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Abstract 

 
The advantage of probabilistic prediction has been verified and 

acknowledged for several decades so people are making use of the 

probabilistic prediction in lots of fields, including hydrometeorology. One of 

the biggest advantages is that it can take into account various events through 

uncertainty in the predicted value, especially for long-term predictions which 

have large uncertainties. In Korea, however, the drought prediction is still 

performed in a deterministic approach. Therefore, the purpose of this study is 

to apply the probabilistic drought prediction to Korea and then further 

propose a method to improve the prediction technique. 

Accordingly, this study developed an ensemble drought prediction (EDP) 

system focusing on the hydrological drought measured by natural streamflow 

in eight basins in Korea. Because of the natural characteristic of drought, it 

only can be measured indirectly through the hydroclimatic variables. In order 

to measure the hydrological drought, the streamflow was converted to 

standardized runoff index (SRI) which is a kind of drought index considering 

regional characteristics and various time scales for the hydrological drought. 

Then to generate EDP distribution for 1-month ahead monthly drought 

prediction, the streamflow simulations of an ESP (Ensemble Streamflow 

Prediction) were converted to SRI. The deterministic prediction was done by 

the expected value of EDP distribution, and the probabilistic one was derived 

by the probability driven from the distribution. Moreover, to improve EDP, 

soil moisture index (SMI) satellite data provided by APEC climate center 

(APCC) were used to update EDP via the Bayes' theorem. The regression 

between SRI and SMI was used as a likelihood function that updates the EDP 

distribution. Additionally, the APCC precipitation probability forecast was 

used to update EDP using the PDF ratio method. As a result, three main 

conclusions were drawn as follows. 

 

(1) The probabilistic drought prediction was 52% better than the 

deterministic on average in terms of prediction skills. When predicting 

the short-term drought, the probabilistic approach outperformed even 

more. 
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(2) Updating EDP using soil moisture information the via Bayes' theorem 

makes skill to be improved by 20% on average. It can be said that the 

soil moisture information corrects EDP if the likelihood function is 

valid and accurate. 

 

(3) Reflecting the precipitation forecast to EDP via the PDF ratio yielded 

6% better performance only for the non-irrigation period. From this, it 

was found again that reflecting informative data can make better the 

drought prediction. 

 
 

Keywords: Drought prediction, Probabilistic approach, Ensemble prediction,  
Bayes’ theorem, PDF ratio 

 
Student number: 2018-29571 
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Chapter 1. Introduction 
 

 

1.1 Problem Statement 
 
Drought, one of the major natural disasters, makes a catastrophic impact on water 

use in various aspects such as water supply, agriculture, hydro-power generation 

(Ciais et al., 2005; Grayson, 2013; Mosely, 2015; Van Loon, 2015). Mekonnen and 

Hoekstra (2016) estimated that about two-thirds of the world population has 

experienced severe water scarcity. In addition, it is expected that the dry regions will 

get much drier since global warming has accelerated the hydrological cycle and been 

resulted in more extremes (Seager et al., 2010; Dai, 2011; Trenberth et al., 2014; Hao 

et al., 2018;), and Korea is no exception. According to the report from Korea 

National Drought Information analysis Center (KNDIC), droughts have occurred 

almost every year since 2000, and even there was a record-breaking multi-year 

drought from 2013 to 2018 due to lack of precipitation (KNDIC, 2018). Under this 

circumstance, preparing droughts to prevent catastrophic impacts has become one of 

the most important challenges for the future.  

The hydrological drought prediction is one of the important parts of drought 

mitigation because it provides drought information to early warning and prevention 

systems to reduce damages. A high-quality drought prediction can contribute to 

mitigating drought damage by making the effective operation of reservoirs in Korea 

including twenty multipurpose dams. The major reasons for uncertainties in drought 

prediction are from lack of knowledge and nature itself, so the probabilistic approach 

is required to quantify these uncertainties and thus to derive results that can help 

decision making in reservoir operation (Demargne et al., 2014). Techniques for 

predicting the probability of hydrologic conditions, which can take into account both 

natural and predictive model uncertainties, have been developed over the past 

decades. Among them, ensemble streamflow prediction (ESP) is most widely used 

in hydrology since it derives probabilistic forecasts by considering the possible range 

of streamflow (Palmer, 2017). The ESP, however, makes the simulation of the 

streamflow which does not directly represent the drought information. Therefore, to 

obtain the drought information directly, it is necessary to derive the ensemble 

drought prediction (EDP) by converting the streamflow ensemble into a measure 

such as drought indices. And in reality, the institutes in the U.S. such as National 

Oceanic and Atmospheric Administration (NOAA) are making the probabilistic 

prediction of the meteorological drought through the ensemble method (Yoon et al., 

2012; Mo et al., 2019).  
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In addition, it may be insufficient to make predictions by only referring to the 

streamflow since the hydrological drought is caused by the interaction of several 

hydrological factor. In particular, soil moisture has been regarded as a significant 

factor of the hydrologic process, so studies have been conducted to analyze the 

impacts of soil moisture on the hydrological drought (Wood and Lattenmaier, 2008; 

Mahanama et al., 2012; Yuan et al., 2016). Nevertheless, there were insufficient 

efforts to reflect drought information from soil moisture into the prediction directly. 

Meanwhile, the Korean government recently has begun to invest in the 

improvement of the drought prediction technique, and thus the KNDIC was 

established in 2016 to provide technical support and to integrate drought forecast and 

warning systems that were operated by each institution. However, the drought 

prediction is still being made deterministically without taking into account 

uncertainties and this can give a false confidence problem in drought management 

system. Therefore, it is required that the probabilistic drought prediction is 

introduced in Korea and its advantages should be verified. 

 

1.2 Research Objectives 
 

In Korea, the hydrological drought should be predicted probabilistically, as in the 

case of other hydro-meteorological conditions, in order to prevent drought 

effectively. In addition, drought-related information such as soil moisture, whose 

relationship between the hydrological drought has already been verified, should also 

be directly reflected in prediction to improve the skill of the predictive model.  

Therefore, the purpose of this study is to introduce the probabilistic drought 

prediction to Korea and to verify the advantage compared to the deterministic 

approach. Furthermore, in order to improve the drought prediction skill, the drought 

information from soil moisture is reflected in predicting drought. In the last, the 

effectiveness of reflecting the information from soil moisture is analyzed by 

evaluating the drought prediction results. 

 

1.3 Thesis Organization 
 

The literature reviews in chapter 2 focus on probabilistic prediction methods and 

practical application cases. Chapter 3 introduces the theories to be used in this study, 

and chapter 4 describes their detailed application methods and results. In the last 

chapter 5, the main points and conclusions of this study are summarized. Appendix 

which contains the results of streamflow and drought predictions is located after 

References.  
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Chapter 2. Literature Review 
 

 

Drought cannot be measured or evaluated directly because of its characteristics. 

Therefore, in general, drought has been measured indirectly through 

hydrometeorological variables such as precipitation, streamflow, etc. Generally, 

drought is classified into four types according to aspects of interest, and each 

definition is as follows (Wilhite and Glantz, 1987; Lloyd-Hughes and Saunders, 

2002; Mishra and Singh, 2010; Van Loon and Van Lanen, 2012).  

(1) Meteorological drought: Insufficient precipitation 

(2) Hydrological drought: Insufficient streamflow (related to precipitation) 

(3) Agricultural drought: Drought damage on crops (related to soil moisture) 

(4) Socioeconomic drought: Water demand exceeding supply 

Among these, hydrological drought is being considered an important issue 

because it is closely associated with the actual impact on both nature and society 

(Mishra and Singh, 2011; Cloke and Hannah, 2011; Van Loon, 2015). Referring to 

the above definition, this study defines the hydrological drought as a situation of low 

natural streamflow. Based on this background, research cases on hydrological 

drought, prediction methods, and practical application cases are investigated. 

 

2.1 Drought Measures 
 

The most common method used to measure drought is to derive a drought index 

representing anomaly levels of dryness through drought-related variables such as 

precipitation and streamflow. The standardized precipitation index (SPI) is a 

meteorological drought index indicating precipitation anomaly (Mckee, 1993), and 

other indices such as standardized runoff index (SRI) and standardized precipitation 

evaporation index (SPEI) have been developed based on SPI (Shukla and Wood, 

2008; Vicente-Serrano et al., 2010). Such drought indices may not contain actual 

drought information because it just represents anomaly levels of dryness compared 

to the climatology. Nevertheless, it is widely used due to its spatial and temporal 

flexibilities and ease of comparison. SRI is often used for measuring the hydrological 

drought because it considers streamflow. The criteria of SRI for evaluating the depth 

of drought are usually anomaly levels but sometimes they may be determined by 

considering water demand. 

On the other hand, the hydrological drought is sometimes evaluated through 

streamflow itself. In this approach, drought properties (duration, deficit, and 
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intensity) corresponding a certain threshold are calculated to represent and analyze 

severities (Tallaksen et al., 1997; Van Loon, 2015), but this method has less spatial 

flexibilities than the drought indices because the threshold level should be 

determined according to streamflow characteristic of the target region, and thus this 

is commonly used when evaluating drought for a specific region. 

 

2.2 Drought Prediction Methods 
 

The drought prediction is an estimate of how dry in the future. As mentioned 

earlier, it is common to make predictions through hydrometeorological variables 

because the drought is measured through them. Therefore, studies and methods in 

the hydrometeorological prediction, especially associated with drought, are also 

introduced in this section. The hydrometeorological prediction is generally done in 

two approaches: deterministic and probabilistic approaches. 

 

2.2.1 Deterministic Approach 
 

Determinism primarily uses dynamical models, which expresses physical 

mechanisms in the atmosphere, ocean, and continent as mathematical equations, and 

makes a single-valued prediction. Using dynamical models, however, has a 

limitation in that the reliability and accuracy decrease exponentially with increasing 

lead time because the variability of weather conditions is very large (Shukla et al., 

2013; Yuan et al., 2015). In order to solve this problem, lots of studies for pre-

processing, post-processing, and accurate estimation of initial conditions have been 

conducted under the lead of research institutes in Europe (Mahanama et al., 2012; 

Shukla et al., 2014; Wood et al. 2015; Emerton et al., 2016; Yuan et al., 2016; 

Mendoza et al., 2017).  

In the meantime, statistical models have been also used for deterministic 

prediction. These statistical models derive results in the form of a probability 

distribution, but in the deterministic approach, they result in a single value through 

statistics. Streamflow and hydrological drought in Korea were predicted 

deterministically using a statistical model, resulting in the effective for one- and two-

month ahead prediction (Bae et al., 2013; Son and Bae, 2015). 

Researchers have demonstrated the disadvantages and limitations of the 

deterministic approach, advocating the advantages of the probabilistic approach 

using ensemble prediction (Murphy and Palmer, 1986; Brankovic et al., 1990; 

Palmer et al., 1993; Molteni et al., 2011). Meanwhile, Krzysztofowicz (2001) 

pointed out that the catastrophic damage from the great flood in Mississippi was 
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because of a false confidence from the deterministic forecast (NOAA, 1994), and 

then the necessity of the probabilistic approach in prediction has begun to emerge. 

Buizza (2008) analyzed the potential economic values from the deterministic and 

probabilistic streamflow forecasts and as a result, concluding that the deterministic 

approach could make more loss than the probabilistic one. Besides, determinism has 

become obsolete due to the development of computation capability (Hao et al., 2018). 

 

2.2.2 Probabilistic Approach 
 

The probabilistic approach produces information about the predicted value and 

its uncertainty. In 1906, there was the first attempt to quantify uncertainty to predict 

weather probabilistically (Cooke, 1906), and then it was introduced to practice in the 

United States in 1969 for the first time.  

Probabilistic prediction can be performed in various ways, such as deriving the 

probability distribution, ensemble prediction method, and deriving the probability of 

occurrence (Stockdale et al., 2010), among which the ensemble prediction method is 

the one most widely used. To put it simply, the ensemble prediction is making use of 

a bunch of deterministic results to make the probability of events. Brankovic et al. 

