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Since the first electroluminescence (EL) of organic compound was 

observed in the anthracene single crystal in 1965, organic light-emitting diodes 

(OLEDs) have undergone numerous developments, and have recently become 

the mainstream of small-sized displays. In addition, as OLEDs will have a 

modest substrate dependency, it has the potential to receive even more attention

as the next generation display like flexible or transparent displays. The 

remaining challenges for OLEDs are high efficiency, and operational stability.

In general, because organic materials have a wide emission spectrum, 

OLED can be a good lighting with a high color rendering index (CRI). It can 
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also be used as a display with high color purity by optimizing the cavity length. 

However, more than half of the photons generated in OLEDs are dissipated due 

to total internal reflection by high-refractive-index organic layers and the 

substrate. Therefore, light extraction technology is required to increase the 

efficiency and reduce the power consumption of OLEDs. In addition, as 

mentioned before, it is necessary to consider the lifetime of the device. There 

have been many studies on the short operation lifetime of OLEDs, and several 

mechanisms have been proposed, but there is no concrete description of the 

origin of degradation. Nonetheless, it is obvious that the stability of the layers 

constituting the OLED should be considered for high operational stability.

This thesis concerns two research topics: (1) simple and efficient light 

extraction method for OLED lighting and display, and (2) improving operation 

lifetime of OLED using spontaneous orientation polarization molecule.

In chapter 1, a brief introduction of OLEDs will be provided.

In chapter 2, a facile and effective method for fabricating random 

organic microstructures for efficient light extraction from blue OLEDs is 

presented. Simple drop casting of a TCTA and B4PyMPM mixed solution 

followed by UV curing results in films with irregular-shaped microstructures 

(DACMs), ideal for light extraction without diffraction patterns. An external 

quantum efficiency (EQE) of 44.3% is realized by attaching DACMs formed 

on a polymer film to a blue phosphorescent OLED. The efficiency is improved 

by 35% compared to a planar device without the light extraction layer, greater 
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than the 22% improvement obtained by using microlens arrays. The method is 

useful for OLED lighting and potentially in displays because of the simple 

fabrication method that is applicable to a large area on rigid or flexible 

substrates, the low material cost, the insolubility of the microstructure in alkyl 

halide solvents such as chloroform, and the controllability of the structure 

through the solution process.

In chapter 3, we show the damageless light extraction structure for top-

emittng organic light-emitting diodes (TEOLEDs). TEOLEDs are used in small 

displays, due to the high aperture ratios, unblurred imaging, and high color 

purity. However, the strong cavity structures responsible for these advantages 

result in a high optical loss within metal electrodes. Furthermore, as there is no 

substrate in the light path, it is rather complicated to form a structure on the 

emission surface without damage. Here, we present a facile and effective 

method for light extraction of TEOLEDs. When 1,5-diaminoanthraquinone 

(DAAQ) is deposited on the Ag electrode, crystallization occurs immediately 

and nanowire arrays are formed in the out-of-plane direction. The shape and 

distribution of nanowire arrays can be controlled by deposition thickness and 

evaporation rate. In addition, morphological changes affect the transmittance of 

DAAQ-deposited Ag thin films. DAAQ nanowire arrays were applied to a red 

phosphorescent inverted TEOLED, enhancing the external quantum efficiency 

(EQE) by 8.6% in a narrow full-width-at-half-maximum (FWHM) device, and 

by 10.6% in a wide FWHM device. The emission spectra of the out-coupled 
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devices are similar to those of the reference devices, as the DAAQ layer is 

located outside the OLED stacks sandwiched between two highly reflective 

metal electrodes. The method is useful for OLED displays because it is simple, 

vacuum-processable, and does not compromise device lifetime or the emission 

spectrum.

In chapter 4, we suggest the importance of patternability of internal light 

extraction layer. Integration of internal light extraction layers in OLED displays 

requires electrical connection between driving circuits in the backplane and an 

OLED electrode, therefore needs fabrication of a via hole. Generally, internal 

light extraction layers consist of two materials with different refractive indices; 

thus, good patternability may be difficult with the matched etch selectivities of 

these two materials. Both the patternability of the internal light extraction layer 

and high out-coupling efficiency are important so, it needs a proper etchant 

which aren’t lowering the extraction efficiency by demolishing its structure. 

Here, the patternability of light extraction layers is discussed and demonstrated 

experimentally. The random scattering layer (RSL) composed of SiOx nano 

scatterers and a TiO2 planarization layer was used in this study and it was 

patterned by photolithography and wet etching processes. For matching the 

etching selectivity of those two different materials, a mixture of buffered oxide 

etchant (BOE) and phosphoric acid (H3PO4), in a volume ratio of 0.5 of H3PO4

to BOE, shows the best results for forming electrical channels through the out-

coupling layer. The OLEDs fabricated on this patterned substrate showed 
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similar current density-voltage (J-V) characteristics to OLEDs on a glass 

substrate with low leakage levels. The device showed over 50% enhancement 

of external quantum efficiency (EQE; from 21.7% to 32.7%), similar to the 

device without via holes.

Chapter 5 contains a method for improving the stability of electron 

transporting layer. After the alignment of permanent dipole moment (PDM) was 

found in Alq3, it was revealed that spontaneous orientation polarization (SOP) 

was observed in several electron transporting materials. Although studies on the 

electrical effects of the polarization have been reported, there are few reports 

on the effects of polarization on the lifetime of device. Here, we observed the 

SOP characteristics and the change in the lifetime of device when BAlq was 

doped in PO-T2T with different volume ratios. As the polarization increased, 

the operation lifetime also increased and the applied voltage change decreased. 

In addition, the lifetime enhancement was only observed when there was a 

polarized layer at the interface with the emtting layer (EML). This shows that 

hole blocking layer (HBL) can enhance the lifetime when it has a negative 

surface charge at the interface with EML, and also indicates that the SOP 

characteristics of the molecule should be considered for improving the lifetime.

Keywords: Organic light-emittng diodes, Light extraction efficiency, Light 

extraction structure, Operation lifetime, Spontaneous orientation polarization

Student Number: 2015-20870
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Introduction        

1.1 Brief history of Organic Light-Emitting Diodes (OLEDs)

Organic semiconductors can control material properties through molecular 

structure modification, which is a unique advantage of organic materials. 

Organic light-emitting diodes are light-emitting diodes that utilize the above 

advantage of organic materials, and are composed of several layers of organic 

semiconductors, each of which plays a specific role. The structure of a typical 

OLED is as follows, and it is depicted in Figure 1.1: substrate/anode/hole 

injection layer (HIL)/hole transporting layer (HTL)/electron blocking layer 

(EBL)/emitting layer (EML)/hole blocking layer (HBL)/electron transporting 

layer (ETL)/electron injection layer (EIL)/cathode. OLEDs are classified into 

bottom emission type and top emission type (Figure 1.2), and the former emits 

light in the direction of the device's substrate, and the latter emits light from the 

opposite direction of the substrate. Since the pixel area loss shadowed by the 

thin film transistor (TFT) is more important for small-sized pixel displays, in 

general, the bottm emission type is used for large-sized pixel devices as 

television, and the top emission type is used for small-sized pixel devices as 

moblie. OLED has many advantages to being used as lighting and display. 

Firstly, OLED does not require a backlight because it has self-emitting property, 

so it is thin, light and flexible. In addition, it also has surface emission, fast 

repetition rate, high contrast ratio, high color rendering index (CRI) through a 

wide full-width-at-half-maximum (FWHM) emission spectrum, and high color 
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purity due to microcavity structures. As such, OLED has many advantages, and 

is used as a variety of commercial products today. (Figure 1.3)

Organic semiconductor was discovered by akamatsu and inokuchi in 1950 by 

measuring the electrical conductivity of violanthrone, iso-violanthrone, and 

pyranthrone.1 Furthermore, in 1965, and the first electroluminescence (EL) of 

organic compound was observed by Helfrich and Schneider to measure EL of

anthracene single crystal.2 In addition, ELs of perylene-based materials, 

polyvinyl carbazole (PVK) and poly (3-vinyl carbazole) have been reported.3,4

In 1987, C. W. Tang and S. A. Van Slyke reported the first bilayer OELD with 

4,4′-Cyclohexylidenebis[N,N-bis(4-methylphenyl)benzenamine] 

(TAPC)/tris(8-hydroxyquinolinato)aluminum (Alq3) structure.5 The external 

quantum efficiency (EQE) of the device was 1% and the maximum luminance 

of the device was over 1,000 cd/m2. Also, in 1989, they developed a host-guest 

system to increase efficiency and control the emission spectrum by doping 

Coumarin 540, DCM1, DCM2 to Alq3.6 The differences between today's state-

of-the-art OLEDs are that they consist of more layers and better performance 

materials. The above two papers are of great significance in showing the origin 

of the current structure of OLEDs for the first time.

Although the first OLED was reported, its efficiency was very low. The 

reasons are that exciton binding energy is high, exchange energy is high, and 

only singlet excitons participate in radiative decay process. In photoexcitation, 

only singlet excitons are formed, but in the charge recombination process, 25% 
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single singlet and 75% triple excitons are formed by spin statistics, and the 

triple excitons are dissipated through the non-radiative decay. Therefore, if the 

triplet excitons that dissipated through the non-radiative process can emit 

phosphorescence at room temperature, the efficiency of OLED can be greatly 

improved. In 1998, M. A. Baldo and S. R. Forrests reported strong 

phosphorescence at room temperature using Pt-based organometallic 

compound, 2,3,7,8,12,13,17,18-octaethyl21H,23H-porphine platinum(II) 

(PtOEP).7 Due to the strong spin-orbit coupling at excited state, organometallic 

compounds with heavy metal atom (Ir, Pt, Os, Ru, Pd) allow the triplet exciton 

to emit phosphorescence at room temperature by electron spin flipping during 

the decay. With this development, the efficiency of OLED has been greatly 

improved and 100% internal quantum efficiency (IQE) (=

number of generated photons

number of injected charge carriers
(%)) is possible.

Meanwhile, despite the high efficiency of organiometaalic compounds, the 

heavy metal atoms are generally rare earth metals, so a triplet harvesting 

method without the heavy metal atoms was needed. In 2012, H. Uoyama and 

C. Adachi reported metal-free organic comound that allow spin up-conversion 

from triplet to singlet by small energy level gap.8 They named this process as 

thermally activated delayed fluorescence (TADF) and spatially separtated 

donor and acceptor moieties allowed the intramolecular charge transfer that 

leads small energy gap between the singlet and triplet states, promoting spin 

mixing by intersystem crossing (ISC) (S1→T1) and reverse intersystem crossing 
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(T1→S1). This process allows to harvest the triplet excited states as delayed 

fluorescence. Similarly, the above properties are also exhibited by 

intermolecular charge transfer between electron-accpeting molecules and 

electron-donating molecules, which is called excited charge transfer state 

(exciplex).9–11 Furthermore, the systems that doped the TADF emitter to the 

exciplex host to boost the RISC rate ( RISCk ) have also been reported.12,13 In 

recent years, as the operation lifetime of OLED has become more important, 

TADF emitter + fluorescent emitter or phosphorescent emitter + fluorescent 

emitter is doped to EML to utilize triplet exciton while using the high stability 

properties of fluorescent dopants.14–17 Figure 1.4 is a schematic illustration of 

the above three electronic processes.
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Figure 1.1 Typical structure of organic light-emittig diode (OLED).
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Figure 1.2 Schematic images of the propagating light path depending on the 

emitting type of OLEDs.
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Figure 1.3 Commercial products of OLEDs; (a) Foldable OLED Panel in 

Samsung Galaxy Z Flip (Samsung Electronics 2020), (b) LG Rollable OLED 

TV R9 (LG Electronics 2020), (c) OLED lighting in automobile (BMW AG 

2017), (d) Virtual exterior mirror (Audi 2018).
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Figure 1.4 Mechanisms of (a) fluorescence, (b) phosphorescence, and (c) 

thermally-activated delayed fluorescence (TADF) radiation.
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1.2 Efficiency of OLEDs

External quantum efficiency (EQE) is one of the parameters indicating the 

efficiency of OLED, and is defined as the number of photons emitted to the air 

compared to the number of injected charge carriers. EQE does not take into 

account eye sensitivity such as candela (cd) or lumen (lm). EQE can be 

expressed by the following equation.

EQE IQE out S/T eff r out

EQE

IQE

out

( , ) ( , ) ( , )

 external quantum efficiency (EQE)

 internal quantum efficiency (IQE)

 out-coupling efficiency

 exciton formation efficiency (charge balanc

q qh h h g h h

h

h

h

g

= ´ Q G = ´ ´ G ´ Q G

=

=

=

=

S/T

eff

e factor)

 radiative exciton ratio

 effective quantum efficiencyq

h =

=

Q   is the emitting dipole orientation (ratio of horizontal transition dipole 

moment), which greatly affects the efficiency of the device. This can also be 

expressed as an S (orientation order). The values are different, but they mean

the same thing.

2 2

2

(1) horizontal : vertical : (1 ) sin : cos

3 cos 1
(2) 

2
S

q q

q

= Q -Q =

-
=

q is the angle between the transition dipole moment vector and the normal 
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vector of the substrate. L is an ensemble average. As depicted in Figure 

1.5, vertically aligned dipoles are difficult to extract light to the air, and most 

of the externally emitted light comes from horizontally aligned dipoles.

Therefore, the larger Q , the higher the efficiency. G is a geometric factor and 

is affected by the thickness of the device and the location of the recombination 

zone in EML. g means the ratio of exciton formation in EML compared to 

the injected charge carriers, and S/Th refers to the ratio of radiative excitons 

by spin statistic as mentioned in chapter 1.1. effq is the ratio of excitons that 

form photon among radiative excitons in the cavity structure, and is different 

from rq  . rq  is the radiative quantum efficiency, also called 

photoluminescence quantum yield (PLQY). PLQY is defined as the ratio of 

emitted photons by emitting dopant to the excitons. Also, it can be expressed as 

kinetic parameter as below.

r
r

r nr

r
eff

r nr

r

nr

radiative decay rate

non-radiative decay rate

purcell factor

k
q

k k

F k
q

F k k

k

k

F

=
+

×
=

× +

=

=

=

Non-radiative decay means that energy is dissipated into phonon. The 

difference between rq and effq is whether the emitting layer is in the free 
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space or inside the cavity. Since the excitonic decay rate in the electromagnetic 

cavities is altered according to the local mode density,18 the efficiency of the 

EML located in the cavity called OLED should take F into account. Lastly, 

outh   is the ratio at which photon inside the cavity is extracted to the air.

