
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


공학박사학위논문

On the mechanism of RMP-driven pedestal

transport and ELM suppression in KSTAR

KSTAR의 공명 자장 섭동이 구동하는 페데스탈 수송 및

경계 불안정성 억제 기작 연구

2020 년 8 월

서울대학교 대학원

에너지시스템공학부

김 상 균



공학박사학위논문

On the mechanism of RMP-driven pedestal

transport and ELM suppression in KSTAR

KSTAR의 공명 자장 섭동이 구동하는 페데스탈 수송 및

경계 불안정성 억제 기작 연구

2020 년 8 월

서울대학교 대학원

에너지시스템공학부

김 상 균





Abstract
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Seoul National University

A tokamak is a torus device that uses a helical magnetic field to confine a

hot plasma. It has been developed to produce controlled thermonuclear fusion

power. For the ignition of fusion, high-performance plasma must be sustained for

sufficient time. Plasma instability can cause a strong perturbation in the plasma

and worsen the plasma confinement. Therefore, it is essential to understand and

control the plasma instability.

Edge Localized Modes (ELM) are rapid Magneto-hydrodynamics (MHD)

events occurring at the edge region of tokamak plasmas, which can result in

damages to the divertor plates. Various methods were developed to control

ELM, and among them, the ELM suppression by resonant magnetic perturba-

tion (RMP) showed promising results. Therefore, to fully suppress ELMs via

RMP is of great interest to reach and sustain high-performance H-mode dis-

charges. It was found that certain conditions must be met for the RMP-driven

ELM crash suppression, so understanding its mechanism is crucial for reliable

ELM control using RMP.
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This thesis addresses the effect of RMP on pedestal transport and the mech-

anism of RMP-driven ELM suppression. They are investigated with nonlinear

reduced MHD simulations on KSTAR plasmas. First, I developed a numeri-

cal method to reconstruct accurate plasma equilibrium, which is an essential

component for these state-of-the-art simulations. I employed theoretical models

and numerical schemes to solve obstacles in kinetic equilibrium reconstruction.

Second, the effect of RMP on pedestal transport is investigated. The numeri-

cal simulation shows that RMP forms the kink-peeling structure, the stochastic

layer, and neoclassical toroidal viscosity (NTV). The convective and conductive

radial fluxes from these responses increase the radial transport and result in the

degradation of the pedestal.

Finally, I successfully reproduce ELM suppression by RMP in agreement

with experiments. One of the main conclusion of this work is that the ELM crash

suppression is attributable not only to the degraded pedestal but also to direct

a coupling between ELM and RMP-driven plasma response. The coupling effect

1) enhances the size of magnetic islands at the pedestal, reducing the instability

source by further pedestal degradation, and 2) increases the spectral transfer

between edge harmonics preventing catastrophic growth and crash of the most

unstable modes. Due to these effects, ELMs are non-linearly saturated, and the

peeling-ballooning mode activity persists during the suppression phase without

a sharp mode crash. I discuss a condition to reinforce this coupling effect for

ELM suppression.

In summary, this thesis reveals the importance of plasma response and mode

coupling to explain the RMP-driven pedestal transport and ELM suppression.

In particular, it improves the previous understanding of the mechanism by dis-

covering the contribution of nonlinear mode interaction on the ELM suppression
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mechanism. Based on this study, new insight and approach for ELM control are

expected to be developed.

Keywords: Tokamak, 3D field, Edge pedestal, ELM suppression, KSTAR,

PBM, Nonlinear MHD
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Chapter 1

Introduction

Energy is a fundamental component of human life. It is the key to human so-

ciety for every activity and problem. As civilization develops, energy demand

increases drastically. Therefore, sustainable and clean energy resources will be-

come more and more critical in the future. There are various energy sources that

humans can extract from the Earth. Among the various energy sources, nuclear

fusion has a strong potential to be a future energy source. It uses abundant

hydrogen as fuel and is an eco-friendly source.

Nuclear fusion is the process by which more than one nuclei combine to

form a single nucleus. In this process, energy is released because the mass out-

come is smaller than the income, following Einstein’s mass-energy conservation

law, E = mc2. The goal of present studies on the controlled nuclear fusion

is to produce energy from the fusion reaction between two hydrogen isotopes;

Deuterium (D) and Tritium (T). This reaction can be expressed as
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2
1D + 3

1T → 4
2He (3.5 MeV) + 1

0He (14.1 MeV) . (1.1)

D-T reaction is one of the fusion processes which requires the smallest in-

come energy. Therefore, it is most easily accessible, and this is why present re-

search is focused on it. Since the energy outcome of this reaction (17.6 MeV) is

much higher than income energy to overcome the coulomb barrier ( 0.01 MeV),

the D-T reaction is a promising way to generate energy and electricity in fu-

ture fusion power plant. It takes a temperature of over 100 million K to start a

D-T reaction without a massive gravity like the sun. At this high temperature,

the hydrogen is fully ionized and becomes plasma, the fourth state of matter.

However, it is not trivial to sustain high energy particles, and confinement of

hot plasma for nuclear fusion is very challenging.

1.1 Tokamak

For the fusion reaction, it is essential to sustain the hot and dense plasma in

a limited space. Furthermore, high energy is required to increase the plasma

temperature with limited heating sources and maintain a long time operation.

One effective way is Magnetic Confinement. Since plasma is a charged particle, it

is possible to confine the plasma with a magnetic field configuration. A tokamak

is one of the promising thermonuclear fusion devices based on this concept.

Unlike other linear magnetic confinement devices, particles cannot escape at

each end in the tokamak. The tokamak is designed to prevent the particle loss

at the ends by bending the linear device into a torus, making a helical magnetic

field configuration. Its structure can be found in Fig.1.1.

A tokamak was firstly invented by Igor Tamm and Andrei Sakharov in the

1950s. Through decades, the concept and physics of tokamak were developed

2



Figure 1.1: Schematic view of the tokamak with plasma current and helical

magnetic field [1].
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within multiple devices, including TFTR (USA), DIII-D (USA), JET (Europe),

JT-60U (Japan), and KSTAR (Korea). These experiments show a possibility

of the tokamak as a power plant by reaching high plasma performance. For

investigating its practical potential, International Thermonuclear Experimental

Reactor, ITER, is under reconstruction in France, which is the outcome of

extensive international collaboration.

Despite being the most promising device, the tokamak is still facing prob-

lems such as MHD instabilities. These instabilities induce large heat damage to

the plasma-facing components and degrade the plasma performance. Therefore,

they should be controlled and suppressed to sustain high confinement perfor-

mance for future fusion devices, including ITER, which is key for the realization

of nuclear fusion.

The high confinement plasma operation mode (H-mode) is one of the can-

didates for fusion plasma operations in ITER. The H-mode plasma is char-

acterized by having an edge transport barrier. The edge transport barrier is

generally understood to occur when the E × B shearing rate, which stabilizes

turbulence [8, 9], exceeds a critical threshold in the edge region. As a result

of the edge transport barrier, a pedestal is formed at the edge, leading to an

overall increase in plasma confinement through profile stiffness [10].

1.2 Edge localized mode

However, the high-pressure gradient in the pedestal and subsequent high edge

bootstrap current density can cause so-called Edge Localized Modes (ELM).

Peeling-ballooning modes (PBM) [4,11], driven by current density (peeling) and

pressure gradient (ballooning), are considered the dominant MHD instability

resulting in ELM. The structure of a typical ELM can be found in 1.2(a).
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Figure 1.2: Experimental observation of (a) Edge localised mode (ELM) [2] and

(b) the transient ELM heat flux on divertor [3].

Figure 1.3: Schematic diagram for a ELM cycle [4]
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An ELM cycle can be sketched in Fig.1.3. The figure shows the change of

the maximum pressure gradient (α) and current density (jϕ) of the pedestal.

Here, the blue line corresponds to the marginal PBM stability limit. In the

beginning, a pedestal starts from low α and jϕ values (point A). When pedestal

grows due to external heating, α increases, and jϕ also increases as the edge

bootstrap current increases [12] (step1). The pedestal can grow until it reaches

the stability boundary (point B). When pedestal exceeds the stability limit,

PBM becomes unstable, leading to the collapse of the edge pedestal (step2).

During the pedestal collapse, hot and dense particles are expelled from the main

plasma. In the end, the pedestal returns to the initial point, and the next ELM

cycle begins.

ELM induces the periodic collapse of the pedestal and releases transient

heat fluxes to the plasma-facing components, which can result in significant heat

loads on the divertor targets, as shown in Fig.1.2(b). In future devices such as

ITER and DEMO, divertor heat fluxes during ELMs are expected to exceed the

order of a few GW/m2 [13,14], which can cause severe damage to plasma-facing

materials. Therefore, a reliable way to control or suppress ELMs is essential for

the high-performance steady-state operation based on the H-mode regime. In

previous studies, pellet injection [15], edge impurity seeding [16], and vertical

kick [17] have been found to be effective in mitigating ELMs. Their principle

was making PBM more unstable and transforming giant ELMs into smaller

frequent ELMs. Nevertheless, in large devices such as ITER, even small ELMs

can be dangerous, so full ELM suppression must be achieved.
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1.3 RMP-driven ELM suppression

It is widely known that the presence of small non-axisymmetric field pertur-

bation can change the plasma stability. In particular, resonant magnetic field

perturbations (RMPs), whose pitch angle is well aligned with the plasma equi-

librium field, have a substantial effect on the plasma [18]. RMPs using exter-

nal magnetic coils are one of the effective ways of suppressing ELMs. It has

been found that RMPs can fully suppress ELMs in DIII-D [19], KSTAR [6],

EAST [20], and ASDEX Upgrade [21]. Also, RMP is the promising ELM con-

trol method in ITER [22]. However, experimental results show that certain con-

ditions must be satisfied for the RMP-driven ELM crash suppression, and the

operation window is very narrow [23]. Therefore, understanding its mechanism

is crucial to obtain a reliable ELM method using RMP.

The ‘initial understanding’ (or ‘hypothesis’) of RMP-driven ELM suppres-

sion can be expressed in Fig.1.4. When 1) RMPs of toroidal mode “n” are

applied, the field perturbations 2) penetrate into the plasma and induce mag-

netic islands at the rational surfaces with q = m/n, where m and n denote the

poloidal and toroidal mode numbers, respectively. Because the rational surfaces

are sufficiently dense at the plasma edge, the islands can overlap each other to 3)

form a stochastic layer and increase radial transport. Increased radial transport

in the stochastic layer can occur due to parallel transport across the stochastic

fields, described by the Braginskii model. As a result, the ELM is suppressed

as the pedestal slope 4) remains below the marginal stability limit. However,

this picture has certain limitations in explaining the experimental observation

in KSTAR where coherent PBM-like mode structures with n different from that

of RMPs remain during the ELM suppression phase [24]. In addition, the bi-

furcation of mode rotation in the edge region was found to be closely related to
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Figure 1.4: Schematic diagrams for the initial understanding of RMP-driven

ELM suppression mechanism
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Figure 1.5: (a) KSTAR IVCC coil structure in 3D [5], (b) the RMP coil config-

uration in the reference equilibrium with three poloidal FEC coils [6]

mode suppression [25]. Therefore, the initial understanding may have difficul-

ties in explaining these experimental findings, and it indicates that additional

physics properties should be included to understand the mechanism.

1.4 Objectives and outline of this dissertation

The presence of RMPs can change the radial pedestal transport and the char-

acteristic of ELM. Their mechanisms are investigated in this dissertation using

nonlinear reduced MHD simulations in KSTAR equipped with the 3D coils

shown in Fig.1.5. KSTAR is a super-conducting tokamak with various plasma

diagnostics. Based on its flexible RMP system, KSTAR is in a unique position

for robust RMP ELM suppression experiment, so it is advantageous for RMP

study with nonlinear MHD simulations.

Chapter 2 describes the strategy to reconstruct an accurate equilibrium

in KSTAR, which is essential for advanced delicate simulations. A numerical

tool is developed to reconstruct an accurate numerical equilibrium in KSTAR

experiments. Various theoretical and numerical schemes to solve the obstacles

in equilibrium calculation are introduced.
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Chapter 3 presents the analysis of pedestal transport under the presence of

RMP. The simulated effect of kink-peeling response and stochastic layer, which

is driven by RMP, to the pedestal transport is quantitatively validated with the

experimental measurement.

Chapter 4 shows the numerical reproduction of RMP-driven ELM suppres-

sion. It has been found that ELM crash suppression is attributable not only to

the degraded pedestal but also to a direct coupling between the ELM and the

RMP-driven plasma response. Detailed analysis of the role of coupling effects

and favorable condition to mode coupling are discussed.

