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ABSTRACT

Adversarial Dictionary Learning for Anomaly Detection

by

Jonghyuk Baek

Department of Mechanical Engineering

Seoul National University

In this thesis, we propose a semi-supervised dictionary learning algorithm that

learns representations of only non-outlier data. The presence of outliers in a dataset

is a major drawback for dictionary learning, resulting in less than desirable per-

formance in real-world applications. Our adversarial dictionary learning (ADL) al-

gorithm exploits a supervision dataset composed of known outliers. The algorithm

penalizes the dictionary expressing the known outliers well. Penalizing the known

outliers makes dictionary learning robust to the outliers present in the dataset.

The proposed method can handle highly corrupted dataset which cannot be ef-

fectively dealt with using conventional robust dictionary learning algorithms. We
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empirically show the usefulness of our algorithm with extensive experiments on

anomaly detection, using both synthetic univariate time-series data and multivari-

ate point data.

Keywords: Sparse Representation, Dictionary Learning, Semi-Supervised Learn-

ing, Anomaly Detection
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1
Introduction

As the most representative methodology among linear representation methods, the

sparse representation has attracted much attention from signal processing fields

and has been applied to a variety of applications in recent years [1]. Originated

from the theory of compressed sensing (CS), the concept of sparse representation

is based on the rationale that if a signal is compressible, the original signal can be

approximated using only a few measurement values [2]. From this rationale, the

goal of sparse representation can be summarized as expressing a given signal as a

linear combination of a small number of signals, taken from a reference database

[3]. It has been demonstrated that many real-world signals and natural images can

be represented with a sparse linear combination of some basis vectors. Further, the

sparse representation of signal has been proven to be a powerful solution to a wide

range of fields such as signal processing, computer vision, and machine learning,

including tasks like image denoising [4], visual tracking [5], image classification [6],

and anomaly detection [7].

The very first form of sparse representation method was to exploit a predesigned
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set of transform functions, such as the fast Fourier transform (FFT) or wavelet

transform and its variants. However, despite their simplicity and computational

efficiency, the use of predesigned transform functions have an inherent problem

that it is hard to manually design optimal transform function according to the

signal characteristics. Their counterpart in learning scheme, the concept of learn-

ing transformation functions from the signal itself had emerged, which is called

the dictionary learning method.

Dictionary learning aims to find a set of basis vectors (atoms), which is called

a “dictionary” so that the given signals can be approximated as a sparse linear

combination of basis elements [3]. A general framework for dictionary learning can

be formulated as an optimization problem:

min
D∈C,βi

N∑
i=1

f(xi −Dβi) + P (λ, βi) (1.0.1)

where D ∈ Rn×p is a dictionary matrix and C = {D = [d1, d2, . . . , dp] | dTi di ≤ 1}.

Here di ∈ Rn denotes the ith column of dictionary matrix, which is called “atom”,

and p denotes the number of atoms in a dictionary. N is the number of training

samples, xi ∈ Rn is the single n-dimensional sample from the dataset, and βi ∈ Rp

is the sparse representation corresponding to the ith sample. f(xi −Dβi) denotes

a data fitting term. P (λ, βi) and λ are the regularization function and the regular-

ization parameter for sparsity in representation βi, respectively. The optimization

problem jointly finds an optimal dictionary and sparse representation for given sig-

nals, which is achieved by minimizing the approximation error (first term) from

the sparse representation while penalizing with sparsity in representation (second

term). The scheme of learning basis vectors from signals can be also found in

conventional linear representation methods such as Principle Component Analysis
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(PCA) and Independent Component Analysis (ICA). However, unlike these meth-

ods dictionary learning does not impose the condition that the dictionary atoms

be orthogonal, it allows much more flexibility in signal modeling.

Despite the usefulness in signal representation, dictionary learning usually suf-

fers from the outliers present in the dataset. In fact, training a dictionary needs a

large amount of data in practice. However, as the amount of training data grows

larger, it becomes almost impossible to get an outlier-free dataset because there

exists a limitation on human manual data labeling. The outliers present in the

dataset affect the expressive ability of the learned dictionary if the presence of

outliers is not regarded in advance in the learning procedure.

A dictionary corrupted with the outliers (i.e. a dictionary that also has an ex-

pressive ability on outliers) is not desirable in practical applications. For example,

anomaly detection using sparse representation requires a dictionary well adapted

to the non-anomalous signals. Then, the anomaly detection can be conducted by

observing the residuals which cannot be reconstructed well using a given dictionary

with the designated sparsity level in representation. However, as mentioned above,

expressive ability on outliers (anomalies) from the corrupted dictionary make the

chance of approximating even anomalous signals, while keeping the sparsity level in

representation low. In another application of the Background Subtraction (BGS)

for foreground segmentation, the dictionary learning can be exploited to model

the background of the video sequence. However, video records often contain both

background regions and foreground pixels; which is an outlier signal we do not

want to model. This can lead to an inaccurate background model which results in

poor foreground segmentation performance.
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1.1 Related Works

Various attempts have been made to make dictionary learning robust to the out-

liers present in the dataset, and they can be grouped into the set of algorithms

called the robust dictionary learning. Authors in [8] exploits l1-norm for both data

fitting term and sparsity penalty term in optimization (see equation 1.0.1), which

is known to be robust for non-Gaussian noise contamination. This formulation im-

proves either computational efficiency on sparse representation step and robustness

on outliers, along with the guarantee of the existence of the global optima. [9] fur-

ther enhances the robustness of dictionary learning using capped l1-norm on data

fitting term, which saturates to a constant value when the scale of l1-norm is over

the designated threshold. The non-convexness inherited from the capped l1-norm

is addressed and an efficient algorithm that finds local optimal solutions is sug-

gested. Authors in [10] use the same modification on objective function as [9] with

l1-norm but they had a different approach solving it, a modified version of K-SVD,

the representative of l0-norm regularized dictionary learning algorithms. Authors

in [11] presented a new data fitting loss called Gaussian fidelity, which guarantees

a stable solution in the presence of outliers. Many other works proposed robust

dictionary learning algorithms based on modification on linear approximation loss

[12][13].

However, the approaches of merely modifying the data fitting loss function f

to be robust can fail when the outliers are abundant in a dataset and they are

not well distinguishable from the inlier ones just using the lp-norms. Moreover,

they do not exploit any additional domain-specific information of data, such as the

representative patterns of frequently occurring outliers (e.g. semiconductor defect

pattern or ECG anomaly pattern) or some supervision results from the human
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practitioner, even when they are available to use.

