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Abstract

Phase change memory (PCM) is a promising non-volatile memory. Among emerg-

ing memories, PCM has been successfully commercialized and mature technology.

However, there is still a lack of understanding of the phase transition process at the

atomic scale. Since molecular dynamics simulation can provide insight into crystal-

lization kinetics of phase change materials, we perform the crystallization simulations

and show that the medium-range orders in amorphous phase change materials are crit-

ical in crystallization kinetics.

We develop neural network potentials (NNP) for GeTe as a representative phase

change material and investigate the crystallization process of amorphous GeTe. With

the accuracy of density functional theory (DFT) level and much cheaper computa-

tional cost, we achieve the realistic simulations using the NNP. In developing the NNP,

we find that overly flattened fourfold rings in the amorphous structure exaggerate the

crystallization process, especially for nucleation. By explicitly including relaxation

paths from flat to puckered fourfold rings, we obtain a modified NNP, which produces

medium-range orders that are more consistent with DFT. This structural change in-

creases interfacial energy between crystalline and amorphous phases and suppresses

the nucleation. Using the modified NNP, we perform crystallization simulations at two

densities (equilibrium density and crystalline density) and temperatures ranging from

500 to 650 K. We observe finite incubation times at both densities. In particular, the

incubation time at the equilibrium density is found to be 7 or 17 ns, which is consistent

with experiments.

In practice, properties of the phase change materials are tuned by doping and Ge-

Sb-Te alloys are mainly used. However, developing NNP for the multi-component

systems is challenging at the present, we study the effects of Al and Ga dopants us-

ing ab initio calculations. We find that the two dopants behave similarly in amorphous

i



Ge2Sb2Te5 (GST), and they are mostly coordinated by Te atoms in a tetrahedral ge-

ometry, which is similar to those in crystalline MxTey (M=Al or Ga). The number

of wrong bonds increases as dopant atoms predominantly bond with Te atoms, which

affects the medium-range order structures. The number of fourfold ring structures, es-

pecially ABAB-type, decreases significantly and the number of odd-numbered rings is

increased, explaining the enhanced thermal stability and slow crystallization speed of

doped amorphous GST in the experiment.

keywords: Phase change materials, Density functional theory, Neural network

potential, Molecular dynamics, Crystallization

student number: 2014-21434
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Chapter 1

Introduction

1.1 Phase change memory

In the present computational systems, memories like dynamic random access memory

(DRAM), static random access memory (SRAM), and NAND flash memory are gener-

ally used. In a central process unit (CPU), the volatile memory is used for immediately

accessible data with high speed, while the non-volatile memory (NVM) stores infor-

mation for long-term persistent usage. Due to poor capacity in the volatile memory,

data should be transferred from NVM with a large capacity. This process mainly limits

the overall performance of the system. Also, demands on memory and storage grow

faster and faster. Many types of emerging memory technologies have been intensively

investigated to break the limit and satisfy the demands. They are summarized in Fig.

1.1. While most of the emerging memories are still immature, phase change memory

(PCM) is commercialized recently using 3D XPoint developed by Intel and Micron

Technology. It is expected that PCM bridges the gap between memory like DRAM

and flash storage.

PCM makes use of the fast and reversible phase transition between crystalline and

amorphous phases. [1] The popular phase change materials are based on Ge-Sb-Te al-

loys known for large contrast in optical and electrical properties between crystalline

1



Fig. 1.1: Memory technology taxonomy. (The figure comes from the reference [4].)
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and amorphous states. [2, 3] The crystalline state shows low resistance and large re-

flectivity, which is ON state, while the amorphous state shows high resistance and low

reflectivity representing OFF state. A typical PCM cell structure is known as mush-

room cell and the schematic operation flow of PCM is shown in Fig. 1.2. The SET

operation of recrystallization is achieved with low voltage (current) of pulse, and the

RESET operation of amorphization is achieved with high voltage (current) of the pulse.

Ge2Sb2Te5 lying on the GeTe-Sb2Te3 pseudo-binary tie line benefits from rapid

phase-switching (∼100 ns), low power consumption, high thermal stability (10-yr re-

tention time at room temperature), and long cyclability (∼108). In spite of outstanding

performance, further improvements are needed in specifications like data retention,

power consumption, and switching speed to compete with the current memory type on

the market. For comparison, some features are tabulated in Table 1.1.

In terms of switching speed, writing speed (SET operation) is a bottleneck since

it is much slower than erasing speed (RESET operation). If a writing speed can be

reduced to sub-10 nanoseconds, it can directly compete with conventional memories

such as DRAM. During the writing operation, the crystallization kinetics of the phase

change materials has been a subject of intensive studies in both experiment and the-

ory. In experiments, important properties of the materials such as viscosity, the activa-

tion energy for crystallization, glass transition temperature, crystallization temperature

have been measured. Effects of doping or pre-treatments on crystallization have been

investigated. However, it is too short to directly capture the phase transition due to the

switching time of the nanoseconds scale.

On the theoretical side, crystallization simulations using ab initio molecular dy-

namics (AIMD) based on the density functional theory (DFT) can deepen understand-

ing of crystallization kinetics at the atomic scale. For example, Hegedüs and Elliott

found that crystallization of GST starts from clustered fourfold rings. [5] Furthermore,

AIMD simulations can show the effects of dopants. Bi dopants shorten the crystal-

lization time since its octahedral geometry makes fourfold rings clustered. [6] On the

3



Fig. 1.2: A schematic operation principle of the mushroom-type cell of phase change

memory. (The figure comes from the reference [8].)
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Table 1.1: Comparison of DRAM, PCM, and NAND Flash

!

Features DRAM PCM NAND Flash

Type volatile non-volatile non-volatile

Erase time 10 ns 10-100 ns 50 µs

Write time 10 ns 100-500 ns 500 µs

Endurance 1015 106 − 108 104 − 105
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other hand, N dopants hinder the growth of crystal planes by distorting planar four-

fold rings. [7] However, since AIMD is limited to model systems with a few hundreds

of atoms, the computational results on disordered phases are significantly influenced

by finite-size effects. Recently, machine learning potential (MLP) like a neural net-

work potential (NNP) and Gaussian approximation potential (GAP) is attracting much

attention as a breakthrough to overcome the limitations of ab initio calculations.
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1.2 Goal of the dissertation

The main purpose of the dissertation is to reveal the relation between crystallization

kinetics and structural features of amorphous phase change material using ab initio

calculations and neural network potential. First, we develop neural network potentials

for the crystallization of amorphous GeTe. NNP enables modeling the simulation to

scale up close to the realistic device. While the accuracy and reliability of the neu-

ral network potential are refined, we find that medium-range order structural features

in amorphous GeTe have crucial effects on crystallization. In addition, the relation

between the medium-range order structures and crystallization kinetics is analyzed

within classical nucleation theory. Second, we generate the amorphous models of Al-

and Ga-doped Ge2Sb2Te5, and structural properties are characterized within the DFT

framework. Unlike the medium-range order of the pristine amorphous GeTe, Al- and

Ga doping increases the homopolar bonds like Ge-Ge, Ge-Sb, and Sb-Sb and make

the odd-numbered rings more. We investigate the effects of these structural changes

on the crystallization of GST. Through the study, we present the relation between the

medium-range order structural features in the amorphous state and the crystallization

of phase change materials.

7



1.3 Organization of the dissertation

The dissertation is organized into five chapters. Chapter 1 is an introduction, which

gives an overview of phase change memory as well as the goal of the dissertation.

Chapter 2 introduces the theoretical backgrounds on the related subjects, such as den-

sity functional theory, neural network potential, and classical nucleation theory. The

main results are divided into two chapters. Chapter 3 addresses the neural network

potentials for GeTe. We treat the issue of the previous literature and show that the

medium-range order is important for crystallization kinetics. Chapter 4 discusses the

structural properties of Al- and Ga-doped amorphous Ge2Sb2Te5. Structural proper-

ties are characterized and compared to undoped amorphous Ge2Sb2Te5. Finally, we

summarize and conclude the dissertation in Chapter 5.
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Chapter 2

Theoretical background

2.1 Molecular dynamics

2.1.1 Classical molecular dynamics

Molecular dynamics (MD) is a computational technique to simulate the motion of

atoms. The time evolution of positions and momenta of atoms are followed by New-

ton’s equation of motion expressed by

r(t+ ∆t) = r(t) + v(t)∆t+
1

2
a(t)∆t2 (2.1)

where r(t), v(t), and a(t) represent the atomic coordinates, the velocities, and the

accelerations at time t, respectively. Once the initial conditions and the interatomic

potential are specified, trajectories of atoms or molecules are determined by integrating

the equation. Verlet algorithm is one of the efficient integration methods and followed

by

r(t+ ∆t) = 2r(t)− r(t−∆t) + a(t)∆t2. (2.2)

The atomic position of next time step (t+∆t) is calculated from Eq (2.2). [9] Here, the

time step ∆t should be determined carefully for accurate and efficient MD simulations.

As the time step is too large, the motions of atoms with high-frequency modes are

9



poorly described. On the other hand, as the time step is too small, the computational

time is needed excessively.

Force calculation

In the above equations, the acceleration a(t) at time t is obtained from atomic forces by

Newton’s second law. If a mathematical expression of potential energy is analytically

known, the atomic forces can be obtained from derivatives of the potential energy.

In classical molecular dynamics using an interatomic potential, the potential energy

of the interatomic potential is defined in terms of the atomic coordinates and fitted

by a set of parameters to describe the given system accurately. Hence, the reliability

of the MD simulations is depending on the quality of the interatomic potential. In

addition, a choice of the interatomic potential determines the viable size of the system

and simulation times because there is a trade-off between accuracy and computational

cost.

Thermostat

During MD simulation the temperature of the system is related to the average kinetic

energy. The relation is followed by

〈Ekin〉 =
3

2
NkBT. (2.3)

In the canonical ensemble (NVT) where the particle numberN , the volume V , and the

temperature T are fixed, the temperature is controlled in various ways like the Nosé-

Hoover thermostat, the Berendsen thermostat, and the Langevin dynamics, and the

velocity scaling. Among them, the Nosé-Hoover thermostat is one of the widely used

thermostat and employed in this dissertation. A Hamiltonian of the system is written

10



by Eq. (2.4) where an extra degree of freedom s is introduced for heat bath. [10, 11]

H =

N∑
i=1

p2i
2mis2

+ U(r) +
ps
2Q

+ gkBT ln s (2.4)

dps
dt

=
1

s

(
N∑
i

p2i
mis2

− gkBT

)

where U(r) is the potential energy of the system, Q is an imaginary mass representing

the correlation between the system and the heat bath, and g is the number degrees of

freedom of the extended system, (3N + 1). Using this thermostat, the temperature of

the system is controlled to the target temperature.
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2.1.2 Ab initio molecular dynamics (AIMD)

AIMD is a computation method based on quantum mechanics. In principle, interacting

of electrons and nuclei in materials is described by Schrödinger equation. The many-

body Hamiltonian is written as

Ĥ = − ~2

2me

∑
i

∇2
i +

∑
i,I

ZIe
2

|
−→
RI −−→ri |

+
1

2

∑
i 6=j

e2

|−→ri −−→rj |

−
∑
I

~2

2MI
∇2
I +

1

2

∑
I 6=J

ZIZJe
2

|
−→
RI −

−→
RJ |

(2.5)

where
−→
RI indicates the position of the Ith nucleus and −→ri indicates the position of

the ith electron. ZI and MI indicate charge and mass of the Ith nucleus. The first

and the fourth terms are the kinetic energy of electrons and nuclei, respectively. The

other three terms represent electron-nucleus, electron-electron, and nucleus-nucleus

interactions in order.

