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Abstract 

 
The public bicycle sharing system is one of the modes of transportation that can help 

to relieve several urban problems, such as traffic congestion and air pollution. 

Because users can pick up and return bicycles anytime and anywhere a station is 

located, pickup or return failure can occur due to the spatiotemporal imbalances in 

demand. To prevent system failures, the operator should establish an appropriate 

repositioning strategy. As the operator makes a decision based on the predicted 

demand information, the accuracy of forecasting demand is an essential factor. Due 

to the stochastic nature of demand, however, the occurrence of prediction errors is 

inevitable.  

This study develops a stochastic dynamic model that minimizes unmet demand 

for rebalancing public bicycle sharing systems, taking into account the stochastic 

demand and the dynamic characteristics of the system. Since the repositioning 

mechanism corresponds to the sequential decision-making problem, this study 

applies the Markov decision process to the problem. To solve the Markov decision 

process, a dynamic programming method, which decomposes complex problems 

into simple subproblems to derive an exact solution. However, as a set of states and 

actions of the Markov decision process become more extensive, the computational 

complexity increases and it is intractable to derive solutions. An approximate 

dynamic programming method is introduced to derive an approximate solution. 

Further, a reinforcement learning model is applied to obtain a feasible solution in a 

large-scale public bicycle network. 

It is assumed that the predicted demand is derived from the random forest, 

which is a kind of machine learning technique, and that the observed demand 

occurred along the Poisson distribution whose mean is the predicted demand to 

simulate the uncertainty of the future demand. Total unmet demand is used as a key 

performance indicator in this study. 

In this study, a repositioning strategy that quickly responds to the prediction 

error, which means the difference between the observed demand and the predicted 

demand, is developed and the effectiveness is assessed. Strategies developed in 

previous studies or applied in the field are also modeled and compared with the 

results to verify the effectiveness of the strategy. Besides, the effects of various safety 
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buffers and safety stock are examined and appropriate strategies are suggested for 

each situation. 

As a result of the analysis, the repositioning effect by the developed strategy 

was improved compared to the benchmark strategies. In particular, the effect of a 

strategy focusing on stations with high prediction errors is similar to the effect of a 

strategy considering all stations, but the computation time can be further reduced. 

Through this study, the utilization and reliability of the public bicycle system can be 

improved through the efficient operation without expanding the infrastructure. 

 

Keywords: Markov Decision Process, Public bicycle sharing system, Real-time 

dynamic programming, Reinforcement learning, Repositioning 

Student Number: 2014-21505 
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Chapter 1. Introduction 

 

1.1 Research Background and Purposes 

 

1.1.1 Public bicycle sharing system 

 

As the development of ICT (Information Communication Technology) and the 

spread of smartphones enable real-time transmission and reception of data, the 

importance of a shared economy has been growing. A shared economy is based on 

collaborative consumption, in which produced products are shared by multiple 

people (Lessig, 2008). In terms of the efficient use of idle assets, the paradigm shifts 

from an era of individual ownership to an era of sharing goods or service, such as 

Uber, Airbnb and WeWork. The importance of a shared economy is expected to grow 

more and more due to the advantages of cost saving and convenient use, and services 

utilizing the concept are appearing continuously in every industrial sector. Typical 

examples of shared economy in the transportation sector are the car sharing system 

and the public bicycle sharing (PBS) system. 

The PBS system, which contributes to alleviating urban problems such as traffic 

congestion and air pollution is a sustainable transportation mode that can meet last-

mile traffic demands. After the introduction of the first generation of the PBS system 

in Amsterdam, Netherlands in 1968, many cities around the world have introduced 

the system (Shaheen et al., 2010). The number of cities operating a bicycle sharing 

system has increased from 13 in 2004 to 855 in 2014 (Fishman, 2016) and 1,608 

systems were in operation and 391 prepared to be introduced as of June 2018 

(Meddin, 2018).  

In South Korea, the PBS system was first introduced in Changwon in 2008 with 

20 stations and 430 bicycles (Shaheen et al., 2010) and since October 2015, a public 



 

 ２ 

bicycle project (Ttareungyi) has been operated in Seoul, the capital city of South 

Korea. In the early days of the project, the number of users was low due to the 

concentration of the stations in a few areas, but the number increased sharply as the 

network expanded throughout Seoul. The system is so popular that Seoul citizens 

picked the Seoul Public Bicycle as the first place among the Seoul 2017 top-10 news 

(See http://english.seoul.go.kr/top-10-news-picks-2017-seoul-citizens). Despite the 

mountainous terrain in Seoul, users picked up an average of 4,400 bicycles per day 

in 2016 and the number increased to 27,000 bicycles per day in 2018. Because of the 

high utilization in Seoul, the city has expanded more stations and bicycles throughout 

the city. 

The service is popular because the PBS system has the advantage of allowing 

users to pick up and return bicycles wherever stations are located. It has been 

observed that public bicycles were used for commute trips to and from subway 

stations as well as for leisure trips in parks, indicating use for various trip purposes. 

Accordingly, academic interest in public bicycle sharing systems is increasing 

in terms of planning and operating strategies (Nath and Rambha, 2019). Strategic 

planning includes areas such as a network design or the number of stations, station 

location or capacity determination. A typical example of operational planning is 

relocating bicycles. 

 

1.1.2 Reposition of the public bicycle 

 

Due to the random arrivals of PBS system users, a rapid change in the number of 

bicycles may result in an imbalance in station inventory. Figure 1.1 shows the 

number of empty and full instances of the PBS system in New York. It showed that 

about 20,000 times a month of empty state or more than 600 times a day on average. 

If pickup or return failure occurs repeatedly, the reliability of the system decreases. 

Figure 1.2 shows the inventory fluctuation of a station in the PBS system in Seoul 
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on 22 August 2017. If system failure repeats, users are unlikely to use public bicycles 

and they change their transportation mode. Therefore, to prevent the system failure, 

operators should establish a repositioning strategy. Most operators have employees 

deliver additional bicycles with trucks from stations where bicycles are plentiful to 

stations where more bicycles are needed. 

 

 

Source: Capital Bikeshare (http://cabidashboard.ddot.dc.gov/CaBiDashboard/) 

Figure 1.1 Number of full/empty instances by month of Capital Bikeshare system 

in 2014 

 

Figure 1.2 Inventory variation of ST-9 in Seoul Bicycle Sharing System 

However, repositioning using trucks is limited by resources such as staff and 
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vehicles because the staffs should deal with the problems of bicycles that are broken 

or returned incompletely. Staff experience shows a tendency to move only to the 

shortest path or relocate bicycles from the current location to the nearest station. In 

the system in Paris, average bicycle usage was 110,000 bicycles per day, but only 

3,000 bicycles were repositioned (Legros, 2019). 

As the system size increases and a city becomes congested, the cost of 

repositioning public bicycles increases dramatically (Shin et al., 2012). As PBS 

systems are increasingly expanding, it is time to establish strategies to minimize 

repositioning costs. In addition, because the PBS systems in Korea were established 

by the public government, it is necessary to optimize the repositioning route in order 

to reduce costs and improve system efficiency. 

A repositioning strategy aims to find an optimized route for the vehicle and to 

determine the optimal number of bicycles to load or unload for each station (Hagen 

and Gleditsch, 2018). To find an optimum number for bicycle distribution it is 

necessary to have accurate demand forecasting. Forecasting demand has been 

suggested as one of the challenges that a fourth-generation system must deal with 

(Shaheen et al., 2010). If the accuracy of the prediction is low, the safety stock needs 

to be increased to prevent the system failure. For example, Brinkmann et al. (2019) 

found that a repositioning strategy considering future demand was superior to the 

current strategy which focuses on deploying bicycles around nearby stations that 

have a shortage. This is because the bicycles are repositioned in advance to meet 

peak hour demand, reducing the unmet demands. 

Due to external conditions or limitations of forecasting techniques, however, 

incorrect prediction inevitably occurs. Figure 1.3 shows the observed and the 

forecasted pickup demands of two stations, with one station not having a significant 

difference between the two values and the other having a potential error in 

distributing fewer bicycles due to the underestimated demand. Therefore, it is 
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necessary to respond to any errors that may occur in forecasting demand. 

 

 

Figure 1.3 Observed and forecasted pickup frequency (20 Sep 2017) 

 

1.1.3 Bicycle rebalancing problems as a sequential decision problem 

 

The bicycle rebalancing problem can be represented as a sequential decision-making 

problem. After making a decision and observing the information, an agent makes 

more decisions and obtains more information. In other words, if the agent decides 

how many bikes to deliver or withdraw and the next station to move to, the system 

changes depending on the amount of the relocation and user demand. In the changed 

system, the agent makes a decision again, and the process of changing the system 

accordingly is repeated. 

The sequential decision-making problem is classically formulated using a 

Markov Decision Process (MDP). MDP is a powerful analytical tool used for 

sequential decision making under uncertainty (Alagoz et al., 2010). It can lead to 

exact optimal policies in the long-run in a stochastic context (Legros, 2019). The 

stochastic nature of the system mandates that the rebalancing operation reacts to 

changing conditions in a timely manner (Kang et al., 2008). Solution methods of the 
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MDP include dynamic programming, evolutionary algorithm, or reinforcement 

learning. 

Dynamic programming refers to a methodology to solve the problem by 

decomposing simple subproblems. It is well developed mathematically, but require 

a complete and accurate model of the environment (Sutton and Barto, 2018). When 

the size of state space and action space of the MDP increases, it is impossible to 

calculate the expected cost for all states and actions (curse of dimensionality). 

Therefore, dynamic programming has limitations in solving the problem and an 

approximate method should be considered for this system. 

However, the complexity of the problem leads to a long time to solve the 

problem. The bicycle rebalancing problem has more things to consider than general 

VRPs. For example, the agent should identify the customers' inventory and the 

number of items to be loaded or unloaded from the vehicle. Therefore, it is necessary 

to have an algorithm that can solve the problem in a short time, and accordingly, 

most studies on rebalancing public bicycles have avoided use of the MDP 

methodology. Previous studies based on MDP simplified the problem, such as 

delivering bikes at a safety buffer margin or target fill levels or by visiting the nearest 

unbalanced station (Brinkmann et al., 2015). Stations are located throughout a city, 

but repositions are operated by zone. Therefore, problem decomposition considering 

repositioning context is required. 

 

1.1.4 Research purpose 

 

The purpose of this study is to develop a rebalancing model with stochastic demands 

and dynamic characteristics of PBS systems considering a fixed planning horizon. 

Stochastic means that demand is not known in advance and follows a stochastic 

distribution and dynamic means that subsequent decisions are made over a planning 

horizon (Brinkmann et al., 2019). As the demand fluctuates stochastically, there 
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occurs an error due to the difference between the forecasted and the observed 

demand and this leads to the necessity of repositioning by operators. For this purpose, 

the stochastic distribution of user demand is applied using historical data and 

dynamic programming is used. The effects of each strategy are evaluated according 

to various changes in conditions, such as network density and demand pattern. The 

performance of this model is compared with the performance of the strategies in the 

literature and greedy heuristics. Ultimately, policy implications are presented by 

proposing appropriate repositioning strategies for various situations. 