1.2 Contributions of This Thesis

In this thesis, we propose a novel dictionary learning algorithm that rejects outliers

using a semi-supervised learning scheme. The semi-supervised learning we refer to

here is the learning setting where most data are unlabeled and a small portion of

data is labeled.

Different from the existing robust dictionary algorithms with the same pur-

pose, we exploit additional information of outliers provided, not just modifying

the loss functions to be robust on some misbehaving data. To be more specific,

given a small set of data labeled as an outlier we add an additional loss function

to the conventional dictionary learning problem, called an adversarial loss. The

adversarial loss takes the outlier labeled sample set as an input and penalizes the

expressive ability of the dictionary on the outliers, acting as a barrier function in

the optimization process.

Our algorithm has an advantage in that we can explicitly provide information

on misbehaving data that we do not want the dictionary to express it. In many

cases, the definition of the term outlier itself is ambiguous. Even intermittent data

and data that deviate much from the most frequently observed data can be also

considered as inliers, depending on the needs and choices of the practitioner. So it

is necessary to have a “reference” which signal to learn and which to avoid. Our

formulation with a new loss function tackles down this need, at the same time

improving the robustness of the dictionary learning.

Although it is not the first time to exploit the scheme of semi-supervised learn-

ing in dictionary learning [14][15][13], the concept of using the supervision data as
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a reference for misbehaving signals to improve the robustness of the dictionary

learning, has not been proposed yet.

1.3 Organization

In Chapter 2, we review the classic framework of dictionary learning for sparse rep-

resentation. First, we explain the mathematical formulations of the sparse repre-

sentation problem. The algorithms dealing with each formulation will be presented

along with. The following shows a detailed outline of the dictionary learning prob-

lem, including representative formulations and details in methods dealing with.

In chapter 3, we present the Adversarial Dictionary Learning (ADL), the ro-

bust dictionary learning algorithm which uses the semi-supervised learning scheme.

Starting from a new formulation of the problem, we explain the philosophy of our

method and show how our problem differs from the conventional approach. The

optimization procedure for the problem and the resulting algorithm will then pro-

vided, with an explanation of each process.

Chapter 4 reports the experiments and analysis of the results. We test our

algorithm with data of two types: synthetic univariate time-series data and nat-

ural multidimensional point data. The resulting dictionaries are evaluated with

anomaly (outlier) detection performance, which is highly dependant on the robust-

ness of a dictionary learning algorithm on outliers. The anomaly detection perfor-

mance is quantified using the AUC of the receiver operating characteristic (ROC)

curve.

Finally, we conclude our thesis in Chapter 5 with a summary of our research

and a discussion on the main results.



2
Sparse Representation and

Dictionary Learning

In this chapter, we review the dictionary learning for sparse representation. We

first begin with the frameworks of sparse representation problems in Section 2.1.

Then those of the dictionary learning problems will be introduced subsequently.

Representative algorithms for each problem will be briefly introduced either.

2.1 Sparse Representation

2.1.1 Problem Definition of Sparse Representation

The general framework of sparse representation is to represent the observed signal

with the linear combination of some given samples, which is called atoms. Then,

the coefficients of the linear combination can be retrieved and used as a sparse

representation solution.

Let D = [d1, d2, . . . , dp] ∈ Rn×p where di ∈ Rn (n < p) be a set of atoms,

7
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or an over-complete dictionary matrix. The problem of representing an observed

signal x ∈ Rn with linear combination of atoms can be expressed as the following

equation:

x = d1β1 + d2β2 + · · ·+ dpβp, (2.1.1)

where βi ∈ R is the coefficient for ith atom of dictionary. Letting β = [β1, β2, . . . , βp]
T ,

above can be rewritten into compact form,

x = Dβ. (2.1.2)

However, the equation cannot be solved alone due to the over-completeness of the

dictionary (n < p). The problem represents an underdetermined linear system of

equations, which has more unknowns than equations. Thus the problem of finding

representation β is ill-posed with no unique solution. To alleviate the ill-posedness,

imposing some regularization on solution β can be a practical solution. In dictio-

nary learning, the sparsity of representation is used for the regularization.

After defining a proper “desirability” measure for a solution J : Rn → R, the

problem of finding a solution under the regularization can be formulated as:

min
β
J(β) s.t. x = Dβ. (2.1.3)

The regularization function J governs the characteristic of the resulting solution.

The typical choice for the sparsity in the solution is to use lp-norm with 0 ≤ p ≤ 1.

Figure 2.1 presents the simple geometric example showing the effect of lp-norm

regularization on the sparsity of the solution.
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Figure 2.1: 3D visualization of the intersection between the lp-ball and the solution

set of Ax = b. p = 2 (top left), p = 1.5 (top right), p = 1 (bottom left), and p = 0.7

(bottom right). p ≤ 1 leads to a sparse solution. (image adopted from [16])
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2.1.2 Sparse representation with l0-norm regularization

With l0-norm regularization, the equation 2.1.3 is converted to the following op-

timization problem:

β∗ = arg min
β

‖β‖0 s.t. x = Dβ, (2.1.4)

where ‖ · ‖0 counts the number of nonzero elements in a vector. If just k atoms

participate in signal representation, the problem can be converted into another

equivalent form:

x = Dβ s.t. ‖β‖0 ≤ k, (2.1.5)

which is called the k-sparse approximation problem. Here k denotes positive inte-

ger number. Considering the small and bounded noise present in observed signal,

we can modify the model of equation 2.1.2 to:

x = Dβ + s, (2.1.6)

where s ∈ Rn denotes a bounded energy noise term, i.e. ‖s‖2 < ε. The approxi-

mate solution of equation 2.1.4 and 2.1.5 can be obtained with following relaxed

optimization problems:

β∗ = arg min
β

‖β‖0 s.t. ‖x−Dβ‖22 ≤ ε, (2.1.7)

or

β∗ = arg min
β

‖x−Dβ‖22 s.t. ‖β‖0 ≤ k. (2.1.8)

Finally, these problems are converted into the most general form of sparse repre-

sentation problem by Lagrange multiplier theorem.

β∗ = arg min
β

‖x−Dβ‖22 + λ‖β‖0. (2.1.9)
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Although the sparse representation problem with l0-norm regularization makes the

solution of linear approximation problem to be sparse explicitly, the problem suf-

fers from the NP-hardness inherited from the l0-norm [17][18]. The representa-

tive algorithm dealing with l0-norm regularized linear approximation problem is

a group of Greedy algorithms consists of Matching Pursuit (MP) algorithm and

Orthogonal Matching Pursuit (OMP) algorithm. Instead of directly solving the

optimization problem, they obtain an approximate solution of the equation 2.1.4.

