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Abstract
Trajectory Generation for Autonomous Excavators Based on

Expert Operator Forcing Pattern

Changmuk Kim

Mechanical Engineering

The Graduate School

Seoul National University

In this thesis, we propose an excavation trajectory generation framework for

autonomous excavators based on expert operator forcing pattern. The primary

focus is to develop autonomous excavator system which is stable and guarantees

a certain quantity of excavation in various surroundings. We find the excavation

trajectories based on the terrain features and the excavation forcing patterns

from the excavation data of expert operators. The expert excavation trajectories

are encoded with dynamic movement primitives (DMP) and learn through multi-

layer perceptron (MLP). The excavation trajectory is generated according to the

terrain feature using the trained model. The excavator is modeled with 3-DoF

rigid body system, and the excavation force on the bucket tip is estimated online

by using the momentum-based disturbance observer(DOB). The estimated force

is added to the DMP as a coupling term to modulate the excavation trajectory

in real-time so that the estimated force can follow the expert excavation force

pattern. Lastly, we verify the performance of the suggested framework through

simulation and actual excavator test.

Keywords: Autonomous excavators, Trajectory generation, Dynamic move-

ment primitives, Multi-layer perceptron, Dynamics, Momentum-based observer.

Student Number: 2018-20186



Contents

List of Figures iv

List of Tables v

Abbreviations vi

1 Introduction 1

1.1 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminary 6

2.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Excavator Dynamic Modeling . . . . . . . . . . . . . . . . . . . . 7

2.3 Force Estimation via Momentum Based Disturbance Observer . . 9

2.4 Dynamic Movement Primitives . . . . . . . . . . . . . . . . . . . 10

3 Excavation Trajectory Generation 13

3.1 Analysis of Expert’s Excavation Trajectory . . . . . . . . . . . . 13

3.2 Generate Nominal Excavation Trajectory by Imitating Expert Op-
erator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Modulate Excavation Trajectory by Force Pattern of Expert Op-
erator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

ii



Contents iii

4 Experiments 26

4.1 Excavation Simulation . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Excavation on Flat and Slope Terrain . . . . . . . . . . . 26

4.1.2 Excavation using Trajectory Generated by Incorrect Ter-
rain Recognition . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.3 Excavation with Obstacle in the Ground . . . . . . . . . . 33

4.2 Excavation Test Result using Excavator . . . . . . . . . . . . . . 35

5 Conclusion and Future Work 40

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



List of Figures

2.1 Doosan excavator DX380LC, with IMUs, LiDAR, cylinder pres-
sure sensors, RTK-GNSS . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Configuration of the excavator . . . . . . . . . . . . . . . . . . . 8

3.1 Excavation trajectories and excavation force patterns . . . . . . . 16

3.2 Excavation process analysis . . . . . . . . . . . . . . . . . . . . . 17

3.3 Mean and variance of excavation trajectories and excavation force
patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Excavation data analysis : expert, semi-expert, non-expert . . . . 18

3.5 Terrain feature extraction method . . . . . . . . . . . . . . . . . 20

3.6 Expert excavation trajectories learning architecture . . . . . . . . 21

3.7 Modulation force . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.8 Excavation trajectory generation architecture . . . . . . . . . . . 25

4.1 Excavation simulation experiment environment . . . . . . . . . . 27

4.2 Flat terrain excavation trajectories and excavation forces . . . . . 29

4.3 Slope terrain excavation trajectories and excavation forces . . . . 30

4.4 Excavation test results using trajectory generated by incorrect
terrain recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 Excavation test with the obstacle in the ground . . . . . . . . . . 33

4.6 Excavation test results with the obstacle in the ground . . . . . . 34

4.7 Excavation experiment environment using Excavator . . . . . . . 35

4.8 Excavation test results using excavator on the flat terrain . . . . 37

4.9 Excavation test results using excavator on the slope terrain . . . 38

iv



List of Tables

3.1 A result of interview to expert operators . . . . . . . . . . . . . . 15

3.2 Excavation data analysis : expert, semi-expert, non-expert . . . . 18

4.1 Excavation payload results on flat terrain . . . . . . . . . . . . . 29

4.2 Excavation payload results on slope terrain . . . . . . . . . . . . 30

4.3 Excavation payload results using trajectory generated by incorrect
terrain recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Excavation payload results with the obstacle in the ground . . . 34

