 50% throughput, but the median value increased by 54% in the lower

50% throughput. The reason that the throughput of the top 50% decreases slightly is

IBA searches for new rx beam in each step and returns to the original rx beam when

performance deteriorates. UE 3 also increases median value by 21% for lower 50%

throughput.
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4.6 Summary

We propose IBA, which is a interference-aware beam adjustment method to coordinate
interference in 5G mmWave networks. It is important to reduce search space to find
new beam pair for applying IBA. To this end, we observed the change in gain of the
desired link and interference link while changing the Tx and Rx beam pairs. Through
the simulation, it has been shown that it is appropriate to adjust the Rx beam of the

desired link to control interference.
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Chapter 5

Concluding Remarks

5.1 Research Contributions

In this dissertation, we have addressed

In Chapter 2, we have proposed RAPID, a two-step random access procedure for
delay-sensitive UEs in RRC_INACTIVE state introduced in 5G. RAPID completes the
random access procedure by exchanging two messages using AS context ID of UE in
RRC_INACTIVE state. The proposed scheme can play important roles in satisfying
the latency requirements of various applications targeted in 5G.

In Chapter 3, we have proposed EsTA, a framework that helps UE to estimates TA
command and determine TA value. Through EsTA, we can solve preamble collision
problem. By applying EsTA to RAPID, it can support mobile UEs.

In Chapter 4, we have proposed IBA which adjust beam pair to coordinate inter-
ference in 5G mmWave networks. To this end, we observed the change in gain of the
desired link and interference link while changing the Tx and Rx beam pairs. Through
the simulation, it has been shown that it is appropriate to adjust the Rx beam of the

desired link to control interference.
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5.2 Future Work

As further improvement on the results of this dissertation, there are several research
items as follows.

First, regarding EsTA, we need to enhance the estimation accuracy when SCS is
15 kHz.

Second, regarding network performance derived from EsTA, we need to observe
link-level performance affected by inter-symbol interference.

Lastly, regarding beam adjustment, we need to perform more simulation in various
scenarios where the interference links are more dynamic. Also, we will consider rein-
forcement learning in how to determine the angle and index to adjust when changing

the beam.
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