2.1.3 Sparse representation with l1-norm regularization

One common approach dealing with the NP-hardness of the l0-norm regularized

linear approximation problem is to relax the l0-norm constraint to the l1-norm

constraint.

β∗ = arg min
β

‖β‖1 s.t. x = Dβ, (2.1.10)

or

x = Dβ s.t. ‖β‖1 ≤ τ. (2.1.11)

Here τ denotes small positive scalar value. It has been revealed in literature [19]

that l1-norm regularization also gives equal solution to the solution from the l0-

norm with full probability, if the solution sought for is sparse enough. The opti-

mization problems can be reformulated as the same way in section 2.1.2 assuming

bounded energy observation noise:

β∗ = arg min
β

‖β‖1 s.t. ‖x−Dβ‖22 ≤ ε, (2.1.12)

β∗ = arg min
β

‖x−Dβ‖22 s.t. ‖β‖1 ≤ τ, (2.1.13)

or

β∗ = arg min
β

‖x−Dβ‖22 + λ‖β‖1. (2.1.14)
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This formulation is called the lasso problem [20], which is a well-known problem

in statistics. As the optimization problem is convex, there exist various algorithms

that guarantee a globally optimal solution in polynomial times, such as Gradient

Projection (GP), Homotopy, Iterative Shrinkage-Thresholding (IST), and Alternat-

ing Direction Method (ADM) and several more, along with heuristic greedy algo-

rithms including Least Angle Regression (LARS) [21] and OMP.

2.1.4 Sparse representation with lp-norm regularization (0 < p < 1)

As in other cases, the optimization problem for lp-norm (0 < p < 1) regularized

linear approximation problem is considered as:

β∗ = arg min
β

‖β‖pp s.t. ‖x−Dβ‖22 ≤ ε, (2.1.15)

or

β∗ = arg min
β

‖x−Dβ‖22 + λ‖β‖pp. (2.1.16)

The main drawback of the lp-norm regularized optimization problem is the non-

convexity of the problem. Although there is no guarantee for the existence of global

optima and the convergence property is hard to analyze, there are several algo-

rithms which empirically works in practice. [22]. Iteratively Reweighted l1 min-

imization (IRL1), Iteratively Reweighted Least Squares (IRLS), and Iteratively

Thresholding Method (ITM) are the representatives.

2.2 Dictionary Learning

2.2.1 Problem Definition of Dictionary Learning

In the previous section, we assumed the dictionary; the key ingredient for obtain-

ing a sparse representation solution, is given as a constant. Dictionary learning
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aims to find a faithful and effective dictionary that well approximates a specific

set of signals.

From the notations of the literature [23], given a set of data X = {x1, x2, . . . , xN},

the general framework of dictionary learning is expressed as minimization of the

following optimization function:

min
D∈C,βi

N∑
i=1

f(xi −Dβi) + P (λ, βi). (2.2.17)

C is the convex constraint on dictionary matrix which purpose is to prevent dictio-

nary atoms from diverging, defined as C = {D = [d1, d2, . . . , dp] ∈ Rn×p | dTi di ≤ 1}.

Here p is the number of atoms (i.e. di) in a dictionary. βi ∈ Rp denotes sparse rep-

resentation (or sparse code) of the ith signal xi ∈ Rn. p can be seen as either the

number of atoms and the dimension of the sparse representation. f is a function

penalizing signal approximation error and P is a regularization function that con-

trols the degree of sparsity of the representation.

The problem jointly finds a dictionary matrix D whose atoms well represent

the given set of data X and corresponding sparse representation set βi. The choice

for f and P depends greatly on the purpose of the user. The function itself is

identical to the augmented version of the problem in section 2.1 if we set f as

‖ · ‖22 and P as λ‖ · ‖p (0 ≤ p ≤ 1). Letting p as zero and setting f as l2-norm is

the most common setting for dictionary learning in many works of literature. As

it is not possible to introduce all dictionary methods for all formulations, we will

introduce a few representative methods for the most common problem setting.
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2.2.2 Dictionary Learning Methods

The most common form of dictionary learning problem can be written as:

min
D∈C,βi

N∑
i=1

‖xi −Dβi‖22 + λ‖βi‖0. (2.2.18)

As the problem is NP-hard due to l0-norm, it cannot be solved directly. There are

two mainstream methods dealing with this problem, one is the greedy strategy and

the other is the convex relaxation.

Greedy Strategy

The representative method of greedy strategy is K-SVD [4]. The K-SVD solves the

following optimization problem:

min
D,B

1

2
‖X −DB‖2F

s.t. ‖βi‖0 ≤ k, for i = 1, 2, . . . , N.

(2.2.19)

Here X = [x1, x2, . . . , xN ] ∈ Rn×N is the data matrix whose column represents a

single sample and B = [β1, β2, . . . , βN ] ∈ Rp×N is a matrix form of sparse repre-

sentation over the entire dataset. k is a positive integer value that constrains the

degree of sparsity of the representation.

K-SVD algorithm solves the problem by iteratively solving the decomposed

problems, one is sparse coding step and dictionary update step. The sparse cod-

ing step is conducted by fixing the dictionary matrix in the above problem and is

formulated as follows:

min
βi∈Rp

‖xi −Dβi‖22 s.t. ‖βi‖0 ≤ k,

for i = 1, 2, . . . , N.

(2.2.20)
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The approximate solution for this subproblem can be obtained by the pursuit al-

gorithms presented in section 2.1.2 if k is small enough. After obtaining sparse

representation with a fixed dictionary, dictionary update problem while fixing the

representation is formulated as follows:

min
D
‖X −DB‖2F . (2.2.21)

The solution is straightforward, D∗ = XB† = XBT (BBT )−1. However, the compu-

tational complexity of the problem is O(n3) due to the inverse operation. K-SVD

improves efficiency by updating each column of the dictionary while letting other

columns as a constant vector. After freezing p− 1 dictionary columns and letting

only ith column as an optimization variable, the cost function can be reformulated

as:

‖X −DB‖2F = ‖X −
p∑
j=1

djβ
j
T ‖

2
F

= ‖(X −
∑
j 6=i

djβ
j
T )− diβiT ‖2F

= ‖Ei − diβiT ‖2F .