Finally, Chapter 5 summarizes contents and suggests future work.
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Chapter 2

Development of advanced
equilibrium tool in KSTAR

An accurate numerical plasma equilibrium is essential for plasma physics analy-

sis. Especially, numerically sensitive codes such as nonlinear MHD codes require

delicate equilibria. Several codes have been developed to calculate the equilib-

rium of the experimental plasma. Among them, the EFIT code [26] showed

good performance and is widely used as a standard tool in various devices,

including DIII-D, JET, and KSTAR.

In EFIT calculations, various experimental measurements and numerical

constraints are used. In particular, plasma diagnostics, including magnetic flux

near the plasma wall, the field pitch angle, and the pressure profile from ki-

netic profile measurements, are key components. Here, the Motional Stark effect

(MSE) [27] diagnostic is generally used to measure the pitch angle. The equilib-

rium created only with flux information is defined as MAG-EFIT. When MSE

is included, or all three are included, it is called MSE-EFIT or kinetic-EFIT,
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Figure 2.1: Comparison of a) the pressure and b) the current density profile of

#18594, 6.45 s discharge in KSTAR. The black, blue, and red lines correspond

to MAG, MSE and kinetic EFIT cases, respectively.
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respectively. As more plasma diagnostics are included, the calculation result be-

comes more relevant to the experiment. Therefore, kinetic-EFIT is considered

to be the equilibrium with the most detailed plasma information among them.

For example, the comparisons between EFITs are shown in Fig.2.1. It can be

found that the calculated pressure and current profiles become more accurate

as more plasma measurements are included.

When evaluating the quality of plasma equilibrium, not only the number

of diagnostics used in the calculation but also the numerical convergence (ϵ)

and error (χEFIT) should be considered. The former means the stability of

the numerical solution, while the latter corresponds to the difference between

the plasma measurement and the EFIT calculation. Here, χEFIT is the sum

of squared residuals. ϵ and χEFIT are enhanced with the quality of plasma

diagnostics and EFIT numerical constraints. In general, ϵ < 10−9 and χEFIT <

20 have to be satisfied for advanced simulations. Therefore, it is important to

obtain a high-quality equilibrium that satisfies all of the above conditions.

2.1 Obstacles in KSTAR EFIT reconstruction

Robust kinetic profiles and MSE measurements are essential components in

reconstructing accurate plasma equilibria with EFIT. However, due to the limi-

tations of the accuracy and resolution of the diagnostic system, it is challenging

to obtain profiles suitable for the EFIT calculation on various devices, including

KSTAR. In particular, it is hard to obtain an accurate pedestal structure near

the plasma edge because of its narrow profile and technical difficulties such as

low density and large-signal noise. Furthermore, MSE measurement also has

considerable error-bars and bad channels that significantly increase the error

in the EFIT result. Lastly, the numerical constraints in EFIT calculation are
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also important. In order to obtain delicate equilibrium, it is necessary to get

these parameters optimized for the target device. KSTAR needs to establish a

strategy to determine them.

These obstacles in KSTAR EFIT calculation are listed in Table 2.1, which must

be overcome.

Table 2.1: Summary of obstacles in KSTAR EFIT calculation

EFIT Constraints Obstacles Solutions

Kinetic profile - Large error-bars - Numerical

- Bad Channels

- Low spatial resolution at edge - Theoretical

MSE - Bad Channels - Theoretical

- Error-bars

- Unavailability in some discharges

Numerical Params. - Lack of optimized parameters - Numerical

2.2 Improvement of EFIT constraints

2.2.1 Numerical compensation

Numerical correction or compensation can be applied to improve the EFIT

constraints. In KSTAR, ion temperature (Ti) and toroidal rotation (Vϕ) are

measured by charge exchange spectroscopy (CES) [28]. For electron tempera-

ture (Te) and density (ne), Thomson spectroscopy (TS) [7] is used. In addition,

interferometry [29] and reflectometry [30] can be used to measure ne. Because

these measurements have error-bars and bad channels, it is difficult to get a

smooth profile from a direct interpolation. For these reasons, a function-based
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profile fitting is employed. This method fits the measured data by adjusting the

coefficient of the given function. It can obtain a 1D differential profile but has

the disadvantage of little freedom in the fitting. In general, as the number of

coefficients increases, the degree of freedom increases.

For Te and ne profiles, simple profile function is used because the TS mea-

surement has large uncertainty and low spatial resolution. This function can be

written as Eq.2.1,

F (ψN, a⃗) =a1 +
a2

2 tanh 1

(
tanh 1 + tanh

[
2(ψN − 1)

a3
+ 1

])
+ a4

(
1−

(
ψN

a5

)a6)a7
H(a5 − ψN), (2.1)

where ψN is normalized poloidal flux, a⃗ are the profile coefficients, and H is the

unit step function. Here, a2 and a3 correspond to pedestal height and width,

respectively. This equation is suitable for H-mode profile data with large signal

noises as it can describe the pedestal and core region at the same time and

minimize numerical oscillation, although the fitting freedom is small. Because

CES has relatively good quality and high spatial resolution, a profile function

with more freedom, Eq.2.2, is used for Ti and Vϕ. Here, Eq.2.2 can also describe

the pedestal and core area simultaneously.

F (ψN, a⃗) =
(a1 − a2)

2

(
1 + a3ψN + a4ψ

2
N + a5ψ

3
N

)
×
[
1− tanh

ψN − a6
a5

]
+ a2. (2.2)

To calculate the fitted coefficients of target function, nonlinear least square

optimization scheme (LMFIT) [31] is used. By defining the least square (χf) as
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χf(⃗a) =
Ch.∑
i

(F (xi, a⃗)− yi)
2

σ2i
, (2.3)

smooth profile can be obtained from measured data points (xi, yi). In the case

of ne, interferometry and reflectometry can improve the profile reconstruction.

Therefore, (χf) of ne profile is set to include measured 0D and 1D data from

interferometry and reflectometry, respectively. It is possible to get a more ex-

perimentally relevant plasma profile with multiple diagnostics. Bad channels in

measured data are excluded using an ”outlier” scheme. This scheme removes

any measure data point that is more than 3-sigma (standard deviation) from the

initial fitting result. By repeating this scheme, the bad points can be removed,

and the fitted profile improves.

The same least square method is applied to determine the numerical param-

eters of EFIT. They are optimized by using the LMFIT scheme to minimize the

EFIT error (χEFIT), and a numerically stable equilibrium can be reconstructed.

The obstacles to delicate EFIT calculation could be overcome in this way.

2.2.2 Theoretical compensation

Numerical correction can improve the problems in kinetic profiles. However, due

to the low resolution of the diagnostics, it is still difficult to obtain a pedestal

structure. The linear properties of PBM are used to resolve this problem. In

Type I ELMy plasmas, the pedestal is known to locate near the marginal PBM

stability limit [4]. 2D electron cyclotron emission imaging (ECEI) spectroscopy

[32,33] captures the toroidal mode number of most unstable PBM (nECEI) in its

linear phase. Based on the information of PBM, the pedestal can be adjusted

from the initial profile to make it satisfy all three conditions.

Because CES has enough spatial resolution to determine the Ti pedestal,
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Figure 2.2: The linear growth rate of PBM of the most unstable mode in pedestal

height and width space is presented. The mode number of most unstable mode is

also shown. The black line is the marginal PBM stability limit, and the red line

corresponds to the pedestal whose dominant PBM mode has n = 12. Yellow

star and green star represent the reference point, the newly fitted pedestal,

respectively.

17



only Te and ne need to be considered. Therefore, their pedestal width and height

are scaled to see how PBM properties change. Here, the same scaling factor is

applied on Te and ne pedestals. In this scan, the neoclassical bootstrap current is

re-computed to be self-consistent with the adjusted profile. Here, the modified

Sauter model [34] is used. The linear growth rate (γ) of the most unstable

toroidal mode number n is checked by the ideal MHD code, MISHKA1 [35], with

a simplified ion diamagnetic effect [36]. The result is shown in Fig.2.2, where

#18594 (t=6450ms) KSTAR discharge is used as a reference. The orange star

represents the initial pedestal, the black line is the marginal PBM stability limit

(γ = ωi*/4), and the red line corresponds to the pedestal whose dominant PBM

is n = nECEI = 11. Here, ωi* is the ion-diamagnetic frequency at the center of

the pedestal. With this exercise, the linear instability and the most dominant n

constraints are satisfied by changing the pedestal from the orange star to green

star. In this way, the pedestal profile can be obtained, which is consistent with

experimental and theoretical findings. We note that this approach is valid with

type I ELMs.

For correction of the MSE measurement, the plasma current models are

employed. When the last closed flux surface (LCFS) of MAG-EFIT is given,

a model-based plasma equilibrium can be generated using a fixed boundary

equilibrium solver (FBE) with kinetic profiles and plasma current models. With

the magnetic field information (B⃗) of this equilibrium, the synthetic MSE data,

γMSE, can be numerically reconstructed, which can correct the measured data.

The CHEASE code [37] is used as FBE. The plasma current profile (j∥) and

γMSE are calculated from Eq.2.4 and Eq.2.5, respectively.

〈
j∥B

〉
= αOH

〈 σc
R2

〉
+ ⟨jBSB⟩+ ⟨jEXTB⟩ (2.4)
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Figure 2.3: Comparison between experimental and synthetic MSE data. The

red points are selected MSE channels, while the gray points are determined as

bad channels by comparison.

γMSE =
A1BZ

A2Bϕ +A3BR +A4BZ
(2.5)

Here, ⟨..⟩ refers to flux surface average, σc is the plasma conductivity, R is

the major radius, αOH is the ohmic current coefficient, jBS is the bootstrap

current, and jEXT is the external driven plasma current. σc and jBS are derived

from Refs. [12, 34], while jEXT is calculated by using the NUBEAM [38] and

TORAY [39] codes. αOH is determined to satisfy the measured total plasma

current. In Eq.2.5, B⃗ is expressed in cylindrical coordinate (R,Z, ϕ), and Ai are

the geometrical coefficients, which depends on the device configuration. Their

expressions can be found in Ref. [40]

An example of synthetic MSE is shown in Fig.2.3. The KSTAR plasma dis-

charge of #21072 (t=4950 ms) is used as a reference. In the core region, the

synthetic and measured values show good agreement, whereas, in the edge re-
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gion, a considerable difference occurs. Because the MSE diagnostic tends to be

less accurate in the outer region, the synthetic MSE can be neglected in this

region. Here, the measured points showing a large difference from the synthetic

data are judged as bad channels and excluded. By selecting and removing the

bad channels, the χEFIT is significantly reduced from 33 to 16.4. This outcome

supports the validity and effectiveness of the above strategy. Furthermore, syn-

thetic MSE can replace measurement values in cases where the MSE diagnostic

is missing. It dramatically expands the possibility of plasma analyses. We note

that this approach is valid in stationary conditions, where the ohmic current

profile is fully developed.

2.3 Kinetic EFIT reconstruction in KSTAR

Delicate numerical equilibrium is essential for a physics study of KSTAR plas-

mas. Because of obstacles in KSTAR EFIT reconstruction, many corrections

and schemes are needed. Therefore, it is worthwhile to make an integrated

toolkit for EFIT calculations in KSTAR. The GEFIT toolkit was developed

for high-quality kinetic EFIT reconstructions, and it is used to generate the

reference plasma equilibrium for nonlinear MHD analysis of the RMP effect.

2.3.1 GEFIT toolkit

Numerical and theoretical compensation schemes in the above section take a

lot of numerical calculations and post-processings. A GUI-based kinetic-EFIT

toolkit, GEFIT, supports a user-friendly environment to generate EFIT effec-

tively. This toolkit contains profile fitting, equilibrium, and linear PBM stabil-

ity analysis tools. The structure and interface of GEFIT are shown in Fig.2.4.

The Python framework connects CHEASE, MISHKA, NUBEAM, TORAY, and
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Figure 2.4: a) Code structure and b) graphical user interface of GEFIT toolkit

EFIT codes. For user convenience, the KSTAR data server is connected to the

code so that the experiment data can be quickly loaded. Plasma current models

and numerical schemes are also implemented in GEFIT. By using this tool, the

kinetic-EFIT can be obtained.

2.3.2 Reference equilibrium

This study uses the data from KSTAR #18594 discharge [25] of n = 2 RMP-

driven ELM suppression. The overview of this discharge is shown in Fig.2.5;

plasma current (Ip = 0.66 MA), stored energy (WMHD = 0.43 MJ), and line

average density (n̄e ∼ 3.3 × 1019m−3). In addition, its main parameters are;

major radius (R0 = 1.8 m), toroidal field (Bϕ0 = 1.8 T), q profile with central

q0(∼ 1), q95(∼ 4.0), and global poloidal beta (βp ∼ 1). In this discharge, the

currents in the three rows of versatile in-vessel control coils (IVCC) with two

turns in the low field side [5] were set such that the magnetic perturbation of

n = 2 was applied. The phase difference between the rows was ∆ϕ = 90◦, and it

is the standard n = 2 field coil configuration for suppressing ELMs in KSTAR.