4.5 Excavation test terrain features and payload results . . . . . . . 39

v



Abbreviations

DMP Dynamic Movement Primitives

MLP Multi-Layer Perceptron

DoF Degree of Freedom

SE(2) Special Orthogonal Group in 2-Dimensional Space

IMU Inertial Measurement Unit

LiDAR Light Detection And Ranging

DOB Disturbance OBserver

vi



Chapter 1

Introduction

1.1 Motivation and Objectives

Today, industries around the world have developed in the direction of unmanned

and automated, which has resulted in improved economic efficiency, productivity

and product quality, and secured stability against industrial disasters. Neverthe-

less, the construction industry is far behind the application of unmanned automa-

tion technology due to the variable environment and the frequent occurrence of

unconfirmed events. The demands for unmanned automation in the construc-

tion industry are increasing to solve problems such as profitability deterioration

due to rising wages, shortage of skilled workers due to the recognition of dan-

gerous industries, the deterioration of construction technology competitiveness,

1



Chapter 1. Introduction 2

the aging phenomenon in society, and securing safety at construction sites. In

this situation, the automation development of excavators, which are most widely

used in construction sites, can be a technical alternative to the above problems.

In this thesis, we propose a trajectory generation algorithm for excavation, the

most basic and repetitive task of excavators, and generate a safe and productive

trajectory for various terrains. The excavation work is highly dependent on the

worker’s intuition [1], so there are many restrictions on the uniformity of produc-

tivity and work quality. Our framework can help to resolve the problems while

reducing the duration of work and performing more accurate tasks.

1.2 Related Work

Researches on unmanned and automated excavators have been actively con-

ducted before. In industry, the teleoperation system has been developed and

used partially, and machine guidance to assist the work and machine control to

assist the operation are already in commercial used. In addition, various studies

have been conducted on the generation of trajectory for autonomous excavators

in academia.

The teleoperation [2], [3] is remote control of the excavator using the image

viewed that watching the workplace directly from the operation site or transmit-

ted from the workplace. This has the advantage that people do not need to be

directly put into dangerous sites. However they can not feel the reaction force
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according to the soil characteristics, and it is difficult to grasp the relative po-

sition with the machine due to limited visibility, so the work efficiency is lower

than direct operating.

Machine guidance [4], [5] is a technology that generates a map of a work area

using target drawings, IMU(inertial measurement unit) sensor and GNSS(global

navigation satellite systems). This system reduces the surveying time and facil-

itates accurate work for the target. Machine control [4], [6] is a technology that

provides semi-automation for some of the excavator’s tasks, and it has the ad-

vantage that even an inexperienced operator can achieve similar performance to

a skilled operator for a certain operation. However, these technologies are only

an intermediate step towards automated excavators as an aid to the driver.

The previous studies [7], [8] focus on dynamics-based optimization techniques.

These studies limit the speed and acceleration of each joint in consideration of the

torque applied to the excavator, and generate trajectory to minimize the traveling

time of the excavator in limited situations. They do not consider interaction

with soil in real-time. In other studies [9], [10], [11] excavation trajectory is

generated by adding the soil dynamics in the fixed shape of trajectory. These

studies generate the excavation trajectory by the researcher’s intuition and do

not consider the trajectory used in the actual workplace. For that reason, there

are insufficient to ensure productivity and safety in various environments like

experts.
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1.3 Contribution

In a general construction workplace, the excavator operator recognizes the work

area and generates an excavation trajectory considering the surrounding environ-

ment. In addition, if there is a hazardous situation for oneself or surroundings

due to unrecognized factors such as underground objects, the operator modu-

lates excavation trajectory or stops the excavator to get out of the hazardous

situation. However, in the case of an autonomous excavator, the above judgment

is impossible because there is no operator in equipment, so the excavation tra-

jectory must be generated and modulated based on the data received by the

excavator itself.

The main problem with the excavation trajectory generation is to consider the

interaction with complex and unmodelable soil, and create a safe and productive

trajectory in various environments. To solve this problem, we aim to generate the

excavation trajectories by imitating the work characteristics of expert operators.

The excavator learns the DMP(Dynamic Movement Primitives) [12], [13] encoded

excavation trajectory by applying the machine learning technique, and generates

the excavation trajectory based on the learning model according to the perceived

terrain feature. The trajectory is modulated during excavation based on the

excavation force pattern of the expert. Simulation is conducted to verify the

proposed algorithm, and the robustness of the algorithm is verified through the

actual excavator experiments.
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The rest of the thesis is organized as follows. Chapter.2 describes the system

and algorithm used in the thesis. Chapter.3 explains how to generate excavation

trajectories by analyzing excavation data of experts. Chapter.4 shows the simu-

lation and actual excavator test results. Chapter.5, it is written as a conclusion

and a future work of the thesis.