(2.2.22)

Here βjT denotes jth row of matrix B. Then the optimal di and βiT for the cost

function are obtained by solving SVD for the error matrix Ei, finding the closest

rank-1 matrix approximating Ei. To not violate sparsity constraint ‖βi‖0 ≤ k dur-

ing the update, only vector elements of nonzero value in βiT are updated, letting

zero value elements in the previous step unchanged. Restricting Ei by choosing

only the columns affected, the smaller matrix ERi is obtained and is decomposed

as ERi = U∆V T . Then di and βiT are updated to the first column of U and the

first column of V expanded to the original size, respectively. The procedure is re-

peated for i = 1, 2, . . . , p.
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Convex Relaxation

Another approach dealing with the equation 2.2.18 is to relax the l0-norm regular-

ization to l1-norm regularization, which either induces sparsity on representation

but also convex. The relaxed dictionary learning problem is written as:

min
D∈C,B

‖X −DB‖2F + λ‖B‖1. (2.2.23)

The problem itself is not convex but it can be if we separate optimization variables

into D and B independently. The practical approach is to iteratively update D and

B while letting another variable fixed.

As in greedy strategy, the problem is decomposed into two subproblems:

min
βi∈Rp

‖xi −Dβi‖22 + λ‖βi‖1

for i = 1, 2, . . . , N,

(2.2.24)

and

min
D∈C

N∑
i=1

‖xi −Dβi‖22. (2.2.25)

The first problem is a linear approximation problem with l1-norm regularization,

of which solvers are introduced in section 2.1.3. The second problem can be further

decomposed into convex vector optimization problems:

min
D(k,:)

N∑
i=1

(xik −D(k, :)βi)
2

for k = 1, 2, . . . , n.

(2.2.26)

Here D(k, :) denotes kth row of D and xik ∈ R denotes kth element of ith data

vector xi. The convex constraint C on dictionary matrix D in the original problem

can be resolved by normalizing each column of D when the norm is larger than
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one after the dictionary update. The formulation for the dictionary update step

is almost the same as that of greedy strategy, but as the sparsity constraint is

not defined straightforwardly in this setup, the heuristic approach used in greedy

strategy cannot be applied.

Our method that will be introduced in the next chapter focuses on the convex

relaxation approach over the greedy strategy because the problem can be easily

decomposed into the convex vector optimization problems and it has much more

flexibility in modification than the greedy strategy.



3
Adversarial Dictionary Learning

This chapter presents the Adversarial Dictionary Learning; a robust dictionary

learning algorithm using supervision data. The philosophy of our algorithm can be

summarized as: obtain a dictionary that is robust to the outliers exploiting data

instances designated as not-to-learn examples. We will first introduce the problem

statement of our algorithm. More details about Then the optimization framework

and the algorithm details for the problem will be followed.

3.1 Problem Formulation

Given a dataset X = {x1, x2, . . . xN} (training set) and a set of data labeled as

an outlier X− = {x−1 , x
−
2 , . . . x

−
M} (supervision set) where xi, x

−
j ∈ Rn, we propose

the following optimization problem:

min
D∈C
{ min
βi∈Rp

1

N

N∑
i=1

(‖xi −Dβi‖1 + λ‖βi‖1)− w · G(D,X−)}. (3.1.1)

18
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Here X− = [x−1 , x
−
2 , . . . , x

−
M ] ∈ Rn×M is a matrix form of labeled outlier dataset.

D ∈ Rn×p is an overcomplete dictionary, i.e. p > n. λ ∈ R is a regularization

parameter that controls the sparsity level in representation. G is an adversarial

loss, which is the main component in our formulation. A detailed explanation of

G will be given in the next section. w ∈ R is a weight that governs the effect of

the adversarial loss in optimization. From this optimization problem, we can see

that if we set w as zero, the problem becomes l1-norm based robust dictionary

learning presented in [8].

For the term label we refer to, we cover both cases the outlier label is given to

each data sample (i.e. Rn → [0, 1]) and the label is given each dimension of data

(i.e. Rn → [0, 1]n). The examples of the latter case include abnormal pixel regions

in image data and anomaly in time series data. We assume the label information

for each single data in X− is given.

3.2 Adversarial Loss

The purpose of the adversarial loss is to constrain the expressive ability of the

optimized dictionary, not to obtain adequate sparse representation from even out-

lier data. The adversarial loss gives penalty when sparse representation obtained

with dictionary fits given data well under appropriate sparsity level. To do so, we

construct the adversarial loss as follows:

G(D,X−) =
n∑
k=1

{ 1

M

M∑
j=1

log[(x−jk −D(k, :)γ∗j )2]}, (3.2.2)

where

γ∗j = arg min
γj∈Rp

‖x−j −Dγj‖1 + λ‖γj‖1. (3.2.3)
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Here M is the number of outlier labeled data. λ in equation 3.2.3 is the same

value as in equation 3.1.1. The loss is designed to maximize the reconstruction

error from the best sparse representation obtained, only for the outlier data. The

logarithm enclosing the reconstruction error term acts as a barrier function that

prevents the dictionary from expressing outlier data. Further, the gradient rapidly

saturates as the reconstruction error for the outlier goes higher, lessening the effect

of the function in optimization when the error is moderately high.

For the case where the outlier label is given with respect to each data’s dimen-

sion, the adversarial loss can be further modified as:

G(D,X−) =

n∑
k=1

{ 1

LIk

M∑
j=1

I(x−jk) · log[(x−jk −D(k, :)γ∗j )2]}. (3.2.4)

Here, I : R→ [0, 1] is an indicator function, I(x−jk) = 1 when x−jk contains outlier

and 0 otherwise. LIk is sum of the number of outlier spots in X−, seen from data

dimension k, i.e. LIk =
∑M

j=1 I(x−jk). The indicator function has an essential role in

preventing adversarial loss from attacking even inlier data patterns. We will keep

this formulation and in the case where the outlier label is given w.r.t each single

data, we set LIk = M and I(x−jk) = 1 for all k = 1, 2, . . . , n if x−j is labeled as an

outlier.

3.3 Optimization Algorithm

For optimization, we adopt the same strategy as the traditional dictionary learn-

ing method: the convex relaxation approach. We solve and update D and {B,C}

alternatively until the convergence. C denotes the matrix version of optimal sparse
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code γ of outlier data. The sparse coding step is formulated as:

β∗i = arg min
βi∈Rp

‖xi −Dβi‖1 + ‖βi‖1 (3.3.5)

for i = 1, 2, . . . , N, (3.3.6)

and

γ∗j = arg min
γj∈Rp

‖x−j −Dγj‖1 + ‖γj‖1 (3.3.7)

for j = 1, 2, . . . ,M. (3.3.8)

As the dictionary is fixed and the loss functions are defined separately with re-

spect to two datasets, the sparse representation for each can be obtained by two

independent optimization problems.

