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Abstract

Human-like Longitudinal Motion
Planning in Consideration of Pedestrian
Behavior Characteristics for Urban

Autonomous Driving

Yujin Kim
School of Mechanical Engineering
The Graduate School

Seoul National University

This paper presents a pedestrian model considering uncertainty in the direction
of future movement and a human-like longitudinal motion planning algorithm for
autonomous vehicle in the interaction situation with pedestrians. Interactive driving
with pedestrians is essential for autonomous driving in urban environments.
However, interaction with pedestrians is very challenging for autonomous vehicle
because it is difficult to predict movement direction of pedestrians. Even if there

exists uncertainty of the behavior of pedestrians, the autonomous vehicles should



plan their motions ensuring pedestrian safety and respond smoothly to pedestrians.
To implement this, a pedestrian probabilistic yaw model is introduced based on
behavioral characteristics and the human driving parameters are investigated in the
interaction situation. The paper consists of three main parts: the pedestrian model
definition, collision risk assessment based on prediction and human-like
longitudinal motion planning. In the first section, the main key of pedestrian model
is the behavior tendency with correlation between pedestrian’s speed and direction
change. The behavior characteristics are statistically investigated based on
perceived pedestrian tracking data using light detection and ranging(Lidar) sensor
and front camera. Through the behavior characteristics, movement probability for
all directions of the pedestrian is derived according to pedestrian’s velocity. Also,
the effective moving area can be limited up to the valid probability criterion. The
defined model allows the autonomous vehicle to know the area that pedestrian may
head to a certain probability in the future steps. This helps to plan the vehicle
motion considering the pedestrian yaw state’s uncertainty and to predetermine the
motion of autonomous vehicle from the pedestrians who may have a risk. Secondly,
a risk assessment is required and is based on the pedestrian model. The dynamic
states of pedestrians and subject vehicle are predicted to do a risk assessment. In
this section, the pedestrian behavior is predicted under the assumption of moving to
the most dangerous direction in the effective moving area obtained above. The
prediction of vehicle behavior is performed using a lane keeping model in which
the vehicle follows a given path. Based on the prediction result, it is checked
whether there will be a collision between the pedestrian and the vehicle if

deceleration motion is not taken. Finally, longitudinal motion planning is
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determined for target pedestrians with possibility of collision. Human driving data
is first examined to obtain a proper longitudinal deceleration and deceleration
starting point in the interaction situation with pedestrians. Several human driving
parameters are defined and applied in determining the longitudinal acceleration of
the vehicle. The longitudinal motion planning algorithm is verified via vehicle tests.
The test results confirm that the proposed algorithm shows similar longitudinal
motion and deceleration decision to a human driver based on predicted pedestrian

model.

Keyword: Autonomous Driving, Longitudinal Motion Planning, Probabilistic

Pedestrian Model, Human-Like Driving

Student Number: 2018-20946
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Chapter 1

Introduction

1.1. Background and Motivation

The Advanced Driver Assistance System(ADAS), which helps drivers to drive
safely before reaching fully autonomous driving technology, is widely used and
research is underway to expand the technology area. Currently, the development of
autonomous highway driving technology had progressed above a certain level and
it aims to realize autonomous driving in the urban environment.

The main issue of autonomous urban driving is driving safely, interacting with
various types of objects or pedestrians using the road. Among various road users,
such as bicycles, segways, motorcycles, vehicles and pedestrians, pedestrians are
the most vulnerable users who can be seriously injured in an accident.

The Euro New Car Assessment Program(NCAP) has added ‘AEB pedestrian’
as a safety assessment item for active safety systems since 2016. Furthermore, the
pedestrian safety issue was raised again when a pedestrian death accident occurred
by the Uber’s autonomous vehicle in 2018. Hence, the technology to secure
pedestrian safety is essential to the advent of the era of fully autonomous vehicles

in urban environments.