Chapter 2

Preliminary

2.1 System Description

The excavator used in this thesis is the commercial model of Doosan DX380LC

(Fig. 2.1). The excavator is equipped with IMU (inertial measurement unit)

sensors attached to the boom, arm, bucket joint, and swing shaft to measure

the angle and angular velocity so the posture of the excavator can be known.

Pressure sensors are attached to each cylinder to measure the pressure during

operation. In addition, RTK GNSS (real-time kinetic global navigation satellite

systems) is attached to the cabin to measure the position and posture of the

excavator upper body, and LiDAR (light detection and ranging) is attached to

the excavator boom to scan the target terrain to be excavated.

6
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Figure 2.1: Doosan excavator DX380LC, with IMUs, LiDAR, cylinder pres-
sure sensors, RTK-GNSS

2.2 Excavator Dynamic Modeling

For the purpose of this study, we model 3-DoF(degree of freedom) rigid body

dynamics of the excavator. The rigid body dynamic model can be described as

follows:
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Figure 2.2: Configuration of the excavator

M(θ)θ̈ + C(θ, θ̇)θ̇ + g(θ) + Fssign(θ̇) + Fv θ̇ = τu + τext (2.1)

where θ = [θboom, θarm, θbucket] ∈ Rn is the joint angle of excavator, M(θ) ∈ Rn×n

is the symmetric and positive-definite inertia matrix, C(θ, θ̇) ∈ Rn×n is the

Coriolis and centripetal vector, g(θ) ∈ Rn is the gravity vector, Fs, Fv ∈ Rn×n

is the coulomb and viscous friction torques, and τu, τext ∈ Rn×n is input torque

and estimated external torque. Excavator motion can be represented in another

configuration q = [px, pz, φ] ∈ SE(2), where px, pz are position, and φ means

the orientation of the bucket tip. Based on the excavator inertia frame O, the

position of the excavator bucket tip can be expressed using q (Fig. 2.2). We
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use q ∈ SE(2) for excavation trajectory expression and θ ∈ R3 for estimation

of real-time excavation force on the bucket tip. In this thesis, we assumed that

excavation trajectory is on a two-dimensional plane because swing movement is

not generally involved during excavation.

2.3 Force Estimation via Momentum Based Distur-

bance Observer

Most of the excavator’s tasks are done in contact with the external environment.

Since the reaction force occurs, it is difficult to control the excavator bucket ac-

curately by the desired trajectory when controlling the excavator bucket simply

by position control. For accurate control, it is necessary to generate a trajectory

in consideration of reaction force. There is a way to estimat the force using a

torque sensor, but the torque sensor that can measure the excavation force is

very large and it is impossible in reality. In this thesis, we estimate the excavat-

ing force in real-time using the momentum-based disturbance observer [14], [15]

and modulate the excavation trajectory based on this. Momentum observer has

advantages such as avoiding inversion of the robot inertia matrix, eliminating

the need to estimate joint acceleration, and decoupling the estimation result.

The momentum based observer is expressed as follows:
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τext = K0

(
p(t)−

∫ t

0
(τu + τµ − β(θ, θ̇) + τext)ds− p(0)

)
p(t) = M(θ)θ̇

β = g(θ)− CT (θ, θ̇)θ̇

τµ = Fssign(θ̇) + Fv θ̇

(2.2)

where KO > 0 is the diagonal gain matrix of the observer, joint angle θ and joint

angular velocity θ̇ can be measured by IMU, and τu can be calculated using the

cylinder specification and the value of the pressure sensors. Other terms can be

found through off-line parameter identification. The excavation force fext ∈ R3

can be calculated by fext = J−T
ext τext, where Jext is the Jacobian matrix from the

q-space to θ-space.

2.4 Dynamic Movement Primitives

The framework of dynamic movement primitives (DMP) is a method of robotic

trajectory planning [12], [13] and it can easily modulate a given trajectory. This

method is applicable for periodic movements, and capable of representing opti-

mal behavior in stochastic environments. In this thesis, we encode the bucket

tip position in DMP, and DMP is defined by the following system of nonlinear

differential equation.



Chapter 2. Preliminary 11

ÿ = αy(βy(g − y)− ẏ) + f(s) (2.3)

where y ∈ R is system state, g ∈ R is the goal position, and αy, βy are positive

gain term. By setting βy to αy/4, the system can be critically damped to ensure

that the system state converges monotonously to the goal position. The shaping

force f(s) ∈ R is a nonlinear function that defines the desired behavior. We

can easily solve and generalize problems with this additional nonlinear system.

