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Abstract 
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The Graduate School 

Seoul National University 

 

Nowadays, industrial robots are indispensable equipment for automated 

manufacturing processes because they can perform repetitive tasks with consistent 

precision and accuracy. However, when faults occur in the industrial robot, it can 

lead to the unexpected shutdown of the production line, which brings significant 

economic losses, so the fault detection is important. The gearbox, one of the main 

drivetrain components of an industrial robot, is often subjected to high torque loads, 

and faults occur frequently. When faults occur in the gearbox, the amplitude and 

frequency of the torque signal are modulated, which leads to changes in the 

characteristics of the torque signal. Although several previous studies have proposed 

fault detection methods for industrial robots using torque signals, it is still a challenge 

to extract fault-related features under various environmental and operating conditions 

and to detect faults in the complex motions used in industrial sites. 

To overcome such difficulties, in this paper, we propose a novel motion-adaptive 

few-shot (MAFS) fault detection method of industrial robot gearboxes using torque 
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ripples via a one-dimensional (1D) residual-convolutional neural network (Res-CNN) 

and binary-supervised domain adaptation (BSDA). The overall procedure of the 

proposed method is as follows. First, applying the moving average filtering to the 

torque signal to extract the data trend, and the torque ripples of the high-frequency 

band are obtained as a residual value between the original signal and the filtered 

signal. Second, classifying the state of pre-processed torque ripples under various 

operating and environmental conditions. It is shown that Res-CNN network 1) 

distinguishes small differences between normal and fault torque ripples effectively, 

and 2) focuses on important regions of the input data by the attention effect. Third, 

after constructing the Siamese network with a pre-trained network in the source 

domain, which consisted of simple motions, detecting the faults on the target domain, 

which consisted of complex motions through BSDA. As a result, 1) the similarities 

of the jointly shared physical mechanisms of torque ripples between simple and 

complex motions are learned, and 2) faults of the gearbox are adaptively detected 

while the industrial robot executes complex motions. The proposed method showed 

the most superior accuracy over other deep learning-based methods in few-shot 

conditions where only one cycle of each normal and fault data of complex motions 

is available. In addition, the transferable regions on the torque ripples after domain 

adaptation was highlighted using 1D guided grad-CAM. 

The effectiveness of the proposed method was validated with experimental data 

of multi-axial welding motions in constant and transient speed, which are commonly 

executed in real-industrial fields such as the automobile manufacturing line. 

Furthermore, it is expected that the proposed method is applicable to other types of 

motions, such as inspection, painting, assembly, and so on. The source code is 

available on my GitHub page of https://github.com/oyt9306/MAFS. 

https://github.com/oyt9306/MAFS
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Chapter 1. Introduction 
 

 

1.1 Research Motivation 

Robotic arms are widely used in various fields such as automotive, semiconductor, 

manufacturing, medicine, and so on as they are capable of various complex motions 

specialized in their tasks. Among them, especially, industrial robots are receiving lots 

of attention because they can withstand high torque loads, and they are specialized 

in repetitive motions like welding, assembly, painting, and inspection on the 

automated production line. However, when faults occur on industrial robots, a 

decrease in production performance could cause an unexpected shutdown of the 

production line, which brings significant economic losses. Since operating robots in 

the industrial fields become aged and exposed to the potential danger to failure, fault 

detection of industrial robots is essential. 

Conventionally, available data to detect the faults can be divided by vibration 

signals and torque signals. Firstly, the vibration signal is acquirable through the 

acceleration sensors and DAQ (Data Acquisition) system. It is known as a sensitive 

signal to detect the faults of the gearbox [1]. According to the research of Kim et al. 

[2], a proposed phase-based time-domain averaging (PTDA) method is possible to 

detect the faults of the industrial robot gearboxes on the constant-speed regions of 

the motion. However, it is limited to the constant speed ranges and also, attaching 

and managing the wires of the acceleration sensors to acquire the vibration data is 

not easy in real industrial fields. On the contrary, the torque signal can be acquired at 

the control stage, and it requires neither installing any supplementary DAQ system 
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nor intruding the components. So, it can be accessible in the actual industrial line [3] , 

and fault detection methods based on torque data are widely studied. First, Cheng et 

al. [4] proposed a Gaussian mixture model (GMM) based gearbox fault detection 

method with clustering the handcrafted features of the normal and fault torque data 

using an industrial robot. Second, Bittencourt et al. [5] proposed the method to 

monitor the degradation of industrial robots executing repetitive motions using 

kernel density estimation (KDE) method as an indicator of robot wear. However, the 

aforementioned studies have some limitations in that 1) the suggested feature 

extraction methods are based on the shallow learning approach, and 2) the 

aforementioned methods were not validated under various motions of the industrial 

robot. 

The challenges to solve within this thesis are as follows; 1) Hard to extract the 

health features to detect the faults under various environmental and operating 

conditions on each motion that are optimized for operating on the real-production 

line. 2) Pre-trained models have low flexibility for different robot motions. Since 

robots have different data distributions according to their motions, it is necessary to 

develop defect detection methods generalized with robot motions. And 3) it is not 

known how much datasets are needed to train the deep network from scratch for each 

individual motions sufficiently.  

Therefore, in this thesis, a motion-adaptive few-shot (MAFS) fault detection 

method via residual-convolutional neural network (Res-CNN) is proposed to handle 

such challenges based on the deep-learning approach. The main contributions of the 

proposed method are summarized as follows; 1) Minimizing the motion effects from 

torque signals with pre-processing to extract fault-related torque ripples of the simple 

and the complex motions. 2) Classifying the torque ripples for simple motions based 
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on the proposed one-dimensional residual-convolutional neural network (1D Res-

CNN) model while robots are under varying conditions of rotating speeds, and 

temperatures. 3) Adapting a fault detection method through binary supervised 

domain adaptation (BSDA) to complex motions with a relatively small amount of 

the data, which needs just one cycle of normal and fault data. As a result, the deep 

network possible to detect the faults of the industrial robot gearbox flexibly to robot 

motions, and the proposed fault detection method can be adaptive to any complex 

motion of the industrial robot. Furthermore, to the best of author’s knowledge, it is 

the first attempt to learn the joint-physical consistency of fault mechanisms on 

different motions of the robot under the same joint on the robot.  
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1.2 Scope of Research 

The scope of this thesis lies in developing the following three research thrusts to 

address the above challenges. The overall thrusts of the MAFS method are as follows.  

 

Research thrust 1: Pre-processing to minimize the motion effects 

As the characteristics of the torque signal vary on the environmental conditions 

such as rotating speeds, temperatures, it is essential to minimize the motion effects 

from torque signals to detect the faults of the robot. So, by applying cross-correlation, 

the normal and fault signals are phase-matched and aligned with time. After then, by 

taking residuals of the raw signals and filtered signals using moving average filtering, 

torque ripples on the high-frequency components are extracted. So, pre-processed 

torque ripples on simple and complex motions are used as the input data, respectively. 

After then, by using a sliding window, one-dimensional data augmentation is 

performed. 

 

Research thrust 2: Robust feature extraction via pre-trained deep network 

In this thesis, some experiments are conducted to find the optimized architecture 

as an end-to-end feature extractor. It is shown that the proposed Res-CNN network 

performs the best feature extraction performance while training the network. Also, 

using the residual connection of the network, information flow was improved and 

small differences between the normal and fault torque ripples are effectively 

distinguished through the residual propagation. The pre-trained network on unit-axis 

motions of the industrial robot achieved a high accuracy under variations of operating 

and environmental conditions such as speeds, and temperatures. 
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Research thrust 3: BSDA based motion-adaptation to the complex motions 

As distributions of the torque signals are different depend on robot motions, a 

pre-trained model on the unit-axis motion cannot be generalized on other motions 

specified on their own task. In addition, it is quite challenging to determine the 

number of datasets to train the network. To overcome such difficulties, a pre-trained 

model on the simple motion was used to train the network adaptively to other robot 

motions effectively. In addition, it is shown that only one-cycle data is sufficient to 

train the proposed network adaptively to robot motions. Furthermore, visual 

interpretations of extracted features are explained via t-Stochastic Neighbor 

Embedding (t-SNE). And a one-dimensional guided gradient-weighted class 

activation map (1D guided grad-CAM) was implemented to compare the highlighted 

regions of before and after MAFS method to verify the localization effects, which 

shows the improvements in the knowledge transfer. 

 

1.3 Thesis Layout 

The rest of this thesis is organized as follows. Chapter 2 handles research 

backgrounds. Chapter 3 describes detailed explanations of the proposed MAFS 

method. Next, Chapter 4 include experimental validations with generating a pre-

trained network and motion-adaptive few-shot learning for complex motions. Finally, 

conclusions and future works are described in Chapter 5. 
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Chapter 2.  Research Backgrounds 
 

 

In this chapter, first, the interpretations of torque ripples are explained in chapter 

2.1 with the main causes and modulation effects due to gearbox faults. Second, the 

architectures of Res-CNN is explained in chapter 2.2 with the convolutional 

operation, pooling operation, activation, batch normalization, and residual learning. 