To do so, it is necessary for autonomous vehicle to predict pedestrian
movement and perform proactive motion. However, it is difficult for autonomous
vehicles to accurately model and predict pedestrian movements because
pedestrians are free to switch their movement directions. In addition, depending on
the sensor configuration of the vehicle, there may be a limitation in obtaining
pedestrian information and all contextual information from the surrounding
environment in real-time.

To implement autonomous driving for pedestrians considering above
problems, this study focuses on deriving the movement characteristics of
pedestrians using only fundamental states, such as position, velocity and yaw. Also,
in order to smoothly realize interactive driving with pedestrians, human driving
characteristics are investigated and applied to determine vehicle’s motion. The
main target of this research is to define future movement region for each pedestrian
in real time and implement human-like longitudinal motion planning. This study
can realize autonomous driving to secure pedestrian safety and plan proper vehicle

motion according to situation.



1.2. Previous Researches

The areas of research related to pedestrians required for autonomous driving
technology largely consist of pedestrian model definition, movement prediction,
and interactive motion between pedestrian and vehicle.

The following studies have been conducted on pedestrian modeling and path
prediction. Yoriyoshi Hashimoto[1][2] applied Dynamic Bayesian Network (DBN)
model based on contextual information which includes traffic signal, surround
vehicle, group situation and crosswalk length. The information is obtained using a
camera sensor. N. Schneider[3] proposed pedestrian path prediction using
Interacting Multiple Models (IMM) with three basic motions such as constant
velocity, acceleration and turn. Julian F.P.Kooij[4] presented a path prediction of
vulnerable road user (VRU) using combination of basic motion switching model
and context information including line of gaze and road infrastructure. In addition,
various researches have been studied to estimate the pedestrian’s intention from
information such as the face direction, several body languages and leg motion
using vision sensors[5] [6] [7].

Several studies have been conducted to analyze the driving characteristics of
the human driver in the interaction situation with pedestrians. Tomas Bertulis[8]
investigated the correlation between driver approach speed and yielding rates to
pedestrians. Friederike Schneemann[9] analyzed the actual driver’s interaction on
the crosswalks, which includes the driver’s reaction time for vehicle speed and
driver’s stochastic strategy. Yanlei Gu[10] proposed gap acceptance model for a

human-like motion planning in the left-turning situation. Also, Ya-Chuan[11] Hsu



used an Markov Decision Process with risk minimizing reward model to express
the interaction between a pedestrian and a vehicle. Markkula.G[12] define the
behavior model of driver and pedestrian in certain scenarios. Some studies research
pedestrian walking behavior such as speed and crossing decision[13][14][15].

In order to respond to pedestrians for autonomous driving in the urban
environment, studies in the three fields above should be comprehensively applied.
In this study, a specific situation is not limited considering the fundamental state
information of pedestrian, not a model that assumes constant yaw, constant
acceleration, etc. In addition, since it uses only basic Lidar tracking information, so
it has less load to handle and can be applied in real time as the autonomous vehicle
is driving.

Furthermore, above rule-based pedestrian path prediction sometimes tends to
have fairly large prediction errors due to multiple assumptions and pedestrian
movement characteristics that easily change their motion. In this study, pedestrian
safety can be ensured by defining a behavior uncertainty region beyond a certain
probability instead of path prediction. The interaction between the vehicle and the
pedestrian was implemented by applying important factors derived by examining

the driving data of the human driver to the deceleration plan.



1.3. Thesis Objective and Outline

This study aims to define the area in which pedestrians can behave in the future,
and to enable autonomous vehicles to behave like humans in the presence situation
of pedestrians. There is a limitation in accurately predicting the changeable
behavior of a pedestrian. It is also difficult to obtain all the contextual information
of situation in real-time while the autonomous vehicle is driving, depending on the
sensor configuration and processing speed of the autonomous vehicle.