When the stationary state was reached (∼ 4.9 s), RMP with the coil current

IRMP = 2 kA was applied from 5.0 s to 5.5 s and then gradually increased
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Figure 2.5: Time evolution of (a) plasma current, Ip, RMP coil current, IRMP,

(b) Dα signal, line average density, n̄e, (c) ion temperature, Ti, electron tem-

perature, Te, and toroidal plasma rotation, Vϕ in core of the KSTAR discharge

#18594.
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with the rate of ∼0.2 kA/s. ELM suppression was achieved at 13.0 s with

IRMP ∼ 3.7 kA. This full suppression lasted until the end of the discharge. We

note that IRMP is defined as twice the current applied in the actual experiment

because the coil is wound in two turns. In this study, t = 6.45 s, the earliest

time slice when ECEI measurement becomes available, is selected as a reference

time. At this point, the profile variation and ELM mitigation by RMP have not

yet appeared. For this time-slice, the plasma equilibrium is reproduced, and

simulation results are compared with the ECEI measurement.

The axisymmetric equilibrium is reconstructed with GEFIT. Its q, kinetic,

and current profiles are presented in Fig.2.6. Because ϵ = 10−12 and χEFIT =

16.3, it is confirmed that the reconstructed EFIT equilibrium is enough for non-

linear MHD simulations. It is noteworthy that the tokamak system becomes no

longer axisymmetric when 3D fields are applied. So 3D equilibrium reconstruc-

tion of the tokamak is also valuable for the study on the effect of RMP [41–43],

which could be included in future work.

23



Figure 2.6: (a) Radial profile of safety factor q (blue line) and position of ra-

tional surface (red dot) with n = 2. (b) Radial profile of flux averaged current

density ⟨jϕ⟩ (red line). (c) Radial profiles of electron temperature, Te (red line),

and electron density, ne, (blue line) taken in modeling, with the experimental

measurements of Te (red dot) and ne (green dot). (d) Radial profiles of ion

temperature, Ti (red line), and toroidal rotation velocity, Vϕ (blue line), taken

in modeling, with the experimental measurements of Ti (red dot) and Vϕ (green

dot).
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Chapter 3

RMP-driven Plasma response

The RMP-driven equilibrium responses are highly responsible for ELM suppres-

sion. In particular, they affect pedestal transport. For example, the pedestal

degradation is commonly observed as a consequence of RMP application. Be-

cause an initial understanding of the ELM suppression is based on the pedestal

degradation due to the formation of the stochastic layer, extensive research on

field penetration and radial transport by RMPs have been carried out. They

have revealed that perpendicular electron flow shields RMPs and a zero elec-

tron flow layer (ω⊥,e ≈ 0) [44–46] is important for full field penetration in the

pedestal. Numerical studies have shown that RMPs can drive a kink-peeling

response [47,48] in the plasma and amplify field penetration [49]. We note that

the collisional thermal transport in the stochastic layer is larger than that of

particle. However these approach have limitations in explaining the experimen-

tal observation where the degradation in the density pedestal is much larger

than temperature pedestal. In addition, most previous studies are limited to
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the linear analysis. The equilibrium responses including field re-connection are

no longer a linear phenomena, so nonlinear studies are needed.

3.1 Numerical analysis tools

For the numerical analysis on the plasma response, the nonlinear MHD code,

JOREK [50], and the 3D vacuum field code, ERGOS [51], are employed.

3.1.1 JOREK

JOREK is a 3D nonlinear MHD code with X-points and scrape-off-layer (SOL).

The reduced MHD model based on five field equations is used, including Ohm’s

law, the continuity equation, the momentum equation, and the energy equation.

Momentum equations are divided into parallel and perpendicular components.

The realistic toroidal flow, two-fluid diamagnetic effect, and the neoclassical

viscosity are included to describe the effect of plasma flow on the ballooning

modes [45,52].

In the JOREK code, the magnetic field is expressed as B⃗ = F0∇ϕ+∇ψ×∇ϕ,

where ϕ is the toroidal angle, ψ is the poloidal magnetic flux, and F0 = R0Bϕ0.

R0 is the magnetic axis, and Bϕ0 is the amplitude of the toroidal field at R = R0.

F0 is constant in time, and ϕ increases clockwise in the simulation.

The plasma fluid velocity V⃗ is expressed as Eq.3.1

V⃗ = V⃗∥ + V⃗E + V⃗i* (3.1)

where V⃗∥ is the velocity parallel to the magnetic field, and V⃗E = E⃗ × B⃗/B2 is

the E⃗ × B⃗ drift velocity. The electric field is expressed as E⃗ = −∇u where u

is the electrostatic potential. V⃗i* = −∇Pi × B⃗/(ρeB2/mi) is the ion diamag-

netic velocity that reflects the two-fluid diamagnetic effect. Here, Pi, e, mi, and

26



ρ(= mi × ni) are the scalar pressure, charge, mass, and mass density of ion,

respectively. The density of ion and electron is assumed to be ni = ne. We also

set Ti = Te = T/2 and Pi = Pe = P/2 for simplicity, where T and P are the

sum of ion and the electron temperatures and scalar pressures, respectively.

The normalized set of five field equations [52] is:

1

R2

∂ψ

∂t
= −B⃗ ·

(
∇u− τIC

ρ
P

)
+ η∇ ·

(
1

R2
∇⊥ψ − js

)
, (3.2)

∂ρ

∂t
= −∇ ·

(
ρV⃗

)
+∇ · (D⊥∇⊥ρ) + Sρ, (3.3)

∇ϕ · ∇ ×R2

ρ(∂t + V⃗ · ∇
)
V⃗E +∇ (ρT )− j⃗ × B⃗

+∇ · Π̄i,neo − S⃗V + V⃗ Sρ − ν⊥∇2V⃗

 = 0, (3.4)

B⃗ ·

ρ(∂t + V⃗ · ∇
)
V⃗∥ +∇ (ρT )− j⃗ × B⃗

+∇ · Π̄i,neo − S⃗V + V⃗ Sρ − ν⊥∇2V⃗

 = 0, (3.5)

∂ (ρT )

∂t
=−

(
V⃗E + V⃗∥

)
· (ρT )− γρT∇ ·

(
V⃗E + V⃗∥

)
+∇ ·

(
ρκ⊥∇⊥T + ρκ∥∇∥T

)
+ (1− γ)ST + V 2Sρ/2. (3.6)

The variables are normalized as follows: ρ = ρSI/ρ0,SI and t = tSI/
√
µ0ρ0,SI,

where SI represents the SI unit value, µ0 = 4× 10−7, and ρ0,SI is mass density

on the magnetic axis. The normalization of the other variables is P = µ0PSI,

T = µ0ρ0,SI(e/mi)TSI, j = µ0jSI, and u = uSI
√
µ0ρ0/F0,SI. j is the plasma

current density. The flow is normalized to V∥ = V∥,SI
√
µ0ρ0/BSI and Vθ =

V⃗ · êθ = Vθ,SI/
√
µ0ρ0, depending on the direction. Here, the poloidal unit vector

êθ is defined as
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êθ =
R

∇ψ
(∇ψ ×∇ϕ) . (3.7)

A Spitzer-like resistivity η = η0,SI
√
ρ0,SI/µ0 (Te/Te,0)

−3/2, temperature-dependent

perpendicular viscosity ν⊥ = ν⊥0,SI

√
µ0/ρ0,SI (Te/Te,0)

−3/2, and constant paral-

lel viscosity ν∥ = ν∥,SI
√
µ0/ρ0,SI are used in the modeling. Here, η0,SI, ν⊥0,SI, and

Te,0 are the resistivity, perpendicular viscosity, and electron temperature on the

magnetic axis, respectively. Braginskii parallel conductivity κ∥=κ∥0,SI
√
µ0/ρ0,SI

(Te/Te,0)
5/2 and adiabatic index γ = 5/3 are also applied. Particle source Sρ

and the heat source ST, as well as the perpendicular particle diffusion coeffi-

cient D⊥ = D⊥SI
√
ρ0,SIµ0 and thermal diffusion coefficient κ⊥ = κ⊥SI

√
µ0/ρ0,SI

are set to maintain the initial density and temperature profiles. Their typical

values on the magnetic axis are D⊥0,SI ≈ 1m2s−1 and κ⊥0,SI/ρ⊥0,SI ≈ 1m2s−1.

D⊥ and κ⊥ vary radially. Their radial profiles are proportional to D⊥ ∝ |∇ρ|−1

and κ⊥ ∝ |∇T |−1 of initial ρ and T profiles. In addition, the current source js

and the toroidal momentum source S⃗V are applied to reproduce the realistic

equilibrium profile. All source profiles remain the same over time.

The neoclassical poloidal friction has the heuristic form [53] as

∇ · Π̄i,neo = ρµi,neo
B2

B2
θ

(Vθ − Vθ,neo) êθ, (3.8)

where Bθ = B⃗ · êθ, Vθ,neo = kiτIC (∇⊥ψ · ∇⊥T ) /Bθ, µi,neo = µi,neo,SI
√
µ0ρ0, and

τIC = mi/
(
2eF0

√
µ0ρ0

)
. The neoclassical coefficients µi,neo and ki are calculated

from Ref [54]. Using these models, the plasma flows develop toward equilibrium,

and plasma is finally obtained in which the flows and electric field satisfy the

radial force balance. The radial electric field can be written as Eq.3.9 [55], where

∂r is the radial gradient and Vϕ is the toroidal plasma flow.

28



Figure 3.1: Comparison of (a) Radial profiles of neoclassical coefficients, ki (red

line) and µi,neo (blue line). (b) Radial profiles of poloidal velocity Vθ at the

midplane of LFS with E × B (VE, green line), ion diamagnetic (Vi*, red line),

parallel (V∥,θ, blue line), and neoclassical (Vneo, orange line) components.
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Er =
1

en

∂Pi

∂r
+BϕVθ −BθVϕ (3.9)

Based on Eqns.3.8 and 3.9, the neoclassical flow and Er of reference equilibrium

are calculated. The neoclassical coefficients and the poloidal flow profiles from

the resulting Er are shown in Fig.3.1. The self-consistent kinetic equilibrium

with plasma flow based on experimental data can be reproduced in this way.

In JOREK, 2D cubic Bezier finite elements are used to reconstruct a 2D

grid in a poloidal cross-section [56], and the toroidal direction is decomposed

into the Fourier series. Finite element grids align to equilibrium flux surfaces

that include core, SOL, and the private region. The boundary of the compu-

tational domain is limited by the flux surfaces and divertor target plates. For

the boundary condition of the computational domain, the Dirichlet condition

is used for all variables except the divertor targets. On the divertor targets,

the temperature and the density have free outflow, and Bohm sheath bound-

ary conditions are applied [55]. The implicit Crank–Nicolson scheme is used

for time stepping. The sparse system of equations is solved using Generalized

Minimal REsidual Solver (GMRES) with a preconditioner obtained by solving

each submatrix independently corresponding to non-coupled Fourier harmon-

ics. These sub-matrices are solved using PaStiX [57], the direct parallel sparse

matrix solver.

3.1.2 ERGOS

ERGOS is a numerical code for 3D vacuum field calculation. It derives the

magnetic vector potential, A⃗RMP, for the given coil current configuration with

Biot-Savart law, Eq.3.10.
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A⃗RMP =
µ0
4π

∑
c

∫
Ic
rc
dl⃗c (3.10)

Here,“c” denotes the coils, Ic is the coil current, dlc is the length, and rc is the

distance to its location. Then, the perturbation of poloidal flux due to vacuum

RMP field, δψRMP, can be expressed as Eq.3.11.

R2∇ϕ×
(
∇× A⃗RMP

)
∼= ∇ (RARMP,ϕ) = ∇ (δψRMP) (3.11)

In this study, δψRMP is toroidally decomposed into the Fourier series and

numerically included in JOREK for the RMP simulation. Due to the geometry

of IVCC, small sideband modes such as n = 4, 6, 8, etc., also exist in experi-

ments, but they are ignored in simulations because they are much smaller than

the amplitude of the n = 2 component.

3.1.3 Numerical modeling of RMP

RMP in JOREK simulations is treated with a similar approach as in [52].

