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Abstract

Trajectory Planning for Multiple Quadrotors using Relative Safe

Flight Corridor and Relative Bernstein Polynomial

Jungwon Park

Department of Mechanical & Aerospace Engineering

The Graduate School

Seoul National University

Multi-agent systems consisting of unmanned aerial vehicles (UAVs) are receiving attention from

many industrial domains due to their mobility, and applicability. To safely operate these multi-

agent systems, path planning algorithm that can generate safe, dynamically feasible trajectory is

required. However, existing multi-agent trajectory planning methods may fail to generate multi-

agent trajectory in obstacle-dense environment due to deadlock or optimization failure caused

by infeasible collision constraints. In this paper, we presents a new efficient algorithm which

guarantees a solution for a class of multi-agent trajectory planning problems in obstacle-dense

environments. Our algorithm combines the advantages of both grid-based and optimization-based

approaches, and generates safe, dynamically feasible trajectories without suffering from an erro-

neous optimization setup such as imposing infeasible collision constraints. We adopt a sequential

optimization method with dummy agents to improve the scalability of the algorithm, and utilize

the convex hull property of Bernstein polynomial to replace non-convex collision avoidance con-

straints to convex ones. We validate the proposed algorithm through the comparison with our

previous work and SCP-based method. The proposed method reduces more than 50% of the ob-

jective cost compared to our previous work, and reduces more than 75% of the computation time

compared to SCP-based method. Furthermore, the proposed method can compute the trajectory

for 64 agents on average 6.36 seconds with Intel Core i7-7700 @ 3.60GHz CPU and 16G RAM.

Keyword : Multi-agent path planning, Collision avoidance, Quadrotor.

Student Number : 2018-28113
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1
Introduction

Multi-agent systems with many unmanned aerial vehicles (UAVs) broaden the range of achievable

missions to complex environments unsafe or hard to reach for humans or a single agent. For

successful operation of these multi-agent systems, path planning algorithm is required to generate

a collision-free trajectory in any obstacle environment. However, many works have a risk to fail

in dense cluttered environments due to deadlock [1, 2] or failure caused by enforcing infeasible

collision constraints in the formulation [3, 4].

In this paper, we present an efficient multi-agent trajectory planning algorithm which gen-

erates safe, dynamically feasible trajectories in obstacle-dense environments by extending our

previous work [5]. The proposed algorithm is designed to have the advantages of both grid-based

and optimization-based approaches. First, it guarantees the feasibility of optimization problem

formulation by utilizing an initial trajectory computed from grid-based multi-agent path finding

algorithm. Second, it generates a dynamically feasible continuous trajectory by optimizing the

initial trajectory with consideration of quadrotor dynamics. When we formulate the optimiza-

tion problem, we utilize the convex hull property of relative Bernstein polynomial to translate

non-convex collision avoidance constraints to convex ones. Compared to the previous work [5], we

modify the method for constructing constraints not to occur infeasible constraints between colli-

sion avoidance constraints, and we introduce a sequential optimization method. This sequential
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method can deal with a large scale of agents with improved computational efficiency, and does

not cause deadlock or optimization failure by employing dummy agents.

1.1 Literature review

There have been discussions in literature closely related to our work on multi-agent trajec-

tory planning. In [3, 6, 7], the trajectory generation problems are reformulated as mixed-integer

quadratic programming (MIQP) or sequential convex programming (SCP) problems, that apply

collision constraints at each discrete time step. These methods suit well systems with a small

number of agents, but they are intractable for large teams and complex environments because an

additional adaptation process is required to find proper discretization time step depending on the

size of agents and obstacles. On the other hand our method does not require this process because

we do not use time discretization.

Sequential planning proposed in [8] for better scalability is similar to our work. However,

it may not be able to find a feasible solution for a crowded situation. To solve this, we adopt

dummy agents which move along the initial trajectory computed by a grid-based planner to

prevent deadlock.

The most relevant work can be found in [9, 10]. They plan an initial trajectory with a grid-

based planner and then construct a safe flight corridor (SFC), which indicates a safe region of

each agent. However, they need to resize SFC iteratively until the overall cost converges, while

our proposed method does not need an additional resizing process by using relative Bernstein

polynomial.

Recently, distributed planning is receiving much attention due to scalability [1,2,4]. However,

such distributed methods are not able to guarantee a safe solution in obstacle-dense environments

due to deadlock.

2



1.2 Thesis contribution

In this paper, we propose an efficient multi-agent trajectory optimization method in both term

of optimality of trajectory and computation time. Our main contributions can be summarized as

follows:

1. A multi-agent trajectory planning algorithm is presented for obstacle-dense environments,

which generates collision-free and dynamically feasible trajectories without a potential op-

timization failure by using relative Bernstein polynomial.

2. A sequential trajectory optimization method is proposed with dummy agents, which reduces

computational load.

1.3 Thesis outline

The remainder of this paper is organized as follows. In Section 2, we introduce the background

knowledge for Bernstein polynomial. Section 3 propose a multi-agent trajectory optimization

method. In Section 4, we introduce sequential optimization method using dummy agents. Exper-

imental results are presented in Section 5. Finally, Section 6 contains conclusions.
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2
Bernstein polynomial

Due to the differential flatness of quadrotor dynamics, it is known that the trajectory of quadrotor

can be represented in a polynomial function with flat outputs (x, y, z, ψ) in time t, where x, y, z is

the quadrotor’s position and ψ is the quadrotor’s yaw angle [11]. However, it is difficult to handle

collision avoidance constraints with standard polynomial basis because standard polynomial basis

does not provide spatial information of polynomial. For this reason, we will utilize Bernstein

polynomial to represent the trajectory of quadrotors. Bernstein polynomial is one of the special

form of Bézier curve, and has various useful properties compared to standard polynomial.