(1990) demonstrated that ensemble prediction is more reliable than a single 

prediction which is deterministic. Traditionally, the ensemble prediction is the 

entirely statistical method because of the assumption that weather conditions would 

repeat exactly as they did in the past (Day, 1985), and this approach is still basically 

adopted. However, there is a problem that the traditional ensemble prediction cannot 

reflect the actual hydrometeorological conditions at the time of interest, especially 

with the short lead time. In order to overcome this problem, some researcher began 

to apply dynamical models to the ensemble prediction. It is a way to regard the results 

created using many dynamical models as ensemble members. The ensemble 

prediction is also adopted for the short-term range hydrologic forecast with GCMs 

(Global Circulation Models) which are the dynamical models for the global scale 

(Molteni et al., 2011, Saha et al., 2014). However, the limitations of dynamical 

models mentioned in section 2.2.1 also appear in ensemble prediction. Harrigan et 

al. (2018) performed streamflow simulation in rivers in the UK using multi-model 

ensembles from several GCMs, but the accuracy decreased exponentially with 

increasing lead times. 

On the other hand, statistical models such as regression, autoregressive model, 

Markov chain, machine learning, meta-Gaussian, copula, and their combinations for 

the probabilistic prediction also have been continuously developed (Mishra et al., 

2007; Barros and Bowden, 2008; Durdu, 2010; Hao et al., 2016; Zink et al., 2016). 
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The statistical models produce probabilistic predictions through the distribution of 

error terms of results, which are made through statistical assumptions, so thus have 

limitations in that they cannot predict a possible range of events (Palmer, 2017). 

To complement the shortcomings of these dynamical and statistical models, Luo 

and Wood (2007) argued that it is necessary to combine information from a variety 

of predictive models, and thus techniques to combine several methodologies are 

being developed as shown in Figures 2.1 and 2.2 (Hao et al., 2018). Luo et al. (2007) 

used the Bayesian update proposed by Coelho et al. (2003) to improve the ensemble 

prediction system for hydrometeorological conditions. It was a method that 

combines several GCMs and a statistical empirical model using Bayes' theorem. Seo 

et al. (2019) applied this Bayes' theorem method for the ESP simulation on thirty-

five dam watersheds in South Korea, and as a result, the accuracy got improved. As 

such, lots of studies using statistical techniques are being actively carried out to solve 

the problem of the ensemble prediction system (Kang et al., 2010; Zhao et al., 2011; 

Yang et al., 2016; Li et al., 2017). In addition, Qu et al. (2017) performed 

hydrological prediction in the Fu river of China using BMA (Bayesian Model 

Averaging) to combine multi-model ensembles. As a result, it resulted in better 

accuracy than single ensembles and improved accuracy for long lead time. 

Ma et al. (2015) found that increasing the prediction accuracy of 

hydrometeorological variables is directly related to improving the accuracy of 

drought prediction. However, there are still few studies to apply the methods 

developed for the hydrometeorology to drought prediction.  
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Figure 2.1 Frameworks of prediction methods and their interactions  
(Hao et al., 2018) 

Figure 2.2 Flow diagram of combining prediction methods (Hao et al., 2018) 
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2.3 Practical Use of Probabilistic Predictions 
 
The examples of the practical use of probabilistic forecast or ensemble prediction in 

hydrometeorology by institutions around the world are summarized in Table 2.1. As 

mentioned above, the probabilistic precipitation forecast was first proposed in 1906 

(Cooke, 1906), but it was introduced to the practice when the National Weather 

Service (NWS) began precipitation forecast in 1969. Nowadays, institutions around 

the world, including Korea, use the ensemble prediction system for the probabilistic 

prediction. Besides, an international research group called HEPEX (Hydrologic 

Ensemble Prediction Experiment) is being operated to share and develop the 

ensemble prediction.  

The World Bank and NOAA of the United States are the representative institutes 

that produce and provide the probabilistic drought prediction. The World Bank 

produces the world's meteorological drought probabilities in the future using the 

drought index SPI as shown in Figure 2.3. NOAA makes the probability of future 

droughts of hydrometeorological variables as shown in Figures 2.4~2.6 and is 

already using it practically for decision making. In particular, NOAA divides the 

drought indexes into several phases according to the depth of drought and derives 

the probability of occurrence for each phase from daily to annual time scale (Mo et 

al., 2019). 

In Europe, thirteen countries of the EU, including the United Kingdom, 

Germany, and the Netherlands, are collaborated to establish and operate the EFFS 

(European Flood Forecasting System) to forecast streamflow in major European 

watersheds. EFFS uses ESP to predict streamflow probabilistically across Europe 

but not in some regions. In addition, two cooperative research institutes, European 

Center for Medium-Range Weather Forecasts (ECMWF) and COSMO-LEPS, are 

working globally as well as Europe and are trying to improve the probabilistic 

prediction method using the ensemble.  
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Table 2.1 Institutions performing probabilistic prediction  
(Cloke and Pappenberger, 2009) 

Forecast center Ensemble NWP input 

Advanced Hydrologic Prediction 

Services (AHPS) from NOAA 
US National Weather Service (NOAA) 

European Flood Alert System 

(EFAS) of the European Commission 

Joint Research Centre 

European Centre for Medium Range 

Weather Forecasts (ECMWF) and 

Consortium for Small-Scale Modelling-

Limited-area Ensemble Prediction 

System(COSMO-LEPS) 

Georgia-Tech/Bangladesh project ECMWF 

Finnish Hydrological Service ECMWF 

Swedish Hydro-Meteorological 

Service 
ECMWF 

MAP D-PHASE (Alpine 

region)/Switzerland 
COSMO-LEPS 

Vituki (Hungary) ECMWF 

Rijkswaterstaat (The Netherlands) ECMWF, COSMO-LEPS 

Royal Meteorological Institute of 

Belgium 
ECMWF 

Vlaamse Milieumaatschappij 

(Belgium) 
ECMWF 

Meteo France ECMWF and Arpege EPS 

Land Oberoestereich, 
Niederoestereich, 
Salzburg, Tirol (Austria) 

Integration of ECMWF into Aladin 

Bavarian Flood Forecasting Centre COSMO-LEPS 
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Figure 2.3 Probabilistic SPI prediction by the World Bank 
(The World Bank, https://www.worldbank.org/) 

Figure 2.4 Example of monthly drought outlook in the U.S. 
(NOAA, https://www.cpc.ncep.noaa.gov/) 
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Figure 2.5 Probabilistic drought forecast of each drought phase  
(Mo et al., 2019) 
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Figure 2.6 Example of probabilistic streamflow forecasts in the U.S.  
(NOAA, https://water.weather.gov/ahps/) 
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2.4 Drought Prediction in Korea 
 

The hydrometeorology and drought prediction system of Korea had been 

independently operated by KMA, the Ministry of Land, Infrastructure, and Transport 

(MOLIT), Ministry of Environment (ME), and the Ministry of Agriculture, Food and 

Rural Affairs (MAFRA). Each institution had managed different types of droughts 

by developing drought index respectively, so it was difficult to prevent the drought 

beforehand.  

The Korean government established KNDIC in 2016 to improve the drought 

prediction system by recognizing the need for an integrated drought management 

system after experiencing an unprecedented multi-year drought. The first step, as 

shown in Figure 2.7, is to produce future drought information for each sector. At this 

time, the climate forecast produced by KMA is shared with the other institutes. Then, 

the pieces of drought information are integrated and analyzed and released to the 

public. 

The ensemble method has commonly used for weather and hydrological 

forecasts in this process. For example, KMA produces weather forecasts using the 

dynamical model GloSea5 (Global Seasonal Forecasting System 5), and the K-water 

of ME produces hydrological forecasts using ESP. Although the ensemble method is 

being used, the prediction for drought is done by the deterministic approach. There 

is no probability information about the drought condition as shown in Figures 2.8-

2.10, a drought forecast conducted by KMA, ME, and APCC Climate Center 

(APCC). In addition, studies on drought prediction have also been conducted mainly 

in the deterministic approach (Bae et al., 2013; Son and Bae, 2015). 

The studies of the probabilistic prediction for hydrometeorological variables 

have been ongoing. In addition, the ESP, concept system, was first introduced in 

Korea in 2001 (Kim et al., 2001), and subsequent studies have continued about the 

ESP. Seo et al. (2019) upgraded the ESP using the Bayes' theorem and is capable of 

improving the forecast accuracy. Recently, APCC has produced MME (Multi-Model 

Ensembles) and used it for the probabilistic prediction (Sohn et al., 2013).  
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Figure 2.7 Drought prediction procedure in Korea 

Figure 2.8 Meteorological drought prediction by KMA 
(https://www.weather.go.kr/) 
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Figure 2.9 Hydrological drought prediction by ME  
(http://hrfco.go.kr/) 

Figure 2.10 Hydrometeorological prediction by APCC 
(https://www.apcc21.org/) 
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Chapter 3. Methodology 
 

 

In this study, the ensemble method is used to predict the probability of drought 

in the future, and the whole procedure is shown in Figure 3.1. The procedure consists 

of three main parts: ensemble prediction, empirical model, and Bayesian update. In 

the ensemble prediction part, EDP is generated by the distribution of SRI which is 

converted from the ESP simulation results. The empirical model is a regression 

between SMI (Soil Moisture Index) and SRI. At last, EDP is used as prior 

information, and the empirical model is used to form the likelihood function. The 

Bayes' theorem is then applied to produce a posterior distribution which is called 

EDP+S. The probabilistic and deterministic predictions are derived from the 

distribution and the expected value of the EDP distribution respectively, and then 

they are compared through performance metrics.  

Additionally, to figure out the availability of making use of climate information 

on drought prediction, the probabilistic precipitation forecast produced by APCC is 

reflected in EDP and EDP+S, and they are called EDP+A and EDP+AS respectively. 

The four EDPs are compared to analyze the effects of SMI and the climate 

information on drought prediction. 

 

3.1 Ensemble Prediction 
 
3.1.1 Concept of Ensemble 

 

The ensemble consists of a bunch of deterministic prediction series which are called 

ensemble members. The probabilistic prediction by the ensemble represents the 

possible range of events rather than just an error bar around a predicted value (Palmer, 

2017). Some pre- and post-processing techniques can be used to improve 

performance (Hamlet and Lattenmaier, 1999; Yao and Georgakakos, 2001; Bradley 

et al. 2015). In this study, two kinds of post-processing techniques, the Bayesian 

update and the PDF ratio method are used to improve performance. 

 

3.1.2 Ensemble Streamflow Prediction (ESP) 
 

The ESP is a system that generates streamflow ensembles by inputting climate 

forcing sampled from observed data to a hydrologic model as shown in Figure 3.2.   
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The ESP consists of three main elements: input ensemble, a hydrologic model 

with initial conditions, and streamflow ensemble. The initial conditions, such as soil 

moisture, are estimated using observations just before the time of interest. The 

number of streamflow ensemble members is equal to the number of input members. 

The TANK model which was used in the report Water Vision 2020 (MOLIT, 

2016) is used to simulate the natural streamflow at upstream of dam basins. 

Moreover, to consider the snow accumulation–melting, the modified TANK model 

by McCabe and Markstrom (2007) which is shown in Figure 3.3 is adopted. The 

TANK model is a conceptual model to describe the rainfall-runoff process as a 

structure consisting of four tanks (Sugawara, 1995), and is known to be practical 

because of small number of required input and parameters. It is suitable for upstream 

regions since the TANK model produces natural streamflow. The availability of the 

TANK model is verified for long-term hydrologic simulation in Korea (Kang et al., 

2013; Choi et al., 2018; Seo et al., 2018). In case of mid- and long-term forecasts 

with a lead time longer than 10 days, conceptual hydrologic models such as TANK 

are appropriate, because the physical models require a long computation time due to 

complex physical mechanisms. 