To achieve the goal with a limited information, the overall algorithm consists of
three main parts: the pedestrian model definition using pedestrian’s dynamic
movement characteristics, prediction-based collision risk assessment and human-
like longitudinal motion planning through accumulated human driving data.

In the first part, the pedestrian model and the region of pedestrian’s future
movement is defined using derived behavior characteristics from accumulated
pedestrian state data. Pedestrian’s state information is obtained using IBEO Lidar
sensors and front camera mounted on the vehicle. Through the investigated state
information, the correlation between pedestrian speed and direction change is
identified and it is used to derive the possibility of pedestrian movement in all
directions. The effective range of future movement direction is defined using the
derived possibility. Also, the radius of region reflects the velocity of pedestrian.

In the second part, vehicle and pedestrian movement behavior predictions are
conducted for risk assessment. The movement prediction of pedestrian is assumed
to maintain the current speed and behave in the direction of the highest collision

risk within the region derived above. Vehicle movement prediction uses a lane



keeping model that assumes the vehicle follows a given local path. The desired
yaw rate is derived through the lane keeping behavior model and applied as a
virtual measurement in the extended Kalman filter(EKF), which is prediction
method. As a result of the prediction, if the predicted behavior range of the vehicle
and the target pedestrian overlaps within the time horizon, the risk existence is
confirmed.

Finally, the longitudinal motion of the vehicle is determined considering the
future movement in the presence situation of pedestrians. In order to realize a
human-like longitudinal movement of the vehicle, human driving data is collected
and critical elements is defined as human driving parameters. These parameters are
applied to calculate longitudinal acceleration. Furthermore, the driving mode is
defined through analyzing the human data, which is soft and hard mode. The hard
mode is conceptually a case that stopping the vehicle is inevitable, and soft mode is
when the vehicle passes smoothly after gentle deceleration without stopping. The
driving mode and acceleration are selected by relative distance and velocity.

The result of applying the algorithm to the autonomous vehicle is compared with
the driving of the human driver in the same situation. The results demonstrate that
the starting time of deceleration and the time trajectory of Time-To-Collision(TTC)

and clearance are similar.
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Chapter 2

Probabilistic Pedestrian Yaw Model

In this section, the behavioral characteristics of pedestrians are investigated and
a pedestrian model is derived based on investigated results. Pedestrians can freely
change the direction of movement in all directions, unlike the movement of other
road users such as vehicles or motorcycles. Nevertheless, in order for autonomous
vehicle to drive in urban environment, it is necessary to determine the behavior of
the vehicle by predicting pedestrian behavior. If the movement of pedestrians is
considered in all directions, the motion of autonomous vehicle will be excessively
conservative than necessary. Hence, additional information is needed to indicate
the tendency of pedestrian behavior. The information that can be obtained is
various depending on the sensor configuration, but in this study, the behavior of the
pedestrian is analyzed with only the fundamental state information such as position,
velocity, acceleration and yaw. To characterize pedestrian behavior, the 5000-step
datasets of pedestrian state were collected on campus at the Seoul National
University. Data was obtained by the in-vehicle IBEO Lidar sensor, at frequency of

25Hz.



2.1. Pedestrian Behavior Characteristics

The main feature of pedestrian behavior in this study is the correlation between
movement speed and direction change. The feature is verified by the measured
pedestrian datasets. Fig. 2(a) shows the distributions of yaw angle change between
current step[k] and last time step[k-1] for each specific speed section of the
pedestrian. The standard deviation can be obtained by fitting dataset to Gaussian
distribution. Fig. 2(b) shows the same data in the yaw angle change and velocity
plane. The graph shows a specific tendency between the velocity and the standard
deviation of distribution. As the velocity increases, the standard deviation of
distribution decreases, as illustrated in the Fig. 2. This means that fast-moving
pedestrians are more likely to maintain their current direction of movement, while
slow-moving pedestrians tend to alter directions. The feature can be used to define

probabilistic movement range of pedestrian for a certain time horizon.
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2.2. Probabilistic Movement Range

The standard deviation tends to be inversely proportional to the pedestrian
velocity, as illustrated in the Fig. 2. The relations can be formulated as follows
through cumulated datasets. Equation (1) between the standard deviation and speed

is obtained using MATLAB Curve Fitting Toolbox.