2.1 Definition

The Bernstein basis polynomial of degree n is defined as follows:

Bk,n(τ) =

(
n

k

)
τk(1− τ)n−k (2.1)

where τ ∈ [0, 1] and k = 0, 1, ..., n.

The Bernstein polynomial p(τ) ∈ R3 is defined as the linear combination of Bernstein basis

polynomials:

p(τ) =
n∑
k=0

ckBk,n(τ) (2.2)

The coefficients ck ∈ R3 are called control points of the Bernstein polynomial.
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Figure 2.1: Convex hull property of Bernstein polynomial.

2.2 Properties

In this section, we introduce useful properties of Bernstein polynomial which will be utilized in

trajectory optimization.

2.2.1 Convex hull property

One of the important properties of Bernstein polynomial is convex hull property. Convex hull is

a convex envelop of a set of points, which is defined as follows:

conv{c0, ..., cn} =

{
n∑
k=0

λkck

∣∣∣∣∣λk ≥ 0 for all k and

n∑
k=0

λk = 1

}
(2.3)

As shown in Fig. 2.1, Bernstein polynomial p(τ) is always confined within the convex hull of

control points:

p(τ) ∈ conv{c0, ..., cn} for all τ ∈ [0, 1] (2.4)

This property can be used to confine the polynomial trajectory within the desired region.

2.2.2 Endpoint interpolation property

For given nth order Bernstein polynomial p(τ) with control points c0, ..., cn, p(τ) always start at

the first control point c0 and end at the last control point cn:

p(0) = c0, p(1) = cn (2.5)

5



Using this property, we can assign start and goal points of quadrotors by placing the first and

last control points at the proper position.

2.2.3 Arithmetic operations and derivatives

We can show that the sum and difference of two Bernstein polynomials are still Bernstein polyno-

mials if two polynomial have the same degree. Assume that two Bernstein polynomial pi(τ), pj(τ),

have control points cik=0,...,n, c
j
k=0,...,n respectively. Then the sum or difference of two Bernstein

polynomial can be written as follows:

pj(τ)± pi(τ) =

n∑
k=0

cjkBk,n(τ)±
n∑
k=0

cikBk,n(τ)

=

n∑
k=0

(cjk ± c
i
k)Bk,n(τ)

(2.6)

Similar to arithmetic operation case, derivatives of Bernstein polynomial is also Bernstein

polynomial. Assume that with derivative of nth order Bernstein polynomial has control points

c′0, ..., c
′
n−1. Then, control points of derivative can be derived from control points of original Bern-

stein polynomial:

c′k = n(ck+1 − ck) for all k = 0, ..., n− 1 (2.7)

6



3
Multi-agent trajectory optimization

In this chapter, we formulate multi-agent trajectory planning problem as an optimization problem.

Our objective is to generate dynamically feasible, point to point trajectory for multiple quadrotors

without any collision and deadlock. We design objective function considering quadrotor dynam-

ics, and we introduce a constraint construction method which guarantees that the optimization

problem consists of feasible constraints. The detail of each part will be described in the following

sections.

3.1 Problem formulation

In this section, we formulate an optimization problem to generate point to point trajectories for

a multi-UAV system consisting of N quadrotors. For the ith quadrotor, start point is given as

si and goal point is assigned as gi. The quadrotors may have a different size with the radius

r1, ..., rN , and may have a different dynamic limit with the maximum velocity v1max, ..., v
N
max and

the maximum acceleration a1max, ..., a
N
max.

3.1.1 Assumption

To generate multi-agent trajectory with feasibility guarantee, we need several assumptions:
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1. The prior knowledge of an obstacle space O and a free space F of the environment E is

given as a 3D occupancy map.

2. There is no dynamic obstacle in the environment E during the flight.

3. When we translate the environment to the grid space with grid size d, there exists a collision-,

deadlock-free solution for N quadrotors which connects given start and goal points.

While the first and second assumptions are widely used assumption in multi-agent path plan-

ning area, our proposed method requires the third assumption unlike other path planning algo-

rithms. It is because our algorithm utilizes the solution from grid-based path planner to construct

collision avoidance constraints. If there exists collision-, deadlock-free trajectories in the environ-

ment E , then the third assumption can be satisfied by decreasing the grid size d until finding the

solution.

3.1.2 Trajectory Representation

As we mentioned in the previous chapter, we can represent the trajectory of quadrotor in a

polynomial with flat outputs (x, y, z, ψ). However, yaw angle is not important when we plan the

point to point trajectory, so we hold yaw angle to zero.