ERGOS calculates δψRMP for a given configuration. The calculation result

for δψRMP is presented in Fig.3.2. δψRMP is applied as a modified boundary

condition in the JOREK computational domain. It is based on the vacuum

approximation as the boundary of the computational domain is far from the

main plasma. The perturbed boundary condition is gradually established during

300τA. Then, the plasma response after ∼ 1000τA is considered as the RMP-

driven equilibrium response, where the numerical convergence is achieved. The

schematic diagram of the RMP modeling process is presented in Fig.3.3. In this

way, the penetration of RMP into the plasma is evaluated self-consistently.

As the plasma equilibrium response by RMP is investigated in this section,

only n = 0 (equilibrium) and n = 2 (RMP) harmonics are included in the
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Figure 3.2: 2D distribution of perturbed poloidal flux, δψRMP, on R−Z space.

n = 2 component of ψRMP is shown here.

Figure 3.3: Schematic diagram for the numerical modeling of RMP application

in JOREK simulation.
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modeling. Here, I consider an n = 2 plasma response as a harmonic component

that is different from the main PBM. In addition, we used normalized JOREK

parameters based on the experimental data; κ∥,0 = 2 × 103 (κ∥0,SI = 7.02 ×

102 kg · m−1s−1), ν⊥0 = 2 × 10−7 (ν⊥0,SI = 7.02 × 10−8 kg · m−1s−1), and

ν∥ = 2 × 10−6 (ν∥,SI = 7.02 × 10−7 kg · m−1s−1). Here, for numerical reasons,

40 times larger resistivity (η0 = 2× 10−7, η0,SI = 5.7× 10−7Ωm) and two times

smaller τIC (=3× 10−3) are used, and it is one of the important limitations of

this study.

3.2 Plasma response

The simulation shows a nonlinear plasma response, including changes of both

n = 0 and n = 2 components. This response can be separated into the kink and

the tearing components.

3.2.1 Kink response

When RMP is established, the plasma perturbations are observed. The per-

turbed poloidal flux, density, and temperature are presented in Fig.3.4 (a), (b),

and (c), respectively. As RMP penetrates the plasma, n = 2 perturbations with

m = 7− 14 occur in the edge region. Larger perturbations of temperature and

density are observed at the X-point. In order to identify this response, the lin-

ear displacement ξ⊥,lin is calculated from Ref [47], and this mode has an edge

localized structure as shown in 3.5 with kink-peeling mode (KPM) characteris-

tics [47, 49, 58, 59]. Note that the n = 2 mode is linearly stable without RMPs

so it is sure that RMPs linearly drive the n = 2 KPM. This result is consis-

tent with the previous studies where peeling-like modes were observed in the

response under RMP [60–62].
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Figure 3.4: 2D poloidal distribution of (a) n = 2 magnetic flux δψ, (b) ne, and

(c) T perturbation induced by RMP. (d) n = 0 E×B radial flux, Γ⊥,E×B, which

is driven by the RMP-induced plasma response.
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Figure 3.5: Radial mode structure of the plasma displacement ξ⊥,lin induced as

a response to RMP. The mode structure is highly localized at the plasma edge,

which is the typical structure of KPM.
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Interestingly, a perturbed radial E×B flow is generated at the edge region

due to KPM. It results in n = 0 convective flux, ΓE×B, in the radial direction.

The distribution of ΓE×B driven by KPM can be found in Fig.3.4(d). A large

ΓE×B layer exists at ψN = 0.98 − 1.0 and is widely distributed poloidally. It

has the largest value near the X-point, which agrees with the mode structure of

KPM. This widely distributed ΓE×B increases radial transport in the pedestal.

The formation of the particle and heat convection flux is also consistent with

similar numerical studies [63,64].

3.2.2 Tearing response

In addition to the KPM-like plasma response, magnetic islands can be formed

due to RMP field penetration. However, the plasma shielding current that sup-

presses the field penetration can be generated, which reduces the island size.

This shielding effect is the result of the plasma flow and the low resistivity of

the core plasma [44–46,65–67]. RMP cannot penetrate the plasma when plasma

has zero resistivity or infinite rotation [58,68]. The calculated field penetration

is given in Fig.3.6. Fourier decomposed perturbed poloidal flux (Fig.3.6(a)) and

the plasma current (Fig.3.6(b)) are plotted on the poloidal mode number versus

ψN space. The field penetration is almost blocked on the rational surface (red

line) due to the formation of the shielding current at each resonant surface.

Therefore, only small islands remain in the core region.

On the other hand, significant field penetration is observed in the edge

region. Because plasma resistivity is relatively large in this region, the perturbed

current cannot entirely shield the external field [45]. We note that the field

penetration may vary depending on the resistivity used in the simulation. Also,

a layer with zero perpendicular flow, V⊥,e ≈ 0, exists at the rational surface near
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Figure 3.6: Perturbed n = 2 components of the (a) poloidal magnetic flux

δψ and (b) current δjϕ as functions of the poloidal mode number m and the

normalized flux ψN are presented. In each figure, resonant surfaces are plotted

with the red line and circles.
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Figure 3.7: Poincare plot of the perturbed magnetic structure in ψN and poloidal

θgeo coordinate is presented. The stochastic layer is formed at 0.95 ≤ ψN ≤ 1.0.

Here, the color values represent ψN of the starting point of field line tracing.

The positions of pedestal top, V⊥,e = 0, and X-point are represented by the

blue dotted line, black dotted line, and red cross, respectively.
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ψN = 0.95 which corresponds to the pedestal top in our case. The external field

can fully penetrate into this region [46, 52, 65, 67] and generate large magnetic

islands. Furthermore, the magnetic perturbation is amplified by the poloidal

coupling with the kink component, and KPM enhances the field reconnection

at the plasma boundary [49, 69]. Therefore, the large island can remain in the

pedestal region, and the stochastic layer is formed by the overlap of islands.

This can be clarified in the Poincare plot in Fig.3.7. Here, θgeo is defined as

θgeo = arctan

[
Z − Z0

R−R0

]
, (3.12)

where Z0 is the location of the magnetic axis in the (R,Z) coordinate. In this

plot, large island structures at the resonant surfaces (q = 7/2 and 8/2) near

the pedestal top are found while the island size at the inner region (q = 6/2)

is much smaller. A secondary island structure is also generated at q = 11/4.

For 0.95 ≤ ψN ≤ 1.0, the stochastic layer exists, which can increase the radial

transport. In this work, the radial transport in the stochastic layer can increase

due to the parallel transport described by the Braginskii model.

3.3 Increased pedestal transport

KPM and the magnetic islands occur as a plasma response under the external

field perturbation. They generate the convection cells and a stochastic layer

in the pedestal region, which can lead to increased radial transport. In addi-

tion, neoclassical toroidal viscosity (NTV) can be driven due to the symmetry

breaking [70,71], which can induce further pedestal transport.
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Figure 3.8: (a) n = 0 profile degradation of ne and T pedestal, which is induced

by RMP. The yellow and green colored regions highlight the radial width of

the stochastic layer and E × B convection layer, respectively. (b) The radial

gradient of ne (red dotted line) and T (blue dotted line) at the center of the

pedestal (ψN = 0.98) with varying IRMP. The conductive heat flux Γcond and

convective particle flux Γconv at the same location are also presented.
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3.3.1 Kink-tearing response driven transport

Increased radial transport due to tearing and kink-peeling response to RMP can

lead to the degradation of the mean (n = 0) pedestal gradient and stabilization

of edge MHD modes. To investigate the variation of the mean profile under

RMP, plasma responses to 0 ≤ IRMP ≤ 4 kA are calculated. Fig.3.8(a) shows

the degradation of mean pedestal profiles of the density and the temperature. As

the amplitude of the RMP field increases, the gradient of both ne and T pedestal

decreases. For example, ∇ne and ∇T at the center of the pedestal (ψN = 0.98)

decrease by 58% and 39%, respectively, as IRMP = 4 kA is applied. Here, the

yellow and the green colored region correspond to the stochastic layer and the

location of the convection (ΓE×B) layer at the mid-plane of LFS, respectively.

The overall degradation of the ne and T pedestals appears in the stochastic

layer because of the increased radial transport. In the convection layer, on the

other hand, the change in ne pedestal is significant while that of T pedestal is

small. This implies that ΓE×B which is driven by KPM has a more significant

impact on particle transport. 80% of the total radial particle flux at the center

of the pedestal is due to ΓE×B. Experimental findings show that the density

pump-out under RMP is highly correlated with the X-point deformation [58,

72]. Because KPM makes large displacement at the X-point, it may play an

important role in the density pump-out, which is consistent with the tendency of

experimental findings [48, 62]. Fig.3.8(b) shows the clearer correlation between

the pedestal degradation and the radial transport; the radial heat and particle

flux at ψN = 0.98 of the LFS mid-plane start to increase with IRMP while the

gradients of both ne and T pedestals decrease.

The above result suggests that the pedestal degradation by RMP is at-

tributable not only to the formation of the stochastic layer but also to the

41



convective particle flux by the plasma response and other effects. This may

support the experimental trend where the degradation of the density pedestal

is much larger than that of the temperature pedestal.

The simulation results are compared with experimental data to validate the

modeling of RMP. Because of the limitation in the diagnostics, only Ti and

Vϕ from CES measurement are mainly considered. The result is presented in

Fig.3.9. Inverse gradient lengths of the temperature, L−1
Ti and L−1

Vϕ, at ψN = 0.98

are plotted for various RMP coil currents. These are measured for the reference

discharge (#18594). In the CES measurement (blue circle), the absolute values

of both
∣∣L−1

Ti

∣∣ and
∣∣∣L−1

Vϕ

∣∣∣ decrease with the external field strength. Although

there is ambiguity in the experimental trend,
∣∣L−1

Ti

∣∣ and ∣∣∣L−1
Vϕ

∣∣∣ seem to decrease

by 30% and 38%, respectively, as IRMP increases from 2 kA to 4 kA. In the

simulation (orange triangle),
∣∣L−1

Ti

∣∣ shows similar behavior with the experiment.

It varies from -0.64 to -0.44 (change of 31%) for the same change in IRMP. We

note the simulation result does not include the effect of harmonics with high n

(≤ 14) and micro-instabilities on the RMP-driven transport. The assumption

of Ti = Te is also used. Therefore, only the qualitative agreement between

experiment and simulation can be evaluated. The change in L−1
Vϕ with IRMP

is small which does not follow the experimental trend where the Vϕ pedestal

is degraded with increasing IRMP. It suggests that additional factors must be

considered to explain the change of rotation.

3.3.2 NTV-driven transport

Toroidal symmetry breaking by RMP can induce NTV, which drives the radial

particle transport and torque. Previous experimental studies confirmed the ef-

fect of NTV torque on the plasma rotation. However, particle transport by NTV
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Figure 3.9: Experimental measurement for KSTAR shot #18594 of inverse gra-

dient length of (a) ion temperature, L−1
Ti , and (b) toroidal plasma rotation,

L−1
Vϕ, with increasing IRMP are presented (blue dot). The blue dotted line cor-

responds to the trend line. Simulation results are plotted as orange triangles in

each figure.
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is still unclear. There was an attempt [73] to include NTV in the RMP analysis.

It showed a considerable contribution of NTV to the ne pedestal degradation by

RMP but has limitations in that it uses heuristic NTV expressions and linear

analysis. When RMP forms large magnetic islands, the system becomes nonlin-

ear. In addition, the heuristic model is not proper to describe NTV with tearing

structures. Because these islands are crucial in RMP physics, nonlinear study

with a more accurate NTV calculation is needed to investigate NTV-driven

transport.

In order to calculate the accurate NTV transport, Perturbed Equilibrium

Non-ambipolar Transport (PENTRC) code is employed [74]. PENTRC requires

the metrics of magnetic fields, the kinetic profiles, and the plasma displacement,

ξ, of the equilibrium response by RMP. Here, the plasma information except ξ

can be directly obtained from JOREK calculation. In general, ξ is challenging

to define in nonlinear simulations where field reconnection occurs. Therefore,

two assumptions are used to derive ξ. First, the temperature is assumed to be

uniform on the field line because the parallel thermal diffusion is fast enough.

Then, the perpendicular displacement can be defined as Eq.3.13.

ξ⊥ =
δT

∇Tn=0,m=0
(3.13)

The application of Eq.3.13 on the JOREK calculation is shown in Fig.3.10.

It shows that ξ⊥ successfully catches the both even and odd components of

m = 8 displacement (see the black dotted line), which comes from the kink and

tearing responses, respectively. For the parallel displacement, I assume that the

toroidal component of the first-order ideal force balances the perturbed plasma

equilibrium. Based on this assumption, it is possible to calculate ξ∥ from Eq.(16)

of Ref. [75]. JOREK and PENTRC codes are coupled with the expression of
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Figure 3.10: n = 2 components of the (a) perpendicular plasma displacement

ξ⊥ as functions of the poloidal mode number m and the normalized flux ψN,

and (b) its radial mode structure are presented. In the figure (a), the resonant

surfaces are plotted with the red line. In the figure (b), the black dotted line

corresponds to the radial position of the q = 4 rational surface.
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Figure 3.11: Schematic diagram for the code coupling between JOREK and

PENTRC.