Although lower than light-emitting diodes (LEDs), OLEDs also have a larger 

refractive index than air, so there is light trapped inside the cavity. Therefore, it 

should be considered.

In addition to EQE, there are luminous current efficiency (cd/A) and luminous 

power efficiency (luminous efficacy, lm/W) as parameters indicating the 

efficiency of OLED. Since 1 candela (cd) is the brightness of 1 candle per 1 sr, 

cd/A indicates the luminous intensity of 1 sr solid angle according to ampere.

Also, the cd value is different for each color even though EQE is the same 

because the luminous intensity takes into account the human eye's sensitivity. 

Brightness of OLEDs can be calculated by the following equation

[cd] 683.002 ( ) ( )eI I S d
l

l l l= × ò

Where ( )eI l is the radiant flux spectrum (watt/nm) and ( )S l is the relative 

human eye’s sensitivity. Figure 1.6 depicts the eye sensitivity. 683.002 is the 

arbitrary term occurs to match the unit between cd and watt. Since Candela is 

the brightness of one candle, it is a constant created by determining 

monochromatic radiation of 12540 10´ Hz frequency to 1 lm/W to precisely 

define candela. Lumen (lm) is the intensity of light emitted at a solid angle, 
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which is the same unit as cd·sr. For example, since the light spreads out form a 

candle in a spherical shape, the intensity of light is 1 cd  4  sr = 4  lmp p´ . 

Therefore, lm/W is the intensity of light from all solid angles, compared to the 

power applied to the device, so it is a more practical parameter than EQE.
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Figure 1.5 (a) Radiation pattern from the dipole. Radiation from (b) horizontal 

and (c) vertical dipoles in OLED stacks.
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Figure 1.6 Relative human eye’s sensitivity as a function of wavelength
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1.3 Light extraction methods for OLEDs

As shown in Figure 1.7, organic materials have a higher refractive index than 

air, so there are confined modes in the OLED. In addition, since the organic 

material has a larger refractive index than glass, there is light confined inside 

the oled stack without being extracted to the substrate. Also, because it is 

located close to the metal electrode, there is a loss due to surface plasmon 

polariton coupling and intrinsic absorption of the materials. Each of these 

modes is classified as the air mode, substrate-guided mode, wave-guided mode, 

surface palsmon polaritons (SPPs), and intrinsic absorption loss. Since the 

mode distribution is affected by the structure of the device, out-coupling 

efficiency is affected by device structure. Plus, out-coupling efficiency is also 

affected by the emitting dipole orientation, because the spp loss is only caused 

by the transverse magnetic (TM) mode, and the direction of the field is also 

dependent on the emitting dipole orientation. There are methods to improve the 

out-coupling efficiency, including (1) emitting dopant with high horizontal 

dipole orientation, (2) organic materials with low refractive indices, (3) optical

structure attachment. Here, we describe how to improve the out-coupling 

efficiency through the optical structure.

The light extraction structure can be rougly classified into two types; the 

external light extraction layer which is located outside the substrate and the 

internal light extractgion layer which is located between the substrate and the 

OLED stack or inside the OLED stack. Figure 1.8 shows microlens array 
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(MLA), luminaire, scatter film, and high refractive index substrate, which are 

representative types of external light extraction methods. The external structure 

has the advantage that it is easy to fabricate and apply, but there is a limitation 

that only substrate-guided mode can be extracted. Figure 1.9 is a representative 

internal light extraction method, photonic crystal embedded high refractive 

index layer and corrugated device. Because the periodic structure has a 

distortion of the spectrum due to the wavelength dependency, the structure is 

usually randomly dispersed. The internal structure has the advantage that it can 

affect both wave-guided and substrate-guided modes, but there are critical 

issues. Because the solution process is often used to fabricate the structures, 

problems with reliablitiy of OLED caused by residual solvent may occur. In the 

case of the corrugated structure which can extract the spp modes, it is important 

to ensure electrical uniformity because the curvature of device can cause local 

thickness differences. Therefore, the light extraction structure should be easy, 

fast, reliable and should not affect the reliability of the device.

Light extraction is used for lighting, but it is still limited in OLED displays 

due to image blurring issue. This is because the image blurring issue is not 

critical in lighting, but the display has an important requirement not to interrupt 

small-sized pixels. Image blurring means that the apparent pixel size is 

recognized larger than the actual pixel size. In fact, the light extraction layer 

basically causes the image blurring because it increases the light path. 

Especially, when the out-coupling structure is applied to the bottom emission 
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type, image blurring becomes more serious. When light extraction is applied to 

the bottom emission type OLED as shown in Figure 1.8, it is disadvantageous 

for image blurring due to the long path until the emitted light is extracted to air.

On the other hand, the light extraction structure has a potential to be used in 

display when applied to top emission type, since the top emission type is less 

blurred due to the short distance of nm scale. However, it is difficult to apply 

the light extraction structure to the top emission type. Since there is no substrate 

in the light path, it is rather complicated to form a structure on the emission 

surface without damage. Therefore, a lot of research is needed for the top 

emission type light extraction, and the representative light extraction structure 

for top-emitting OLED is depicted in Figure 1.11.
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Figure 1.7 (a) Schematic image of the modes exist in OLED structure. (b) 

Simulated mode fractions as a function of the ETL thickness.
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Figure 1.8 Representative external light extraction methods including (a) 

microlens array (MLA), (b) luminaire, (c) scatter film, and (d) high refractive 

index substrate.
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Figure 1.9 Representative internal light extraction methods including (a) 

photonic crystal embedded high refractive index layer and (b) corrugated 

device.
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Figure 1.10 Schematic images of the propagating light path depending on the 

emitting type of OLEDs with light extraction structure.



22

Figure 1.11 Representative light extraction methods for Top-emitting OLED 

including (a) lamination, (b) corrugated structure, (c) organic nano-lens array 

by organic vapor phase deposition method (OVPD), (d) planarized corrugated 

structure.
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1.4 Finite difference time domain (FDTD) method

When considering repetitive work and cost, it is important to predict the 

experimental results through simulation. In addition, prediction through 

calculation is very important in a light extraction structure design in which an 

optimized structure is essential. Micro-sized structures can be predicted by ray 

optics, but nano-sized structures require the use of rigorous methods to solve 

the solution of the Maxwell equation. Finite difference time domain (FDTD) 

method is a numerical analysis technique for complex geometries. The space is 

discretized into cubic-shaped lattices, so-called Yee cell. The electric field is 

defined at the edge centers of the lattice, and the magnetic field is defined at the 

face centers of the lattice. The magnetic permeability/magnetic loss is defined 

at the lattice corners, and the electric permittivity/conductivity is defined at the 

lattice centers. As FDTD is a time-domain method, it can cover a wide 

frequency range with a single calculation and handle nonlinear optics in a 

natural way. However, as the system size increases, the phase error accumulates, 

so super-fine gride is required when simulating large problems, which 

consumes a lot of computer cost.
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Figure 1.12 Schematic structure of Yee lattice19
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1.5 Operational stability of OLEDs

Operational stability of OLEDs is an issue that has not yet been resolved.

Although a certain level of stability has been achieved through a lot of research 

and effort, this is only for red and green, and research on blue is still 

insignificant. There have been many studies on the short operation lifetime of 

OLEDs, and several mechanisms have been proposed, but there is no concrete 

description of the origin of degradation.

The study on the lifetime of OLED is difficult because there are both intrinsic 

and extrinsic factors in the degradation. Extrinsic factors include defects such 

as particles, temperature changes, moisture, oxygen, sealing, out-gassing and 

impurities of organic materials. Since these things are difficult to say the 

properties of materials, these factors should be minimized for studies. However, 

since it is very tough, it can lead to misinterpretation of the results.

The intrinsic factors are due to the characteristics of the organic material or 

the device itself, and there are factors like charge balance, charge accumulation 

at interfaces, diffusion. In 1997, H. Vestwever et al. reported electron migration 

of mobile ions from Ca and ITO electrodes. In this study, mobile ion changed 

the internal energy structure of OLED and accompanied decay of luminance 

and current. After this study, research on the lifetime of OLED has developed 

into charge and quencher density inside the device. In general, since EML has 

a bulk heterostructure or bipolar host structure, the hopping rate decreases, and 

accumulation occurs at the interface between the EML and the transport layer. 
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High energy is released by annihilation between the accumulated charge, so-

called polaron, and exciton of EML, and can cause chemical dissociation or 

reaction of substances. In addition, since the charge exists as a polaron inside 

the OLED, the polaron which is in the ionic state is more unstable than the 

neutral state, which may cause charge induced degradtaion. Also, H. Aziz and 

G. Xu suggested the degradation mechanism by electron injection electrode and 

hole injection electrode. They found a decrease in the indium (In) concentration 

of the anode in the degraded device, as well as an irregular surface of the Al 

cathode. From these results, it was suggested that electrochemical reaction at 

interfaces is the cause of degradation. Another study reported morphology 

changes in organic materials due to moisture and oxygen. Recently, a new 

mechanism was proposed, and they proposed bond dissociation energy (BDE) 

as a new degradation mechanismUsing the Density functional theory (DFT) to 

calculate the bond's BDE, they say that dissociation of a substance by weak 

bonds such as C-P and C-N causes degradation. However, there is still no 

concrete model, and several plausible models are proposed.
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1.6 Outline of the thesis

In this thesis, we describe the effect of various light extraction structures on 

OLED efficiency. In addition, we report the effect of lifetime enhancement in 

OLEDs by doping the orientation polarization molecule.

In order to increase the efficiency of OLED, a light extraction structure is 

necessary to extract the confined mode. For this reason, numerous light 

extraction structures have been reported so far, but the microlens array is the 

most preferred option considering process convenience and cost. Therefore, it 

is necessary to develop a light extraction structure in the form of a film that is 

cheaper and has higher efficiency while making it more convenient than MLA. 

In chapter 2, we report a simple and effective method for the fabrication of 

random organic nano-textured microstructures for light extraction of blue 

OLEDs. Donor-acceptor crosslinked microstructures (DACMs) are created by 

dropping a donor-acceptor-mixed methanol-chloroform solution on a substrate 

followed by drying the solution under ultraviolet (UV) light. The DACMs are 

fabricated on an adhesive PET film and attached to a blue phosphorescent 

OLED for light extraction to get a very high EQE of 44.3%, enhanced by 35% 

over the planar device. This value is greater than 22% enhancement by the MLA 

film. In addition to high light extraction efficiency, the extraction method has 

many advantages for practical use; low cost, large-area processability, 

insolubility to alkyl halide solvents, and structural controllability without 

disturbing the inner OLED structure or degrading the device lifetime. (Chap. 2)
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Although we developed simple and effective light extraction layer, it is hard 

to apply to the top-emitting OLED (TEOLED). Since there is no substrate in 

the light path, it is rather complicated to form or apply a structure on the 

emission surface without damage. In chapter 3, we report one-step method of 

fabricating nanowire structures composed of 1,5-diaminoanthraquinone 

(DAAQ) for light extraction of TEOLED. DAAQ nanowires were formed in 

the out-of-plane direction on the Ag thin film, and nanowire pitch, height, and 

diameter were able to be controlled by the deposition conditions. We fabricated 

DAAQ nanowires on a red phosphorescent TEOLED with a pixel size of 2 × 2 

mm for light extraction. It showed 8.6% enhancement for a narrow full width 

at half maximum (FWHM) device without distorting the emission spectrum, 

and 10.6% enhancement for a wide FWHM device. The method is suitable for 

OLED display because it is simple, vacuum-processable and has mild 

processing conditions without damaging the device. (Chap. 3)

For active matrix OLED (AMOLED) display, each OLED pixel is controlled 

by thin film transistor (TFT) and it is able to achieve high efficiency and 

resolution than passive matrix method. For separating OLED and TFT spatially, 

there is a passivation layer between OLED electrode and TFT drain electrode 

and they are connected by an electrical channel, which is called via hole. 

Because internal light extraction layers are usually fabricated beneath OLED 

electrode, it is necessary to pattern via holes in the internal light extraction 

layers. In chapter 4, we developed a wet etching process for via hole fabrication 
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in a random scattering layer (RSL) and demonstrated OLEDs on the patterned 

out-coupling layer with low leakage current and good light extraction efficiency. 

(Chap. 4)

Although the efficiency is increased by the light extraction layer, it is 

necessary to consider the lifetime of the device. As OLED is composed of 

several layers such as hole transporting layer (HTL) and electron transporting 

layer (ETL) and the accumulation of irreversible degraded products shorten the 

lifetime of device, the stability of the materials should be considered. Especially, 

since ETL requires high electron mobility, high triplet level, and wide energy 

bandgap characteristics, and it is rather tough to achieve material stability while 

meeting the above requirements. Therefore, it is important to develop a method 

to enhance the stability of the ETL. In chapter 5, we discuss how to improve 

the stability of ETL using spontaneous orientation polarization (SOP). Plus, we 

investigated the change in the polarization of the device according to the 

volume ratio of SOP molecules and compared the operational stability of the 

device. As the polarization increased, the operation lifetime also increased and 

the applied voltage change decreased. The enhancement in lifetime was only 

found when the position of the polarized layer was at the EML/ETL interface.

This means that hole blocking layer can increase device lifetime when there is 

a negative surface charge at its interface with EML, and also indicates that the 

SOP characteristics of the molecule should be considered to improve the 

lifetime. (Chap. 5)
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Random Organic Nano-textured 

Microstructures by Photo-Induced Crosslinking 

for Light Extraction of Blue OLEDs

2.1 Introduction

The efficiency of organic light-emitting diodes (OLEDs) has drastically 

increased, and OLEDs have become a key technology in displays and lighting. 