 

1.2 Research Scope and Procedure 

 

1.2.1 Research scope 

 

The spatial scope of this study is Yeouido, Seoul in which there are 31 stations 

(Figure 1.4). Yeouido is one of the areas where the PBS system was launched in 

Seoul in 2015. There are business areas and parks, so the demand for commuters and 

park users is higher than that of other areas. The depot is also included in this study 

though it is located outside Yeouido because departure and arrival of the truck are 

made in the depot. The temporal scope is from August 2016 to September 2017, 

when pickup and return data could be obtained. 
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Figure 1.4 Location of stations and depot in Yeouido, Seoul 

 

1.2.2 Research procedure 

 

As shown in Figure 1.5, this study consists of literature review, model formulation, 

algorithm development, case study, discussions, and conclusions. Chapter 2 reviews 

the literature on PBS systems and especially repositioning issues. Chapter 3 

describes the assumptions of this study, the model formulations, and MDP used in 

this study. Chapter 4 describes the algorithm used in this study such as real-time 

dynamic programming and reinforcement learning algorithm that were applied in 

this study. In Chapter 5, numerical examples are presented and the results are 

discussed. Data descriptions and descriptive statistics are also presented. Chapter 6 

provides conclusions and ideas for future research. 
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Figure 1.5 Research procedure 
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Chapter 2. Literature Review 

 

2.1 Vehicle Routing Problems 

 

A public bicycle repositioning problem is a vehicle routing problem (VRP) designing 

route of the repositioning vehicle, so the literature review begins with VRP. VRP was 

first introduced by Dantzig and Ramser (1959) as the Truck Dispatching Problem 

(Braekers et al., 2016). Subsequent subdivisions have been conducted, and more 

recently Mahmoudi and Zhou (2016) proposed the new time-discretized multi-

commodity network flow model about vehicle routing problems with pickup and 

delivery with time windows (VRPPDTW); they allow the joint optimization of 

passenger-to-vehicle by incorporating the vehicle's status within the space-time 

transportation network. 

VRP consists of various problems according to conditions and constraints. 

Rebalancing problem of PBS systems belongs to 1-PDTSP (one-commodity pickup 

and delivery traveling salesman problem), given that it is a problem of deriving the 

route to withdraw or distribute a single item, or a bicycle. Toth and Vigo (2014) 

described a bicycle repositioning problem as many-to-many problem since the public 

bicycle may have multiple origins and destinations and any station may be the origin 

or destination of the public bicycle. 

 

2.1.1 Inventory routing problem 

 

The inventory routing problem (IRP) deals with how suppliers deliver goods to 

customers within a given time. IRP integrates inventory management, vehicle 

routing, delivery-scheduling decisions (Coelho et al., 2014). Bell et al. (1983) first 

proposed the IRP to solve the cost minimization problem satisfying the customer 

inventory level under the stochastic demands. 
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A stochastic and dynamic inventory routing problem (SDIRP) is described in 

this section. Godfrey and Powell (2002) addressed a stochastic and dynamic resource 

allocation problem. A value function approximation (VFA) was used to anticipate 

potential future demand. A set of customers needs to be served over a set of days in 

Adelman (2004). For each day, a routing and inventory decision was determined. 

Bertazzi et al. (2013) applied a rollout algorithm (RA) to a SDIRP but RAs required 

a significant amount of runtime. Coelho et al. (2014) considered a problem that a 

route through a set of customers needs to be determined every day. This problem was 

deterministic based on average demand over a limited time horizon. Most SDIRP 

studies had limitations that continuously revealed demand has not been considered. 

 

2.1.2 One commodity pickup-and-delivery TSP (1-PDTSP) 

 

Mosheiov (1994) proposed a specified Travelling Salesman Problem (TSP), which 

exists pickup or delivery customers. Hernández-Pérez and Salazar-Gonzalez (2004) 

solved 1-PDTSP which minimizes traveling distance by applying the branch-and-cut 

algorithm, but there was a constraint that all nodes should be visited only once. Lei 

and Ouyang (2018) interpreted the repositioning issue of the PBS system as 1-

PDTSP and used Continuous approximation (CA) approach. Hernández-Pérez et al. 

(2018) specified the repositioning problem of public bicycle as Split Delivery One 

Commodity Pickup-and-Delivery Travelling Salesman Problem (SD1PDTSP), and 

proposed a matheuristic algorithm that can solve the large-sized problem. 

SD1PDTSP is a problem that combines a capacitated vehicle routing problem 

(CVRP), a split demand vehicle routing problem (SDVRP), and 1-PDTSP. In their 

study, the maximum number of visits were limited to parameters and the station 

where there was no demand was also visited by trucks. 
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2.2 Bicycle Repositioning Problem 

 

Research issues on PBS systems include the usage demand prediction, the 

repositioning strategies establishment including VRP, the incentive strategies to 

users, and the station location or capacity determination. Most studies have focused 

on the issues on the demand forecasting or the repositioning strategies of public 

bicycles. 

Study on repositioning public bicycles is divided into two types, depending on 

the assumptions of when the operation is carried out. The first is the static bicycle 

repositioning problem (SBRP), which is assumed to ignore user activity as shown in 

Figure 2.1. This type can be regarded as an operation at night. As user demand 

increases during the daytime, however, there is a limit to just adjusting inventory 

after work hours (Zhang et al., 2017). In addition, demand often occurs randomly 

and user activity can change as a result of repositioning. In other words, although the 

system is actually a dynamic bicycle repositioning problem (DBRP) that changes 

over time, the complexity of the problem has led to the research on SBRP. Therefore, 

it is necessary to establish repositioning strategies that reflect forecasted demands to 

respond to changing inventories in real-time. 

 

 

Source: Zhang et al. (2017) 

Figure 2.1 The repositioning period and forecasting period for SBRP 

The repositioning problem can also be classified as offline and online methods. 

Offline methods assume perfect knowledge of input data and do not react to changing 
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system states. Online methods react to the current inventory level and potentially 

other external factors. Most literature proposed use of a rolling horizon or an MDP 

and reinforcement learning framework. In this study, the previous studies are divided 

into SBRP and DBRP. 

 

2.2.1 Static bicycle repositioning problem (SBRP) 

 

Most of the studies on the bicycle repositioning problem focused on the SBRP. User 

demand is not comprised or assumed to be known in advance in the problem (Nath 

and Rambha, 2019). Chemla et al. (2011) proposed an exact algorithm based on the 

column generation. Erdoğan et al. (2015) constructed 1-PDTSP and branch-an-cut 

algorithm and solved the problem up to 60 stations within two hours with exact 

algorithm.  

Raviv et al. (2013) proposed a penalty function that represented the expected 

number of shortages and included loading and unloading times within a time-

constrained setting; they minimized the total cost of the system using mixed integer 

linear program (MILP).  

Schuijbroek et al. (2017) designed optimal vehicle routes in terms of two 

aspects, determining the service level requirements at each station and designing 

optimal vehicle routes to balance the inventory. 

Lin and Yang (2011) studied strategic design of public bicycle sharing systems 

with service level constraints; they proposed a formulation in which the penalty cost 

incurred by the unmet demand was added to the terms for the objective function, 

considering the number and the location of stations in the PBS system and the bicycle 

road network. The study assumed that future demand was fixed or followed the 

previous demand patterns and had no consideration on rebalancing bicycles.  

Lin et al. (2013) formulated an objective function providing penalty costs 

associated with uncovered demand when considering the number and locations of 
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stations in the system and the network structure of bicycle lanes between stations. 

Ho and Szeto (2016) minimized the total travel cost incurred from visiting the nodes 

using greedy randomized adaptive search procedure (GRASP). Szeto et al. (2016) 

used the chemical reaction optimization (CRO) algorithm to minimize the weighted 

sum of the total number of unsatisfied customers and the vehicle’s total operational 

time. 

Although SBRP regards minimizing travel time (or distance) to be an essential 

factor, the problem has a limitation that the ultimate goal of the PBS system cannot 

be achieved in terms of its inability to respond after a daytime failure occurs. SBRP 

cannot handle non-recurring forms of demand fluctuations such as those due to 

weather or special events (Nath and Rambha, 2019). 

 

2.2.2 Dynamic bicycle repositioning problem (DBRP) 

 

DBRP focuses on minimizing unmet demand (or user dissatisfaction) that occurs 

during the repositioning process rather than on minimizing travel cost. As illustrated, 

most DBRP studies assumed a deterministic demand. Contardo et al. (2012) 

improved the computation time to solve the problem using a Dantzig-Wolfe 

decomposition and Benders decomposition and upper and lower bounds of the unmet 

demand were obtained. The assumption of the not time-varying demand was a 

limitation of the research.  

Wang (2014) proposed a new mixed integer programming (MIP) model 

considering the dynamic characteristics of demand and compared the performance 

of the two heuristic solutions with an exact solution. The rolling horizon approach 

and Benders decomposition were applied to the study. Shui and Szeto (2018) 

introduced the environmental aspect of the PBS systems; they minimized the 

weighted sum of total unmet demand and total fuel and CO2 emission cost using the 

artificial bee colony algorithm. 
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The assumptions in previous studies do not accurately reflect reality, as the 

predetermined route may be wrong due to the uncertainty in demand. More accurate 

estimates of demand for each station could reduce the inefficient movement of trucks 

and bicycles. Therefore, demand forecasting is the most basic and fundamental step 

for establishing dynamic repositioning strategies. 

Zhang et al. (2017) developed an integrated model for forecasting inventory 

level, forecasting demand, repositioning, and routing; and they allowed employees 

to visit a station up to one time within the time window. Hagen and Gleditsch (2018) 

simplified and approximated the problem into a deterministic subproblem that 

assumed the known demands and the column generation heuristics were applied to 

the problem. 

Fernández et al. (2018) presented four dynamic strategies: keeping inventory 

high, keeping inventory rates high, considering travel distances with inventory or 

inventory rates, and taking inventory of neighborhood stations into account together. 

Chiariotti et al. (2018) presented a strategy that first modeled the station inventory 

rate and determined the repositioning time and then selected the vehicle route and 

stations. 

In a dynamic system, consideration needs to be given to dynamic 

characteristics that can be changed through decision making. In the public bicycle 

system, the static characteristics are nearby stations, the number of docks, the 

average number of pickups, or demand variation. The dynamic characteristics are 

inventory, the number of loading or unloading bicycles, repositioning route, or 

prediction error. 
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Table 2.1 Summary of the static bicycle repositioning problem in the literature 

Reference Objective Algorithm Stochasticity Dynamism Number of 

stations 

Ho and Szeto 

(2014) 

Minimize the total penalty cost Tabu search X X 400 

Erdoğan et al. 

(2015) 

Minimize the total travel cost Combinatorial Benders’ cut X X 59 

Dell’Amico et 

al. (2016) 

Minimize the travel cost Destroy and repair, branch-

and-cut 

X X 564 

Ho and Szeto 

(2016) 

Minimize the total travel cost incurred 

from visiting the nodes 

Greedy randomized adaptive 

search procedure (GRASP) 

X X 454 

Szeto et al. 

(2016) 

Minimize the weighted sum of unmet 

demand and the vehicle’s operational 

time 

Chemical reaction 

optimization (CRO) 

X X 300 

Ho and Szeto 

(2017) 

Minimize the weighted sum of the 

penalty cost and total travel time 

Hybrid large neighborhood 

search (H-LNS) 

X X 518 

Tang et al. 

(2019) 

Minimizes the total penalty cost 

(upper-level model); minimizes the 

travel cost (the lower-level model) 

Iterated local search and 

tabu search 

X X 20~200 
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Table 2.2 Summary of the dynamic bicycle repositioning problem in the literature 

Reference Objective Algorithm Stochasticity Dynamism Number of 

stations 

Contardo et al. 

(2012) 

Minimize the unmet demand Dantzig-Wolfe 

decomposition, Benders 

decomposition 

X X 100 

Zhang et al. 

(2017) 

Minimize the total vehicle travel costs 

and the expected user dissatisfaction in 

the system 

Heuristic algorithm O O 200 

Shui and 

Szeto (2018) 

Minimize the weighted sum of total 

unmet demand and total fuel and CO2 

emission cost 

Artificial bee colony X O 180 

Chiariotti et 

al. (2018) 

Minimize the probability of the chance 

that a user experiences a service failure 

Heuristic algorithm O O 280 

Hagen and 

Gleditsch 

(2018) 

Minimize the total violations, the total 

deviation, and the reward given for 

initiating trips 

Column generation O O 158 

Brinkmann et 

al. (2019) 

Minimize the expected amount of 

unmet demand 

Dynamic lookahead policy O O 169 

Legros (2019) Minimize the long-run overall rate of 

arrival of unsatisfied users 

Dynamic programming O O 30 
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2.2.3 Relocation problem in other sharing systems 

 

The study on the rebalance of one-way carsharing systems is relatively older than 

the study on the rebalance of the PBS systems. In this study, the scope of the review 

of the study on the car-sharing system is limited to station-based and staff-based 

relocation.  