 
Figure 3.2 Schematic diagram of ESP procedure 

Figure 3.3 Schematic diagram of the modified TANK model 
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3.1.3 Ensemble Drought Prediction (EDP) 
 

This study determines EDP as an SRI ensemble which is converted from the ESP 

simulation. As explained in section 2.1, SRI is the drought index used for measuring 

the hydrological drought. The concept of the drought index was proposed by Mckee 

et al. (1993) using precipitation, and Shukla and Wood (2008) developed SRI based 

on that concept. Some probability density functions such as gamma and lognormal 

can be used to derive SRI easily (Edwards and Mckee, 1997; Shukla and Wood, 2008) 

The calculation process of SRI using streamflow (𝑞) is as follows. The first step 

is calculating the cumulative streamflow 𝑄௝ over a given period of 𝑘 months at 

month 𝑗 as Eqn (3.1) where the subscript indicates the month, so when it becomes 

0, going down from December of last year. Next, the cumulative probability 𝐹௝(𝑄௝) 

is estimated with the lognormal function 𝐹௝ that is already known as appropriate to 

𝑄௝. Finally, 𝐹௝(𝑄௝) is converted into the standard normal distribution through Eqns 

(3.2)~(3.4) to derive SRI௝. For instance, SRI3 is a drought index that represents the 

anomaly level of cumulative streamflow over a three-month time scale. 

 

1
1

k

j j i
i

Q q  


  (3.1) 

 

𝑡 =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

ඩln ൭
1

𝐹௝൫𝑄௝൯
ଶ൱ ,   0 < 𝐹(𝑄) ≤ 0.5

ඩln ቌ
1

ቀ1 − 𝐹௝൫𝑄௝൯ቁ
ଶቍ ,   0.5 ≤ 𝐹(𝑄) < 1

 
(3.2) 

 

𝑆𝑅𝐼௝ =

⎩
⎪
⎨

⎪
⎧− ቆ𝑡 −

𝑐଴ + 𝑐ଵ𝑡 + 𝑐ଶ𝑡ଶ

1 + 𝑑ଵ𝑡 + 𝑑ଶ𝑡ଶ + 𝑑ଷ𝑡ଷቇ ,   0 < 𝐹(𝑄) ≤ 0.5

𝑡 −
𝑐଴ + 𝑐ଵ𝑡 + 𝑐ଶ𝑡ଶ

1 + 𝑑ଵ𝑡 + 𝑑ଶ𝑡ଶ + 𝑑ଷ𝑡ଷ
,   0.5 ≤ 𝐹(𝑄) < 1

 
(3.3) 

 

𝑐଴ = 2.515517, 𝑐ଵ = 0.802583, 𝑐ଶ = 0.010328 

𝑑ଵ = 1.432788, 𝑑ଶ = 0.189269, 𝑑ଷ = 0.001308 

(3.4) 
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If the above process is expressed as a function 𝑔(⋅), the 1-month lead EDP 

which is obtained by converting the 1-month lead ESP simulation into SRI can be 

expressed as Eqn. (3.5) where 𝑞௧ାଵ is the streamflow ensemble from the ESP, 𝑘 is 

a given time scale, and 𝜇଴ and 𝜎଴
ଶ are the mean and standard deviation of the EDP 

distribution.  

 

EDP୲ାଵ = 𝑔(𝑞௧ି௞ାଶ,  … ,  𝑞௧,  𝑞௧ାଵ)~𝑁(𝜇଴, 𝜎଴
ଶ) (3.5) 

 

The probability of drought occurrence is calculated from the distribution of EDP. 

This study divides drought into four phases and carries out prediction in terms of the 

multi-categorical and dichotomous events. The multi-category indicates what level 

of drought among four phases would occur, and the dichotomous event indicates 

whether drought above a certain phase occurs or not. The drought phases are 

determined as shown in Table 3.1, which is based on the general ongoing studies 

about drought. Let the distribution of EDP is 𝑓(𝑥), then the probability between 

lower bound 𝑥௟ and upper bound 𝑥௨ can be calculated as Eqn. (3.6). 

 

𝑃𝑟𝑜𝑏(𝑥௟ < 𝑥 < 𝑥௨) =   න 𝑓(𝑥) 𝑑𝑥
௫ೠ

௫೗

 (3.6) 

 

 

 

 

 

 

Table 3.1 Drought classification criteria 

Range Phase Probability Cumulative probability 

SRI > 0 No drought 0.500 1.000 

−1 < SRI ≤ 0 D0 0.341 0.500 

−1.5 < SRI ≤ −1 D1 0.092 0.159 

−2 < SRI ≤ −1.5 D2 0.044 0.067 

SRI ≤ −2 D3 0.023 0.023 
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3.2 Bayes’ Theorem 
 

Simply speaking, Bayesian inference is that prior knowledge can be updated with 

new information provided as a form of the likelihood. The frequentist inference is 

based on deductive inference, but the Bayesian inference makes inductive inference. 

It mathematically consists of three elements: prior distribution, likelihood function, 

and posterior distribution, as written in Eqn (3.7). 

 

𝑝(𝐷|𝑋) =
𝑝(𝑋|𝐷)𝑝(𝐷)

𝑝(𝑋)
 (3.7) 

 

where 𝐷 is a random variable of interest (i.e., drought index in this study), 𝑋 is 

new information for the random variable of interest(i.e., soil moisture in this study), 

𝑝(𝐷)  is the prior distribution, 𝑝(𝑋|𝐷)  is the likelihood function, 𝑝(𝑋)  is the 

marginal distribution of 𝑋, and 𝑝(𝐷|𝑋) is the posterior distribution. In general, the 

ESP model is known to have a problem of not being able to estimate the initial 

conditions well, so this study tries to improve EDP by reflecting soil moisture 

information via the Bayes' theorem. 

 

3.2.1 Prior Distribution 
 

The prior distribution 𝑝(𝐷) is derived from the distribution of EDP. Since EDP is a 

bunch of drought indexes that follow the standard normal distribution, it can be 

expressed as Eqn (3.8) where 𝜇଴ and σ଴
ଶ are the mean and standard deviation of 

EDP, respectively. 

𝑝(𝐷)~𝑁(𝜇଴, 𝜎଴
ଶ) (3.8) 

 

3.2.2 Likelihood function 
 

The likelihood function is the conditional probability of 𝑋 given 𝐷 , where the 

random variable X is the soil moisture index (SMI) which is the satellite observation 

data being provided by APCC since 2001. In other study cases, the likelihood 

function was usually estimated from the past performance of the ensemble model 

(Luo et al., 2007; Seo et al., 2019). In this study, the likelihood function is estimated 

by the time series regression between two random variables 𝑋 and 𝐷 as shown in 

Eqn (3.9) to reflect the information to EDP. 
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𝑋௧ = 𝑏଴ + 𝑏ଵ𝐷௧ାଵ + 𝜖 (3.9) 

 

where the subscript 𝑡 means the unit time (month), and 𝑏 and 𝜖 are regression 

parameters and residuals, respectively. The residual 𝜖 follows a normal distribution 

that has a zero-mean and standard deviation 𝜎ఢ , so the regression model can be 

expressed as Eqn (3.10). The parameters of the regression are estimated monthly, 

but the notation is omitted for convenience. The k-fold cross-validation method is 

often used to solve problems such as overfitting that may occur due to the small 

amount of data. 

 

𝑝(𝑋௧|𝐷௧ାଵ)~𝑁(𝑏଴ + 𝑏ଵ𝐷௧ାଵ, σఢ
ଶ) (3.10) 

 

3.2.3 Posterior Distribution 
 

Based on the Bayes’ theorem, the posterior distribution follows a normal distribution 

as written in Eqn (3.11) when both the prior distribution and the likelihood function 

follow normal (Lee, 1997; Coelho et al., 2004). The parameters of the posterior 

distribution can be derived by Eqns (3.12)~(3.13) which can be interpreted as a kind 

of variance weighted average of the prior and likelihood.  

 

𝑝(𝐷௧ାଵ|𝑋௧)~𝑁(𝜇௣, σ௣
ଶ) (3.11) 

1

𝜎௣
ଶ =

1

𝜎௢
ଶ +

𝑏ଵ
ଶ

𝜎ఢ
ଶ (3.12) 

𝜇௣

𝜎௣
ଶ =

𝜇௢

𝜎௢
ଶ +

𝑏ଵ
ଶ

𝜎ఢ
ଶ ൬

𝑋௧ − 𝑏଴

𝑏ଵ
൰ (3.13) 

 

  



 

 

 

 

23

3.3 Performance Measures 
 

The skill of the drought prediction is evaluated in two ways as well as deterministic 

and probabilistic approaches. RMSE (Root Mean Squared Error) is used to measure 

the accuracy in the deterministic perspective, and the score metrics RPSS (Rank 

Probability Skill Score) and BS (Brier Score) are in the probabilistic perspective.  

 

3.3.1 Deterministic Approach 
 

RMSE combining bias and variability is used to evaluate the skill of EDP in terms 

of determinism. If 𝑃ത is a single-valued prediction by the expected value of EDP, 

RMSE can be calculated as written in Eqn (3.14) where 𝑂 is the observed value and 

𝑁 is the total number of predictions.  

 

𝑅𝑀𝑆𝐸 = ඩ
1

𝑁
෍(𝑃௜ − 𝑂௜)ଶ

ே

௜ୀଵ

  (3.14) 

 

 

3.3.2 Probabilistic Approach 
 

In this study, the skill scores, RPSS and BS are used for evaluation of probabilistic 

prediction. RPSS is for multi-categorical outcomes, and BS is one for binary 

outcomes. They are calculated by differences between the predicted probability and 

occurrences (i.e., 0 or 1). The single-valued predictions also can be evaluated in the 

probabilistic approach if they are treated as categorical. 

 

(1) Rank Probability Skill Score 

 

RPSS is a skill score that evaluates a benefit compared to the climatologic prediction 

and is derived from RPS (Rank Probability Score), a score for multi-categorical 

outcomes. RPS is the most commonly used measure that is capable of penalizing 

predictions increasingly, as more probability is assigned to event categories further 

removed from the actual outcome (Wilks, 2011). RPS is derived from the squared 

errors computed with respect to the cumulative probabilities in the predictions and 

observations. Let 𝐿 be the number of categories (i.e., the number of drought phases 
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in this study), then each category has the predicted probability 𝑝௝  but the 

observation 𝑜௝  takes the value 1 in only one category and 0 otherwise. The 

cumulative probability of 𝑝௝ and one of 𝑜௝ are then defined as Eqn (3.15) and Eqn 

(3.16) respectively. RPS is the mean of the sum of the squared difference between 

𝑃௟ and 𝑂௟.  

 

1

l

l j
j

P p


 , 𝑙 = 1, … , 𝐿 (3.15) 

1

l

l j
j

O o


 , 𝑙 = 1, … , 𝐿 (3.16) 

RPS =
1

𝑁
෍ ෍(𝑃௟ − 𝑂௟)ଶ

௅

௟ୀଵ

ே

௜ୀଵ

 (3.17) 

 

Let RPS଴ be the reference taken by the climatology, RPSS is then calculated 

as shown in Eqn (3.18). RPSS becomes 1 if it is a perfect prediction, and if the 

prediction model is worse than climatological prediction it becomes a negative value. 

 

RPSS = 1 −
RPS

RPS଴
 (3.18) 

 

(2) Brier Score  

 

BS is a score for dichotomous events and a kind of reduced version of RPS. It is very 

similar to RPS, as shown in Eqn (3.19). BS is the mean of the sum of squared 

differences between the predicted probability value 𝑝௜ and the observed occurrence 

𝑜௜ taking the value 1 if the drought occurs and 0 otherwise.  

 

BS =
1

𝑁
෍(𝑝௜ − 𝑜௜)ଶ

ே

௜ୀଵ

 (3.19) 

 

BS can be further decomposed into three terms: reliability (REL), 

resolution(RES), and uncertainty(UNC) which can be expressed in Eqn (3.20). This 

is called calibration-refinement decomposition to evaluate how well the probabilistic 

prediction is calibrated (Murphy and Winkler, 1987).  
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BS = 𝐸௉ ቂ൫𝜇ை|௉ − 𝑃൯
ଶ

ቃ − 𝐸௉ ቂ൫𝜇ை|௉ − 𝜇ை൯
ଶ

ቃ + 𝜇ை(1 − 𝜇ை) 

         = REL − RES + UNC 
(3.20) 

 

where 𝜇ை|௉  is the relative frequency corresponding predicted probability 𝑃 , and 

𝜇ை is the observed frequency. The REL term 𝐸௉ ቂ൫𝜇ை|௉ − 𝑃൯
ଶ

ቃ quantifies how well 

the probability predictions are consistent with the corresponding observed 

frequencies. The RES term can be expressed as the second term 𝐸௉ ቂ൫𝜇ை|௉ − 𝜇ை൯
ଶ

ቃ 

that indicates a kind of confidence in the prediction by quantifying the variability of 

observed frequencies around the climatological probability. The last term 

𝜇ை(1 − 𝜇ை) is the UNC that represents the uncertainty of the events and does not 

relate to predictions. In a perfect prediction, REL becomes 0, and RES becomes 

equal to UNC. Simply, the REL term is similar to bias, and the UNC-REL term is 

similar to variability in a deterministic perspective. Drawing a reliability diagram, 

all three components of BS can be presented at the same time. 