However, more than half of the photons generated in OLEDs are dissipated due 

to total internal reflection by high-refractive-index organic layers and the 

substrate.20–22 Therefore, light extraction technology is required to increase the 

efficiency and reduce the power consumption of OLEDs. Since displays use 

numerous small-sized pixels for image clarity, they cannot use light extraction 

structures that introduce image blurring. Thus, efforts to extract light for 

displays have attempted to develop a light extraction layer that causes less 

blurring through patterning processes including photolithographic processes, 

oblique angle deposition, and imprinting.23–34 In contrast, light extraction 

technologies for lighting take into account cost-effectiveness, large area 

processability, and efficiency improvements, with image blurring being less 

critical.16–32 Meanwhile, there is high demand for high-efficiency blue OLEDs 

both for displays and lighting, because the color quality and the operation 

lifetime of white OLEDs using two or three emitting units depend largely on 

blue devices.52,53 Although significant efforts have been concentrated on light 
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extraction of blue OLEDs,27,54–59 the EQEs that have been obtained are much 

lower than 40% that has been achieved in other color ranges.26,37,60,61 Attaching 

commercialized microlens arrays (MLAs) film is a convenient method, but it is 

less effective. Randomly dispersed metallic oxide compounds have also been 

used for light-scattering layers, but reliability issues such as surface cracks or 

agglomeration of inorganic particles can reduce the device efficiency.62 Organic 

compounds have been used to form light scatters by vacuum evaporation,285863–

65 but material waste is inevitable in this process.

Here, we report a simple and effective method for the fabrication of random 

organic nano-textured microstructures for light extraction of blue OLEDs. 

Donor-acceptor crosslinked microstructures (DACMs) are created by dropping 

a donor-acceptor-mixed methanol-chloroform solution on a substrate followed 

by drying the solution under ultraviolet (UV) light. The DACMs are fabricated 

on an adhesive PET film and attached to a blue phosphorescent OLED for light 

extraction to get a very high EQE of 44.3%, enhanced by 35% over the planar 

device. This value is greater than 22% enhancement by the MLA film. In 

addition to high light extraction efficiency, the extraction method has many 

advantages for practical use; low cost, large-area processability, insolubility to 

alkyl halide solvents, and structural controllability without disturbing the inner 

OLED structure or degrading the device lifetime. Furthermore, we fully discuss 

on the EQE, enhancement ratio and the efficiency of light extraction structure 

(ELOS) defined as the ratio of the enhanced EQE to the extractable mode 

fraction. We show that enhancement ratio and ELOS should be obtained using 
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the optimized device structure as the reference device to be useful indicators 

for the effectiveness of a light extraction structure based on the devices with 

different electron transporting layer (ETL) thicknesses.
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2.2 Experimental section

The transmittance of the films was measured using an UV-vis-near infrared 

spectrophotometer (Cary 5000, Agilent Technologies) in the normal direction. 

SEM images of the films were taken by a MERLIN Compact microscope (Zeiss) 

after platinum coating. For fabrication of OLEDs, 70 nm-thick pre-patterned 

ITO-coated glass substrates were cleaned by dipping in acetone and isopropyl 

alcohol and boiling in isopropyl alcohol. All of the organic and metal layers 

were deposited by thermal evaporation at a base pressure of under 5 × 10-7 Torr 

without breaking the vacuum. For each layer, the total deposition rate was 1 

Å/s. mCP, PO-T2T, and FIrpic were purchased from Nichem, and ReO3 and 

Rb2CO3 were purchased from Sigma Aldrich. The devices were encapsulated 

with a cover glass in a glovebox using UV-curable resin. Current densities were 

measured with a programmable source meter (Keithley 2400, Tektronix Inc.), 

and EL spectra and intensities in the normal direction were measured with a 

spectrometer (PR-650, Photo Research). The luminance of the OLEDs was 

calculated using the spectral intensity in the normal direction and the CIE 

luminosity function. The angle-dependent EL spectra and intensities were 

measured every 5 degrees with a rotating stage and a fiber optic spectrometer 

(S2000, Ocean Optics Inc.). The EQEs of the OLEDs without light extraction 

structures were calculated using the J-V-L characteristics and the angle 

dependent EL spectra and intensities. Detailed method was discussed in our 

previous reports.66 The efficiency improvements obtained using the out-
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coupling films were measured with a 6-inch integrating sphere (Labsphere) and 

a monochromator attached to a photomultiplier tube (Acton Research Corp.) by 

measuring the relative intensities of the devices with light extraction structures 

against the intensity of the device without the light extraction layers. The out-

coupling films were cut and attached to the same size as the substrate. Emitted 

light of the devices was incident through a port of an integrating sphere having 

a diameter of 0.75 inches (19 mm), smaller than the size of the substrate (25 × 

25 mm) to prevent light the edge of the substrate or films. The MLAs are shaped 

as half spheres with a radius of 35 μm, and exist in hexagonal arrays with a fill 

factor of 90%.
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2.3 Results and Discussion

Figure 2.1 illustrates the formation process for the DACMs. (1) A methanol-

mixed chloroform solution (1:15 volume ratio) containing both 0.005 M 4,4,́4 -̋

tris(carbazol-9-yl)triphenylamine (TCTA) and 0.005 M 4,6-bis(3,5-di(pyridin-

4-yl)phenyl)-2-methylpyrimidine (B4PyMPM) was prepared. (2) 0.2 mL of the 

solution was dropped on a 25 × 25-mm fused silica substrate using a 

micropipette to cover the substrate. (3) The solution was dried under a UV lamp 

(λ = 365 nm, 4 W) at room temperature for 3 minutes, resulting in the formation 

of a light-scattering structure. In addition, DACMs were fabricated on a 100-

μm-thick adhesive PET film with a diameter of 100 mm using the same process 

(Figure 2.2).

Figure 2.3 (a) compares the samples prepared with different solutions and 

under different light illumination. Haze DACMs covered the glass surface in 

an irregular pattern (see optical microscope images in Figure 2.4). In contrast, 

DACMs were not created with solutions containing either only the donor or 

only the acceptor, or under yellow light. Without the formation of DACMs, 

some organic molecules formed thin layers on the surface and others 

precipitated at the edge of the surface. The thin layers and the precipitated 

powders were removed with a chloroform rinse using a squeeze bottle. 

However, DACMs were not peeled off by the rinse, although the haziness was 

reduced. Figure 2.3 (b) shows the fluorescence of the samples under 254 nm 

wavelength UV illumination. The as-prepared DACMs and the sample dried 
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Figure 2.1 Fabrication of donor-acceptor crosslinked microstructures 

(DACMs). Randomly crumpled microstructures are formed by drying a donor-

acceptor dissolved in a methanol–mixed chloroform solution under UV light.
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Figure 2.2 DACMs fabricated on a 100-mm-thick PET film attached to a 

silicon wafer with a diameter of 100 mm (right). Left is a bare silicon wafer.



38

Figure 2.3 Photographs of samples prepared with different solutions and under 

different drying conditions. (a) Photocrosslinking between TCTA (donor) and 

B4PyMPM (acceptor) under UV light formed hazy DACMs that are not washed 

away by chloroform. In contrast, the sample dried under yellow light and the 

samples prepared using the solutions containing only the donor or the acceptor 

formed transparent layers instead of DACMs. (b) Green, blue, and violet 

fluorescence was exhibited by the TCTA:B4PyMPM exciplex, TCTA, and 

B4PyMPM samples under UV illumination (λ = 254 nm), respectively. Because 

the chloroform removed the unreacted monomers, the samples did not show 

fluorescence. The glow of the DACMs is the scattered violet light from the UV 

lamp.



39

Figure 2.4 Optical microscope images of DACMs at different magnifications: 

50× (left), 100× (center), 200× (right). Dark portions are surfaces covered by 

macromolecules.
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under the yellow light emitted green fluorescence corresponding to the 

TCTA:B4PyMPM exciplex.67,68 The fluorescence completely disappeared in 

the both samples after the rinse, at which point the glowing of DACMs is the 

scattered violet light from the UV lamp (see the spectrum of the lamp in Figure 

2.5). The blue and violet fluorescence of the TCTA and B4PyMPM layers, 

respectively, also disappeared after the rinse. These results indicated the 

formation of chemically stable macromolecules by photo-crosslinking between 

TCTA and B4PyMPM. Since the crosslinking was induced by excitation of the 

monomers in the donor-acceptor mixed solution, the excited state complex 

between TCTA and B4PyMPM is expected to be the intermediate state of the 

reaction. The as-prepared DACMs consist of the macromolecules, which are 

insoluble in chloroform, and the unreacted monomers. The mechanism of the 

formation of DACM is not clear at this moment and under investigation now. 

There are many studies on the formation of photo-induced dimer of 

pyrimidine,69 but in our results, the DACM was formed by the reaction with 

TCTA composed of amine and carbazole. Thus, further study is required to 

clarify the origin(s).

Figures 2.6 (a), (b), and (c) show scanning electron microscope (SEM) images 

of the as-prepared DACMs, the rinsed DACMs, and the sample dried under 

yellow light, respectively. The DACMs are clusters of a few micrometers of 

ball-shaped macromolecules. The clusters cover the surface with irregular 

patterns. After the rinse, the DACMs have nanopores where the unreacted 

monomers have been washed away. The size of the macromolecule balls and 
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Figure 2.5 Emission spectrum of the UV lamp (λ = 254 nm). The lamp has 

several peaks from 254 nm to 403 nm.



42

Figure 2.6 Scanning electron microscope (SEM) images of (a) as-prepared 

DACMs, (b) rinsed DACMs, and (c) a sample dried under yellow light. The 

first two images are views from the top, and the third image is a view from the 

side. (d) Total transmittance, specular transmittance, and haze of the as-

prepared and rinsed DACMs. The haze was between 40 and 60% for as-

prepared DACMs, and between 18 and 20% for rinsed DACMs.
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the surface coverage could be controlled by the concentration of the solution 

and the repeated coating process (Figure 2.7 and 2.8). In contrast, the sample 

dried under yellow light formed only a micrometer-thick thin layer without a 

feature of the macromolecules. Figure 2.6 (d) depicts the total transmittance, 

specular transmittance and haze of the as-prepared and rinsed DACMs, 

respectively, where haze is calculated using the following equation; Haze = 

total specular total(T - T ) / T  . The as-prepared DACMs exhibited low specular 

transmittance between 30 and 50% at a wavelength range between 400 and 800 

nm compared to 65 and 70% for the rinsed DACM in the same wavelength 

range although the total transmittance was similar to that of the rinsed DACMs. 

As a result, the haze of the DACMs was 53% at the wavelength of 470 nm, 

which is much higher than the value of 18% after rinsing. Therefore, as-

prepared DACMs acted as a better light-scattering structures for visible light 

than the rinsed one. 

For application in light extraction of an OLED, the DACMs-coated PET film 

was cut and attached to the glass substrate of one of the 2 × 2 mm pixels of a 

blue phosphorescent OLED with the following structure: ITO(70 nm)/6 wt% 

ReO3 doped mCP(40 nm)/mCP(15 nm)/10 wt% FIrpic doped mCP:PO-

T2T(1:1, 30 nm)/PO-T2T(20 nm)/4 wt% Rb2CO3 doped PO-T2T(30, 50, 70 

nm)/Al(100 nm), where mCP represents N , N -́dicarbazolyl-3,5-benzene and 

PO-T2T represents 1,3,5-triazine-2,4,6-triyl)tris(benzene-3,1-

diyl))tris(diphenylphosphine oxide), respectively.70 A commercial MLA film 
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Figure 2.7 Scanning electron microscope (SEM) images of DACMs fabricated 

by methanol–mixed chloroform solutions with (a) 0.001 M, (b) 0.005 M, or (c) 

0.01 M of TCTA and B4PyMPM at a 1:1 molar ratio. As the concentration of 

the solution was lower, the size of the macromolecule balls was smaller. (d) 

Transmittance of the DACMs.
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Figure 2.8 SEM images of DACMs prepared with (a) one, (b) three, or (c) five 

coating-rinse processes. The repeated processes resulted in overlays of DACMs. 

(d) Transmittance of the DACMs.
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(UTE24B, MNtech Co.) was also used as an extraction layer for comparison. 

Figure 2.9 (a) shows the current density-voltage-luminance characteristics and 

the electroluminescence images at an applied voltage of 9 V of the reference, 

DACMs-attached, and MLAs-attached devices with an ETL thickness of 50 nm. 

The DACMs-attached device showed a lower luminance to the normal direction 

than the reference and the MLAs-attached devices, and also exhibited blurred 

electroluminescence images because of the scattering effect. The EL spectra 

and relative EL intensity of the devices measured at a current density of 3 

mA/cm2 in an integrating sphere are shown in Figure 2.9 (b) and the EQEs of 

the device with and without the light extraction structures are compared in 

Figure 2.9 (c) along with the angular emission patterns in the inset. The 

DACMs-attached device exhibited a wider angular emission pattern than the 

reference device and the MLAs-attached device. The EQEs were improved by 

35% and 22% by attaching the DACM and the MLA films, respectively, 

compared to the reference device without the extraction layers. As a result, the 

maximum EQEs were increased to 44.3 and 40.0% by attaching the DACM 

film and the MLA film, respectively, from the value of 32.8% for the reference 

device, as shown in Figure 2.9 (c). To the best of our knowledge, 44.3% EQE 

is the highest efficiency achieved for blue OLEDs with light extraction methods 

(Table 2.1). The high extraction efficiencies of the DACM film may originate 

from the coupled nano and microstructures of the light scattering layer as 

reported before.49,71 The high haze value of the DACMs, and the blurred 

electroluminescence image of the DACMs-attached device in Figure 2.9 (a)
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Figure 2.9 (a) J-V-L characteristics of reference, DACMs-attached, and MLAs-

attached devices. Inset: photographs of electroluminescence of the devices at 

an applied voltage of 9 V. (b) Relative electroluminescence spectra in an 

integrating sphere at 3 mA/cm2. (c) EQEs of the devices as a function of current 

density. Inset: Angular emission patterns of the devices. (d) Simulated optical 

mode fractions as a function of the electron transporting layer (ETL) thickness, 

with black, blue, and red scatters representing the maximum EQEs of the 

reference, DACMs-attached, and MLAs-attached devices, respectively.
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Table 2.1 Characteristics of selected blue OLEDs with light extraction structure.