The shaping force is defined as a function of the canonical system, and canonical

system is defined as follows:

τ ṡ = −αss (2.4)

where s ∈ [0, 1] is monotonically decreasing clock signal, and τ > 0, αs > 0

are parameters that control the speed of the time constant. The shaping force

f(s) ∈ R is defined as follows:

f(s) = h(s)(g − y0)s (2.5)

where y0 is initial system state, h(s) ∈ R is nonlinear function. We can make

the contribution of the f(s) to zero over time by constructing the function with

s. This means that it will eventually converge on our goal position regardless of

path.
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The DMP can modulate the trajectory online through additional coupling terms.

In this thesis, coupling terms are used that operate like a PD (proportional

derivative) controller by adding to the acceleration and velocity terms of the

DMP [16], shown below

τ ÿ = αy(βy(g − y)− ẏ) + f(s) + c2Ċ

τ ẏ = ẏ + c1C
(2.6)

where c1, c2 are scaling constant gain, and C is modulation force. Using only the

velocity level modulation creates a slight overshoot of forces upon environment

contact appears. By adding a derivative of the measured force at the acceleration

level, we can minimize this overshoot. We use the modulation force term to

modulate the trajectory in real-time using the excavation force.



Chapter 3

Excavation Trajectory

Generation

3.1 Analysis of Expert’s Excavation Trajectory

Excavation work is the basic and most used task of excavators. However it is

highly dependent on the intuition of the workers, so there are many limitations

on uniformity of productivity and work quality. It is thought that expert op-

erator manipulate each part of the excavator by sensing the changes in ground

conditions, soil properties, reaction forces and relative positions from the ex-

cavator and ground. These allow them to work in a direction that reduce fuel

consumption and increase productivity. Therefore, we try to find out the factors

13
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of high-efficiency work by analyzing the work of the expert operator. Because

each expert operator may have different empirical standards, a number of skilled

workers were interviewed, and through this, common answers from empirical

knowledge are obtained (Table.3.1). However, these are only qualitative answers

to what elements are connected for efficient work and not quantitative answers.

Based on the interviews, the important factors in manned excavation are time

efficiency(cycle time) and productivity. Cycle time means the amount of time it

takes to perform a repetitive work segment of a excavator, typically measured as

the time it takes a excavator to return to the same position [17], and productiv-

ity means the amount of excavation per unit time. Because these two factors are

inversely proportional, it is important to find the appropriate ratio for efficient

work, and it depends on equipment, terrain, manned or unmanned, weather,

etc. Productivity depends on payload, and according to the interview of expert,

the most efficient payload is considered when bucket is filled with 120∼150%.

In addition, the experts predict the load on the excavator using engine RPM,

pump pressure and speed of the excavator, and they operate excavator under

appropriate load to consider the durability of the machine and preventing unde-

tectable danger. Through this, we find that the load should be considered when

generate the excavation trajectory. Since the load generated by interaction with

unmodellable and complex soil dynamics, we tried to consider the load on the

excavator by calculating the excavation force applied to the tip of the bucket.
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A result of interview to expert operators

1. What is the criteria for efficiency when excavating?

- Time efficiency(cycle time), productivity

2. Are there standards for excavation length and depth for excavation?

- There is no standard because it is intuition.

3. What is the effective amount of soil in the bucket after the
excavation is completed?

- For normal work, 120∼150% is considered the most efficient

4. How do you deal with a shortages of soil or too much soil
during excavation?

- Lift or lower the boom to change the excavation trajectory

5. If the size of the excavator changes, does the method of
excavating change?

- The method may vary depending on the shape of the bucket,
but not the size of the excavator.

6. Are there other important factors when excavating?

- Considers excavator’s durability by reducing load.

Table 3.1: A result of interview to expert operators
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Figure 3.1: Excavation trajectories and excavation force patterns

For the analysis of the excavation work, we obtain the data of the various op-

erators using a commercial excavator (Fig. 2.1). The data are obtained through

excavation experiments on Doosan Infracore worksite flat terrain and three dif-

ferent angle of slope terrain, and 40∼50 excavation experiment data are obtained

for each operator. The expert operator is targeted at person who has been con-

ducting excavator fuel consumption pattern test for more than 20 years. We

also obtain excavation work data from the semi-expert operator who has been

conducting excavator function test for more than 10 years and the non-expert

operator who is function developer in excavator company (Fig. 3.1).
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Figure 3.2: Excavation process analysis

Figure 3.3: Mean and variance of excavation trajectories and excavation force
patterns
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Figure 3.4: Excavation data analysis : expert, semi-expert, non-expert