The Born–Oppenheimer approximation

In general, nuclei move very slowly than electrons since nuclear mass is much larger

than the electron mass. Assuming the mass of the nuclei is infinity, we can neglect the

kinetic energy of the nuclei. That is, positions of the nuclei are fixed and the fourth

term in Eq. (2.5) can be removed. This enables us to treat the motion of the nuclei

and the electrons separately, which is called Born–Oppenheimer approximation. [12]

Then, Eq. (2.5) can be reduced to

Ĥ = − ~2

2me

∑
i

∇2
i +

1

2

∑
I 6=J

ZIZJe
2

|
−→
RI −

−→
RJ |

+
∑
i,I

ZIe
2

|
−→
RI −−→ri |

+
1

2

∑
i 6=j

e2

|−→ri −−→rj |

= T̂e + ÊII + V̂ext + V̂int (2.6)

where T̂e is the kinetic energy operator of electrons, ÊII is the classical interaction

energy between nuclei, V̂ext is the external potential acting on electrons due to nuclei,

and V̂int is the potential interaction among electrons. As the problem of interacting of

12



electrons and nuclei is reduced to the problem of interacting of electrons in a static po-

tential, it is still infeasible to solve the above many-body Hamiltonian for any practical

systems.

The Hohenberg-Kohn theorems

As an approach to solving Eq. (2.6), density functional theory (DFT) has been widely

used. For a N -particle system, 3N degrees of freedom in the equation can be reduced

to 3 spatial coordinates by employing a particle density n(~r). DFT is based on two

theorems developed by Hohenburg and Kohn. [13] The theorems are followed as:

• Theorem I: For any many-body system in an external potential Vext(~r), a par-

ticle density in the ground state n0(~r) determines the unique potential Vext(~r)

except a constant.

• Theorem II: With a universal functional for the energyE[n(~r)] and any external

potential Vext(~r), the energy of the system reaches the ground state at the global

minimum of this functional where the particle density is the ground state.

Since the Hamiltonian of Eq. (2.6) is uniquely determined by the particle density in the

ground state n0(~r), the wavefunctions of all states are given by solving the Schrödinger

equation. It follows from the theorem II that the ground state particle density n0(~r) can

be obtained by minimizing the energy functional E[n(~r)] corresponding to the total

energy of the system expressed by

E[n(~r)] = T [n(~r)] + EII +

∫
n(~r)Vext(~r)d~r + Eint[n(~r)]. (2.7)

The Kohn-Sham ansatz

The Hohenberg and Kohn theorems simplified the many-body Hamiltonian, but it is

still unsolvable because of the demanding degrees of freedom resulting from electron-

electron interaction. Kohn and Sham suggested replacing the complex interacting many-

body system with a different auxiliary non-interacting system and assumed that the

13



ground state particle density of the original system should be equal to that of the non-

interacting system. Then, the Hamiltonian of the system is rewritten as

ĤKS = − ~2

2me

∑
i

∇2
i +

∑
i

Veff (−→ri ). (2.8)

The electron density n(~r) is a sum of squared modulus of wavefunctions of non-

interacting electrons

n(~r) =
∑
i

|ψi(~r)|2, (2.9)

and the kinetic energy of the electrons is

Ts = − ~2

2me

∑
i

〈ψi|∇2
i |ψi〉. (2.10)

The effective potential Veff (−→ri ) is introduced to take into consideration all interact-

ing many-body effects and is defined as a sum of the external potential Vext(−→ri ),

Hartree energy VHartree(−→ri ), and exchange-correlation potential Vxc(−→ri ). Using Veff ,

the Schrödinger equation becomes a one-electron problem by the variational principle

as [
− h2

2m
∇2
i + Veff ρ(−→r )

]
φi(
−→r ) = εiφi(

−→r ). (2.11)

Finally, the many-body problem is simplified as the single-particle problem which

is called the Kohn-Sham equation. The single-particle problem of Eq. (2.11) can be

solved by the self-consistent method. In the method, the initial electron density is

guessed from atomic charge densities and used to solve the Eq. (2.11). New electron

density is computed and compared with the initial electron density. If the difference

between the two electron densities is larger than a given criterion, the computed elec-

tron density is used to solve the Eq. (2.11). This iterative process is repeated until the

difference is smaller than the criteria.

Exchange-correlation energy

It is noteworthy that the exact functional form of the exchange-correlation energy is

unknown. Since the exchange-correlation part Vxc of the effective potential originates

14



from quantum mechanical effects of interacting electrons in the system, some approx-

imations are developed to solve the Kohn-Sham equation. Among them, two approx-

imations are widely used in solid-state systems. One is local density approximation

(LDA) which is first introduced by Kohn and Sham in 1965. [14] It is assumed that

the exchange-correlation energy of the system is regarded as that of the homogeneous

electron gas. The exchange-correlation energy at r is the same as that of the electron-

gas system with uniform charge density ρ.

ELDAxc [ρ(r)] =

∫
εLDAxc (ρ(r))ρ(r)dr (2.12)

The other is generalized gradient approximation (GGA) first developed by Perdew

and Becke. [15, 16] In principle, GGA is similar to LDA except that it contains the

inhomogeneity of electron density considering the gradient of electron density.

EGGAxc [ρ(r)] =

∫
εGGAxc (ρ(r), |∇ρ(r)|)ρ(r)dr (2.13)

In this dissertation, GGA is used for exchange-correlation energy parameterized

by Perdew, Becke, and Ernzerhof (PBE). [17, 18] It is because GGA improves the

description of the binding energy of molecules and the cohesive energy of solids with

respect to LDA. [19]

Force calculation

Unlike classical interatomic potentials, the atomic forces can be obtained without any

parameters in DFT. The forces are given via Hellmann-Feynman theorem

Fi = ∇E0(
−→r ) =

∂

∂−→r
〈ψ0|Ĥ(−→r )|ψ0〉 (2.14)

where E0 and ψ0 are the ground state energy and the ground state wavefunction, re-

spectively. According to the Born–Oppenheimer approximation and the Hohenberg-

Kohn theorems, all structures during AIMD simulations have unique electron density

in the ground state. Therefore, accurate atomic forces are obtained within a DFT frame-

work.
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2.2 Neural network potential

Unlike other classical interatomic potentials, a neural network potential (NNP) has no

constraints for physics- or chemistry-based function forms and acts as just a mathemat-

ical function that has a large number of parameters (weights). This makes NNP work

in complex chemical environments like phase transition or bonds breaking/forming

without prior knowledge.

2.2.1 Neural network model

A neural network is a mathematical model, which is inspired by the network of neu-

rons in the brain. A schematic neural network model is shown in Fig. 2.1. The neural

network consists of nodes and the connection lines between the nodes. In each node,

a computed value is assigned as the weighted sum of the previous layer, which is ex-

pressed by

xl+1
i = fa(b

l
i +

N l∑
j=1

xliw
l
ij) (2.15)

where xil is the value of ith node in lth layer, N l is the number of nodes in lth layer,

wlij is the weight connecting xlj and xl+1
i , and bli is a bias which controls the offset.

The activation function fa gives non-linearity to the model in order to enhance the

flexibility of the neural network. In general, a sigmoid function fa(x) = 1/(1 + ex) is

used as the activation function. This calculation is performed from an input layer to an

output layer, which is called as a feed-forward neural network.

Based on the simple neural network model, a high-dimensional NNP for atomistic

simulations is proposed by Behler and Parrinello. [20] The high-dimensional NNP is

an assembly of atomic neural networks assigned to each atom type as shown in Fig.

(2.2). For the high-dimensional NNP to predict total energy and atomic forces, The

total energy is computed by a sum of atomic energies and expressed by

Etotal =

N∑
i=1

Eat(Gi) (2.16)
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Fig. 2.1: Schematic diagram of feedforward neural network with two hidden layers.
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where Gi means the symmetry function vector of ith atom which will be discussed

later. The atomic forces are calculated by differentiating the total energy with respect

to the atomic coordinates and followed by

Fi,α = −∂Etotal
∂Ri,α

= −
N∑
j=1

DG∑
d=1

∂Eat,j
∂Gj,d

∂Gj,d
∂Ri,α

(2.17)

where Ri,α is the α(= x, y, z) coordinate of atom i, Gj,d is a dth component of sym-

metry function of atom j, and DG is the dimension of symmetry function vector. The

atomic energy of ith atom is evaluated from the atomic neural network where the same

atomic species share the same atomic neural network. The input of the atomic neural

network is a descriptor of the local chemical environment for each atom and should

have a fixed dimension to be employed regardless of the system size. The Cartesian

coordinates of atoms are encoded into the symmetry function vectors describing the

local environments. In this approach, the high-dimensional NNP can be employed to a

large-scale system with the same network model after trained with small systems.
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Fig. 2.2: Schematic diagram of high-dimensional neural network.
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2.2.2 Atom-centered symmetry function

In the early version of the NNP, the neural network is used with the Cartesian coordi-

nates or interatomic distances as input vectors. However, there are some limitations to

extend various applications. One thing is that the network should be trained for every

a given size of the system since the number of atoms in the system determines the

dimension of the input vector. Another thing is that demanding computing power is

required for large-scale systems. The other thing is that since the symmetry invariance

of translation or rotation is not involved, the NNP can result in different energy for

symmetrically identical structures. In order to overcome the limitations, Behler and

Parrinello suggested the high-dimensional NNP which can be applied to the arbitrary

size of systems and the symmetry function vector as the input vector to take the sym-

metry invariance into consideration. [20]

The atom-centered symmetry function is used for the input vector of the high-

dimensional NNP. The atom-centered symmetry function describes the relation be-

tween a center atom and neighboring atoms within a cutoff radius in terms of inter-

atomic distances and angles. The atom-centered symmetry functions are usually com-

posed of one radial type of functions and two types of angular functions. They are

defined as

Gradiali =
∑
j

e−η(Rs−Rij)
2 · fc(Rij) (2.18)

fc(Rij) =


1
2 cos

(
Rij

Rc
π
)

+ 1
2 (Rij ≤ Rc)

0 (Rij > Rc)

Gangular,1i = 21−ζ
∑
j,k 6=j

(1+λ cos(θijk))
ζe−η(Rik)

2+Rij)
2+Rjk)

2 ·fc(Rij)·fc(Rik)·fc(Rjk)

(2.19)

Gangular,2i = 21−ζ
∑
j,k 6=j

(1 + λ cos(θijk))
ζe−ηRij)

2+Rik)
2 · fc(Rij) · fc(Rik) (2.20)

where i is the index of the center atom and j and k are those for neighboring atoms,

and Rij , Rik, and Rjk are distances between them. In Eq. (2.19), and Rs determine
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Fig. 2.3: The shape of the symmetry function according to the coefficients. For the

Gradial function, the shape of the function according to (a) µ and (b) Rs is presented

and for the Gangular,1 function, the shape of the function according to ζ is presented

with the (c) λ = 1 and (d) λ = −1
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the width and center of Gaussian functions, respectively, while and in Eqs. (2.19) and

(2.20) changes the shape of angular functions. The cutoff function fc(Rij) smoothly

decreases to zero as Rij approaches Rc and the local environment depends on atoms

within Rc. A vector G with a set of symmetry functions with various coefficients de-

scribes the local environment around the ith atom. The schematic curves of the sym-

metry functions with the coefficients are plotted in Fig. 2.3 (a)-(d).

In principle, information loss for local environments is inevitable in representing

Cartesian coordinates in the real space using the atom-centered symmetry function

space. For better description of local environments, it helps to increase the number

of the atom-centered symmetry functions. In addition, the set of parameters of the

atom-centered symmetry functions should also be chosen. If the number of the atom-

centered symmetry functions are too small, they cannot resolve different local environ-

ments, resulting in low predicting power. On the other hand, when many parameters

are applied for the atom-centered symmetry functions, the computational cost of train-

ing and execution as well as the accuracy of the NNP is increased. Therefore, a set of

parameters is carefully chosen to describe the local environment with sufficient reso-

lution. It should be balanced between the accuracy and the computational cost at the

same time.

For the multi-component system, the number of pairs and triplets in the symme-

try functions are increased quadratically. For example, in the binary system consisting

of A and B, pairs for the radial symmetry function are A-A, B-B, and A-B. Triplets

(around A) for the angular symmetry function are A-A-A, A-A-B, and B-A-B triplets.