In this paper, we formulate the trajectory of the ith quadrotor, pi(t) ∈ R3, as M -segment

piecewise Bernstein polynomials:

pi(t) =



pi1(t) =
∑n

k=0 c
i
1,kBk,n(τ1) t ∈ [T0, T1]

pi2(t) =
∑n

k=0 c
i
2,kBk,n(τ2) t ∈ [T1, T2]

...
...

piM (t) =
∑n

k=0 c
i
M,kBk,n(τM ) t ∈ [TM−1, TM ]

(3.1)

where τm = t−Tm−1

Tm−Tm−1
, and pim(t) is the the mth segment of the ith quadrotor’s trajectory. cim,k ∈ R3

is the kth control point of pim(t), and Tm−1, Tm are the start and end time of the mth segment,

respectively. We note that all quadrotors have the same number of segments M and they share

the segment time T0, ..., TM .
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For the multi-agent trajectory planning, we need to determine all the control points and

segment times in Eq. (3.1). Here, we set the decision vector of optimization problem to include

all the control points of pi(t) for i = 1, ..., N , as the following equation:

c = [c1; ...; cN ] (3.2)

where ci = [ci1; ...; c
i
M ] and cim = [cim,0; ...; c

i
m,n]. The symbol ; denotes appending of two vectors in

the direction of the column.

3.1.3 Objective function

We design the objective function to minimize the integral of the square of the desired derivative

φ:

J =

N∑
i=1

∫ TM

T0

∥∥∥∥ dφdtφ pi(t)
∥∥∥∥2
2

dt (3.3)

We can show that this objective function can be reformulated to quadratic form:

J =

N∑
i=1

M∑
m=1

∫ Tm

Tm−1

∥∥∥∥ dφdtφ pim(t)

∥∥∥∥2
2

dt

=
N∑
i=1

M∑
m=1

∫ Tm

Tm−1

cim
T

(qT q)cimdt

=
N∑
i=1

M∑
m=1

cim
T

(

∫ Tm

Tm−1

qT qdt)cim

= cTQc

(3.4)

where q = dφ

dtφ
[B0,n(τm), ..., Bn,n(τm)]T , and Q is the Hessian matrix of the objective function. For

the desired derivative, we assign φ = 3 to minimize the jerk of the trajectory. so that the input

to the quadrotor becomes less aggressive [12].

3.1.4 Convex constraints

Assume that the control points of lth derivative of pim(t) is cl,im,0, ..., c
l,i
m,n. Then we can derive

control point of lth derivative using derivative property of Bernstein polynomial.

c0,im,k = cim,k, c
l,i
m,k =

n!

(n− l)!
cl−1,im,k+1 − c

l−1,i
m,k

Tm − Tm−1
(3.5)
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Using these control points, we can formulate convex constraints such as waypoint, continuity and

dynamical feasibility constraints.

The waypoint constraint is a constraint that enforces the trajectory to pass start and goal

points. Furthermore, quadrotor’s velocity and acceleration should be zero at the start and goal

points. To construct waypoint constraints, we utilize endpoint interpolation property of Bernstein

polynomial for all i = 1, ..., N and l = 1, ..., φ− 1:

c0,i1,0 = si, c0,iM,n = gi

cl,i1,0 = 0, cl,iM,n−l = 0
(3.6)

The continuity constraint is a constraint that the trajectory should be continuous up to the

φ−1th derivatives. Similar to waypoint constraints, we can construct continuity constraints using

endpoint interpolation property for all l = 1, ..., φ− 1, m = 1, ...,M − 1:

cl,im,n = cl,im+1,0 (3.7)

For the dynamic feasibility of the trajectory, the quadrotor must not exceed maximum velocity

and acceleration. The authors of [13] utilize convex hull property of Bernstein polynomial to

construct dynamical feasibility constraint. However, this approach may cause infeasible constraints

in optimization problem. Thus, we will solve this problem by uniform time scaling after planning

the trajectory instead of imposing hard constraints.

To summarize, convex constraints can be written in affine equality and inequality constraints:

Aeqc = beq (3.8)

3.1.5 Non-convex collision avoidance constraints

We define an obstacle collision model of the ith quadrotor, which models a collision region between

a quadrotor and obstacles (See Fig. 3.1):

Ciobs = {p ∈ R3 | ‖p‖22 ≤ (ri)2} (3.9)

The ith quadrotor must satisfy the condition below not to collide with obstacles:

pi(t)⊕ Ciobs ⊂ F , t ∈ [T0, TM ] (3.10)

10



Figure 3.1: Obstacle collision model (Left), and Inter-collision model (Right).

where ⊕ is the Minkovski sum.

A collision region between ith and jth agents can be expressed with an inter-collision model

Ci,jinter:

Ci,jinter = {p ∈ R3 | pTEp ≤ (ri + rj)2} (3.11)

where E is diag([1, 1, 1/(cdw)2]), and cdw is a coefficient to consider a downwash effect. The ith

agent does not collide with the jth agent if the relative trajectory of the jth agent respect to the

ith agent, pi,j(t) = pj(t)− pi(t), satisfies the following condition:

pi,j(t) ∩ Ci,jinter = ∅, t ∈ [T0, TM ] (3.12)

Non-convexity of (3.10) and (3.12) makes it difficult to directly employ them. In the next section,

we will show the method that relaxes those non-convex constraints to convex ones using Bernstein

polynomial.

3.2 Collision constraints construction

One of the useful properties of the Bernstein polynomial is a convex hull property that the

Bernstein polynomial is confined within the convex hull of its control points. This property has

been used to confine the trajectory to a convex set called safe flight corridor (SFC) for obstacle

avoidance [13,14].
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Similar approach can be used to confine the relative polynomial trajectory to inter-collision-

free region. Let pi,jm (t) = pjm(t)−pim(t) is their relative trajectory. As we noted in previous section,

all quadrotors have the same number of segments and they share the same segement time. Thus,

we can use the arithmetic property of Bernstein polynomial when we compute relative trajectory

between two agents:

pi,jm (t) =

n∑
k=0

(cjm,k − c
i
m,k)Bk,n(τm)

=

n∑
k=0

ci,jm,kBk,n(τm)

(3.13)

where ci,jm,k = cjm,k − c
i
m,k is the control point of pi,jm (t). Thus, by the convex hull property, we can

enforce the ith and jth quadrotors not to collide with each other by limiting all control points

ci,jm,k within a convex, inter-collision free region. We call this region a relative safe flight corridor

(RSFC). In this way, we can generate the safe trajectory by adjusting SFC, RSFC in our problem.