BSS, a relative measure of probabilistic skill to the reference BS, can be defined 

as Eqn (3.21) because the reference BS is equal to the UNC. 

 

BSS = 1 −
BS

UNC
 (3.21) 
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Chapter 4. Application 
 

 

In this chapter, EDP was applied to the eight dam basins in Korea to make 

drought predictions in both the deterministic and probabilistic approaches, and then 

those results were compared. In addition, EDP+S was calibrated by incorporating 

the soil moisture information into EDP, and the effect of soil moisture information 

was analyzed. Additionally, the probabilistic precipitation forecasts of APCC using 

multi-model ensembles (MME) were used for updating EDP and EDP+S with the 

PDF ratio method, and then the skills were evaluated to analyze the effect of the 

climate information on the drought prediction. 

 

 

4.1 Study Area 
 
It is generally recommended to use observation data of more than 30 years to make 

the hydrological drought index. Therefore, this study selected eight basins where 

their dams have been operated for more than thirty years. The locations and 

information of each basin are shown in Figure 4.1 and Table 4.1, and numbers from 

1 to 8 are assigned to each basin for convenience. 

The Soyanggang and the Chungju dams have major roles in water resource 

management, flood control system across the Han River. Besides, they are capable 

of hydroelectric power generation so contributing in many ways to Korean society. 

The Daecheong dam, the second largest in Korea, plays a key role in flood control 

and water management across the Geum River basin. The Seomjingang dam is small, 

but it is the first multi-purpose dam in Korea, which was constructed for stable 

agricultural water supply to the Jeolla-do, Korea's granary. The Andong, Imha, 

Hapcheon, and Namgang dams located in the Nakdong River area were constructed 

for water supply and management at the time when various industries were 

developed actively throughout the Gyeongsang-do, and they also have played an 

important role in river maintenance. To sum up, all eight basins to which EDP was 

applied have very major roles in water resource management and many other aspects. 
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Table 4.1 Information about basins 

Number Dam basin 
Area 

[kmଶ] 

Annual inflow 

[10଺mଷ]  
Period Source 

1 Soyang 2,703 2,148 1973 ~ 2017 

K-water 

2 Daecheong 3,204 2,722 1981 ~ 2017 

3 Andong 1,584 950 1977 ~ 2017 

4 Seomjin 763 502 1975 ~ 2017 

5 Chungju 6,648 4,872 1986 ~ 2017 

6 Hapcheon 925 573 1989 ~ 2017 

7 Namgang 2,285 2,031 1976 ~ 2017 

8 Imha 1,361 545 1992 ~ 2017 

 

 

Figure 4.1 Watersheds in Korea (Korea National Committee on Large Dams, 
https://www.kncold.or.kr/) 
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4.2 Data Sets 
 

4.2.1 Observed Data Sets 
 

The observed dataset of precipitation, temperature, and streamflow were provided 

by K-water. Since the observed potential evapotranspiration data are very limited, it 

should be estimated using the Penman-Monteith equation known to be the best in 

dry and wet regions (Jensen et al., 1990; Cai et al., 2007). The observations were 

used to estimate the TANK model parameters, and also for input climate ensembles 

to the ESP.  

In this study, the observed drought indexes SRI3 and SRI12 were derived using 

the observed streamflow. These two timescales (3 and 12) are known to best 

represent Korean short-term and long-term droughts, respectively (Son et al., 2011). 

For example, SRI3 and SRI12 of Soyang are shown in Figure 4.2. In Korea, from 

2014 to 2017, a multi-year drought had occurred due to the lack of precipitation 

during the summer, and this continued to affect streamflow of winter season and next 

year. As shown in Figure 4.2, SRI3 hits the lowest value in mid-2014 and 

continuously presented droughts every summer since 2014, and SRI12 was negative 

value consistently since 2014, and this well indicated that droughts in summer have 

impacts on winter. This trend can be found not only at Soyang but also at other basins, 

so it can be said that the drought indices describe this multi-year drought well. 

 

4.2.2 ESP Dataset 
 

As described in 3.1, EDP is derived by converting the 1-month lead ESP simulations 

into SRI. In this study, the ESP simulations were produced by using the TANK model 

of which the parameters were estimated by Seo and Kim (2018) using the SCE-UA 

(Shuffled Complex Evolution-University of Arizona) algorithm. The parameters of 

the TANK model were estimated using the observed data sets until 2000, and the 

model performance was validated by comparing the simulated streamflow with the 

observed streamflow from 2001 to 2017. NSE values for dam basins in Korea ranged 

from -0.03 to 0.45, and normalized RMSE (N-RMSE) values ranged from 1.19 to 

1.68. If the NSE value is above 0, corresponding prediction is regarded as better than 

the climatology, and if it is 1, the prediction is perfect. The ESP simulation results 

are represented in detail in Appendix A-1.  
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(a) SRI3 

 

 
(b) SRI12 

 

Figure 4.2 SRIs on Soyang 
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4.2.3 Soil Moisture Index (SMI) 
 

The APCC has been providing SMI satellite data, a kind of remote sensing data, 

throughout East Asia since 2001. The SMI is derived from an empirical equation 

between the relationship between surface temperature and land cover (vegetation). 

More details about SMI are explained in the paper by Sridhar et al. (2007). Due to 

the characteristics of the satellite data, there may have severe bias, but in this study, 

that problem does not matter because SMI is used as the likelihood function via the 

regression with SRI.  

As shown in Figure 4.3, SMI for the study basins should be extracted from the 

raster data across the whole of East Asia. It cannot represent Korea precisely because 

the spatial resolution is 1°, so it cannot contain the values of South Korea in detail. 

Before the time series regression analysis, a cross-correlation analysis between SRI 

and SMI was done at each basin to check the applicability of the regression. As a 

result, the lag-1 cross-correlation coefficients at all basins were greater than the 

critical value 0.136 at a significance level of 5% as shown in Table 4.2, so the 

regression analysis is possible.  

 

Table 4.2 Lag-1 correlation coefficients between SRI and SMI 

Number Dam basin SRI3 SRI12 

1 Soyang 0.489 0.260 

2 Daecheong 0.516 0.219 

3 Andong 0.519 0.262 

4 Seomjin 0.473 0.155 

5 Chungju 0.506 0.288 

6 Hapcheon 0.439 0.142 

7 Namgang 0.436 0.155 

8 Imha 0.474 0.270 

Figure 4.3 SMI data provided by APCC 
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4.3 EDP with SMI 
 

4.3.1 Modelling Framework 
 

EDP for 1-month ahead drought prediction was produced by the procedure described 

in 3.1.3. Next, in order to generate EDP+S, the likelihood function must be estimated 

from the time series regression model between SRI and SMI as written in Eqns (3.9) 

and (3.10) where the parameters are estimated by Eqns (4.1) and (4.2). 

 

𝑏଴ = 𝑋௧
തതത − 𝑏ଵ𝐷ഥ௧ାଵ  (4.1) 

  

𝑏ଵ =
∑(𝑋௧,௜ − 𝑋௧

തതത)(𝐷௧ାଵ,௜ − 𝐷௧ାଵ
തതതതതത )

∑൫𝑋௧,௜ − 𝑋௧
തതത൯

ଶ   (4.2) 

 

where  𝑋௧
തതത  and 𝐷௧ାଵ

തതതതതത  are the average value of SMI and SRI at the month 𝑡 , 

respectively. There exists a small number of SMI data because it has been recorded 

since 2001, so the regression analysis may have a overfitting problem. In order to 

resolve this problem, the datasets were divided into four to apply the 4-fold cross-

validation. The calibration and validation sets of each fold were as shown in Table 

4.3. As a result of the regression analysis for each fold, RMSE values of calibration 

and verification sets were randomly distributed and the differences between folds 

were small enough assume that there is no overfitting at the likelihood function for 

all the study basins as shown in Table 4.4. 

In this study, to model a more robust likelihood function, the time series 

regression was fitted with an average of the parameters of 4 folds. All of the 

parameters (𝑏଴, 𝑏ଵ) and uncertainty (𝜎ఢ
ଶ) of the likelihood function for SRI3 and 

SRI12 were summarized in Table 4.5. Figure 4.4 shows an example of applying EDP 

and EDP+S to SRI3 at Soyang in July 2014. In the graph, EDP+S is determined by 

that EDP shifted to the left slightly because the mean value of the likelihood function 

is located at the left side of EDP and the variance of it is significantly larger than that 

of EDP. If the variances of the likelihood function is equal to that of EDP, the mean 

of EDP+S is located at the middle of the prior and likelihood mean values.  

As mentioned before, the probabilistic prediction is derived by the calculated 

probability from the distribution, and the deterministic prediction is derived by the 

expected value of the distribution. Figure 4.5 is an example of applying EDP and 

EDP+S at Soyang, presenting only the expected value for convenience. 
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Table 4.3 4-fold cross-validation data cases 

Data set k1 k2 k3 k4 

Calibration 

period 
2001 ~ 2013 

2001 ~ 2009, 

2014 ~ 2017 

2001 ~ 2005, 

2010 ~ 2017 
2005 ~ 2017 

Validation 

period 
2014~ 2017 2010 ~ 2013 2006 ~ 2009 2001 ~ 2004 

 

 

Table 4.4 RMSE of monthly time series regression of each fold 
(a) SRI3 

Data sets Dam basin number 

Period Fold 1 2 3 4 5 6 7 8 

Calibration 
period 

k1 0.200 0.138 0.167 0.156 0.203 0.159 0.150 0.174 

k2 0.189 0.159 0.167 0.153 0.191 0.158 0.150 0.169 

k3 0.210 0.170 0.175 0.153 0.206 0.153 0.147 0.180 

k4 0.194 0.158 0.160 0.160 0.188 0.153 0.146 0.169 

Validation 
period 

k1 0.200 0.251 0.203 0.192 0.171 0.190 0.181 0.205 

k2 0.245 0.181 0.193 0.188 0.234 0.178 0.165 0.215 

k3 0.152 0.121 0.173 0.192 0.166 0.211 0.188 0.183 

k4 0.212 0.171 0.209 0.158 0.231 0.192 0.175 0.223 

 

 

(b) SRI12 

Data sets Dam basin number 

Period Fold 1 2 3 4 5 6 7 8 

Calibration 
period 

k1 0.236 0.171 0.196 0.188 0.232 0.184 0.182 0.198 

k2 0.210 0.184 0.197 0.178 0.209 0.178 0.176 0.197 

k3 0.240 0.198 0.188 0.192 0.235 0.185 0.184 0.193 

k4 0.224 0.183 0.189 0.188 0.223 0.180 0.179 0.185 

Validation 
period 

k1 0.241 0.268 0.242 0.219 0.230 0.215 0.209 0.228 

k2 0.306 0.221 0.215 0.240 0.294 0.218 0.216 0.222 

k3 0.179 0.164 0.250 0.194 0.189 0.215 0.202 0.248 

k4 0.238 0.218 0.246 0.208 0.234 0.218 0.210 0.299 
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Table 4.5 Parameters of likelihood function (monthly time series regression) 
(a) SRI3 

SMI୲~SRI3୲ାଵ Dam basin number 
Parameter Month 1 2 3 4 5 6 7 8 

Intercept 
(𝑏଴) 