It is not necessary to share the same parameter set with symmetry functions, but typ-

ically, the number of radial symmetry functions is increased with the number of ele-

ments and the number of angular symmetry functions is increased with square of the

number of elements. Since the computational cost of the NNP depends on the number

of symmetry functions and is proportional to the square of the number of elements,

the multi-component systems is challenging to balance between the accuracy and the
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computational cost. In addition to the original forms suggested by Behler, [20] some

variants like weighted atom-centered symmetry function (wACSF) [21] and ANI-1

version [22] were suggested to alleviate this computational cost. Here, they are out of

the scope of this dissertation and not discussed in detail.
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2.2.3 Training method

Preprocessing

Before training, preprocessing the input vector helps to train the neural network model

efficiently. Here, two preprocessing methods are employed to improve the training

speed of the neural network model and the accuracy and stability of NNP.

In general, the values of the symmetry function have no limit and can vary with

a wide range depending on the local environments. For example, one may have small

values when some kinds of bonds are bare. The others may have large values when

some kinds of bonds are sufficient. Since the weight corresponding to the large-value

symmetry function should be changed more significantly than that corresponding to

the small-value one during training, the neural network model can be biased due to the

large component. Therefore, it is crucial to scale each symmetry function vector to a

similar range.

There are various ways to scale the symmetry functions. One simple method is to

linearly scale values of symmetry function with the range of [−1, 1]. Another method is

that all the means of symmetry functions are set to zero and the values of the symmetry

function are scaled by standard deviations. Such linear scaling methods are easy to be

implemented and effective to reduce bias effects of the large-value symmetry function.

In addition to scaling, the atom-centered symmetry function has another issue that

they are highly correlated to one other. The neural network is basically capable of

recognizing distinct features in the correlated inputs, but it requires more training time

and higher error convergence. Therefore, it is helpful to decorrelate input features in

the preprocessing step to improve training speed and accuracy. One of the effective

ways to decorrelating the input vectors is employing principal component analysis

(PCA) which linearly transforms variables into decorrelated variables.

With the data matrix X (dimension of N × DG), the covariance matrix of X can
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be computed and diagonalized as followed by

Σ = cov(X) = XTX = UΛUT (2.21)

whereU and Λ are the eigenvector matrix and diagonal matrix of Σ, respectively. Then,

the transformed data matrix Z can be defined whose covariance matrix is diagonal as

given by

Z = UTX. (2.22)

Since the eigenvectors of Σ are orthogonal, the transformed data in Z is decorrelated.

Depending on the training data, the variances of each principal component can

vary. Since such behavior is bad for training, each principal component is scaled to

have the same variance, which is called whitening. In principle, the whitening is per-

formed by dividing each principal component by its standard deviation. It is notewor-

thy that adding a small constant to the variance helps to prevent the principal compo-

nents with too small variances from being scaled up. Then, the transformed data with

whitening is expressed by

zwhiteni =
zi√

Var(zi) + ε
(2.23)

where ε is the small and positive value used as a limit of scaling. The distributions of

the transformed data by scaling, PCA, and whitening are plotted in Fig. 2.4 (b)-(d).

In this dissertation, all the symmetry functions are linearly scaled into [-1,1] and the

preprocess of PCA and whitening is performed in the preprocessing step.

Optimization

The target of the neural network model is to predict the accurate potential energy of

the system and atomic forces. During the training, the weights in the neural network

model are updated by minimizing a loss function. The iterative update of the weights

gradually gives accurately predicted values compared to the reference values. In the
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Fig. 2.4: The two-dimensional examples for input value scaling. (a) is the original

distribution of the dataset and (b) is the scaled data with the range of [-1, 1].With PCA,

the distribution of the dataset is converted into (c) and (d) is the whitened distribution

of (c).
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Fig. 2.5: Convergence of validation force RMSE against the training iteration with and

without PCA and whitening. The blue line indicates the results without PCA prepro-

cessing, and the orange line is the results with PCA preprocessing, but no whitening.

The green line shows the results when both PCA and whitening are applied. The hor-

izontal dashed lines indicate the converged RMSE value without PCA and with PCA

and whitening. The training set consists of molecular dynamics trajectories of liquids

and crystals in GeTe system.
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optimization, it is important to define an appropriate functional form of the loss func-

tion. Here, the loss functions for energy, force, and stress are defined as followed.

ΓE =
1

M

M∑
i=1

(
EDFTi − ENNPi

Ni
)2 (2.24)

ΓF =
1

3
∑M

i=1Ni

M∑
i=1

Ni∑
j=1

|FDFTij − FNNPij |2 (2.25)

ΓS =
1

6M

M∑
i=1

|SDFTi − SNNPi |2 (2.26)

where M is the total number of structures in the training set, and Ni is the number of

atoms in an ith structure. Ei, Fij , and Si are the energy of the ith structure, the force

of a jth atom in the ith structure, and the virial stress of the ith structure, respectively.

The total loss function is simply defined as a sum of three kinds of loss functions with

the coefficients (α, β, and γ) to balance the order of magnitude among energy, force,

and stress.

Γ = αΓE + βΓF + γΓS (2.27)

The coefficients α, β, and γ can be adjusted so that the three loss functions contribute

similarly to the optimization process. For specific training (only energy or weighted

force training), one can adjust the coefficients.

Before the optimization process, the weight should be initialized carefully since

using the activation function like sigmoid is vulnerable to gradient vanishing. If the

weights are too large, the derivative of the activation function will be close to zero and

the weight update will be negligible. Therefore, it is recommended that the weights

are randomly initialized with a normal or uniform distribution. Xavier or He methods

are simple ways to initialize the weights with a normal distribution. In Xavier initial-

ization, the weights are randomly generated along with the normal distribution of a

zero mean and a standard deviation of
√

2/(nin + nout) where nin and nout are the

number of the nodes in the previous layer and in the next layer, respectively. In He
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initialization, the weights are randomly generated along with the normal distribution

of a zero mean and a standard deviation of
√

2/(nin).

Regularization

As the training is going on, the neural network model predicts more accurate energies

and forces for the structures corresponding to the training set. Figure 2.6 shows the

fit quality of the neural network model with training. If the size of the neural network

model is too small or training is not enough, the neural network model cannot pre-

dict the target function with the training set, which is called underfitting. After proper

training, the model is trained with the training points and predicts the energy function

between the training points. However, when overtrained, the model is too limited to

the training set and poor at predicting the energy function between the training points.

This is called overfitting.

Since the overtrained model should be inappropriate for MD simulations, overfit-

ting must be prevented. In general, overfitting is handled in two ways. One is that the

neural network model is simplified by reducing the number of input data or the size

of the model, and the other is that a regularization scheme is applied during training.

The former strategy has the potential to degrade the accuracy of the NNP and there are

no clear criteria to determine the architecture of the model. Here, the regularization

method is used to prevent overfitting.

Regularization methods such as weight decay and dropout can prevent overfitting

effectively. The weight decay, or L2 regularization, is implemented by adding a penalty

term in terms of the L2 norm of the weights to the loss function, which is followed by

ΓL2 = λ‖w‖22. (2.28)

This works since the L2 norm of the weights has to be large for overfitting. Therefore,

the penalty term is decreased with the overall weights decreased as the training pro-

ceeds. However, a regularization constant λ should be carefully determined. If it is too
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large, the model will behave like an undertrained model. On the other hand, if it is too

small, the regularization effect will not work.

Dropout [23] also prevents overfitting. By randomly ignoring some nodes and

weights during training, the weights are stochastically updated. It can be regarded as

an efficient method to average out models.

In the early stopping method, a validation set should be prepared which is different

from the training set. Usually, the data set is divided into a training set and a validation

set. The errors of the training set and validation set are monitored during training.

When the validation error is larger than the training error, it is considered that the

overfitting occurs. Then, training should be stopped early just before the validation

error is larger.
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Fig. 2.6: (a) Underfitted neural network model (b) Well-fitted neural network model

(c) Overfitted neural network model. (The figure comes from the reference [24].)
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2.3 Classical nucleation theory

Classical nucleation theory (CNT) is employed to understand the nucleation process

in a thermodynamical way. It can usually explain the condensation of a vapor or crys-

tallization from a liquid. In homogeneous nucleation, it is assumed that a spherical

nucleus is formed with a radius r. The change in the free energy of the system is given

by

∆G(r) = −∆Gαβ
4

3
πr3 + σαβ4πr2 (2.29)

where ∆Gαβ and σαβ are the Gibbs free energy difference and the interfacial free

energy between the phase α and β. In the Eq. (2.29), the first term represents the

contribution by bulk free energy which is dominant with a large r. The second term is

the penalty energy by the interface between the two different phases and dominant with

small r. This behavior is sketched in Fig. 2.7. Since the probability of formation of the

nucleus is dependent on ∆G, the nucleation hardly proceeds where dG/dr = 0. That

is, the decaying and growing process of the nucleus is divided based on the critical

radius (r∗) given by

r∗ =
2σαβ
∆Gαβ

. (2.30)

The nucleation barrier (∆G∗) is calculated by inserting r∗ into Eq. (2.29) and ex-

pressed by

∆G∗ =
16

3

σ3αβ
(∆Gαβ)2

. (2.31)

When r < r∗, the small nuclei decay finally. When r > r∗, the nucleation process is

favorable and the nuclei grow gradually. Then, the nucleation rate J can be expressed

in the Arrhenius type. In addition, considering kinetic contribution together, the steady-

state nucleation rate is followed by

J = A exp

(
−

∆G∗D
kBT

)
exp

(
−∆G∗

kBT

)
(2.32)

where A is the prefactor and ∆G∗D is the activation barrier for diffusion.
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According to CNT, the change in the free energy ∆G is depending on the material-

dependent physical quantities such as ∆Gαβ and σαβ . In a thermodynamical way, the

change in the free energy between the liquid and crystalline phases ∆Glc is given by

∆Glc = ∆Hlc − T∆Slc (2.33)

∆Hlc = ∆Hf −
∫ Tm

T
∆CpdT

∆Slc = ∆Sf −
∫ Tm

T

∆Cp
T

dT

where Tm is the melting temperature, ∆Hf is a heat of fusion, ∆Sf is the entropy of

fusion, and ∆Cp is the difference in specific heats of the two phases, which is defined

as (C lp − Ccp). As experimental data for the heat capacity of the supercooled liquids is

insufficient, ∆Cp can be approximated to a linear form by

∆Cp = AT +B (2.34)

where A and B are constants. Then, ∆Glc is rewritten by

∆Glc =
∆Hf∆T

Tm
− 1

2
A(∆T )2 +B

(
T ln

Tm
T
−∆T

)
(2.35)

where ∆T is the difference between the melting temperature Tm and the given tem-

perature T . By employing a simple approximation that ∆Cp = 0, we obtain

∆Glc =
∆Hf∆T

Tm
(2.36)

which is generally known as Turnbull approximation. [25] If the temperature depen-

dence is negligible in ∆Cp, A = 0 and B = ∆Cp, Eq. (2.35) is reduced to

∆Glc =
∆Hf∆T

Tm
− ∆Cp(∆T )2

Tm + T
(2.37)

where ln (Tm/T ) ≈ 2∆T/(Tm + T ). Here, Thompson and Spaepen suggested an

approximation of heat capacity in terms of ∆Hf and Tm. [26]

∆Cp =
∆Hf

Tm
(2.38)

33



This approximation is applied for Eq. (2.37), the change in free energy is simplified as

∆Glc =
∆Hm∆T

Tm

2T

Tm + T
. (2.39)

For the interfacial energy σlc, a weak temperature-dependent behavior of the interfacial

energy is usually approximated to a constant. Using the expression of Spaepen and

Meyer [27]

σlc =
∆Hmαm

(NAV 2)1/3
T

Tm
(2.40)

where αm is a constant which is geometrically computed to be 0.86. The value is

based on the assumption that the interface is formed between a liquid and a cubic

crystal. Here, it is reasonable to take T to be the glass transition temperature (Tg) for

the phase change materials.
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Fig. 2.7: A schematic free energy curves of homogeneous nucleation
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Chapter 3

Crystallization of amorphous GeTe

3.1 Introduction

Understanding the crystallization behavior of the phase change materials is critical in

PCM applications. Since the writing/erasing operations in PCM work by phase transi-

tion, the phase transition of the phase change materials is one of the interesting topics.