In the previous work [5], we determined RSFC by choosing a proper one among pre-defined

RSFC candidates. RSFC candidates were designed to be able to utilize the differential flatness

of quadrotor, and so as to achieve fast planning speed. However, it may fail to find a trajectory

because a feasible region that satisfies both RSFC and SFC constraints may not exist.

Fig. 3.2 shows the example of feasible region between RSFC and SFC constraints. The region

surrounded by the blue dashed line is safe flight corridor (SFC) for the blue agent, and the region

surrounded by green dashed line is the intersection of relative safe flight corridor (RSFC) for the

blue agent. To generate a safe trajectory, there must exist intersection between SFC and RSFC

(gray shaded area).

To guarantee the existence of such feasible region, we first define three key terms in this paper:

initial trajectory, SFC, and RSFC. Then, we introduce construction method of these collision

constraints.

3.2.1 Initial trajectory planning

When planning the trajectory of a single quadrotor, many researchers have divided the planning

process into initial trajectory planning and trajectory refinement, and such two-step method is
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Figure 3.2: Feasible region between relative safe flight corridor (RSFC) and safe flight corridor (SFC).

now being adopted in the multi-agent case [9,15]. Inspired by that, we first plan the discrete initial

trajectory by using a graph-based MAPF algorithm and utilize it to construct SFC and RSFC.

An initial trajectory of the ith quadrotor, πi = {πi0, ..., πiM}, is defined as a path that satisfies

the following conditions for all m = 0, ...,M and i 6= j:

πi0 = si, πiM = gi (3.14)

〈πim−1, πim〉 ⊕ Ciobs ⊂ F (3.15)

〈πi,jm−1, π
i,j
m 〉 ∩ C

i,j
inter = ∅ (3.16)

where 〈πim−1, πim〉 = {απim−1 + (1−α)πim | 0 ≤ α ≤ 1} is a line segment between waypoints πim−1

and πim, and πi,jm = πjm − πim is a relative waypoint between two agents. (3.15) shows that the

initial trajectory does not collide with obstacles, and (3.16) means that the agents do not collide

with other agents when all the agents move along their initial trajectory at constant velocity.

To plan an initial trajectory, we use a graph-based multi-agent pathfinding (MAPF) algorithm.

There have been many researches about MAPF algorithm such as HCA* [16], M* [17], conflict-

based search (CBS) [18]. Among them, we choose enhanced conflict-based search (ECBS) for

the following two reasons: (i) ECBS can find a suboptimal solution in a short time. Because the
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optimal MAPF algorithm is NP-complete [19], it could be better to use a suboptimal MAPF

solver with respect to computation time. (ii) The ECBS algorithm is complete. To guarantee the

completeness of trajectory optimization algorithm, individual submodules in the algorithm must

be complete.

Initial trajectory planning process is as follows. First, we translate the given 3D occupancy

map into a 3D grid map with grid size d. Next, we set constraints which determine conflict in the

ECBS algorithm to satisfy the condition (3.16). After that, we give start and goal points as the

input and compute the initial trajectory. If start and goal points are not located on the 3D grid

map, then we use the nearest grid points instead and append the start/goal points to both ends

respectively. We note that this algorithm always return a solution due to the third assumption in

Section 3.1.1.

3.2.2 Safe flight corridor

The mth safe flight corridor (SFC) of the ith quadrotor, Sim, is defined as a convex set satisfies

following conditions:

Sim ⊕ Ciobs ⊂ F (3.17)

〈πim−1, πim〉 ⊂ Sim (3.18)

The condition (3.17) shows that an agent in SFC does not collide with obstacles, so SFC can be

used for obstacle collision avoidance. We note that there always exists a convex set that satisfies

Eq. (3.17)) and Eq. (3.18), for given initial trajectory πi (e.g. 〈πim−1, πim〉).

Theorem 1 shows that obstacle avoidance constraint can be represented in convex constraint.

Theorem 1 The ith quadrotor does not collide with obstacle if control point of pi(t) satisfies

below equation for all m = 1, ...,M , and k = 0, ..., n.

cim,k ∈ Sim (3.19)

Proof 1 SFC is a convex set, so we can apply the convex hull property of Bernstein polynomial

for the each segment of the trajectory:

pim(t) ∈ conv{cim,0, ..., cim,n} ⊂ Sim, t ∈ [Tm−1, Tm] (3.20)
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By the Eq. (3.20) and Eq. (3.17):

pim(t)⊕ Ciobs ⊂ F , t ∈ [Tm−1, Tm] (3.21)

which is equal to obstacle collision avoidance condition Eq. (3.10)

Alg. 1 shows the construction process of safe flight corridor (SFC). We initialize SFC to

〈πim−1, πim〉 to fulfill the condition (3.18) (line 3). For all direction, we check whether SFC is

expandable (line 5-9), and we expand SFC by a pre-specified length (line 10). This algorithm

guarantees to return convex sets that satisfy the definition of SFC. In practice, we skip the

redundant expansion process to reduce computation time. In other words, we use previously

generated SFC Sim−1 as Sim when Sim−1 satisfies the definition of Sim.