1 0.437 0.415 0.406 0.273 0.445 0.298 0.290 0.365 

2 0.406 0.380 0.365 0.197 0.431 0.200 0.171 0.331 

3 0.460 0.449 0.405 0.272 0.485 0.261 0.226 0.361 

4 0.624 0.579 0.531 0.404 0.610 0.378 0.370 0.482 

5 0.599 0.412 0.441 0.349 0.559 0.394 0.378 0.436 

6 0.464 0.378 0.396 0.393 0.409 0.407 0.423 0.384 

7 0.191 0.167 0.193 0.206 0.201 0.253 0.260 0.192 

8 0.552 0.667 0.627 0.721 0.594 0.712 0.716 0.626 

9 0.628 0.791 0.728 0.768 0.665 0.720 0.721 0.722 

10 0.693 0.742 0.745 0.660 0.703 0.679 0.692 0.717 

11 0.484 0.460 0.511 0.398 0.486 0.426 0.428 0.486 

12 0.417 0.386 0.410 0.269 0.421 0.307 0.313 0.383 

Slope 
(𝑏ଵ) 

1 0.105 0.128 0.135 0.118 0.111 0.092 0.093 0.133 

2 0.106 0.138 0.128 0.134 0.139 0.129 0.142 0.113 

3 0.168 0.164 0.144 0.222 0.145 0.177 0.201 0.096 

4 0.244 0.207 0.191 0.126 0.206 0.136 0.131 0.150 

5 0.207 0.100 0.066 0.098 0.155 0.108 0.114 0.070 

6 0.207 0.174 0.133 0.157 0.159 0.093 0.120 0.136 

7 0.096 0.073 0.070 0.141 0.122 0.115 0.113 0.097 

8 0.208 0.129 0.093 0.096 0.180 0.120 0.129 0.104 

9 0.145 0.094 0.117 0.094 0.111 0.097 0.102 0.119 

10 0.149 0.243 0.217 0.151 0.174 0.186 0.166 0.269 

11 0.101 0.092 0.125 0.043 0.109 0.035 0.034 0.146 

12 0.053 0.114 0.136 0.118 0.061 0.084 0.087 0.126 

Uncertainty 
(𝜎ఢ

ଶ) 

1 0.153 0.109 0.131 0.138 0.158 0.137 0.132 0.143 

2 0.146 0.095 0.141 0.130 0.129 0.137 0.126 0.154 

3 0.141 0.145 0.147 0.187 0.141 0.185 0.169 0.161 

4 0.228 0.131 0.171 0.162 0.219 0.166 0.142 0.196 

5 0.236 0.138 0.179 0.148 0.266 0.145 0.139 0.184 

6 0.177 0.195 0.175 0.244 0.217 0.242 0.230 0.185 

7 0.281 0.193 0.256 0.242 0.277 0.245 0.235 0.249 

8 0.299 0.167 0.236 0.162 0.308 0.187 0.181 0.237 

9 0.268 0.129 0.148 0.122 0.272 0.132 0.128 0.151 

10 0.202 0.112 0.156 0.138 0.171 0.117 0.118 0.160 

11 0.136 0.136 0.123 0.090 0.123 0.079 0.077 0.138 

12 0.119 0.125 0.161 0.105 0.127 0.123 0.118 0.171 
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Table 4.5(continued) (b) SRI12 

SMI୲~SRI12୲ାଵ Dam basin number 
Parameter Month 1 2 3 4 5 6 7 8 

Intercept 
(𝑏଴) 

1 0.399 0.343 0.325 0.219 0.401 0.219 0.217 0.325 

2 0.457 0.390 0.362 0.288 0.457 0.266 0.265 0.363 

3 0.559 0.492 0.477 0.363 0.564 0.362 0.356 0.478 

4 0.522 0.365 0.423 0.327 0.531 0.384 0.380 0.430 

5 0.378 0.290 0.354 0.333 0.386 0.399 0.397 0.357 

6 0.190 0.165 0.183 0.197 0.195 0.252 0.250 0.175 

7 0.572 0.682 0.622 0.706 0.578 0.695 0.688 0.612 

8 0.661 0.802 0.740 0.776 0.668 0.722 0.721 0.730 

9 0.692 0.779 0.746 0.648 0.702 0.673 0.674 0.739 

10 0.487 0.473 0.513 0.398 0.494 0.428 0.426 0.512 

11 0.405 0.341 0.385 0.272 0.412 0.312 0.309 0.388 

12 0.064 0.023 0.061 -0.035 0.049 -0.006 0.000 0.088 

Slope 
(𝑏ଵ) 

1 0.030 0.023 0.037 -0.005 0.032 0.015 0.019 0.061 

2 0.015 0.014 0.019 0.001 0.023 -0.009 -0.001 0.044 

3 0.056 0.049 0.022 0.074 0.043 0.004 0.028 0.040 

4 0.075 0.011 0.002 0.005 0.070 -0.052 -0.017 0.002 

5 0.060 -0.057 0.019 0.018 0.053 -0.068 -0.036 0.022 

6 0.051 0.054 0.083 0.101 0.087 0.069 0.081 0.093 

7 0.153 0.166 0.130 0.119 0.138 0.102 0.139 0.128 

8 0.141 0.090 0.129 0.077 0.103 0.092 0.104 0.127 

9 0.134 0.229 0.189 0.183 0.164 0.189 0.175 0.228 

10 0.077 0.086 0.094 0.014 0.104 -0.006 -0.004 0.116 

11 0.044 0.026 0.051 -0.008 0.050 0.004 0.011 0.070 

12 0.399 0.343 0.325 0.219 0.401 0.219 0.217 0.325 

Uncertainty 
(𝜎ఢ

ଶ) 

1 0.178 0.146 0.175 0.159 0.181 0.139 0.139 0.158 

2 0.136 0.118 0.172 0.155 0.137 0.155 0.154 0.153 

3 0.169 0.175 0.184 0.269 0.169 0.251 0.250 0.171 

4 0.259 0.208 0.232 0.219 0.264 0.210 0.207 0.226 

5 0.250 0.143 0.193 0.183 0.255 0.185 0.188 0.190 

6 0.236 0.190 0.203 0.256 0.242 0.224 0.233 0.204 

7 0.285 0.213 0.171 0.206 0.274 0.198 0.192 0.178 

8 0.325 0.189 0.178 0.201 0.329 0.219 0.201 0.207 

9 0.268 0.243 0.166 0.180 0.280 0.187 0.174 0.189 

10 0.245 0.221 0.214 0.158 0.216 0.143 0.157 0.188 

11 0.222 0.218 0.232 0.154 0.204 0.148 0.148 0.220 

12 0.136 0.167 0.213 0.146 0.125 0.137 0.138 0.200 
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Figure 4.4 Example of Bayesian update with SMI at Soyang 

 

 
(a) SRI3 

 
(b) SRI12 

Figure 4.5 Example of EDPs at Soyang 
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4.3.2 Results and Discussion 
 

Using EDP and EDP+S, droughts from 2001 to 2017 were predicted at a time one 

month ahead in both probabilistic and deterministic perspectives, and the skills were 

evaluated also for irrigation and non-irrigation periods, respectively. As explained 

before, to derive RPSS and BS of the deterministic prediction, it is necessary to 

convert the mean value of the EDP distribution into an occurrence or not (i.e., 0 or 

1) according to the criteria shown in Table 3.1. For instance, if the mean value of the 

EDP distribution is -1.3, it is equal to that D1 phase drought will occur 100% in the 

deterministic approach. 

According to the overall results, the larger the basin area, the lower the skill. 

This may be because of the influence of the ESP which is verified having low skills 

at large basins in Korea (Seo et al., 2019). In this section, the overall performances 

of EDP were analyzed in detail, and then the necessity of the probabilistic approach 

for drought prediction was verified. Lastly, the effect of SMI information was 

evaluated. 

 

(1) Prediction for short-term drought (SRI3) 

 

The drought prediction for SRI3, which represents short-term drought, was carried 

out using EDP. The performance measures RMSE, RPSS, BS, and BSS are shown 

in Tables A2.1~A2.3 and Figures A2.1~A2.11 of Appendix A-2, where DP is the 

deterministic prediction and PP is the probabilistic prediction. In the heatmaps, the 

gray indicates that there was no drought case.  

RMSE value exceeds 0.5 at all basins, and it becomes even larger in the 

irrigation period, which is an inevitable problem due to the large variance of 

streamflow in summer (irrigation period). This means that the determinism can make 

a false confidence problem because it results in wrong prediction of drought phase 

more than one phase on average. In this situation, the probabilistic approach is more 

appropriate. The necessity of the probabilistic approach was further discussed in the 

section '(3) Necessity of probabilistic approach'.  

RPSS, the skill score for the prediction in multi-categorical, is above 0 in all 

basins, which means that EDP is better than the climatological prediction. On the 

other hand, according to the values BS, severe droughts (D2 and D3 phase in this 

study) are difficult to predict using EDP, especially even more for the irrigation 

period. It is better to have the assumption that severe droughts may occur with the 

same probability as the observed frequency because BSS are negative values when 

predicting above D1 phase. 
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(2) Prediction for long-term drought (SRI12) 

  

The drought prediction for SRI12, which represents long-term drought, was 

performed using EDP. The performance measures such as RMSE, RPSS, BS, and 

BSS are shown in Tables A2.4~A2.6 and Figures A2.12~A2.22 of Appendix A-2. 

The overall trends are similar to the case of the short-term drought prediction, 

presenting the probabilistic approach is better than the deterministic one. 

All the performance metrics of SRI12 are larger than those of SRI3, and it could 

be because SRI12 has a long persistence. As shown in Figure 4.5, the persistency of 

SRI12 looks longer than that of SRI3 because SRI12 considers streamflow 

accumulated for twelve months. It was reported that the persistency and 

predictability have a positive relationship (Shukla, 1983; Sun and Wang, 2013), and 

this relationship may lead the drought prediction performance of SRI12 being higher 

than that of SRI3.  

RMSE is below 0.4 even for the irrigation period, so it is expected that the 

performance of the deterministic prediction will be good as well. RPSS and BS, 

which represent the performance in the probabilistic approach, have sufficiently 

good, but when predicting severe drought D2 and D3 at the Daecheong for severe 

drought they become inaccurate. This may be because of the problem of EDP itself, 

so it needs to be improved to solve the problem. 

 

(3) Necessity of probabilistic approach 

 

The superiority of the probabilistic approach can be verified through analyzing RPSS, 

BS, and BSS which can be indicators comparing two approaches. On average, RPSS 

of the probabilistic one is 100% higher than that of the deterministic for SRI3 (the 

short-term drought) prediction, and 7% higher for SRI12 (the long-term drought) 

prediction. In addition, BS of the probabilistic one is also 75% higher for the short-

term drought prediction, and 24% for the long-term drought prediction, on average, 

and it is extremely higher when predicting D1 and D2 phases. When predicting the 

long-term drought, there is little difference between the probabilistic and 

deterministic ones because the predictability of SRI12 is sufficiently high even for 

the deterministic approach. To sum up these results, the probabilistic approach for 

drought prediction outperforms the deterministic one especially for the short-term 

drought prediction. Therefore, it can be said that use of the probabilistic approach is 

especially necessary when predicting the short-term drought. 

Due to the anthropogenic activities and climate change, the uncertainty in 

hydrometeorological variables, including drought, has increased these days (Van 
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Loon et al., 2016). Under this circumstance, the importance and value of the 

probabilistic drought prediction for continues to rise, because the probabilistic 

approach is primarily effective as a tool to help decision-making to prepare for events 

that have large uncertainties and potentials to cause great losses (Krzysztofowicz, 

2001; Palmer, 2017). Subsequently, Buizza (2008) proved that using the probabilistic 

prediction makes less potential loss than the deterministic prediction in real. 

As analyzed above, the deterministic approach may yield errors more than one 

phase. This can lead to a false confidence, and finally make a catastrophic result like 

the Great Flood in the U.S. Therefore, it is more appropriate to predict disasters in 

the probabilistic approach unless the perfect prediction is possible. However, even if 

the perfect prediction is possible, the uncertainties coming from human activities and 

nature have to be considered so the probabilistic approach is required. 