Expert Semi-expert Non-expert

Cycle time mu 6.19 7.26 7.89

(sec) sigma 0.77 1.32 1.29

Payload mu 3.89 4.13 4.11

(ton) sigma 0.4 0.81 0.55

Table 3.2: Excavation data analysis : expert, semi-expert, non-expert
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In the case of the excavation trajectory, the existing academic research [8], [11]

consider the excavation process divided into three stages: penetrate, drag, and

curl. This is a theoretical assumption, so it is different from the actual excavation

trajectory of the expert. Analysis of the excavation data appears that the more

experienced operators, the less the boundary between the penetrate and drag

(Fig. 3.2). Expert shows that the repetitiveness of the work is superior to the non-

experts by having constant excavation trajectory and excavation force patterns

in various terrain (Fig. 3.3). In addition, we have confirmed that the shorter

excavation time and smaller excavation force are shown despite having a similar

excavation amount. The amount of excavation is controlled by humans looking at

the soil in the bucket, so there is little difference between experts and non-experts

(Fig. 3.4), (Table. 3.2).

3.2 Generate Nominal Excavation Trajectory by Im-

itating Expert Operator

The first thing to be secured in autonomous excavator is safety, and then effi-

ciency (fuel economy and productivity). We want to apply the excavation tra-

jectories and excavation force patterns of the expert for autonomous excavators

to create safe and efficient excavation trajectories like expert even in various

terrains. To generate excavation trajectory like expert according to the terrain,

we use machine learning techniques to train trajectories. The expert excavation
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Figure 3.5: Terrain feature extraction method

work relies on intuition by experience, so it is difficult to define a handcrafted re-

ward. Based on this characteristic, we decide that imitation learning, which does

not require reward, is appropriate algorithm for development. Imitation Learning

[18] is a sequential task where the learner tries to mimic the action of an expert

in order to achieve the best performance. The used imitation learning algorithm

is the behavior cloning [19], where the expert trajectory is optimally assumed,

and it learns the policy that the expert observes the terrain and generates the

excavation trajectory of excavator.

The learning model is trained to output the joint angle at the next position

of the bucket tip when the features of the excavation target terrain and the

current boom, arm, bucket joint angle are input [20]. The terrain features are

extracted by parameterization using a Gaussian fitting to improve data efficiency

by reducing the number of nodes at the input stage. The features of terrain are

the slope angle and the maximum depth of the terrain (Fig. 3.5).
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Figure 3.6: Expert excavation trajectories learning architecture

The data from expert excavation on flat and three different angles of slope terrain

are used for learning. The trajectories used for training are pre-treated to be the

starting point when the bucket tip reached the ground, and to be the last point

where the bucket tip reached 0.5 m above the ground after excavation. The

excavation time of all trajectories used for learning are adjusted to 6.5 seconds

considering the average excavation time of expert (Table. 3.2). In addition, the

trajectories are encoded in DMP (Eq. 2.3) and used for learning after expressing

it as a shaping force f(s) ∈ R. A goal-directed attraction is guaranteed when

generating the trajectory by multiplying a monotonically decreasing clock signal

s ∈ [0, 1]. The overall structure of the expert trajectory learning algorithm can

be expressed as Fig. 3.6.
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3.3 Modulate Excavation Trajectory by Force Pat-

tern of Expert Operator

The nominal trajectory generated by the algorithm only considers geometric

information about the terrain, so interaction with the ground is not considered.

Therefore, various dynamic properties such as the density and strength of the

terrain can cause problems that the bucket of the excavator may not be able

to pass through. To solve these problems, we propose the trajectory modulation

algorithm by imitating a trajectory modulation technique based on the expert

force pattern.

The excavation force data are extracted from the excavation data of experts to

modulate the trajectory (Fig. 3.3). First, the excavation force data are cut with

the starting point of the moment when the bucket tip hits the ground, and the last

point when the bucket tip has reached 0.5 m above the ground after excavation.

The cropped data are adjusted to 6.5 seconds considering the average excavation

time of expert (Table. 3.2), and the mean value of the data is assumed as the

excavation force pattern of expert. The feedback ratio is calculated by comparing

the excavation force of the expert with the currently measured excavation force.