In particular, the writing speed with recrystallization should be more improved in order

that PCM will replace the conventional memories such as DRAM. In this regard, the

crystallization kinetics of the phase change materials has been a subject of intensive

studies in both experiment and theory.

In the case of the phase change materials with the switching speed of tens or hun-

dreds nanoseconds, experimental research has some limitations to observe the crys-

tallization moment. One is the difficulty in controlling temperatures. Crystallization

occurs soon after the temperature goes above the glass transition temperature. There-

fore, it is hard to study crystallization behavior in a wide range of the temperatures

between the melting temperature and the glass transition temperature. In addition, we

just know the power of the applied laser or electrical pulses. It is difficult to measure

the temperature of the material exactly. The other issue is that observing crystallization

process on the atomic scale is difficult due to scaling down of the device size. Experi-
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ments have advantages of measuring physical properties like the melting temperature,

the glass transition temperature, or growth velocity, but disadvantages of revealing the

atomic scale behaviors of the materials.

On the theoretical side, a direct simulation for crystallization using AIMD is a pow-

erful tool and have provided great insights for the crystallization behavior at the atomic

scale. It is possible to track the changes in atomic structures with a time step of a few

femtoseconds during AIMD. For example, one AIMD study showed that the medium-

range order represented by fourfold rings plays a crucial role in fast crystallization of

GST. [5] In addition, the effects of dopants in GST are explicitly investigated using

AIMD simulations. It was demonstrated that Bi doping increases preference of the oc-

tahedral geometry which resembles to the building block of rocksalt GST, and makes

the crystallization speed faster. [6] On the other hand, N doping increases the popula-

tion of the tetrahedral geometry due to strong covalent bonding character, and hinders

growth of crystal planes by distorting local lattice. [7] However, the simulation size is

limited to a few hundreds of atoms due to the compuational cost and the disordered

systems significantly suffer from finite-size effects. One recent study showed that even

460-atom of GST model is insufficient since the crystal growth velocity is overesti-

mated about 2 times than that in 900-atom of GST model and the results from the

900-atom modeling are in a good agreement with experiment. [28] Still, nanosecond-

scale simulations are unaffordable using AIMD.

Recently, machine learning techniques are employed to overcome the computa-

tional limitation of AIMD. [29] In this approach, general mathematical models such

as neural network [30] and Gaussian process [31] are trained over ab initio energies,

forces, or stresses and predict those quantities of untrained structures with computa-

tional speeds faster than ab initio calculations. The machine-learning approach to de-

velop the classical interatomic potential is useful for systems with complicated bond-

ing natures such as chemical reactions or phase transitions where the form of bonding

natures is ill-defined. That is, the phase change materials are proper application. In
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Refs. [32–38], the NNP was developed for a representative binary phase change ma-

terial, GeTe and used in a variety of conditions to simulate the system size beyond

the current capability of AIMD. In particular, the crystallization kinetics of a-GeTe

models was investigated and the effects of temperature and interface were analyzed.

[33, 34]

Among the results from the previous simulations of GeTe using the NNP [33], a

critical point is noticed. In a wide range of temperatures between 500 and 650 K, the

entire crystallization process (including nucleation and growth) is complete within 2

ns. This is not matched to the results of many AIMDs on GeTe and GST that show

apparent incubation periods (the time span before appearance of supercritical nuclei

[39]) of 0.1 ∼ 2 ns under high pressure conditions. [5–7, 39–44] The incubation-free

crystallization is observed when a pre-existing crystalline seed is inserted in the amor-

phous models. [45] That is, it seems that the nucleation barrier in the NNP may be

underestimated. In addition to AIMD simulations, the fastest crystallization time is

reported to about 30 ns for melt-quenched amorphous GeTe samples in laser-pulse

experiments. [46, 47] The electrical-pulse experiment on GST also showed that the

phase transition takes at least 10 ns. [48–50] Since the maximum growth velocity in

Ref. [33] is just about two times higher than the measured value [51], it is considered

that the nucleation rate might be exaggerated in the previous simulations. Although it

is reported that crystallization in the PCM with the thin GeTe layer is complete within

only 1 ns [52], this is because the amorphous GeTe is surrounded with the crystalline

rim, which leads to a growth-dominated crystallization.

In this chapter, the structural features of the amorphous GeTe are analyzed to ad-

dress and resolve the above issue in the NNP. It is found that the planarity of fourfold

rings, which represents the medium-range order, is overestimated by the NNP, result-

ing in a low nucleation barrier. We find significant improvements in the medium-range

order by adding ring relaxation trajectories by DFT into the training set of the NNP.

Using the improved NNP, the crystallization simulations are successfully performed
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under the condition close to realistic systems. In the following section, we discuss

details on training NNP and simulation setup suggest an approach to improve NNP.

The structural property and crystallization behavior by the improved NNP are also

analyzed and discussed.

39



3.2 Computational details

3.2.1 Training set

We train NNP over reference structures composed of various liquid, amorphous, and

crystalline structures. The detailed information of the training set is summarized in

Table 3.1. Here, a few meV/atom (or tens of meV/Å) of variations in root-mean-square

errors (RMSE) are observed but negligible. The size of errors can result from a random

initialization of weights in the neural network model and a stochastic character of

training the neural network model.

Except for ring relaxation data, all the structures are sampled from trajectories of

AIMD which is performed with Vienna Ab initio Simulation Package (VASP). [53, 54]

The Perdew-Burke-Ernzerhof functional is chosen to describe exchange-correlation

functional [18] and the cutoff energy of the plane-wave basis set is chosen to 200

eV for cost-effective AIMD. The total energies and atomic forces for the reference

structures are calculated again to improve accuracy by setting the cutoff energy of 400

eV and the spacing of k-point grid mesh smaller than 0.1 π/Å. This calculation setup

ensures the convergence of the total energy and the atomic forces to below 1 meV/atom

and 0.05 eV/Å, respectively.

In Table 3.1, in addition to the usual structures with stoichiometric GeTe, some

structure types in the training set are involved to improve the accuracy and reliability

of NNP. First, the melting process of crystal GeTe is expected to provide information

for the energy barrier between liquid and crystal phases. Without the melting data,

partially crystallized structures are often observed during quenching. In addition, the

crystallization of amorphous GeTe can be learnable as shown in Fig. 3.1. [55] For

short validation of the NNP, 96-atom amorphous structures are generated by the melt-

quench method and crystallization simulations are performed at 600 K for 2 ns with the

simulation cell fixed to the crystalline density. Figure 3.1 (a) compares the potential

energy surface of DFT and NNP along the crystallization trajectory, and (b) and (c)
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Table 3.1: Summary of reference structures and root-mean-square errors (RMSEs) for

the validation set.

Structure type Number of structure Number of training points
RMSEenergy

(meV/atom)

RMSEforce

(eV/Å)

c-NNP m-NNP c-NNP m-NNP

Crystal 504 28,471 3.14 2.48 0.16 0.17

Liquid 500 48,000 4.41 4.05 0.26 0.28

Amorphous 251 24,096 7.24 6.20 0.26 0.28

Quenching

(1000→ 300 K)
518 49,728 5.81 3.67 0.25 0.27

Melting

(FCC→ liquid)
352 33,792 5.11 3.47 0.23 0.26

Mixding liquid

(Ge + Te)
301 57,920 3.75 3.07 0.26 0.30

Liquid (Ge or Te) 375 37,500 3.92 3.48 0.26 0.27

Ring relaxation 774 74,304 - 3.54 - 0.16

Total 3,575 347,711 4.99 3.65 0.24 0.25
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show the force errors of the NNP. Though a constant energy shift of 25 meV/atom is

observed, the shifted potential energy surface is matched to DFT. RMSE for forces is

computed to 0.27 eV/Å, which is within a reasonable range. Therefore, it seems that

the melt-quench and crystallization simulations by the NNP is reliable.

Secondly, it is found that during liquid simulations at 1000 K, phase separation into

unary Ge and Te often occurs when the training set consists of only 1:1 composition.

It is attributed to ad hoc energy mapping in the GeTe system [55], which can induce

the instability of NNP. To reduce the ad hoc energy mapping, the connectivity between

data points should be maintained. Since the mixing data is prepared by sampling MD

trajectories of diffusional mixing from unary Ge and Te liquids shown in Fig. 3.2 (a),

the data points are close enough to one another. Principal component analysis (PCA)

is applied to show the distribution of the data points in reduced dimensions. Figure

3.2 (b) explicitly shows a distribution of the data points on the first (PC1) and second

principal components (PC2) with distinct color for each subset. PC1 and PC2 mean the

axes where the data points are projected to have the first and second-largest variance.

The connectivity of the unary (purple) and binary (green) liquid data is maintained

through the mixing data (red). This precludes the unphysical phase separation and

increases the stability of NNP.

Finally, the ring relaxation data in Table 3.1 is prepared to refine the medium-range

order structures in amorphous GeTe described by the NNP. Unlike other data set, the

initial structures are obtained by NNP and relaxed within the DFT framework. The

detailed effects of the ring relaxation data will be discussed later.
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Fig. 3.1: (a) Comparison of PES of crystallization trajectory generated by NNP with

DFT. The constant energy shift ∆ of ∼ 25 meV/atom is observed, but the relative

potential energy surfaces are close to each other. (b) The correlation of the atomic

forces for each component (x,y, and z). The dense region is colored in red while the

color of the sparse region is close to blue. (c) Histogram of the errors in the atomic

forces.
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Fig. 3.2: (a) The initial slab model for the mixing data. (b) Distribution of the training

points of each structure type in PCA space. PC1 and PC2 means that the first and

second largest variance along the axis.
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3.2.2 Training method

The NNP is trained using SIMPLE-NN (SNU Interatomic Machine-learning PotentiaL

packagE-version Neural Network). [56] The architecture of the neural network model

is 70-30-30-1 and atom-centered symmetry functions are used as input features de-

scribing the local environment around an atom. [57] The symmetry functions consist

of 16 radial and 54 angular symmetry functions with a cutoff radius of 7 Å. The pa-

rameters for each symmetry function are taken from Ref. [58]. Since the atom-centered

symmetry functions are highly correlated with one other, the decorrelating process is

performed by PCA without any reduction of dimensions. After applying PCA, all the

components are further normalized by dividing its variance, which is called whitening.

It accelerates the accuracy and convergence of training. The loss function for training

is defined as the sum of the square of RMSEs for energy and force. Additionally, L2

regularization term with a coefficient of 10−8 is appended to prevent undertraining of

the ring relaxation data and unexpected overfitting. The coefficient is determined via

parameter tests as shown in Fig. 3.3. One-fifth of the entire training data is randomly

chosen and constructs a validation set. Others constitute a training set. The learning

curves for NNP are shown in Fig. 3.4.

In this chapter, two types of NNP are developed. The one, named as c-NNP, is

constructed by using the reference structures in Table 3.1 except for the ring relax-

ation data. It is validated if the c-NNP reproduces the incubation-free crystallization

observed in the previous literature. To improve this, the ring relaxation data is added

to the training set. This modified NNP is called as m-NNP. The RMSEs for energy and

force in the validation test are tabulated in Table 3.1 and are under 5.0 meV/atom and

0.3 eV/Å, respectively.
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Fig. 3.3: (a) Learning curves of NNP and (b) Energy correlation plots of the ring re-

laxation data with L2 regularization coefficients.
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Fig. 3.4: Learning curves of NNP for (a) force and (b) energy. The solid lines and

dashed lines indicate the RMSEs of the validation and training data, respectively.
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3.3 Validation

3.3.1 Bulk properties of crystalline phases

Birch–Murnaghan equation of state in Eq. (3.1) is a simple equation to simulataneously

show important bulk properties such as equilibrium volume (V0), minimum energy

(E0), and bulk modulus (B).

