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This paper presents a pedestrian model considering uncertainty in the direction 

of future movement and a human-like longitudinal motion planning algorithm for 

autonomous vehicle in the interaction situation with pedestrians. Interactive driving 

with pedestrians is essential for autonomous driving in urban environments. 

However, interaction with pedestrians is very challenging for autonomous vehicle 

because it is difficult to predict movement direction of pedestrians. Even if there 

exists uncertainty of the behavior of pedestrians, the autonomous vehicles should 
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plan their motions ensuring pedestrian safety and respond smoothly to pedestrians. 

To implement this, a pedestrian probabilistic yaw model is introduced based on 

behavioral characteristics and the human driving parameters are investigated in the 

interaction situation. The paper consists of three main parts: the pedestrian model 

definition, collision risk assessment based on prediction and human-like 

longitudinal motion planning. In the first section, the main key of pedestrian model 

is the behavior tendency with correlation between pedestrian’s speed and direction 

change. The behavior characteristics are statistically investigated based on 

perceived pedestrian tracking data using light detection and ranging(Lidar) sensor 

and front camera. Through the behavior characteristics, movement probability for 

all directions of the pedestrian is derived according to pedestrian’s velocity. Also, 

the effective moving area can be limited up to the valid probability criterion. The 

defined model allows the autonomous vehicle to know the area that pedestrian may 

head to a certain probability in the future steps. This helps to plan the vehicle 

motion considering the pedestrian yaw state’s uncertainty and to predetermine the 

motion of autonomous vehicle from the pedestrians who may have a risk. Secondly, 

a risk assessment is required and is based on the pedestrian model. The dynamic 

states of pedestrians and subject vehicle are predicted to do a risk assessment. In 

this section, the pedestrian behavior is predicted under the assumption of moving to 

the most dangerous direction in the effective moving area obtained above. The 

prediction of vehicle behavior is performed using a lane keeping model in which 

the vehicle follows a given path. Based on the prediction result, it is checked 

whether there will be a collision between the pedestrian and the vehicle if 

deceleration motion is not taken. Finally, longitudinal motion planning is 
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determined for target pedestrians with possibility of collision. Human driving data 

is first examined to obtain a proper longitudinal deceleration and deceleration 

starting point in the interaction situation with pedestrians. Several human driving 

parameters are defined and applied in determining the longitudinal acceleration of 

the vehicle. The longitudinal motion planning algorithm is verified via vehicle tests. 

The test results confirm that the proposed algorithm shows similar longitudinal 

motion and deceleration decision to a human driver based on predicted pedestrian 

model.  
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Chapter 1 

 

Introduction 

 

1.1. Background and Motivation 

The Advanced Driver Assistance System(ADAS), which helps drivers to drive 

safely before reaching fully autonomous driving technology, is widely used and 

research is underway to expand the technology area. Currently, the development of 

autonomous highway driving technology had progressed above a certain level and 

it aims to realize autonomous driving in the urban environment.  

The main issue of autonomous urban driving is driving safely, interacting with 

various types of objects or pedestrians using the road. Among various road users, 

such as bicycles, segways, motorcycles, vehicles and pedestrians, pedestrians are 

the most vulnerable users who can be seriously injured in an accident.  

The Euro New Car Assessment Program(NCAP) has added ‘AEB pedestrian’ 

as a safety assessment item for active safety systems since 2016. Furthermore, the 

pedestrian safety issue was raised again when a pedestrian death accident occurred 

by the Uber’s autonomous vehicle in 2018. Hence, the technology to secure 

pedestrian safety is essential to the advent of the era of fully autonomous vehicles 

in urban environments.  
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To do so, it is necessary for autonomous vehicle to predict pedestrian 

movement and perform proactive motion. However, it is difficult for autonomous 

vehicles to accurately model and predict pedestrian movements because 

pedestrians are free to switch their movement directions. In addition, depending on 

the sensor configuration of the vehicle, there may be a limitation in obtaining 

pedestrian information and all contextual information from the surrounding 

environment in real-time.  