ξ. The schematic diagram for the code coupling is presented in Fig.3.11. By

giving the information from JOREK to PENTRC, the NTV particle flux, ΓNTV,

and torque, τNTV, are calculated. After that, the NTV result is included in

JOREK to update the calculation. This process is repeated until the equilibrium

converges.

By this process, NTV is well reproduced by JOREK-PENTRC simulation.

In Fig.3.12(a), it shows strongly edge localized structure under the presence of

RMP. It turns out that NTV also degrades the pedestal. For example, ΓNTV

further reduces the ne pedestal height by 10% as shown in Fig.3.12(b). Its

effect is comparable to ΓE×B of kink response. Both ΓNTV and ΓE×B degrade

the pedestal, so overall density level, n̄e, decreases by 6×1017m−3. However, it is

not consistent to the experimental value where n̄e is decreased by 2× 1018m−3.

Therefore, KPM and NTV are not enough to fully explain the density pump-out

in this study.

For the plasma rotation, NTV shows a significant effect. τNTV is ∼1.5 N·m

which is the similar level as beam-driven torque (∼3.3 N·m). Because the L−1
Vϕ is

proportional to the net torque under the same momentum transport coefficient,
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Figure 3.12: JOREK-PENTRC calculation results for (a) the radial NTV par-

ticle flux, ΓNTV, the NTV torque, τNTV, and beam-driven torque, τBeam, are

presented. In the figure (b), n = 0 profile degradation of ne pedestal by RMP

is shown, where NTV is included.
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it is expected that τNTV degrades the Vϕ pedestal (∼ ψN = 0.98) roughly by

44%. This level is almost the same as the experimental observation (∼ 38%),

so NTV can be the main contributor to the Vϕ degradation. Unfortunately,

the momentum transport coefficient is unknown, and the momentum transport

simulation with τNTV cannot be conducted. Therefore, it is difficult to discuss

the exact change of Vϕ in this study. In addition, further verification between

JOREK-PENTRC and experimental result is required. They will be pursued

as future work.

3.3.3 Limitation of applied modeling

The above modeling can quantitatively explain the change in the temperature

and rotation by RMP. However, the degradation of the density pedestal cannot

be fully explained in this simulation. Disagreement is also found in the stored

energy, WMHD. In the experiment, WMHD is reduced by 8% as IRMP increases

from 2 kA to 4 kA. At the same time, WMHD decrease by only 3% in the

simulation, respectively.

The discrepancy between the experimental and the numerical result could

result from the limitations of the simulation model. First, this study uses the

simplified perpendicular diffusion profile and source models. Because the model

cannot take into account the exact change of the core plasma transport, degra-

dation of the plasma confinement with RMP can be smaller. Also, the profile

stiffness has not been fully reflected in the simulation, which is a crucial char-

acteristic of the core transport while pedestal changes. For better results, ac-

curate diffusion coefficients and the source profiles based on the experimental

data should be considered. In addition, the experimental trend considered in

this study appears over 5 seconds in the experiment, where a significant change
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in the background conditions (neutral pressure build-up, wall loading, wall tem-

perature) can occur. These subtle changes can also contribute to the difference

between the simulation and the experiment. In this respect, the simulation is

expected to become more consistent with the experiment where the RMP cur-

rent quickly increases while keeping the background conditions as constant as

possible.

Second, the edge transport induced by RMP is also underestimated. Previ-

ous numerical studies revealed that radial transport at the pedestal region could

be increased because of the destabilized edge localized ballooning modes [76,77].

The perturbed magnetic field structure can also induce transport by the mag-

netic flutter [78, 79] and polarization current [80]. Besides, we apply the Bra-

ginskii model to the parallel transport in the stochastic layer, which can under-

estimate the radial fluxes [81]. For example, the previous study reported that

the Rechester-Rosenbluth diffusion model [82] better describes the transport in

the stochastic layer [83]. Because these effects are not included in this work, the

heat and particle flux may be undervalued. Overall, the pedestal degradation

in the modeling can be smaller than that of the experimental measurement.

Furthermore, the fixed boundary model is used to calculate the RMP field

penetration. This condition does not allow the modification of the magnetic

perturbation at the boundary. Therefore, it may reduce the field amplifica-

tion inside the plasma and modification of LCFS, which lessens the change of

pedestal profile. In future work, these limitations in the transport and fixed

boundary model will be resolved with JOREK-STAR WALL [84], which allows

the variation of the perturbed field at the boundary.

Lastly, the destabilized micro-instabilities [85–87] by RMP can be a candi-

date. In particular, a recent global total-f gyrokinetic simulation by XGC [88]
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addressed that RMP can enhance turbulence transport in the pedestal region. In

this study, the RMP-driven potential structure and neoclassical effect affected

the micro-instability. It provided evidence that such interaction increased the

electron turbulence transport and contributed to the density-pump out. Because

of the limitation of MHD modeling, the RMP-driven turbulence is expected to

be a strong candidate to complement the explanation on the pump-out. Based

on these modeling results, the main candidates to explain the pedestal degra-

dation by RMP is summarized in Table 3.1.

Table 3.1: Contributors to the pedestal degradation by RMP

Channel Expected main contributor

Temperature - Conductive heat transport through chaotic layer

- Turbulence thermal transport

Density - Turbulence particle transport

- Convective particle transport through kink layer

- Magnetic flutter

Rotation - NTV torque
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Chapter 4

RMP-driven ELM crash
suppression

The initial hypothesis of the RMP-driven ELM suppression mechanism relies on

the linear stabilization of PBM by RMP. Therefore, the plasma condition which

can maximize the external field penetration, such as V⊥,e ≈ 0, will be favor-

able in this respect. However, this hypothesis has difficulties in explaining the

occurrence of PBM-like coherent modes during the suppression phase [24]. For

example, Fig.4.1 shows the edge localized filament structure when the suppres-

sion is achieved. In addition, the experimental scan suggested that Vθ,E ≈ 0 is

more important to ELM control than V⊥,e ≈ 0 near the pedestal top [89]. There

was a study on the effect of Vθ,E ≈ 0 in terms of field penetration [90], but the

reason for the experimental result is still unclear. Because of these limitations,

additional effects are needed to fully explain the ELM crash suppression.

Several studies have focused on the direct coupling between RMPs and

ELMs to explain the experimental trend. The linear analysis found that the
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Figure 4.1: Experimental observation of Edge localised mode structure in ELMy,

mitigation, and suppression phase in KSTAR discharge [7].

properties and stability of PBM change with 3D-field modulation by RMPs

[76,77]. A nonlinear MHD simulation showed that PBM could be saturated by

this mode coupling effect [91–93]. Furthermore, the experimental observation

reported the bifurcation of mode frequency of PBM by RMP [25], and it also

supports the importance of mode coupling on the ELM suppression. However,

the exact role of mode coupling is unknown, and further study with nonlinear

simulation is needed.

4.1 Numerical setup for analysis

4.1.1 Natural ELM simulation

In order to study the ELM suppression by RMPs, it is essential to check if

PBMs occur also without RMP to be consistent with the experimental data.

For this purpose, the linear PBM stability of the initial phase is checked.
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In our reference time slice (6.45 s), when the effect of RMP was minimal or

not yet effective, n of the most unstable PBM was 11 ± 1 in the linear phase

from ECEI diagnostics. The temperature fluctuation, δTe, for the n = 12 PBM

inside separatrix with ∆t ∼ 60µs (= 120τA) is presented in Fig.4.2(a), where

⟨..⟩t means time averaged value. In the measurement, the mode structure was

poloidally rotating in the ion-diamagnetic direction (−Z direction at LFS) with

Vθ,mode,exp ∼ 2.9 km/s in the lab frame.

To calculate the linear behavior of PBM, a single harmonic with n = 12 is

launched on the kinetic equilibrium with a small amplitude at the numerical

noise level (∼ 10−27) in the JOREK unit. Then, the linear phase of PBM is

modeled. Its linear growth rate is γτA ∼ 0.054. The resulting δTe for n = 12

PBM at LFS in the lab frame corresponds to Fig.4.2(b). Here, δTe is taken near

the end of the linear phase with ∆t ∼ 55µs (= 110τA), and ⟨Te⟩t is derived from

its background (n = 0) value. In the figure, the n = 12 mode structure rotates in

the ion-diamagnetic direction at about Vθ,mode ∼ 3.2 km/s, which shows good

agreement with the ECEI measurement (∼ 2.9 km/s). It is noteworthy that

Vθ,mode is similar to Vθ,E(∼ 2.8 km/s) at the mode location. In our case, the

poloidal E ×B velocity Vθ,E = êθ · V⃗E at the pedestal is in the ion-diamagnetic

direction due to large Vϕ [55], and therefore modes rotate in the clockwise

direction. This similarity between Vθ,mode and Vθ,E is also consistent with the

previous studies [55,94].

As ELM is not a single mode event but a nonlinear MHD phenomenon, the

mode coupling should be considered in the modeling. Therefore, the nonlinear

simulation including multi harmonics is conducted for the next step. Although

n = 12 is the most unstable mode, harmonics of n = 2, 4, 6, 8, 10, 12, and

14 have been considered within the limits of the computational resources. The
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Figure 4.2: (a) 2D measurement of electron temperature fluctuation in R − Z

space from ECEI diagnostics (n = 12) in the LFS region at consecutive times

slices of ∆t = 60µs. (b) Simulation result of electron temperature fluctuation

at two different time slices with ∆t = 55µs near the onset of mode crash.
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Figure 4.3: (a) Time evolution of the toroidal harmonics of the kinetic energy for

n = 2 ∼ 14. (b) Comparison of ne and Te before the onset of ELM (∼ 2500τA)

and after the crash (∼ 3500τA). They show the nonlinear phase of natural PBM

without RMP.
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results for the perturbed kinetic energy Wkin =
∫
ρ |∇⊥u|2 dV/2 of PBM in the

nonlinear phase are shown in Fig.4.3(a). Here, n = 12 is the fastest growing

mode to enter the nonlinear phase first. Then, other modes including n = 10

are driven by mode coupling in the nonlinear phase [95], which results in a

bursty MHD behavior with mode crashes. For example, the amplitude of n = 10

mode increases during the n = 12 mode crash. The n = 10 mode starts to

crash 700τA after the crash of the n = 12 mode. During the mode crash, the

nonlinear Maxwell stress induces the strong shear of the plasma filaments. As

a consequence, thermal energy and particles are expelled across the separatrix,

resulting in flows and shearing-off of the large heat flux across SOL [55,96].

Fig.4.3(b) shows the change of density and temperature pedestal at ∼

3500τA from the simulation. Both pedestals are collapsed as the PBM crash

occurs. For example, heights of density and temperature pedestal decreased by

26% and 21%, respectively. The stored energy also decreased by ∆WELM,Sim ≈

8.1 kJ, which is close to the experimental value ∆WELM,Exp ≈ 7(±2) kJ. Be-

cause the magnitude of the crash increases with the mode amplitude in the

nonlinear phase, the ELM size also increases with Wkin. Therefore, the largest

perturbed kinetic energy during the nonlinear phase, Wkin,max, is used to esti-

mate the size of PBM or ELM in the later sections.

4.1.2 Numerical modeling of RMP and PBM

PBMs with n ≤ 14 are included in the simulation to study the effect of RMP-

induced plasma response on PBM. Note that n > 14 modes are also linearly

unstable, and the n = 12 mode is the most unstable. Because the growth rate

of n = 10 is similar to that of n = 12 as low n modes are dominant in the

nonlinear phase, it is reasonable to exclude n > 14 modes to meet the limit of
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Figure 4.4: Schematic diagram for the numerical modeling of RMP and PBM

in JOREK simulation.

our computing resources. Also, previous numerical modeling [92] revealed that

the n = 2 structure induced by RMP suppresses the growth of odd modes and

only even modes play a dominant role in the nonlinear phase when RMP is

applied. Therefore, n = 2, 4, 6, 8, 10, 12, and 14 modes are considered in this

study. Nevertheless, one of the important limitations of this study is that only

a limited number of even modes are considered.