E(V ) = E0 +
9V0B0

16


[(

V0
V

) 2
3

− 1

]3
B′0 +

[(
V0
V

) 2
3

− 1

] [
6− 4

(
V0
V

) 2
3

]
(3.1)

The two types of NNPs are validated by comparing the bulk properties of crys-

talline GeTe calculated by DFT. The equilibrium volumes for hexagonal and fcc GeTe

are 28.03 and 27.29 Å3/atom in DFT, respectively. Those in c-NNP (m-NNP) are 27.82

(28.10) and 27.10 (27.4) Å3/atom. The energy differences between the phases are 0.14

eV/atom in DFT, 0.12 eV/atom in c-NNP, and 0.18 eV/atom in m-NNP. The minimum

energy and the energy difference between the two phases are important quantities,

especially for crystallization. As shown in Fig. 3.1, the equilibrium volumes and min-

imum energies for each phase are well reproduced by NNPs. Bulk modulus is calcu-

lated by fitting the energy-volume data to Eq. (3.1). The bulk moduli calculated using

DFT are 46.2 GPa for hexagonal GeTe and 48.8 GPa for fcc GeTe. The bulk modulus

of hexagonal GeTe are 58.0 and 52.5 GPa and those of fcc GeTe are 55.9 and 43.3

GPa in c-NNP and m-NNP, respectively. Since local environments in the crystalline

state are simple and little changed, it is seen that the training data is well prepared to

reproduce the bulk properties of the crystalline GeTe.
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Fig. 3.5: Birch-Murnaghan equation of state for hexagonal (HEX) and fcc (FCC) GeTe.

Solid lines represent DFT data and dashed lines (a) c-NNP data and (b) m-NNP data,

respectively
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3.3.2 Bulk properties of liquid phase

In the melt-quench method, amorphous structures are obtained by quenching of liq-

uid structures at high temperatures (higher than melting temperature). In general, the

amorphous structures are considered as a supercooled liquid state due to rapid quench-

ing speed in simulations with respect to experiments. Therefore, the reliability of the

amorphous structure is highly dependent on that of the liquid structure.

Liquid GeTe is generated by AIMD simulation. Initial atoms are randomly sprayed

in the cubic box whose density is set to 34.5 atoms/nm3 which is a measured density

of amorphous. [59] The generated structure is equilibrated at 1500 K for 5 ps and

1000 K for 30 ps. Since the melting temperature of GeTe is 998 K, [60] GeTe at

1000 K should be liquid. The structures equilibrated in DFT are used for the starting

structures of melt-quench simulations in NNP. After equilibration at 1000 K, structural

properties of liquid GeTe are evaluated using RDF and ADF representing average local

environments. In Fig. 3.6, total RDF and ADF of both NNPs are in good agreement

with those of DFT. The first peak positions, heights, and widths of partial RDFs of Ge-

Ge, Ge-Te, and Te-Te are closely reproduced by the NNPs. The first peaks of Ge-Ge

are located at 2.73, 2.73, and 2.73 Å and those of Ge-Te are positioned at 2.84, 2.84,

and 2.82 Å in DFT, c-NNP, and m-NNP, respectively. In particular, DFT, c-NNP, and

m-NNP produce the main peak around 90◦ and a shoulder peak around 60◦.

Diffusion coefficients (D) are computed from the slope of the mean square dis-

placement (MSD,
〈
∆r2

〉
), which is related to the kinetics of crystal growth.

D =

〈
∆r2

〉
6t

(3.2)

In DFT, diffusion coefficients of Ge and Te are estimated to 5.12×10−5 and 3.47×10−5

cm2/s, respectively. Other DFT study reported that the values are 4.65×10−5 for Ge

and 3.93×10−5 cm2/s for Te. [40] For c-NNP (m-NNP), the diffusion coefficients are

estimated to 5.40×10−5 (5.46×10−5) for Ge and 3.58×10−5 (3.84×10−5) cm2/s for

Te, which is very close to the values in DFT.
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Fig. 3.6: (a) Total RDF, (b) total ADF, and (c) partial RDFs of Ge-Ge, Ge-Te, and

Te-Te of DFT, c-NNP, and m-NNP. ADF is compurted with bond length of 3.2 Å.
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3.3.3 Bulk properties of amorphous phase

Amorphous GeTe is obtained by quenching the liquid structures from 1000 K to 300

K with the rate of−15 K/ps. For a fair comparison, five 96-atom models are generated

independently using DFT, c-NNP, and m-NNP. The structural properties are analyzed

after geometry optimization with the volume and shape of the cells and atomic coordi-

nates. The average density of relaxed structures using c-NNP (m-NNP) is 31.2 (31.9)

atoms/nm3, matching to that of DFT (31.9 atoms/nm3). The energy difference between

an amorphous structure and fcc crystal is 99 and 90 meV/atom in DFT and m-NNP,

respectively.

RDFs and ADF of amorphous GeTe are presented in Fig. 3.7 and compared among

DFT,c-NNP, and m-NNP. Figure 3.7 (a) and (b) show total RDF and ADF of the a-

GeTe at 300 K and Fig. 3.7 (c) shows partial RDFs of amorphous GeTe at 300 K. The

coordination numbers, computed by integrating RDF within 3.2 Å, are 3.94, 3.94, and

3.97 for Ge and 3.09, 3.02, and 3.10 for Te in DFT, m-NNP, and c-NNP, respectively.

Compared to c-NNP, the first peak of Ge-Ge and the second peak of Te-Te bond are

improved by m-NNP; the first peak position of Ge-Ge is 2.67 Å (2.72 Å in c-NNP),

which is close to 2.65 Å in DFT. While the position of the second peak of Te-Te is

similar between DFT (4.15 Å), m-NNP (4.09 Å), and c-NNP (4.13 Å), the height of the

second peak (2.60 in DFT) is improved in m-NNP (2.72), compared to c-NNP (3.08).

However, it is found that the sharpened second peak in RDF and the overestimated

peak around 90◦ in ADF remain.

The fine details of the medium-range order are analyzed using ring statistics and

geometry. The number of primitive rings is computed by R.I.N.G.S. code [61] and ring

distributions are shown in Fig. 3.8. The overall ring distribution of m-NNP is close

to that of DFT. In particular, the fraction of ABAB-type (A=Ge and B=Te) within

fourfold rings is about 80% for m-NNP and DFT (see hatched regions). In c-NNP,

this fraction is 86%, slightly overestimated. Fig. 3.9 (a) shows distributions of the

inter-diagonal distance in fourfold rings. The average value of d is 0.43 Å for m-NNP,
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Fig. 3.7: (a) Total RDF, (b) total ADF, and partial RDFs of (c) Ge-Ge, (d) Ge-Te, and

(e) Te-Te of DFT, c-NNP, and m-NNP. ADF is computed with bond length of 3.2 Å.
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Fig. 3.8: Ring statistics of amorphous GeTe at 300 K. Bonds within 3.2 Å are consid-

ered.
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(a)

(b)

Fig. 3.9: (a) Planarity of the fourfold rings in amorphous GeTe at 300 K. Bonds within

3.2 Å are considered. (b) The energy correlation between DFT and NNP for five DFT-

relaxed trajectories of amorphous GeTe generated by c-NNP. High-energy structures

(marked as ‘Flat’) in DFT contain fourfold rings with small d values that increase as

the structure relaxes to low-energy one (marked as ‘Puckered’).
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showing that the distribution shifts away from zero compared to c-NNP. Although

highly distorted fourfold rings (d < 0.50 Å) are still suppressed than in DFT, the

number of the planar fourfold rings (d < 0.25 Å) is almost the same as that of DFT.

The corresponding distributions at 500 K and various density conditions are presented

in Fig. 3.9 and they are consistent with Fig. 3.9.)

Additionally, we calculate interfacial energies between crystal and amorphous phases

(σac in Eq. (2.29)) by following the method in Ref. [62]. A pre-ordered crystalline seed

with a certain radius is inserted in amorphous GeTe and the overlapping or too close

atoms are removed at the same time. At a given temperature, it is checked if the seed

grows or decays during NVT simulations. Then, we can estimate the critical size of the

spherical nucleus at the given temperature and critical temperature for a specific size

of the nucleus. One snapshot of the model and the estimated critical temperatures with

the nucleus size is shown in Fig 3.10. A relation between ∆T and r∗ can be obtained

by inserting Thompson-Spaepen expression (Eq. (2.39)) into Eq. (2.30).

∆T =
σTm
∆H

(
Tm + T

T

)
1

r∗
. (3.3)

The interfacial energy (σ) can be estimated by fitting the data to Eq. (3.3) and the

values are 0.062 and 0.075 J/m2 in c-NNP and m-NNP, respectively. (For comparison,

σ of GST was experimentally estimated to be 0.075 J/m2 by applying Eq. (2.40). [27,

63]) Combined with Eq. (2.31), this indicates that m-NNP may have larger nucleation

barriers than c-NNP. Therefore, it is expected that the issue of fast crystallization would

be resolved by m-NNP as medium-range as well as short-range orders are captured

properly. The results for crystallization simulations using m-NNP will be presented in

the next section.
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Fig. 3.10: (a) A snapshot of the model with radius of the crystalline seed 10 Å. The

green atoms are amorphous GeTe and the orange atoms are the inserted crystalline

atoms. (b) Difference between the critical temperature and the melting temperature as

a function of the inverse size of the crystalline seed.
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3.4 Crystallization simulation

In the PCM device, only some of the phase-change region is actively changed. HRTEM

images clearly show the dome-like switching region on the bottom gate. [64] This de-

vice condition is usually observed in continuum modeling, not atomic-scale modeling.

[65] However, the simulations using AIMD have been carried out under the limit con-

dition because demanding computational costs are required to handle a few hundreds

of atoms for nanoseconds. To accelerate crystallization, the density of the simulation

cell is usually fixed to the crystalline density. It is found that the equilibrium volume

of the amorphous state Va is expressed in terms of bulk modulus of crystal and amor-

phous (Bc and Ba), the bulk atomic volume of amorphous (Vc and V 0
a ), and the total

and switching volume of the phase-change region (VT and Vc) assuming the hydro-

static pressure followed by

Va
V 0
a

=
Ba(VT − Vc) +BcVc
BcV 0

a +Ba(VT − Vc)
. (3.4)

This relation indicates that when Vc is equal to VT , the equilibrium volume of amor-

phous Va is equal to the total phase-change volume, which is a fully amorphized state.

Furthermore, since the phase-change region is crystallized in the fabrication process,

the total volume of the phase-change region has the crystalline density. Therefore, it

is considered that the limit condition of crystallization simulation in AIMD is consid-

ered as a fully amorphized condition. In practice, less than 10% of the whole region is

actively switched. [64, 65] Herein, the partially amorphized condition close to device

condition is set assuming 10% of the whole phase-change region is actively changed.

The physical quantities required for Eq. (3.4) and calculated equilibrium volumes of

the amorphous region under two conditions are summarized in Table 3.2.
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Table 3.2: The calculated equilibrium volumes of the switching amorphous region with

volume and bulk modulus of crystalline and amorphous GeTe.