Light extraction method Bottom/
top

emission
Emitter

Efficiency
(reference)a

Efficiency
with light 
extractiona

Enhancement 
ratio

Ref.External
structure

Internal
structure

Halographic diffuser - Bottom FIrpic 3.8% 5.5% 1.45 [1]
Moth’s eye 

nanostructure
- Bottom FIrpic 12% 20% 1.67 [2]

-
Moth’s eye 

nanostructure
Bottom FIrpic 12% 19% 1.58 [2]

Moth’s eye 
nanostructure

Moth’s eye 
nanostructure

Bottom FIrpic 12% 26% 2.17 [2]

Nanostructured PET - Bottom FIrpic 9.1% 12.9% 1.42 [3]
Nanostructured PET 

with AgNW
- Bottom FIrpic 9.1% 34.2% 3.76 [3]

Micro-Nano Nested 
Structure

- Bottom FIrpic 17.2% 27.2% 1.58 [4]

Cicada-wing structure - Bottom FIrpic 11 cd/A 14 cd/A 1.27 [5]
- Textured surface Top FIrpic 11% 16% 1.45 [6]

Organic nanolens array - Top TBPe 4.6 cd/A 7.3 cd/A 1.59 [7]
DACMs - Bottom FIrpic 32.8% 44.3% 1.35 This work
DACMs - Bottom FIrpic 27.7% 39.7% 1.43 This work
DACMs - Bottom FIrpic 16.8% 34.4% 2.05 This work

a)Efficiencies are the maximum external quantum efficiencies and the maximal current efficiencies of the devices without and with 
the light extraction method, respectively.
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exhibited the high scattering effect due to irregular nano- and micro-patterns. 

Thus, the greater efficiency improvement was achieved in the DACM film than 

the MLA film. The enhancement is nothing to do with the absorption or 

emission of the DACM because there is no overlap between the emission 

spectrum of FIrpic and the absorption spectrum of TCTA or B4PyMPM or 

excitation spectrum of DACM (Figure 2.10 and 2.11).

One needs to note that the enhancement ratio of the OLED efficiency by a 

light extraction structure depends on the efficiency of a reference device (a 

device without any light extraction structures) as demonstrated in Figure 2.9 

(d), where the efficiencies of the devices with different thicknesses of ETL are 

compared to theoretical values calculated by an optical simulation using a 

classical dipole model.72 PLQY of 100% and the horizontal emitting dipole 

ratio of 76% were used for the simulation. The device performances are 

summarized in Table 2.2 and detailed device characteristics are shown in Figure 

2.12. The maximum efficiencies of the reference devices were in good 

agreement with the theoretical values. The simulation indicates that the DACM 

and MLA films extract 48 and 30% of the light confined in the glass substrate 

of the optimized reference OLED with the ETL thickness of 50 nm, respectively. 

As the ETL thickness increased from the optimized one, the EQE of the device 

with or without the extraction layer was reduced. In contrast, the EQE 

enhancement ratios were increased from 35% to 43.3% and 105% by attaching 

the DACM film, and from 22% to 30% and 93% by attaching the MLA film as 

the thickness of the ETL increased from 50 nm to 70 and 90 nm, respectively.
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Figure 2.10 Absorption spectra of TCTA and B4PyMPM in methylene chloride 

(10-6 M) and photoluminescence spectrum of the as-prepared DACM.
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Figure 2.11 Excitation spectrum of as-prepared DACM detected at 550 nm 

wavelength and photoluminescence spectrum of FIrpic.
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Table 2.2 Comparison of quantum efficiency, enhancement ratio, and efficiency of light out-coupling structures (ELOS) for devices with 

different out-coupling structures.

ETL 
thickness 

[nm]

Maximum EQE [%] Enhancement ratio ELOSa [%]

Theoretical
(w/o 

extraction)

Experimental
(w/o 

extraction)

DACMs-
attached

MLAs-
attached

DACMs-
attached

MLAs-
attached

DACMs-
attached

MLAs-
attached

50 32.9 32.8 44.3 40 1.35 1.22 48 30
70 29.4 27.7 39.7 36 1.43 1.30 40 29
90 19.8 16.8 34.4 32.4 2.05 1.93 49 43

a)This value was calculated using the following equation; extracted reference
ELOS

substrate-guided

EQE EQE
h

c

-
= , where substrate-guidedc is the mode 

fraction confined in the substrate.
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Figure 2.12 (a) J-V-L characteristics of reference, DACMs-attached, and 

MLAs-attached devices at 70 nm ETL thickness. Inset: Relative 

electroluminescence spectra in an integrating sphere at 3 mA/cm2. (b) EQEs of 

the devices as a function of current density at 70 nm ETL thickness. (c) J-V-L

characteristics of reference, DACMs-attached, and MLAs-attached devices at 

90 nm ETL thickness. Inset: Relative electroluminescence spectra in an 

integrating sphere at 3 mA/cm2. (d) EQEs of the devices as a function of current 

density at 90 nm ETL thickness.
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These results clearly indicate that the efficiency enhancement ratio does not 

represent the performance of the extraction layers. Because of the reason, P.-A. 

Will et al. proposed to use the efficiency of light out-coupling structures (ELOS) 

defined as the ratio of the enhanced EQE to the extractable mode fraction.73 The 

ELOS of the DACM film was 48% for the optimized OLED which is much 

higher than 30% obtained from the MLA film. Although, the MLA film had the 

ELOS value of 43% if the OLED structure was not optimized, it does not 

guarantee high EQE value of the device as demonstrated in this paper. This 

means that the ELOS value still does not provide a quantitative measure of the 

effectiveness of the out-coupling structure because the value depends on the 

device structure. Nevertheless, the ELOS provides a better picture than the 

enhancement factor as a measure of the quality of the out-coupling structure 

because its variation depending on the device structure is less than the 

enhancement factor. In order for the ELOS or the enhancement ratio to have 

direct connection with achievable EQEs, the OLED structure must be 

optimized before applying the light extraction structure, which has been done 

in this paper. In other words, enhancement ratio and ELOS will give a 

quantitative figure of merit of the light extraction structure under the condition

of the optimized reference device structure. Lastly, if the emitting dopant 

having a higher horizontal dipole ratio is used, the greater enhancement of EQE 

by light extraction can be achieved due to an increase in the amount of 

substrate-guided mode (Figure 2.13).
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Figure 2.13 Calculated fractions of air and substrate-guided mode as a function 

of horizontal dipole ratio of emitting dopant. The structure used for the 

calculation was as follows;

Glass/ITO(70 nm)/hole transporting layer(HTL, 55 nm)/emitting layer(EML, 

30 nm)/electron transporting layer(ETL, 50 nm)/Al(100 nm). We assumed the 

recombination zone was located in the middle of EML and the 

photoluminescence quantum yield (PLQY) of 100%.
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2.4 Conclusion

In summary, a facile and effective method to fabricate random organic 

nanostructures on microstructures has been developed for efficient light 

extraction of OLEDs. Simple drop casting of TCTA and B4PyMPM mixed 

solution followed by UV curing resulted in films with irregular-shaped coupled 

nano and microstructures (DACMs), ideal for light extraction without 

diffraction patterns. The microstructures can be fabricated on rigid substrates 

such as glass, or flexible plastic substrates such as PET films. The DACM film 

was more effective in light extraction than the MLA film, enhancing the 

efficiency by 35%, compared to the 22% achieved using an MLA film. 

Maximum EQE values of 44.3% were obtained by attaching the DACM film to 

a blue OLED with an EQE of 32.8%. The device with the MLA film attached 

resulted in an EQE of 40%. This demonstrates good light scattering properties 

for OLEDs without absorption of visible light. The method is useful for OLED 

lighting because the fabrication is simple and applicable over a large area on 

rigid or flexible substrates, material costs are low, the microstructure is 

insoluble in strong solvents such as chloroform, and the structure can be 

controlled by a solution process. Furthermore, we have demonstrated that the 

high EQE enhancements and the ELOS do not guarantee the high EQE values. 

As the ETL thickness increases from the optimized one, EQE enhancements 

ratios and ELOS were increased, but the EQEs of the devices with the light 

extraction layers were decreased. Therefore, in order for the ELOS or the 
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enhancement ratio to have direct connection with achievable EQEs, the OLED 

structure must be optimized before applying the light extraction structure.
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Random Nanowire Arrays 

Spontaneously Formed via Vacuum Deposition for 

Enhancing Light Extraction from Inverted Top-

Emitting Organic Light-Emitting Diodes

3.1 Introduction

Top-emitting organic light-emitting diodes (TEOLEDs) exhibit certain 

advantages compared to bottom-emitting OLEDs, including unblurred 

imaging, large aperture ratios and high color purity as a result of the narrow 

emission spectrum originating from the strong microcavity effect between the 

metal mirror bottom electrode and the semitransparent thin metal top 

electrode. Because of the reason, TEOLEDs are widely used, especially in 

small-sized displays. However, the metal electrodes induce large optical 

losses due to absorption and surface plasmon polaritons (SPPs). Besides, light 

is also confined within the OLED stacks because of the high refractive indices 

of the organic layers. Therefore, light extraction technology for TEOLEDs is 

required to reduce optical losses and increase efficiency. Despite this demand, 

it is difficult to apply light extraction technologies to TEOLEDs. Since there 

is no substrate in the light path, it is rather complicated to form a structure on 

the emission surface without damage. Thus, lots of efforts have been devoted 

to reducing damage during the process. One of the proposed methods is to 
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deposit the OLEDs on a pre-patterned substrate.32,74–83 Although this method 

efficiently extracts the confined modes, it is important to ensure electrical 

uniformity because the device curvature can cause local thickness differences. 

Another proposed method is to apply optical structures directly to the device 

via precisely controlled engineering processes such as lamination,84–89 nano-

imprinting,90 or solution-based processes.91,92 Such methods minimally affect 

electrical properties of the device, but are quite challenging in practice 

because damage to the device can easily occur during the process. Previously, 

we reported methods of forming organic lens array in vacuum using a micro-

sized hole pattern mask28,64 or the organic vapor phase deposition (OVPD) 

method.58,65 In addition, methods of forming nanostructures on the top 

electrode via crystallization of organic materials have also been utilized. 

Anthracene, perylene,93 copper phthalocyanine (CuPC),94,95 tris(8‐

hydroxyquinoline)aluminum (Alq3),96–98 tetracyanoquinodimethane 

(TCNQ),99–101 have been reported to form nanostructure through 

crystallization and 4,4-́bis(1,2,2-triphenylvinyl)biphenyl (BTPE),63 4-(4-

(1,2,2-triphenylvinyl)phenyl)-7-(5-(4-(1,2,2-triphenylvinyl)phenyl)thiophen-

2-yl)benzo[c][1,2,5]thiadiazole (BTPETTD), tetraphenylethene (TPE),102,103

4,7-diphenyl-1,10-phenanthroline (Bphen), N,N -́dicarbazolyl-3,5-benzene 

(mCP), bathocuproine (BCP)104,105 have served as light extraction layers of 

OLEDs. However, crystallization of these materials requires annealing or 

processing time such as storage in vacuum for several hours. Although TPE 

has been applied as a light extraction layer of TEOLED using its properties 
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being crystallized at room temperature,103 it is not possible to control the 

surface morphology of TPE nanostructure, and needs to evaluate the 

performance by applying it to a higher efficiency device. It has been reported 

that 1,5-diaminoanthraquinone (DAAQ) is also crystallized as nanowires 

without the need for annealing or any other process.106–108 While the growth 

mechanism and electrical properties of DAAQ have been reported, few papers 

have exploited these characteristics to enhance light extraction.

Here, we report one-step method of fabricating nanowire structures composed 

of DAAQ for light extraction of TEOLED. DAAQ nanowires were formed in 

the out-of-plane direction on the Ag thin film, and nanowire pitch, height, and 

diameter were able to be controlled by the deposition conditions. We fabricated 

DAAQ nanowires on a red phosphorescent TEOLED with a pixel size of 2 × 2 

mm for light extraction. It showed 8.6% enhancement for a narrow full width 

at half maximum (FWHM) device without distorting the emission spectrum, 

and 10.6% enhancement for a wide FWHM device. The method is suitable for 

OLED display because it is simple, vacuum-processable and has mild 

processing conditions without damaging the device.
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3.2 Experimental section

Device fabrication

70 nm-thick prepatterned ITO-coated glass substrates were cleaned 

successively by dipping in acetone and isopropyl alcohol, followed by boiling 

in the alcohol. Exciplex based red emitting inverted TEOLEDs with the 

following structure were fabricated on the substrates: Al (70 nm)/Cs2CO3 (1 

nm)/2 wt% Cs2CO3 doped B3PyMPM (20 or 40 nm)/B3PyMPM (10 nm)/5 wt% 

Ir(mphmq)2tmd doped NPB:B3PyMPM (30 nm)/NPB (5 nm)/TAPC (60 

nm)/ReO3 (1 nm)/Ag (20 nm). B3PyMPM is bis-4,6-(3,5-di-3-pyridylphenyl)-

2-methylpyrimidine; NPB is N,N′-di(naphthalen- 1-yl)-N,N′-

diphenylbenzidine; and TAPC is 1,1-bis[4-di(p-

toluyl)aminophenyl]cyclohexane. All organic and metal layers were deposited 

via thermal evaporation at a base pressure < 5 × 10-7 Torr without breaking the 

vacuum. The total deposition rate was 1 Å/s for each layer, with the exception 

of the DAAQ nanowire array deposited on the top Ag electrode (5 Å/s for a 

densely packed DAAQ nanowire array and 1 Å/s for a sparsely packed DAAQ 

nanowire array). B3PyMPM, NPB, and TAPC were purchased from Nichem; 

ReO3 and Cs2CO3 were from Sigma Aldrich; Ir(mphmq)2tmd was from Lumtec; 

and DAAQ was from Tokyo Chemical Industry. An ultraviolet (UV)-curable 

resin was used to encapsulate the devices with cover glasses in an N2 filled 

glovebox.

Characterization of devices and films
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Electroluminescence (EL) spectra and intensity in the normal direction were 

measured with a spectrometer (PR-650, Photo Research) and current density 

was measured with a programmable source meter (Keithley 2400, Tektronix 

Inc.). External quantum efficiency (EQE) of the device was calibrated with the 

measured angular emission pattern. Angle-dependent EL spectra were 

measured at 5° intervals using a customized rotating stage and a fiber optic 

spectrometer (S2000, Ocean Optics Inc.). Film transmittance in the normal 

direction was measured using a UV-vis-near infrared spectrophotometer (Cary 

5000, Agilent Technologies). Scanning electron microscope (SEM) images of 

the films were taken by a MERLIN Compact microscope (Zeiss).