Using the approach presented in [8], the problem can be re-wrapped into linear

l1 approximation problem:

β∗i = arg min
βi∈Rp

∥∥∥∥∥∥
 x

0

−
 D

λI

βi
∥∥∥∥∥∥
1

. (3.3.9)

This problem shows an overdetermined linear system and it is guaranteed that

this problem has a global optima [24]. The problem can be converted into linear

programming (LP) and easily solved. It is the same for the case of γj .

The dictionary update step is formulated as:

min
D∈C

1

N
‖X −DB‖1

− w ·
n∑
k=1

{ 1

LIk

M∑
j=1

I(x−jk) · log[(x−jk −D(k, :)γj)
2]}.

(3.3.10)

The optimization problem 3.3.10 can be further decomposed as we did in dic-

tionary learning problem with convex relaxation approach so we can update each



3.3. Optimization Algorithm 22

row of dictionary D(k, :) independently:

min
D(k,:)∈Rp

1

N

N∑
i=1

|xik −D(k, :)βi|

− w · 1

LIk

M∑
j=1

I(x−jk) · log[(x−jk −D(k, :)γj)
2]

for k = 1, 2, . . . , n.

(3.3.11)

To deal with non-differentiability of the problem, inspired by [23] we introduce the

scheme of iterative reweighted least-squares (IRLS) [25]. The IRLS scheme can be

implemented by adding weight term and changing the absolute value function in

the first term into the square function. The modified subproblem can be written

as:

min
D(k,:)∈Rp

1

N

N∑
i=1

wki (xik −D(k, :)βi)
2

− w · 1

LIk

M∑
j=1

I(x−jk) · log[(x−jk −D(k, :)γj)
2],

(3.3.12)

where

wki =
1√

(xik −D(k, :)βi)2 + δ
. (3.3.13)

Here δ is a small positive value preventing weight diverging when (xik−D(k, :)βi)

goes to zero. The optimization is done by updating D(k, :) and wki alternatively,

setting each other fixed until the convergence. The entire optimization process can

be written as the following pseudo-code. We will use the notation gk(D,X
−) for

the second term in equation 3.3.12 for simplicity.

We can see that the problem 3.3.12 is a vector optimization problem and is

locally convex. Due to the sum of the negative log terms in the objective, it can be

seen that the optimization variable domain is divided by infinite-loss hyperplanes.
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For each divided region, the problem is convex and there exists a local optima.

We exploit the quasi-newton method, BFGS for the dictionary update.

As the infinite-loss hyperplane generated from the outlier data make the solu-

tion to be stuck in local minima too early in the dictionary learning procedure, we

do not use all the outlier labeled data at once, but we randomly sample a small

amount of outlier data at the start of each iteration and use them for dictionary

update. We denote this set of data as X ′− = [x′−1 , x
′−
2 , . . . , x

′−
M ′ ] ∈ Rn×M ′

where

M ′ is an integer number less than the total sample number in supervision dataset

M .

The interesting intuition for the problem 3.3.12 is that this can be seen as

a log-barrier version of the inequality constrained convex optimization problem,

constraining reconstruction error for outlier data not to be zero. The equivalent

problem can be written as:

min
D(k,:)

1

N

N∑
i=1

|xik −D(k, :)βi|

s.t. (x−jk −D(k, :)γj)
2 ≥ 0

for all j, k x−jk contains outlier.

(3.3.14)
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Algorithm Adversarial Dictionary Learning

Input: X = [x1, x2, . . . , xN ] ∈ Rn×N , X− = [x−1 , x
−
2 , . . . , x

−
M ] ∈ Rn×M , adver-

sarial weight w > 0, outlier sampling number M ′(< M), regularization parameter

λ > 0

Output: dictionary D, sparse code B

1: Initialize D with a random matrix with dTi di ≤ 1

2: Initialize wki = 1 for all i = 1, 2, . . . , N and k = 1, 2, . . . , n

3: repeat

4: (1) Sparse coding

5: sample M ′ samples from X− and construct X ′−

6: for i ∈ {1, 2, . . . , N} do

7: βi ← arg minβi∈Rp ‖xi −Dβi‖1 + λ‖βi‖1

8: end for

9: for j ∈ {1, 2, . . . ,M ′} do

10: γj ← arg minγj∈Rp ‖x′−j −Dγj‖1 + λ‖γj‖1

11: end for

12: (2) Dictionary update

13: for k ∈ {1, 2, . . . , n} do

14: repeat

15: D(k, :)← arg minD(k,:)∈Rp
1
N

∑N
i=1w

k
i (xik −D(k, :)βi)

2 − w · gk(D,X−)

16: update wki (i = 1, 2, . . . , N)

17: until convergence

18: end for

19: until convergence

20: return D,B



4
Experiments

In this chapter, we apply our dictionary learning algorithm to anomaly detection

(or outlier detection) problems. The task of anomaly detection can be defined as

determining data instances that stand out as being dissimilar to all others [26].

If the dictionary is trained to represent even outlier data, the performance of

the anomaly detection task will be greatly degraded. Typically, anomaly detec-

tion with dictionary learning is conducted in a supervised way, i.e. dictionary is

learned from the outlier-free dataset. However, as mentioned in the introduction,

in a real environment usually it is almost impossible to get an outlier-free dataset.

Therefore, a robust dictionary learning method that learns only inlier data behav-

ior is necessary for the anomaly detection task and how robustly the dictionary is

learned is directly related to the performance of the detection.

This chapter aims to show the usefulness and the robustness of our algorithm

by presenting qualitative and quantitative results of the anomaly detection task.

We conducted experiments applying various dictionary learning algorithms along

25
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with the proposed method. For the greedy strategy based dictionary learning algo-

rithm, we took l1-K-SVD [10], which is the robust version of the existing K-SVD

method. For the convex relaxation based approach, we took the basic approach

presented in section 2.2.2 and l1 approximation based robust dictionary learning

algorithm (we will call this RDL) [8]. Note that if we set the adversarial weight

to zero, our method is identical to the method proposed in [8].

4.1 Data Description

Data we used in our experiment can be categorized into two groups, the univariate

time-series data and the multivariate point data.