Of course, it is easy to open and share such drought probability information, but 

persuading users such as farmers and stakeholders about the importance of the 

probability information and educating how to recognize it remains a challenging 

issue. To overcome this, quantitative research is actively conducted in the social 

science field. Ramos et al. (2013) verified that the probabilistic information for 

hydrometeorological variables helps to make better decisions by experimental 

survey research. Furthermore, studies have been conducted to reflect opinions 

collected through surveys and discussions in hydrological forecasting and dam 

operation models in order to satisfy various needs of users (Fundel et al., 2018; Kim 

et al., 2019). 

 

(4) Effectiveness of soil moisture information 

 

Only the probabilistic prediction results of EDP and EDP+S are compared to analyze 

whether SMI is effective or not. In the above results, it was found that EDP+S makes 

better predictions than EDP, especially more effective for SRI3. However, there are 

some basins where the accuracy decreases when the SMI information is used to 

update EDP. In the four basins such as Seomjin, Hapcheon, Namgang, and Imha, 

RMSE, RPSS, and BS of the short-term drought prediction with SMI become worse 

by 2~3%. And, in the Seomjin and Imha basins, RMSE of SRI12 prediction was 

increased by 2%. The correlations between SMI and SRI of these basins are the 

smallest four as shown in Table 4.2, and this seems to affect the regression used as 

the likelihood function. 

When focusing on N-RMSE of the residuals of the regression (Tables 4.6 and 

4.7), the Seomjin, Hapcheon, and Imha basins have larger than other basins. This 

means that updating new information in EDP makes a negative effect if the reliability 



 

 

 

 

39

of the likelihood function is not sufficiently good. Maybe this is because the spatial 

resolution of the satellite data is not high enough so that the satellite cannot capture 

the value for small basins well. In other words, the quality of the data used for the 

Bayesian update may be one of the reasons for making the worse prediction. 

Although the resolution of soil moisture data is too coarse to represent the values of 

South Korea, reflecting soil moisture into EDP model is found to be effective across 

all basins. Therefore, in the future, it is expected that various remote sensing data 

such as satellite and radar that have been proven to be related to drought can be used 

for a drought study. 

To analyze the effect of SMI on EDP in detail, we focus on the difference of the 

BS components between EDP and EDP+S. The differences between EDP and 

EDP+S at each basin are presented as a heatmap in Figure 4.6, where the blue means 

that EDP+S is better. In the heatmap, it is difficult to discern the variation of REL, 

but RES is decreased at the all basins except Soyang and Andong after reflecting 

SMI. This can be said that updating SMI makes EDP consider wider range of 

possible drought events.   
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Table 4.6 N-RMSE of likelihood function SMI~SRI3 

Month 
Basin 

1 2 3 4 5 6 7 8 9 10 11 12 Avg. 

Soyang 0.363 0.347 0.404 0.457 0.445 1.421 0.482 0.393 0.336 0.442 0.329 0.338 0.886 
Daecheong 0.324 0.429 0.309 0.387 0.626 1.662 0.352 0.333 0.234 0.495 0.457 0.283 0.906 
Andong 0.463 0.484 0.351 0.474 0.582 1.385 0.412 0.245 0.224 0.416 0.436 0.336 0.894 
Seomjin 0.614 0.697 0.474 0.461 0.666 1.109 0.292 0.207 0.217 0.360 0.394 0.469 0.917 
Chungju 0.318 0.319 0.400 0.488 0.535 1.379 0.504 0.389 0.297 0.415 0.313 0.355 0.879 
Hapcheon 0.659 0.828 0.513 0.407 0.599 0.924 0.335 0.250 0.184 0.330 0.402 0.430 0.902 
Namgang 0.607 0.718 0.474 0.376 0.561 0.879 0.305 0.237 0.186 0.327 0.371 0.408 0.838 
Imha 0.519 0.506 0.403 0.468 0.569 1.401 0.434 0.281 0.230 0.425 0.450 0.403 0.937 

 

 

Table 4.7 N-RMSE of likelihood function SMI~SRI12 

Month 
Basin 

1 2 3 4 5 6 7 8 9 10 11 12 Avg. 

Soyang 0.434 0.436 0.528 0.565 0.646 1.527 0.530 0.384 0.358 0.506 0.362 0.434 1.032 
Daecheong 0.427 0.525 0.507 0.502 0.785 1.714 0.317 0.332 0.325 0.534 0.521 0.429 1.064 
Andong 0.578 0.584 0.551 0.530 0.733 1.404 0.390 0.255 0.284 0.489 0.561 0.524 1.059 
Seomjin 0.859 0.999 0.633 0.618 0.777 1.145 0.292 0.236 0.237 0.385 0.579 0.626 1.136 
Chungju 0.441 0.440 0.536 0.557 0.646 1.453 0.548 0.403 0.308 0.454 0.333 0.442 1.009 
Hapcheon 0.857 1.001 0.620 0.550 0.659 1.011 0.364 0.259 0.210 0.348 0.488 0.537 1.062 
Namgang 0.850 0.995 0.607 0.536 0.659 0.943 0.329 0.249 0.224 0.349 0.484 0.540 1.041 
Imha 0.585 0.595 0.561 0.543 0.727 1.475 0.429 0.278 0.279 0.489 0.559 0.508 1.081 
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(a) BS difference for SRI3 

 
(b) REL difference for SRI3 

 
(c) REL difference for SRI3 

 
(d) BS difference for SRI12 

 
(e) REL difference for SRI12 

 
(f) REL difference for SRI12 

Figure 4.6 Differences of BS components between EDP and EDP+S 
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4.4 EDP with Probabilistic Precipitation Forecast 
 

4.4.1 Probabilistic Precipitation Forecast by APCC 
 

APCC has been using MME to forecast the precipitation probability with the spatial 

resolution 2.5° across the world and East Asia since 2008. As shown in Figure 4.6, this 

probabilistic forecast produces the probability of three categories: below, normal, and 

above, up to six-month ahead. The skill of the APCC precipitation probability forecast in 

Korea was evaluated in detail by Sohn et al. (2012). More detailed explanation about 

MME can be found in Min et al. (2009). 

 

4.4.2 Modeling Framework 
 

Using the PDF ratio method, EDP is updated to EDP+A with the probabilistic 

precipitation forecast. The PDF ratio method was to reflect climate information to an 

ensemble distribution (Stedinger and Kim, 2010). It is a kind of technique of shifting a 

distribution by referring to new climate information (i.e., probabilistic forecast). The 

standard deviation and mean of the normal distribution updated using the PDF ratio are 

derived from Eqns (4.3)~(4.4). 

 

𝜎ଵ = {xୟ − 𝑥௕}/{𝛷ିଵ(1 − 𝑝௔) − 𝛷ିଵ(𝑝௕)} (4.3) 

𝜇ଵ = 𝑥௕ − 𝜎ଵ𝛷ିଵ(𝑝௕) (4.4) 

 

where 𝑥௔ and 𝑥௕ are terciles corresponding to 0.66 and 0.33 of the normal distribution 

before update, 𝑝௔  and 𝑝௕  are the probability corresponding to above and below 

respectively, and 𝛷ିଵ is the inverse function of the normal distribution.  

EDP+AS was generated by updating SMI information on EDP+A, using the same 

likelihood function estimated in section 4.3. Figure 4.8 shows an example of applying 

four EDPs (EDP, EDP+S, EDP+A, and EDP+AS) to SRI3 at Soyang in July 2014, and 

the expected values of four EDPs from 2008 to 2017 at Soyang are shown in Figure 4.9. 
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Figure 4.7 Probabilistic precipitation forecast by APCC 

(https://www.apcc21.org/) 

 

 

 

 

 
Figure 4.8 Example of EDP distributions at Soyang (EDP, EDP+S, EDP+A, 

EDP+AS) 

  

Obs. 2014.07. 
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(a) SRI3 

 
(b) SRI12 

Figure 4.9 Example of four EDPs at Soyang  
(EDP, EDP+S, EDP+A, EDP+AS)  
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4.4.3 Results and Discussion 
 

Using four EDPs (EDP, EDP+S, EDP+A, and EDP+AS), the probabilistic drought 

prediction is performed at eight basins from 2008 to 2017. The performance was 

evaluated also for irrigation and non-irrigation periods, respectively. In order to easily 

understand the performance of EDP, reliability diagrams are derived by decomposing BS. 

All the performance metrics are shown in Figures A2.23~A2.30 and Tables A2.7~A2.12 

of Appendix A-2. The overall performances of EDP and EDP+S are similar to those in 

section 4.3. And in the case of the predictions of SRI12 (the long-term drought), the 

variation between the four EDPs is not large. Therefore, this section focuses on the effect 

of the precipitation forecast on the prediction of SRI3 (the short-term drought). 

 

(1) Effect of precipitation forecast 

 

After updating the precipitation forecast, RMSE at eight basins decreases about 2% on 

average, and RPSS and BS do not change significantly. However, the effect and 

usefulness can be found when checking the metrics for the irrigation and non-irrigation 

periods separately. For the irrigation period, the performance metrics of EDP+A and 

EDP+AS are slightly lower than those of EDP. For the non-irrigation period, however, 

they become about 6% larger than EDP on average, and up to 19%. 

It is assumed that the reason for these results is related to the performance of the 

precipitation forecast. Sohn et al. (2012) verified that the precipitation forecast by APCC 

has significant accuracy during winter, the non-irrigation period in Korea. To sum up, if 

the climate information like the precipitation forecast is informative enough, it is capable 

of predicting the drought more skillful. 

 

(2) Reliability diagram 

 

A reliability diagram is a graph where the conditional distribution of the observations, 

given the forecast probability, is plotted against the forecast probability and a perfect 

prediction is plotted along the 45-degree diagonal. BS and its components can be analyzed 

through the diagram.  

The reliability diagrams shown in Figures A2.26 and A2.30 represent that all four 

EDPs make overestimation on drought occurrence because the observed frequency is 

lower than corresponding predicted probability. This overestimation affects RES 

significantly. As mentioned before, the uncertainty of the droughts gradually increases 

due to climate change and anthropogenic activities. Under this circumstance, even if a 

model can make perfect predictions for the past and present, there is no guarantee that it 
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makes the perfect prediction for the future as well. Therefore, a prediction model that can 

consider a wide range of possible drought is required to prepare the drought in the time 

of climate change. The cost for the prevention may be wasted because of the 

overestimation of drought occurrences, so further research should be conducted to 

evaluate EDP in terms of socio-economy. 
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Chapter 5. Conclusion 
 

 

5.1 Summary and Conclusions 
 

This study has proposed a EDP system which predicts hydrological drought 

probabilistically using an ensemble method in order to demonstrate the necessity of 

introducing the probabilistic drought prediction to Korea. Among many types of 

drought, the hydrological drought is especially important because it is a linkage 

between drought as a natural phenomenon and its impact on human society. The 

natural hydrological drought can be measured by SRI that can represent both short-

term and long-term hydrological. In this study, the hydrological drought has been 

categorized into four phases depending on the anomaly level. Then, a prediction for 

each phase is defined as a multi-categorical prediction, and a prediction for the 

occurrence or not above a certain phase is defined as a dichotomous prediction. 

 EDP is expressed as an ensemble of SRI which comes out by converting the 

ESP results. This study has applied EDP to eight dam basins in Korea to predict the 

short-term and the long-term drought in the deterministic and the probabilistic 

perspectives and then analyzed their performance metrics. Furthermore, to improve 

the prediction performance, EDP is updated with soil moisture information using the 

Bayes' theorem and climate information using the PDF ratio method. For the 

performance metrics, RMSE (a deterministic measure), and RPSS and BS, 

(probabilistic measures), are used. RMSE, combining bias and variability, is to 

evaluate errors of the mean of EDP compared to the observed SRI. RPSS is a skill 

score for multi-categorical predictions, and BS is the one for dichotomous 

predictions and can be decomposed into three components (reliability, resolution, 

and uncertainty) to make a further analysis. Besides, RPSS and BS can also evaluate 

the accuracy of the deterministic predictions at a probabilistic standpoint, so they are 

used to compare the probabilistic and the deterministic predictions. 

To evaluate the skill of EDP for the short-term drought prediction, the result of 

SRI3 prediction was analyzed. RMSE exceeded 0.5 on average, and this means that 

it may yield errors more than one phase if taking the deterministic approach. 