Finally, domain adaptation is explained in chapter 2.3.  

 

2.1 Interpretations of Torque Ripples 
2.1.1. Causes of torque ripples 

Articulated robotic arms, which include industrial robots and cooperative robots, 

are a complicated control system composed of drivetrain mechanical components 

coupled on each robot joint such as motors and gearboxes. Configuration of the robot 

control system on each joint is composed of an adjustable speed drive, encoder, and 

motion control unit for feedback control [4]. An encoder attached to the rotating shaft 

records the rotating speed of the motor shaft. A current sensor measures the current 

signal between the adjustable-speed drive and robot system, and the signal from the 

encoder is fed into the motion control unit. After the reference motion input, a 

feedback control signal which is the input of the adjustable-speed drive is generated 

to control the rotating speed. A motion control unit compares the real motion with 

reference motion, which is measured by rotating speed from an encoder on the motor 

shaft. So, the feedback control adjusts the robot motions by minimizing the 

differences of reference and output motions. The detailed control diagram 

configuration is summarized in Figure 1. For the detail, a simple one-mass model 
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equation for one-joint of the robot system can be defined by as follows.  

 T(t) = 𝐽𝑆
𝑑𝑤𝑟(𝑡)

𝑑𝑡
+ 𝐵𝑤𝑟(𝑡) + 𝑇𝑚(𝑡) (1) 

Where 𝐽𝑆 is the total inertia of the system. w𝑟 is the rotating speed of the angular 

shaft.  

Torque ripples, which are known as the noise oscillating along the pathway of the 

robot, lead to uncontrollable vibration and deteriorate the control performance of the 

robot. Torque ripples [6-8] are inevitable for the robot systems, which include 

drivetrain components such as a motor and a gearbox. Also, torque ripples have their 

own characteristics of the frequency band depending on the mechanical properties of 

the motor and gearbox [9]. Torque ripples are mainly caused by excitations due to 

vibrations, which mainly come from two causes [10]: external input torque and 

internal torque. The former will not be covered in this thesis, and the latter is mainly 

caused by drive train components.  

First, in permanent magnet synchronous motor (PMSM), which is commonly used 

in the industrial robot, variable magnetic reluctance due to rotation of the shaft is the 

main cause of torque ripples. In the normal state, ripples are caused by the interaction 

between the stator and the rotor slots, which is called the commutation effect. The 

fundamental frequency of the commutation torque ripple is directly related to the 

rotational speed of the motor. The frequency is known as the pole passing frequency 

which would be determined as, 

 
fc = 𝑤𝑁𝑟𝑁𝑝/2π 

(2) 

Here, ω = mechanical speed [rad/s], 𝑁𝑟 = the number of rotor poles, and 𝑁𝑝 = 

the number of rotor phases.  
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Second, due to mechanical misalignment of the motor shaft and the gearbox, 

sinusoidal behaviors on ripples show periodical shapes, and its characteristic 

frequency is induced by motor shaft speed. The main cause of the mechanical 

misalignment is from the imperfect mounting of a motor shaft and reducer shaft. 

Third, as the gearbox generates a periodical angular transmission error during 

high-load torque transmission on the contact point, a characteristic frequency of high-

frequency oscillations is determined by the rotating speed of the motor due to gear-

meshing vibrations occur. So, path control of the end-effector motions is effected by 

such oscillations. 

 

2.1.1. Modulations on torque ripples due to gearbox faults 

As torque ripple mechanisms are different in terms of the size and tasks of the 

robot, industrial robots can be categorized depending on the sizes and the payloads. 

Relatively small size and low payload, such as cooperative robots commonly use the 

harmonic drive as a gearbox, and contrary, relatively big size and large payload such 

as industrial robots use cycloidal gearboxes. A cycloidal gearbox is widely used in 

the industrial robots for transmitting high torque due to the high gear transmission 

ratio [11]. The general configuration of the cycloidal gearbox is shown in Figure 2, 

which is configurated by an input gear and input shaft, spur gears, and cycloidal disk 

and pin. In the drivetrain system, the electric motor is driven at high speed with low 

torque, and the gearbox reduces the high speed of the motor shaft to transmit the 

large torque [12]. The major causes of industrial robot faults can be mainly divided 

into an electrical and mechanical component fault, and about 45% of the faults are 

caused by the degradation of a mechanical system [13], especially for the gearbox 
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system. As industrial robot systems operate inside the factory, they are isolated from 

the external environment and rarely affected by external factors such as noise and 

vibrations. Factors that can affect the ripples in case of gearbox faults include 

operating conditions such as speeds, motions, and temperatures. When faults occur 

on the gearbox, amplitude and frequency modulations cause the changes in ripples 

of the feedback signal, which differ from normal ripples. So, when the faults occur 

on the gearbox of a robot, faults can be detected on the high-frequency band 

compared to the normal case due to modulation effects. The equation of modulated 

torque signals is as follows; 

 T(t) = 𝑇0(𝑡) + Σ𝑛=1
𝑁 𝑇𝑛(𝑡)cos [∫2𝜋𝑓𝑛(𝑡)𝑑𝑡 + 𝜙𝑛(𝑡)] (3) 

Where T𝑛, 𝑓𝑛 , and 𝜙𝑛  each denotes the amplitude, frequency, and phase of the 

torque ripple components induced by external vibrations.  
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Figure 1. The control diagram of a robot system 

Figure 2. Configuration of the cycloidal gearbox in an industrial robot: (a) input 

gear and input shaft, (b) spur gears, (c) cycloidal disk and pin [2] 
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2.2 Architectures of Res-CNN 

This chapter examines the fundamental principles of the proposed Res-CNN. First, 

we will discuss the convolutional operation, pooling operation, activation, batch 

normalization. Next, the residual learning part, information flow, and regularization 

effect are covered. 

 

2.2.1 Convolutional Operation 

Convolutional operation convolves the local regions of the input to extract non-

linear output features with filter kernels. During convolution, each filter is used to 

extract the specific features of the input by applying the same kernel, whose operation 

is referred to as weight-sharing. In each layer of the network, the number of filters 

determines the weight parameters, and the more filter kernels learn the more 

abundant representations. The hierarchical filter structure enables extracting the 

meaningful features of the input evolve from a low level to a high level through a 

hierarchical deep-layers. The convolution process is explained as follows. 

𝑦𝑖
𝑙+1(𝑗) = 𝐾𝑖

𝑙 ∙ 𝑥𝑙(𝑗) + 𝑏𝑖
𝑙   (4) 

Where 𝑙 means the layer, and in layer 𝑙, the 𝑖𝑡ℎ filter kernel is composed of the 

weights K𝑖
𝑙, and the bias 𝑏𝑖

𝑙. Also, ∙ is the dot product, and 𝑥𝑖
𝑙  denotes the 𝑗𝑡ℎ a 

local region of the layer. 𝑦𝑖
𝑙+1(𝑗)  represents the input of the 𝑗𝑡ℎ  neuron 

corresponds to 𝑖𝑡ℎ  frame on layer l+1. As Bengio et al. [14] showed that the 

representation performance is proportional to the depth of the layer, so as the layer 

goes deeper, learning the non-linear feature representation becomes drastically 

improved. Such learning is called manifold or representation learning.  
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2.2.2 Pooling Operation 

2.2.2.1 Max Pooling 

To guide the network to learn the informative features from the input, increasing 

the receptive field of each layer is the key solution. In this way, max pooling is 

effective to transfer the global information on top-down architecture after a small 

number of residual propagations [15]. After a convolutional layer in the CNN 

architecture, successive pooling layer down-samples the spacial size of the features 

and the network parameters. Especially, max-pooling takes the role of local max 

operation on the input, so the parameters are reduced, and extracted features become 

locally invariant. The max-pooling operation is explained as follows:  

P𝑖
𝑙+1(𝑗) = max

(𝑗−1)𝑊+1≤𝑡≤𝑗𝑊
[𝑞𝑖
𝑙(𝑡)] 

(5) 

Where 𝑞𝑗
𝑖(𝑡) means the value in the 𝑖th frame of layer 𝑙 at  𝑡𝑡ℎ  neuron. Also, 

the pooling operation pools the input region with the width of W and Pi
l+1(j) means 

the value of 𝑗𝑡ℎ neuron in layer l+1.  

 

2.2.2.2 Global Average Pooling (GAP) 

The conventional FC layer is prone to overfitting that hampers the generalization 

ability of the overall network and heavily depends on dropout, which has effects of 

the ensemble-based regularizer. However, in contrast to FC layer, Global Average 

Pooling (GAP) [16], which takes average values of all activation information, is 

known for better suited to localizing the entire location of things compared to the 

fully-connected (FC) layer. GAP layer is a structural regularizer, and overfitting does 

not occur during the training procedures as there is no parameter to optimize in the 

GAP layer. Thus, in this thesis, GAP is used as a flatten layer instead of FC layer. 
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Furthermore, as GAP layer sums out the spatial information, it is more robust than 

FC layer for any spatial translations over the input and extracts more meaningful and 

interpretable features from the input. 