To implement autonomous driving for pedestrians considering above 

problems, this study focuses on deriving the movement characteristics of 

pedestrians using only fundamental states, such as position, velocity and yaw. Also, 

in order to smoothly realize interactive driving with pedestrians, human driving 

characteristics are investigated and applied to determine vehicle’s motion. The 

main target of this research is to define future movement region for each pedestrian 

in real time and implement human-like longitudinal motion planning. This study 

can realize autonomous driving to secure pedestrian safety and plan proper vehicle 

motion according to situation.   
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1.2. Previous Researches 

The areas of research related to pedestrians required for autonomous driving 

technology largely consist of pedestrian model definition, movement prediction, 

and interactive motion between pedestrian and vehicle.  

The following studies have been conducted on pedestrian modeling and path 

prediction. Yoriyoshi Hashimoto[1][2] applied Dynamic Bayesian Network (DBN) 

model based on contextual information which includes traffic signal, surround 

vehicle, group situation and crosswalk length. The information is obtained using a 

camera sensor. N. Schneider[3] proposed pedestrian path prediction using 

Interacting Multiple Models (IMM) with three basic motions such as constant 

velocity, acceleration and turn. Julian F.P.Kooij[4] presented a path prediction of 

vulnerable road user (VRU) using combination of basic motion switching model 

and context information including line of gaze and road infrastructure. In addition, 

various researches have been studied to estimate the pedestrian’s intention from 

information such as the face direction, several body languages and leg motion 

using vision sensors[5] [6] [7]. 

Several studies have been conducted to analyze the driving characteristics of 

the human driver in the interaction situation with pedestrians. Tomas Bertulis[8] 

investigated the correlation between driver approach speed and yielding rates to 

pedestrians. Friederike Schneemann[9] analyzed the actual driver’s interaction on 

the crosswalks, which includes the driver’s reaction time for vehicle speed and 

driver’s stochastic strategy. Yanlei Gu[10] proposed gap acceptance model for a 

human-like motion planning in the left-turning situation. Also, Ya-Chuan[11] Hsu 
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used an Markov Decision Process with risk minimizing reward model to express 

the interaction between a pedestrian and a vehicle. Markkula.G[12] define the 

behavior model of driver and pedestrian in certain scenarios. Some studies research 

pedestrian walking behavior such as speed and crossing decision[13][14][15]. 

In order to respond to pedestrians for autonomous driving in the urban 

environment, studies in the three fields above should be comprehensively applied. 

In this study, a specific situation is not limited considering the fundamental state 

information of pedestrian, not a model that assumes constant yaw, constant 

acceleration, etc. In addition, since it uses only basic Lidar tracking information, so 

it has less load to handle and can be applied in real time as the autonomous vehicle 

is driving.  

Furthermore, above rule-based pedestrian path prediction sometimes tends to 

have fairly large prediction errors due to multiple assumptions and pedestrian 

movement characteristics that easily change their motion. In this study, pedestrian 

safety can be ensured by defining a behavior uncertainty region beyond a certain 

probability instead of path prediction. The interaction between the vehicle and the 

pedestrian was implemented by applying important factors derived by examining 

the driving data of the human driver to the deceleration plan.  
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1.3. Thesis Objective and Outline 

This study aims to define the area in which pedestrians can behave in the future, 

and to enable autonomous vehicles to behave like humans in the presence situation 

of pedestrians. There is a limitation in accurately predicting the changeable 

behavior of a pedestrian. It is also difficult to obtain all the contextual information 

of situation in real-time while the autonomous vehicle is driving, depending on the 

sensor configuration and processing speed of the autonomous vehicle.  

To achieve the goal with a limited information, the overall algorithm consists of 

three main parts: the pedestrian model definition using pedestrian’s dynamic 

movement characteristics, prediction-based collision risk assessment and human-

like longitudinal motion planning through accumulated human driving data.  

In the first part, the pedestrian model and the region of pedestrian’s future 

movement is defined using derived behavior characteristics from accumulated 

pedestrian state data. Pedestrian’s state information is obtained using IBEO Lidar 

sensors and front camera mounted on the vehicle. Through the investigated state 

information, the correlation between pedestrian speed and direction change is 

identified and it is used to derive the possibility of pedestrian movement in all 

directions. The effective range of future movement direction is defined using the 

derived possibility. Also, the radius of region reflects the velocity of pedestrian. 