4.1.1 Univariate Time-series Data

The univariate time-series data is a one-dimensional point data that changes and is

acquired over time. Inspired by the Yahoo Webscope S5 dataset [27], we generated

synthetic univariate time-series consist of a trend, seasonality, white noise, and

point or sequence anomaly. We controlled the number, length, and scale of the

anomaly and the level of white noise and examined the effects on the dictionary

learning and anomaly detection performance.

The static settings are; time-series length N = 1500, trend T (t) = 0.3∗sin t
2∗N 2π,

and seasonality S(t) = 0.3 ∗ sin t
302π + 0.06 ∗ (sin t

202π + sin t
122π). The resulting

time series can be written as follows:

U(t) = T (t) + S(t) + ε+ s

where t = 1, 2, . . . , N
(4.1.1)

where ε ∼ N(0, σ) is Gaussian white noise and s ∼ N(c, c
100) ∗ [1,−1]/

√
l is an
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Figure 4.1: Example of time-series used for training. σ = 0.15, # of anomaly 30,

scale of anomaly 0.8, anomaly of length 3 shift.

anomalous residual for the outlier data point generation, which is added at a ran-

dom time with a designated length l; length 1 for the point anomaly and sequence

(shift) anomaly otherwise. Here c denotes the scale of the anomalous residual.

For the controlled variables, we set white noise σ = [0.050, 0.100, 0.150], scale

of anomaly c = [0.4, 0.6, 0.8], number of anomalies present in time-series [10, 30, 50]

and length of anomaly l = [1, 3, 5].

In the dictionary learning procedure, as like the previous literature [7][28] we

use a sliding window of designated length for the training data to take account

of the temporal behavior of the time-series. A detailed explanation of the sliding

window will be provided in chapter 4.2. We use a sliding window of length 20 and

in our experiment. Now we have a 20-dimensional dataset that has both contam-

inated and uncontaminated data instance.
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Figure 4.2: Detailed plot of anomalies present in the time-series data; point

anomaly (left) and sequence anomaly of length 3 (right).

For the supervision data for ADL, as we know the exact time-series behavior

in advance, we generated additional time-series windows containing anomalies with

the same setting we used. The test time-series is constructed in the same way as

the training data, but there is a difference in anomaly scale, position, and exact

noise value due to the randomness in a generation.

Note that in time-series, the anomalous spot is designated to each time. So

if we use a fixed size sliding window of the time-series as a data, a label for the

outlier (anomaly) can be assigned to each dimension of the data. In our algorithm

for time-series data, the dimension-wise outlier label is provided in the training

stage (i.e. the time index showing anomalous behavior within the sliding window

is given) and we use the adversarial loss of the form 3.2.4. For the other training

data, which is a majority in the training step, the anomaly labels are unavailable

in the training stage.
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Table 4.1: Table of multivariate point data properties.

Dataset N n # outliers (%)

Cardio 1831 21 176 (9.6%)

Breastw 683 9 239 (35%)

Ionosphere 351 33 126 (36%)

Satellite 6435 36 2036 (32%)

Vowels 1456 12 50 (3.4%)

Pima 768 8 268 (35%)

Mammography 11183 6 260 (2.3%)

4.1.2 Multivariate Point Data

Multivariate point data is data with multiple attributes with no correlation along

with the time or data index. We used labeled natural datasets from the Outlier

Detection Datasets (ODDS) [29]. Datasets with nominal and binary attributes are

excluded. The dataset used are: Cardio, Wisconsin Breast Cancer (Breastw), Iono-

sphere, Satellite, Vowels, Pima, and Mammography. Table 4.1 provides the prop-

erties of datasets used in experiments.

Among the dataset, outlier labeled data are divided into two groups, the con-

tamination set and the supervision set. The contamination set is concatenated

with the non-outlier dataset and further divided into the training set and the test

set. We used 20 percent of contamination set as a test set. The supervision set (i.e.

X−) is fed to the ADL’s adversarial loss and used for training. In the experiment,

about 20 percent of outlier labeled data is used as supervision data.

As the label is given data instance-wise, we use the adversarial loss of form
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3.2.2. The labels are available for only supervision data and test data (for evalu-

ation) and not given for the training data.

4.2 Evaluation Process

To evaluate the outlier rejection performance (i.e. robustness on outliers) of dic-

tionary learning algorithms, we employ the anomaly detection task which can act

as an indirect measure for the robustness on outliers.

4.2.1 A Baseline of Anomaly Detection

As mentioned in chapter 2, dictionary learning aims to find a faithful and effective

dictionary that well approximates a specific set of signals and not for the out-of-

the-set signal. So we assume that if the dictionary successfully learned the given

signal, the approximation result of the outlier data under the sparsity constraint

will be worse than that of the inlier data. Inspired by the classification method

presented by [30], we formulated the anomaly detection framework.

Given a new test sample y ∈ Rn and the sparsity regularization parameter

λ ∈ R, we first compute the sparse representation β∗ ∈ Rp via problem 3.3.9.

Then we reconstruct the original sample as ŷ = Dβ∗ ∈ Rn. Then we examine the

residual between the original sample and the reconstructed sample. We define a

scoring function for anomaly detection:

ra(y) =‖y − ŷ‖2 = ‖y −Dβ∗‖2,

where β∗ = arg min
β∈Rp

‖y −Dβ‖1 + ‖β‖1.
(4.2.2)

Then the decision of anomaly is done by thresholding the score value of the data
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Figure 4.3: Schematic diagram of the anomaly detection framework using the ADL.
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instance:

AD(y) =


1, if ra(y) ≥ τ .

0, otherwise.

(4.2.3)

Here AD(y) : Rn → [0, 1] denotes an anomaly detector; 1 means data instance is

anomalous and 0 otherwise. For the case where the outlier label is given in each

dimension (sliding window of time-series), the score is evaluated for each dimension

independently. In the case of time-series data, there can be an overlapping area in

the time axis between sliding windows, according to the settings. So we calculate

and average the error for all sliding windows containing a value at time t. The

anomaly score for time-series with sliding window data can be formulated as:

rtsa (t) =
1

h

t∑
i=t−h+1

(yi,t+1−i − ŷi,t+1−i)
2

=
1

h

t∑
i=t−h+1

(yi,t+1−i − (Dβ∗i )t+1−i)
2,

where β∗i = arg min
βi∈Rp

‖yi −Dβi‖1 + ‖βi‖1.