 

2.2.3 Activation 

After the convolution operation, an activation function is essential to apply. It 

enhances the network performance to train the non-linear expression of the input and 

makes the learned features more informative. In recent years, the Rectified Linear 

Unit (ReLU) [17] has been widely adopted as a non-linear activation unit of CNNs. 

The detailed formula is described as follows: 

 𝑎i
(𝑙+1)(𝑗) = f (yi

(l+1)(𝑗)) = max [0, yi
(l+1)(𝑗)] (6) 

where 𝑦𝑖
(𝑙+1)(𝑗) is the output value of convolution operation and 𝑎𝑖

(𝑙+1)
(j) is the 

activation of 𝑦𝑖
(𝑙+1)(𝑗). ReLU is one of the most popular activation functions for 

deep learning methods, including the sigmoid and hyperbolic tangent (tanh) 

functions, as it is effective in preventing the gradient vanishing problem. 

 

2.2.4 Batch Normalization 

The batch normalization (BN) layer [18] is known as regularization effects similar 

to dropout, and normalize the internal covariance and shift of the data to facilitate the 

deep neural network to converge into the global minimum during the training process. 

Conventionally, in the network architecture, the BN layer is added between the 

convolutional layer and the activation unit. Given the input to a BN layer with x =

[x(1), x(2),  . . . , x(𝑚)], the BN layer is described as follows: 
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𝑥(𝑖) =
x(𝑖) − E[x(𝑖)]

√𝑉𝑎𝑟[𝑥(𝑖)]
 (7) 

y(𝑖) = γ(𝑖)𝑥(𝑖) + 𝛽(𝑖) (8) 

Where y(𝑖) is the output corresponds to the input x(𝑖), trainable parameters of 𝛾𝑖 

and 𝛽𝑖 are the scale and shift parameters. The process of BN is as follows. After 

standardizing the features in each dimension independently, 𝛾𝑖 and 𝛽𝑖 are used to 

restore each normalized feature by scaling and shifting During training procedure, 

𝛾𝑖 and 𝛽𝑖  are optimized after iterative back-propagations. So, data distributions of 

input are improved after such an identity transformation. 
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2.2.5 Residual Learning 

Residual learning [19] was first proposed by He et al. in 2015 and represented 

remarkable performance improvements in the image recognition field compared to 

other networks such as VGGNet [20], GoogleNet [21], and so on. Residual networks 

take some advantages in 1) solving vanishing/exploding gradient issues, and 2) 

promoting the convergence speeds of the network, whether on the deep depth of the 

network.  

 

2.2.5.1 Network Architectures 

In the network architectures, the residual network has some structural advantages 

in that while the existing methods update the weights of layer output H(x), which is 

shown in equation (9), residual network update the weights using a short connection 

by adding the input x on the output value, which is called identity mapping in 

equation (10): 

 F(x) = H(x) – x (9) 

 H(x) = F(x) + x (10) 

Therefore, the output in the layer can be expressed as the summation of the input 𝑥0 

and residual operation F. Residual network has drastically simplified forward and 

backward paths compared to typical CNN which paths consist of plenty of 

multiplications. So, based on residual propagation, the residual network has some 

advantages in aspects of the small number of network parameters, the low 

computational complexities for stability, and the increased accuracy of the network. 

Detailed operations are explained in the below equation (11): 
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 x𝐿+1 = x𝑙 + 𝐹(x𝑙) = ⋯ = 𝑥0 + Σ𝑖=1
𝐿 F(x𝑖) (11) 

Where input residual block operation is F, and output 𝑥𝑖 at 𝑖𝑡ℎ  layer which also 

means the input of 𝑖 + 1𝑡ℎ  layer. As a result of the addition, which directly passed 

into the next layer, the input is preserved and also information would always flow 

unimpeded. Consequently, by considering the original input to compute the gradients, 

so that information flow can be transmitted into the deep layer as gradients at every 

single layer of the network do not vanish. 

 

2.2.5.2 Information transfer 

Through a bunch of the architecture study, the milestone to the success of learning 

the deep networks was the use of batch normalization known as regularization effects 

similar to dropout. Also, to guide or force the network to learn the informative 

features from the input, increasing the receptive field of each layer is the key solution. 

In this way, max pooling is effective to transfer the global information on top-down 

architecture after a small number of residual propagations [15]. In addition, a residual 

network explained in the above chapters is also effective for information transfer. 

Wang et al. [22] showed that the residual network focuses on the local regions 

learning the transferable features across domains that attend to the objects of interest. 

By the attention effect of residual network, rather than focusing on wrong local 

regions, which decreases the performance, the regions of more transferable 

representations become weighted. Thus, the model focuses on those important 

regions, even when it is used for the domain adaptation task. After the residual 

propagation, transferable regions that share the cross-domain features become 

highlighted.  
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2.3 Domain Adaptation (DA) 

In order to mitigate the generalization performance induced by the covariance shift, 

transfer learning is commonly used in broad pre-trained models to perform a similar 

task on the other domain [23]. Transfer learning enables the deep network to adjust 

the detailed parameters in deep layers trained on the large datasets, by parameter 

freezing and fine-tuning the network that prevents overfitting and enables the 

generalization performance. Moreover, domain adaptation (DA) is a branch of 

transfer learning, which efficiently transfers the information when the number of data 

in the target domain is relatively small. Therefore, DA has been received lots of 

attention since deep networks are enabled to learn the domain-invariant 

representations from the cross-domains. 

However, when the domain discrepancy is severe, the performance of the DA is 

significantly reduced. So, to minimize the domain discrepancy, lots of studies have 

been proposed to match the source and target data distributions on the feature space. 

Unsupervised domain adaptation (UDA) [24, 25] has been receiving lots of attention 

because it does not require any labeled data of the target domain, but when the 

number of data is small, estimating the distributions from the given data is 

challenging. For the solution of such a situation, supervised domain adaptation (SDA) 

[26] is proposed as an effective method to sustain the same supervision on the target 

domain from the source domain to find a shared subspace across the domain. The 

main idea of SDA is to construct the Siamese network to learn similarities of cross-

domain feature distributions by point-wise comparisons on the embedding subspace. 

Siamese network is well known for one-shot or few-shot learning as this architecture 

compares the high dimensional feature representations using distance metrics with 

shared network parameters. So, as a result, the target domain feature distributions 
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become semantically aligned yet maximally separated, even the number of labeled 

target datasets per category is low. In this way, supervised learning could be a 

countermeasure of UDA in the domain adaptation tasks.  

Prognostics and health management (PHM) is a key technology for diagnosing the 

health conditions of the mechanical systems that detect abnormalities from the data 

collected from sensors attached to the equipment. In PHM, deep learning-based fault 

detection methods have low generalization performances in the real industrial fields 

because of the reasons as follows. 1) Weight parameters of the network are not fitted 

on different conditions caused by time-varying operating conditions (e.g., loads, rpm) 

and environmental conditions (e.g., noise, temperature). 2) Acquiring the labeled 

target data is difficult because labeling the data requires much labor forces. So, to 

solve the above challenges, several attempts using DA have emerged toward 

accomplishing the flexible fault detection method of bearing [27], gearbox [28], [29], 

and so on. 

 

2.3.1 Few-shot domain adaptation 

Few-shot learning is the research field of training the deep network to recognize 

the objects with only a few data. The recently introduced studies are mainly 

summarized as the following three parts. First, using a pre-trained network on similar 

tasks [30], the initial parameters taken from the existing model are fine-tuned with 

the target data, by aligning the feature distributions via adversarial learning, even if 

few samples are on the target domain. This method is effective in the target domain 

for doing similar tasks from the source data. Second, using a generative adversarial 

network (GAN) [31], few-shot classifiers of the network are generalized by learning 

the sharper decision boundary for the unlabeled data. Third, using meta-learning and 
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graph neural network (GNN) [32], prototype-based reduced network complexity 

allows the model to derive its own learning rules to the few-shot task in an episodic 

training. Also, GNN was introduced to improve the performance of few-shot learning 

to utilize complex relational information between data.  

Recently, few-shot learning-based fault detection methods in the PHM field is have 

been emerging [33]. As collecting and labeling enough data need much labor forces 

and time-consuming on real production processes, such a few-shot learning-based 

domain adaptation is required to achieve the low-cost and life-long sustainable 

network. Thus, in this thesis, to cope with low-performance of the network trained 

using sparse labeled samples on the target domain, supervised domain adaptation 

based fault detection on the few-shot condition using a pre-trained model is used. 

Detailed explanations will be driven in the next proposed method chapters. 
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Chapter 3. Motion-Adaptive Few-Shot (MAFS)  

Fault Detection Method 
 

 

In this chapter, we propose a novel fault detection method named MAFS. The 

proposed MAFS method consists of three steps of pre-processing in chapter 3.1, pre-

training in chapter 3.2, and binary-supervised domain adaptation (BSDA) in chapter 

3.3. The definition of the major notations used in this chapter are described as follows. 

Domain means sample space of the motion on the specific joint of an industrial robot, 

where the motion difference induces the domain discrepancy. Second, operating 

condition means the occasion such as speed and motions when the robot performs 

the specific tasks. On the contrary, environmental condition means the ambient 

conditions such as noise and temperatures when the robot is working. 