Proactive methods prepare the system for the expected future demand (Barth 

and Todd, 1999; Repoux et al., 2019) For example, reservation information is used 

to estimate the expected demand losses due to vehicle and spot shortages. On the 

other hand, active methods mean the shortest time and inventory balancing (Kek et 

al., 2006; Kek et al., 2009). The shortest time means that staff moves vehicles to or 

from a neighboring station in the shortest possible time. Inventory balancing implies 

filling a station that has a shortage of cars with a vehicle from another station which 

has an oversupply of cars. 

A dynamic model means that the operation is executed successively at every 

event (Nourinejad and Roorda, 2014). This model is similar to the dynamic case in 

the PBS system, which is to find the optimal relocation and to find the corresponding 

relocation times (i.e., when to relocate a vehicle). 

Unlike the PBS system, the one-way car sharing system has a characteristic to 

make reservations in advance, so this information can be used to rebalance systems. 

On the other hand, the PBS systems are not generally reserved, so demand 

forecasting is essential to reposition bicycles. 

 

2.2.4 Demand Forecasting 

 

Research on forecasting demand for shared public bicycles has been conducted for 

about ten years, and most of the studies have been published in the last five years. 

This section summarizes the contents of Seo et al. (2020). 
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In the past, traditional methods have been used to forecast demand. The 

conventional method such as multivariate linear regression was shown not to be 

proper for bicycle demand forecast (Feng and Wang, 2017). With the accumulation 

of abundant data and the development of machine-learning techniques, machine 

learning is currently being used to predict the demand for public bicycles. Many 

studies have used temporal factors such as hour, day, month, weekday, and holidays 

as well as meteorological factors such as temperature, precipitation, and wind speed 

to predict the demand for public bicycles. 

Rudloff and Lackner (2014) proposed three ways to respond to a lack of demand: 

increasing the size of the system or the stations where there occurs regular full or 

lack events, repositioning with incentive, or repositioning using employees. The 

study developed demand models for pickups and returns for the Citybike Wien 

system in Vienna. They used count models, such as Poisson, negative binomial, and 

hurdle models. They considered meteorological factors as influences on demand and 

showed that the introduction of new stations was important in modeling the demand 

function. 

Parikh and Ukkusuri (2015) suggested optimal inventory levels at the stations 

of a PBS system. Inventory levels were calculated for the stations that minimized the 

total penalty for the system after the penalty functions were estimated. Fournier et 

al. (2017) developed an estimation method of the monthly average daily bicycle 

counts and the average annual daily bicycle counts using a sinusoidal model to fit 

the typical pattern of seasonal bicycle demand. To develop the models, they used 

data from bicycle sharing systems in four cities and 47 permanent bicycle counters 

in six cities. However, this study was not appropriate for predicting daily fluctuations 

in demand.  

Singhvi et al. (2015) predicted the demand of the bike-sharing system in New 

York by focusing on the morning peak during weekdays, with the use of taxis, 
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weather, and spatial variables as covariates. The study showed that aggregating 

stations in neighborhoods could improve the accuracy of the predictions. Rixey 

(2013) studied the effect of demographic and built-environment characteristics on 

the bicycle sharing system in Washington, D.C., Minneapolis-Saint Paul, and Denver 

in the United States.  

Yang et al. (2016) suggested a spatio-temporal mobility model of bicycles based 

on historical bicycle sharing data and devised a traffic prediction mechanism based 

on station and time. Based on more than 100 million pickup records, the mobility 

model showed high prediction accuracy. 30-minute weather data (temperature, dew 

point, pressure, humidity, visibility, wind direction, wind speed, and conditions) 

were combined. The results of the evaluation showed an 85th-percentile relative 

error of 0.6 for predicting both pickups and returns. Regue and Recker (2014) 

addressed the station’s activity, which was the standard deviation of the number of 

bicycles at the station during the last six intervals. 

Since pickup and drop-off properties are different for each station, it is 

necessary to set the demand forecasting frequency concerning these characteristics. 

Some stations require frequent prediction, while other stations are enough to apply a 

modest prediction cycle. Most previous studies also have predicted future demand 

by considering temporal and meteorological factors. Under the same conditions, 

however, different demand patterns can appear. The number of activities in the 

previous time periods is required to detect this trend earlier. Faghih-Imani and Eluru 

(2016) analyzed the effect of time lag variables (one hour, one day, and one week 

before) on the arrival and departure rates, but the computation complexity required 

to take advantage of 1-hour before information in real-time was not considered.
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Table 2.3 Summary of the demand forecasting for the PBS system in the literature 

Reference Research Site Timespan 

of Data 

Demand Level Model Variables 

Rudloff and 

Lackner 

(2014) 

Vienna, Austria 3 years 

(2010-2012) 

• Station-level Poisson, Negative 

binomial, Hurdle 

• Weather 

• Full or empty neighboring statio

ns on demand 

Parikh and 

Ukkusuri 

(2015) 

Antwerp, Belgium 1 year 

(unknown) 

• Station-level Negative binomial • Starting inventory level at the 

station 

Regue and 

Recker 

(2014) 

Boston, U.S. 3 months 

(2012) 

• Station-level Linear regression, Neural 

networks, Gradient 

boosting machines 

• Weather 

• Time 

• Station activity 

Rixey 

(2013) 

Washington, D.C., 

Minneapolis-Saint 

Paul, and Denver, U.S. 

6-8 months 

(2010-2011) 

• Station-level Linear regression • Demographic factors 

• Built environment factors 

• Transportation network factors 

Singhvi et 

al. (2015) 

New York, U.S. 1 month 

(2014) 

• Station-level 

• Neighborhood-

level 

Linear regression • Taxi usage 

• Weather 

• Spatial factors 

Fournier et 

al. (2017) 

Boston, Washington, 

D.C., New York, and 

Saint Paul, U.S. 

3-5 years 

(2010-2015) 

• Station-level Regression • Time 

• Number of bicycles 
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Froehlich et 

al. (2009) 

Barcelona, Spain 13 weeks 

(2008) 

• Station-level Bayesian network • Time 

• Number of bicycles 

• Prediction window 

Lin et al. 

(2018) 

New York, U.S. 3 years 

(2013-2016) 

• Station-level Graph Convolutional 

Neural Network with 

Data-driven Graph Filter 

• Spatial distance 

• Demand 

• Average trip duration 

• Demand correlation 

Yang et al. 

(2016) 

Hangzhou, China 1 year 

(2013) 

• Station-level Random forest • Weather 

Source: Seo et al. (2020)
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2.3 Markov Decision Processes 

 

2.3.1 Markov Decision Processes 

 

As described in Section 1.1.3, the bicycle rebalancing problem can be represented as 

a sequential decision-making problem. A relocation staff person determines the 

number of bikes to load or unload according to the current system state and moves 

to the next station where repositioning is required. As a result, more users can pick 

up or return bicycles and the staff repeats the same process according to the 

transitioned environment. 

An MDP model can represent this type of problem. The model is composed of 

five factors: state, action, transition probability, reward, and discount factor. In the 

model, the set of actions, the rewards, and the transition probabilities depend only 

on the current state and action and not on states occupied and actions chosen in the 

past (Puterman, 2014). MDPs can formalize dynamic programming and 

reinforcement learning problems. 

Research on the relocation of bicycles using MDP is rare and has recently 

begun to be studied. Legros (2019) tried to minimize the long-run rate of unmet 

demand and analyzed the case of a single vehicle and a time horizon that was 

segmented into periods of equal length without considering a predefined route. 

Brinkmann et al. (2019) developed a dynamic lookahead policy (DLA) 

heuristic and showed that the RA could not obtain competitive results within a 

reasonable calculation time. The inventory decision was made to minimize 

unsatisfied demand at the current station within the horizon, and the routing decision 

was made to select the station that could most prevent unsatisfied demand within the 

horizon. The horizons per hour were determined by non-parametric VFA. The study 

was limited by the lengthy window period (1 hour). 
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2.3.2 Dynamic programming 

 

Dynamic programming, proposed by Richard Bellman, is a method of solving a 

complex problem by breaking it down into simpler sub-problems in a recursive 

manner. The method has been widely used in many real fields such as transportation, 

finance, resource allocation (Powell, 2011). The shortest path problem is a well-

known example of dynamic programming in a transportation network. 

A mathematical form that describes the decision problem at each stage is 

named Bellman equation (Hamilton-Jacobi equation). The Bellman equation is as 

follows: 

 

𝑉(𝑥𝑡) = max[𝐹(𝑥𝑡 , 𝑥𝑡+1) + 𝛽𝑉(𝑥𝑡+1)] 

 

where, 𝑉(𝑥𝑡): value function at state 𝑥 at stage 𝑡 

𝐹(𝑥𝑡 , 𝑥𝑡+1): cost from 𝑥𝑡 to 𝑥𝑡+1 

𝛽: discount factor 

 

Dynamic programming calculates value function for all states. When the size 

of a state space and an action space of a model increases, it is impossible to calculate 

the expected cost for all states and actions. The state elements and action elements 

defined in the relocation problem of PBS system are more numerous than the general 

VRPs. For example, Brinkmann et al. (2019) considered timestep, stations’ fill levels, 

vehicle’s current station, and vehicle load as elements of the state space. The action 

space included an inventory decision and a routing decision in the study. As network 

size increases, calculation time using dynamic programming increases exponentially. 

For this reason, dynamic programming has not been used much in public bicycle 

relocation problems. 
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2.3.3 Reinforcement learning 

 

Reinforcement learning method is a kind of learning method which inspires actions 

in response to the environment to maximize the agent’s cumulative rewards in their 

interactions with the environment (Sutton and Barto, 2018). The agent does not have 

information which actions to take but should discover which actions provide the 

most reward through trial and error. The method was not commonly used much in 

transportation engineering field. Traffic signal control is the only field in 

transportation engineering that reinforcement learning method has been applied. 

In terms of the sharing system, it consists of two approaches, a vehicle-based 

approach and a user-based approach. Li et al. (2018) proposed a clustering algorithm 

and a spatio-temporal reinforcement learning method for a vehicle-based approach. 

The clustering algorithm grouped stations and multiple trikes to reduce the problem 

complexity. The reinforcement learning model learned an optimal repositioning 

policy for each cluster, minimizing total unmet demand on a long-term horizon. 

In a user-based approach, Pan et al. (2019) decided how to pay different users 

at each time, to incentivize them to help rebalance the system using a hierarchical 

reinforcement pricing algorithm with an MDP model. An objective function of the 

study was to maximize the total number of satisfied requests, subject to the 

rebalancing budget. The study considered the fill levels for each region, budget, 

previous pickup and return demand, previous expense, and past un-service rate as 

the state factors. 

An et al. (2019) set an MDP problem with the goal of minimizing the cost of 

the car-sharing system. The study introduced two rewarding mechanisms, the 

picking bonus and the parking bonus to encourage users to balance the car-sharing 

system. The study used Deep Deterministic Policy Gradient (DDPG) method (actor-

critic method). 

 



 

 ２６ 

2.4 Implications and Contributions 

 

2.4.1 Implications 

 

Based on a review of related work, although in reality the system changes over time, 

SBRP is mainly studied academically due to the complexity of the problem. Most 

DBRP studies considered deterministic demand and focused on minimizing the 

unmet demand during the repositioning process using the time-space network or 

MDP. Research using a time-space network is difficult to implement decision-

making behavior including future information. 