V 0
a

(Å3/atom)

Ba

(GPa)

Bc

(GPa)

Va (Å3/atom)

[Vc/VT = 1.0]

Va (Å3/atom)

[Vc/VT = 0.1]

DFT 31.33 13.3 48.8 27.3 30.06

c-NNP 32.08 11.8 55.9 27.1 29.65

m-NNP 31.35 7.2 43.3 27.4 29.62
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3.4.1 Equilibrium volume condition

When it is assumed that about 10% of the cell volume transformed into amorphous

GeTe, the density of the amorphized region is set to the value in Table 3.2. Under

the partially amorphized condition, crystallization simulations using m-NNP are car-

ried out. (There are two runs at 500 K.) Within 20 ns, the crystallization is completed

only at 500 K. The incubation period, in this case, is as long as 7 or 17 ns, a time

scale comparable to the experiments. [46, 47] The large difference between two runs

reflects the stochastic nature of nucleation and finite-size effects of the present simula-

tion cell. This indicates that the crystallization of amorphous GeTe at this condition is

nucleation-limited, rather than growth-limited. At higher temperatures, the nucleation

is retarded because ∆Gac is reduced and therefore, the nucleation barrier increases

following Eq. (2.31).

It is seen that a single crystalline grain grows almost isotropically. The growth

speeds are 1.31 and 3.82 m/s for the two runs, respectively, which are similar to 1.89

m/s for c-NNP. We also estimate growth speeds at 550–650 K by taking snapshots from

500 K simulation including a supercritical nucleus and annealing them at the elevated

temperatures, since supercritical nucleus is not observed at these temperatures during

the present simulation time. The calculated growth speeds are 2.58, 3.77, and 3.86 m/s

at 550, 600, and 650 K respectively, which agrees reasonably with Ref. [33] (1.88,

3.60, and 5.12 m/s, respectively) as well as results by c-NNP.

After the crystallization completes, we analyze the defects within the crystalline

grain and find that the defect density is 5% and antisite defects GeTe, and conse-

quently Ge-Ge homopolar bonds, are the most frequent. As a result, the composition

of the crystalline region becomes Ge51Te49 which is slightly Ge-rich. This is in a good

agreement with the spectroscopic measurement that estimates 10% of Ge-Ge bonds

and Ge vacancies in crystallized GeTe films. [66]
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(a) (b)

Fig. 3.11: (a) Time evolution of the percentage of crystalline atoms in 4096-atom cells

and (b) the potential energy during the crystallization at 500, 550, 600, and 650 K with

the density corresponding to the device condition (33.7 atoms/nm3).
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3.4.2 Crystalline volume condition

As the limit condition for crystallization, the density of the simulation box is set to

the crystalline density. The starting amorphous structure consisting of 4096 atoms is

obtained by the melt-quench process where the density is fixed. After quenched to 300

K, internal coordinates of atoms in the amorphous structure are optimized. The initial

amorphous structure is independently heated to 500, 550, 600, and 650 K. Figure 3.12

shows that the crystallization is completed within 4 ns at all the temperatures. This is

mainly because the incubation time is decreased substantially, but still the incubation

time of ∼ 500 ps at all temperatures. As the pressure is increased, we find that the

population of planar fourfold rings increases, which may lower the nucleation barrier.

At 500 K, we observe four nuclei, implying that the nucleation is facile.

Since the crystallization proceeds at all temperatures, growth velocities are mea-

sured and shown in Fig. 3.13. For comparison, the crystalline growth speed at this

temperature is 0.5 m/s, much smaller than at the device condition. This is because

atomic migration is suppressed at higher densities.
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(a) (b)

Fig. 3.12: (a) Time evolution of the percentage of crystalline atoms in 4096-atom cells

and (b) the potential energy during the crystallization at 500, 550, 600, and 650 K with

the density corresponding to the crystalline density (36.6 atoms/nm3).

63



Fig. 3.13: Temperature-dependent growth velocity under fully amorphized condition.
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3.5 Summary

Two types of NNPs are developed to investigate the atomic-scale crystallization be-

havior of GeTe. It was found that NNP trained with the usual training set reproduced

satisfactorily the overall structural properties of liquid and amorphous GeTe at the

DFT level. However, overly flat fourfold rings significantly shortened the incubation

time, which is not compatible with experiments and ab initio simulations. By includ-

ing the relaxation path from flat to puckered fourfold rings explicitly, we were able to

generate an improved NNP that produces medium-range orders that are more consis-

tent with DFT. Using the modified NNP, crystallization simulations were performed

at two densities representing partially and fully amorphized devices, and temperatures

ranging from 500 to 650 K. At both densities, the finite incubation time was observed.

In particular, the incubation time under the partially amorphized condition was 7 or

17 ns, in reasonable agreements with experiments. However, the significant fluctua-

tion in the incubation time implies that the present simulation is still limited by the

finite size and a much larger simulation cell is needed for a systematic analysis on

the temperature-dependent incubation time. In conclusion, by suggesting an efficient

method to develop NNPs addressing the medium-range order, this work will contribute

to simulating phase change materials more accurately and realistically.
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Chapter 4

Al- and Ga-doped Ge2Sb2Te5 (GST)

4.1 Introduction

Despite the excellent performance of GST in the PCM, further improvements are re-

quired in data retention, power consumption, and switching speed to compete with the

conventional memory. One general and effective approach to modifying the relevant

properties is doping. Up to this time, various kinds of dopants such as C, [67–73] N,

[7, 74–80] O, [76, 77, 80, 81] Al, [82–84] Si, [80, 85–87] Sc, [88] Ti, [88] V, [88, 89]

Cr, [88–92] Mn, [88, 89, 92–95] Fe, [88, 89, 96, 97] Co, [88, 92] Ni, [49, 88, 89, 92]

Cu, [88, 89] Zn, [88, 89, 95, 98, 99], Ga, [100] Ag, [101–104] In, [105, 106] Sn,

[106–108] and Bi, [6, 106, 108, 109] have been investigated. These dopants can be

categorized based on their chemical features. One is p-block class (C, N, O, and Si),

another is transition metal class (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu), and the other

is post-transition metal class (Al, Zn, Ga, Ag, In, Sn, and Bi).

A lot of experiments reported that p-block elements like C, N, O, and Si enhance

the stability of amorphous GST (a-GST). They increase the crystallization temperature

and activation barrier for crystallization. [67–70, 74–77, 85–87] They also hinder the

grain growth and reduce the grain size, which leads to the reduction of the reset current

and power. [67, 69, 74–76, 85, 86] The electrical resistance in the crystalline state is
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increased since the p-block dopants increase in the structural disorder and band gap.

However, it was reported that N, O, and Si dopants in GST induce the phase separation

degrading the cyclability.[76–79] According to DFT calculations, the p-block dopants

mainly enhance the covalency of Ge atoms and distort cubic or planar structures in the

amorphous state, which makes the crystallization process slow. [7, 71–73, 80]

Transition metal dopants in the first row (3d) have been investigated for spintronics

applications. The Fe-doped Ge-Sb-Te alloy showed a contrast magnetic property as

well as electrical and optical properties between crystalline and amorphous states. [96]

The Cr- and Mn-doped GST also showed different magnetic hysteresis loops. [90, 91,

93, 94] In addition to the magnetic property, the transition metal dopants make the

temperatures for 10-year-data retention higher. In DFT studies, V, Cr, Mn, and Fe

dopants can generate stable magnetic states. [88, 89, 92, 95, 97]

Finally, the post-transition metal dopants exhibit various effects on GST. For Al,

Zn, and Ga, it was reported that the dopants enhance the thermal stability of the a-

GST and increase the band gap, whose effects are similar with p-block elements.

[82, 83, 98–100] On the other hand, In, Sn, Ag, and Bi reduce the crystallization

temperature and time. [101, 105, 107, 109] In the case of Zn, Ag, and Bi, DFT cal-

culations were performed and it is found that the local configuration of Zn is largely

shifted from tetrahedral to octahedral coordination during the crystallization [95] while

Ag doping reduces the phase transition time and the optical gap, consistent with the

experiment. [104] Bi doping enhances the crystallization speed by stabilizing planar

structures around Bi. [6]

Among the previous studiess, the effects of the small-size post-transition metal

dopants such as Al and Ga were still vague, even though they have a large potential

to tune the properties of GST. [82–84, 100] In this regard, we investigate the effects

of Al and Ga dopants theoretically. We investigate the structural changes in a-GST

by doping and try to establish a relation between them and crystallization behaviors.

Doped amorphous GST structures are obtained via melt-quench simulations. We find
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that Al and Ga dopants in a-GST behave similarly as they are coordinated with four Te

atoms in a tetrahedral geometry. Since dopants form bonds with a large numbers of Te

atoms, the number of homopolar bonds of Ge-Ge, Ge-Sb, and Sb-Sb increases, which

leads to the number of odd-numbered rings and make the crystallization speed slower.
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4.2 Computational details

Al- and Ga-doped a-GST models are obtained via AIMD simulations by using the

Vienna Ab initio Simulation Package (VASP). [53] The generalized-gradient approx-

imation (GGA-PBE) parameterized by Perdew, Burke, and Ernzerhof is chosen for

exchange-correlation functional. [18] For the projector augmented-wave (PAW) pseu-

dopotentials [54], the valence electrons of 4s24p2 for Ge, 5s25p3 for Sb, 5s25p4 for

Te, 3s23p1 for Al, 4s24p1 for Ga, and 3d104s2 for Zn are taken into considerations.

The cutoff energy of 200 eV is set for cost-effective MD simulations and 400 eV for

accurate structural relaxation. For the Brillouin-zone integration, a k-point of (0.25,

0.25, 0.25) is sampled during MD while the volume and shape of the cell and atomic

coordinates are relaxed with 2 × 2 × 2 Monkhorst-Pack grid.

The amorphous structures are obtained following the melt-quench method de-

scribed in Ref. [110]. Initially, the structures are generated by randomly adding 144

atoms of GST with 0, 16 or 36 metal atoms into a cubic box, whose concentrations

are corresponding to 0, 10, and 20 at.%, respectively. The size of the simulation box

is determined to match the mass density to the theoretical value of undoped a-GST

(5.6 g/cm3 or 0.0296 atoms/Å3), whose value is close to the experimental value of

0.0309 atoms/Å3. [111, 112] In addition, the volume expansion by external doping is

considered by setting the same mass density both for undoped and doped structures.

In determining the composition of the doped GST, we assume that the composition of

GST should be maintained to be 2:2:5 since the ratio of Ge:Sb:Te in Al-doped GST is

kept to be 2:2:5. [82] The randomly positioned structures are premelted at 2000 K for

10 ps and equilibrated at 1000 K for 30 ps. Then, the liquid structure is quenched to

300 K with the rate of−15 K/ps. The time step for the MD simulation is chosen to 2 fs.

Finally, the amorphous structures are fully relaxed with the cell shape and volume. The

resulting equilibrium densities are 0.029, 0.030, and 0.029 atoms/Å3 for undoped, Al-,

and Ga-doped GST, respectively. The volume differences between the initial and final
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structures are less than 5%. Five amorphous structures are independently generated for

each case. We additionally generate two Al-doped GST models with 320 atoms to test

the finite cell-size effects on structural properties, and the results of the bigger cells are

equivalent to those of the smaller cells. For comparison, undoped a-GST is generated

following the same method.
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4.3 Structural properties

4.3.1 Local structures of Al- and Ga-doped amorphous GST

Structural information of the amorphous phase is generally represented by radial distri-

bution function (RDF) which is a Fourier transform of the structure factor. For undoped

and doped amorphous GST, total and partial RDFs are shown in Fig. 4.1 and in Fig.

4.2. For the total RDFs, the medium-range order beyond∼4 Å does not change signif-

icantly with doping, positions of the first peak of doped amorphous GST are reduced

regardless of kinds of the dopant. In Fig. 4.2, only Ge-Te bonds have little changes

and others are largely changed by doping. To represent the detailed local environment,

atom-resolved coordination number (CN) is also shown in Fig. 4.3.

As shown in Fig. 4.1, the first peaks of the doped a-GST are shifted inward with

respect to that of the undoped amorphous GST. This is becuase the short metal-Te

(M-Te) bonds are mainly formed by doping. The average M–Te lengths in Al- and

Ga-doped a-GST represented by the position of the first peak in the partial radial dis-

tribution function, whose values are 2.66 and 2.69 Å, respectively. The present bond

length of Ga–Te is in a good agreement with that in Ga–Sb–Te alloy (2.70 Å). [113]

These are shorter than Ge–Te (2.79 Å) or Sb–Te (2.92 Å).