The overall framework of the proposed MAFS method is shown below in Figure 

3. At step 1, after acquiring the normal and fault torque signals on each simple and 

the complex motion, pre-processed torque ripples are used as input data. At step 2, 

the Res-CNN model is trained using torque ripples on the source domain. At step 3, 

using a pre-trained model, fault detection of the simple motions under various 

operating and environmental conditions is performed. At step 4, after training the 

network, randomly sampled data from the source domain data is used to transfer the 

extracted features onto the target domain. At step 5, the Siamese network is 

constructed for knowledge transfer by initializing the weights using a pre-trained 

network. At step 6, the constructed network is trained with few samples of the target 

domain via BSDA by comparing the embedded feature distances from different 

domains. Finally, at step 7, fault detection on the complex motions using a motion-
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adapted network is done. So, labels of the samples on the complex motions are 

predicted as normal and the fault states. Furthermore, using t-SNE and guided grad-

CAM, visualizations of embedded feature distributions and interpretations on 

localization effect before and after domain adaptation are presented. 

The schematic diagram of the proposed method is described in Figure 4. In the 

real-industrial sites, lots of robots perform complex motions optimized on their own 

tasks. When the robot which executes the various complex motions in the industrial 

field is suspected to the gearbox faults, torque signal is sent to a MAFS based deep-

learning solution. Then, pre-processed torque ripples of normal and suspected to 

faults are pairly constructed as input data. Finally, a Siamese network constructed 

using a pre-trained network is trained via BSDA. While training, if the detection 

accuracy is low, gearbox fault would not be severe, or it is not related to the gearbox 

faults. On the contrary, if the detection accuracy is high, a fault is suspected to the 

similar case of pre-acquired gearbox fault occasions, and it could be diagnosed as a 

gearbox fault on the specific joint. As a result, the fault detection of the robot for 

each complex motion is possible. 
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Figure 3. The overall framework of the proposed MAFS method 

 

Figure 4. The schematic diagram for applications of the proposed method in the 

real-industrial field.  
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3.1 Pre-processing 

In this chapter, pre-processing procedures are mainly composed of data 

acquisition, extracting torque ripples, and data augmentation. First, in the data 

acquisition procedure, cross-correlation is applied to match and synchronize the 

phases of normal and fault torque signals. The characteristic features of the torque 

ripples are as follows. The torque signals are obtained by converting the current 

signals in the control phase. Also, as the sampling rate of the torque signal is 1,000 

Hz, the resolution in the frequency band is low because the Nyquist frequency of the 

signal is just about 500Hz. Therefore, conventional time-frequency representations 

(TFR) like a spectrogram, scalogram are hard to be applied properly to extract health 

features from the signal. To cope with such limitations, moving average filtering, 

which is almost identical to a low-pass filter (LPF), is applied to highlight the health 

features. As a result, by taking residuals of raw and filtered signals, the trend of the 

signal due to the effects of robot operation is minimized, and torque ripples on the 

high-frequency component related to the gearbox faults are obtained. Finally, sliding 

window-based data segmentation is performed for data augmentation. 

 

3.1.1 Cross-correlation 

The formula of the cross-correlation is shown below equation (12). As function 

𝑔  slides along the x-axis, the summation of the product of function 𝑓  and 𝑔  is 

calculated at each position. When each function match with each other, the value of 

the product (𝑓 ∗ 𝑔)  is maximized due to a large contribution of aligned positive 

areas, and vice versa. So, it measures the degree of similarities between two 

waveforms based on a time-lag as a series of a function of the distance relative to 

each other, and so-called as sliding dot product or sliding inner-product. So, through 
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the cross-correlation, the phase of normal and fault ripples is aligned in the direction 

of maximizing (f * g), by minimizing the time-lag. 

 (𝑓 ∗ 𝑔) = ∑ 𝑓⋆[𝑚]𝑔[𝑚 + 𝑛]

∞

𝑚=−∞

 (12) 

 

3.1.2 Moving-Average Filtering (MAF) 

Although LPF is sensitive to the parameters such as cut-off frequency and the 

order, MAF is less sensitive than LPF because it only needs the number of samples 

to calculate the average value. The description of the MAF is as follows. In equation 

(11), 𝑦[𝑛] is the current output, 𝑥[𝑛] is the current input, 𝑥[𝑛 − 1] is the previous 

input, and N is the length of the average. We set the parameters of the filter as 50, 

which means one window takes 50 data points to smooth the signal. Also, we added 

the compensation term to restore the phase delay. By applying MAF to the raw 

signals, it takes some advantages of 1) minimizing the trend of the signal due to the 

robot movement, and 2) extracting the ripples from the original signal on the high-

frequency band. 

 𝑦[𝑛] =
1

N
∑ 𝑥[𝑛 − 𝑖]

𝑁−1

𝑖=0

 (11) 

In Figure 5, the plots of aligned normal and fault torque ripples on the simple 

motions (a) during clockwise rotation and (b) during counter-clockwise rotation are 

shown. Where the blue plot means the normal state, and the red plot means the fault 

state. In Figure 5, when a fault occurs on the gearbox, the peak of the ripples is larger, 

and also, the value of root-mean-square (RMS) tends to be higher than the normal 

case. In Figure 6, as the torque ripples are mainly dependent on the speed conditions, 

sidebands occur on the ambient frequency of each characteristic frequencies. Also, 
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any interferences from other axes do not exist during the rotation. 

 

Figure 5. Time-domain plots of torque ripples on (a) CW, and (b) CCW rotation 

during simple motion 

 

Figure 6. FFT plots of torque ripples on (a) 100%, (b) 80%, (c) 60%, and (d) 

40% of the full speed of rotating speed during the simple motion. 

In Figure 7 and Figure 8, for the case of complex motions 1 and 2, it can be seen 

that the states of complex motions are not clearly distinguished both in time and 

frequency domains, unlike the above simple motion case. As the robot moves 

complexly during the motion, many axes rotate simultaneously, and modulations on 
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the signal due to faults are not apparent due to non-periodical and non-stationary 

motions. A detailed description of the motions will be covered in the experimental 

validation chapter. 

 

Figure 7. Time-domain plots of ripples on (a) complex 1 motion, and (b) 

complex 2 motion 

 

Figure 8. FFT plots of ripples on (a) complex 1 motion, and (b) complex 2 

motion. 
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3.1.3 Data Augmentation 

Since torque ripples contain fault-related characteristics on the variable speed 

conditions over the input regions, augmented data based on window sliding contains 

fault-related information. After aligning the normal and fault state torque ripples, 

each sliding window with overlap is used as an input of the network. The proper 

length of the window, which does not include a zero-speed region, was set as 3.6 (s) 

for window length and 0.1 (s) for the window shifting length. In Figure 9, the process 

of augmentation of the input data is shown, and the same augmentation procedure is 

performed both on the data of simple and complex motions. 

 

Figure 9. Data augmentation of torque ripples based on a sliding window.  
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3.2 Network Pre-training 

In this chapter, the baseline network to train on the simple motion is a residual 

network, as residual-based network architecture takes some advantages on deep-

layers with no gradient vanishing problem and fast convergence speed. In the view 

of fault detection, Ma et al. [34] showed that residual learning has better 

generalization performance than other CNNs, even under non-stationary working 

conditions, to extract features from the input due to the structural advantages of the 

network. Furthermore, in the network architecture, He et al. [35] showed the use of 

the pre-activation layer before merging with the shortcut contributes to optimization 

results in better accuracy on the test dataset through a bunch of architecture studies.  

So, a skip connection with the pre-activation layer is finally adopted as a basic 

block of the proposed Res-CNN, as described in Figure 10, among several building 

block candidates. Since an exception of the addition path causes the output to become 

un-normalized, the input to the next layer is not normalized properly. By using the 

pre-activation layer, the input is always normalized at the very beginning of the 

identity unit. In one residual block, the BN layer adopts the full pre-activation 

structure in front of the ReLU, which shows the regularization effects. In Figure 11, 

(a) and (b) are no skip connection architecture, (c) and (d) is with skip connection 

network where only (d) uses the pre-activation layer. The notation of non-linear 

activation is σ , a convolutional block which consisted of batch norm-activation-

convolutional operation is F, a max-pooling operation is 𝑃𝑜𝑜𝑙, and the layer input is 

𝑥𝑙 at the 𝐿𝑡ℎ  layer. So after the proposed residual block, layer output is as follows; 

 𝑥𝑙+1 = 𝑃𝑜𝑜𝑙(𝐹(𝜎(𝑥𝑙))+𝜎(𝑥𝑙)) (22) 

Where input non-linear function F of the 𝐿 + 1𝑡ℎ    layer means skip connection 
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based residual block operation. We used a deep feature extraction with one plain 

convolutional block and three residual blocks before the GAP layer, and detailed 

descriptions of network parameters are as follows in Table 1. In one plain 

convolutional block, the concept of wide-kernel [36] was used. As a result, low-level 

features are extracted in the first layer, and while passing the shallow kernels on the 

sequential residual blocks, high-level features of the input can be efficiently extracted 

due to the attention effects. The number of total trainable parameters of the network 

is 75,138. 