It is necessary to develop a model that simulates stochastic demands and 

dynamic programming for public bicycles. As the demands are stochastic and the in 

reality the system states are dynamic, stochastic dynamic programming for 

repositioning PBS systems is required. Other stochastic dynamic studies considered 

short-term strategies, but have not considered future demand (Brinkmann et al., 2015; 

Chiariotti et al., 2018). This strategy is similar to a simple heuristic. Even if the future 

demand is considered, only the next station to be visited is considered (Legros, 2019) 

or several target inventory levels are established (Brinkmann et al., 2019).  

Moreover, it is necessary to develop a repositioning strategy that can cope with 

the inevitable emergencies caused by these dynamic characteristics. The strategy 

should be able to proactively respond to inventory shortages or excess that may occur 

due to inaccuracies in demand forecasts or rapid fluctuations in demand. In previous 

studies, the time unit of analysis was a lengthy time-window, so there is a limit to 

the detailed response at a peak time. Also, detailed information on demand 

distribution is lacking. 
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2.4.2 Contributions 

 

The contributions of this study are as follows. This study develops an MDP based 

dynamic programming method that simulates the repositioning of the PBS systems 

with stochastic demand. Previous studies determined the agent’s action in each state 

through simulation, but this study determines optimal actions in a given state through 

the proposed algorithm. An approximate dynamic programming (ADP) is developed 

to overcome the limitation of dynamic programming calculation time due to large 

state space and action space. 

Reinforcement learning is also developed to apply the proposed algorithm to 

the real network. Future demand is predicted using the Seoul Bicycle Sharing system 

dataset. Little effort has been made to address the issue of relocating public bicycles 

using vehicles with reinforcement learning. Through the application to the real 

network, the implications of the proposed strategy and the policy implications of 

public bicycle relocation are presented. 

In DBRP, a methodology for dealing with stochastic demand is a critical issue 

for problem-solving. The long-term strategy in this study can consider future 

stochastic demand. The prediction accuracy is improved by including the lag 

information of the number of pickups or returns in the demand forecasting model. A 

statistical distribution of demand is assumed through a statistical test based on 

historical demand data to generate stochastic demand. 

This study develops a policy that effectively reduces the agents’ action 

candidates, and derives implications through performance comparison for each 

policy. As the network size increases, the number of action candidates also increases, 

so a policy to effectively reduce action space is required. The action space can be 

reduced while proactively responding to an unexpected fluctuation of demand.  
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Chapter 3. Model Formulation 

 

In this chapter, the model formulations are established for the development of 

dynamic repositioning strategies for the PBS system. This chapter describes 

definitions of sets and variables, problem definition, assumptions, model 

formulations, and key performance indicators. 

 

3.1 Problem Definition 

 

3.1.1 Notation 

 

A notation used in this study is described below. The notation is mainly referenced 

from Brinkmann et al. (2019). 

 

Sets 

𝑁 = {𝑛0, … , 𝑛max}    Set of stations (0: depot) 

𝑇 = {𝑡0, … 𝑡max}    Set of timesteps 

𝑆 = {𝑠0, … , 𝑠max}    Set of states 

𝐴𝑠 = {𝑎0, … , 𝑎max|𝑎 = (𝜄
𝑎 , 𝑛𝑎)},    ∀𝑠 ∈ 𝑆 Set of feasible actions 

Π = {𝜋0, … , 𝜋max|𝜋: 𝑆 → 𝐴}   Set of policies 

 

Indices 

𝑘     Action point 

𝑡𝑘 ∈ 𝑇    Point in time in state 𝑠𝑘 

𝑠𝑘
𝑎 = (𝑠𝑘, 𝑎),   ∀ 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴𝑠  Post-action states 
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Parameters 

𝑐𝑣    Vehicle capacity 

𝜏(∙,∙)   Travel time between two stations 

𝜏𝑟    Service time for relocation per bike 

𝑐𝑛    Station capacity 

𝛽    Safety buffer 

𝑧    z-score for the safety stock 

𝑝𝑘    Station observed pickup demand in time 𝑡𝑘 

𝑑𝑘    Station observed return demand in time 𝑡𝑘 

𝑝̂𝑘    Station predicted pickup demand in time 𝑡𝑘 

𝑑̂𝑘    Station predicted return demand in time 𝑡𝑘 

 

Variables 

𝑓𝑘
𝑣    Vehicle load in time 𝑡𝑘 

𝑛𝑘
𝑣 ∈ 𝑁   Vehicle location in time 𝑡𝑘 

𝑦𝑘    The number of delivered bicycles from vehicle  

   in time 𝑡𝑘 

𝑓𝑘 = (𝑓𝑘
𝑛0 , … , 𝑓𝑘

𝑛max)  Station fill levels in time 𝑡𝑘 

𝑖𝑘 = (𝑖𝑘
𝑛0 , … , 𝑖𝑘

𝑛max)  Station fill rate index in time 𝑡𝑘 

𝜄𝑎    Delivery decision 

𝑛𝑎    Next station decision 
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3.1.2 Problem definition 

 

Each station has an initial inventory 𝑓0
𝑛, a capacity 𝑐𝑛, and predicted pickup and 

return demand 𝑝𝑘
𝑛̂ , 𝑑𝑘

𝑛̂ in the time interval [𝑡0, 𝑡𝑘max]. The depot is assumed to have 

an enormous capacity and no demand. The observed pickup demand 𝑝𝑘 and return 

demand 𝑑𝑘  at timestep 𝑡𝑘  are not known in advance. At timestep 𝑡𝑘 , observed 

demands 𝑝𝑘−1
𝑛  and 𝑑𝑘−1

𝑛  are revealed respectively and inventory 𝑓𝑘
𝑛 is changed 

by the observed demands and delivery. An agent, a vehicle with loading capacity 𝑐𝑣, 

should start at depot 𝑛0 and return to the depot at the end of the time horizon. 

 

𝑘 = 𝑘max ⟺  𝐴𝑠𝑘 = {(𝜄
𝑠𝑘 ,  𝑛0)} 

 

The agent determines the number of bikes to be delivered or withdrawn at the 

current station and the next station to visit at every decision point. If pickup demand 

or return demand is not satisfied for each station due to lack of bicycles or docks, an 

unmet demand occurs. 

The aim of the problem in this study is to find a vehicle route and the number 

of bikes to deliver at stations so that the sum of the weighted sum of the expected 

unmet demand and the travel time is minimized. 

 

 

Figure 3.1 Prediction horizon in this study 
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3.1.3 Assumptions 

 

To simplify the problem, several assumptions were made in this study. First, it is 

assumed that the trip of public bicycles has a spatiotemporal pattern, and that future 

demand follows the historical pattern. Based on this assumption, future demand can 

be predicted using historical demand. In addition, observed demands are assumed to 

follow a non-homogeneous Poisson distribution to present customers’ random arrival 

processes. A detailed description of the Chi-square test to demonstrate this is 

provided in the next section. 

A station is allowed to be visited at most once excluding a depot. This 

assumption is reasonable for two reasons. First, the agent distributes or withdraws 

bicycles to reach a number of safety stock at the station in this study. The safety stock 

means inventory that prevents future stockout, so a single visit can prevent out of 

stock within the horizon. The second reason is that the assumption can make the 

solution space smaller, making the development of an efficient algorithm to solve 

the problem much easier (Ho and Szeto, 2014; Raviv et al., 2013). A vehicle has a 

capacity of 15 bicycles and travels to stations by Euclidean distance at a speed of 20 

km/h. Handling time is one minute per bicycle. 

 

3.1.3.1. Chi-square test for demand distribution 

 

A Chi-square goodness of fit test is performed on the return data to determine if the 

demand distribution for public bicycles follows a specific probability distribution 

function. The reason for using the return data is the characteristic of the PBS system 

in Seoul, which a bicycle can be returned unconditionally through connecting to 

another bicycle already returned. In other words, the return data is no censored data, 

so it is accurate to test the statistical distribution of the return demand. The time 
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period for the analysis was 10 minutes from 18:00 to 18:10, and the temporal range 

of this study is September, so the frequency of 10-minute return data from 17:50 to 

18:20 on September weekdays after 2016 was analyzed. 

The null hypothesis and the alternative hypothesis are as follows. 

 

Null hypothesis (𝐻0): Return frequency follows the Poisson distribution. 

Alternative hypothesis (𝐻1): Not 𝐻0 

 

The formula for the test statistics is 𝜒2 = ∑
(𝑂𝑖−𝐸𝑖)

2

𝐸𝑖

𝑘
𝑖=1  where 𝑘 is the number of 

classes, 𝑂𝑖 is an observed frequency, and 𝐸𝑖 is an expected frequency. 

As shown in Table 3.1, the p-values of only 7 stations were lower than 0.05 

among 31 stations in Yeouido. In other words, it was found that return frequency at 

only 7 stations did not follow the Poisson distribution. The characteristic of these 

stations is that the return occurs frequently. Examples of stations with high p-value 

(ST-61) and low p-value (ST-73) are presented in Figure 3.2. A maximum of two 

returns have been recorded in 10 minutes at the ST-63, but ST-73 had a maximum of 

14 returns. Based on the results of the Chi-square test, it is reasonable to assume that 

the demand in the model follows the Poisson distribution. 

  



 

 ３３ 

Table 3.1 Chi-square test results for stations in Yeouido 

Station 𝛌 𝛘𝟐 df p-value Station 𝛌 𝛘𝟐 df p-value 

ST-45 0.143 0.053 1 0.818 ST-66 0.794 5.874 3 0.118 

ST-46 0.381 2.314 3 0.510 ST-61 0.222 0.138 2 0.933 

ST-47 0.762 21.401 5 0.001 ST-62 0.540 4.590 3 0.204 

ST-51 0.365 0.188 2 0.910 ST-63 0.635 4.878 3 0.181 

ST-50 0.429 2.009 2 0.366 ST-67 0.984 4.100 5 0.535 

ST-52 0.397 1.157 3 0.763 ST-68 0.873 6.465 4 0.167 

ST-53 0.476 7.184 3 0.066 ST-69 0.603 2.536 2 0.281 

ST-73 4.492 108.784 12 0.000 ST-70 1.032 7.890 4 0.096 

ST-55 0.444 4.535 2 0.104 ST-71 0.667 8.751 3 0.033 

ST-56 0.762 2.806 4 0.591 ST-72 0.540 0.344 2 0.842 

ST-57 2.270 18.682 7 0.009 ST-296 0.683 Inf 5 0.000 

ST-58 1.063 11.826 5 0.037 ST-297 0.667 39.729 5 0.000 

ST-59 0.381 0.282 2 0.868 ST-414 0.302 0.273 2 0.872 

ST-60 0.302 3.829 3 0.281 ST-424 0.286 1.090 2 0.580 

ST-64 0.381 16.911 3 0.001 ST-425 0.238 0.295 2 0.863 

ST-65 0.937 8.438 5 0.134      
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Figure 3.2 Examples of observed return frequency and expected Poisson 

distribution: good-fit (upper) and bad-fit (lower) 

 

3.2 Markov Decision Processes 

 

3.2.1 Concept 

 

MDPs are based on the interaction of an agent and the environment (Figure 3.3). The 

agent makes a decision in a given state and the decision changes the environment. 
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The agent is given a reward and the next state information by the environment, which 

allows for the subsequent decision. 

 

  

Source: Sutton and Barto (2018) 

Figure 3.3 The agent-environment interaction in a Markov decision process 

The MDP model can be represented by a five-tuple, (𝑆, 𝐴, 𝑃𝑟, 𝑅, 𝛾). State (𝑆) 

represents the information of the entire environment at each moment. Action (𝐴) is 

agent’s action. Transition probability (𝑃𝑟) is defined as the probability of transition 

from state 𝑠𝑡 to state 𝑠𝑡+1 when taking an action 𝑎𝑡. The solution of this problem 

is to find the optimal policy 𝜋∗ ∈ Π which describes the best action for each state 

in the MDP.  