In the second part, vehicle and pedestrian movement behavior predictions are 

conducted for risk assessment. The movement prediction of pedestrian is assumed 

to maintain the current speed and behave in the direction of the highest collision 

risk within the region derived above. Vehicle movement prediction uses a lane 
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keeping model that assumes the vehicle follows a given local path. The desired 

yaw rate is derived through the lane keeping behavior model and applied as a 

virtual measurement in the extended Kalman filter(EKF), which is prediction 

method. As a result of the prediction, if the predicted behavior range of the vehicle 

and the target pedestrian overlaps within the time horizon, the risk existence is 

confirmed.  

Finally, the longitudinal motion of the vehicle is determined considering the 

future movement in the presence situation of pedestrians. In order to realize a 

human-like longitudinal movement of the vehicle, human driving data is collected 

and critical elements is defined as human driving parameters. These parameters are 

applied to calculate longitudinal acceleration. Furthermore, the driving mode is 

defined through analyzing the human data, which is soft and hard mode. The hard 

mode is conceptually a case that stopping the vehicle is inevitable, and soft mode is 

when the vehicle passes smoothly after gentle deceleration without stopping. The 

driving mode and acceleration are selected by relative distance and velocity. 

The result of applying the algorithm to the autonomous vehicle is compared with 

the driving of the human driver in the same situation. The results demonstrate that 

the starting time of deceleration and the time trajectory of Time-To-Collision(TTC) 

and clearance are similar. 
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Chapter 2 

 

 

Probabilistic Pedestrian Yaw Model 

In this section, the behavioral characteristics of pedestrians are investigated and 

a pedestrian model is derived based on investigated results. Pedestrians can freely 

change the direction of movement in all directions, unlike the movement of other 

road users such as vehicles or motorcycles. Nevertheless, in order for autonomous 

vehicle to drive in urban environment, it is necessary to determine the behavior of 

the vehicle by predicting pedestrian behavior. If the movement of pedestrians is 

considered in all directions, the motion of autonomous vehicle will be excessively 

conservative than necessary. Hence, additional information is needed to indicate 

the tendency of pedestrian behavior. The information that can be obtained is 

various depending on the sensor configuration, but in this study, the behavior of the 

pedestrian is analyzed with only the fundamental state information such as position, 

velocity, acceleration and yaw. To characterize pedestrian behavior, the 5000-step 

datasets of pedestrian state were collected on campus at the Seoul National 

University. Data was obtained by the in-vehicle IBEO Lidar sensor, at frequency of 

25Hz. 
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2.1. Pedestrian Behavior Characteristics 

 

The main feature of pedestrian behavior in this study is the correlation between 

movement speed and direction change. The feature is verified by the measured 

pedestrian datasets. Fig. 2(a) shows the distributions of yaw angle change between 

current step[k] and last time step[k-1] for each specific speed section of the 

pedestrian. The standard deviation can be obtained by fitting dataset to Gaussian 

distribution. Fig. 2(b) shows the same data in the yaw angle change and velocity 

plane. The graph shows a specific tendency between the velocity and the standard 

deviation of distribution. As the velocity increases, the standard deviation of 

distribution decreases, as illustrated in the Fig. 2. This means that fast-moving 

pedestrians are more likely to maintain their current direction of movement, while 

slow-moving pedestrians tend to alter directions. The feature can be used to define 

probabilistic movement range of pedestrian for a certain time horizon.  
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(a)  Gaussian distributions of yaw angle change according to velocity 

 

(b) Distribution between yaw angle change and yaw angle 

 

Fig. 2 Distribution of pedestrian movement data  
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2.2. Probabilistic Movement Range 

The standard deviation tends to be inversely proportional to the pedestrian 

velocity, as illustrated in the Fig. 2. The relations can be formulated as follows 

through cumulated datasets. Equation (1) between the standard deviation and speed 

is obtained using MATLAB Curve Fitting Toolbox.  

 

2.36

0.03889
 0.2659

v
                                                  (1) 

Fig. 3 shows the fitted relationship in the x-y plane. According to this formula, 

each pedestrian has a certain probability in all movement directions depending on 

their speed. To define effective movement range, the yaw angle limit is set to 

±1.5 sigma representing 86.7% through a heuristic method. In addition, the radius 

of the moving range is determined as a predicted position assuming a constant 

velocity during a certain time horizon. The time horizon is determined 6 sec using 

maximum perception distance(50m) and minimum velocity in the urban 

environment(30kph). In the case of a stationary pedestrian, there is a probability in 

all directions, and the radius of the range is set to a certain value in consideration of 

the human stride. 