Table 1. Detailed parameters of the proposed Res-CNN 

 

 

 

Layer Type Kernel Size Stride Channels Parameter

Input Window 3600 - - -

Conv block1
Convolution 128 1 64

8256
Max pooling 2 2 64

Res block1

Batch norm - - - 256

Convolution 6 1 64
24640

Max pooling 2 2 64

Res block2

Batch norm - - - 256

Convolution 4 1 64
16448

Max pooling 2 2 64

Res block3

Batch norm - - - 256

Convolution 4 1 64
16448

Max pooling 2 2 64

GAP Flatten 1 - # of class -

FC

Fully-
connected

128 - 1 8320

Classification # of class - 1 258
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Figure 10. The proposed architecture of Res-CNN 

 

Figure 11. Architecture studies for the proposed network. Each (a) Plain block, 

(b) pre-activation without skip connection, (c) skip connection without pre-

activation, (d) skip connection and pre-activation 
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3.3 Binary-Supervised Domain Adaptation (BSDA) 

In this thesis, DA is used to guide the network to learn the non-parametric data 

distributions of the shared physical mechanism encompassing the complex governing 

equations of the cycloidal gearboxes. As robots are complexly coupled, and delicate 

systems, the governing mechanisms of the occurring faults are hard to be identified. 

To overcome such limitation, minimizing the metric-based mismatches on the 

embedded feature distributions using DA was applied to disentangle the manifold of 

such feature representations of the complex motions. 

The several challenges to solve in this chapter are as follows. 1) Data acquisition: 

it is challenging to construct a sufficient dataset to train the network depending on 

the motion. So, the use of DA allows few-shot learning with a decent performance 

that lowers the laboring cost to acquire the labeled data of complex motions. Also, 

as the fault-severity is most clearly displayed and labeled in the unit-axis motion, it 

is suitable to transfer the fault-related knowledge. 2) Motion adaptation: as an 

industrial robot performs various tasks, the network trained on a specific motion 

would have poor generalization performance for other motions due to the domain 

discrepancy. Therefore, motion-adaptive fault detection is required to generalize the 

fault detection method.  

Since the robot performs various tasks repetitively, motion on the specified task is 

less affected by external environmental factors such as noise, so variations of the 

torque signal are not large. Thus, the problem formulated in this thesis is concerned 

with how much-labeled samples are required to sufficiently train the network. In this 

chapter, it was confirmed that the proposed BSDA method is effective to learn the 

shared features of motion-invariant physical mechanisms for different motions with 

few-samples. In summary, the proposed method sufficiently learns with only-one 
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cycle data of normal and fault state of complex motions with a pre-trained network. 

The detailed notations used in this thesis are as follows. Source domain is 

described as 𝐷𝑆 = {(𝑥 𝑖
𝑆 , 𝑦 𝑖

𝑆 )}
𝑖=1

𝑛𝑆
, where 𝑛𝑆 is the number of data on the source 

domain, the feature 𝑥 𝑖
𝑆  is from a random variable 𝑋𝑆 which is the source domain 

for training the pre-trained network, and the 𝑦 𝑖
𝑆  is a corresponding label from a 

random variable 𝑌𝑆 . In addition, target domain is described as 𝐷𝑇 =

{(𝑥 𝑗
𝑇 , 𝑦 𝑗

𝑇 )}
𝑗=1

𝑛𝑇
, where 𝑛𝑇 is the number of data on the source domain, feature 𝑥 𝑗

𝑇  

is from random variables of 𝑋𝑡  which is the target domain for training the network, 

and the 𝑦 𝑖
𝑇  is a corresponding label from a random variable 𝑌𝑇. 

Covariance shift, which means the differences between probabilistic distributions 

of feature vectors from different domains after the FC layer, represents the 

discrepancy between the source and the target domain. The goal of the learning is to 

find out the mapping function 𝑓 ∶ 𝑋 → 𝑌 on the target domain, that is equal to 

minimizing the covariance shift, where 𝑓 is composed of 𝑓𝑒 and 𝐷𝐿𝑎𝑏𝑒𝑙 , and 𝑓𝑒 

means the notation of feature extractor of 𝑓𝑒 ∶ 𝑋 → 𝑍 . 𝐷𝐿𝑎𝑏𝑒𝑙   is the label 

discriminator of 𝐷𝐿𝑎𝑏𝑒𝑙: 𝑍 → 𝑌, and the notation Z is the embedding space after GAP 

layer. Siamese network [37] is an effective network architecture finding a shared 

subspace between source and target distributions. It is beneficial for transferring the 

knowledge from source to target domain, especially using small datasets. Since 

𝑓𝑒,𝑆 = 𝑓𝑒,𝑇 = 𝑓𝑒 , the parameters of feature extraction layer are shared in the 

architecture. In addition, the learning of sustaining the source stream would continue 

with GAP layer to train the 𝐷𝐿𝑎𝑏𝑒𝑙 . The classifier f is trained by minimizing the 

classification loss as follows. 

 𝐿𝐶(𝑓) = 𝐸[𝐿𝐵𝐶(𝑓(𝑋
𝑆), 𝑌)] = −𝑌𝑙𝑜𝑔(𝑓(𝑋𝑆)) − (1 − 𝑌)log (1 − 𝑓(𝑋𝑆)) (13) 
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Where E denotes statistical expectation and L𝐵𝐶  is the loss function of binary-cross-

entropy with equation (13). Also, semantic alignment loss, which guarantees that the 

samples from different domains of the same label are aligned nearby after being 

mapped on the embedding space is as follows. 

 𝐿𝑆𝐴(𝑔) =∑𝑑𝐸𝑢𝑐 (𝑝(𝑓𝑒(𝑋𝑎
𝑠)), 𝑝(𝑓𝑒(𝑋𝑎

𝑡))) =

𝑁𝐶

𝑎=1

∑∑𝑑𝐸𝑢𝑐 (𝑓𝑒(𝑥𝑖
𝑠), 𝑓𝑒(𝑥𝑗

𝑡))

𝑖,𝑗

𝑁𝐶

𝑎=1

 (14) 

Where 𝑁𝑐 means the number of class of the network, and we adopted the binary 

case as 𝑁𝐶 = 2. This encourages the samples from different domains but the same 

label, to be mapped nearby in the embedding space, which means it minimizes the 

discrepancy on the in-class data distributions of the different domains. And 𝑑𝐸𝑢𝑐  

means the metric of Euclidean distance between distributions in the embedding space 

as follows. 

 𝑑𝐸𝑢𝑐 (𝑓𝑒(𝑥𝑖
𝑠), 𝑓𝑒(𝑥𝑗

𝑡)) =
1

2
||𝑓𝑒(x𝑖

𝑠) − 𝑓𝑒(x𝑗
𝑡)||

2
 (35) 

Also, to maximize the out of class data distributions of the different domains, a class 

separation that takes the role of mapping apart as possible in the embedding space is 

required. So, the separation loss is described by the following term as, 

𝐿𝑆(𝑔) = ∑ 𝑑𝑆𝑒𝑝 (𝑝(𝑓𝑒(𝑋𝑎
𝑠)),𝑝(𝑓𝑒(𝑋𝑏

𝑡)))

𝑎,𝑏|𝑎≠𝑏

= ∑ ∑𝑑𝑆𝑒𝑝 (𝑓𝑒(𝑥𝑖
𝑠), 𝑓𝑒(𝑥𝑗

𝑡))

𝑖,𝑗𝑎,𝑏|𝑎≠𝑏

 (46) 

By combining it with the semantic alignment loss, it is less prone to generate errors 

and achieves much better performance. Where 𝑑𝑆𝑒𝑝 is the metric of calculating the 

similarities between the distributions by adding the penalty function when the class 

is different, the || ∙ || denotes the Frobenius norm, and the Boolean calculation that 

the minimum 𝑑𝐸𝑢𝑐 should be larger than set values, which used 1e-3 in this thesis.   
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 𝑑𝑆𝑒𝑝 (𝑓𝑒(x𝑖
𝑠), 𝑓

𝑒
(x𝑗
𝑡)) =

1

2
max (0, 1 − ||𝑓

𝑒
(x𝑖
𝑠)− 𝑓

𝑒
(x𝑗
𝑡)||)

2
 (17) 

In summary, by combining with 𝐿𝑆𝐴 and 𝐿𝐶  , learning is minimizing the 

dissimilarities for different domains with the same label and maximizing the 

inconsistency for different domains with different labels. Based on the above 

classification loss, semantic alignment loss, and separation loss, the total loss term 

is described as follows.  

 
𝐿𝑇𝑜𝑡𝑎𝑙(𝑓) = α𝐿𝑐(𝐷𝐿𝑎𝑏𝑒𝑙◦𝑓𝑒) +(1-α)(𝐿𝑆𝐴(𝑓

𝑒
)+𝐿𝑆(𝑓𝑒)) (18) 

Where α is the weighting parameter to adjust the contributions of each loss. The 

proposed Siamese network architecture is described in Figure 12.  