To study the direct effect of RMP on PBM, We first calculate the evolution

of the n = 0 and 2 modes in the presence of RMP for t ∼ 800τA with the same

method described in Chapter.3. Then, n = 4, 6, 8, 10, 12, and 14 are added

with an initial amplitude imposed by the coupling with n = 2 to see how PBM

interacts with RMP. We note that PBM is the intrinsic component where n > 2

rather than n = 2 components according to RMP application. The schematic

diagram of the RMP modeling process is presented in Fig.4.4. In this way, the

interaction between RMP and PBM is evaluated self-consistently.
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4.2 ELM crash suppression

4.2.1 PBM suppression

The simulation results for the case with IRMP of 1 kA, 2 kA, 3 kA, and 4

kA are presented in Fig.4.5. The orange dotted line in the figure indicates

Wkin,max in the natural PBM simulation. For IRMP ≤ 2 kA, PBM of n = 6

and 8 exponentially grow in the linear phase and show bursty behaviors at

the nonlinear phase. The overall mode amplitude during the nonlinear phase

slightly decreases by 30% compared to the Natural ELM case.

When RMP of IRMP = 3 kA is applied, the overall mode amplitude during

the nonlinear phase decreases by 75%. The dominant mode in the linear phase

changes to n = 4− 6. This is due to the interactions between the n = 2 RMP-

driven mode and PBMs. It is consistent with the report that the modified field

structure induced by RMP changes the dominant mode number to lower n [77].

However, there is still a crash in the nonlinear phase, and filaments are ex-

pelled similarly as in the natural PBM case, but with much smaller amplitudes.

Therefore, PBMs are mitigated in this case.

On the other hand, PBMs are suppressed with IRMP = 4 kA. The most

unstable mode changes to n = 4 and shows bursts of very low amplitude only.

After that, all modes are saturated and remain stationary without any bursty

behavior [97]. Their saturated value is similar to the initial amplitude imposed

by the coupling with n = 2. It is noteworthy that ELMs are suppressed in the

experiment with IRMP ∼ 3.7 kA, which agrees fairly well with our modeling

results (∼ 4 kA). This result shows better agreement than Ref. [92], where the

mode suppression was achieved with the perturbed field, 1.5 times larger than

the experimental value.
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Figure 4.5: Time evolution of the toroidal harmonics of the kinetic energy for

n = 2 ∼ 14 is presented. Each figure corresponds to the case of PBM with IRMP

equals to (a) 1 kA, (b) 2 kA, (c) 3 kA, and (d) 4 kA. Units are arbitrary, but

the normalization is the same in all cases. The orange dotted line represents

the maximum Wkin in the natural ELM simulation. Here, n = 2 mode is the

RMP-induced mode.
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Figure 4.6: Time evolution of the ELMy heat flux (solid line) and background

heat flux (dotted line) on the lower divertor of the LFS for various IRMP are

presented. It shows that ELMy heat flux decreases with IRMP while background

heat flux increases.

4.2.2 Change in divertor heat flux

The effect of RMP on the heat flux at the divertor during ELMs is also in-

vestigated. Fig.4.6 shows the instantaneous ELMy peak heat flux, QELM,max

(= Qmax − QBG) (solid line) and background heat flux, QBG (dotted line) on

the lower-outer divertor plate during the mode crashes. In Fig.4.6, QBG has

been removed from the actual peak heat flux, Qmax, to compare QELM,max.

Here, the time axis for each case is shifted to the left by 0τA(0 kA), 150τA(2

kA), 70τA(3 kA), and 30τA(4 kA), respectively, to make the comparison easier.

When IRMP = 2 kA is applied, QELM,max decreases by 28% from that of the
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natural PBM case. For IRMP > 2 kA, QELM,max starts to change drastically

and eventually decreases by 88% at IRMP = 4 kA, where PBMs are suppressed.

Because QELM,max for IRMP = 4 kA is lower than 35% of the background heat

flux, it is negligible. Therefore, we can say that suppression of PBM results in a

significant reduction in the heat flux that agrees with the experiments [98,99].

The background heat flux increases by 50% from the reference value at

IRMP = 4 kA. It is mainly due to the increased radial transport from the core

to SOL, which is consistent with experimental trends [99–101]. Although it is

not shown here, the striation pattern of the divertor heat flux is not apparent in

our case as tangles induced by RMP [52] are not large enough to affect the heat

flux. Detailed analysis of the effect of tangles in divertor heat flux of KSTAR

will be pursued as future work. Note that there is a lack of diagnostics, and the

KSTAR divertor configuration is not considered accurately in the modeling. As

a consequence, a direct comparison of the simulation with the measurement of

divertor heat flux is difficult, and it will also be addressed in future works.

The ELMy heat flux during the ELM mitigation is usually smaller [100]

than that of natural ELM in the experiments, which is consistent with the above

results. However, the simulation result shows the possibility of increased ELMy

heat flux during the mitigation phase. It is related to the fact that the divertor

heat flux depends not only on the amplitude of the mode crash but also n of the

most unstable PBM. For example, the peak ELMy divertor heat flux tends to

increase as the dominant n becomes lower [102]. Because the amplitude and the

dominant n of PBM decrease simultaneously in the ELM mitigation case, the

non-monotonic tendency of ELMy heat flux may be observed in the mitigation

case. Also, the stochastic field and the tangle structure caused by RMP change

the divertor heat flux. However, they cannot be properly considered in this
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modeling because accurate divertor physics such as neutral recycling, source,

and diffusion profiles are not included. Further studies will be required for

improving the modeling of the divertor heat flux.

4.3 RMP and PBM coupling

Suppression of PBM with the perturbed field could be related to the degraded

mean pedestal, which is the source of PBM. It could also result from the in-

creased mode coupling of PBM (n > 2) with RMP-induced plasma response

(n = 2), which has been found in previous studies [91, 92]. To find the main

factor of mode suppression, PBM stability is investigated with the degraded

mean density and temperature profile, while mode coupling of PBM with RMP

is excluded. This is done as the simulation with a pressure gradient and current

density modified to the same level as in the ELM suppression case (IRMP = 4

kA), but without applying RMPs. As shown in Fig.4.7(a), the linear growth

rate of PBM decreases more than 60% for all n as compared to the case with-

out pedestal degradation. However, PBMs are still non-linearly unstable, and

a significant mode crash occurs despite small growth rates. In Fig.4.7(b), mode

saturation is possible only when mode coupling is included. This indicates that

the mode coupling has a dominant effect on the ELM suppression of our case

rather than the reduced destabilizing source owing to the pedestal degradation.

4.3.1 Effect on the pedestal transport

It turns out that the mode coupling can change the magnitude of the field

penetration by RMP. Fig.4.8(a) shows δBr and δB
′
r (= ∂δBr/∂ψN) of the q =

4.5 rational surface on the center of the pedestal (ψN ∼ 0.98). Here, δBr and δB
′
r

are the radial perturbed field strength and its radial gradient of [m,n] = [9, 2]
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Figure 4.7: (a) Spectrum of the linear growth rate. The red line and blue line

correspond to the growth rate of PBM for reference equilibrium and for that

with degraded pedestal induced by RMP, respectively. (b) Nonlinear evolution

of Wkin of n = 10 component for the natural PBM (red line), for PBM with

degraded pedestal (blue line), and for PBM with mode coupling including RMP

(orange line).
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Figure 4.8: a) δBr,even and δB′
r,odd of [m,n]=[9,2] on the q = 4.5 rational surface

for various IRMP. The orange line and red line correspond to the radial per-

turbed field strength of even parity, δBr,even, with and without mode coupling

between PBMs, respectively. The green line and blue line represent the radial

gradient of the perturbed field strength of odd parity, δB′
r,odd, with and without

PBM, respectively. (b) The radial profile of the E ×B flow, V⊥,E (dotted line),

and electron flow, V⊥,e (solid line). The green color corresponds to the initial

equilibrium case. The red and blue colors represent the cases with and without

PBM, respectively. The orange dotted line corresponds to V⊥ = 0.

64



at t = 3800τA, respectively. The even parity δBr,even represents the size of the

magnetic island, and the odd parity δB′
r,odd means the strength of the kink-

peeling response. In the figure, δB′
r,odd with the mode coupling between PBM

is smaller than the case without it for all IRMP. This is consistent with the

decrease in the energy of n = 2 mode when PBM are included (see Fig.4.5).

This may support that the energy exchange between the n = 2 RMP-driven

mode and PBM is mediated by the n = 2 kink-peeling component.

On the other hand, δBr,even shows a different behavior. When IRMP < 3 kA,

δBr,even has a similar tendency as δB′
r,odd. On the other hand, for IRMP > 3 kA,

δBr,even with PBM becomes larger than the case without it. Once again, ELM

suppression is achieved with IRMP ∼ 4 kA. To understand the steep increase

in δBr,even at IRMP ∼ 4 kA, the change in the plasma flow is investigated.

Fig.4.8(b) shows the perpendicular E ×B flow, V⊥,E×B, and the electron flow,

V⊥,e, for the cases with and without PBM. In the figure, there is no significant

flow reduction even with PBM. Rather, the inclusion of PBM increases V⊥,e

at the pedestal center, which can reduce the field penetration. Therefore, the

increase in δBr,even by PBM can be more correlated with the mode interaction

between the RMP-driven mode and PBM rather than with the influence of the

flow.

The increased δBr,even and the island size can further reduce the pedestal

gradient. As shown in Fig.4.9, the pedestal gradient further decreases by 8%

when the interaction of PBMs and RMP is included. Therefore, the mode cou-

pling effect can also help ELM suppression by enhancing the magnetic island

and degrading the pedestal. As the interaction between the magnetic island and

PBMs turns out to be important, future work may be needed to consider the

plasma resistivity, which should affect magnetic islands and field penetration
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Figure 4.9: The radial profile of the pressure gradient ∂P/∂ψN. The green color

corresponds to the initial equilibrium case. The red and blue colors represent

the cases with and without mode coupling effect, respectively.

more strongly than the mode coupling.

4.3.2 Effect on the spectral transfer

Evidence of strong mode coupling between PBMs (n > 2) and RMP (n = 2)

during the mode suppression can be also found in Fig.4.5(d). In the early phase,

n = 4 mode rapidly grows and reaches Wkin ≈ 0.18. Then, n = 2 mode induced

by RMP starts to increase and followed by a decrease of n = 4 mode. After

that, n = 2 mode decreases while n = 6 mode starts to grow. Similar patterns

are repeated afterward.

Such interactions can be quantified as C[n1, n2], which is the correlation

coefficient for mode amplitude δϕ2(t) of n1 and n2 harmonics. The result is

presented in Fig.4.10. C[n1, n2] is calculated during the nonlinear phase, where
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Figure 4.10: The time correlation coefficient of different harmonics during the

nonlinear phase for a) the natural ELM case and b) the suppression case

(IRMP = 4 kA).

mode crash occurs. In the natural ELM case, the interactions between harmon-

ics are mainly done by n = 10− 14, which is the most unstable mode. Because

unstable modes have a large amplitude, they drive the overall mode couplings.

However, in the case of ELM suppression (IRMP = 4 kA), the mode interactions

appear over a wide range of n. This result addresses that energy exchanges be-

tween PBMs can be enhanced by n = 2 RMP-driven mode. Here, n = 2 mode

helps PBMs to share energies among themselves by extracting the energy of

the rapidly growing mode and by spreading it to others.

For additional analysis of the mode coupling, bi-spectral analysis is con-

ducted on the perturbed harmonics. The bi-spectral coefficient for the variable

X, BX, is defined as Eq.4.1,
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Figure 4.11: The bi-spectral coefficient of different harmonics at q = 4.5 rational

surface for a) the perturbed poloidal flux and b) the potential with IRMP = 4

kA (ELM suppression case). The t = 2950τA is selected as the target time slice.

The red dotted line represents |n2 − n1| = 2.

BX[n1, n2] =
X∗
n2X(n2−n1)Xn1

|X∗
n2|

∣∣X(n2−n1)Xn1

∣∣ (4.1)

where (*) denotes the conjugate operator. BX represents the nonlinear coupling

of mode component in a specific region for a single time slice while C[n1, n2]

can capture the global interaction over time. So BX is suitable for detailed

analysis. The bi-spectral coefficient for the perturbed poloidal flux Bψ and the

potential Bu with IRMP = 4 kA is calculated at the q = 4.5 rational surface

at the center of the pedestal. t = 2950τA is selected as the target time. We

note that δψ and δu of the tearing component have the even and the odd

parity, respectively. Therefore, Bψ is more related to the coupling between the

tearing modes. On the other hand, Bu represents the interactions of kink and

ballooning modes. The bi-spectral analysis result is shown in Fig.4.11. Once
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Figure 4.12: The schematic diagram of the interaction between different [m,n]

components at the pedestal. The green and orange lines correspond to the radial

width of kink and island structure driven by n = 2 RMP, respectively.

again, it is confirmed that mode coupling has been largely enhanced in the

ELM suppression case. In particular, the mode coupling occurs largely over

|n1 − n2| = 2. It addresses that n = 2 mode is a bridge that mediates the

interactions between all harmonics. Besides, the norm of Bψ and Bu is 3.59 and

3.07, respectively. Because they have similar size, both tearing and twisting

parity modes play an important role in the mode coupling.