0.03889
o= \/2—36+02659 )]

Fig. 3 shows the fitted relationship in the x-y plane. According to this formula,
each pedestrian has a certain probability in all movement directions depending on
their speed. To define effective movement range, the yaw angle limit is set to
+1.5 sigma representing 86.7% through a heuristic method. In addition, the radius
of the moving range is determined as a predicted position assuming a constant
velocity during a certain time horizon. The time horizon is determined 6 sec using
maximum perception distance(50m) and minimum velocity in the urban
environment(30kph). In the case of a stationary pedestrian, there is a probability in
all directions, and the radius of the range is set to a certain value in consideration of

the human stride.

=
=3

=
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=
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=
[

standard deviation [rad]
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pedestrian velocity [m/s]
Fig. 3 Standard deviation of yaw angle change distribution according to
pedestrian velocity
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In addition, the movement range based on probabilistic pedestrian yaw model is
used to select target pedestrians that need attention. Target pedestrians are selected
by checking whether the ranges overlap with driving lane of ego vehicle based on

high-definition(HD) map. The conceptual image is shown in the Fig. 4.

\

A.B%

Fig. 4 Visualization of probabilistic pedestrian yaw model
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Chapter 3

Prediction Based Risk Assessment

When pedestrians cross the road, the movement direction of vehicles and
pedestrians is usually almost perpendicular. Hence, the collision risk is assessed
considering not only relative longitudinal distance and TTC, but also lateral
behavior with time term. This is because pedestrians might pass through the driving
lane before a collision occurs even though there is a sufficient danger of collision
in the longitudinal direction. Therefore, the time series trajectory of the vehicle and
the pedestrian should be predicted. If the two predicted trajectories overlap, the risk
is judged. In addition, the prediction enables proactive motion of vehicle. It can
increase the vehicle’s safe speed range to cope with pedestrians crossing. The safe
speed range and safe zone based on prediction are analyzed in the section 3.3.

Pedestrian trajectory prediction is assumed to move in the direction with the
highest risk within the effective yaw range derived above. Also, it is assumed that
the pedestrian maintains the current speed. Under the assumptions, it is possible to
obtain the two-dimensional trajectory of the pedestrian until the time at which the
target pedestrian leaves the driving lane.

To predict the future behavior of the subject vehicle, the lane keeping behavior
model is used that assumes the subject vehicle maintains the current driving lane.

Then, the desired yaw rate based on the lane keeping behavior model is applied as

13



a virtual measurement in the extended Kalman filter(EKF), which is prediction
method. This section is mainly referenced from [16] and [17]. The conceptual

image is shown in the Fig.5.

ICT1

Fig. 5 Concept of prediction for pedestrian and subject vehicle
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3.1. Lane Keeping Behavior Model

The lane keeping behavior model uses a dynamic model with lateral position
error and angular error states with respect to the current lane. The current lane
information is obtained from the in-vehicle GPS sensor and HD map. It is curve-
fitted as the 2nd order polynomial. The error states are defined in inertial fixed

coordinates and each error and differential term are as shown in equation (4)-(7).
e, =p,~(a, P +a-p, +a) C)

. d d 2 d

e =— ——(a. - + . + R

y dt(py) dpx( 2 px a1 px aO) dt(px) (5)
=vsind—(2a,-p, +4a,)-vcosd

6, =0-tan*(—(a, p}+3,-p, +2)
dp, 6)
=0—tan"(2a,- p, +4a,)

%=9—%ﬁm4@%-m+%»

et L 2a,-p, +a)
g 1+(2a,-p, +a)* dt= ° " -

) (7
=y % -(vcos®)

1+(2a,-p,+2,)
=y —2a,-(vcosd)

where p, is the vehicle’s longitudinal position, p, is the vehicle’s lateral
position, & is heading angle and v is the longitudinal velocity of the subject

vehicle. If the yaw rate error term can be assumed as a 1%-order system with system

15



input of the desired yaw rate, it is expressed as equation (8).
€, =f(r ") (8)
Above equations can be represented by the state-space equation as in equation (9).