It can be expressed as follows:
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Figure 3.7: Modulation force

fb =


1 fe > fmargin

−1 fe < fmargin

fe/fmargin else

(3.1)

where fe is the difference with measured excavation force and expert force pat-

tern, and fmargin is the constant gain that decides whether to feedback. The

feedback ratio and modulation force are multiplied and added as coupling term

to the DMP for real-time trajectory modulation (Eq. 2.6).
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Based on the interviews with experts (Table. 3.1), we assume that the excavation

force decreases when the path becomes shallower to the ground during excava-

tion, and the excavation force increases when the path is deeper to the ground

(Fig. 3.7). Therefore we define the modulation force as follows:

C =

Cx
Cz

 =

−fb sin(θtrj − θslope)

fb cos(θtrj − θslope)

 (3.2)

The feedback ratio fb is calculated from Eq. 3.1, θtrj is the slope angle of the

nominal trajectory created by imitation of the expert excavation trajectory, and

θslope is the slope angle of the terrain to be excavated. The excavation trajectory

of the excavator is represented by the two-dimensional plane of x, z. Because

this thesis does not consider swing motion when excavating. The trajectory is

modulated in real-time by reflecting the coupling term as force feedback in the

direction perpendicular to the working surface. The trajectory generation algo-

rithm for autonomous excavator based on expert operator force pattern can be

expressed as shown in Fig. 3.8.
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Figure 3.8: Excavation trajectory generation architecture



Chapter 4

Experiments

4.1 Excavation Simulation

4.1.1 Excavation on Flat and Slope Terrain

For verification of the proposed algorithm, we perform the simulation using the

Vortex simulator of CM Labs. We simulate flat and sloped terrain excavation us-

ing the nominal excavation trajectory generated by inputting the features of the

terrain into the machine learning model and the modulation excavation trajec-

tory generated by comparing the expert excavation force pattern with real-time

excavation force (Fig. 4.1).

26
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Figure 4.1: Excavation simulation experiment environment

Excavation force is most affected by the soil medium and the excavation depth.

In the actual vehicle experiment, it is difficult to experiment by changing medium

due to the limited environment, so the medium change experiment is conducted

in simulation. We assume that even if we change the medium, the pattern of the

excavation force would not change, but only the size would change. Thus, exper-

iments are conducted by changing size of the expert excavation force pattern.

First, experiments are conducted on the flat terrain (Fig. 4.2). The flat terrain

is tested for two types of media: clay and gravel. The parameters of Eq. 2.6

, Eq. 3.1 are set to α = 5, β =
√

20, c1 = 0.05, c2 = 0.3, fmargin = 5000N.

Because the simulation environment is not the same as the medium in which the

excavation force data are obtained, we reduce the expert excavation force by 0.4

times in clay terrain and 0.5 times in gravel terrain and use it for simulation.

The reason why we use the smaller excavation force in clay terrain rather than

gravel terrain is that the clay medium is so soft and it is impossible to follow
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the excavation force of expert even when deep excavation. The test results show

that the modulation trajectory excavate about 6.1% more soil than the normal

trajectory in the clay terrain, and 1.4% more soil excavate in the gravel terrain

even though it excavate more shallowly (Table. 4.1). When excavate using the

nominal trajectory, the estimate excavation force does not significantly different

from the expert excavation force, so there is not much difference in the amount

of excavation. On the other hand, we can see that the trajectory modulated to

follow the expert excavation force shows more excavation amount during the

same time.

Next, clay and gravel media experiments are conducted on the slope terrain using

the same parameters as the flat terrain. (Fig. 4.3). The results appear that the

modulation trajectory excavate about 14.4% more soil than the normal trajectory

in the clay terrain, and 10.7% more soil excavate in the gravel terrain (Table.

4.2). The slope terrain experiments also appear that the modulation trajectory

does not overload by following the expert excavation force well, and the amount

of excavation is also greater than the nominal trajectory during the same time.

As a result of experiments, we can conclude that the trajectory modulated to

follow the expert excavation force shows more productive and stable excavation

without overload than the nominal trajectory generated by only learning the

trajectory of the expert.
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Figure 4.2: Flat terrain excavation trajectories and excavation forces

Payload (ton)

Clay flat terrain Gravel flat terrain

Nominal 1.9369 1.7094

Modulation 2.0578 1.7319

Table 4.1: Excavation payload results on flat terrain
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Figure 4.3: Slope terrain excavation trajectories and excavation forces

Payload (ton)

Clay slope terrain Gravel slope terrain

Nominal 1.9518 1.7055

Modulation 2.2332 1.8882

Table 4.2: Excavation payload results on slope terrain
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4.1.2 Excavation using Trajectory Generated by Incorrect Ter-

rain Recognition

The current algorithm recognizes the terrain using a LiDAR, extracts features

of the terrain, and inputs them into the learning model to generate the nominal

trajectory. However, if the features of the terrain are incorrectly extracted due to

foreign objects during terrain recognition, an excavation trajectory different from

the one planned may be generated. The use of abnormal excavation trajectory

operations can create hazardous situations for excavators and the surrounding

environment, depending on the workplace environment. Since it is difficult to

judge whether or not the trajectory is abnormal, and even a general trajectory

can cause dangerous situations depending on the environment, we tried to solve

this situation through real-time trajectory modulation using excavation force.