𝜋∗ = argmin
𝜋∈Π

𝔼 [ ∑ 𝑝(𝑠𝑘, 𝜋(𝑠𝑘))|𝑠0

𝑘𝑚𝑎𝑥 

𝑘=0

] 

 

A policy means a rule that determines a decision given the available information 

in state 𝑆𝑡  (Powell, 2011). A policy is classified into deterministic policy and 

stochastic policy. A deterministic policy represents one action in a given state, and a 

stochastic policy represents the probability of each action. Each tuple is described in 

detail in the following sections. 

The scheme of the PBS system can be represented by the MDP (Brinkmann et 

al., 2019; Puterman, 2014). In terms of rebalance to the PBS system, a fleet of trucks 
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serves as the agent and the system corresponds to the environment. The agent 

determines the number of bikes to deliver to the station from the vehicle or to 

withdraw from the station to the vehicle. A solution to the problem is the policy 

minimizing the expectation of the costs. Therefore, the objective is to find the 

optimal policy. 

 

3.2.1.2. State 

 

According to the study by Nath and Rambha (2019), states are typically comprised 

of inventory levels and locations of repositioning vehicles and their contents in the 

context of bike repositioning. The state space of this study is constructed with 

reference to Brinkmann et al. (2019). Three factors were included in the state space: 

(𝑡𝑘 , 𝑛𝑘
𝑣 , 𝑖𝑘). 𝑡𝑘 is the timestep, 𝑛𝑘

𝑣 is the current station of the vehicle, and 𝑖𝑘 are 

binary variables representing a station’s fill rate index. 𝑖𝑘 has a value of zero if the 

fill rate is between safety buffers, and one if otherwise. The safety buffer is defined 

as an interval of a certain percentage of capacity 𝑐𝑛, and the interval can be adjusted 

by 𝛽. 

𝑖𝑘 = {
0,   if  𝛽𝑐𝑛 < 𝑓𝑘

𝑛 < (1 − 𝛽)𝑐𝑛

1,                 otherwise               
 

 

The fill rate index is less accurate in indicating the station’s information than the fill 

level, but the number of states can be significantly reduced by aggregating the fill 

level. 

The number of the timesteps is |𝑇| and the vehicle can be located at any station. 

Each station has two values for the fill rate index, so the number of possible fill rate 

indices for all stations is 2|𝑁|. Therefore, the dimension of the state space is |𝑆| ≤

|𝑇| ∙ |𝑁| ∙ 2|𝑁|.  
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3.2.1.3. Action 

 

The agent’s action at each decision point consists of two consecutive decisions, 

which is a delivery decision and a next station decision. First, the number of bikes to 

be loaded or unloaded at the current station is determined according to the target fill 

level of the station. Among the two actions, this study considers only the next station 

decision, while the delivery decision is automatically determined by external factors 

to reduce action space.  

As the expected demand may fluctuate due to weather or incidents, safety stock 

is introduced. The safety stock is inventory that is carried to prevent stockouts (King, 

2011). Stockouts stem from factors such as demand fluctuation or prediction 

inaccuracy. The safety stock equation is as follows. Under the assumption that 

demand follows a Poisson distribution, the standard deviation of demand can be 

replaced by the mean of demand. Also, total lead time (𝑃𝐶) and time increment 

used for calculating standard deviation of demand (𝑇1) are assumed to be the same.  

 

(Safety stock) = 𝑧√𝑃𝐶/𝑇1𝜎𝐷 

 

where, 𝑧: Z-score  

𝑃𝐶: total lead time  

𝑇1: time increment used for calculating standard deviation of demand  

𝜎𝐷: standard deviation of demand 

 

Table 3.2 shows the relationship between desired cycle service level and Z-

score. The desired cycle service level means the percentage of preventing stockouts. 

Higher cycle service levels require disproportionately higher Z-scores.  
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Table 3.2 Relationship between desired service level and Z-score 

Desired cycle service level (%) Z-score 

84 1 

85 1.04 

90 1.28 

95 1.65 

99 2.33 

99.9 3.09 

Source: King (2011) 

 

First, the preliminary delivery decision 𝛿𝑖 is determined by the sum of future 

net demand and the safety stock taking into account the predicted demand. If the 

expected total pickup demand is higher than the total return demand, the current 

station should be in a condition where a bicycle with net expected pickups multiplied 

by the Z-score can be picked up. Conversely, if the return demand is expected to be 

higher than the pickup demand, the station should accept the bicycles with the net 

expected returns multiplied by 𝑧. 𝑧 is a statistical figure known as a standard score. 

 

𝛿𝑖 =

{
 
 

 
 (1 + 𝑧)∑(𝑝̂𝑘 − 𝑑̂𝑘)

𝑇

𝑡𝑘

− 𝑓𝑘
𝑛𝑘
𝑣

                , if  ∑(𝑝̂𝑘 − 𝑑̂𝑘)

𝑇

𝑡𝑘

> 0

(1 + 𝑧)∑(𝑝̂𝑘 − 𝑑̂𝑘)

𝑇

𝑡𝑘

+ (𝑐𝑛𝑘
𝑣
− 𝑓𝑘

𝑛𝑘
𝑣

), if  ∑(𝑝̂𝑘 − 𝑑̂𝑘)

𝑇

𝑡𝑘

< 0

 

 

If the sum of future net demand is zero, the target fill level is set to an amount 

by which the inventory becomes a safety buffer margin. 
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𝛿𝑖 =

{
 

         𝛽𝑐𝑛𝑘
𝑣
− 𝑓𝑘

𝑛𝑘
𝑣

                           ,  if        𝑓𝑘
𝑛𝑘
𝑣

< 𝛽𝑐𝑛𝑘
𝑣

    

−𝛽𝑐𝑛𝑘
𝑣
+ (𝑐𝑛𝑘

𝑣
− 𝑓𝑘

𝑛𝑘
𝑣

)                  , if   𝑓𝑘
𝑛𝑘
𝑣

> (1 − 𝛽)𝑐𝑛𝑘
𝑣

             0                                    ,     otherwise        

 

 

The actual delivery decision is affected by 𝑓𝑘
𝑣 and 𝑐𝑣. The number of bikes on 

the vehicle might be lower than the preliminary delivery decision, or the preliminary 

delivery decision might be higher than the number of vacancies of the vehicle. 

Therefore, the actual decision (e.g., the number of bikes to be delivered or withdrawn) 

is determined under the next constraints. 

 

𝜄𝑖 = {
min(𝛿𝑖 ,  𝑐

𝑛𝑘
𝑣
− 𝑓𝑘

𝑛𝑘
𝑣

, 𝑓𝑘
𝑣) ,   if  𝛿𝑖 > 0       

max(𝛿𝑖, −𝑓𝑘
𝑛𝑘
𝑣

, 𝑓𝑘
𝑣 − 𝑐𝑣) ,   otherwise    

 

 

Agent’s second action is the routing decision. All stations can be candidates as 

the next station to be visited at the next timestep. However, in general, other stations 

can be visited on the way to a station far away. In this study, the strategy of 

prioritizing stations to visit can reduce the size of the action space. 

 

3.2.1.4. Reward 

 

A reward is a value that the agent needs to determine the action. In this study, the 

reward is set as the weighted sum of total unmet demands from all stations given 

action 𝑎𝑘 and realization of the transition 𝜔: 𝑆 × 𝐴 → 𝑆, and the total travel time 

of the vehicle. The reason for considering the travel time is to eliminate the 

contradiction in which the reward is the same if the failed demand is the same, even 

if different stations are selected as the next station. The agent moves according to the 
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policy that minimizes the reward. 

 

3.2.1.5. Transition probability 

 

A post-action state is changed by the agent’s action and the users’ pickup or return 

demand during the corresponding timestep. If the demand is deterministic and 

known in advance, then the post-action state is determined. The transition probability 

to the corresponding state is one, while the probabilities to the other states are zero. 

As a result, the calculation of the Bellman optimality equality becomes quite simple. 

In this study, however, the stochastic demand is considered, and the transition 

probability to the post-action state should be calculated. 

The pickup demand and return demand are assumed to follow a time-dependent 

Poisson distribution. The Skellam distribution, which is a discrete probability 

distribution of the difference of two Poisson distributions with respective expected 

values, is applied for calculating the transition probability. 

 

3.2.1.6. Discount factor 

 

The discount factor means the reduction rate of reward over time. The closer it is to 

one, the more the value of the future reward will be treated equally to the present 

value. The reason the discount factor is important is that the current reward is usually 

more significant than the future reward. 

 

3.3 Demand Forecasting 

 

This section describes the demand forecasting method used in this study. The 

methodology was already used in our previous study (Seo et al., 2020) and the 

remaining of this section summaries the study. 
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3.3.1 Random forest technique 

 

The random forest technique, an ensemble learning method used for classification 

and regression, was proposed by Breiman in 2001. The general idea of the method 

is to combine huge decision trees that are identically distributed and each decision 

tree is built individually built on a bootstrapped sample of data. The correlation 

between decision trees is reduced by generating identically distributed decision trees 

repeatedly, and this leads to the reduction of the dispersion of prediction errors. The 

predictions are performed by averaging the output values from each decision tree. 

This technique is a type of committee method and an improved technique of bagging, 

and it can obtain remarkable performance with little in terms of tuning. See Breiman 

(2001) and Hastie et al. (2009) for details of the technique. 

Compared with other algorithms, the random forest model is more suitable for 

predicting public bicycle demand. First, it can deal with both categorical and 

numerical variables without normalization (Yang et al., 2016). This study regards the 

temporal factors as categorical values (year, season, month, day of the week, and 

hour) or binary variables (weekday and holiday), and the meteorological factors as 

continuous values (temperature, precipitation, and wind speed). Hence, the approach 

can be used without an additional quantification when coping with complex variables. 

Second, it provides the relative importance of the factors, which can give insights 

into the patterns of public bicycle use. For example, the hour factor generally has the 

most significant impact on the demand for bicycles in Seoul, which means that there 

are a lot of periodical trips such as commuting or going to school. Third, because the 

technique can deal with big data and execute computation faster, it is proper for 

modeling pickup or return behavior based on millions of trip data. 
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3.3.2 Model construction 

 

Independent variables in demand forecasting were selected by reviewing previous 

studies and analyzing descriptive statistics. The descriptive statistics and the 

relationship between ridership and temporal and meteorological factors are 

discussed in detail in Section 5.1.3. In addition to these factors, station activity 

information was added to the variable set, which represents the number of pickups 

or returns at a station during the previous time on the day. The reason why the time 

lags on the day were considered is that the patterns are expected to change 

dynamically by the previous pickups or drop-offs on the day and that the usage 

patterns may vary as the meteorological factors are different on one day or one week 

ago. Table 3.3 provides the independent variables selected in this study. 

 

3.3.3 Demand forecasting process 

 

A demand forecasting process is illustrated in Figure 3.4. First, input data such as 

historical pickup data, weather data, and holiday data are built and preprocessed. The 

forecast unit is an hour and the number of pickups and returns are aggregated on an 

hourly basis. Demand prediction is conducted with the model constructed in the 

previous section. Hourly predicted demands are uniformly distributed in 10 minutes, 

which is the unit of the timestep in this study. For validation, observed and predicted 

demands are compared at each timestep and the prediction errors can be calculated. 