Fig. 3 Standard deviation of yaw angle change distribution according to 

pedestrian velocity 
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In addition, the movement range based on probabilistic pedestrian yaw model is 

used to select target pedestrians that need attention. Target pedestrians are selected 

by checking whether the ranges overlap with driving lane of ego vehicle based on 

high-definition(HD) map. The conceptual image is shown in the Fig. 4. 

 

 

Fig. 4 Visualization of probabilistic pedestrian yaw model 
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Chapter 3 

 

Prediction Based Risk Assessment 

When pedestrians cross the road, the movement direction of vehicles and 

pedestrians is usually almost perpendicular. Hence, the collision risk is assessed 

considering not only relative longitudinal distance and TTC, but also lateral 

behavior with time term. This is because pedestrians might pass through the driving 

lane before a collision occurs even though there is a sufficient danger of collision 

in the longitudinal direction. Therefore, the time series trajectory of the vehicle and 

the pedestrian should be predicted. If the two predicted trajectories overlap, the risk 

is judged. In addition, the prediction enables proactive motion of vehicle. It can 

increase the vehicle’s safe speed range to cope with pedestrians crossing. The safe 

speed range and safe zone based on prediction are analyzed in the section 3.3.  

Pedestrian trajectory prediction is assumed to move in the direction with the 

highest risk within the effective yaw range derived above. Also, it is assumed that 

the pedestrian maintains the current speed. Under the assumptions, it is possible to 

obtain the two-dimensional trajectory of the pedestrian until the time at which the 

target pedestrian leaves the driving lane. 

To predict the future behavior of the subject vehicle, the lane keeping behavior 

model is used that assumes the subject vehicle maintains the current driving lane. 

Then, the desired yaw rate based on the lane keeping behavior model is applied as 
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a virtual measurement in the extended Kalman filter(EKF), which is prediction 

method. This section is mainly referenced from [16] and [17]. The conceptual 

image is shown in the Fig.5. 

Fig. 5 Concept of prediction for pedestrian and subject vehicle 
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3.1. Lane Keeping Behavior Model 

The lane keeping behavior model uses a dynamic model with lateral position 

error and angular error states with respect to the current lane. The current lane 

information is obtained from the in-vehicle GPS sensor and HD map. It is curve-

fitted as the 2nd order polynomial. The error states are defined in inertial fixed 

coordinates and each error and differential term are as shown in equation (4)-(7).  

where 
xp  is the vehicle’s longitudinal position, yp  is the vehicle’s lateral 

position,   is heading angle and v  is the longitudinal velocity of the subject 

vehicle. If the yaw rate error term can be assumed as a 1st-order system with system 

2

2 1 0( )y y x xe p a p a p a                                                                    (4) 
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input of the desired yaw rate, it is expressed as equation (8).   

( )dese f                                                       (8) 

Above equations can be represented by the state-space equation as in equation (9).  

2
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0 0 1 0 2 cos

0 0 0

e e e e des w
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Also, 
des  denotes the desired yaw rate. This can be set by state feedback and a 

feed-forward terms to converge error into zero, which is shown in equation (10). 

 1 2 3des e ff
c c c x                                                                 (10) 

 

The feedback gains are decided through pole-place method, and the feed-

forward term ff  is simply calculated to generate zero errors using above 

equation. 

2 32 cos ( 1)ff a v c     (11) 

As mentioned, the derived 
des  is used as a virtual measure in EKF 

prediction.  
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3.2. Subject Vehicle Prediction 

The extended Kalman filter is used to predict states of the Ego vehicle. The 

process model can be described via Taylor Methods as below.  

 

           (12) 
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predicted longitudinal velocity, yaw rate, longitudinal acceleration and yaw 

acceleration, respectively. The initial values of these four states are obtained by 

chassis sensor in the vehicle. pN  is the length of the prediction horizon and is 

determined by the estimated time for the target pedestrian to complete crossing the 

driving lane of ego vehicle. Also, the derivative terms of acceleration and yaw rate 

are assumed as zero value.  