Xe = Fe'xe+Ge'7des+Gw'a2

0 vcosé 0] e, 0 0
=0 0 1|-le, |+| O |-y4 +|—2vcCOSE |-a,
0 0 flly —f 0

Also, y,. denotes the desired yaw rate. This can be set by state feedback and a

feed-forward terms to converge error into zero, which is shown in equation (10).

7des=_[cl C, Cs]'xe+7ff (10)

The feedback gains are decided through pole-place method, and the feed-
forward term y, is simply calculated to generate zero errors using above

equation.

Ve =2a,VC0S0(C, +1) (11)

As mentioned, the derived y,. is used as a virtual measure in EKF

prediction.
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3.2. Subject Vehicle Prediction

The extended Kalman filter is used to predict states of the Ego vehicle. The

process model can be described via Taylor Methods as below.

. T
Xp:[px,p Puo & Vo 7, & 7/p:|
X, [i+1]= £, (x, [i+1])+w, [i]

[ty fon fop fon Top fo f7yp]T+Wp[i]

(12)

where
A 2
f,,=n,,+(v,cos0,)At+(a, cosd, + v, sing, )7
2

. . At
f,,=0,,+(v,sing,)At+(a,sing, +y,v, cosep)7

At?

p+(7/p)At+(7}p)T

—
I
N

of
Fli]=—-
SRS

p

Xp:;p[i]
{0 0 00 0O 1]
B, =
000O0O0OT1O0
w, [i] - (0, w, [i])
_ AP LAY
Wp[u]:(BPAHFp[u]Bp7)Qp(BpAt+Fp[u]Bp7j

where p,,,p,,.0, denote the predicted X, y position and yaw angle in the

body-fixed coordinates, setting zero values as initial value. v,y ,a,,7, are the

b i 211 ";
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predicted longitudinal velocity, yaw rate, longitudinal acceleration and yaw
acceleration, respectively. The initial values of these four states are obtained by
chassis sensor in the vehicle. N is the length of the prediction horizon and is
determined by the estimated time for the target pedestrian to complete crossing the
driving lane of ego vehicle. Also, the derivative terms of acceleration and yaw rate
are assumed as zero value.

The measurement model of EKF estimator can be described using the desired

yaw rate as virtual measurement.

2, [1]= Hyx, [i]+ v, [1]
=[0 0 0 0 L 0 0]x,[i]+v,]i]
= Paesp 1]
=—C-X,, [i]+7¢i]

(13)

v, [i]~ 0.V, [i])
V, =V [ 5[] &[] W[5 1] &[i]]

where W, indicates the additional covariance of the desired yaw rate. By

correct
iteratively applying the extended Kalman filter using the above process and
measurement model, the longitudinal and lateral trajectory of the ego vehicle can

be predicted during the time horizon.
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3.3. Safety Region Based on Prediction

Safety region that can be secured through prediction are investigated. First of all,
the maximum perception distance should be analyzed to obtain safety region.
Depending on the clearance, the number of Lidar points reflected by a pedestrian is
analyzed based on the 4-channel IBEO Lidar sensor with resolution 5° . It is

calculated for each adult and child as shown in the Tablel below.