Algorithm 1: buildSFC

Input: initial trajectory πi, 3D occupancy map E

Output: safe flight corridor Si = (Si0, ...,SiM )

1 D ← {±x,±y,±z};

2 for m← 1 to M do

3 Sim ← 〈πim−1, πim〉;

4 while D is not empty do

5 for µ in D do

6 if Sim cannot expand to direction µ then

7 D ← D\µ

8 end

9 end

10 expand Sim to all direction in D;

11 end

12 end
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(a) Before coordinate transformation. (b) After coordinate transformation.

Figure 3.3: Construction of relative safe flight corridor.

3.2.3 Relative safe flight corridor

The mth relative safe flight corridor (RSFC) between ith and the jth quadrotor, Ri,jm , is defined

as a convex set that satisfies the following conditions:

Ri,jm ∩ C
i,j
inter = ∅ (3.22)

〈πi,jm−1, π
i,j
m 〉 ⊂ Ri,jm (3.23)

If Ri,jm includes pi,j(t) for t ∈ [Tm−1, Tm], then there is no collision between the ith and jth agents

for t ∈ [Tm−1, Tm] due to (3.12) and (3.22). For this reason, we can use RSFC to avoid collision

between agents. We note that there always exists a convex set that satisfies above conditions, for

given initial trajectories πi, πj (e.g. 〈πi,jm−1, π
i,j
m 〉).

Similar to SFC, we can prove that inter-collision avoidance constraint can be represented in

convex constraint.

Theorem 2 The ith quadrotor does not collide with the jth quadrotor if control point of pi(t) and

pj(t) satisfies below equation for all m = 1, ...,M , and k = 0, ..., n.

cjm,k − c
i
m,k ∈ Ri,jm (3.24)
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Proof 2 RSFC is a convex set, so we can apply the convex hull property of Bernstein polynomial

for the each segment of the trajectory:

pi,jm (t) ∈ conv{cjm,0 − c
i
m,0, ..., c

j
m,0 − c

i
m,n} ⊂ Ri,jm , t ∈ [Tm−1, Tm] (3.25)

By the Eq. (3.25) and Eq. (3.22):

pi,jm (t) ∩ Ci,jinter = ∅, t ∈ [Tm−1, Tm] (3.26)

which is equal to inter-collision avoidance condition Eq. (3.12)

To build RSFC, we first perform affine coordinate transformation x̃ = E
1
2x, where E

1
2 is

diag([1, 1, 1/cdw]). Then, the inter-collision model Ci,jinter and initial trajectory πi,j are transformed

to C̃i,jinter and π̃i,j as shown in Fig. 3.3b. In Fig. 3.3b, the red ellipsoid is an inter-collision model

between the quadrotors i, j, and the green-shaded region is the relative safe flight corridor (RSFC).

Let π̃i,jmin be the nearest point of 〈π̃i,jm−1, π̃
i,j
m 〉 to the origin. We construct RSFC as follows:

Ri,jm = {x = E−
1
2 x̃ | x̃ · ñmin − (ri + rj) > 0} (3.27)

where ñmin = π̃i,jmin/‖π̃
i,j
min‖. As depicted in Fig. 3.3a, our RSFC is a half-space divided by the

plane, which is tangent to the inter-collision model at the πi,jmin = E−
1
2 π̃i,jmin. We note that the

convex set in (3.27) satisfies the definition of RSFC.

Lemma 1 Assume that x̃ ∈ 〈π̃i,jm−1, π̃
i,j
m 〉, and x̃ · ñmin − (ri + rj) > 0. Then ‖x‖ > (ri + rj).

Proof of Lemma 1 Due to the assumption of the lemma:

x̃ · ñmin = ‖x̃‖( x̃

‖x̃‖
· ñmin) > ri + rj (3.28)

‖x̃‖ > ri + rj

(x̃/‖x̃‖) · ñmin
≥ ri + rj (3.29)

Thus, ‖x‖ > (ri + rj).

Lemma 2 Assume that x̃ ∈ 〈π̃i,jm−1, π̃
i,j
m 〉 satisfies ‖x̃‖ > (ri + rj). Then x̃ · ñmin − (ri + rj) > 0
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Proof of Lemma 2 Since π̃i,jmin is the nearest point of 〈π̃i,jm−1, π̃
i,j
m 〉 to the origin, the following

equation is satisfied.

π̃i,jmin ·
(x̃− π̃i,jmin)

‖x̃− π̃i,jmin‖
≥ 0 (3.30)

Using Eq. (3.30), we can obtain the below result.

x̃ · ñmin − (ri + rj) > x̃ · ñmin − ‖π̃i,jmin‖ ≥ 0 (3.31)

Theorem 3 A convex set in Eq. (3.27) satisfies the definition of RSFC, Eq. (3.22) and Eq. (3.23)

Proof 3 Due to the Lemma 1, the vector x ∈ Ri,jm satisfies the following equation:

‖E
1
2x‖ > ri + rj (3.32)

E
1
2 is a diagonal matrix, so we can show that Ri,jm in Eq. (3.27) satisfies Eq. (3.22):

xTEx > (ri + rj)2 (3.33)

Furthermore, the vector x ∈ 〈πi,jm−1, π
i,j
m 〉 satisfies the below equation due to the Lemma 2.