 

Figure 12. Constructed Siamese network with Res-CNN pre-trained network. 

Where C means the convolution block, and R means the residual block. 
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The overall pseudo code of the MAFS algorithm is in Figure 13. First, in order to 

generate a pre-trained model, the 𝑁𝑃  network is trained by randomly extracting 

mini-batch 𝐷𝑆
𝑚  from the data of the source domain. And then, the samples of source 

and target domains are randomly selected with the number of m, n, respectively. 

Random sampling is updated per epoch, and learning is completed at the point where 

the loss converges. At this time, mini-batch 𝐷𝑆,𝑇
𝑘  is generated from the constructed 

pairwise data with point-wise comparisons of 𝐷𝑆,𝑇   which is m n  dataset for 

distinguishing between cases. Finally, after constructing 𝑁𝑆 as a Siamese network 

using 𝑁𝑃, the network is trained by comparing feature similarity between the source 

and target data in mini-batch. And while the training procedure, the label 

discriminator 𝐷𝐿𝑎𝑏𝑒𝑙  is fine-tuned on the few samples of the target domain. 

 

Figure 13. Pseudo-code for training the proposed MAFS algorithm 

As a result, based on point-wise comparison with latent vectors enables that 1) 

Initializing the network weights using a pre-trained model, and 2) Transferring the 
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fault-information of simple motions into complex motions to learn the shared cross-

domain features from ripples. Also, we show that the proposed method can 

effectively transfer the fault-related information. A detailed description of the point-

wise comparison is shown in Figure 14. In this case, blue-dot means normal data, 

and navy-dot means fault data, respectively. The dotted line is the 𝑑𝐸𝑢𝑐  on the 

embedding space, and blue-dot line corresponds to 𝐿𝑆𝐴   for learning domain 

similarity between each normal and fault data of different domains. The gray-dot line 

corresponds to 𝐿𝐶   for classifying between different labels in the source domain. 

Finally, the black-dot line corresponds to 𝐿𝑆  for maximizing the 𝑑𝐸𝑢𝑐  with 

keeping the distance of 𝑑𝑆𝑒𝑝 between different labels in different domains.  

 

Figure 14. Pairwise comparisons for different domains on the latent space 
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Chapter 4. Experimental Validations 
 

 

In this chapter, the testbed setup is firstly discussed, and two case studies of the 

complex motions 1 and 2 are shown. Various comparative studies are performed to 

verify the effectiveness of the proposed method. In chapter 4.1, the industrial robot 

testbed that used to acquire the torque signals is presented. And in chapter 4.2, the 

pre-trained model generation was discussed. Finally, in chapter 4.3, the fault 

detection performances of each complex motions will be drawn. 

 

4.1 Experimental Settings 

The data used for the analysis was acquired from the robot controller with torque 

data of each joint and corresponding speed profiles from a controller described in 

Figure 15. For articulated robots, the number of DOF which corresponds to the 

number of joints determines how freely the robot arm can move. Conventionally, the 

industrial robot, which has six joints to perform sophisticated tasks like a human arm, 

is described in Figure 16. Industrial robots are composed of links and joints, and 

drivetrain components are coupled in each joint. While executing the specific tasks, 

the end-tip contour of an industrial robot requires the working path, and the rotating 

angles and speeds of each joint are determined by such a working path. The working 

path of each joint is programmable with a starting point, several via points and an 

endpoint. So, the motion starts from a starting point, undergoes several via points, 

and ends when the motion arrived at an endpoint.  

In this thesis, the term simple motion means the unit-axis accelerates from a 

starting point with a specific posture, rotates with constant angular speed, and 
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decelerates to the next via point from the previous via point. For trajectory generation, 

a linear segment with parabolic blends shape is used. Detailed explanations will be 

covered in the next chapter 4.2. Also, the term complex motion means that the 

working path of a real-industrial welding motion. Compared to the simple motion, 

while executing complex motion, the joints of the robot rotate simultaneously with 

constant angular speed and transient angular speed on a welding cycle composed of 

the complicated working path. In this thesis, the complex motions are configurated 

as following two motions. Complex 1 motion means a welding motion in a standard 

speed state that contains constant speed region, and complex 2 motion means a 

welding motion in a fast speed state that includes only a transient speed region. 

Detailed explanations will be covered in the next chapter 4.3. 

The proposed method was validated using a 6-DOF industrial robot testbed with 

80kgf of payload described in Figure 16. The cycloidal gearbox was used in each 

joint of the industrial robot, and the faulty specimen of 4th joint is brought from 

real-industrial sites, which is frequently used for almost all movements for high 

precision control and takes the role of the wrist part of the industrial robot. The 

dataset is described in Table 2, and acquired with different temperatures and 

operating speed conditions under the design of experimental (DOE) method. In 

addition, the normal and fault data were obtained without imbalance for all cases. 

For deep network training, we used CPU of Intel i7-8250U, 64Gb RAM, and one 

GPU of NVIDIA GEFORCE RTX 2080 Ti. The code is constructed with 

tensorflow2.0 using python. 
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Figure 15. The overall configuration of the industrial robot testbed with a 

computer, and controller 

 

Figure 16. Industrial robot testbed of 6-DOF articulated robot [2] 
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Table 2. Dataset compositions of the source and the target domain 

 

 

4.2 Pre-trained Network Generation 

To construct a robust diagnostic network, data is acquired with the variants of 

operating speeds and temperatures, where operating speeds are range from 40%, 60%, 

80%, 100% of the full-angular speed, and temperatures range from 40℃, 50℃, 60℃. 

The parameters of the convolutional and pooling layers are shown in Table 2. And 

Adam [38] optimizer is applied to train the Res-CNN model as it is a straightforward, 

memory-saving, and computationally effective. The number of total samples is 

divided from the whole data used to train the network. For the training dataset, 50% 

is used composed of 3457 samples for normal and 3457 samples for fault, and 

validation data is the same as training data. In Table 2, the number of data acquired 

from the simple motion is noted. Also, as can be seen from the speed profile in Figure 

17, the amplitude of the torque data changes in the chapter where the speed changes.  

In Figure 18, a convergence plot while training the network is composed of the 3 

candidate networks of Dense, one-dimensional (1D) CNN, and the proposed network. 

First, a Dense network did not converge while training due to low feature extraction 

performance. Second, a 1DCNN network composed of three conv-activ-maxpool 

 



41 

 

blocks converged lately because of the slow gradient propagation speed. On the other 

hand, the proposed Res-1DCNN network converged very fast and stabilized after 

almost 10 epochs.  

 

Figure 17. Torque data with speed profile on the simple motions 

 

Figure 18. Convergence plot of validation loss on (a) Dense, (b) 1DCNN, (c) 

Proposed Res-CNN network 
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After training, the visualization of the classification performance via Res-CNN is 

shown using t-SNE plot in Figure 19. t-SNE converts the distance between data into 

stochastic probability and uses it for embedding, and expresses the manifold of high-

dimensional data as a two-dimensional map by learning neighbor structures between 

data represented by high-dimensional embedding vectors.  

 

Figure 19. Visualization of embedding space of simple motions with t-SNE. 

Where blue dots mean the normal samples, and red dots mean the fault samples of 

total validation data. 
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4.3 Motion-Adaptation with Few-Shot Learning 

In this chapter, the performance of the proposed method is examined by 

conducting two case studies with some of the comparative models. When training a 

network, only one-cycle of normal and fault data is used for setting a few-shot 

learning problems. And the performance of each model was evaluated using the 

average values of accuracies on samples of cycle data on the test dataset. Also, as a 

result of some ablation studies, the proposed method showed superior performances 

over other methods on such few-shot learning conditions. 

Without transfer learning. Based on the same network used in the source domain, 

a network trained from scratch from the other target domain was applied to evaluate 

the performance. So, it is a measure of how different the discrepancy of data 

distributions on each complex motion. 

Transfer learning with fine-tuning. For transfer learning, the pre-trained weight 

was frozen up to the first block of the model, and the training was performed with 

the trainable subsequent layers.  

Proposed MAFS with 1DCNN. To validate the performance of MAFS by using 

1DCNN as a feature extractor, a feature extractor is switched as 1DCNN to confirm 

the effectiveness of BSDA.  

Proposed MAFS with Res-CNN w/o 𝑳𝑺𝑨. To investigate the performance of the 

network according to the loss terms, modified loss term that without 𝐿𝑆𝐴 is used 

while BSDA procedure.  

Proposed MAFS with Res-CNN w/o 𝑳𝑺. Similar to above case, modified loss 

term that without 𝐿𝑆 is used while BSDA procedure.  

Proposed MAFS with Res-CNN. By switching the backbone feature extractor as 

Res-CNN, the effects of residual propagation on information flow on SDA is 
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discussed, which is the proposed architecture on this thesis. 

Baseline. By training the Res-CNN from scratch with sparse data in the target 

domain, it is conducted to check the learning performance for test data of complex 

motions. 