The measurement model of EKF estimator can be described using the desired 

yaw rate as virtual measurement.  
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where Wcorrect
 indicates the additional covariance of the desired yaw rate. By 

iteratively applying the extended Kalman filter using the above process and 

measurement model, the longitudinal and lateral trajectory of the ego vehicle can 

be predicted during the time horizon. 
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3.3. Safety Region Based on Prediction 

Safety region that can be secured through prediction are investigated. First of all, 

the maximum perception distance should be analyzed to obtain safety region. 

Depending on the clearance, the number of Lidar points reflected by a pedestrian is 

analyzed based on the 4-channel IBEO Lidar sensor with resolution 5°. It is 

calculated for each adult and child as shown in the Table1 below.  

 

Distance Adult(1700*600mm) Child(1200*400mm) 

3m ~184 ~122 

10m ~56 ~36 

30m ~18 ~6 

40m ~12 ~5 

50m ~6 ~4 

60m ~3    ~2(EA) 

Table1. The number of IBEO Lidar points for adult and child pedestrian 

 

In order to classify and track pedestrian reliably, more than 3 points must be 

secured, so the perception distance limit(
limS ) is about 50m. The longitudinal 

distance( requireds ) required to avoid collision can be calculated by equation (14). 

delayT  is the sum of system delay and process delay, which is set to 1.2sec in this 

study. 
mina  is the minimum acceleration(maximum deceleration) of general 

situation and is set to 23 /m s in this study. Considering 
limS  value, the 

maximum safety velocity(
maxV ) is about 50kph.  

 



 

 ２０ 

(14) 

 

Assuming that only the current position of the pedestrian without prediction is 

considered, the deceleration starting clearance of the subject vehicle can be 

calculated according to lateral distance(
lats ) of recognized pedestrian from 

equation (15). The conceptual image is shown in the Fig.6. 

  

(15) 

Fig. 6 Concept of prediction parameters 

If the pedv  is set to the pedestrian’s average velocity 
21.3 /m s [13], Fig.7 

shows requireds  and 
startC  according to the 

lats . Each crossing point means the 

maximum velocity that avoids to collision without prediction. Also, the region that 

needs prediction can be presented in the 
lats  and velocity plane, as shown red 

zone in Fig.8. The baseline of Fig.10 is calculated by the equation (16).  

(16) 

2

min2
required veh delay

v
s v T

a
 

lim
lat

start veh

ped

s
C S v

v
  

lim

min

( )
2

veh
lat ped delay

veh

vS
s v T

v a
  



 

 ２１ 

 

Fig. 7 Required distance and deceleration starting distance according to 

lateral distance 

 

Fig. 8 Prediction required region in the lateral distance and velocity plane  
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Chapter 4 

 

Human-like  

Longitudinal Motion Planning 

 

4.1. Human Driving Parameters Definition 

Before determining the subject vehicle’s motion for the target pedestrians, the 

critical driving elements are analyzed to realize the human-like driving in the 

pedestrian presence situation. In order to define human driving parameters, the 

driving data of experienced drivers is collected by circular driving on campus at the 

Seoul National University. Also, the data is obtained by in-vehicle Lidar sensor and 

vehicle chassis sensor. 

According to human driving data, the vehicle’s motion can be roughly divided 

into two modes. One case is when stopping the vehicle is inevitable (hard mode), 

and the other is when the vehicle passes smoothly after gentle deceleration without 

stopping (soft mode), which happens more frequently. The human driving 

parameters are defined in each driving mode. The parameter values are determined 

as the average value of cumulative human driving data and are shown in Table2. 
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4.1.1. Hard Mode Distance 

The distance parameter of the hard mode is a proper minimum distance that 

pedestrians and driver do not feel threatened when stopping, denoted as 
hardd . In 

other words, it is the clearance to be secured when vehicle stops due to pedestrians.  

 

4.1.2. Soft Mode Distance and Velocity  

The distance parameter of the soft mode is the clearance between the vehicle and 

the pedestrian at the time the pedestrian completes crossing, denoted as softd . The 

velocity parameter of the soft mode is the vehicle velocity at the same point, 

denoted as softv . 