(4.2.4)

Here yi is an ith test data and yi,j is the jth dimension value of yi. h is the size

of the sliding window and we set the window’s step size as 1. We let the time-

series’ time index is an integer value starts from zero and ith sliding window of

time-series yi covers the time index of i ∼ (i+ h). Then the anomaly detector for

the time-series can be defined similarly:

ADts(t) =


1, if rtsa (t) ≥ τ .

0, otherwise,

(4.2.5)

where t = 1, 2, . . . , T .

The entire framework of anomaly detection using ADL is expressed in figure
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Figure 4.4: Sliding window generation from time-series data.
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4.3. For the other dictionary learning algorithms, only the diagram of the training

phase (left box) should be modified not to use the supervision data as an input.

4.2.2 ROC Curve and AUC

A receiver operating characteristic (ROC) curve is a plot that illustrates the per-

formance of a binary classifier [31]. In classification problem using only two classes

(in our case outlier and inlier classes), each instance in a dataset is mapped to one

element of the set {p, n} of positive and negative class labels. If the classification

is done by thresholding a user-defined score, the classification result will vary de-

pending on the selected value of the threshold. ROC visualizes the effectiveness

of the classifier by plotting the true positive rate (TPR) against the false posi-

tive rate (FPR) by changing the threshold value used to the classifier. TPR is the

proportion of instances (samples) correctly classified as positive among positive

instances. FPR is the proportion of data instances classified as a negative label

among positive instances.

After we obtain the ROC curve from the classifier, we can obtain a quantified

evaluation result using AUC. AUC is basically a value of area under the ROC

curve and a larger value means a better classifier. In particular, AUC of 0.5 means

a meaningless classifier and that of 1 means a perfect classifier.

The anomaly detection can be seen as a two-class classification problem. Set-

ting anomaly label 1 as a positive label and 0 as a negative label, we can evaluate

the performance of the anomaly detector qualitatively. We will provide qualita-

tive comparison results for several dictionary learning algorithms along with our

method in the results section.
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4.3 Experiment Setting

We set regularization parameter λ for the sparsity as 1.5 in all experiments. The

number of dictionary atoms p is chosen according to the data dimension n, to

have value about 1.2∼1.6 times of n. Value for the adversarial weight w is selected

empirically for each type of dataset, from 0.018 to 0.48. We found some tendency

in well-performing weight for the time-series, however.

w = 0.0012 ∗ (sa − 0.1) ∗ na. (4.3.6)

sa is the average scale of anomalous deviation, i.e. l2-norm value of mean error

between inlier data and outlier data. na is the number of anomalies present in the

training dataset. Although this information is not explicitly given in practice, we

expect the domain-specific knowledge like the frequency of anomaly occurrence or

the representative pattern of normal and abnormal data can be used.

For the univariate time-series data, we generated the supervision dataset X−

with the same size as the training data. In optimization, 10% of data is sampled

and used for adversarial loss. For the multivariate point data, 20% of all outlier

labeled data is used as a supervision data. All the other data are used as train-

ing data. About 0.5% to 10% of the supervision dataset is used each iteration,

according to the size of the supervision dataset.

As the scale and mean of data instance affects the effective sparsity when ob-

taining sparse representation, all the data used are normalized to have zero mean

and unit deviation before the training and evaluation.

The entire settings are presented in Table 4.2. p is the number of atoms in

dictionary and k is the number of nonzero coefficients in representation for the

constraint in K-SVD algorithm (only for l1-K-SVD). λ is a regularization parame-

ter for l1 approximation problem. w is a weight for the adversarial loss. M ′ is the
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Table 4.2: Experiment settings.

Dataset p k λ w M ′(%)

Synthetic TS 32 10 1.5 eqn 4.3.6 10

Cardio 32 10 1.5 0.0384 10

Breastw 16 3 1.5 0.0864 10

Ionosphere 40 10 1.5 0.0576 10

Satellite 50 10 1.5 0.960 0.5

Vowels 20 5 1.5 0.0192 10

Pima 14 5 1.5 0.1152 10

Mammography 16 3 1.5 0.1920 10

number of supervision data used in each iteration (only for ADL).

All the algorithms are implemented and performed with Python on Intel (R)

Core (TM) i7-7700 CPU @ 3.60GHz with 32GB memory. CVXPY [32][33] is used

for optimization.

4.4 Results

The experiments on synthetic time-series data focus on the effect of the scale and

frequency of the anomaly along with the scale of white noise. Then the appli-

cability and superiority of our algorithm on real-world data are provided by the

experiments on real multivariate point data. We compared the anomaly detection

performance of our algorithm with other three dictionary learning algorithms, DL

(convex relaxation), RDL, l1-K-SVD.
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Results on Univariate Time-series Data

As we cannot show all the dictionary obtained from every setting, we illustrate the

representative results of dictionary learning. Figure 4.5 shows the plot of learned

dictionary atoms from a single time-series sample. The outlier time-series signal

added to the sample is the shift of length 5, and we qualitatively compare the ro-

bustness on the outliers by expecting the dictionary atoms learned. It can be seen

that dictionary from our method shows the least amount of anomalous patterns,

relative to the other methods. l1-K-SVD shows the moderate performance on ro-

bustness, but some smoothed outlier pattern still remains in the dictionary. DL

and RDL learned a dictionary whose majority of atoms has an anomalous pat-

tern.

ROC curve for anomaly detector using the learned dictionaries in Figure 4.5

is shown in Figure 4.6. The larger area under the curve (AUC) means the better

classifier. AUC of the anomaly detector is the highest when using a dictionary from

the proposed method. The dependency between the amount of learned anomaly

pattern and the anomaly detection performance can be found in figures.

We evaluated AUC with a total of 81 settings as explained in section 4.1.1. The

results are shown in Table 4.3. The AUC value for each algorithm is averaged for

each control variables to verify the effect of the setting. Our method shows better

performance over other algorithms especially when the scale of the anomaly and

the number of anomalies present in the dataset are high. When the number of the

anomaly was 10, the average AUC of l1-K-SVD was higher (which means better)

than that of ours. The common property is that it is easier to detect anomalies

when the scale of anomaly is high, the number of anomalies present in the training

dataset is low, and the scale of white noise is low.
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Figure 4.5: Visualization of learned dictionary from sample univariate time-series

data of σ = 0.05, anomaly of length-5 shift, number of anomaly 10, scale of

anomaly 0.8. The outlier behavior of length-5 shift (marked as red dot circle) is

not learned in ADL.
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Figure 4.6: ROC curve of the anomaly detector using dictionaries presented in

Figure 4.5.
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Table 4.3: AUC value result for univariate time-series data.