E
1
2x · ñmin − (ri + rj) > 0 (3.34)

, which implies that Ri,jm satisfies the condition Eq. (3.23). Thus, Ri,jm satisfies the definition of

RSFC.

3.3 Trajectory optimization

In this section, we introduce the trajectory optimization algorithm using convex safe corridors.

Alg. 2 shows the process of trajectory optimization. First, we plan initial trajectories (line 1),

and we use them to determine safe flight corridor (SFC) (line 3) and relative safe flight corridor

(RSFC) (line 5). After that, we compose the quadratic programming (QP) problem using initial

trajectories and safe corridors (line 8):

minimize cTQc

subject to Aeqc = beq

cim,k ∈ Sim, ∀i,m, k

cjm,k − c
i
m,k ∈ Ri,jm ∀i, j > i,m, k

(3.35)
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As you can see in Eq. (4.2), we do not consider dynamic limits in the QP problem because they

can be infeasible constraints for QP. Instead, similar to [9], we uniformly scale the total flight time

to satisfy dynamic feasibility constraints after optimization (line 9). This uniform time scaling

does not affect spatial path of the trajectory due to the property of hover to hover polynomial

trajectory.

Algorithm 2: Trajectory Planning Algorithm

Input: start point si, goal point gi for agents i ∈ {1, ..., N}, 3D occupancy map E

Output: total flight time T , trajectory pi(t) for agents i ∈ {1, ..., N}, t ∈ [0, T ]

1 π = (π1, ..., πN )← planInitialTraj(s∀i, g∀i, E);

2 for i← 1 to N do

3 Si = (Si0, ...,SiM )← buildSFC(πi, E);

4 for j ← i+ 1 to N do

5 Ri,j = (Ri,j0 , ...,R
i,j
M )← buildRSFC(πi, πj);

6 end

7 end

8 p0(t), ..., pN (t)← trajOpt(π,S∀i,R∀i,j>i);

9 T, p0(t), ..., pN (t)← timeScale(p0(t), ..., pN (t));

10 return T, p0(t), ..., pN (t)

Algorithm 2 can compute safe, continuous trajectory for multiple quadrotors, however, opti-

mizing all control points of polynomials at once can cause the scalability problem. It is because

the time complexity of the QP solver is about O(N3). In the next chapter, we will introduce an

efficient sequential optimization method that can reduce the time complexity of the optimization

process.
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4
Sequential optimization with dummy agents

In this chapter, we propose an efficient sequential optimization method using dummy agents. This

method can improve scalability by dividing the big problem into several small ones, and prevent

deadlock by utilizing dummy agents.

Algorithm 3: trajOpt

Input: initial trajectory π, safe flight corridor S∀i, relative safe flight corridor R∀i,j>i

Output: trajectory pi(t) for agents i ∈ b, t ∈ [0, T ]

1 pdmy(t) = (p0dmy(t), ..., p
N
dmy(t))← planDummy(π);

2 for l← 1 to Nb do

3 b← agents in lth batch;

4 pb(t)← solveQP(πb,Sb,R∀i,j>i, p∀i/∈bdmy (t));

5 pdmy(t)← p(t);

6 end

7 return p0(t), ..., pN (t)

Alg. 3 shows the process of the sequential optimization. First, we generate trajectories for
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dummy agents pdmy(t) using the following control points (line 1):

cim,k =


πim−1 k = 0, ..., φ− 1

πim k = n− (φ− 1), ..., n

x ∈ 〈πim−1, πim〉 else

(4.1)

These dummy agents are used to prevent the previously planned trajectory from blocking the

space for the other agents. Next, we divide the agents into Nb batches, and we optimize the

trajectory by solving the below QP problem for the batch b (line 3-4)

minimize cTQc

subject to Aeqc = beq

cim,k = control points of pidmy(t), ∀i /∈ b,m, k

cim,k ∈ Sim, ∀i ∈ b,m, k

cjm,k − c
i
m,k ∈ Ri,jm ∀i, j > i,m, k

(4.2)

where c ∈ R
N
Nb
M(n+1)

, Aeq ∈ R
N
Nb

(M+1)φ× N
Nb
M(n+1)

, and the number of inequality constraints is

(N − 1
2( NNb + 1)) NNbM(n + 1). pidmy(t) is the trajectory for ith dummy agent. At last, we replace

the trajectory of dummy agents to the previously planned one (line 5), and plan the trajectory

for the next batch sequentially.

Fig. 4.1 visualizes the overall process. In Fig. 4.1, dummy agent is depicted as a black circle, and

agent in the current batch is depicted as a colored circle. For each iteration, we plan a trajectory

for the current batch is described as a color line and the trajectory of dummy agents is depicted

in a black line. For each iteration, we deploy dummy agents except the agents in the current batch

(Fig. 4.1a). Then, we plan the trajectory for the current batch to avoid dummy agents (Fig. 4.1b).

After that, agents in the current batch are used as dummy agents at the next iteration (Fig. 4.1c).

At the end of the iteration, collision-free trajectories are found without deadlock because all the

agents are planned to avoid the previous batch (Fig. 4.1d).

This sequential method can achieve better scalability because we can avoid the high time

complexity of QP solver by increasing the number of the batches as the number of agents increases

while keeping the same number of decision variables of QP. Furthermore, we can prove that (4.2)
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consists of feasible constraints, which means that our method does not cause optimization failure

due to infeasible constraints.