Demand forecasting models were built from the historical data and the 

accuracy of the models should be evaluated. The historical data were divided into 

70% training set and 30% test set. The data from the 1st to the 21st of each month 

were used as the training set, and the data from the 22nd through the last day of each 

month were set as the test set. The experiment was conducted with the ‘randomForest’ 

package of R. 
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Table 3.3 Descriptions of the variables for demand forecasting 

Variable Description Source 

Year Year of the time - 

Season Categorical variable representing the season  

(1-Mar to May, 2-Jun to Aug, 3-Sep to Nov, 4-Dec to 

Feb) 

- 

Month Month of the time - 

Day of the 

Week 

Categorical variable representing the day of week 

(1-Sun, 2-Mon, 3-Tue, 4-Wed, 5-Thu, 6-Fri, 7-Sat) 

- 

Hour Hour of the time - 

Holiday Dummy variable (0, 1) that indicates if a given day 

was an official holiday 

Open Data 

Portal 

Temperature Average temperature in Celsius for the corresponding 

time 

Korea 

Meteorological 

Administration Precipitation Hourly precipitation in millimeters 

Wind Speed Average wind speed in meters per second 

Lag 

Information 

Number of pickups or returns during the one hour ago, 

two hours ago, or three hours ago 

Seoul Facilities 

Corporation 

Source: Seo et al., (2020) 

 

As mentioned by the features of the random forest model, the importance of 

input variables can be checked by using the varImpPlot function in randomForest 

(Breiman et al., 2018). For the station at which most pickups occurred (ST-73 at Exit 

1 of Yeouinaru Station), the mean decrease in accuracy of each model was calculated 

and presented in Table 3.4. The mean decrease in accuracy is the value obtained by 

averaging the difference for the out-of-bag data of all decision trees between the 

prediction error after permuting each predictor and the prediction error before the 

permutation. The data after making a bootstrap sample of each decision tree is out-

of-bag data. The higher values mean that the variable has greater importance. The 

‘hour’ variable was analyzed as having the highest explanatory power, and the reason  
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Figure 3.4 Algorithm for the demand prediction 

for the high value of the ‘year’ variable was the continuous expansion of the PBS 

system in Seoul. Regarding lag information, the value when using the number of 

pickups one hour ago was the highest at 100, the number of pickups two hours ago 

was 66.6, and the number of pickups three hours ago was 54.0. In other words, the 

closer the lag information is to the present time, the better it explains future demand. 
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Table 3.4 Mean decrease in accuracy for each variable of ST-73 

Variable With one 

hour ago 

information 

With two 

hours ago 

information 

With three 

hours ago 

information 

Without lag 

information 

Year 109.9 119.1 126.0 108.3 

Season 28.4 26.8 26.6 29.7 

Month 42.1 44.0 43.5 37.7 

Day of the Week -1.7 -2.3 -3.2 -0.2 

Hour 184.6 192.5 204.7 134.4 

Temperature 41.0 40.2 41.7 43.9 

Precipitation 13.3 12.0 16.0 19.9 

Wind Speed 30.8 41.3 51.4 59.3 

Lag Information 100.0 66.6 54.0 - 

Source: Seo et al., (2020) 

 

3.4 Key Performance Indicator (KPI) 

 

In order to compare the effects of each strategy in this study, unmet demand is used 

as the key performance indicators (KPI). 

 

3.4.1 Unmet demand 

 

Pickup failure occurs when 𝑝𝑘
𝑛 > 𝑓𝑘

𝑛 and return failure occurs when 𝑑𝑘
𝑛 > (𝑐𝑛 −

𝑓𝑘
𝑛). Unmet demand means the total number of failed pickup or return demands from 

all stations. The unmet demand is counted when user cannot pick up a bicycle due to 

the lack of bicycles or cannot return it due to the full of bicycles. Since the observed 

demand is not realized when determining the vehicle route, the route is derived using 

the forecasted demand. Thus, when observed demand is realized, there may be a 

higher observed pickup demand than expected, resulting in shortage of inventories. 

There are alternative indices such as the number of repositioned bikes, satisfied 
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demand of the repositioned bikes, satisfied demands of the visited station, or unmet 

demands of the visited station. Travel time is not considered because it is already 

included as a trade-off between unmet demands and distance. 
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Chapter 4. Solution Algorithms 

 

4.1 Exact Solution Algorithm 

 

4.1.1 Dynamic programming 

 

Dynamic programming is a method of solving a complex problem by breaking it 

down into simpler sub-problems in a recursive manner. This structure is based on the 

Principle of Optimality described by Bellman. In other words, an optimal policy has 

the property that whatever the initial state and initial decision are, the remaining 

decisions must constitute an optimal policy about the state resulting from the first 

decision (Bellman, 1957). 

The model-based method uses the Bellman equation. As shown in the below 

equation, every state has a value 𝑉 . Dynamic programming finds an action that 

maximizes the sum of the rewards of the action and the expected value of possible 

next states and updates the value with the value of the corresponding state. 

 

𝑉𝜋(𝑠) = 𝔼𝜋[𝑅𝑡+1(𝑆𝑡, 𝑎𝑡) + 𝛾𝑉𝜋(𝑆𝑡+1)|𝑆𝑡 = 𝑠] 

 

Dynamic programming can be used to compute optimal policies given a perfect 

model of the environment as an MDP (Sutton and Barto, 2018). The idea of dynamic 

programming is to construct the search to find the optimal policy using value 

functions. A value is defined as the expected long-term return of the current state 

under policy 𝜋. 

 

4.1.1.1. Value iteration 

 

Value iteration computes the Bellman optimality equation by dynamic programming. 
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Bellman optimality equation is as follows: 

 

𝑉𝑡(𝑆𝑡) = max
𝑎𝑡∈𝐴

[𝑅𝑡(𝑆𝑡, 𝑎𝑡) + 𝛾𝔼{𝑉𝑡+1(𝑆𝑡+1)|𝑆𝑡, 𝑎𝑡}] 

 

where, 𝑉𝑡(𝑆𝑡): value function at state 𝑆𝑡, 

𝑅𝑡(𝑆𝑡, 𝑎𝑡): reward incurred by taking an action 𝑎𝑡 at state 𝑆𝑡  

𝛾: discount factor 

 

The value iteration is virtually identical to backward dynamic programming 

for finite horizon problems (Powell, 2011). At each iteration, the estimate of the 

value function determines which actions we will make and as a result defines a policy. 

The estimate of the value function is updated for every state at each iteration. 

The value iteration algorithm is represented in  

Table 4.1 (Powell, 2011). The value function of all states is initialized and the 

value function of the terminal state is set to 0. In each state, the Bellman equation is 

calculated and the largest value is selected as the new value. The iteration stops at 

convergence, whenever 𝛥 is smaller than a predetermined tolerance 𝜃 for all states. 

The state space of dynamic programming is too large to enumerate all the space. 

The dimension of the state space is |𝑆| ≤ |𝑇| ∙ |𝑁| ∙ 2|𝑁|. Figure 4.1 shows the graph 

of the number of states according to the number of stations. As the number of stations 

increases, the number of states grows exponentially. For example, there are 10 

stations (10 docks per each station) for repositioning 2 hours. The number of states 

is higher than 1.2 × 105, and the calculation is intractable. This result suggests that 

it is impossible to derive a solution with dynamic programming, which calculates the 

value function of all states. Therefore, an approximate algorithm is required for the 

repositioning problem of the PBS systems. 
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Table 4.1 Algorithm of value iteration 

Algorithm: Value Iteration 

Step 0. Initialization: 

      Initialize 𝑉(𝑠) for all states 𝑠 ∈ 𝑆 arbitrarily  

      except that 𝑉(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙) = 0 

      Set 𝛥 = 0 

Step 1. Calculation: 

  for each state do 

    𝑣 ← 𝑉(𝑠) 

    Calculate: 𝑉(𝑠) ← max
𝑎∈𝐴

(𝐶(𝑠, 𝑎) + 𝛾 ∑ ℙ𝑠′∈𝑆 (𝑠′|𝑠, 𝑎)𝑉(𝑠′)) 

    Compute: 𝛥 ← max (𝛥, |𝑣 − 𝑉(𝑠)|) 

Step 2. If Δ > 𝜃, return to Step 1. Else stop. 

 

 

Figure 4.1 Relationship between number of stations and the number of states 
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4.2 Approximate Dynamic Programming 

 

In this study, an asynchronous technique, Real-time dynamic programming (RTDP), 

is developed to derive an approximate solution. Asynchronous means not updating 

all states the same number of times, but updating some states once and some states 

multiple times. 

 

4.2.1 Real-time dynamic programming 

 

Real-time dynamic programming (RTDP) is proposed by Barto et al. (1995). The 

idea of RTDP is that an agent only visits states that are relevant to the agent (Figure 

4.2). RTDP is an on-policy trajectory-sampling version of the value-iteration 

algorithm of dynamic programming (Sutton and Barto, 2018). RTDP updates the 

value of states visited in actual or simulated trajectories by means of expected tabular 

value-iteration updates. For certain types of problems satisfying reasonable 

conditions, RTDP is guaranteed to find a policy that is optimal on the relevant states 

without visiting every state infinitely often (Sutton and Barto, 2018). 

 

 

Source: Sutton and Barto (2018) 

Figure 4.2 Illustration of real-time dynamic programming  
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Required conditions for convergence of RTDP are as follows, according to 

Sutton and Barto (2018): 1) the initial value of goal state is zero, 2) there exists at 

least one policy that guarantees that a goal state is reached with probability one from 

the start state, 3) all rewards for transitions from non-ending states are strictly 

negative, and 4) the initial values of all states are equal to zero. 

After selecting a sample of random demands, the Bellman optimal equation is 

solved. The corresponding state is only updated, and the rest are not updated. The 

agent moves to the next state 𝑠′ according to the action and the sample demand and 

repeats the same process. 

 

Table 4.2 Algorithm of real-time dynamic programming 

Algorithm: Real-time Dynamic Programming 

Step 0. Initialization: 

      Initialize 𝑉̅0(𝑠) for all states 𝑠. 

      Choose an initial state 𝑆1 

      Set 𝑛 = 1 

Step 1. Choose a sample path 𝜔𝑛. 

Step 2a. Solve: 

𝑣𝑛 = max
𝑎∈𝐴𝑛

(𝐶(𝑠𝑘, 𝑎) + 𝛾 ∑ ℙ

𝑠′∈𝑆

(𝑠′|𝑠𝑘, 𝑎)𝑉̅
𝑛−1(𝑠′)) 

       and let 𝑎𝑛 be the value of 𝑎 that solves the maximization problem. 

Step 2b. Update 𝑉̅𝑛−1(𝑆𝑛) using 

𝑉̅𝑛(𝑆) = {
𝑣𝑛,                𝑆 = 𝑆𝑛

𝑉̅𝑛−1(𝑆),           otherwise.
 

Step 2c. Compute 𝑆𝑛 = 𝑆𝑀(𝑆𝑛, 𝑎𝑛,𝑊(𝜔𝑛)). 

Step 3. Let 𝑛 = 𝑛 + 1. If 𝑛 < 𝑁, go to Step 1. 

 

Even RTDP is a tabular method, so the computation is intractable when the state 
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space is enormous. Therefore, to obtain feasible solutions in a large-scale network, 

a way of approximating the value function is needed. 

 

4.2.2 Manipulating algorithm 

 

Due to the nature of the Bellman optimal equation, the possible next states and all 

actions should be considered. Two manipulations are possible to reduce 

computational effort. At first, the action space can be reduced. In terms of the routing 

decision, the agent considers only the stations that meet certain conditions as the next 

station to visit. 

• Strategy 1: Consider all stations 

• Strategy 2: Consider stations close to the current station 

• Strategy 3: Consider stations with large forecasting errors 

Second, the next state may vary due to the stochastic demand, but considering 

all states is inefficient. For example, if most stations have low predicted demand, the 

probability that 𝑖𝑘 = [0,… ,0] is transitioned to 𝑖𝑘+1 = [1,… ,1] is quite low. The 

possible fill levels of the following state are assumed to be within a standard 

deviation of the Skellam distribution, √𝑝̂𝑘 + 𝑑̂𝑘. 

 

𝑓𝑘 + 𝑦𝑘 −√𝑝̂𝑘 + 𝑑̂𝑘 ≤ 𝑓𝑘+1 ≤ 𝑓𝑘 + 𝑦𝑘 +√𝑝̂𝑘 + 𝑑̂𝑘 

 

4.3 Reinforcement Learning Method 

 

A feasible solution should be obtained in real-time even for the large-scale bike-

sharing system. It is impossible to update and save a value function in a table form 

for all state-action pairs. Reinforcement learning is a method that enables agents to 

learn without prior knowledge about the environment and the model. Given different 
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rewards depending on the action, the agent tries to make a high reward action. Unlike 

DP and RTDP, the reinforcement learning approximates a value function using an 

artificial neural network (ANN) without storing it in a table. 