Anomaly scale ADL (ours) l1-K-SVD RDL DL

0.4 0.912±0.101 0.907±0.103 0.863±0.124 0.814±0.124

0.6 0.951±0.061 0.943±0.069 0.898±0.098 0.848±0.097

0.8 0.971±0.041 0.959±0.053 0.919±0.080 0.889±0.082

Anomaly number ADL (ours) l1-K-SVD RDL DL

10 0.960±0.065 0.964±0.059 0.924±0.083 0.872±0.104

30 0.941±0.076 0.932±0.082 0.880±0.108 0.840±0.108

50 0.932±0.083 0.914±0.091 0.875±0.114 0.839±0.106

Noise scale ADL (ours) l1-K-SVD RDL DL

0.05 0.963±0.052 0.956±0.054 0.922±0.075 0.886±0.078

0.10 0.945±0.074 0.938±0.077 0.890±0.105 0.851±0.107

0.15 0.926±0.093 0.914±0.100 0.868±0.121 0.814±0.107
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Table 4.4: AUC value result for multivariate point data.

Dataset ADL (ours) l1-K-SVD RDL DL

Cardio 0.811±0.091 0.559±0.103 0.495±0.040 0.542±0.082

Breastw 0.786±0.071 0.765±0.071 0.729±0.063 0.667±0.114

Ionosphere 0.982±0.014 0.976±0.022 0.979±0.017 0.983±0.016

Satellite 0.759±0.048 0.571±0.021 0.474±0.005 0.513±0.025

Vowels 0.896±0.025 0.845±0.082 0.881±0.032 0.791±0.060

Pima 0.575±0.063 0.426±0.062 0.457±0.045 0.528±0.028

Mammography 0.780±0.045 0.653±0.086 0.656±0.065 0.655±0.155

Results on Multivariate Point Data

The evaluation result for multivariate point data is presented in Table 4.4. Each

evaluation is conducted 5 times with the same experiment settings. Our method

reports better performance especially on Cardio and Satellite datasets. For the

Ionosphere dataset, our method is slightly outperformed by the DL method but

the overall performance for the dataset was high enough. As mentioned previously,

our algorithm is based on the RDL method and if we set adversarial loss w to be

zero, our method becomes identical to the RDL. We can see the explicit improve-

ment of our method compared to the RDL, which is an evidence that the adversar-

ial loss is indeed effective at rejecting outliers. Figure 4.7 shows the representative

ROC results from the multivariate point experiments.
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(a) ROC curve of the anomaly detector for Satellite dataset.

(b) ROC curve of the anomaly detector for Cardio dataset.

Figure 4.7: Representative results from multivariate point dataset



5
Conclusion

In this thesis, we proposed a new dictionary learning algorithm that robustly learns

the representations of only inlier data. Different from the existing dictionary learn-

ing algorithms for the contaminated dataset, the distinguishing feature of our method

is that it uses a sample out-of-class dataset in the learning procedure. The loss

function is designed to make a dictionary not to obtain good quality (i.e. approx-

imate given signal under designated sparsity constraint) sparse representation for

only outlier data. This scheme is implemented by penalizing the approximation

error for the outlier data along with optimizing the original dictionary learning

problem.

Our method is particularly advantageous when the outlier signal is generated

with some patterns. Experiments on natural multivariate point data suggest that

the signal modeling ability can be greatly improved by using a small amount of

supervision data (labeled outlier data). Further, our method leaves an opportu-

nity for the practitioner to designate which class of signals not to learn, without

43
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manually eliminating the not-to-learn samples in the dataset. However, if there ex-

ists no explicit pattern on outliers so the supervision dataset cannot represent the

out-of-class data well, the algorithm does not show the dramatic improvement.

We expect the performance of the algorithm to be further improved if the

amount of supervision data grows in time and well generalizes the outlier signal.

Our algorithm uses a negative logarithm function that acts as a barrier function

for the approximation of outlier data. Therefore if the number of supervision data

used in each iteration M ′ is large, the solution tends to fall into the local minima

too early. This problem should be further investigated. The computational time

is another issue: our method requires far much time than greedy strategy based

algorithms. If we can implement the scheme of adversarial loss using supervision

data to the greedy strategy based dictionary learning, the time efficiency will be

greatly improved.
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Tourneret. Anomaly detection in mixed telemetry data using a sparse rep-

resentation and dictionary learning. Signal Processing, 168:107320, 2020.

[29] Shebuti Rayana. Odds library. URL http://odds.cs.stonybrook.edu, 2016.

[30] John Wright, Allen Y Yang, Arvind Ganesh, S Shankar Sastry, and Yi Ma.

Robust face recognition via sparse representation. IEEE transactions on pat-

tern analysis and machine intelligence, 31(2):210–227, 2008.

[31] Tom Fawcett. An introduction to roc analysis. Pattern recognition letters,

27(8):861–874, 2006.



BIBLIOGRAPHY 49

[32] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded model-

ing language for convex optimization. Journal of Machine Learning Research,

17(83):1–5, 2016.

[33] Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. A

rewriting system for convex optimization problems. Journal of Control and

Decision, 5(1):42–60, 2018.



국문초록

본 논문에서는 이상치가 아닌 데이터의 희소 표현만을 학습하는 준지도 사전 학습

알고리즘을 제안한다. 데이터셋에 섞여 있는 이상치는 사전 학습의 주요한 문제

로, 실제 문제에 적용 시 바람직하지 않은 성능을 초래한다. 본 연구에서 제안하는

적대적 사전 학습(ADL) 알고리즘은 이상치 데이터로 구성된 감독 데이터셋을 학

습에 이용한다. 우리의 알고리즘은 주어진 이상치 데이터를 잘 표현하는 사전에

페널티를 주고, 이것은 사전이 학습 데이터셋에 섞여 있는 이상치에 강건하게 학

습되도록 한다. 제안된 방법은 기존의 사전 학습 방법들과 비교해 이상치의 비중

이 높은 데이터셋에서도 효과적으로 사전을 학습해 낸다. 이 연구에서는 인공적인

단변량 시계열 데이터와 다변량 점 데이터에 대한 이상치 탐지 실험을 통해 알고

리즘의 유용성을 경험적으로 검증한다.

주요어: 희소 표현, 사전 학습, 준지도학습, 이상치 탐지

학번: 2018-21570
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