Consequentially, by analyzing RPSS and BS, the deterministic prediction was 

inferior to the probabilistic one and even to the climatological prediction. The 

probabilistic prediction is always better than the climatological prediction in case of 

the multi-categorical prediction. However, there are some cases that the prediction 

skill of EDP for the drought phases over D2 is worse than the climatological 
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prediction especially at large basins. 

When predicting SRI12 which represents the long-term drought using EDP, the 

performance metrics are large in general, because it can be cause by the long 

persistency of SRI12. Thus, it is not easy to discern the differences between the 

deterministic and probabilistic predictions. 

The drought information from SMI is used to update EDP via the Bayes' 

theorem for improving the prediction performance. The prior distribution is EDP 

distribution and the likelihood function is estimated as the regression between SMI 

and SRI. As a result, updating EDP is effective when the residual of the regression 

model is sufficiently small. In other words, the likelihood function has to be reliable 

to make EDP improved. Also, the reliability of the regression may depend on the 

quality of SMI. The SMI satellite data used in this study has a low spatial resolution 

to capture the soil moisture information of small basins. Consequentially, this makes 

low reliability of the likelihood function and thus it affects updating EDP negatively. 

Nevertheless, the Bayesian update with SMI yields 35% lager RPSS and 4% larger 

BS values than the original EDP. This can be said that the availability of SMI for 

drought prediction is proved. 

Additionally, EDP is updated by reflecting the APCC climate information in 

EDP distribution via the PDF ratio method. Here, the climate information is the 

probabilistic precipitation forecast by MME. Updating the precipitation forecast 

results in the same or slightly lower when compared to EDP, but it improves the 

prediction performance by 6% for the non-irrigation period. The precipitation 

forecasts of the APCC have significant skills during winter season across East Asia 

including Korea and accordingly it could positively affect drought prediction for the 

non-irrigation period. 

Summing up the above results, this study makes three conclusions as follows. 

(1) The probabilistic drought prediction was 52% better than the deterministic on 

average in terms of prediction skills. When predicting the short-term drought, 

the probabilistic approach outperformed even more. 

(2) Updating EDP using soil moisture information the via Bayes' theorem makes 

skill to be improved by 20% on average. Therefore, it can be said that the soil 

moisture information corrects EDP if the likelihood function is valid and 

accurate. 

(3) Reflecting the precipitation forecast to EDP via the PDF ratio yielded 6% better 

performance only for the non-irrigation period. From this, it was found again 

that reflecting informative data can make better the drought prediction. 

 

 



 

 

 

 

49

5.2 Future Study 
 

This study demonstrated the advantages of the probabilistic drought prediction 

in terms of accuracy and skill. To state in more practical perspective on using the 

probabilistic approach, it should be analyzed with economic measures. This can be 

done if a potential economic value is derived by such as cost-loss analysis.  

By comparing four EDPs (EDP, EDP+S, EDP+A, EDP+AS), it was confirmed 

that additional information about drought does not always make the skill better. This 

study concluded that the negative effects of the additional information are because 

of the reliability and quality of the data. In order to underpin this conclusion, it is 

necessary to update EDP using other additional information and compare the 

prediction performance. If other information about drought is able to be formed in 

the likelihood function (or conditional probability), EDP can be updated via the 

Bayes' theorem consecutively. The biggest advantage of the Bayesian update is that 

it can consider the new information continuously. 

Also, this study demonstrated that the effectiveness of utilizing remote sensing 

data which is even coarse, so it is expected that various remote sensing data can also 

be used for drought study in the future. 

The other limitation of EDP proposed in this study is that it only considered the 

natural hydrological drought using SRI. Representing the drought due to the natural 

hydrologic cycle is the advantage of the drought index but at the same time, it 

becomes a disadvantage because the drought index does not consider human 

activities such as water resource management. As described in the introduction, 

facilities such as reservoirs and dams have been constructed and operated to 

overcome drought. Accordingly, it can be said that the socio-economic drought 

introduced in chapter 2 has a closer relation to human society. If EDP is applied to 

the socio-economic drought prediction, other characteristics of EDP can be analyzed.  
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Appendix 
 

A-1. Ensemble Streamflow Prediction Results 
 
Table A11 Accuracy of ensemble streamflow prediction from 2001 to 2017 

Basin Basin number NSE N-RMSE 
Soyang 1 0.394 1.292 
Daecheong 2 -0.027 1.682 
Andong 3 0.396 1.225 
Seomjin 4 0.447 1.189 
Chungju 5 0.110 1.579 
Hapcheon 6 0.390 1.258 
Namgang 7 0.401 1.242 
Imha 8 0.121 1.686 

 

 

Figure A1.1 Ensemble streamflow prediction result at Soyang 

 

 

Figure A1.2 Ensemble streamflow prediction result at Daecheong 



 

 

 

 

59

 

Figure A1.3 Ensemble streamflow prediction result at Andong 

 

 

Figure A1.4 Ensemble streamflow prediction result at Seomjin 

 

 

Figure A1.5 Ensemble streamflow prediction result at Chungju 
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Figure A1.6 Ensemble streamflow prediction result at Hapcheon 

 

 

Figure A1.7 Ensemble streamflow prediction result at Namgang 

 

 

Figure A1.8 Ensemble streamflow prediction result at Imha 
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A-2. Ensemble Drought Prediction results 
 
Table A2.1 RMSE of two EDPs for SRI3 

Case Soyang Daecheong Andong Seomjin Chungju Hapcheon Namgang Imha 

EDP 0.609 0.676 0.600 0.524 0.791 0.501 0.509 0.655 

EDP+S 0.551 0.658 0.582 0.532 0.739 0.519 0.518 0.642 

 

 

Figure A2.1 Averaged RMSE of two EDPs across eight basins for SRI3  
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Table A2.2 RPSS of two EDPs for SRI3 

 

 
(a) All 

 
(b) Irrigation 

 
(c) Non irrigation 

Figure A2.2 RPSS of two EDPs for SRI3 

Case 
 

Basin 

All Irrigation Non-irrigation 
EDP EDP+S EDP EDP+S EDP EDP+S 

DP PP DP PP DP PP DP PP DP PP DP PP 
Soyang 0.197 0.438 0.313 0.493 0.106 0.397 0.274 0.467 0.318 0.493 0.366 0.529 
Daecheong 0.012 0.233 0.033 0.235 -0.073 0.181 -0.033 0.189 0.132 0.308 0.127 0.300 
Andong 0.415 0.603 0.487 0.624 0.285 0.517 0.336 0.536 0.546 0.689 0.638 0.712 
Seomjin 0.312 0.530 0.268 0.509 0.193 0.455 0.090 0.417 0.472 0.631 0.508 0.632 
Chungju -0.016 0.229 0.134 0.296 -0.139 0.142 0.007 0.219 0.122 0.326 0.277 0.382 
Hapcheon 0.542 0.674 0.474 0.643 0.297 0.515 0.236 0.482 0.787 0.835 0.714 0.804 
Namgang 0.459 0.606 0.417 0.595 0.283 0.490 0.254 0.473 0.652 0.733 0.597 0.729 
Imha 0.284 0.488 0.227 0.470 0.041 0.359 -0.051 0.328 0.571 0.640 0.554 0.637 
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Table A2.3 Averaged BS of two EDPs across eight basins for SRI3 

 

 
(a) All 

 
(b) Irrigation 

 
(c) Non irrigation 

Figure A2.3 Averaged BSS of two EDPs across eight basins for SRI3 

Case 
 

Phase 

All Irrigation Non-irrigation 

EDP EDP+S EDP EDP+S EDP EDP+S 

DP PP DP PP DP PP DP PP DP PP DP PP 

D0 0.1642 0.0345 0.1631 0.0344 0.2194 0.0617 0.2209 0.0616 0.1091 0.0070 0.1054 0.0071 

D1 0.1317 0.0307 0.1319 0.0304 0.1642 0.0534 0.1694 0.0530 0.0993 0.0078 0.0944 0.0078 

D2 0.0784 0.0175 0.0711 0.0170 0.1005 0.0335 0.0892 0.0324 0.0564 0.0013 0.0530 0.0014 

D3 0.0331 0.0095 0.0286 0.0095 0.0490 0.0152 0.0411 0.0152 0.0172 0.0037 0.0162 0.0038 
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(a) All 

 
(b) Irrigation 

 
(c) Non irrigation 

Figure A2.4 BSS at Soyang for SRI3 

 
(a) All 

 
(b) Irrigation 

 
(c) Non irrigation 

Figure A2.5 BSS at Daecheong for SRI3 
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(a) All 

 
(b) Irrigation 

 
(c) Non irrigation 

Figure A2.6 BSS at Andong for SRI3 

 
(a) All 

 
(b) Irrigation 

 
(c) Non irrigation 

Figure A2.7 BSS at Seomjin for SRI3 
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(a) All 

 
(b) Irrigation 

 
(c) Non irrigation 

Figure A2.8 BSS at Chungju for SRI3 

 
(a) All 

 
(b) Irrigation 

 
(c) Non irrigation 

Figure A2.9 BSS at Hapcheon for SRI3 
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(a) All 

 
(b) Irrigation 

 
(c) Non irrigation 

Figure A2.10 BSS at Namgang for SRI3 

 
(a) All 

 
(b) Irrigation 

 
(c) Non irrigation 

Figure A2.11 BSS at Imha for SRI3 
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Table A2.4 RMSE of two EDPs for SRI12 

Case Soyang Daecheong Andong Seomjin Chungju Hapcheon Namgang Imha 

EDP 0.293 0.288 0.279 0.270 0.311 0.245 0.276 0.259 

EDP+S 0.286 0.286 0.281 0.267 0.309 0.247 0.268 0.262 

 

 

Figure A2.12 Averaged RMSE of two EDPs across eight basins for SRI12 
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Table A2.5 RPSS of two EDPs for SRI12 

 

 
(a) All 

 
(b) Irrigation 

 
(c) Non irrigation 

Figure A2.13 RPSS of two EDPs for SRI12 

Case 
 

Basin 

All Irrigation Non-irrigation 
EDP EDP+S EDP EDP+S EDP EDP+S 

DP PP DP PP DP PP DP PP DP PP DP PP 
Soyang 0.830 0.885 0.857 0.890 0.683 0.791 0.736 0.801 0.986 0.985 0.986 0.985 
Daecheong 0.773 0.800 0.773 0.801 0.594 0.649 0.594 0.649 0.946 0.947 0.946 0.947 
Andong 0.814 0.864 0.818 0.861 0.652 0.755 0.659 0.747 0.985 0.979 0.985 0.980 
Seomjin 0.703 0.801 0.701 0.802 0.512 0.664 0.501 0.667 0.891 0.935 0.897 0.935 
Chungju 0.854 0.877 0.853 0.878 0.708 0.755 0.705 0.757 1.000 0.998 1.000 0.998 
Hapcheon 0.858 0.898 0.856 0.897 0.726 0.800 0.721 0.798 0.969 0.981 0.969 0.981 
Namgang 0.843 0.891 0.865 0.899 0.676 0.777 0.723 0.794 0.984 0.988 0.984 0.987 
Imha 0.660 0.798 0.692 0.798 0.444 0.677 0.509 0.680 0.872 0.917 0.872 0.915 
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Table A2.6 Averaged BS of two EDPs across eight basins for SRI12 

 

 
(a) All 

 
(b) Irrigation 

 
(c) Non irrigation 

Figure A2.14 Averaged BSS of two EDPs across eight basins for SRI12 

 

Case 
 
Phase 

All Irrigation Non-irrigation 

EDP EDP+S EDP EDP+S EDP EDP+S 

DP PP DP PP DP PP DP PP DP PP DP PP 

D0 0.0441 0.0345 0.0435 0.0344 0.0797 0.0617 0.0784 0.0616 0.0086 0.0070 0.0086 0.0071 

D1 0.0453 0.0307 0.0424 0.0304 0.0784 0.0534 0.0729 0.0530 0.0123 0.0078 0.0119 0.0078 

D2 0.0251 0.0175 0.0233 0.0170 0.0490 0.0335 0.0453 0.0324 0.0012 0.0013 0.0012 0.0014 

D3 0.0116 0.0095 0.0110 0.0095 0.0196 0.0152 0.0184 0.0152 0.0037 0.0037 0.0037 0.0038 
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(a) All 