 

4.3.1 Actor-critic method 

 

Actor-critic technique is a combination of policy-based learning and value-based 

learning, and has two neural networks. Each of the two models respectively 

calculates an action based on the state (actor) and calculates the Q-value of the action 

(critic). Q-value is similar to value, except that it takes an extra parameter, the current 

action 𝑎 . 𝑄𝜋(𝑠, 𝑎)  refers to the long-term return of the current state 𝑠 , taking 

action 𝑎 under policy 𝜋. 

 

𝑄𝜋(𝑠, 𝑎) = 𝔼𝜋[𝑅𝑡+1 + 𝛾𝑄𝜋(𝑆𝑡+1, 𝐴𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 

 

The actor receives a state as input and outputs the probability of each action. 

This is policy-based learning that controls how the agent moves by learning the 

optimal policy. On the other hand, the critic evaluates the action by taking the state 

as input and calculating the value function (value-based learning). The two networks 

are trained separately, and the gradient ascent method is used to update the weights. 

As a result, the more the timestep is repeated, the better the actor will perform, and 

the better the critic will evaluate the actions. 

In this study, the actor-critic method is used among several reinforcement 

learning techniques. The advantage of the actor-critic method is that the learning 

speed is fast because it learns every timestep. REINFORCE, a Monte-Carlo policy 

gradient method, and the learning speed is relatively slow because it learns for each 

episode.  

Advantage actor-critic (A2C) is a method of using an advantage function. The 
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advantage function compares how good an action is compared to other actions in a 

given state. The reason for using the advantage function is that the larger the Q 

function value, the greater the variance of the error function. Therefore, to reduce the 

degree of change in the Q function, the value function, which is the baseline, is 

subtracted. The advantage function is as follows. 

 

𝐴(𝑠𝑡, 𝑎𝑡) = 𝑄(𝑠𝑡, 𝑎𝑡) − 𝑉(𝑠𝑡) 

 

Table 4.3 Algorithm of actor-critic policy gradient 

Algorithm: Action-Value Actor-Critic 

function QAC 

Initialize 𝑠,  𝜃 arbitrarily 

Sample 𝑎~𝜋𝜃 

  for each step do 

    Sample reward 𝑟 = 𝑅𝑠
𝑎; sample transition 𝑠′~𝑃𝑟𝑠

𝑎 

    Sample action 𝑎′~𝜋𝜃(𝑠
′, 𝑎′) 

    Update policy parameters: 𝜃 = 𝜃 + 𝛼𝛻𝜃 log 𝜋𝜃(𝑠𝑡, 𝑎𝑡)𝑄𝑤(𝑠, 𝑎) 

    Compute the correction for action-value at time 𝑡:  

𝛿 = 𝑟 + 𝛾𝑄𝑤(𝑠
′, 𝑎′) − 𝑄𝑤(𝑠, 𝑎) 

    and use it to update action function parameters: 𝑤 ← w+ 𝛽𝛿𝛻𝑤𝑄𝑤(𝑠, 𝑎) 

    Update 𝑎 ← 𝑎′, 𝑠 ← 𝑠′ 

  end for 

end function 
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Chapter 5. Numerical Example 

 

In this chapter, the developed model in Chapter 3 and Chapter 4 is applied to a real 

network. The description of data is referenced from Seo et al. (2020). The results are 

reported and compared. Historical usage data from 31 stations installed in Yeouido 

are used. As the input variable of the model changes, the relationship between the 

decision variables and the value of the objective function is identified. 

 

5.1 Data Overview 

 

5.1.1 Data Collection 

 

Three datasets were used in this analysis: the bicycle sharing dataset, holiday data, 

and a meteorological dataset. The bicycle sharing system dataset was provided by 

the Seoul Facilities Corporation (SFC), a public bicycle management agency in 

Seoul. Holiday data were supplied by Open Data Source of South Korea, and the 

meteorological dataset was collected from the Korean Meteorological 

Administration (KMA). 

The Seoul Bicycle Sharing (SBS) system can be used by applying for a pickup 

from a smartphone application or internet homepage. A bicycle is available for one 

or two hours and the types of members are either regular or casual members. The 

individual trip data include the following information: 

• member type: whether the user was a regular or a casual member 

• pickup time: pickup date and time 

• pickup place: name and number of the pickup station 

• return time: return date and time 

• return place: name and number of the return station 
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In this study, an individual pickup record was aggregated on hourly basis, and 

the number of hourly pickups and returns were calculated. The aggregated period is 

labelled as year, season, month, day of the week, and time of day, and the labels are 

applied as input variables. Therefore, this study analyzes all time periods including 

weekdays and weekends. The number of hourly pickups and returns serve as a 

response variable.  

Inventory data were collected every 10 minutes for each station. The inventory 

data include the following factors: 

• station information: name and number of the station 

• time: inventory collection time 

• stock information: number of bicycles and capacity of the station 

The Korea Astronomy and Space Science Institute provides holiday 

information through APIs on the website of an open data portal (see 

https://www.data.go.kr), which was utilized to determine public holiday information 

of South Korea from 2015 to 2017 was collected. These data were translated into a 

binary variable, one for holidays and zero otherwise. Meteorological data were 

collected from the website of the Korea Meteorological Administration (KMA), such 

as temperature, precipitation, and wind speed, for the same period as the bicycle 

pickup records. These data included hourly weather data from the Automatic 

Weather System (AWS) in a csv format. 

 

5.1.2 Data preprocessing 

 

Due to the technical problems of the system or the loss or breakdown of a bicycle, 

usage data may be logged incorrectly. Therefore, it is necessary to preprocess data 

to forecast demand. Trip data of less than one minute or more than 24 hours of usage 

time were judged to be abnormal, and were removed. As a result, the study used 

586,602 historical pickup data from January 1, 2016 to September 20, 2017. 
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Individual trip data were collected at intervals of one hour, with the number of 

pickups and returns. Temporal factors, such as year, season, month, day of the week, 

and hour were assigned to each time period. Meteorological factors, such as 

temperature, precipitation, and wind speed, were also combined with the 

corresponding time period. 

 

5.1.3 Descriptive statistics 

 

Figure 5.1 (a) shows that usage has increased over the years since the system has 

been continuously expanded. During the entire period, there was an average of 9,000 

pickups per day. In April 2018, there was an average of 22,826 pickups per day, 

which was 2.16 times increase from the same month one year earlier. Like the public 

bicycle systems in other cities (Rudloff and Lackner, 2014; Fournier et al., 2017), 

there are seasonal characteristics, such as much traffic from June to October in the 

summer and autumn and a decrease in traffic from December through February in 

the winter. These characteristics are the reason why the year, season, and month 

variables were added to the forecasting factors. 

Figure 5.1 (b) shows the number of pickups by day and time of day as a heat 

map. On weekdays, the use of bicycles was expected to be high during the morning 

and evening because of commuting trips. On weekends, there were many pickups in 

the afternoon, which was assumed to be due to the use of bicycles for leisure 

activities. Regular members frequently used bicycles during morning peak hours and 

evening peak hours on weekdays, while casual members picked up more bicycles in 

the evening than in the morning. Therefore, day and time-of-day variables were 

considered as the demand prediction factors. 
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Figure 5.1 (a) The total number of pickups of bicycles, (b) daily pickup frequency 

heat map by day of the week and time of day 

As shown in Figure 5.2, temperature, wind speed, and precipitation influenced 

public bicycle usage. The number of pickups had a positive correlation with a 

temperature of up to about 25 degrees Celsius and a negative correlation with a 

temperature over 25 degrees Celsius. Similar to the pattern of temperature, the 

pickup frequency tends to increase when the wind speed increases up to about 1.5 

m/s, and to decrease when above 1.5 m/s. Meanwhile, rain had a significant negative 

impact on pickups even in small amounts. Because the number of operating bicycles 

in bad weather conditions decreases dramatically, weather factors should be included 

in the variables of demand forecasting. 
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Figure 5.2 Relationship between meteorological factors and pickup frequency 

Figure 5.3 shows the daily pickup frequency by month and time of the day 

during the analysis period of the PBS system in Seoul. Pickup frequency is high in 

fall and low in winter, and hourly pickup frequency stands out in the morning and 

afternoon peaks. 
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Figure 5.3 Daily pickup frequency by month (upper) and time of day (lower) of the 

PBS system in Seoul 
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5.2 Experimental Design 

 

5.2.1 Key input data 

 

5.2.1.2. Vehicle 

 

Yeouido, the spatial scope of this study, has currently been relocated by one vehicle 

and the maximum number of bicycles that can be loaded on a vehicle is 15. This 

study also reflects this context, assuming that a vehicle with a capacity of 15 bicycles 

is responsible for the Yeouido area. It is assumed that the vehicle speed when moving 

between stations is 20 km/h, considering the average speed of traffic in Yeouido, and 

that it takes one minute per bicycle for withdrawing or distributing the bicycles. 

 

5.2.1.3. Network 

 

The network used in this chapter consists of 31 stations installed in Yeouido and a 

depot outside Yeouido. Based on the historical repositioning log, the unit timestep is 

set to 10 minutes. The Euclidean distance between stations is assumed, and the initial 

inventory at the start of the operation is assumed to be the observed inventory of the 

corresponding date. Table 5.1 shows the station-to-station travel time in Yeouido. 

 

5.2.1.4. Demand 

 

There are two types of demand used in this study: predicted demand and observed 

demand. To simulate the stochasticity of the demand, the observed demand is 

assumed to follow the Poisson distribution, and the forecasted demand is used as the 

mean of this distribution. Using historical data, the pickup and return demand in one 

hour is estimated at each station and uniformly assigned every 10 minutes, which is 

the unit of the time period. The time scope of the training set is set from August 2016, 
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the last time a station was installed in Yeouido, until the time just before the 

repositioning is carried out. The length of the prediction horizon is the next two hours. 

The observed demand means the demand actually observed every 10 minutes 

at each station. In this chapter of this study, the observed demand is not used because 

the demand is a censored value and cannot reflect the potential demand. Therefore, 

it is assumed that the predicted demand occurs each timestep in the case study to 

compare strategies. 

For convenience in understanding the results, it is necessary to identify the 

demand pattern in the analysis period. Three different demand patterns are shown in 

Figure 5.4. On a weekday morning, the number of returns was high, but since then, 

the number of pickups has kept higher than the number of returns. The number of 

pickups increases significantly during rush hour in case of the weekday evening 

(WE). Even this is presumed to have not shown all pickup demand due to a lack of 

inventory. On the weekend evening (WE), the number of pickups and returns was 

similar and more frequent than on weekdays. 

 

5.2.2 Analysis conditions 

 

In this study, three analysis periods are considered: weekday morning (07:00~13:00), 

weekday evening (16:00~22:00), and weekend evening (16:00~22:00). Demand 

patterns for analysis periods are shown in Figure 5.4. On weekdays morning, the 

number of returns has been more than the number of pickups, and on a weekday 

evening, the pickup has been more than the return. There are a lot of pickups and 

returns on a weekend evening. This usage pattern is due to the regional 

characteristics in Yeouido where several parks and dense office buildings are located. 

Since the effect of the strategy can be revealed in the period where there is a 

significant difference between pickup and return, the weekday morning was selected 

as analysis periods. 
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The length of the prediction horizon was set to two hours, considering the 

calculation time. Since the forecasted hourly demands were randomly assigned every 

10 minutes at the demand forecasting module, the analysis was conducted five times, 

and the average values of KPIs were compared. 