Figure 4.3 (a) shows that the dopants are mainly surrounded with Te atoms and

the total CN of the dopants are close to four (heights of the hatched rectangle). The

fourfold coordinated dopants in tetrahedral geometry show the peak of bond-angle dis-

tribution around dopants at 109.5◦. These structural features are similar with those in

the crystalline Al2Te3 (P21/c) and Ga2Te3 (Cc) where all metal atoms are surrounded

with four Te atoms in a tetrahedral geometry. Such local environments are also ob-

served in different chalcogenide systems (e.g. AlSbTe or GaSbTe alloy) [113, 114]

where both Al and Ga atoms mainly bond with Te atoms and prefer the tetrahedral

configuration. The robust preference for M-Te is attributed to the large difference

in electronegativity, which can be confirmed by Bader charge analysis. The average
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Bader charges for the elements are summarized in Table 4.1. Atoms bonded to the

dopants show more negative charges than those in undoped a-GST, confirming that

the dopants in a-GST act as cations. Bader charges of the dopants are close to those

in the crystalline phase of Al2Te3 and Ga2Te3. We also note that the charges of the

Ge, Sb, and Te atoms not bonded to the dopants are similar with those in undoped

a-GST. In Fig. 4.3, Ga dopant prefers to Ge and Sb atoms more than Al dopant. This is

because electronegativity of Al (1.61) is smaller than for Ga (1.81) and then ionic Ga

is favorable in forming bonds with Ge or Sb more than Al. We find that the number of

anionic Te–Te homopolar bonds is decreased (see Fig. 4.3 (d)) while dopant–dopant

bonds are barely formed due to the strong M–Te bonds and the strong cationic feature

of the dopant, respectivley.
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Fig. 4.1: Radial distribution functions of undoped and doped a-GST.
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Fig. 4.3: Average coordination numbers around (a) dopant (b) Ge, (c) Sb, and (d) Te.

The values is obtained by integrating the pair distribution functions of undoped and

doped amorphous GST from 0 to 3.2 Å. The total coordination numbers are repre-

sented by hatched rectangles.
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Table 4.1: Average Bader charges in the undoped, Al- and Ga-doped a-GST. “bo”

means atoms bonded to dopants with a cutoff radius 3.2 Å, and “nb” other atoms. The

values in parenthesis are Bader charges in the crystal structures. All the values are

given in (positive) electronic charge.

!

Undoped Al-doped Ga-doped

bo nb bo nb

Ge 0.35 -0.14 0.31 0.16 0.33

Sb 0.41 -0.18 0.32 0.17 0.33

Te -0.30 -0.72 -0.33 -0.36 -0.32

Dopant 1.73 (1.80) 0.49 (0.53)

76



4.3.2 Ring statistics

For disordered systems, medium-range order structural features can be represented

by ring structures. For the comparison, we check ring distributions in undoped and

doped a-GST, which is shown in Fig. 4.4. The populations of the 3 and 4-fold rings

are relatively similar with undoped a-GST, but the populations of the large size rings

are increased by doping. As discussed in the previous section, the dopants mainly

form bonds with Te atoms and the atom-resolved CNs of Te against Ge and Sb are

decreased, which results in increasing of homopolar bonds such as Ge–Ge, Ge–Sb,

and Sb–Sb. The average number of the homopolar bonds in the models are measured

to 18.6 bonds/atoms in undoped GST,38.8 bonds/atoms in Al-doped GST, and 28.2

bonds/atoms in Ga-doped GST. In the large size rings, especially for odd-numbered

rings, such homopolar bonds should be involved and then the ratio of ABAB-type (A

= Ge or Sb, B = Te) rings to the total rings tend to decrease in doped a-GST.

The thermal stability of the amorphous phase can be indirectly evaluated by ring

statistics. In particular, for GST, the fourfold rings are considered as the crystalline

building blocks and clustered fourfold rings can act as nucleation sites. [43] Further-

more, the population of ABAB-type fourfold rings indicates the stability of the amor-

phous phase because the perfect crystal has the alternate arrangement in the rings.

[71] Since crystallization involves the breaking of the homopolar bonds in the odd-

numbered rings, the increased number of the odd-numbered rings in doped a-GST

indicates that the stability of the amorphous phase is enhanced and the crystallization

speed is retarded. For Al and Ga dopants, it was reported that the dopants enhance

the thermal stability of the amorphous phase increasing the crystallization tempera-

ture. [82, 83, 100] The enhanced thermal stability by changes in the ring structures is

consistent with the high crystallization temperature in the experiments.

In addition to ring distribtuions, we examine the planarity of the fourfold rings in

undoped and doped a-GST. As shown in Fig. 4.5, Al and Ga doping have little effects

on the local geometry of fourfold rings unlike the results of NNP for the pristine GeTe
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(See Fig. 3.9). Since the number of the fourfold rings in the doped a-GST is a little

smaller than undoped a-GST, the areas of the planarity distribution for the doped a-

GST are relatively smaller than that for the undoped a-GST. However, there is no sign

for overly flattened fourfold rings in the doped a-GST with respect to the undoped a-

GST. Therefore, the similar interfacial energies between the crystalline and amorphous

phases are expected for undoped and doped GST.
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Fig. 4.4: Ring statistics for undoped and doped amorphous GST counted per atoms.

All bonds within 3.2 Å are considered. The number of ABAB-type even-fold rings is

shown in the hatched bar (A = Ge, Sb, and dopant, B = Te).
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Fig. 4.5: Planarity of the fourfold rings in amorphous GST at 300 K. Bonds within 3.2

Å are considered.
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4.3.3 Dopants in the crystalline phase

We evaluate the stable configuration for the dopants in the crystalline GST (c-GST)

in terms of the defect formation energy. The dopants can occupy vacancy sites, inter-

stitial sites, and substitutional sites for Ge, Sb, or Te. Since cation sites in c-GST are

randomly occupied with Ge, Sb, and vacancies, the total energy of c-GST have a small

range. Then, we examine the stable sites using five different crystalline models con-

sisting of 72 atoms. Also, three different sites for each type of defects are evaluated

and only those with the lowest energies are considered. For simple comparison, we

consider only neutral charge state. The formation energy (Ef ) is calculated by

Ef = Edoped − Eundoped +
∑
i

(niµi) (4.1)

where Edoped and Eundoped are the total energies of doped and undoped GST, and ni

and µi are the number of the added/removed element i and the chemical potential of

the element i, respectively. By comparing the defect formation energies, we find that

the octahedral vacancy sites are the most stable sites in the c-GST. Compared to the

local environment in the amorphous state, the dopants are favorable in the octahedral

geometry in the crystalline state. The difference in the stable configuration between the

crystalline and amorphous state may require a larger activation energy and a transition

time.
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4.4 Dynamical properties

4.4.1 Diffusivity

The steady state nucleation rate and the growth velocity of a nucleus is dependent on

dynamical properties. One representative physical quantity is diffusivity that is highly

related to a kinetic factor. The diffusivity can be obtained from the slope of mean

square displacement (MSD) with the following equation:

D =
〈r∗〉
6t

(4.2)

In order to investigate effects of doping on the kinetics of GST, the diffusivity is

estimated at various temperatures (700, 800, 900, and 1000 K). Since the atomic mo-

tions is very slow at the temperatures near the glass transition temperature and too long

time in AIMD scale is required to obtain sufficient MSD and accurate diffusivity, the

high temperatures are set. Basically, the diffusivity is described by Arrhenius equation.

D = D0 exp

(
− Ed
kBT

)
(4.3)

where D0 is a prefactor and Ed is an activation energy for diffusion. The data points

and fitting lines are plotted in Fig. 4.6. The estimated values of Ed are 0.25, 0.25, and

0.29 eV for undoped, Al-doped, and Ga-doped GST, respectively.

It seems that the effects of Al on GST is different from those of Ga for dynamical

property. In the case of Al doping, the activation energy for diffusion is close to the

undoped GST, but the prefactor is decreased by half with respect to undoped GST.

On the other hand, Ga doping increases the activation energy for diffusion. Although

the diffusivities of undoped and Ga-doped GST are similar at 1000 K, the kinetics of

Ga-doped GST slows down near the glass transition temperature. Both dopants retard

the crystallization speed.
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Fig. 4.6: Diffusivity of undoped and doped amorphous GST.
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4.4.2 Interface-growth simulation

Homogeneous crystallization simulation for the phase change materials are usually

carried out. In the case of GST consisting of a hundred atoms, the crystallization sim-

ulation is complete within a few hundreds picoseconds. Therefore, we also performed

the homogeneous crystallization simulations for undoped and doped a-GST. However,

the crystallization of Al- and Ga-doped GST were not finished over 500 ps at 600 K

while the undoped GST is crystallized within ∼ 300 ps. Since the length of the nucle-

ation period cannot be estimated due to the stochastic nature, we employ an alternative

way to validate the effects of the dopants on crystallization. Therefore, Crystalline

growth is simulated from the crystalline template.

We replicate the one fcc structure by 3×3×4 and three layers are frozen during

MD. Other atoms move freely during the melt-quench process and crystallization sim-

ulation. The models at 0, 15, 30 ps are shown in Fig. 4.7. The green, blue, yellow,

red, and pink balls represent Ge, Sb, Te, Al, and Ga, respectively. The three external

dopants are involved in the models and positioned at one side of the crystalline tem-

plate to compare the grwoth speed. During crysatallization, the dopants move slower

than other atoms because MTe4 units have the strong ionic character. This is consis-

tent with low diffusivity of doped GST at high temperatures. Therefore, the crystalline

parts grow fast from the opposit side of the template. After crystallization is complete,

the dopants occupy the octahedral site in fcc lattice, which is in good agreement with

the defect calculations.
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Fig. 4.7: Interface-growth simulations for (a) Al- and (b) Ga-doped GST. Three layers

of fcc GST are fixed in the red box and others move without constraints during MD at

600 K. The green, blue, yellow, red, and pink balls represent Ge, Sb, Te, Al, and Ga,

respectively.
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4.5 Summary

We generated Al- and Ga-doped amorphous GST using AIMD and analyzed the effects

of the dopants on the structural and dynamical properties. As strong cationic character

of Al and Ga, the dopants form lots of bonds with Te atoms. This induces the increase

of the homopolar bonds like Ge–Ge, Ge–Sb, and Sb–Sb. Although the planarity of the

fourfold rings is not significantly affected by doping, the number of the odd-numbered

rings is increased. Since the homopolar bonds in the odd-numbered rings should be

broken, doping can hinder the crystallization of amorphous GST resulting in the higher

stability of the amorphous phase. Besides, diffusivity in a-GST is retarded by doping,

which reduces the growth speed.
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Chapter 5

Conclusion

In this dissertation, we focus on finding key structural features that play a crucial role in

the crystallization behaviors of the phase change materials. First, we developed NNP

for GeTe to go beyond the scale limitations of DFT and performed the MD simula-

tions to generate and crystallize the large-scale amorphous structure. In the developing

stage, we validated the reliability of the NNP by comparing the structural properties of

crystalline, liquid, and amorphous GeTe with the DFT results. We found that medium-

range order in amorphous GeTe is crucial for crystallization. Although the size distri-

bution of rings in the amorphous phase contributes to crystallization, the planarity of

the fourfold rings in the amorphous phase is also correlated. As the planar fourfold

rings is predominant, the interfacial energy between crystalline and amorphous phases

is decreased, which makes the formation of a supercritical crystalline seed easy. Using

the NNP, we acheived the realistic crystallization simulations using 4096-atom cell

under the device condition. In particular, the incubation times are apparently observed

during the simulations where it takes 7 or 17 ns for nulceation at 500 K. We can pro-

pose a microscopic model to deepen understanding of the crystallization ambiguous

in the previous theoretical studies due to finite size effects and a short time scale. In

addition to the pristine phase change material, we investigated the Al- and Ga-doped

GST using DFT. The dopants act as strong cations and consume lots of Te atoms,
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resulting in an increase of the homopolar bonds in amorphous GST. Then, the num-

ber of odd-numbered rings is increased. Unlike the pristine GeTe, Al and Ga doping

change the size distribution of rings. Since the homopolar bonds in the odd-numbered

rings should be broken and even-numbered rings should be formed upon the crys-

tallization, the increased odd-numbered rings suppress the crystallization kinetics of

amorphous GST. The studies of the pristine GeTe and doped GST help to understand

the relation between the structural properties and crystallization kinetics. The medium-

range order structures in the amorphous phase change materials significantly affect the

nucleation stage. Based on this, we can suggest two desired strategies to accelerate

the crystallization speed, especially for nucleation. One is that a pressured condition

makes the planar fourfold ring favorable resulting in lowering the nucleation barrier.