 
(b) Irrigation 

 
(c) Non irrigation 

Figure A2.15 BSS at Soyang for SRI12 

 
(a) All 

 
(b) Irrigation 

 
(c) Non irrigation 

Figure A2.16 BSS at Daecheong for SRI12 
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(a) All 

 
(b) Irrigation 

 
(c) Non irrigation 

Figure A2.17 BSS at Andong for SRI12 

 
(a) All 

 
(b) Irrigation 

 
(c) Non irrigation 

Figure A2.18 BSS at Seomjin for SRI12 
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(a) All 

 
(b) Irrigation 

 
(c) Non irrigation 

Figure A2.19 BSS at Chungju for SRI12 

 
(a) All 

 
(b) Irrigation 

 
(c) Non irrigation 

Figure A2.20 BSS at Hapcheon for SRI12 
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(a) All 

 
(b) Irrigation 

 
(c) Non irrigation 

Figure A2.21 BSS at Namgang for SRI12 

 
(a) All 

 
(b) Irrigation 

 
(c) Non irrigation 

Figure A2.22 BSS at Imha for SRI12 
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Table A2.7 RMSE of four EDPs for SRI3 (EDP, EDP+S, EDP+A and EDP+AS) 

Case Soyang Daecheong Andong Seomjin Chungju Hapcheon Namgang Imha 

EDP 0.608 0.593 0.563 0.491 0.741 0.486 0.502 0.633 

EDP+S 0.528 0.586 0.538 0.491 0.657 0.500 0.502 0.624 

EDP+A 0.624 0.604 0.578 0.504 0.762 0.488 0.514 0.594 

EDP+AS 0.523 0.595 0.564 0.504 0.647 0.504 0.513 0.624 

 

 

Figure A2.23 Averaged RMSE of four EDPs across all eight basins for SRI3 (EDP, EDP+S, EDP+A and EDP+AS) 
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Table A2.8 RPSS of four EDPs for SRI3 (EDP, EDP+S, EDP+A and EDP+AS) 

 

 

 
(a) All 

 
(b) Irrigation 

 
(c) Non irrigation 

Figure A2.24 RPSS of four EDPs for SRI3 (EDP, EDP+S, EDP+A and EDP+AS) 

Case 
Basin 

All Irrigation Non-irrigation 
EDP EDP+S EDP+A EDP+AS EDP EDP+S EDP+A EDP+AS EDP EDP+S EDP+A EDP+AS 

Soyang 0.418 0.505 0.427 0.525 0.393 0.504 0.387 0.516 0.452 0.507 0.480 0.536 
Daecheong 0.289 0.297 0.281 0.292 0.229 0.244 0.209 0.229 0.374 0.373 0.383 0.382 
Andong 0.585 0.619 0.588 0.614 0.424 0.484 0.408 0.461 0.748 0.754 0.768 0.766 
Seomjin 0.494 0.493 0.476 0.478 0.381 0.372 0.352 0.351 0.645 0.654 0.641 0.649 
Chungju 0.258 0.374 0.256 0.394 0.169 0.307 0.160 0.328 0.358 0.449 0.363 0.468 
Hapcheon 0.611 0.592 0.617 0.594 0.403 0.394 0.411 0.402 0.820 0.791 0.823 0.787 
Namgang 0.561 0.570 0.559 0.568 0.397 0.414 0.383 0.404 0.741 0.741 0.752 0.749 
Imha 0.402 0.420 0.419 0.412 0.247 0.290 0.286 0.296 0.584 0.571 0.575 0.548 
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Table A2.9 Averaged BS of four EDPs across eight basins for SRI3 (EDP, EDP+S, EDP+A and EDP+AS) 

 

 
(a) All 

 
(b) Irrigation 

 
(c) Non irrigation 

Figure A2.25 Averaged BSS of four EDPS across all eight basins for SRI3 (EDP, EDP+S, EDP+A and EDP+AS) 

Case 
 

Phase 

All Irrigation Non-irrigation 

EDP EDP+S EDP+A EDP+AS EDP EDP+S EDP+A EDP+AS EDP EDP+S EDP+A EDP+AS 

D0 0.1127 0.1123 0.1094 0.1098 0.1466 0.1490 0.1456 0.1469 0.0784 0.0756 0.0730 0.0728 

D1 0.1003 0.0939 0.1026 0.0948 0.1352 0.1255 0.1392 0.1270 0.0650 0.0618 0.0658 0.0625 

D2 0.0656 0.0581 0.0660 0.0585 0.0830 0.0708 0.0845 0.0717 0.0481 0.0456 0.0476 0.0456 

D3 0.0304 0.0273 0.0308 0.0276 0.0419 0.0355 0.0431 0.0370 0.0190 0.0190 0.0183 0.0183 
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(a) D0 

 
(b) D1 

 

 
(c) D2 

 
(d) D3 

 
Figure A2.26 Reliability diagram of four EDPs for SR3 
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Table A2.10 RMSE of four EDPs for SRI12 (EDP, EDP+S, EDP+A and EDP+AS) 

Case Soyang Daecheong Andong Seomjin Chungju Hapcheon Namgang Imha 

EDP 0.278 0.258 0.236 0.255 0.264 0.222 0.242 0.253 

EDP+S 0.272 0.257 0.238 0.245 0.262 0.227 0.237 0.255 

EDP+A 0.287 0.262 0.245 0.263 0.269 0.224 0.251 0.242 

EDP+AS 0.279 0.261 0.250 0.252 0.266 0.227 0.243 0.254 

 

 

Figure A2.27 Averaged RMSE of four EDPs across eight basins for SRI12 (EDP, EDP+S, EDP+A and EDP+AS) 
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Table A2.11 RPSS of four EDPs for SRI12 (EDP, EDP+S, EDP+A and EDP+AS) 

 

 

 
(a) All 

 
(b) Irrigation 

 
(c) Non irrigation 

Figure A2.28 RPSS of four EDPs for SRI12 (EDP, EDP+S, EDP+A and EDP+AS) 

Case 
Basin 

All Irrigation Non-irrigation 
EDP EDP+S EDP+A EDP+AS EDP EDP+S EDP+A EDP+AS EDP EDP+S EDP+A EDP+AS 

Soyang 0.854 0.858 0.853 0.860 0.739 0.748 0.737 0.751 0.975 0.975 0.975 0.975 
Daecheong 0.783 0.783 0.777 0.777 0.605 0.604 0.594 0.593 0.955 0.955 0.955 0.955 
Andong 0.832 0.826 0.826 0.817 0.705 0.692 0.694 0.677 0.965 0.967 0.964 0.965 
Seomjin 0.770 0.771 0.777 0.777 0.641 0.646 0.641 0.643 0.896 0.895 0.910 0.909 
Chungju 0.866 0.867 0.865 0.866 0.734 0.736 0.735 0.737 0.996 0.997 0.994 0.994 
Hapcheon 0.871 0.867 0.871 0.866 0.757 0.747 0.752 0.741 0.967 0.967 0.970 0.970 
Namgang 0.888 0.891 0.879 0.882 0.780 0.788 0.756 0.764 0.980 0.978 0.984 0.982 
Imha 0.758 0.760 0.764 0.761 0.594 0.604 0.600 0.600 0.919 0.914 0.926 0.920 
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Table A2.12 Averaged BS of four EDPs across eight basins for SRI12 (EDP, EDP+S, EDP+A and EDP+AS) 

 

 

 
(a) All 

 
(b) Irrigation 

 
(c) Non irrigation 

Figure A2.29 Averaged BSS of four EDPs across eight basins for SRI12 (EDP, EDP+S, EDP+A and EDP+AS) 

Case 
 

Phase 

All Irrigation Non-irrigation 

EDP EDP+S EDP+A EDP+AS EDP EDP+S EDP+A EDP+AS EDP EDP+S EDP+A EDP+AS 

D0 0.0313 0.0313 0.0322 0.0321 0.0565 0.0563 0.0590 0.0588 0.0060 0.0062 0.0054 0.0055 

D1 0.0408 0.0409 0.0407 0.0408 0.0691 0.0691 0.0693 0.0697 0.0125 0.0125 0.0117 0.0118 

D2 0.0229 0.0225 0.0238 0.0242 0.0434 0.0423 0.0446 0.0455 0.0022 0.0023 0.0028 0.0029 

D3 0.0120 0.0120 0.0117 0.0117 0.0197 0.0197 0.0195 0.0194 0.0043 0.0044 0.0040 0.0041 
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(a) D0 

 

 
(b) D1 

 

 
(c) D2 

 
(d) D3 

 
Figure A2.30 Reliability diagram of four EDPs for SRI12 

 


	Chapter 1. Introduction 
	1.1 Problem Statement 
	1.2 Research Objectives 
	1.3 Thesis Organization 

	Chapter 2. Literature Review 
	2.1 Drought Measures 
	2.2 Drought Prediction Methods 
	2.2.1 Deterministic Approach 
	2.2.2 Probabilistic Approach

	2.3 Practical Use of Probabilistic Prediction
	2.4 Drought Prediction in Korea

	Chapter 3. Methodology 
	3.1 Ensemble Prediction 
	3.1.1 Concept of Ensemble 
	3.1.2 Ensemble Streamflow Prediction (ESP) 
	3.1.3 Ensemble Drought Prediction (EDP) 

	3.2 Bayes' Theorem 
	3.2.1 Prior Distribution 
	3.2.2 Likelihood function 
	3.2.3 Posterior Distribution 

	3.3 Performance Measures 
	3.3.1 Deterministic Approach 
	3.3.2 Probabilistic Approach 


	Chapter 4. Application 
	4.1 Study Area 
	4.2 Data Sets 
	4.2.1 Observed Data 
	4.2.2 ESP Dataset 
	4.2.3 Soil Moisture Index (SMI) 

	4.3 EDP with SMI
	4.3.1 Modeling Framework 
	4.3.2 Results and Discussion

	4.4 EDP with Probabilistic Precipitation Forecast 
	4.4.1 Probabilistic Precipitation Forecast by APCC 
	4.4.2 Modeling Framework 
	4.4.3 Results and Discussion 


	Chapter 5. Conclusion 
	5.1 Summary and Conclusions
	5.2 Future Study

	References 
	Appendix 
	A-1 Ensemble Streamflow Prediction Results 
	A-2 Ensemble Drought Prediction Results 


<startpage>11
Chapter 1. Introduction  1
 1.1 Problem Statement  1
 1.2 Research Objectives  2
 1.3 Thesis Organization  2
Chapter 2. Literature Review  3
 2.1 Drought Measures  3
 2.2 Drought Prediction Methods  4
  2.2.1 Deterministic Approach  4
  2.2.2 Probabilistic Approach 5
 2.3 Practical Use of Probabilistic Prediction 8
 2.4 Drought Prediction in Korea 13
Chapter 3. Methodology  16
 3.1 Ensemble Prediction  16
  3.1.1 Concept of Ensemble  16
  3.1.2 Ensemble Streamflow Prediction (ESP)  16
  3.1.3 Ensemble Drought Prediction (EDP)  19
 3.2 Bayes' Theorem  21
  3.2.1 Prior Distribution  21
  3.2.2 Likelihood function  21
  3.2.3 Posterior Distribution  22
 3.3 Performance Measures  23
  3.3.1 Deterministic Approach  23
  3.3.2 Probabilistic Approach  23
Chapter 4. Application  26
 4.1 Study Area  26
 4.2 Data Sets  28
  4.2.1 Observed Data  28
  4.2.2 ESP Dataset  28
  4.2.3 Soil Moisture Index (SMI)  30
 4.3 EDP with SMI 31
  4.3.1 Modeling Framework  31
  4.3.2 Results and Discussion 36
 4.4 EDP with Probabilistic Precipitation Forecast  42
  4.4.1 Probabilistic Precipitation Forecast by APCC  42
  4.4.2 Modeling Framework  42
  4.4.3 Results and Discussion  45
Chapter 5. Conclusion  47
 5.1 Summary and Conclusions 47
 5.2 Future Study 49
References  50
Appendix  58
A-1 Ensemble Streamflow Prediction Results  58
A-2 Ensemble Drought Prediction Results  61
</body>