 

4.1.3. Time-To-Collision 

TTC, as is well known, is the value obtained by dividing the relative distance by 

the relative speed. In this study, two TTCs are defined and applied. One is the TTC 

at the time of starting deceleration, denoted as 
decelTTC . The other is TTC at the 

time the pedestrian completes crossing, denoted as softTTC . This parameter is 

obtained using softd and softv  at the same point. 
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Human Driving Parameter Average Value 

hard
d  8.94(m) 

soft
d  13.52(m) 

soft
v  3.73(m/s) 

soft
TTC  3.62(sec) 

decel
TTC  7.2(sec) 

Table2. Values of human driving parameters 
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4.2. Driving Mode and Acceleration Decision   

4.2.1. Acceleration of Each Mode 

The acceleration that the vehicle should finally track is defined for each mode by 

applying the human driving parameters derived above. As mentioned in the section 

4.1, there are two modes, which is soft mode and hard mode. The human driving 

parameters are the target state that the vehicle will track for each mode. Assuming 

constant deceleration, the longitudinal deceleration is simply defined depending on 

the target state of each mode and delay term.  

In the soft mode, the target clearance and velocity is softd  and softv  , 

respectively. Also, the target clearance of the hard mode is 
hardd  with zero 

velocity.  

 

                            (17) 

 

 

(18) 

 

The final desired deceleration of the vehicle is determined as a minimum value 

of calculated decelerations for each of the N target pedestrians. 

[1] [2] [ ]
min( , ,..., )

desired ped ped ped N
a a a a

                                 
(19) 

The mode is selected depending on relative distance, velocity and TTC between 

the ego vehicle and target pedestrian. Also, the criteria values are human driving 
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parameters mentioned in the section 4.2. The mode selection is visualized on the 

velocity and clearance plane, shown in the Fig.7. The cover region of the soft mode 

is defined by the conditions below. 

 

4.2.2. Mode Selection 

The mode is selected depending on relative distance, velocity and TTC between 

the ego vehicle and target pedestrian. Also, the criteria values are human driving 

parameters mentioned in the section 4.1.  

The soft mode is a common situation when a target pedestrian is recognized 

from a sufficient distance to cope. Hence, the soft mode is limited to an area that 

can cope with a deceleration within 22 /m s  in consideration of driving comfort 

[18]. Also, the human driving parameter 
decelTTC is considered. The cover region 

of the soft mode can be expressed by equation (20). 

min
0 ( ) ( )

soft decel
a t a and TTC t TTC                                   (20) 

The hard mode is a vehicle stop scenario and covers the region that soft mode 

cannot cope with. The area of hard mode is defined within a minimum coping 

distance in consideration of the delay. The cover region of the hard mode can be 

expressed by equation (21). 
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The mode selection is visualized on the velocity and clearance plane, shown in 

the Fig.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Cover region of each mode in the longitudinal clearance-velocity plane 
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Chapter 5 

 

Vehicle Test Result 

 

5.1. Configuration of Experimental Vehicle 

   

The experimental vehicle in this study is mainly equipped with Lidar sensors. 

The total detection sensor configuration is shown in Fig.10. The six IBEO Lidar 

sensors, front camera and around view monitoring(AVM) camera are mounted on 

the test vehicle. The Lidar sensors have four layers each with resolution of 5°and 

covers a 360 degree area around the ego vehicle. Also, the horizontal field of 

view(FOV) of each Lidar sensor is approximately 100m with ±42.5°. 

The test vehicle has also several actuator, controller and localization equipment, 

shown in Fig.11. The global states of the ego vehicle are from real-time-

kinematic(RTK) global positioning system(GPS). In addition, the algorithm in this 

study is proceeded on the vehicle’s pc and the desired acceleration as output is 

tracked through low level controller on the autobox and vehicle actuator. The 

autobox is rapid control prototyping(RCP) equipment.   