 

4.3.1  Case Study 1: Standard speed Welding Motion 

In this case study, a case of standard speed welding motion data is used. In one-

cycle, each normal and fault data is composed of 200 samples. In Figure 20, the 

angular speed and torque profile of the 4th joint for one cycle are shown. There are 

three major regions of the constant speed region between 8(s) to 10(s), 13(s) to 14(s), 

and 14(s) to 16(s). Data is acquired with the variants of temperatures range from 40℃, 

50℃, 60℃. The number of samples is divided from the whole data, only one cycle 

data of normal and the fault is randomly selected to train the network. Test data is 

the remainder of the whole dataset except the training dataset.  

 

Figure 20. Torque data with speed profile on the complex 1 motion 
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Next, the results of the fault detection performances are summarized in Table 3. 

The accuracy means the averaged accuracies of each cycle expressing the variations 

with -sigma to +sigma. For a pre-trained case that trained only with a baseline model 

on the complex 2 motion, the classification accuracy is low as a pre-trained weight 

from the complex 1 motion is not fit for complex 2 motion. For a fine-tuned case, 

which uses weights of a pre-trained network on the shallow layer trained on the 

complex 2 motion, accuracy is greatly improved as 67.1%, but the performance is 

still low as the low-level features extracted from a shallow layer are different 

compared to the simple motion case. So, it implies that even if the network is fine-

tuned on the simple motions, overfitting has occurred on sparse data on the complex 

motions, so fine-tuning is not a valid choice. 

On the other hand, based on the proposed MAFS method, the classification 

accuracy using 1DCNN as a feature extractor is 61.8%, which is lower than the fine-

tuned case. Also, proposed MAFS with Res-CNN w/o 𝐿𝑆𝐴  and 𝐿𝑆  each shows 

improved performance as 89.7% and 88.1%, respectively, but proposed MAFS with 

Res-CNN using total loss showed the most superior results than other methods as 

95.3%. Especially, the accuracy is drastically improved compared to the MAFS with 

1DCNN case because the information flow is reformed based on residual propagation 

during motion-adaptation. So, high-dimensional feature representations of the ripples 

could effectively be learned through passing the deep-layers. Furthermore, the 

baseline model, which trained only using the target domain data, showed similar 

performance compared to the proposed MAFS with Res-CNN.  

In Figure 21, visualizations of embedding space via proposed MAFS with Res-

CNN are shown as (a) before adaptation, and (b) after adaptation, where blue dots 

mean the normal samples and red dots mean the fault samples. In (a) of Figure 21, 
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embedding space of a pre-trained network using only unit-axis motions is shown. 

Properly clustered distributions are composed of the normal and fault samples of the 

unit-axis motion. On the other hand, in (b) of figure 21, the overlapped distributions, 

which originated from the domain discrepancy, are well distinguished after 

adaptation. Therefore, the cross-domain features on torque ripples were effectively 

learned on the motion-adaptation procedure only using few-shot samples on the 

target domain, while maintaining the classification accuracy. 

Furthermore, using 1d guided grad-CAM, visualization of localization effects on 

the signal is shown in Figure 22. In each plot, it shows the highlighted regions 

localized as informative regions to classify each class. As we can see, the non-

adapted network is localized to a specific part of the ripple, resulting in low fault 

detection performance, whereas the adaptive network sees the shape of the ripple in 

a broader range and detects the fault with higher accuracy. Also, the highlighted 

region after adaptation means the transferable region, which means the shared region 

with the source domain. 

Table 3. Comparative results of the fault detection performances on the complex 

1 motion test data 

  

Methods Accuracy(%)

Pre-trained(2-1) 46.5   9.2

Fine-tuned(2-1) 67.1  7.6

Proposed MAFS(1DCNN) 61.8  5.5

Proposed MAFS(Res-CNN) w/o 𝐿𝑆𝐴 89.7  5.9

Proposed MAFS(Res-CNN) w/o 𝐿𝑆 88.1  5.5

Proposed MAFS(Res-CNN) 95.3  4.4

Baseline 93.  4.7
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Figure 21. Visualization of embedding space with t-SNE with (a) before 

adaptation, and (b) after adaptation 

 

Figure 22. Visualization of 1D guided grad-CAM on complex 1 motion (a) 

before MAFS with Res-CNN, and (b) after MAFS with Res-CNN 
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4.3.2 Case Study 2: Fast Speed Welding Motion 

In this case study, the same methodology of case study 1 is used, but the speed 

profile is quite different because it includes only the transient regions. In one-cycle, 

each normal and fault data is composed of 180 samples. In Figure 23, the angular 

speed and torque profile of the 4th joint for one cycle are shown, and there is no 

constant speed region on a cycle. For the training dataset, only one cycle data of 

normal and the fault is randomly selected, and test data is the remainder of the whole 

dataset except the training dataset. In Table 2, the number of data acquired from the 

complex motion 2 is noted, and results of the comparative fault detection 

performance are summarized in Table 4. The accuracy means the averaged accuracies 

of each cycle expressing the variations with -sigma to +sigma. Compared to the case 

study 1, the samples of the one-cycle data are less and the similarity between the 

source and the target domain is low.  

 

Figure 23. Torque data with speed profile on the complex 2 motion 

 

 Time(s)

A
m

p
li

tu
d

e



49 

 

Based on the proposed MAFS method, the classification accuracy using 1DCNN 

as a feature extractor is 79.6%, which is higher than the fine-tuned case. Also, 

proposed MAFS with Res-CNN w/o 𝐿𝑆𝐴  and 𝐿𝑆  each shows improved 

performance as 75.6% and 86.4%, respectively, but proposed MAFS with Res-CNN 

showed the most superior results than other methods as 92.8%. Especially, the 

accuracy is drastically improved compared to the MAFS with 1DCNN case. 

Compared to the case study 1, the baseline model trained only using the target domain 

data, showed significantly low accuracy because of the low learning performance.  

In Figure 24, visualizations of embedding space via proposed MAFS with Res-

CNN are shown as (a) before adaptation, and (b) after adaptation, where blue dots 

mean the normal samples and red dots mean the fault samples. In (a) of Figure 24, 

properly clustered distributions are composed of the normal and fault samples of the 

source domain. On the contrary, in (b) of Figure 24, the overlapped distributions of 

target motions become well-distinguished after motion-adaptation. Therefore, 

similar to the above case study 1, the cross-motion features on torque ripples are 

effectively learned through the motion-adaptation procedure using few-shot samples 

on the target domain.   

Furthermore, using 1d guided grad-CAM, visualization of localization effects on 

the signal is shown in Figure 25. As a result, the network localized to informative 

regions while training. As we can see, the non-adapted network is localized to a 

specific part of the ripple, resulting in low fault detection performance, whereas the 

adaptive network sees the shape of the ripple in a broader range and detects the fault 

with higher accuracy. Also, the highlighted region after adaptation means the 

transferable region, which means the shared region with the source domain. 
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Table 4. Comparative results of the fault detection performances on the complex 

2 motion test data 

 

  

 

Methods Accuracy(%)

Pre-trained(2-1)  0.2 1.2

Fine-tuned(2-1) 77.8   18.3

Proposed MAFS(1DCNN) 79.6  7.7

Proposed MAFS(Res-CNN) w/o 𝐿𝑆𝐴 75.6  7.5

Proposed MAFS(Res-CNN) w/o 𝐿𝑆 8 .4 9.3

Proposed MAFS(Res-CNN) 92.   8.2

Baseline 6 .4   19.5
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Figure 24. Visualization of embedding space with t-SNE of complex 2 motion.  

 

Figure 25. Visualization of 1D guided grad-CAM on the complex 2 motion. (a) 

before MAFS with Res-CNN, and (b) after MAFS with Res-CNN 

 
Dimension 1

D
im

en
si

o
n 

2

Dimension 1

D
im

en
si

o
n 

2

Normal
Fault

 

A
m

p
lit

u
d
e

A
m

p
lit

u
d
e

Sliding Window Sliding Window

A
m

p
lit

u
d
e

A
m

p
lit

u
d
e

Sliding Window Sliding Window

A
m

p
lit

u
d
e

A
m

p
lit

u
d
e

Sliding Window Sliding Window

(a) (b)



52 

 

Chapter 5. Conclusion and Future Work 
 

 

5.1  Conclusion 

In this paper, we confirmed that the proposed MAFS with Res-CNN method 

showed superior performance to detect the faults on the complex motions. First, pre-

processing minimizes the motion effects by extracting the torque ripples. Second, the 

proposed Res-CNN propagated the information of torque ripples efficiently. Third, 

even if the few-shot tasks, BSDA transfers motion-invariant features of the gearboxes 

effectively under constant and transient speed welding motions. Also, via 1D guided 

grad-CAM, it is shown that transferable local regions became broader after domain 

adaptation. In addition, the proposed method is generalized to resolve domain 

discrepancy for different robot motions through learning the shared physical 

mechanisms on the torque ripples under few-shot conditions. Therefore, this study 

can be used to quickly determine whether the faults of the gearbox of an industrial 

robot is has occurred or not on the complex motions both on constant and transient 

speeds.   