Finite-Difference Time-Domain analysis

A commercial software (FDTD solutions, Lumerical Inc.) was used to 

calculate the optical effect of the DAAQ nanowire array. The distribution of 

the nanowire arrays in the calculation follows those in the SEM images. The 

diameter and tilt angle of DAAQ were randomized in the range of 30 to 50 nm 

and 0 to 10 degrees, respectively. The refractive index of DAAQ was assumed 

to be 1.7. A perfectly matched layer (PML) was used as the boundary condition 

in the z-direction, and a periodic condition was used as the horizontal boundary 

condition. The calculated width was 2000 nm, and the mesh was divided into 5 

nm. The plane wave source had a 612 nm peak wavelength and a 40 nm FWHM, 

and the simulation structure was glass (n = 1.5) / Ag (20 nm) / DAAQ layer 

(285 nm). The source was placed at 80 nm below the Ag film. The calculated 
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transmittances at the wavelength of 612 nm were 23% and 28% for the 

structures with and without the densely packed DAAQ layer. The 

transmittances are exactly the same as the experimental values in Figure 3.3 (c), 

demonstrating the reliability of the calculation.
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3.3 Results and Discussion

Figure 3.1 (a) illustrates the formation process of the out-coupling structure 

on the TEOLED. The nanowire array was fabricated via thermal evaporation of 

DAAQ onto a completed device at room temperature prior to encapsulation. In 

other words, the DAAQ nanowire array was formed without breaking the 

vacuum or any extra patterning processes such as substrate heating, imprinting, 

and crystallization time. It has been reported that intra- and inter-molecular 

charge transfer between carbonyl and amine group in DAAQ molecule is the 

reason for forming nanostructure.106 Density functional theory (DFT) 

calculation also shows large partial charges of DAAQ molecule, so DAAQ is 

advantageous for molecular interactions (see Figure 3.2). As the planar 

morphology of the OLED stacks was not disturbed during the process, the 

electrical properties of the OLEDs are not affected. In addition, damages during 

the fabrication of the light extraction structure could be minimized due to the 

mild fabrication conditions, i.e., thermal evaporation at room temperature in 

vacuum. Figure 3.1 (b) depicts the molar extinction coefficient of DAAQ in 

methylene chloride (MC) and the photoluminescence (PL) spectrum of 

Ir(mphmq)2tmd. The absorption of DAAQ was only up to a wavelength of 540 

nm, and barely overlapped with the emission of Ir(mphmq)2tmd. Thus, 

absorption loss caused by DAAQ can be neglected. Figure 3.3 (a) and (b)

exhibit SEM images of DAAQ fabricated at different evaporation rate of 1 Å/s 

and 5 Å/s onto the surface of a 20 nm Ag thin film, 
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Figure 3.1 (a) Fabrication of 1,5-diaminoanthraquinone (DAAQ) nanowire 

arrays. The arrays were formed via thermal evaporation of DAAQ onto 

completed device in vacuum. (b) Absorption spectrum of DAAQ in methylene 

chloride (10-5 M) and photoluminescence spectrum of Ir(mphmq)2tmd red 

emitting dopant.



66

Figure 3.2 Chemical structure and calculated electrostatic potential of DAAQ 

molecules. Optimization of the molecular structures was demonstrated using 

B3LYP method and 6-31g** basis set.
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respectively. Although the same thicknesses were monitored by a gold-coated 

thickness sensor, the formed nanowires were different. The nanowire arrays 

deposited at 1 Å/s were larger in diameter and height than those deposited at 5 

Å/s, but the density of nanowires was reduced. The nanowire height was about 

500 nm and the radius was in the range of 50˗100 nm for 1 Å/s case with a 

sparsely packed structure. In contrast, 285 nm high wires with a radius of about 

30 nm were densely packed when the deposition rate was 5 Å/s. Since DAAQ 

molecules prefer to grow on initially formed DAAQ seed nanoparticles,106,107

the evaporation rate is one of the parameters that determines a pitch between 

nanowires. No further changes were observed to the nanowire arrays as the 

evaporation rate increased to 9 Å/s (Figure 3.4). Huang et al. reported that the 

morphology of DAAQ was entangled with the in-plane direction,107 but in our 

results, the nanowire with out-of-plane direction was formed. Figure 3.3 (c) is 

the transmittance of 20-nm-thick Ag films without DAAQ nanowire array, with 

a sparsely packed DAAQ nanowire array deposited at 1 Å/s, and with a densely 

packed DAAQ nanowire array deposited at 5 Å/s. The transmittance of the Ag 

thin film without DAAQ was measured to 25% at 600 nm. The Ag film with 

the sparsely packed DAAQ nanowire array exhibited a lower transmittance than 

that of neat Ag film because the nanowire array served as a scattering layer. 

However, transmittance of the Ag film with the densely packed DAAQ 

nanowire array was enhanced to 28% around 600 nm wavelength. As DAAQ 

does not absorb light near 600 nm wavelength, the enhanced transmittance is 

due to reduced reflection by the DAAQ nanowire
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Figure 3.3 Scanning electron microscope (SEM) images of DAAQ nanowire 

arrays deposited at (a) 1 Å/s and (b) 5 Å/s. The thickness values monitored by 

quartz thickness sensor were identical. The first two images are top views under 

different magnification, the third image is a side view. (c) Transmittance of an 

Ag film without a DAAQ layer, with a layer deposited at 1 Å/s (sparsely packed 

DAAQ), and with a layer deposited at 5 Å/s (densely packed DAAQ).
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Figure 3.4 Scanning electron microscope (SEM) images of DAAQ fabricated 

at 9 Å/s at different magnifications: 50× (left), 100× (center), 200× (right).



70

array. One may consider that the enhancement originates from the effect of the 

capping layer, i.e., the densely packed DAAQ layer can exhibit the similar 

optical effects as a planar organic layer due to the effective refractive index by 

the small pitch between nanowires. To analyze the optical effect of DAAQ layer, 

the FDTD calculation was performed and the electric field distribution when 

the planar wave was passing through the layer was simulated. Figure 3.5 depicts 

the field distribution when a plane wave with a 612 nm peak wavelength and a 

40 nm FWHM passes through a 20 nm Ag thin film or a densely packed DAAQ 

layer, respectively. In the case of Ag thin film, due to the smooth surface, the 

field distribution was not affected even though the wave passed through the 

interface, and showed a uniform field distribution. However, in the case of 

DAAQ, the distribution of the field was influenced by the nanowires and the 

locally concentrated electric field was observed. Therefore, the working 

mechanism of DAAQ is different from that of the capping layer. To evaluate 

its performances in light extraction of the OLED, we fabricated nanowire arrays 

on a red-emitting TEOLED (Figure 3.6 (a)). The thickness of the electron 

transporting layer (ETL) was changed to explore the effect of the out-coupling 

layer according to the electroluminescent (EL) spectrum and angular 

distribution pattern. DAAQ nanowire arrays were deposited on the semi-

transparent Ag electrodes of completed devices by thermal evaporation. The 

nanowires were fabricated at a deposition rate of 5 Å/s to a height of 285 nm. 
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Figure 3.5 Distributions of electric field intensity calculated using the Finite-

Difference Time-Domain (FDTD) method. (a) 20 nm-thick Ag film without 

DAAQ nanowires, (b) 20 nm-thick Ag film with densely packed DAAQ 

nanowires.
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Figure 3.6 (a) Fabricated device structure of exciplex based red emitting 

inverted TEOLEDs. (b) The current density-voltage-luminance (J-V-L) 

characteristics of devices with and without DAAQ nanowire arrays. Inset: 

angular emission patterns of the devices. (c) EQEs of the devices as a function 

of current density. (d) Current efficiency and power efficiency of devices 

according to the current density.
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Figure 3.6 (b) shows the current density-voltage-luminance (J-V-L) 

characteristics and angular distribution of the TEOLEDs with or without the 

DAAQ nanowire arrays. The DAAQ deposited devices exhibited the same 

current density as the reference devices, as expected. The nanowire array did 

not affect the angular distribution of a device with a 30-nm-thick ETL (device 

A), and only slightly changed the angular distribution of a device with a 50-

nm-thick ETL (device B). The maximum EQE of device A increased to 15.2% 

from 14%, and that of device B increased to 24.1% from 21.8%, as seen in 

Figure 3.6 (c). The enhancement ratio was 8.6% for device A and 10.6% for 

device B, respectively. The current efficiencies (CE) and power efficiencies 

(PE) of the devices as a function of the current density are depicted in Figure 

3.6 (d) and the DAAQ deposited devices showed higher efficiencies than the 

reference devices. When the light extraction layer is applied to the TEOLEDs, 

there is a change in radiative decay rate and optical interference effect due to 

the short distance between the out-coupling and emitting layers. This 

characteristic can be a problem because it may cause unwanted distortion in 

emission spectrum of the device.109 Figure 3.7 (a) and (b) show the EL spectra 

of device A and B by viewing angle, respectively. The peak wavelength and 

FWHM of the EL spectrum of device A with a DAAQ layer were similar to 

those of the reference device. The EL intensity was further enhanced above 50 

degrees, which improve the EQE of device A with the DAAQ array. On the 

other hand, for device B, the emission spectra changed significantly according 

to the viewing angle due to the strong cavity effect. 
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Figure 3.7 Electroluminescence spectra of devices by viewing angle. (a) 30 

nm-thick ETL, (b) 50 nm-thick ETL.
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In addition, as the DAAQ layer affected the cavity structure of device B, EL 

intensity increased mildly to around 620 nm wavelength, but the emission 

spectra were similar to those of the reference device. Since the out-coupling 

layer was located outside the OLED stack sandwiched between two highly 

reflective metal electrodes, the emission spectra of the out-coupled device was 

changed less from those of the reference device. Therefore, DAAQ nanowire 

array is a light extraction structure that does not distort the emission 

characteristics of the reference device.



76

3.4 Conclusion

In summary, we have successfully integrated spontaneously formed organic 

nanowire arrays to red inverted TEOLEDs to enhance the light extraction 

efficiency. Thermally evaporated DAAQ crystallized immediately at room 

temperature and formed nanowire arrays without any need for patterning 

processes. The density, diameter, and height of nanowire arrays could be 

controlled by controlling the deposition rate and thickness. The electrical 

properties of TEOLEDs were not affected by the DAAQ layers. The efficiency 

of TEOLEDs was improved by 8.6% for narrow FWHM device and 10.6% for 

wide FWHM device by the light extraction layer, respectively. In addition, the 

layer did not distort emission properties of the reference device. This method is 

useful for OLED displays because it is simple, vacuum-processable, and does 

not compromise device lifetime or the emission spectrum.
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Via Hole Patterning of Light 

Extraction Layer for Electrical Connection

4.1 Introduction

Organic light-emitting diode (OLED) displays have a potential of excellent 

color quality, flexibility and power efficiency compared to LCDs. The 

efficiency of OLEDs has significantly improved during the past few decades, 

reaching an external quantum efficiency (EQE) of over 30% in recent years 

without any extra light extraction layers.12,22,66,110–117  However, over 60% of 

generated light is still confined in OLEDs as substrate modes, waveguide 

modes in indium tin oxide (ITO) and organic layers, and surface plasmon 

polariton (SPP) modes. Various external structures, such as micro-lens 

arrays35,84,118, roughed surfaces119, and internal structures such as low index 

layers120,121, photonic crystals122,123, high refractive index substrates36,124, Bragg 

gratings44,74,125, randomly dispersed nano-pillar arrays30,126, nanoparticles with 

a thin electrode127, moth-eye structures55,128 and metal nanoclusters129, have 

been integrated with OLEDs to extract confined light.

For active matrix OLED (AMOLED) display, each OLED pixel is controlled 

by thin film transistor (TFT) and it is able to achieve high efficiency and 

resolution than passive matrix method. For separating OLED and TFT spatially, 

there is a passivation layer between OLED electrode and TFT drain electrode 

and they are connected by an electrical channel, which is called via hole. The 
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via hole is formed by etching method, like dry or wet etch. Because internal 

light extraction layers are usually fabricated beneath OLED electrode, it is 

necessary to pattern via holes in the internal light extraction layers to connect 

the electrode of OLED with that of TFT on the backplane for practical 

application. Therefore, the degree of being patterned, which is called the 

patternability, is a critical issue for the light extraction layer. Generally, the 

internal light extraction layers consist of two materials with different refractive 

indices, so good patternability of the layers is not guaranteed with matched etch 

selectivities. To the best of our knowledge, there have been no reports on 

concerning the patternability issue of the light extraction layer.

In this report, we developed a wet etching process for via hole fabrication in 

a random scattering layer (RSL) and demonstrated OLEDs on the patterned out-

coupling layer with low leakage current and good light extraction efficiency.
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4.2 Experimental section

Figure 4.1 shows the fabrication process for via holes and the OLED device 

structure developed to demonstrate the patternability of the RSL. The device 

structure is a simplification of a display panel structure. The OLEDs obtain their

electrical signal from a back plane consisting of TFTs and capacitors through 

the via hole. The pad ITO electrode with a thickness of 150 nm on a glass 

substrate represents the drain part of the TFT. The RSL and OLEDs were 

fabricated sequentially on the pad ITO electrode. The RSL was composed of 

SiOx randomly dispersed nano pillars (50–700 nm in diameter and about 350 

nm in height), called random nano scatter (RNS) in a TiO2 layer (refractive 

index n = 2.0). The thickness of the RSL was about 700 nm, with a surface 

roughness of ~1 nm. A detailed fabrication process for the RSL layer is 

described in reference130. 