 

 ２９ 

 

Fig. 10 Detection range for sensors installed in experimental vehicle 

 

 

 
Fig. 11 Sensor configuration of experimental vehicle 
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5.2. Longitudinal Motion Planning for Pedestrian   

The longitudinal motion planning of proposed algorithm is achieved by 

integrating all advanced processes such as probabilistic pedestrian yaw model, 

predicted trajectory and investigated human driving parameters. The algorithm is 

verified via repeated vehicle test on an unsignalized crosswalk at the Seoul 

National University. Two different scenarios are tested, and each test scenario 

involves three times of human driving and five times of autonomous driving for 

algorithm verification. The test environment is shown in the Fig.12 and the 

similarity with human driving is confirmed in both scenario. It means that the 

proposed pedestrian prediction model reflects human real-time prediction 

considering the uncertainty to cope with pedestrians. In other words, the 

probabilistic pedestrian yaw model is effective to use for vehicle’s motion planning. 

Also, it is confirmed that the proposed driving mode decision and acceleration 

determination represent the human driving motion.   
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 Fig. 12 Test environment and pedestrian model visualization 

 

 

 

 

 

 

 

 

 

 

 

 



 

 ３２ 

5.2.1. Soft Mode Scenario 

The soft mode is a common situation in which the subject vehicle does not stop 

and smoothly decelerates to avoid collision with pedestrians. The motion of 

autonomous vehicle using proposed algorithm is compared to that of human 

driving in the same repetitive situation that the soft mode is selected. The motion 

similarity is verified by comparing the velocity profile and x and y clearance with a 

target pedestrian until the pedestrian completed the crossing, shown in the Fig.13-

15. Also, the Fig.16 (a) and (b) indicate time series of the longitudinal clearance 

and velocity for one autonomous driving case in the soft mode. The Fig.16 (c) 

indicates the desired acceleration and actual acceleration profile with system delay 

for same driving case.  

 

Fig. 13 Comparison of velocity profile for longitudinal clearance from the 

target pedestrian in the soft mode 
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Fig. 14 Comparison of velocity profile for lateral clearance from the target 

pedestrian in the soft mode 

 

Fig. 15 Comparison of the lateral and longitudinal clearance from the target 

pedestrian on the two dimensional plane in the soft mode 
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(a) Longitudinal clearance profile and target state 

 

 
(b)  Velocity profile and target state 

 

(c) Desired acceleration and actual acceleration profile in the soft mode 

 

Fig. 16 States profile for an autonomous driving case in the soft mode 
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5.2.2. Hard Mode Scenario 

In the hard mode, the acceleration is determined so that the vehicle stops in front 

of target pedestrian with a safe distance. As before, the motion of autonomous 

vehicle is compared to that of human driving in the same repetitive situation that 

the hard mode is selected. The motion similarity is verified by comparing the same 

variables in the soft mode and shown in the Fig.17-19. Also, the Fig.20 (a) and (b) 

indicate time series of the longitudinal clearance and velocity for one autonomous 

driving case in the hard mode. The Fig.20 (c) indicates the desired acceleration and 

actual acceleration profile with system delay for same driving case.  

 

Fig. 17 Comparison of velocity profile for longitudinal clearance from the 

target pedestrian in the hard mode 
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Fig. 18 Comparison of velocity profile for lateral clearance from the target 

pedestrian in the hard mode 

Fig. 19 Comparison of the lateral and longitudinal clearance from the target 

pedestrian on the two dimensional plane in the hard mode 
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(a) Longitudinal clearance profile and target state 

(b) Velocity profile and target state 

(c) Desired acceleration and actual acceleration profile in the soft mode 

 

Fig. 20 States profile for an autonomous driving case in the hard mode 
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Chapter 6 

 

Conclusion 

In this study, a probabilistic pedestrian yaw model and longitudinal motion 

planning algorithm are mainly proposed using fundamental states information of 

pedestrian from Lidar sensor. To limit the area of future behavior considering the 

uncertainty in the direction of the pedestrian’s behavior, the movement 

characteristics of pedestrian are analyzed and applied to define a probabilistic 

pedestrian yaw model. The movement data of pedestrians is collected using in-

vehicle Lidar sensors and a total of 5000 step data sets are investigated. The 

defined correlation between pedestrian speed and yaw angle change is used to 

make an uncertain area of behavior for each pedestrian. Also, human driving 

parameters are investigated and applied to realize that the autonomous vehicle 

performs a human-like motion. The final motion planning is based on human 

driving parameters and pedestrian model.  