Distance Adult(1700*600mm) Child(1200*400mm)
3m ~184 ~122
10m ~56 ~36
30m ~18 ~6
40m ~12 ~5
50m ~6 ~4
60m ~3 ~2(EA)

Tablel. The number of IBEO Lidar points for adult and child pedestrian

In order to classify and track pedestrian reliably, more than 3 points must be

secured, so the perception distance limit(S, ) is about 50m. The longitudinal

lim
distance( s .iq ) required to avoid collision can be calculated by equation (14).

T

seiay 1S the sum of system delay and process delay, which is set to 1.2sec in this

study. a, is the minimum acceleration(maximum deceleration) of general

situation and is set to —3m/s’in this study. Considering S, value, the

lim

maximum safety velocity(V,_, ) is about 50kph.

19



2
v T, 4 (14)

Srequired veh " delay 2
|amin |

Assuming that only the current position of the pedestrian without prediction is
considered, the deceleration starting clearance of the subject vehicle can be
calculated according to lateral distance( s, ) of recognized pedestrian from
equation (15). The conceptual image is shown in the Fig.6.

v SIat

~ Vyeh * (15)
Vped

Cstart = S|im

[ e | ==t t | o | o | s o | mos| 2 | |

Fig. 6 Concept of prediction parameters

If the v, is set to the pedestrian’s average velocity 1.3m/s?[13], Fig.7
shows s, and Cg,, according to the s, . Each crossing point means the
maximum velocity that avoids to collision without prediction. Also, the region that
needs prediction can be presented in the s, and velocity plane, as shown red

zone in Fig.8. The baseline of Fig.10 is calculated by the equation (16).

SIim Vveh

SIat = Vped (Vveh 2|amin |

- Tdelay) (16)
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Fig. 7 Required distance and deceleration starting distance according to
lateral distance
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Fig. 8 Prediction required region in the lateral distance and velocity plane
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Chapter 4

Human-like

Longitudinal Motion Planning

4.1. Human Driving Parameters Definition

Before determining the subject vehicle’s motion for the target pedestrians, the
critical driving elements are analyzed to realize the human-like driving in the
pedestrian presence situation. In order to define human driving parameters, the
driving data of experienced drivers is collected by circular driving on campus at the
Seoul National University. Also, the data is obtained by in-vehicle Lidar sensor and
vehicle chassis sensor.

According to human driving data, the vehicle’s motion can be roughly divided
into two modes. One case is when stopping the vehicle is inevitable (hard mode),
and the other is when the vehicle passes smoothly after gentle deceleration without
stopping (soft mode), which happens more frequently. The human driving
parameters are defined in each driving mode. The parameter values are determined

as the average value of cumulative human driving data and are shown in Table2.
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4.1.1. Hard Mode Distance

The distance parameter of the hard mode is a proper minimum distance that
pedestrians and driver do not feel threatened when stopping, denoted as d,_, . In

other words, it is the clearance to be secured when vehicle stops due to pedestrians.

4.1.2. Soft Mode Distance and Velocity

The distance parameter of the soft mode is the clearance between the vehicle and

the pedestrian at the time the pedestrian completes crossing, denoted as d... . The

soft *

velocity parameter of the soft mode is the vehicle velocity at the same point,

denoted as v .

4.1.3. Time-To-Collision

TTC, as is well known, is the value obtained by dividing the relative distance by
the relative speed. In this study, two TTCs are defined and applied. One is the TTC

at the time of starting deceleration, denoted as TTC The other is TTC at the

decel *

time the pedestrian completes crossing, denoted as TTC,, . This parameter is

obtained using d_, and v, atthe same point.
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Human Driving Parameter

Average Value

hard 8.94(m)
soft 13.52(m)
Vi 3.73(m/s)
TTC,, 3.62(sec)
TTC,.., 7.2(sec)

Table2. Values of human driving parameters
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4.2. Driving Mode and Acceleration Decision

4.2.1. Acceleration of Each Mode

The acceleration that the vehicle should finally track is defined for each mode by
applying the human driving parameters derived above. As mentioned in the section
4.1, there are two modes, which is soft mode and hard mode. The human driving
parameters are the target state that the vehicle will track for each mode. Assuming
constant deceleration, the longitudinal deceleration is simply defined depending on
the target state of each mode and delay term.