Photolithography was used to fabricate via holes in the RSL on the ITO 

electrode. First, photoresist solution was coated on the RSL and the via hole 

pattern was photolithographically defined using a MA6 mask aligner (Karl 

Suss). After developing the pattern, a circular via hole pattern of the photoresist 

which had the diameter of 100 μm was formed, and the photoresist pattern was 

used as the etch mask for the RSL. Various etchants were tested for patterning 

the via holes under room temperature. After these steps, the photoresist was 

removed using a photoresist stripper and the substrate including the via hole 

patterns in the RSL was cleaned with acetone and isopropanol.
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On the prepared substrates, OLED devices, composed of IZO (150 nm)/TAPC 

(40 nm)/HAT-CN (5 nm)/TAPC (40 nm)/HAT-CN (5 nm)/TAPC (40 nm)/HAT-

CN (5 nm)/TAPC (40 nm)/TCTA (10 nm)/TCTA:B3PYMPM:Ir(ppy)2acac 

(0.46:0.46:0.08 in weight ratio, 30 nm)/B3PYMPM (50 nm)/LiF(0.7 nm)/Al 

(115 nm), were fabricated, where TAPC, HAT-CN, TCTA, B3PYMPM, and 

Ir(ppy)2acac stand for 1,1-bis-(4-bis(4- methyl-phenyl)-amino-phenyl)-

cyclohexane (TAPC), 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HAT-

CN), 4,4’,4’’-tris(N-carbazolyl)-triphenylamine (TCTA), bis-4,6-(3,5-di-3-

pyridyl- phenyl)-2-methylpyrimidine (B3PYMPM), and bis(2-phenylpyridyl) 

iridium(III) acetyl- acetonate (Ir(ppy)2acac), respectively. A multi-hole 

injection layer was used for stabilizing current injection. The current 

density-voltage-luminance (J-V-L) characteristics of the devices were 

measured using a Keithley 2400 semiconductor parameter analyzer and a Photo 

Research PR-650 spectrophotometer. The angle-dependent 

electroluminescence (EL) intensity was recorded using a silicon photodiode 

(Ocean Optics) and the out-coupling efficiency was calibrated using a 6-inch 

integrating sphere (Labsphere) at 1 mA/cm2 current density.
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Figure 4.1 Steps for fabrication of an OLED device including the RSL with via 

holes: (1) fabricating a random scattering layer (RSL) on a 150 nm indium tin 

oxide (ITO) substrate, (2) depositing photoresist on RSL by spin coating, (3) 

and (4) making via hole patterns by photolithography and etching, (5) electrical 

contact between the pad ITO electrode and upper layer using sputtered indium 

zinc oxide (IZO), (6) fabricating organic light emitting diode (OLED) on IZO.
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4.3 Results and Discussion

One of the most important fabrication steps for via holes is to find a proper 

etchant showing similar etching selectivity of two different materials (in this 

case, SiOx and TiO2, of which the RSL is composed). There is a previous report 

that the layer which is composed of SiO2/TiO2, has an undercut problem when 

it is etched by wet etchant,131 and it is hard to find the proper etchant in our 

knowledge. So, it is necessary to develop a new etchant which has similar 

etching selectivity to above two materials. Hydrofluoric acid (HF) is a good 

etchant for SiOx and TiO2, and hence was a natural choice for the first trial. 

However, 49% HF solution could not be used because the undercut problem 

was shown at etched samples (Figure 4.2 (a)). No matter how etchant was 

diluted, the undercut was appeared, and after stripping process, the pattern was 

formed which was about 30 ㎛ larger than photolithographically defined area 

(Figure 4.2 (b)). The result is caused by the etching rate of TiO2 by HF is much 

lower than that of SiOx. H2SO4 or H3PO4 added BOE was tested to get a 

balanced etching rate between SiOx and TiO2 by enhancing the etching rate of 

TiO2.132 The H2SO4 mixed BOE turned out to have too high a reactivity to 

dissolve out the photoresist. In contrast, the H3PO4 mixed BOE etchant showed 

drastically improved etching characteristics, resulting in smooth etched patterns 

without etched gaps between the TiO2 planarization layer and the pad ITO 

electrode (Figure 4.3). The mixing ratio of BOE and H3PO4 was further 
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optimized to obtain smooth via holes with a proper slope for good electrical 

connection.
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Figure 4.2 Scanning electron microscopy (SEM) images of the etched surface 

under 49% HF solution. The undercut is observed at (a) before PR stripping. (b) 

After PR stripping, the undercut area is also stripped away and non-linear edge 

is formed. ((a) : × �����; (b) : × ����).
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Figure 4.3 SEM images of the etched surface under a 0.5 volume ratio of H3PO4 

to BOE for 1 min with different scales. Upper layer is the planarization layer 

and bottom layer is the pad ITO electrode ((a) : × ����; (b) : × �����).
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The etching height change depending on the H3PO4 ratio is shown in Figure 

4.4. The RSL was insufficiently etched by pure BOE even after 2 min dipping 

because the etching rate of TiO2 was too low. As the volume percentage of 

H3PO4 was increased, the overall etch rate also increased, and 2 min were 

required to etch the 800 nm-thick RSL with a 0.3 volume ratio of H3PO4. The 

best conditions for formation of a smooth etch surface and a gentle slope were 

a 0.5 volume ratio of H3PO4 to BOE (0.5 etchant). When the volume ratio of 

H3PO4 was over 0.5, the slope of the etch slope was too steep to form an 

electrical connection between the upper and lower layers. Because H3PO4 etch 

TiO2 very slowly is reported (1.5 nm/min at 80 ℃)133 and that phenomenon 

coincides with our experiment, it is hard to say that the undercut problem is 

solved by matching etch rate. However, as ratio of H3PO4 goes higher, enhanced 

total etching rate is observed clearly. In an aspect of the viscosity of mixed 

solution, it was more viscous depending on the percentage of H3PO4, and a 

viscous etchant might reduce undercutting. There needs more study on the 

mechanism of improved undercut when added H3PO4 to BOE.

Via hole patterning was performed by using previously developed etchant. 

Figure 4.5 shows scanning electron microscopy (SEM) images of a via hole 

fabricated using the 0.5 etchant with a diameter of 100 μm after sputter 

deposition of a 150 nm-thick IZO layer. As the etched surface didn’t look like 

a steep but a smooth hill, the sputtered IZO was able to follow up the surface 

without being torn. It means that the via hole will work normally when the 

electrical signal is injected to bottom pad ITO.
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Figure 4.4 Etch height of the RSL depending on the volume ratio of H3PO4 to 

BOE.
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Figure 4.5 SEM images of via hole with 150 nm sputtered indium zinc oxide 

(IZO). The via hole has a diameter of 100 ��  and is formed under a 0.5 

volume ratio of H3PO4 to BOE conditions over 1 min with different scales ((a) : 

× ����; (b) : × ����).
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For evaluating electrical operation, we fabricated OLED devices on the RSL 

substrate with the via hole. The thicknesses of the organic layers were 

optimized to maximize the air mode of OLEDs without the out-coupling layer. 

Figure 4.6 (a) shows the J-V-L characteristics of the OLEDs. The device with 

the patterned RSL showed a similar J-V curve, with low leakage current, to the 

device without the RSL, indicating that the processes used for patterning the 

via hole maintained smooth surfaces. In addition, both devices were turned on 

at the same voltage, 2.4 V, demonstrating that no electrical variation was 

induced by the via hole patterning. Figure 4.6 (b) shows external quantum 

efficiencies (EQEs) of the OLED devices. The maximum EQE of the OLED 

without the RSL layer was 21.7%, very close to the theoretically calculated 

maximum achievable EQE of 22%; this indicates that the charge balance in the 

OLEDs was good. The EQE of the OLED with the patterned RSL was 32.7% 

measured using the integrating sphere at 1 mA/cm2, corresponding to an 

enhancement of 50.7% (Figure 4.6 (c)). We reported the experimental results 

for light extraction effects of the RSL without the via hole31, and the EQE 

enhancement of the previous study was similar to that of the present study. This 

indicates that overall processes for fabricating the via hole were not damaging 

to the optical characteristics of the RSL. The current efficiencies and the power 

efficiencies of the device with the RSL were also enhanced by 31.2% and 56.7%, 

respectively (current efficiencies; from 74.3 cd/A to 97.5 cd/A and power 

efficiencies; from 89.0 lm/W to 139.5 lm/W, figure 4.6 (d)).
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Figure 4.6 (a) Current density-voltage-luminance (J-V-L) characteristics of 

the devices. The black line shows the device without the RSL and the red line 

indicates the device with the RSL; inset shows angular electroluminescence 

(EL) measurements (The blue line is the Lambertian pattern.). (b) External 

quantum efficiencies (EQEs) against current density of the device without the 

RSL and the device with the RSL. (c) Electroluminescence (EL) spectra of 

OLEDs measured in the integrating sphere at 1mA/cm2. (d) Current efficiencies 

(left) and power efficiencies (right) against current density of the device without 

the RSL and the device with the RSL.
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4.4 Conclusion

A suitable etchant for an internal light extraction layer composed of SiOx and 

TiO2 was developed to fabricate via holes for application in OLED displays. 

The via holes fabricated using a 0.5 volume ratio of H3PO4 to BOE showed 

excellent characteristics for the OLEDs with them. The low leakage current 

level and similar J-V characteristics to the reference device were shown on the 

via hole patterned devices, indicating that electrical characteristics were not 

affected by the fabrication of the via hole. In addition, the out-coupling 

efficiency of the RSL and via hole OLED device was enhanced by 50% 

compared to that of the OLED without the RSL. These results are very close to 

those reported in the previous study130, indicating that the overall processes do 

not damage to the electrical and optical characteristics of the RSL.
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Improving Operation Lifetime of 

OLEDs using Spontaneous Orientation 

Polarization

5.1 Introduction

Organic light-emitting diodes (OLEDs) are used in a wide range of fields from 

displays to potentially lightings due to its luminous properties and thin panel 

thickness. However, despite the numerous advantages of OLEDs, the operation 

lifetime issue is still being raised. Even now, efforts are being made to increase 

the lifetime of OLEDs, and the methods of controlling exciton-polaron 

interaction inside the emitting layer (EML) such as bipolar host,134–139 hole 

transporting management,140 quenching layer,141 interlayer reducing deep 

traps,142 graded doping concentration,143 high doping concentration,144 hot 

excited state management,145 radical ion management146 have successfully 

extended the lifetime of the device. Among these approaches, in particular, 

mixed-host system such as exciplex was considered as a conducive way to 

increase the lifetime of the device due to broad recombination zone and reduced 

polaron-induced quenching. However, even in exciplex host system, the 

recombination zone was reported to be split at each interfaces,147 and this effect 

promotes local degradation of EML. Thus, the lifetime of the device can be 

further improved if the distribution of excitons in EML can be controlled. In 

addition, as OLED is composed of several layers such as hole transporting layer 
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(HTL) and electron transporting layer (ETL) and the accumulation of 

irreversible degraded products of these layer shorten the lifetime of device,148–

150 stability of organic materials is also one of the factors related to the device 

lifetime.139,151 Especially, since ETL requires conflicting characteristics such as 

high electron mobility and high triplet level,152 it is rather tough to achieve 

material stability while meeting the above requirements. Therefore, it is 

important to develop a method that manipulates the exciton distribution and 

improves the stability of ETL in terms of the device structure, not the 

modification of materials. 

Meanwhile, after it was revealed that an interfacial charge exists at the 

interface of NPB/Alq3 in a bilayer device,153 several electron transporting 

materials (ETMs) were found to have spontaneous orientation polarization 

(SOP) properties.154 In addition, it was observed that the direction of 

polarization was different for each materials, and the charge injection 

characteristics were changed according to the polarization direction.155 Kinjo et 

al. reported that vacuum level shift occurs due to the interfacial charge of the 

SOP molecule, and this property affects the charge injection from the electrode 

to the transporting layer.156–158 Besides, the PDM alignment also appeared in 

the host-guest system, and Jäger et al. demonstrated that SOP properties of Alq3

appeared even when Alq3 was doped into the NPB host.159 Additionally, the 

density of the interfacial charges varied with the doping ratio, and larger 

polarity was observed than that of the neat Alq3 film. Thus, the interfacial 
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charge density can be controlled by the ratio of SOP molecules to host 

molecules. Although the effects of polarization on electrical properties of the 

device have been reported, there are few reports on the effects of polarization 

on operation lifetime of device.

In this report, we demonstrated that the operation lifetime of the device and 

the stability of the ETL can be enhanced by the introduction of polarization. 

We co-deposited bis(2-methyl-8-quinolinolato)(4-phenylphenolato)aluminum 

(BAlq), which was reported to have the property of orientation 

polarization,154,160 and (1,3,5-triazine-2,4,6-triyl)tris(benzene-3,1-

diyl)tris(diphenylphosphine oxide) (PO-T2T) to the electron transporting layer 

(ETL) of a red exciplex based OLED.161 The degree of polarization was 

changed according to the volume ratio of BAlq, and the largest polarization was 

exhibited when BAlq was mixed at 50% by volume in ETL. In addition, the 50 

vol.% BAlq doped device exhibited 3.5 times enhanced LT90 lifetime at 5,000 

cd/m2 and lower variation in applied voltage than the reference. As BAlq does 

not absorb the emission of the exciplex host or the emitting dopant and does 

not form any complex with them, this effect is not due to the effect of the 

additional quenching layer. Besides, the enhanced lifetime is not also due to the 

stability of BAlq since BAlq has weak bond dissociation energy in the cation 

state (1.78 eV) and has shallow HOMO level (5.9 eV) than PO-T2T (7.5 eV). 

Also, we observed the changes in device characteristics depending on the 

position of the BAlq mixed layer, and the operation stability was greatly 
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improved only when the polarized layer existed between the EML and ETL. To 

investigate the origin of this effect, the photoluminescence (PL) intensity of the 

degraded device’s EML was measured, and the degree of electroluminescence 

(EL) degradation and PL degradation was different in the reference device, 

while it was same in the BAlq doped device. This means that the EML was 

uniformly degraded in the BAlq doped device and it is postulated the repulsive 

force by negative interfacial charge broaden the recombination zone in EML. 