The effectiveness of the proposed motion planning algorithm is evaluated via 

vehicle test. The autonomous driving is compared with human driving in the same 

pedestrian existence situation. As a results, the velocity and x, y clearance have 

similar profile with human driving in the repetitive tests. Therefore, the validity of 

the overall algorithm, such as pedestrian prediction considering behavior 

uncertainty, driving mode decision and acceleration determination is confirmed.    
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초    록 

 

보행자 거동 및 운전자 주행 특성  

기반의 자율주행 종방향 거동 계획 
 

 
본 연구는 보행자의 미래 거동 방향에 대한 불확실성을 고려한 보행

자 모델을 제안하고, 보행자 대응 시의 운전자 주행 특성을 반영하여 자

율주행 차량의 종방향 모션을 계획하는 알고리즘을 제시한다. 도심 자율 

주행을 가능하게 하기위해서는 보행자와의 상호적인 주행이 필수적이다. 

그러나, 보행자는 거동 방향 전환이 쉽게 일어나기 때문에 미래 거동을 

예측하기가 어렵고, 이에 대응하는 자차의 거동을 결정짓는 데도 어려움

이 있다. 이러한 보행자의 거동 불확실성이 존재함에도 자율 주행 차량

이 보행자의 안전성을 확보하고 휴먼 운전자와 같이 거동하기 위해서는, 

보행자의 거동 불확실성을 반영하는 보행자 모델이 우선적으로 필요하다. 

해당 연구에서는 보행자 거동 특성을 조사하여 보행자 거동 확률 모

델을 정의하고, 보행자 대응 상황에서의 운전자의 거동을 조사하여 자율

주행 차량의 종방향 거동 계획에 적용한다. 해당 논문은 크게 보행자 모

델 정의, 예측 기반 충돌 위험 평가 그리고 보행자 대응 종방향 거동 계

획의 세 가지 주요 파트로 이루어져 있다. 첫 번째 파트에서 보행자 모

델 정의의 핵심 이론은 보행자의 거동 속도와 방향을 전환하는 거동 사

이에는 특정 상관관계를 가지고 있다는 것이다. 보행자의 거동 특성은 

자율 주행 차량에 부착된 라이다 센서와 전방 카메라를 통해 획득한 보
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행자 데이터를 통계적으로 분석한 결과로 도출되었다. 해당 데이터를 통

해 속도에 따라 보행자가 모든 방향에 대해서 거동할 확률이 도출되고, 

보행자의 미래 거동 범위는 도출된 확률 분포에서 유효 시그마 범위를 

설정하여 구획된다. 이는 보행자가 일정 시간 동안 특정 확률로 거동할 

영역을 고려하여, 위험이 존재할 수 있는 보행자에 대해서 미리 차량의 

움직임을 계획할 수 있도록 한다. 두 번째 파트로 보행자와 자 차량의 

일정 시간 동안의 위치 정보를 예측하여 충돌 위험성을 평가한다. 보행

자 예측은 앞서 도출한 보행자 유효 예측 거동 범위 내에서 가장 위험성

이 큰 방향으로 움직인다고 가정한다. 또한, 자 차량의 경우 주어진 로

컬 경로를 따라 움직인다는 가정을 하는 차선 유지 모델을 사용한다. 예

측 결과를 통해 현재 추가적인 감속도를 가하지 않았을 때, 충돌 위험이 

존재하는지 확인한다. 마지막으로, 타겟이 되는 보행자에 대한 종방향 

거동을 결정한다.  우선적으로 보행자 대응 상황에서 적절한 감속도와 

감속 시점을 결정하기 위해 휴먼 운전자 주행 데이터를 분석한다. 이를 

통해 주행에서 핵심적인 파라미터들이 정의되고, 해당 파라미터들은 종

방향 거동 계획에 반영된다. 따라서 최종적으로 보행자 예측 거동 영역

에 대해서 자율 주행 차량의 추종 가속도이 결정된다.   

제시된 알고리즘은 실차 테스트를 통해 성능이 확인된다. 테스트 결

과, 도출한 보행자 모델과 예측 모델을 바탕으로 한 감속 결정 시점과 

감속도의 궤적이 동일 상황들에 대해서 능숙한 운전자와 유사함이 확인

되었다.  

 

주요어: 자율주행, 종방향 거동 계획, 보행자 확률 모델, 인간 유사 거동 
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