Theorem 4 If n ≥ 2φ− 1, then there exists decision vector c that satisfies the constraints of eq.

(4.2).

Proof 4 Let us assign the decision vector c as (4.1) for i = 1, ..., N and m = 1, ...,M . Then

c satisfies the waypoint constraints due to (3.14). pi(t) is continuous up to φ − 1 derivatives at

t = Tm for m = 1, ...,M − 1 because cim,n−(φ−1),...,n = cim+1,0,...,φ−1 = πim. c also fulfills safe

corridor constraints due to (3.18) and (3.23). Thus, c is the decision vector that satisfies the

constraints of (4.2).
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(a) Deploy dummy agents. (b) Plan for one batch.

(c) Replace dummy agents with the previous batch. (d) Plan for next batch.

Figure 4.1: Sequential planning with dummy agents when Nb = 2.
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5
Experimental results

The proposed algorithm is run in C++ and executed the proposed algorithm on a PC running

Ubuntu 18.04. with Intel Core i7-7700 @ 3.60GHz CPU and 16G RAM. We model the quadrotor

with radius ri=1,...,N = 0.15m, maximum velocity vi=1,...,N
max = 1.7m/s, maximum acceleration

ai=1,...,N
max = 6.2m/s2 and downwash coefficient cdw = 2 based on the specification of Crazyflie 2.0

in [10]. We use the Octomap library [20] to represent the 3D occupancy map, and we use the

dynamicEDT3D library [21] to convert occupancy map to 3D grid map. CPLEX QP solver [22]

is used to solve QP problem in trajectory optimization. The degree of polynomials is determined

to n = 5 to satisfy the assumption (n ≥ 2φ− 1) in the Theorem 4. We plan the initial trajectory

in 3D grid map with grid size d = 0.5 m, and set suboptimal bound of ECBS to 1.3.

5.1 Comparison with the previous work

To validate the performance of our proposed algorithm, we compared the result with previous

work [5]. [5] also utilizes RSFC for inter-collision avoidance, but it uses the RSFC candidate

method, which constructs RSFC by choosing the proper one of pre-defined RSFC candidates. We

conducted the simulations in 50 random forests. Each forest has a size of 10 m × 10 m × 2.5 m

and contains randomly deployed 20 trees of size 0.3 m × 0.3 m × 1–2.5 m. We assigned start point

of quadrotors in a boundary of the xy-plane in 1 m height, and the goal points at the opposite to
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Figure 5.1: Trajectory generated for 16 agents in a 10 m × 10 m × 2.5 m random forest.

Figure 5.2: Success rate of two trajectory generation methods for 16 agents.

their start position. Fig. 5.1 shows the simulation result of the proposed method with 16 agents.

Agents are marked with colored circles at the goal (assigned to the opposite of the start points),

along with their trajectories.

5.1.1 Success rate

We executed the simulation with 16 agents, and measured the success rate by the size of agents.

As shown in the Fig. 5.2, both methods show a 100% success rate in 50 random forest when

the radius of agents is small, but the success rate of [5] decreases as the size of agents increases.

It is because the larger the agent size, the smaller the space for agents can exist, which lead to
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Figure 5.3: Objective cost vs computation time for 64 agents.

the higher probability that the constraints for SFC and RSFC are infeasible each other. On the

contrary, the proposed method shows a perfect success rate for all the case because we design

SFC and RSFC to feasible each other.

5.1.2 Solution quality

As described in the Fig. 5.3 and Table 5.1, the proposed algorithm shows better performance

with respect to both objective cost and computation time compare to previous work when the

number of the batch Nb is more than one. It can generate a trajectory for 64 agents in 6.36 s

(Nb = 16), and it has 78% (Nb = 1), 53% (Nb = 16) less objective cost. Note that we can adjust

Nb depending on the desired objective cost and computation time.

5.1.3 Scalability analysis

The computation time increment by the number of agents is shown in Table 5.2. The numbers

in parentheses represent the computation time increment when the number of agents is doubled.

When the number of agents is small, the computation time increases linearly, regardless of the

trajectory optimization method, but it follows the time complexity of QP solver as the number

of agents increases if we do not adopt the sequential optimization method. On the other hand, if

we maintain the size of the batch (N/Nb), it still shows good scalability with the high number of

agents.
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Table 5.1: Performance comparison with previous work [5]

Computation Time (s) Objective

Cost

Agents 4 8 16 32 64 64

[5] 0.093 0.19 0.81 5.30 51.1 13.7

Proposed (Nb = 1) 0.11 0.29 1.15 11.1 197.0 2.98

Proposed (Nb = 2) 0.091 0.23 0.68 2.97 28.7 4.02

Proposed (Nb = 4) 0.089 0.19 0.59 1.71 10.8 4.68

Proposed (Nb = 8) - 0.19 0.45 1.55 6.38 5.86

Proposed (Nb = 16) - - 0.45 1.17 6.36 6.39

Table 5.2: Scalability with previous work [5].

Computation Time (s)

Agents 4 8 16 32 64

[5] 0.093 0.19 (×2.0) 0.81 (×4.3) 5.30 (×6.5) 51.1 (×9.6)

Proposed (Nb = 1) 0.11 0.29 (×2.7) 1.15 (×3.9) 11.1 (×9.6) 197 (×17.8)

Proposed (N/Nb = 4) 0.11 0.23 (×2.2) 0.59 (×2.5) 1.55 (×2.6) 6.36 (×4.1)

5.2 Comparison with SCP-based method

We compared the proposed algorithm with SCP-based method [7]. Experiments are done in 10

m × 10 m × 2.5 m empty space with 8 agents. Start position and goal points are same as the

previous experiment, and we assigned the same total flight time to both algorithm. When we run

the SCP method, we did not consider the case when the time step h is over 1 because it ignores

collision avoidance constraint at all. Fig. 5.4 shows the trajectory planning result of two methods.