Furthermore, the electric field is less applied to the ETL because of the 

interfacial charge. As a results, it suppresses the hole injection to ETL through 

tunneling, thereby lowering the variation in applied voltage. This method is 

very useful because there is no need to modify the structure of device for 

enhancing the operation stability.
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5.2 Experimental section

100 nm-thick prepatterned ITO-coated glass substrates were cleaned 

successively by dipping in acetone and isopropyl alcohol, followed by boiling 

in the alcohol. Before deposition, the ITO substrate was treated by UV-O3

treatment for surface cleaning and better hole injection. Exciplex based red 

emitting OLED were fabricated with the following structure: 1wt% MoO3 

doped TAPC (40 nm)/TAPC (30 nm)/NPB (10 nm)/7 wt% Ir(mphmq)2tmd 

doped NPB:PO-T2T (5:5 in molar ratio, 30 nm)/electron transporting layer (60 

nm)/LiF (0.5 nm)/Al (100 nm). PO-T2T is (1,3,5-triazine-2,4,6-

triyl)tris(benzene-3,1-diyl))tris(diphenylphosphine oxide); NPB is N,N΄-

di(naphthalen- 1-yl)-N,N΄-diphenylbenzidine; and TAPC is 1,1-bis[4-di(p-

toluyl)aminophenyl]cyclohexane. All layers were deposited via thermal 

evaporation at a base pressure < 5 × 10-7 Torr without breaking the vacuum and 

the total deposition rate was 1 Å/s for each layer. PO-T2T and TAPC were 

purchased from Shine Materials; MoO3 and Ir(mphmq)2tmd were from Lumtec; 

and NPB was from Nichem. An ultraviolet (UV)-curable resin was used to 

encapsulate the devices with getter attached cover glasses in an N2 filled 

glovebox. Electroluminescence (EL) spectra and intensity in the normal 

direction were measured with a spectrometer (PR-650, Photo Research) and 

current density was measured with a programmable source meter (Keithley 

2400, Tektronix Inc.). The capacitance of the device was measure by 

impedance spectroscope (Analytical moduLab XM, Solartron). The operational 
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stability was measured by lifetime measurement system with constant 

temperature and humidity (Polaronix M6000T). The bond dissociation energy 

was calculated using the LACV3P** basis set and B3LYP functional by 

Schrödinger Materials Science suite.



98

5.3 Results and Discussion

Figure 5.1 (a) and (b) show the band structure of OLED without and with 

polarization of ETL, respectively. If there is no interfacial surface potential in 

any layer, charges are injected and recombined at the voltage above the built-

in voltage (Vbi). On the other hand, if there is a negative surface potential 

between ETL and EML, injection of holes occurs at the voltage before Vbi due 

to the vacuum level shift. As predicted in the band diagram, we speculated 

that the field applied to the ETL would be reduced in the polarized ETL case, 

and this effect would suppress hole injection to the ETL through tunneling. In 

addition, the presence of surface charges can induce modifications in the 

recombination zone due to the coulomb interaction with charge carriers. By 

the above changes, the operation stability of device can be improved.

In order to demonstrate the concept, SOP molecule was doped into ETL of 

exciplex-based red emitting OLED. Figure 5.2 (a) exhibits schematic 

diagrams of the device structure and the chemical structures of organic 

materials used in this report. Several ETMs such as Alq3,
155 BCP, TPBi, 

OXD-7,162 Bpy-OXD, and Bphen160 have been reported to have SOP 

properties, but we used BAlq as a SOP molecule because BAlq has a higher 

LUMO level than PO-T2T, which does not act as an electron trap and does 

not form a complex with EML components. Figure 5.2 (b) depicts the 

absorbance of BAlq film and the PL spectra of exciplex host and red dopant.

The absorbance of BAlq did not overlapped with the emission of exciplex and 
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emitting dopant. Therefore, as energy transfer between EML and BAlq is 

difficult to occur, the effect of polarization can be considered as a major 

origin for variations in device stability.
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Figure 5.1 Schematic band diagrams of exciplex-based OLEDs used in this 

report according to the polarity of electron transporting layer (ETL). (a) is non-

polar ETL case, and (b) is polar ETL case. Hole transporting layer (HTL) and 

emitting layer (EML) are assumed to have no polarity.



101

Figure 5.2 (a) Fabricated device structure of exciplex based OLEDs, and 

chemical structures of molecules. (b) Absorbance of BAlq thin film and 

photoluminescence spectra of NPB:POT2T exciplex and Ir(mphmq)2tmd red 

emitting dopant.
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Figure 5.3 (a) shows the current density-voltage-luminance (J-V-L) 

characteristics of the devices with different volume ratio of BAlq. As the 

volume ratio of BAlq increased, current density and luminance of the device 

decreased, and neat BAlq ETL device (100 vol.%) showed the lowest value. 

Since BAlq has low electron mobility (5 × 10-6 cm2/V·s)163,164 than that of PO-

T2T (1 × 10-4 cm2/V·s),165 reduced current density is due to the difference in 

electron mobility between BAlq and PO-T2T. Figure 5.3 (b) exhibits the 

external quantum efficiencies (EQEs) of the BAlq mixed devices and the 

EQEs decreased as the ratio of BAlq increased. This is also due to the 

decreased electron mobility of the mixed ETL. As the mobility of the mixed 

ETL decreases, the position of the recombination zone will gradually be 

located toward the ETL. The optical simulation using a classical dipole 

model72 exhibits that the efficiency decreases as the recombination zone is 

placed toward the ETL (Figure 5.4). Although the EQE was decreased by 

BAlq doping, the decrement was not large, from 22.9% (0 vol.%) to 20.0% 

(60 vol.%) at 1000 cd/m2. It means that no additional quenching path is 

formed by BAlq doping. No other emission was observed except for the red 

emitting dopant at 5,000 cd/m2 (Figure 5.5) and therefore, unintended energy 

transfers or recombination at BAlq did not occur. Figure 5.3 (c) is the 

capacitance-voltage (C-V) characteristics of the devices. There were two 

plateau on the C-V curve due to polarization. The transition voltage (Vtr) 

where the hole injection occurred was changed according to the composition 

of ETL. According to the equation introduced by Brütting et al., the interfacial 
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charge density between EML and ETL can be obtained by the following 

equation: 

ETL
if tr bi( )

A

C
V Vs = -

.166 Here, ifs
is interfacial charge density, 

ETLC
is capacitance of the ETL, A is the pixel area, and biV

is the built-in 

voltage. Since the pixel area (4 mm2), thickness of ETL, and biV
of the 

devices are the same, the interfacial surface charge density can be expressed 

by trV
. Therefore, it has a global maximum interfacial charge density at 50 

vol.% and this value is larger than that of neat PO-T2T ETL device and neat 

BAlq ETL device. The origin of this phenomenon is postulated to have the 

preferred direction of PDM due to the dipole-dipole interaction between SOP 

molecules and the interaction with the surface molecules of the sublayer.159

To evaluate the correlation between the polarization of the ETL and the 

lifetime of the device, the normalized EL decay curves as a function of 

operating time was measured at 5,000 cd/m2 (figure 5.3 (d)). Since only the 

ETL side was modified, the variation in device lifetime can be interpreted as a 

result of modified ETL. As the ratio of BAlq increased, the operating lifetime 

using LT90 was also enhanced, increasing from 61 hours (0 vol.%) to 218 

hours (50 vol.%), and the mixed ETL devices were found to be stable 

compared to the neat PO-T2T ETL (0 vol.%) and neat BAlq ETL (100 vol.%) 

devices. In addition, the variations in applied voltage (∆V) were also reduced 

in the case of mixed ETL, which means that the material degradation of the 

ETL was suppressed effectively. This increased stability does not come from 
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the material stability or hole blocking property of BAlq since BAlq has weak 

bond dissociation energy in the cation state (1.78 eV) and has shallow HOMO 

level (5.9 eV) than PO-T2T (7.5 eV). The enhanced stability is supposed that 

the reduced electric field of ETL by polarization suppress the hole injection 

through tunneling. Therefore, the interfacial charge existing in the ETL can 

improve hole blocking properties. However, the 60 vol.% device had the 

largest variation in applied voltage, and had the shorter operation lifetime than 

that of the 50 vol.% device. It is due to the position of recombination zone and 

the weak hole blocking characteristics of BAlq. As the ratio of BAlq

increases, it is obvious that recombination will mainly occur in the vicinity of 

ETL because of the BAlq’s low electron mobility. In addition, BAlq also has 

a shallow HOMO level compared to PO-T2T, which weakens the hole 

blocking properties of the ETL by thermionic injection. As a result, the 

degradation of the EML/ETL interface was promoted, shortening the 

operation lifetime and increasing the applied voltage. However, even in 60 

vol.% BAlq doped device, it still shows a longer lifetime than neat PO-T2T 

and neat BAlq cases, suggesting that there are additional factors to enhance 

the stability.



105

Figure 5.3 (a) The current density-voltage-luminance (J-V-L) characteristics of 

devices according to vol.% BAlq of ETL. (b) EQEs of the devices as a function 

of luminance. (c) Capacitances of the devices as a function of voltage. (d) EL 

decay curves of the BAlq mixed OLEDs as a function of operational time at an 

initial luminance (L0) of 5,000 cd/m2.
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Figure 5.4 Calculated EQEs as a function of the position of recombination zone 

in emitting layer (EML). As the position of the recombination zone gradually 

move toward the ETL, the calculated results exhibit that the efficiency 

decreases.
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Figure 5.5 Electroluminescence (EL) spectrum of the devices at 5,000 cd/m2. 

No other emission was observed except for the red emitting dopant.
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To verify the additional factor, variations in efficiency roll-off, EL spectrum, 

and transient EL decay between fresh and degraded device were observed 

depending on the ETL conditions (Figure 5.6). The degraded device exhibited 

reduced roll-off tendency, same EL spectrum peak, and same exciton lifetime 

compared to the fresh device. These results showed the absence of additional 

quenching paths such as exciton-exciton annihilation, exciton-polaron 

quenching, and implied that the decreased luminance of device is caused by 

reduced quantum yield of emitter. Figure 5.7 showed the PL intensities of 

EML between fresh device and degraded device depending on the ETL 

conditions. The EML was excited using a 405 nm peak wavelength laser 

which is not absorbed by the transporting layers, and the volume ratio of 

BAlq was 50 vol.%, which is the condition with the longest lifetime. The ratio 

of degraded device’s EL intensity was 59% compared to the fresh device in 

case of neat PO-T2T ETL condition (0%). However, PL intensity of the 

degraded device showed 84% compared to the fresh device, which was less 

than the deviation of EL intensity. On the other hand, in case of the 50 vol.% 

BAlq mixed device, EL intensity of degraded device compared to the fresh 

one was 84%, which was same as the variation ratio in PL case. Considering 

that photons are emitted from the entire EML area by photoexcitation, the 

difference means that BAlq induces uniform EML degradation, i.e., a wide 

recombination zone. It is estimated that the repulsive coulomb force by 

negative interfacial charge forms a wide recombination zone in the EML. 

Therefore, the surface charge of the interface between EML and ETL can 



109

enhance the stability of device by reducing the electric field applied to the 

ETL and controlling the width of recombination zone.
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Figure 5.6 (a) Electroluminescence (EL) spectrum of the reference and BAlq 

doped devices at 5,000 cd/m2, (b) EQEs of the devices as a function of 

luminance, (c) transient EL decay curves of the deivces depending on the 

degraded conditions.
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Figure 5.7 PL intensities of EML between fresh device and degraded device 

depending on the ETL conditions. The EML was excited using a 405 nm peak 

wavelength laser which is not absorbed by the transporting layers, and the 

volume ratio of BAlq was 50 vol.%. The degree of EL degradation and PL 

degradation was different in the reference device, while it was same in the BAlq 

doped device.
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Although the stability of the device was increased by the SOP molecule, it was 

necessary to optimize the most effective position and thickness of the polarized 

layer because of the decrease of current density in the mixed ETL. To verify 

the position dependency of the mixed ETL, four devices were fabricated with 

modified ETL structures and figure 5.8 (a) is a schematic image of the devices. 

The thicknesses and materials of all the layers except ETL corresponded to 

figure 5.2 (a), and the volume ratio of BAlq was fixed as 50 vol.%. The structure 

of ETL is as follows; Device 1 (60 nm PO-T2T), Device 2 (30 nm PO-T2T + 

30 nm mixed ETL), Device 3 (30 nm mixed ETL + 30 nm PO-T2T), Device 4 

(60 nm mixed ETL). Figure 5.8 (b) shows J-V-L characteristics of the devices 

with different ETL structures. Compared to Device 1, the current density and 

luminance decreased in the rest of the cases, but the deviation was very different. 

When the interface between the cathode and the mixed layer existed, as in 

Device 2 and Device 4, there was a relatively large decrease in current density. 

In addition, interestingly, Device 4 had better electron injection properties than 

Device 2. On the other hand, when the mixed layer was located between EML 

and ETL as Device 3, the decrease in current density was suppressed effectively. 

Figure 5.8 (c) exhibits the EQEs as a function of luminance. Although Device 

1 showed the highest EQE among them, the rest showed similar EQEs with 

Device 1. Figure 5.8 (d) shows the C-V curve of the devices. In the case of 

Device 4, the polarization of ETL was the largest, and the smallest in Device 1. 

In particular, the polarization properties of Device 2 and 3 were different 

despite the same thickness of polarized layer and further research on this origin 
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is needed. Currently, it is speculated that the orientation of PDM of BAlq varies 

depending on the interaction with the initial surface of the sublayer. Figure 5(e) 

shows the EL intensity decay curve measured at an initial luminance of 5,000 

cd/m2. Device 2 showed the fastest decay and largest voltage change. 

Differently, Device 4, which had the same cathode/ETL interface as Device 2, 

showed a large improvement in operation lifetime and small changes in applied 

voltage. Device 3, which had the same cathode/ETL interface as Device 1, 

showed the improved stability and the lowest variation in applied voltage. In 

other word, only the polarized layer adjacent to the EML interface mainly 

contributes to improving the stability of the device. Even if the polarized layer 

was only 5 nm away from the EML, there was no effect of increasing the 

lifetime. This result is because exciton distribution and hole blocking 

characteristics can be affected effectively only when the interfacial charge is 

existed at the interface. Thus, the SOP characteristics of the layer adjacent to 

the EML can influence the degradation of the device, and in order to design a 

stable device structure, the material’s SOP property should also be considered.
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Table 5.1 Comparison of applied voltage, EQE, and lifetime of the devices with 

different vol.% of BAlq in ETL.