In the soft mode, the target clearance and velocity is d., andvg, |,

respectively. Also, the target clearance of the hard mode is d,,, with zero

velocity.
) -V’
o ()= (v(t)" —Vv) (17)
2(d(®) -d,, -v(t)-T,,)
a'hard (t) - V(t)
2(d(t) - d,,, —v(t)-T,,) =

The final desired deceleration of the vehicle is determined as a minimum value

of calculated decelerations for each of the N target pedestrians.

a =min(a Qo217+ Bpeapny) (19)

desired ped[1]?

The mode is selected depending on relative distance, velocity and TTC between

the ego vehicle and target pedestrian. Also, the criteria values are human driving
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parameters mentioned in the section 4.2. The mode selection is visualized on the
velocity and clearance plane, shown in the Fig.7. The cover region of the soft mode

is defined by the conditions below.

4.2.2. Mode Selection

The mode is selected depending on relative distance, velocity and TTC between
the ego vehicle and target pedestrian. Also, the criteria values are human driving
parameters mentioned in the section 4.1.

The soft mode is a common situation when a target pedestrian is recognized
from a sufficient distance to cope. Hence, the soft mode is limited to an area that
can cope with a deceleration within —2m/s® in consideration of driving comfort

[18]. Also, the human driving parameter TTC, . is considered. The cover region

decel

of the soft mode can be expressed by equation (20).

0>a_(t)=a, and TTC(t)<TTC_, (20)

The hard mode is a vehicle stop scenario and covers the region that soft mode
cannot cope with. The area of hard mode is defined within a minimum coping
distance in consideration of the delay. The cover region of the hard mode can be
expressed by equation (21).

d(t)=d
TTC(t)<TTC

+V(t) - t,, and
[|d(t)<d_, +v(t)-t

except soft mode area

hard

decel

delay (21)
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The mode selection is visualized on the velocity and clearance plane, shown in

the Fig.9.
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Fig. 9 Cover region of each mode in the longitudinal clearance-velocity plane
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Chapter 5

Vehicle Test Result

5.1. Configuration of Experimental Vehicle

The experimental vehicle in this study is mainly equipped with Lidar sensors.
The total detection sensor configuration is shown in Fig.10. The six IBEO Lidar
sensors, front camera and around view monitoring(AVM) camera are mounted on
the test vehicle. The Lidar sensors have four layers each with resolution of 5° and
covers a 360 degree area around the ego vehicle. Also, the horizontal field of
view(FOV) of each Lidar sensor is approximately 100m with £42.5° .

The test vehicle has also several actuator, controller and localization equipment,
shown in Fig.11. The global states of the ego vehicle are from real-time-
kinematic(RTK) global positioning system(GPS). In addition, the algorithm in this
study is proceeded on the vehicle’s pc and the desired acceleration as output is
tracked through low level controller on the autobox and vehicle actuator. The

autobox is rapid control prototyping(RCP) equipment.
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AVM Camera

- Range: (Lateral) ~7 [m]
(Longitudinal) ~10 [m]

- FOV: 180 [deg]

Front Camera
- Range: + 5~inf [m]|
- FOV: £20 [deg]

LlDAR (IBEO LUX) 6EA

Fig. 10 Detection range for sensors installed in experimental vehicle

Front Camera Micro Autobox Computer
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Monitoring Camera

Yy

RT GPS
(RT3002)

LiDAR: 3EA

(IBEO LUX) Actuator & System

(MDPS, ESC)

i —=
| IONIQ electric | ] 'g lv

Fig. 11 Sensor configuration of experimental vehicle
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5.2. Longitudinal Motion Planning for Pedestrian