In Fig. 5.4, the dots in (b) are the initial trajectory of corresponding agents.

Table 5.3 shows that the proposed algorithm requires less computation time for all the cases,
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(a) SCP-based method [7] (b) Proposed method

Figure 5.4: Trajectory planning result of the propose algorithm and SCP-based method in empty space.

and this result does not change when we stop the SCP at the first iteration with collision avoidance

constraints. The third column shows the safety margin ratio of each method. Safety margin ratio

γ is calculated as follows:

γ = argmini,j
di,jmin
ri + rj

(5.1)

where di,jmin is a minimum distance between two agents i, j. Safety margin ratio must be over 100%

to guarantee the collision avoidance, however, SCP-based method does not satisfy this because

SCP checks only collision avoidance between discrete points on each trajectory. On the contrary,

the proposed method satisfies the safety condition completely.

Although the proposed method perform better in computation time and safety margin, it has

longer total flight distance compared to the SCP method. It is because our initial trajectory is not

optimal respect to total flight distance in non-grid space. Thus, we need to plan initial trajectory

considering total flight distance, and leave it as future work.
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Table 5.3: Comparison of proposed algorithm and SCP-based method.

Comp. Time

per Iter. (s)

Total Comp.

Time (s)

Safety Margin

Ratio

Total Flight

Dist. (m)

SCP (h = 1.0 s) 0.78 2.80 12% 77.29

SCP (h = 0.5 s) 5.5 20.5 81% 77.36

SCP (h = 0.34 s) 16.2 60.4 92% 77.38

SCP (h = 0.25 s) 42.1 156.6 96% 77.40

Proposed (Nb = 1) - 0.65 101% 90.74

5.3 Flight test

We conducted real flight test with 6 Crazyflie 2.0 quadrotors in a 5 m x 7 m x 2.5 m space. We

used Crazyswarm [23] to follow the pre-computed trajectory, and we used Vicon motion capture

system to obtain the position information at 100 Hz. The desired trajectory of the flight test is

depicted in Fig. 5.5, and the snapshots of the flight test are shown in Fig. 5.6.
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Figure 5.5: The desired trajectory of the flight test with 6 quadrotors.

Figure 5.6: Flight in an obstacle environment with 6 quadrotors.
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6
Conclusion

We presented an efficient trajectory planning algorithm for multiple quadrotors in obstacle en-

vironments, combining the advantages of grid-based and optimization-based planning algorithm.

Using relative Bernstein polynomial, we reformulated trajectory generation problem to convex

optimization problem, which guarantees to generate continuous, collision-free, and dynamically

feasible trajectory. We improved the scalability of the algorithm by using sequential optimization

method, and we proved overall process does not cause the failure of optimization if there exist

initial trajectory. The proposed algorithm shows considerable reduction in computation time and

objective cost compared to our previous work, and it shows better performance in computation

time and safety, compared to SCP-based method.

In future work, we plan to develop initial trajectory planner that optimizes total flight distance

in non-grid space, and we will extend our work to dynamic obstacle environment.
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국 문 초 록

무인비행체(UAV)로 구성된 다중 에이전트 시스템은 높은 기동성 및 응용 가능성으로 많은 산업 분

야에서 관심을 받고 있다. 이러한 다중 에이전트 시스템을 안전하게 운용하려면 안전하고 동적으로

실현가능경로를생성할수있는경로계획알고리즘이필요하다.그러나기존의다중에이전트경로

계획 방법은 장애물 환경에서 교착 상태나 부적절한 충돌 회피 조건으로 인한 최적화 실패가 일어날

수 있다는 한계가 있다. 본 논문에서는 장애물 환경에서 해의 존재를 보장하도록 다중 에이전트 경로

계획 문제를 변환한 뒤 이를 효율적으로 풀어낼 수 있는 새로운 경로 계획 알고리즘을 제시한다.

이 알고리즘은 그리드 기반 접근법과 최적화 기반 접근법의 장점을 모두 가지도록 설계되었으며,

불가능한 충돌 구속조건을 부과하지 않고 안전하고 동적으로 실현 가능한 궤적을 생성할 수 있다.

이 알고리즘은 더미 에이전트(dummy agents)을 이용한 순차 최적화 방법을 사용하여 알고리즘의

확장성(scalability)을 높였으며, 번스타인(Bernstein) 다항식의 볼록 껍질(convex hull) 성질을 활용

하여 볼록하지 않은 충돌 회피 제약 조건을 볼록화하였다. 제안된 알고리즘의 성능은 선행 연구와

SCP기반방법과의비교를통해검증되었다.제안된방법은선행연구에비해목표비용의 50%이상

절감하였으며, SCP 기반 방법에 비해 계산 시간의 75% 이상 감소하였다. 또한 제안된 방법은 인텔

코어 i7-7700 @ 3.60GHz CPU 및 16G RAM 환경에서 64개 에이전트의 궤적을 계산하는데 평균

6.36초가 소요된다.

주요어 : 다중 에이전트 경로 계획, 충돌 회피, 쿼드로터.

학번 : 2018-28113
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