Vol.% of 
BAlq

1,000 nitt.
voltage

1,000 nitt. 
EQE

LT90

(5,000 

cd/m
2
)

LT80

(5,000 

cd/m
2
)

0% 4.8 V 22.9% 61 228

20% 5.2 V 21.2% 100 436

40% 5.4 V 20.6% 122 458

50% 5.7 V 20.5% 218 -

60% 6.3 V 20.0% 178 529

100% 9.3 V 18.7% 24 161
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Figure 5.8 (a) Schematic band diagrams of exciplex-based OLEDs with 

different ETL conditions. (b) The current density-voltage-luminance (J-V-L) 

characteristics of the devices. (c) EQEs of the devices as a function of 

luminance. (c) Capacitances of the devices as a function of voltage. (d) EL 

decay curves of the devices as a function of operational time at an initial 

luminance (L0) of 5,000 cd/m2.
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Another SOP molecule, Alq3, was also found to improve the lifetime of 

OLEDs. (Figure 5.9, 5.10, 5.11) However, there was a significant efficiency 

drop compared to that of BAlq, due to the emission of Alq3. In addition, due to 

the improved efficiency by reduced Alq3 emission, overshoot occurred during 

the lifetime measurement. (Figure 5.12) As in the case of BAlq, the lifetime 

increased only when there was a polarized layer at the interface with EML 

(Figure 5.13), and this also shows that the negative surface charge of HBL can 

increase the stability of OLEDs.
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Figure 5.9 (a) Fabricated device structure of exciplex based OLEDs, and 

chemical structures of molecules. (b) Absorbance of Alq3 thin film and 

photoluminescence spectra of NPB:POT2T exciplex and Ir(mphmq)2tmd red 

emitting dopant.
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Figure 5.10 (a) The current density-voltage-luminance (J-V-L) characteristics 

of devices according to vol.% Alq3 of ETL. (c) EQEs of the devices as a 

function of luminance. (c) Electroluminescence (EL) spectrum of the devices 

at 5,000 cd/m2. (d) Capacitances of the devices as a function of voltage.
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Figure 5.11 EL decay curves of the Alq3 mixed OLEDs as a function of 

operational time at an initial luminance (L0) of 5,000 cd/m2.
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Figure 5.12 (a) EL decay curve of the 40 vol.% Alq3 mixed OLED as a 

function of operational time at an initial luminance (L0) of 5,000 cd/m2. 

(b) EL spectrum of the 40 vol.% Alq3 mixed OLED at the condition of 

fresh (black line) and degradation (red line).
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Table 5.2 Comparison of applied voltage, EQE, and lifetime of the devices with 

different vol.% of Alq3 in ETL.

Vol.% of 
Alq3

1,000 nitt.
voltage

1,000 nitt. 
EQE

LT90

(5,000 

cd/m
2
)

LT80

(5,000 

cd/m
2
)

0% 4.2 V 22.8% 69 277

20% 4.7 V 20.0% 161 520

40% 5.6 V 16.0% 415 814

50% 6.2 V 13.8% 556 928

60% 2.7 V 11.4% 622 937

100% 7.0 V 15.9% 225 622
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Figure 5.13 (a) Schematic band diagrams of exciplex-based OLEDs with 

different ETL conditions. (b) The current density-voltage-luminance (J-

V-L) characteristics of the devices. Inset: EL spectra of the devices at 

5,000 cd/m2. (c) EQEs of the devices as a function of luminance. (c) 

Capacitances of the devices as a function of voltage. (d) EL decay curves 

of the devices as a function of operational time at an initial luminance 

(L0) of 5,000 cd/m2.
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5.4 Conclusion

In summary, we improved the stability of the ETL by utilizing the SOP 

characteristics of BAlq. According to the volume ratio of BAlq, the polarization 

characteristics of the doped device were changed, and the operation stability of 

the devices increased. In addition, the enhancement in lifetime was only found 

when the position of the polarized layer was at the EML/ETL interface. This 

means that HBL can increase device lifetime when there is a negative surface 

charge at its interface with EML, and also indicates that the SOP characteristics 

of the molecule should be considered to improve the lifetime.
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Summary and Conclusion

OLED is no longer a prototype product, but can be easily found around us. 

However, high efficiency and long operating lifetime are still required in OLED, 

and if these problems are solved, the application of OLED can be further 

expanded. In this respect, this thesis contains information on the structure of 

light extraction to improve efficiency and how to increase operational stability.

In chapter 2, we developed a facile and effective two-step method for 

fabricating random organic microstructures for efficient light extraction from 

blue OLEDs is presented. An external quantum efficiency (EQE) of 44.3% is 

realized by attaching DACMs film and the efficiency is improved by 35% 

compared to a planar device without the light extraction layer, greater than the 

22% improvement obtained by using microlens arrays (MLAs). The method is 

useful for OLED lighting and potentially in displays because of the simple 

fabrication method that is applicable to a large area on rigid or flexible 

substrates, the low material cost, the insolubility of the microstructure in alkyl 

halide solvents such as chloroform, and the controllability of the structure 

through the solution process.

In chapter 3, we show the damageless light extraction structure for top-emittng 

organic light-emitting diodes (TEOLEDs) by thermal evaporation of 1,5-

diaminoanthraquinone (DAAQ). DAAQ nanowire arrays were applied to a red 

phosphorescent inverted TEOLED, enhancing the external quantum efficiency 
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(EQE) by 8.6% in a narrow full-width-at-half-maximum (FWHM) device, and 

by 10.6% in a wide FWHM device with same electrical properties. The method 

is useful for OLED displays because it is simple, vacuum-processable, and does 

not compromise device lifetime or the emission spectrum.

In chapter 4, we suggest the importance of patternability of internal light 

extraction layer. Integration of internal light extraction layers in OLED displays 

requires electrical connection between driving circuits in the backplane and an 

OLED electrode. We discussed the patternability of light extraction layers

demonstrated it experimentally. The OLEDs fabricated on this patterned 

substrate showed similar current density-voltage (J-V) characteristics to 

OLEDs on a glass substrate with low leakage levels. The device showed over 

50% enhancement of external quantum efficiency (EQE; from 21.7% to 32.7%), 

similar to the device without via holes.

In chapter 5, we proposed a method for improving the stability of electron 

transporting layer. We observed the SOP characteristics and the change in the 

lifetime of device when BAlq was doped in PO-T2T with different volume 

ratios. As the polarization increased, the operation lifetime also increased and 

the applied voltage change decreased. In addition, the lifetime enhancement 

was only observed when there was a polarized layer at the interface with the 

emtting layer (EML). This shows that hole blocking layer (HBL) can enhance 

the lifetime when it has a negative surface charge at the interface with EML, 
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and also indicates that the SOP characteristics of the molecule should be 

considered for improving the lifetime.

We believe that the developed light extraction structure and lifetime enhancing 

method providing a new insight for achieving highly efficient and stable 

OLEDs. 
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초 록

1965 년, 안트라센 단결정에서 유기물의 첫 전기 발광이

발견된 이후, 유기 발광소자는 많은 발전을 거듭해 최근 소형

디스플레이의 주류를 이뤘다. 또한 유기 발광소자는 적은 기판

의존성을 갖기 때문에 플렉시블 디스플레이나 투명 디스플레이와

같은 차세대 디스플레이로 활용될 수 있는 잠재력을 갖고 있다.

유기 발광소자에서 남은 과제는 높은 효율과 구동 안정성이다.

일반적으로 유기물은 넓은 발광스펙트럼을 보이기 때문에,

유기 발광소자는 연색성이 높은 조명으로 사용될 수 있다. 또한,

광학 공진 구조 최적화를 통해 높은 색순도의 디스플레이로도

활용될 수 있다. 하지만 유기 발광소자가 방출한 광자의 절반

이상은 높은 굴절률의 유기물 및 기판으로 인한 내부 전반사로

소멸된다. 따라서, 유기 발광소자의 효율을 올리고 전력 소모를

감소시키기 위해 광추출 기술은 필요하다. 이에 더불어, 위에서

언급한 바와 같이 소자의 구동시간에 대한 고려도 필요하다. 유기

발광소자의 짧은 구동 수명에 대한 연구는 많이 있고, 몇몇

메커니즘이 발표되었지만, 아직 소자 열화의 전반을 설명할 수 있는

이론은 전무하다. 그럼에도 불구하고, 높은 구동 안정성을 위해선
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유기 발광소자를 구성하는 층의 안정성을 고려해야 하는 것은

자명하다.

본 논문은 2 가지 연구주제: (1) 단순하면서도 효율적인

조명용 그리고 디스플레이용 광추출 구조, 그리고 (2) 자발적 배향

분극 분자를 활용한 소자의 수명 향상에 대한 내용을 다루고 있다.

제 1 장은 유기 발광소자에 대한 간략한 서론을 담고 있다.

제 2 장은 파란색 하부 발광형 유기 발광소자의 외부 광추출

효율 향상을 위한 손쉬우면서도 효율적인 랜덤 유기 마이크로 구조

(DACM)에 대한 내용을 담고 있다. TCTA 와 B4PyMPM 혼합

용액을 필름에 드롭 캐스팅 후 UV 경화 시키면 무작위 모양의

마이크로 구조물이 형성되었고, 회절 무늬가 없어 광추출로

적합했다. DACM 필름을 부착한 소자는 44.3%의 외부 광자 효율을

가졌고, 광추출 구조가 없는 소자 평판 소자 대비 35%의 향상을

보였다. 또한, 마이크로 렌즈 어레이 필름에 향상량인 22% 보다

높은 수치를 기록했다. 이 구조는 기판에 상관없이 대면적 공정이

가능하고, 저렴한 제작 공정, 클로로포름과 같은 알킬 할라이드

용매에 강했으며, 구조 컨트롤도 가능하기 때문에 조명용으로 매우

효율적이고, 디스플레이용으로 활용될 잠재력이 있다.
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제 3 장은 진공 열증착을 통해 손상 없이 형성한 상부 발광형

유기 발광소자용 광추출 구조에 대한 내용을 담고 있다. 상부

발광형 소자는 높은 픽셀 종횡비, 흐려짐 없는 이미징, 높은 색

순도로 인해 소형 디스플레이에 활용되고 있다. 하지만, 이러한

이점을 얻는 강공진 구조는 금속 전극에 의한 높은 광학 손실을

야기한다. 게다가 상부 발광형 소자에는 빛의 경로에 기판이 없는

까닭에 손상 없는 공정이 어렵다. 우리는 1,5-

diaminoanthraquinone (DAAQ) 유기물의 진공 열증착을 통해

상부 발광형 소자의 은 (Ag) 박막 위에 손상 없이 광추출 구조를

형성했다. DAAQ 는 은 박막 위에서 증착 즉시 결정화되었으며,

기판에 수직 방향으로 나노와이어를 형성했다. 나노와이어 어래이의

높이, 둘레, 그리고 주기는 증착 속도 및 두께로 조절 가능했다.

이를 상부 발광형 소자에 접목시켰고, 좁은 반치폭의 소자에서는

8.6%, 넓은 반치폭의 소자에서는 10.6%의 향상량을 얻었다. 이

방법은 쉬우며, 소자에 손상을 주지 않아 열화 시키지 않으며, 

패터닝 공정이 필요 없고, 진공공정이 가능한 까닭에 매우 유용하다.

제 4 장은 내부 광추출 구조의 패터닝 특성의 중요성에 대해

서술한다. 내부 광추출 구조를 디스플레이에 활용하기 위해선 박막

트랜지스터 (TFT) 와 유기 발광소자 전극 사이에 신호를 주고받을

수 있는 통로, 즉 비아홀 (viahole) 이 필요하다. 내부 광추출



144

구조는 위치가 박막 트랜지스터와 유기 발광소자 사이에 위치한

까닭에, 구조 설계 시 viahole 패터닝을 고려해야 하지만, 지금까지

이런 고려는 적었다. 또한, 일반적인 내부 광추출구조는 고 굴절

물질 내에, 낮은 굴절률의 광 결정이 위치하는데, 이종의 물질은

식각 용액에 대해 서로 다른 에칭 선택비 (etching selectivity)를

갖기 때문에, 내부 광추출구조의 손상 없이 패터닝이 가능한 식각

용액을 찾는 것 또한 필요하다. 우리는 SiOx 스캐터와 TiO2

평탄층을 갖는 내부 광추출 구조의 비아홀 패터닝을 성공적으로

구현한 소자를 보고한다. SiOx 와 TiO2 에 대해 유사한 에칭

선택비를 갖는 buffered oxide etchant (BOE) 와 인산 (H3PO4) 의

혼합 식각 용액을 활용해 언더컷 (undercut) 문제가 해결된 비아홀

패터닝 공정을 확립했으며, 제작된 유기 발광소자의 낮은 누설 전류

및 손상 없는 광추출 효율을 통해 비아홀 패터닝이 성공적으로

되었음을 실험적으로 보였다.

제5장은 전자 전달층 (Electron transporting layer, ETL) 의

안정성을 향상시키기 위한 방법을 담고 있다. 영구 쌍극자 모멘트

(permanent dipole moment)의 정렬이 비정질의 Alq3 유기물에서도

발현됨을 발견한 이후, 여러 전자전달물질에서 이러한 특성 (배향

분극, orientation polarization)이 나타남이 밝혀졌다. 지금까진

배향 분극이 소자의 전기적 특성에 어떻게 영향을 끼치는지에 대한
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연구가 주류를 이뤘다. 하지만 우리는 배향 분극이 유기 발광소자의

수명에 어떤 영향을 주는지 밝혔다. 소자의 에너지 전달 과정에

참여하지 않는 BAlq 분자를 활용해 전자 전달층과 발광층 (EML) 

사이에 음의 표면 전하 밀도를 높혔을 때, 소자의 구동 수명이

증가함을 보였다. 또한 물질의 열화 정도를 파악할 수 있는 전압

변화가 낮아짐을 통해 BAlq 에 의한 표면전하 변화가 전자전달층의

안정성을 올림을 알 수 있었다. 또한 분극된 층이 발광층과의

계면에 위치할 경우에서만 수명이 증가하는 결과를 통해 정공

차단층 (hole blocking layer, HBL) 이 음의 표면 전하를

발광층과의 계면에 가질 경우, 향상된 수명을 얻을 수 있다는

결론을 얻었으며, 이를 통해 분자의 배향 분극 특성도 소자의

수명향상을 위해 고려해야 함을 보였다.

주요어: 유기발광소자, 광추출 효율, 광추출 구조, 구동 수명, 자발적

배향 분극
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