The n = 2 RMP-driven mode governs interactions between RMP and PBM,

and both kink and tearing components participate at the same time. From these

findings, several requirements for ELM suppression can be suggested. In order

for [m1, 2] mode to interact with [m2, n], [m2 − m1, n − 2] mode has to be

participated. For their interaction, the spatial overlapping of [m1, 2] and [m2 −

m1, n− 2] is essential. The schematic diagram of these interactions is presented
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in Fig.4.12. As shown in the figure, n = 2 components can interfere with the

n > 2 modes through the interaction with other overlapping modes. We note

that most components of unstable PBM generally stay in the pedestal region.

Here, n = 2 components should radially cover PBM to mediate their energy and

suppress them. Furthermore, all n = 2 parity modes have to overlap each other

to enhance the coupling with low to high n modes. The kink components have

a large non-resonant part, and their spatial coupling can easily occur. However,

its structure is localized to LCFS, so it is not enough to cover the region near the

pedestal top to mediate nonlinear interaction. On the other hand, the tearing

components have a small non-resonant part, and it is not sufficient for the island

to overlap. Nevertheless, its resonant part can form over the wide radial range.

Therefore, if the width of the magnetic island is large enough for island overlap,

they can support mode interaction near the top of the pedestal. From this point

of view, three requirements can be addressed. They are 1) large kink-peeling

response, 2) n = nRMP rational surface near the pedestal top (or slightly inner)

and center, and 3) magnetic island overlap. If these conditions are satisfied, the

kink and tearing components can mediate the interactions between PBMs in

the entire pedestal region and support the ELM suppression.

The reference plasma of this study has q = 8/2 and q = 9/2 rational surface

at the pedestal top and the center, respectively. A large KPM response also

occurs. In addition, the effect of the island overlap on the mode coupling is

tested. Chiricov parameter S(m1,m2) is defined as Eq.4.2 to quantify the overlap

between [m1, 2] and q = [m2, 2] islands,

S[m1,m2] =

∣∣∣∣ wm1 + wm2

ψN,m1 − ψN,m2

∣∣∣∣ , (4.2)

where ψN,m and wm are the radial location and half-width of [m, 2] island,
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Figure 4.13: δBr,even of [m,n]=[9,2] on the q = 4.5 rational surface for var-

ious IRMP. The orange line and red line correspond to the radial perturbed

field strength of even parity, δBr,even, with and without mode coupling between

PBMs, respectively. The blue line represents the chiricov parameter for [8,2]

and [9,2] magnetic islands.
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respectively. The wm is derived from the approximate expression, Eq.4.3, with

minor radius r, total poloidal flux ψa and poloidal mode number m.

wm,n =
2RBθ
ψa

√∣∣∣∣rqBr,even,mn

m∂q/∂rBθ

∣∣∣∣ (4.3)

Here, the island overlap occurs if S(m1,m2) > 1. S(8,9) with varying IRMP is cal-

culated as shown in Fig.4.13. δBr,even at q = 9/2 of Fig.4.8 is also presented in

the same figure. δBr,even with PBM starts to rapidly increase near S(m1,m2) ∼ 1.

Because the island overlap occurs at this point, it strengthens the interpretation

that the increase in δBr,even by PBM is the consequence of the mode interac-

tion. We note that S(9,10) is already larger than unity for IRMP > 1 kA. When

S(m1,m2) exceeds unity at IRMP = 4 kA, the ELM suppression is achieved. Be-

cause the mode coupling largely increases for S(m1,m2) > 1, the island overlap

near the pedestal top can be an important condition for the mode suppression in

terms of interaction between RMP and PBM. Interestingly, pedestal degrada-

tion requires large stochasticity, but this result suggests that weak stochasticity

(S(8,9) ≳ 1) may be sufficient for ELM suppression.

Another interesting feature of the ELM suppression case is a significant

change in the vorticity profile U(= ∇2u). It is found that [m,n] = [0, 0] com-

ponent of vorticity, U00, significantly decreases during the ELM suppression

phase. Fig.4.14 shows the U00 profile for IRMP = 0 kA (ELMy), 2 kA (mitiga-

tion), and 4 kA (suppression) cases. Here, U00 of the pedestal region decreases

when IRMP increases to 2 kA, but it is not much different from the ELMy case.

For IRMP = 4 kA, U00 is largely degraded. Because U00 largely decreases when

PBM is included, it suggests that mode coupling suppresses the U00 profile.

The previous study [103] reported that the perturbed energy of PBM tends to

be evenly distributed over n as U00 decreases. This finding is consistent with

72



Figure 4.14: The radial profile of plasma vorticity of [m,n] = [0, 0] component is

presented for IRMP 0, 2, 4 kA with PBM, and without PBM cases. The dotted

gray line represents U00 = 0.
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Figure 4.15: The schematic diagram of the correlation between RMP and the

ELM crash suppression.

Fig.4.5(d) where the n spectrum of PBM broadens with ELM suppression. The

experimental observation [24] also found a similar trend where a single coherent

wave transitions to the broadband waves.

When the energy transfer between modes increases and the energies of PBM

are evenly distributed to harmonics, a single-mode cannot grow too large to

crash. Therefore, RMP acts to increase the coupling between different mode

numbers of PBM and results in states with saturated or suppressed modes. This

finding is consistent with the previous numerical study that the bursty mode

crash disappears when mode couplings between PBMs are reinforced [104].

Overall, the correlation between RMP and ELM crash suppression can be ex-

tended as Fig.4.15. In the figure, the conventional and the extended correlations

are colored in gray and pink, respectively. From this modeling, one might ex-

pect that the plasma condition that can maximize the mode coupling effect is

favorable to the ELM suppression. After further investigation, it is confirmed

that PBM locking is such a condition.
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4.4 RMP-driven PBM locking

A large change is found in the rotation of the mode when ELM suppression

is achieved in the simulation. Fig.4.16(a) presents the poloidal rotation of the

most unstable mode (n > 2) for different RMP coil currents. Here, Vθ,mode is

the poloidal rotation at the midplane of LFS, derived from the simulation in

the laboratory frame during the nonlinear phase. In the natural PBM case, a

mode shows very oscillatory behavior as the result of nonlinear interaction. The

oscillatory behavior of Vθ,mode decreased overall for IRMP = 2 kA. For IRMP = 4

kA, modes are initially rotating, but start to slow down until they stop rotating

at t ∼ 3400τA. They remain nearly static. Unlike Vθ,mode, the poloidal E × B

rotation Vθ,E continues to increase. Although it is not shown here, Vθ,E at the

center of the pedestal (ψN = 0.98) changes from -3 km/s to -10 km/s in the

ion-diamagnetic direction as IRMP increases from 0 kA to 4 kA. It shows that

RMP brakes PBMs and this is a prominent feature that distinguishes ELM

suppression from mitigation.

The sudden braking of ELM after a transition from mitigation to suppres-

sion was also observed in the experiments [24, 25]. These experimental results

may indicate that the ELM suppression regime consists of static saturated

PBMs, while natural or mitigated regimes consist of rotating PBMs. Unfortu-

nately, the mechanism of the mode braking is unclear. The previous numerical

study [92] tried to explain the mode braking with the RMP-induced electro-

magnetic torque [44]. The reduction of perpendicular electron flow is also ob-

served in our modeling, which is consistent with this study. Furthermore, the

recent theoretical study proved that nonlinear dynamic plays are important

for the locking of the magnetic island and other modes under the presence of

RMP [105]. However, there is no direct evidence and quantitative explanations
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Figure 4.16: a) Time evolution of the poloidal mode rotation Vθ,mode during

the nonlinear phase. It shows Vθ,mode of the natural PBM (n = 12, green line),

PBM with IRMP = 2 kA (n = 6, blue line), and IRMP = 4 kA (n = 4, red line).

(b) Time evolution of cos∆δ, where ∆δ is the phase difference between n = 2

RMP-induced mode and the most unstable harmonic component of PBM for

IRMP of 1 kA (n = 6, gray line), 2 kA (n = 6, blue line), and 4 kA (n = 4, red

line).
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for mode braking with RMP-induced torque yet. Another possible candidate is

the interaction between the mode and the magnetic island. In Fig.4.8(a), the

magnetic island and δBr,even rapidly increase at IRMP ∼ 4 kA, where the mode-

locking occurs. The rapid increase in δBr,even implies a strong coupling between

PBMs and the magnetic island, so the perturbed field and the coupling effect

may have influenced the suppression of mode rotation. Besides, the interaction

of the resonant currents with the external fields can also be important because

it affects the torque balance with RMP. Further analysis is needed as future

work.

4.4.1 Enhanced mode coupling by PBM locking

To understand the role of mode braking in the ELM suppression, we investigate

the effect of Vθ,mode to the mode coupling and ELM suppression for the first

time. In our modeling, perturbed quantitiesXn of a single harmonic is described

as

Xn (R,Z, ϕ) = Xn (R,Z) cos [nϕ+ δn(R,Z)]. (4.4)

In Eq.4.4, Xn(R,Z) and the cosine term catch the poloidal and the toroidal

variations of mode, respectively. The mode coupling is affected by their relative

spatial position and it is related to the relative phase difference, ∆δ(= δn1−δn2).

In the previous section, we concluded that the suppression of PBM may

result from energy exchange between n = 2 RMP-induced mode and PBMs

(n > 2). Steady energy transfer between modes is vital in this respect. How-

ever, energy transfer will be suppressed if ∆δ keeps changing. For example,

when we consider the momentum equation, nonlinear terms in ∂tun depends

on cos [δn1 − δn2], where n = n1 − n2. Because ∂tWkin for n is proportional to
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un∂tun, it is also affected by ∆δ. In addition, the time scale of ∆δ is ∼ 100τA

comparable to that of mode fluctuations. Therefore, ∆δ should remain con-

stant to maintain consistent energy exchange between modes. It is equivalent

to keeping the spatial overlapping of mode structures.

Because the RMP-induced n = 2 mode is static in space, ∆δ only depends on

Vθ,mode of PBM. To keep ∆δ constant, Vθ,mode needs to be very small, and mode

locking can be advantageous to ELM suppression. In Fig.4.16(b), the phase

difference (∆δ) between n = 2 (RMP) and the largest harmonic of PBM at the

mid-plane of LFS is presented. During the nonlinear phase, it clearly shows how

Vθ,mode affects ∆δ. When IRMP = 1 kA or 2 kA, ∆δ shows considerable variation

because of the oscillatory Vθ,mode as shown in Fig.4.16(a). For IRMP = 4 kA

(ELM suppression case), however, cos∆δ remains almost constant (∼ −0.8)

with locking of PBM. Therefore, it can be addressed that PBM locking is the

favorable condition which amplifies the coupling of RMP and PBM, resulting

in mode suppression.

In the nonlinear phase, Vθ,mode can be expressed as

Vθ,mode ≈ Vθ,E + Vθ,NL, (4.5)

where Vθ,NL is the poloidal mode rotation generated by nonlinear interactions

including RMP. We note that when Vθ,E increases, larger IRMP can be needed

to drive Vθ,NL to make Vθ,mode vanish. Locking PBMs with RMP becomes more

difficult with larger Vθ,E. In this context, large Vθ,E will be disadvantageous to

ELM suppression.

To test the above hypothesis, the effect of RMP on PBMs with increased

Vθ,E is investigated. In this simulation, the n = 0 component of Vθ,E at the

center of the pedestal is increased from -3 km/s to -15 km/s while other condi-
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Figure 4.17: a) Radial profile of E × B poloidal rotation profile at the mid-

plane of LFS. Profile of reference case (blue line) and modified case (red line)

are presented. Here, the orange dotted line corresponds to the position of the

pedestal center, and ion-diamagnetic flow is in (the negative) direction. (b) The

largest kinetic energy of PBM during the nonlinear phase for various IRMP. The

blue dotted line and red stars correspond to the reference and modified cases,

respectively.
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tions are fixed. The modified radial profile of Vθ,E at the edge region is shown in

Fig.4.17(a). Wkin,max of PBM in the nonlinear phase with corresponding IRMP

is presented in Fig.4.17(b). For the case of modified Vθ,E, the modes are miti-

gated by RMP similarly to the reference case. However, at IRMP = 4 kA, the

suppression of the mode is not achieved and locking of PBM does not occur

either. While the pressure gradient at the center of pedestal decreases by 35%,

it decreases by 28% in the case with the modified Vθ,E profile. When Vθ,E is

modified, the V⊥,e = 0 layer is pushed outward from ψN = 0.95 to 0.97, and

the radial width of the stochastic layer is reduced. Thus, the degradation of

the pedestal is relatively small. Our results showed that mode coupling plays a

more critical role in ELM suppression than the reduction of the pedestal gra-

dient. Therefore, the locking of PBM (Vθ,mode → 0) is the main factor for the

ELM suppression. Furthermore, small Vθ,E(≈ 0) in the pedestal region will be

advantageous in terms of PBM locking. It might be related to the importance

of Vθ,E ≈ 0 in ELM suppression in experiments [89].