The longitudinal motion planning of proposed algorithm is achieved by
integrating all advanced processes such as probabilistic pedestrian yaw model,
predicted trajectory and investigated human driving parameters. The algorithm is
verified via repeated vehicle test on an unsignalized crosswalk at the Seoul
National University. Two different scenarios are tested, and each test scenario
involves three times of human driving and five times of autonomous driving for
algorithm verification. The test environment is shown in the Fig.12 and the
similarity with human driving is confirmed in both scenario. It means that the
proposed pedestrian prediction model reflects human real-time prediction
considering the uncertainty to cope with pedestrians. In other words, the
probabilistic pedestrian yaw model is effective to use for vehicle’s motion planning.
Also, it is confirmed that the proposed driving mode decision and acceleration

determination represent the human driving motion.
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5.2.1. Soft Mode Scenario

The soft mode is a common situation in which the subject vehicle does not stop
and smoothly decelerates to avoid collision with pedestrians. The motion of
autonomous vehicle using proposed algorithm is compared to that of human
driving in the same repetitive situation that the soft mode is selected. The motion
similarity is verified by comparing the velocity profile and x and y clearance with a
target pedestrian until the pedestrian completed the crossing, shown in the Fig.13-
15. Also, the Fig.16 (a) and (b) indicate time series of the longitudinal clearance
and velocity for one autonomous driving case in the soft mode. The Fig.16 (c)
indicates the desired acceleration and actual acceleration profile with system delay

for same driving case.

40 F
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a5 b O  Manual Driving
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o
T

Soft Mode
Target Point

Velocity [kph]

_vsoft

Ldee R

0 45 40 35 30 25 2 15 10 &5 O
¥ clearance [m]

Fig. 13 Comparison of velocity profile for longitudinal clearance from the

target pedestrian in the soft mode
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Fig. 14 Comparison of velocity profile for lateral clearance from the target
pedestrian in the soft mode
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Fig. 15 Comparison of the lateral and longitudinal clearance from the target
pedestrian on the two dimensional plane in the soft mode
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5.2.2. Hard Mode Scenario

In the hard mode, the acceleration is determined so that the vehicle stops in front
of target pedestrian with a safe distance. As before, the motion of autonomous
vehicle is compared to that of human driving in the same repetitive situation that
the hard mode is selected. The motion similarity is verified by comparing the same
variables in the soft mode and shown in the Fig.17-19. Also, the Fig.20 (a) and (b)
indicate time series of the longitudinal clearance and velocity for one autonomous
driving case in the hard mode. The Fig.20 (c) indicates the desired acceleration and

actual acceleration profile with system delay for same driving case.
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Fig. 17 Comparison of velocity profile for longitudinal clearance from the
target pedestrian in the hard mode
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Chapter 6

Conclusion

In this study, a probabilistic pedestrian yaw model and longitudinal motion
planning algorithm are mainly proposed using fundamental states information of
pedestrian from Lidar sensor. To limit the area of future behavior considering the
uncertainty in the direction of the pedestrian’s behavior, the movement
characteristics of pedestrian are analyzed and applied to define a probabilistic
pedestrian yaw model. The movement data of pedestrians is collected using in-
vehicle Lidar sensors and a total of 5000 step data sets are investigated. The
defined correlation between pedestrian speed and yaw angle change is used to
make an uncertain area of behavior for each pedestrian. Also, human driving
parameters are investigated and applied to realize that the autonomous vehicle
performs a human-like motion. The final motion planning is based on human
driving parameters and pedestrian model.

The effectiveness of the proposed motion planning algorithm is evaluated via
vehicle test. The autonomous driving is compared with human driving in the same
pedestrian existence situation. As a results, the velocity and x, y clearance have
similar profile with human driving in the repetitive tests. Therefore, the validity of
the overall algorithm, such as pedestrian prediction considering behavior

uncertainty, driving mode decision and acceleration determination is confirmed.
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