In these experiments, the feature parameters of the terrain are adjusted by as-

suming a situation where the terrain is incorrectly recognized, and a deep ex-

cavation nominal trajectory is generated using the adjusted feature parameters.

We want to confirm whether stable excavation work is possible even in this

abnormal situation through real-time trajectory modulation. Experiments are

conducted on a clay flat terrain, and the parameters of Eq. 2.6 , Eq. 3.1 are set

to α = 5, β =
√

20, c1 = 0.05, c2 = 0.3, fmargin = 5000N. The excavation force

of experts is multiplied by 0.4 times considering the medium.
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Figure 4.4: Excavation test results using trajectory generated by incorrect
terrain recognition

Payload (ton)

Nominal 1.9772

Modulation 2.025

Table 4.3: Excavation payload results using trajectory generated by incorrect
terrain recognition

In the nominal trajectory, we can see the excavator being dragged away as it

is overloaded during excavation. On the other hand, the modulation trajectory

follows the expert excavation force with performing stable excavation, and no

overload is applied (Fig. 4.4). The amount of excavation shows that the mod-

ulated trajectory excavate about 2.4% more than the nominal trajectory even

though it is more shallow excavation (Table. 4.3). Through these results, we can

confirm that the modulation trajectory ensures productivity and stably excavates

even in dangerous situations.
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Figure 4.5: Excavation test with the obstacle in the ground

4.1.3 Excavation with Obstacle in the Ground

When recognize terrain using LiDAR in the excavator, obstacles in the ground

can not be recognized. However, these obstacles can lead to dangerous situations

for the excavator and the surrounding environment during excavation. Therefore,

we try to confirm whether it is possible to safely excavate through real-time

trajectory modulation even in this situations. Experiments are conducted on a

clay flat terrain with a pipe buried (Fig. 4.5), and the parameters of Eq. 2.6 ,

Eq. 3.1 are set to α = 5, β =
√

20, c1 = 0.05, c2 = 0.3, fmargin = 5000N, and

the used excavation force size of experts by 0.5 times.
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Figure 4.6: Excavation test results with the obstacle in the ground

Payload (ton)

Nominal 1.8687

Modulation 1.9847

Table 4.4: Excavation payload results with the obstacle in the ground

In the nominal trajectory simulation, we can see the excavator being lifted while

overloaded during excavation. In this case, there is a high possibility of dam-

age to the pipe. On the other hand, the modulation trajectory is able to follow

the excavation force pattern of the expert so that it does not overload and pro-

duce more payload while excavating away from the pipe (Fig. 4.6). The amount

of excavation also shows that the modulation trajectory excavates about 6.2%

more than the nominal trajectory (Table. 4.4). Through these experiment results,

we can confirm that the modulation trajectory ensures productivity and stably

excavates even in dangerous situations.
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Figure 4.7: Excavation experiment environment using Excavator

4.2 Excavation Test Result using Excavator

We conduct real equipment test using the commercial excavator model of Doosan

DX380LC in the Doosan Infracore Incheon test site. These experiments are per-

formed nominal and real-time modulation trajectories by excavating the same

terrain twice on flat and slope (Fig. 4.7). The parameters of Eq. 2.6 , Eq. 3.1 are

set to α = 5, β =
√

20, c1 = 0.01, c2 = 0.3, fmargin = 5000N.

As we can see in the result graphs (Fig. 4.8), (Fig. 4.9), the slope terrain exca-

vation, the excavation force follows the expert force pattern through real-time

trajectory modulation. In contrast, the flat terrain excavation, we can see that

the excavation force follow ability is inferior. This is considered to be a little

inconsistent with the overall average of the expert excavation force pattern due

to lack of excavation data on flat terrain compare to the slope terrain excavation.