In summary, the favorable conditions for the ELM suppression by RMP can

be addressed from our results. They are summarized as Table.4.1, where qped

is q at the pedestal top, M is arbitrary integer value and VPBM is Vθ,mode of

PBM during its linear phase. The mode interaction between RMP and PBM is

expected to be amplified under these conditions.
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Table 4.1: Favorable conditions for the RMP-driven ELM suppression

Conditions Purposes

Odd parity coil - Large kink-peeling response

qped ∼M/nRMP - Island formation near the inner pedestal top

S(M,M+1) > 1 - Island overlap to cover the pedestal

VPBM ∼ 0 - Advantageous to the PBM locking
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Chapter 5

Conclusions and future work

The mechanism of RMP-driven pedestal transport and suppression of ELMs has

been studied using nonlinear MHD simulations. KPM, tearing response, NTV

transport, and mode coupling between RMP and PBM have been investigated

by applying the nonlinear MHD code, JOREK, to the KSTAR experiments.

Chapter 2 described the strategy to reconstruct accurate and physically

reliable plasma equilibria. High-quality EFIT equilibrium is an essential com-

ponent of numerically sensitive simulations. However, there are many obstacles

to obtain it. In order to solve these kinetic profile problems, various numeri-

cal schemes such as outlier filter and function-based fitting to obtain a smooth

core profile were developed. Based on the linear PBM theory, a numerical tool

was developed to determine the pedestal structure that satisfies the pedestal

instability properties observed in the experiment. In addition, a scheme has

been developed to improve the uncertainty in the MSE measurement based

on the plasma current profile model. By developing these theoretical and nu-
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merical tools, a delicate equilibrium was reconstructed for the nonlinear MHD

simulation.

First, the effect of RMP-driven MHD transport is investigated on the pedestal.

The kink-peeling and tearing response were numerically reproduced under the

presence of RMP. The pedestal pressure gradient is reduced, because the radial

transport is enhanced due to the formation of the stochastic layer and E × B

convective flow by tearing and KPM component, respectively. This trend is par-

tially consistent with experimental observation. However, discrepancies in the

density and rotation were identified. We introduced the NTV effect to improve

the numerical results. It reproduced the drop of toroidal rotation but it is still

insufficient to account for the degradation of the density pedestal shown in the

experiment. This result suggests that new physic, such as turbulence, must be

involved to fully explain the pedestal degradation by RMP.

Then, the numerical reproduction of RMP-driven ELM crash suppression

is addressed. The simulation results show that such ELM-crash-suppression is

attributable not only to the degraded pedestal but also to direct coupling be-

tween PBM and RMP-driven plasma response. The coupling between PBM and

RMP can 1) enhance the size of the island across the pedestal, reducing the

instability source by further pedestal degradation. It 2) increases the spectral

transfer between edge harmonics preventing catastrophic growth and crash of

unstable mode. In addition, the locking (or rotation bifurcation) of PBMs has

been numerically simulated during the suppression phase. This mode-locking is

a distinguishing feature of the mode suppression as rotating mode structure re-

mains for the natural ELM and mode mitigated case. PBM locking can enhance

the interactions between PBMs and RMP. Based on these findings, favorable

conditions for RMP-ELM suppression is addressed in terms of mode coupling
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between RMP and PBM.

These results provide a deeper understanding of pedestal transport and

ELM suppression driven by the RMP. However, the analysis is done for a spe-

cific KSTAR plasma. It is noteworthy that various RMP and plasma configura-

tion can also contribute to the RMP-driven plasma response. Besides, a more

advanced physics model should be included in the simulation to improve the

modeling results. Therefore, the further numerical investigation will be needed.

The numerical analyses on the n = 1 RMP case with accurate transport coef-

ficients, two temperature (Ti ̸= Te), ne continuity equation [80], and extended

MHD model are the interesting future works which may extend our understand-

ing of RMP physics.

84



Bibliography

[1] S. Li et al. Abstr. Appl. Analysis 2014, 1 (2014).

[2] A. Kirk et al. Phys. Rev. Letters 96, 18 (2006).

[3] H. H. Lee et al. In Outer divertor target heat fluxes during resonant

magnetic perturbation induced ELM suppressed regimes in KSTAR. Pre-

sented at the 2nd Technical Meeting on Divertor Concepts (IAEA), 13-16

November 2017 in Suzhou, China.

[4] J. W. Connor et al. Phys. Plasmas 5, 7, 2687 (1998).

[5] D. Kim et al. Plasma Phys. Control. Fusion 52, 9, 095009 (2010).

[6] Y. M. Jeon et al. Phys. Rev. Letters 109, 3 (2012).

[7] J. H. Lee et al. Rev. Sci. Instrum. 81, 10, 10D528 (2010).

[8] H. Biglari et al. Phys. Fluids B 2, 1, 1 (1990).

[9] T. S. Hahm et al. Phys. Plasmas 2, 5, 1648 (1995).

[10] C. Challis et al. Nucl. Fusion 55, 5, 053031 (2015).

[11] P. Snyder et al. Nucl. Fusion 44, 2, 320 (2004).

85



[12] O. Sauter et al. Phys. Plasmas 6, 7, 2834 (1999).

[13] A. Loarte et al. Plasma Phys. Control. Fusion 45, 9, 1549 (2003).

[14] G. Huijsmans et al. Nucl. Fusion 53, 12, 123023 (2013).

[15] L. Baylor et al. Nucl. Fusion 49, 8, 085013 (2009).

[16] J. Rapp et al. Plasma Phys. Control. Fusion 44, 6, 639 (2002).

[17] A. W. Degeling et al. Plasma Phys. Control. Fusion 45, 9, 1637 (2003).

[18] T. E. Evans et al. Nature Phys. 2, 6, 419 (2006).

[19] T. E. Evans et al. Phys. Rev. Letters 92, 23 (2004).

[20] Y. Sun et al. Phys. Rev. Letters 117, 11 (2016).

[21] W. Suttrop et al. Plasma Phys. Control. Fusion 59, 1, 014049 (2016).

[22] R. A. Moyer et al. Phys. Plasmas 24, 10, 102501 (2017).

[23] J.-K. Park et al. Nature Phys. 14, 12, 1223 (2018).

[24] J. Lee et al. Phys. Rev. Letters 117, 7 (2016).

[25] J. Lee et al. Nucl. Fusion 59, 6, 066033 (2019).

[26] L. Lao et al. Nucl. Fusion 25, 11, 1611 (1985).

[27] J. Chung et al. J. Korean Phys. Society 65, 8, 1257 (2014).

[28] W.-H. Ko et al. Rev. Sci. Instrum. 81, 10, 10D740 (2010).

[29] Y. U. Nam et al. Rev. Sci. Instrum. 79, 10, 10E705 (2008).

[30] S.-H. Seo et al. Rev. Sci. Instrum. 83, 10, 10E342 (2012).

86



[31] M. Newville et al. Lmfit: Non-linear least-square minimization and curve-

fitting for python (2014).

[32] G. S. Yun et al. Rev. Sci. Instrum. 81, 10, 10D930 (2010).

[33] G. S. Yun et al. Rev. Sci. Instrum. 85, 11, 11D820 (2014).

[34] R. Hager et al. Phys. Plasmas 23, 4, 042503 (2016).

[35] A. Mikhailovskii et al. Plasma Phys. Rep. 23, 10, 844 (1997).

[36] S. Saarelma et al. Plasma Phys. Control. Fusion 60, 1, 014042 (2017).

[37] H. Lütjens et al. Comput. Phys. Commun. 97, 3, 219 (1996).

[38] A. Pankin et al. Comput. Phys. Commun. 159, 3, 157 (2004).

[39] K. Matsuda. IEEE T. Plasma Sci. 17, 1, 6 (1989).

[40] B. W. Rice et al. Rev. Sci. Instrum. 70, 1, 815 (1999).

[41] S. A. Lazerson et al. Plasma Phys. Control. Fusion 55, 8, 084004 (2013).

[42] S. L. and. Nucl. Fusion 55, 2, 023009 (2015).

[43] A. Wingen et al. Nucl. Fusion 57, 1, 016013 (2016).

[44] R. Fitzpatrick. Phys. Plasmas 5, 9, 3325 (1998).

[45] M. Becoulet et al. Nucl. Fusion 52, 5, 054003 (2012).

[46] N. M. Ferraro. Phys. Plasmas 19, 5, 056105 (2012).

[47] N. Ferraro et al. Nucl. Fusion 53, 7, 073042 (2013).

[48] C. Paz-Soldan et al. Phys. Rev. Letters 114, 10 (2015).

87



[49] F. Orain et al. Nucl. Fusion 57, 2, 022013 (2016).

[50] G. Huysmans et al. Plasma Phys. Control. Fusion 51, 12, 124012 (2009).
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초록

플라즈마 경계 불안정성 (ELM) 은 토카막 플라즈마의 경계 페데스탈 영역에서

발생하는급격한MHD불안정성으로,토카막내벽과다이버터에치명적인손상을

입힐 수 있다. 따라서, 고성능 플라즈마 운전을 유지하고 핵융합 반응을 일으키기

위해서는 ELM을억제하는것이필수적이다.과거실험연구로부터공명자장섭동

(RMP) 을 통해 ELM 억제가 가능하다는 것이 밝혀졌다. 그러나, RMP를 활용해

ELM을 제어하기 위해서는 특정 조건들이 반드시 충족되어야 하고, 이는 매우 좁

은 작동 영역을 갖는다. 그러므로, 안정적인 ELM 제어를 위해서는 RMP-ELM

제어 메커니즘을 이해하는 것이 중요하다.

이 논문은 RMP 인가에 따른 페데스탈 영역의 플라즈마 수송 변화와 ELM

억제 메커니즘에 대한 MHD 기반 수치 연구를 다룬다. 첫째로, KSTAR 플라즈마

대상으로 비선형 MHD 시뮬레이션을 수행하는 데 필요한 고성능 플라즈마 구축

방법론을 개발하였다. 해당 평형 계산의 어려움을 해결하기 위해 이론적 모델과

여러 수치 기법들이 사용되며, 비선형 MHD 연구에 적합한 완성도 높은 플라즈마

평형이 도출되었다.

둘째로, RMP인가에 따른 MHD 기반의 페데스탈 수송 현상을 분석하였다.

RMP에 의해 구동되는 뒤틀림-껍질 응답 (KPM) 및 확률적 수송 층이 발생한다.

해당 요소들로 인해 페데스탈 영역에서 대류, 전도성 및 신고전 (NTV) 플라즈마

수송을 증가하며 온도와 밀도 페데스탈의 기울기가 줄어드는 것을 설명하였다.

KSTAR 실험에서 관측된 결과와의 비교를 통해 본 MHD 기반의 수송 연구 결과

의 타당성을 일부분 확보하였으나, 실험 결과를 완전히 설명하기 위해서는 난류

수송과 같은 추가적인 물리 기작이 필요하다는 것이 확인되었다.

마지막으로, KSTAR 실험과 유사한 조건의 RMP 인가에 따른 ELM 억제 현

상을 시뮬레이션 상에서 성공적으로 재현하였다. 이로부터 ELM 억제는 RMP에

의한 페데스탈 기울기의 감소뿐만 아니라 ELM과 RMP 간의 직접적인 상호작용
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에 기인하는 것을 밝혀냈다. 이때 상호작용의 효과는 1) 페데스탈 영역의 자장 섬

크기를 증가시켜 추가적인 페데스탈 기울기와 불안정성 발생 요소를 줄이고 2)

ELM의 급격한 증가와 붕괴를 방지하는 불안정성 간의 에너지 이동을 증가시키는

것으로 확인되었다. 이와 같은 효과로 인해 ELM은 비선형적으로 포화 상태에 도

달하게 되고 지속해서 억제될 수 있다. 추가로 본 연구는 ELM 억제를 위해 해당

RMP-ELM 간의 상호작용을 강화하는 플라즈마 조건을 논의하였다.

주요어: 토카막, 3D 자기장, 경계 페데스탈, 경계 불안정성 제어, KSTAR, PBM,

비선형 MHD

학번: 2014-22715
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