The other is that a dopant with a small electronegativity difference between Ge, Sb,

and Te should be chosen. A large difference of electronegativity can make diffusivity

slow and atomic rearrangement difficult, which leads to hindering crystallization. We

expect that the findings help to design and explore new phase change materials and

tune the properties of the phase change materials.
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M. Bernard, C. Sabbione, M. Tessaire, F. Pierre, P. Zuliani, R. Annunziata, G.

Pananakakis, and B. de Salvo, International Conference on Solid State Devices

and Materials pp. Fukuoka, 24–27 September (2013).

93



[69] J. H. Park, S.-W. Kim, J. H. Kim, Z. Wu, S. L. Cho, D. Ahn, D. H. Ahn, J. M.

Lee, S. U. Nam, and D.-H. Ko, Journal of Applied Physics 117, 115703 (2015).

[70] W. Zhou, L. Wu, X. Zhou, F. Rao, Z. Song, D. Yao, W. Yin, S. Song, B. Liu, B.

Qian, and S. Feng, Applied Physics Letters 105, 243113 (2014).

[71] E. Cho, Y. Youn, and S. Han, Applied Physics Letters 99, 183501 (2011).

[72] X. Zhou, M. Xia, F. Rao, L. Wu, X. Li, Z. Song, S. Feng, and H. Sun, ACS

Applied Materials & Interfaces 6, 14207 (2014).

[73] K. B. Borisenko, Y. Chen, D. J. H. Cockayne, S. A. Song, and H. S. Jeong, Acta

Materialia 59, 4335 (2011).

[74] Y. Kim, K. Jeong, M.-H. Cho, U. Hwang, H. S. Jeong, and K. Kim, Applied

Physics Letters 90, 171920 (2007).

[75] K.-H. Song, J.-H. Kim, J.-H. Seo, and H.-Y. Lee, Journal of Optoelectronics and

Advanced Materials 11, 1988 (2009).

[76] S. Privitera, E. Rimini, and R. Zonca, Applied Physics Letters 85, 3044 (2004).

[77] S. Privitera, E. Rimini, C. Bongiorno, A. Pirovano, and R. Bez, Nuclear Instru-

ments and Methods in Physics Research B 257, 352 (2007).

[78] K. Kim, J.-C. Park, J.-G. Chung, S. A. Song, M.-C. Jung, Y. M. Lee, H.-J. Shin,

B. Kuh, Y. Ha, and J.-S. Noh, Applied Physics Letters 89, 243520 (2006).

[79] M.-C. Jung, Y. M. Lee, H.-D. Kim, M. G. Kim, H. J. Shin, K. H. Kim, S. A.

Song, H. S. Jeong, C. H. Ko, and M. Han, Applied Physics Letters 91, 083514

(2007).

[80] E. Cho, S. Han, D. Kim, H. Horii, and H.-S. Nam, Journal of Applied Physics

109, 043705 (2011).

94



[81] M. H. Jang, S. J. Park, D. H. Lim, M.-H. Cho, K. H. Do, D.-H. Ko, and H. C.

Sohn, Applied Physics Letters 95, 012102 (2009).

[82] G. Wang, X. Shen, Q. Nie, R. Wang, L. Wu, Y. Lv, F. Chen, S. Dai, and J. Li,,

Journal of Physics D: Applied Physics 45, 375302 (2012).

[83] S. Wei, J. Li, X. Wu, P. Zhou, S. Wang, Y. Zheng, L. Chen, F. Gan, X. Zhang,

and G. Li, Optics Express 15, 10584 (2007).

[84] J.-H. Seo, K.-H. Song, and H.-Y. Lee, Journal of Applied Physics 108, 064515

(2010).

[85] Y. Ling, Y. Lin, B. Qiao, Y. Lai, J. Feng, T. Tang, B. Cai, and B. Chen, Japanese

Journal of Applied Physics 45, L349 (2006).

[86] B. Qiao, J. Feng, Y. Lai, Y. Ling, Y. Lin, T. Tang, B. Cai, and B. Chen, Applied

Surface Science 252, 8404 (2006).

[87] J. Feng, Y. Zhang, B. W. Qiao, Y. F. Lai, Y. Y. Lin, B. C. Cai, T. A. Tang, and

B. Chen, Applied Physics A 87, 57 (2007).

[88] J. M. Skelton and S. R. Elliott, Journal of Physics: Condensed Matter 25,

205801 (2013).

[89] T. Fukushima, H. Katayama-Yoshida, K. Sato, H. Fujii, E. Rabel, R. Zeller, P.

H. Dederichs, W. Zhang, and R. Mazzarello, Physical Review B 90, 144417

(2014).

[90] Y. Fukuma, N. Nishimura, F. Odawara, H. Asada, and T. Koyanagi, J. Super-

cond. Incorporating Nov. Magn. 16, 71 (2003).

[91] Q. Wang, B. Liu, Y. Xia, Y. Zheng, R. Huo, Q. Zhang, S. Song, Y. Cheng, Z.

Song, and S. Feng, Applied Physics Letters 107, 222101 (2015).

95



[92] W. Zhang, I. Ronneberger, Y. Li, and R. Mazzarello, Advanced Materials 24,

4387 (2012).

[93] Y. Fukuma, H. Asada, M. Arifuku, and T. Koyanagi, Applied Physics Letters

80, 1013 (2002).

[94] H. Shingai, T. Kato, M. Kosuda, Y. Takagi, H. Oyake, and H. Hirata, Japanese

Journal of Applied Physics 49, 08KG02 (2010).

[95] J. M. Skelton, T. H. Lee, and S. R. Elliott, Applied Physics Letters 101, 024106

(2012).

[96] W.-D. Song, L.-P. Shi, X.-S. Miao, and C.-T. Chong, Advanced Materials 20,

2394 (2008).

[97] Y. Li and R. Mazzarello, Advanced Materials 24, 1429 (2012).

[98] R. Li, Y. Jiang, L. Xu, Z. Ma, F. Yang, J. Xu, and W. Su, Phys. Status Solidi A

210, 2650 (2013).

[99] G. Wang, Q. Nie, X. Shen, R. P. Wang, L. Wu, J. Fu, T. Xu, and S. Dai, Applied

Physics Letters 101, 051906 (2012).

[100] Y. Lu, Z. Zhang, S. Song, X. Shen, G. Wang, L. Cheng, S. Dai, and Z. Song,

Applied Physics Letters 102, 241907 (2013).

[101] D. H. Kim, M. S. Kim, R.-Y. Kim, K. S. Kim, and H. G. Kim, Materials Char-

acterization 58, 479 (2007).

[102] K.-H. Song, S.-W. Kim, J.-H. Seo, and H.-Y. Lee, Journal of Applied Physics

104, 103516 (2008).

[103] K.-H. Song, S.-W. Kim, J.-H. Seo, and H.-Y. Lee, Thin Solid Films 517, 3958

(2009).

96



[104] B. Prasai, G. Chen, and D. A. Drabold, Applied Physics Letters 102, 041907

(2013).

[105] K. Wang, C. Steimer, D. Wamwangi, S. Ziegler, and M. Wuttig, Applied Physics

A 80, 1611 (2005).

[106] K. Wang, C. Steimer, D. Wamwangi, S. Ziegler, M. Wuttig, J. Tomforde, and

W. Bensch, Microsystem Technologies 13, 203 (2007).

[107] W. D. Song, L. P. Shi, X. S. Miao, and T. C. Chong, Applied Physics Letters 90,

091904 (2007).

[108] T.-J. Park, S.-Y. Choi, and M.-J. Kang, Thin Solid Films 515, 5049 (2007).

[109] K. Wang, D. Wamwangi, S. Ziegler, C. Steimer, and M. Wuttig, Journal of Ap-

plied Physics 96, 5557 (2004).

[110] E. Cho, J. Im, C. Park, W. J. Son, D. H. Kim, H. Horii, J. Ihm, and S Han,

Journal of Physics: Condensed Matter 22, 205504 (2010).

[111] E. Cho, J. Im, C. Park, W. J. Son, D. H. Kim, H. Horii, J. Ihm, and S. Han,, J.

Phys. Condes. Matter 22, 205504 (2010).
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초록

상변화 메모리는 차세대 비휘발성 메모리 기술로 유망한 기술이다. 새로운 메

모리 기술들 중에서 상변화 메모리는 이미 성공적으로 상용화될 정도로 성숙한 기

술이다.하지만,여전히원자수준의상전이거동에대한기초적인이해가부족하다.

분자동역학을 이용하여 상변화 물질의 상전이 과정을 효과적으로 이해할 수 있기

때문에, 결정화 시뮬레이션을 진행하였고 비정질의 중거리 차수 구조가 결정화 과

정에미치는영향에대해살펴보았다.

먼저,대표적인상변화물질인GeTe에대하여인공신경망퍼텐셜을개발하였고,

이를이용하여비정질 GeTe의결정화에대해연구하였다.밀도범함수이론의정확

도와 값싼 계산 비용으로 소자에서 일어나는 상전이 조건에 가깝게 모델링할 수가

있었다. 이 퍼텐셜을 개발하는 과정에서 비정질 구조의 사각형 링 구조의 입체적

형태가결정화의핵생성과정에중대한영향을주는것을확인하였다.이차원에가

까운사각형링이비정질상에서많이존재할수록핵생성과정이잘일어나는것을

보았다.구부려진사각형링구조를포함와같은입체적인링구조들을포함한비정

질 구조를 학습 데이터에 추가함으로써 밀도 범함수 이론의 결과에 가까운 비정질

구조를얻을수있었다.이러한구조적인개선이비정질과결정질의계면에너지를

높여주었다. 개선된 인공신경망 퍼텐셜을 이용하여 결정화 시뮬레이션을 두 가지

밀도와네가지온도조건에서수행하였다.모든결정화과정에서핵생성에걸리는

유효한시간이존재하는것을확인하였고,특히소자내부의평형밀도를고려한경

우실험에서보고되는 30 ns에유사한정도로 7과 17 ns의시간이핵생성에소요되는

것을확인하였다.

실질적으로소자에서는 Ge-Sb-Te화합물에도핑을하여물성을조절하는경우

가많다.그러나이런다성분계의경우까지인공신경망퍼텐셜을개발하는데는현

재 수준으로는 과도한 계산 비용을 소모하게 된다. 따라서, Al과 Ga 도핑된 GST에

대해서는제일원리계산을통해서도핑효과에대해연구하였다. Al과 Ga은비정질

GST에서 네 개의 Te에 사면체 형태로 둘러 쌓인 구조를 많이 갖게 되며 양이온적
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성질을 보여주었다. 이는 GST에서 Ge-Ge, Ge-Sb, Sb-Sb와 같은 동종결합 수를 증

가시켰고,홀수개의링구조가증가하게되었다.결정화가되기위해서는짝수개의

링구조로변화해야하기때문에이러한홀수링의증가는결정화를어렵게만들고

비정질상의안정성을높이는효과를주는것을예상할수있다.

주요어:상변화물질,인공신경망퍼텐셜,결정화거동

학번: 2014-21434
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