 

5.2  Contribution 

Based on the above procedures, this study has the following three contributions: 

(1) extracting torque ripples by pre-processing to minimize motion effects on the 

low-frequency band, (2) generating a pre-trained network for robust feature 

extraction by improved information flow via Res-CNN, (3) generalizing a few-shot 

fault detection method on industrial motions by motion-adaptive learning. The 

proposed method is expected to apply to other industrial motions such as assembly, 
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painting, inspection, and so on.  

 

Contribution 1: Extracting Torque Ripples By Pre-Processing To Minimize 

Motion Effects On The Low-Frequency Band 

The effects of the motion were minimized by pre-processing the acquired torque 

signal. Phases are matched through cross-correlation, and torque ripples are extracted 

through MAF. This pre-processing minimizes the influences of the low-frequency 

band due to robot motion independent of the health index. After then, input data as 

torque ripples is generated through a sliding window-based data augmentation. 

 

Contribution 2: Generating A Pre-Trained Network For Robust Feature 

Extraction By Improved Information Flow Via Res-CNN 

To pre-train the network, data were collected differently depending on the 

operating and environmental conditions according to the experimental design method. 

In addition, the proposed Res-CNN network showed the best feature representation 

performance due to attention effects and reformed information flow.  

 

Contribution 3: Generalizing a Few-Shot Fault Detection Method on Industrial 

Motions By Motion-Adaptive Learning 

A fault detection method through learning the motion-invariant features under 

complex motions is generalized using BSDA. This method is powerful in exploiting 

sparsely labeled target data to learn the domain-invariant knowledge by using point-

wise comparisons of feature distribution distances and similarities. Furthermore, the 

performance is visualized in the embedding space through t-SNE, and the 

transferable region is highlighted through 1D guided grad-CAM. As a result, motion-
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adaptation minimized the physical mismatches or inconsistencies on the torque 

ripples on the different motions.  

 

5.3  Future Work 

In this chapter, several future works are summarized. First, to verify the 

effectiveness of the proposed method, adjusting the number of samples for few-shot 

tasks is required. Also, changes in the model performance when the data scarcity is 

different by varying the sliding window interval are not dealt. Second, architecture 

studies of DA are not enough to compare, so there is a possibility for further 

improvement in the detection performance by adopting advanced divergence 

measures of extracted features such as MMD [38], CORAL [39], GCN [40]. Finally, 

the case where the faults occurred on the 4th axis was only dealt in this thesis, but 

it is expected that the proposed method is applicable to detect the gearbox faults not 

only for the 4th axis but also other axes. In addition, the proposed method based on 

the torque ripples is applicable to other types of articulated robot systems such as 

cooperative robots, and so on.  
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Appendix A. 1D Guided Grad-CAM 

 

Nowadays, explainable AI (XAI) has been receiving lots of attention, which is 

used for interpreting and understanding the deep learning architectures based on 

final-results and the validity of the derivation process. Also, for PHM, it is important 

to know the most probable region to classify each class of healthy states to prevent 

the wrong localization problem of the deep network. It is because the wrong decision 

caused by AI could induce disasters in the real-world. So, people were would like to 

see how the proposed method highlights an informative region. In PHM, much data 

is acquired by sensor signals, which is 1D not a 2D, so 1D guided-grad CAM is 

needed to be applied. In this thesis, 1D guided grad-CAM was implemented with 

simple signal-processing techniques for the binary case, and it is further applicable 

to other applications such as bearing, gearbox, and so on. In Figure 26, Net 1 

represents a pre-trained network before adaptation, and Net 2 represents an adapted 

network after the MAFS method by adjusting the weights through a constructed 

Siamese network. 

By Selvaraju et al. [41], the concept of guided-grad CAM was introduced. As 

grad-CAM detects roughly the parts related to the class on the image, but the details 

of those parts were difficult to catch due to the effects of bilinear upsampling. So, by 

element-wise multiplication of guided back-propagation and grad-CAM, it showed a 

more effective end-to-end localization method. In more detail, for example, in the 

classification problem, the expressions of the guided grad-CAM are as follows. The 

y𝑐 score for each class of the softmax step and the gradient for the k𝑡ℎ layer on 

CNN structure where feature map is A𝑘 . So, the importance weights could be 

expressed as follows. 
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α𝑘
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1

𝑍
Σ𝑖Σ𝑗

𝜕𝑦𝑐

𝜕𝐴𝑖,𝑗
𝑘

 (19) 

In equation (20), after multiplying the importance weights with each feature map, 

grad-CAM heat-map could be calculated as passing by ReLU of linear summation, 

since the interested region of the class is in the effect of positive values. 

 𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 = ReLU(Σk𝛼𝑘

𝑐𝐴𝑘) (20) 

By combining with the above heatmap and guided back-prop in Figure 26, we can 

get the guided grad-CAM. In this thesis, the method of visualizing a 1D signal with 

grad-CAM is also considered. The signal envelope is extracted by applying the 

Hilbert transform and smooth it with a low pass filter. After then, 1D guided-grad 

CAM is plotted with line intensity according to the amplitude of torque ripples.  

 

Figure 26. 1D Guided gradient-weighted class activation map 
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국문 초록 

 

오늘날 산업용 로봇은 일관된 정밀도와 정확성으로 반복적인 작업을 

수행할 수 있는 자동화된 제조 공정의 핵심 장비이다. 그러나, 산업용 

로봇에 고장이 발생하면 생산 라인의 예기치 않은 종료를 야기하여 많은 

경제적 손실이 발생할 수 있으므로 고장을 감지하는 것이 중요하다.  

산업용 로봇의 주 동력 전달 요소 중 하나인 기어박스에는 높은 토크 

부하가 걸리기 때문에 고장이 자주 발생하며, 기어박스에 고장이 

발생하면 토크 신호의 진폭 및 주파수가 변조되어 토크 신호의 특성이 

달라지게 된다. 이전의 여러 연구에서 토크 신호를 통한 산업용 로봇의 

고장 감지 방법들이 제안되었지만, 다양한 환경 및 운영 조건에서 고장 

관련 특징을 추출하고 산업 현장에서 사용되는 복잡한 동작에서 고장을 

감지하는 것은 여전히 어려운 과제이다. 

이러한 어려움을 해결하기 위하여, 본 논문에서는 토크의 리플을 

사용하여 1차원 잔차-컨볼루션 신경망(Res-CNN)과 이진 감독 도메인 

적응을 통한 산업용 로봇 기어박스의 동작 적응형 퓨샷 고장 감지 

방법을 제안한다. 제안된 방법의 전체적인 절차는 다음과 같다. 먼저, 

취득된 토크 신호에 이동 평균 필터링을 적용하여 데이터의 경향성을 

추출하고, 원 신호 및 필터링 된 신호와의 잔차로서 고주파 대역의 토크 

리플을 얻는다. 둘째, 온도와 회전 속도와 같은 다양한 환경 및 운영 

조건에서 잔차-컨볼루션 신경망을 통해 토크 리플의 상태를 분류한다. 

이는, 1) 정상과 고장 토크 리플의 작은 차이를 효과적으로 구분하였고, 

2) 어텐션에 의해 입력 데이터의 중요한 영역에 초점을 두어 학습하는 

효과를 나타냈다. 셋째, 단순 동작으로 구성된 소스 도메인에서 사전 
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훈련된 네트워크로 샴 네트워크를 구축한 후, 이진 감독 도메인 적응을 

통해 복잡 동작으로 구성된 대상 도메인에서 고장을 감지한다. 

결과적으로, 1) 산업용 로봇의 관절 축 내에서 토크 리플 간의 교차되는 

물리적 특성의 유사성을 학습하였으며, 2) 로봇이 복잡 동작을 수행하는 

동안, 동작에 적응적으로 기어박스의 고장을 감지하는 데 효과적임을 

확인하였다. 제안된 방법은 복잡한 동작에서 정상과 고장 상태의 사이클 

데이터가 각각 하나씩만 있는 퓨샷 조건에서, 다른 딥러닝 기반 

방법들보다 가장 높은 정확도로 고장을 감지할 수 있음을 보였다. 또한, 

토크 리플에서 전이 가능한 영역은 1차원 가이드 된  경사 가중치 기반 

클래스 활성화 맵을 통해 강조되었다.  

제안된 방법의 효과는 자동차 제조 라인과 같은 실제 산업 분야에서 

일반적으로 사용되는 일정 및 과도 속도의 다축 용접 동작의 실험 

데이터를 통해 검증되었으며, 제안된 방법은 추후 검사, 도장, 조립 등의 

다른 유형의 동작에서도 기어박스의 고장을 감지하는 데 적용 가능할 

것으로 예상된다. 

 

주요어:   산업용 로봇 

 기어박스  고장 감지 

 토크 리플  

 잔차-컨볼루션 신경망 

 이진 감독 도메인 적응 

 퓨샷 학습 

 일차원 가이드 된  경사 가중치 기반 클래스 활성화 맵 
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