We expect to improve if additional flat terrain excavation data is obtained.
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When comparing payload (Table. 4.5), it is confirmed that real-time modulation

trajectory excavates 53.79% more on the flat terrain and 20.39% more on the

slope terrain than nominal trajectory excavation. The bucket of the excavator

used for the experiment can excavates about 3 tons of soil when load at 100%,

and 120∼150% of the bucket capacity excavation is efficient according to the

experts interview (Table. 3.1), so our excavator has the highest efficiency when

excavating about 3.6∼4.5 tons of soil. On the flat terrain, we can see that the

nominal trajectory excavates about 2.78 tons of soil on average, which is less than

the effective excavation. On the other hand, the real-time modulation trajectory

excavates about 4.28 tons of soil on average, achieving the efficient excavation

amount stated by experts. On the slope terrain, the nominal trajectory excavates

about 3.73 tons of soil on average, and the real-time modulation trajectory ex-

cavates about 4.49 tons of soil on average, both results are within the range of

efficient excavation mentioned by experts. The experiment results show that the

payload approaches the more efficient excavation amount during the modulation

trajectory excavation. The cycle time are same for all trajectories because when

we train the learning model, the excavation time is normalized to 6.5 seconds.
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Figure 4.8: Excavation test results using excavator on the flat terrain



Chapter 4. Experiments 38

Figure 4.9: Excavation test results using excavator on the slope terrain
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Terrain feature Excavation

Title angle Max depth payload

(deg) (cm) (ton)

Nominal 1 0 -13.74 3.059

Nominal 2 0 -16.92 2.505

Flat Modulation 1 0 -15.7 4.381

Modulation 2 0 -8 4.176

Modulation/Nomianl 1.5379

Nominal 1 35.27 -2.688 3.633

Nominal 2 33.4 -2.55 3.826

Slope Modulation 1 30.74 -5.34 4.457

Modulation 2 30.64 -6.12 4.523

Modulation/Nominal 1.2039

Table 4.5: Excavation test terrain features and payload results
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Conclusion and Future Work

5.1 Conclusion

Excavator is the most widely used equipment in construction sites, and auto-

mated development of excavator can reconsider the stability of the worksite and

improve quality and productivity. Therefore, we try to generate an excavation

trajectory that ensures excavation volume by performing stable excavation work

similar to an expert operator in various working environments of automated

excavator.

In this thesis, we generate the excavation trajectory for autonomous excavators

based on the excavation data from expert operators and modulate the excava-

tion trajectory to have a similar excavation force pattern to the expert based

40
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on the measured excavation force. Through this, we solve the problem of the in-

teraction with unmodellable, complex soil dynamics, which is the most difficult

point in excavation trajectory generation. Our algorithm is verified by excava-

tion simulation with various terrains, and it is confirmed through the actual

excavator experiments that an efficient excavation trajectory is generated in the

autonomous excavator.

5.2 Future Work

There may be several factors that affect the excavation force, but the important

factors are the medium and depth. Due to the limitations of the test environ-

ment, we are not able to experiment in various type of soils, so our force pattern

is about the excavation depth. The assumption that changing the terrain medium

does not affect the excavation force pattern but only affects the size, should be

verified through actual experimentation. Therefore, we will conduct excavation

experiments on terrain of various media. By adding the soil information in var-

ious environments, we plan to upgrade the algorithm to generate more stable

excavation trajectories.
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요약

본 논문에서는 자동화 굴착기를 위한 숙련자 굴착력 패턴 기반 굴착 작업 궤적 계획

프레임워크를 제시한다. 본 프레임워크는 자동화 굴착기의 다양한 작업 환경에서

숙련자와 유사하게 안정된 굴착 작업을 수행하며, 굴착량이 보장되는 작업을 하는

것이 목표이다. 우선 숙련된 굴착기 작업자들의 굴착 작업 데이터로부터 지형 특징

에 기반한 작업 궤적과 굴착력 패턴을 찾아내었다. 숙련자의 굴착 궤적은 dynamic

movement primitives(DMP)으로 encoding하여 neural network의한기법인multi-

layer perceptron(MLP)을통해학습하고,학습된모델을기반으로지형에따른굴착

궤적을 생성하였다. 굴착기를 다자유도 강체 시스템으로 모델링 하고, 실시간으로

버켓 끝단에 걸리는 굴착력을 momentum-based disturbance observer를 이용하

여 추정하였다. 추정된 굴착력은 실시간으로 굴착 궤적을 재생성 하기위해 DMP

에 coupling term으로 추가하였고, 이를 통해 추정되는 굴착력이 숙련자의 굴착

패턴을 따라갈 수 있도록 제어하였다. 마지막으로 제안한 프레임워크에 대해서는

시뮬레이션 실험과 실제 굴착기를 이용한 실험을 통해 정합성 검증을 진행하였다.

주요어: Autonomous excavators, Trajectory generation, Dynamic movement

primitives, Multi-layer perceptron, Dynamics, Momentum-based observer.

학번: 2018-20186
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