 

 

Figure 5.4 Demand patterns for analysis period 
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Table 5.1 Station-to-station travel time deployed in Yeouido 

Station Depot 
ST-

45 

ST-

46 

ST-

47 

ST-

51 

ST-

50 

ST-

52 

ST-

53 

ST-

73 

ST-

55 

ST-

56 

ST-

57 

ST-

58 

ST-

59 

ST-

60 

ST-

64 

ST-

65 

ST-

66 

ST-

61 

ST-

62 

ST-

63 

ST-

67 

ST-

68 

ST-

69 

ST-

70 

ST-

71 

ST-

72 

ST-

296 

ST-

297 

ST-

414 

ST-

424 

ST-

425 

Depot 0 5 7 7 5 5 6 5 9 7 7 6 6 5 5 9 9 8 8 7 7 10 10 9 8 8 7 7 10 6 7 6 

ST-45 5 0 2 3 2 1 2 2 5 4 3 4 4 3 3 6 6 5 5 4 5 7 7 6 6 6 6 3 6 2 4 4 

ST-46 7 2 0 2 2 2 2 3 4 3 3 4 4 4 3 5 5 4 4 4 5 6 6 6 5 6 5 1 5 3 4 5 

ST-47 7 3 2 0 2 3 2 3 3 2 1 3 3 3 3 4 3 3 3 3 4 5 5 4 4 5 4 1 4 4 3 4 

ST-51 5 2 2 2 0 1 1 2 4 3 2 3 3 3 2 5 5 4 4 4 4 6 6 5 5 5 5 2 5 3 3 4 

ST-50 5 1 2 3 1 0 2 2 5 4 3 3 3 3 2 5 5 5 4 4 4 6 7 6 5 5 5 3 6 3 4 4 

ST-52 6 2 2 2 1 2 0 1 4 3 2 2 2 2 2 4 4 3 3 3 3 5 6 5 4 4 4 2 5 4 3 3 

ST-53 5 2 3 3 2 2 1 0 4 3 3 2 2 1 1 5 4 4 4 3 3 6 6 5 5 4 4 3 5 4 3 3 

ST-73 9 5 4 3 4 5 4 4 0 2 2 3 3 4 4 2 2 2 2 3 4 3 3 3 3 4 4 3 2 6 3 4 

ST-55 7 4 3 2 3 4 3 3 2 0 1 2 2 3 2 2 2 2 1 2 2 3 4 3 2 3 3 3 3 6 1 3 

ST-56 7 3 3 1 2 3 2 3 2 1 0 2 2 3 2 3 3 2 2 2 3 4 5 4 3 4 3 2 3 5 2 3 

ST-57 6 4 4 3 3 3 2 2 3 2 2 0 1 2 2 3 3 2 2 1 2 4 4 3 3 3 2 3 4 6 1 2 

ST-58 6 4 4 3 3 3 2 2 3 2 2 1 0 2 1 4 3 2 2 1 1 4 5 3 3 3 2 4 4 6 2 1 

ST-59 5 3 4 3 3 3 2 1 4 3 3 2 2 0 1 5 4 4 3 2 3 6 6 4 4 4 3 4 5 5 3 2 

ST-60 5 3 3 3 2 2 2 1 4 2 2 2 1 1 0 4 4 3 3 2 2 5 5 4 4 3 3 3 5 5 2 2 
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ST-64 9 6 5 4 5 5 4 5 2 2 3 3 4 5 4 0 1 2 2 3 3 2 2 2 2 3 3 4 1 7 3 5 

ST-65 9 6 5 3 5 5 4 4 2 2 3 3 3 4 4 1 0 1 1 3 3 2 2 2 2 3 3 4 1 7 2 4 

ST-66 8 5 4 3 4 5 3 4 2 2 2 2 2 4 3 2 1 0 1 2 2 2 3 2 1 2 2 4 2 7 1 3 

ST-61 8 5 4 3 4 4 3 4 2 1 2 2 2 3 3 2 1 1 0 2 2 3 3 2 2 2 2 3 2 6 1 3 

ST-62 7 4 4 3 4 4 3 3 3 2 2 1 1 2 2 3 3 2 2 0 1 4 4 2 2 2 2 4 4 6 1 2 

ST-63 7 5 5 4 4 4 3 3 4 2 3 2 1 3 2 3 3 2 2 1 0 4 4 2 2 2 1 4 4 7 2 2 

ST-67 10 7 6 5 6 6 5 6 3 3 4 4 4 6 5 2 2 2 3 4 4 0 1 2 2 3 3 5 1 8 3 5 

ST-68 10 7 6 5 6 7 6 6 3 4 5 4 5 6 5 2 2 3 3 4 4 1 0 2 2 3 3 6 2 9 4 5 

ST-69 9 6 6 4 5 6 5 5 3 3 4 3 3 4 4 2 2 2 2 2 2 2 2 0 1 2 2 5 2 8 2 4 

ST-70 8 6 5 4 5 5 4 5 3 2 3 3 3 4 4 2 2 1 2 2 2 2 2 1 0 2 2 5 2 7 2 3 

ST-71 8 6 6 5 5 5 4 4 4 3 4 3 3 4 3 3 3 2 2 2 2 3 3 2 2 0 1 5 3 8 2 3 

ST-72 7 6 5 4 5 5 4 4 4 3 3 2 2 3 3 3 3 2 2 2 1 3 3 2 2 1 0 5 4 7 2 2 

ST-296 7 3 1 1 2 3 2 3 3 3 2 3 4 4 3 4 4 4 3 4 4 5 6 5 5 5 5 0 5 4 3 5 

ST-297 10 6 5 4 5 6 5 5 2 3 3 4 4 5 5 1 1 2 2 4 4 1 2 2 2 3 4 5 0 8 3 5 

ST-414 6 2 3 4 3 3 4 4 6 6 5 6 6 5 5 7 7 7 6 6 7 8 9 8 7 8 7 4 8 0 6 6 

ST-424 7 4 4 3 3 4 3 3 3 1 2 1 2 3 2 3 2 1 1 1 2 3 4 2 2 2 2 3 3 6 0 2 

ST-425 6 4 5 4 4 4 3 3 4 3 3 2 1 2 2 5 4 3 3 2 2 5 5 4 3 3 2 5 5 6 2 0 

Unit: mins
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5.2.3 Details of computer, solver and programming environment 

 

The details of computers and software used in this study are as follows. Solution 

algorithms are coded and compiled in the Python environment. 

• Processor: AMD Ryzen 7 1700X Eight-Core Processor 3.40 GHz 

• RAM: 40GB 

• Operating system: Windows 10 Education 64-bit 

• Python 3.6 

o PyCharm 2020.1 (Community Edition) 

• R version: 4.0.0 

o Random forest: ‘randomForest’ package 

 

5.3 Algorithm Performance 

 

Numerical experiments with small-size problems are conducted first to compare the 

computational performance of the exact, approximate and reinforcement learning 

algorithms. 

 

5.3.1 Network settings 

 

For dynamic programming, four stations and the depot were selected randomly in 

Yeouido area. For RTDP, five to seven stations and the depot were selected. The 

number of timesteps is 12, which is over 2 hours from 6 p.m. to 8 p.m. on September 

20, 2017. The discount factor 𝛾 is set to 0.9. 

Dynamic programming was judged to have converged when the maximum 

change in a state value over a sweep was less than 10−1. For RTDP, 1,000 iterations 

are performed. 
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5.3.2 Benchmark policies 

 

Three benchmark strategies are modeled to assess the effectiveness of the developed 

strategies in this study. First two strategies were proposed by Brinkmann et al. (2015) 

and Brinkmann et al. (2019), and the third strategy is modeled based on the 

operations manual made by Seoul Facilities Corporation. 

 

5.3.2.1. Short-term relocation policy 

 

A short-term relocation (STR) policy was introduced by Brinkmann et al. (2015). 

Given a state (𝑡𝑘 , 𝑛𝑘
𝑣 , 𝑓𝑘

𝑣, 𝑓𝑘), only one action is determined by the policy. If the fill 

levels of the current station are outside of the safety buffer, a relocation operation is 

implemented by the amount of the deficit (or the excess). 

 

𝜄𝑥 = {
min {⌈𝛽 ∙ 𝑐(𝑛𝑘

𝑣)⌉ − 𝑓𝑘
𝑛𝑘
𝑣

, 𝑓𝑘
𝑣} ,                  if 𝑓𝑘

𝑛𝑘
𝑣

< ⌈𝛽 ∙ 𝑐(𝑛𝑘
𝑣)⌉

max {⌈(1 − 𝛽) ∙ 𝑐(𝑛𝑘
𝑣) − 𝑓𝑘

𝑛𝑘
𝑣

⌉ ,  𝑓𝑘
𝑣 − 𝑐𝑣} ,      if ⌈(1 − 𝛽) ∙ 𝑐(𝑛𝑘

𝑣)⌉ < 𝑓𝑘
𝑛𝑘
𝑣  

 

If there are stations which violate the safety buffers, the agent chooses the 

nearest station (routing decision). 

 

𝜎(𝑛) =

{
 
 

 
 

1

𝜏(𝑛𝑘
𝑣 , 𝑛)

, if  𝑓𝑘
𝑛𝑘
𝑣

< ⌈𝛽 ∙ 𝑐(𝑛𝑘
𝑣)⌉ ∧ 0 < 𝑓𝑘 

𝑣 − 𝜄𝑥               

1

𝜏(𝑛𝑘
𝑣 , 𝑛)

, if  ⌈(1 − 𝛽) ∙ 𝑐(𝑛𝑘
𝑣)⌉ < 𝑓𝑘

𝑛𝑘
𝑣

 ∧  𝑓𝑘 
𝑣 − 𝜄𝑥 < 𝑐𝑣

0      , otherwise                                                     

 

 

𝑛𝑥 = argmax
𝑛∈𝑁

𝜎(𝑛) 

 

To compare with Seoul Facilities Corporation strategy to be discussed later 
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section, the safety buffer 𝛽 is set to 0.2 in this analysis. In other words, the safety 

buffer is [0.2, 0.8]. 

 

5.3.2.2. Static lookahead policy 

 

Brinkmann et al. (2019) proposed both static and dynamic lookahead policies to 

solve the stochastic dynamic inventory routing problem in bicycle sharing systems. 

In this study, the static lookahead policy (SLA) is modeled. Determined inventory at 

the current station is the one of the three (25%, 50%, or 75% of station’s capacity) 

leading to the least amount of unsatisfied demand as the sum of failed pickup and 

failed return demands at current station. 

 

𝛾𝜄,𝑛
− =

1

32
∑ ∑ 𝑝𝑗

−(𝑠𝑘𝑗 , 𝑛)

𝑘max
𝑗

𝑘𝑗=𝑘

32

𝑗=1

 

𝛾𝜄,𝑛
+ =

1

32
∑ ∑ 𝑝𝑗

+(𝑠𝑘𝑗 , 𝑛)

𝑘max
𝑗

𝑘𝑗=𝑘

32

𝑗=1

 

𝜄𝜒 = argmin𝜄∈{𝜄1,𝜄2,𝜄3} {𝛾𝜄,𝑛𝑘
𝑣

− + 𝛾𝜄,𝑛𝑘
𝑣

+ } 

 

where, 𝛾𝜄,𝑛
−  , 𝛾𝜄,𝑛

+  : the average number of failed pickups and returns for 

inventory decision 𝜄 and routing decision 𝑛 

𝑝𝑗
−(∙,∙), 𝑝𝑗

+(∙,∙): failed pickups and returns in simulation 𝑗 

𝛽: discount factor 

 

At next decision, the agent selects the station 𝑛 where relocations can prevent 

the largest amount of unsatisfied demand. 
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𝑛𝜒 = argmax
𝑛∈𝑁

{min{𝛾𝜄𝜒,𝑛
− , 𝑓𝑣

𝑡 − 𝜄𝜒} ,min{𝛾𝜄𝜒,𝑛
+ , 𝑐𝑣 − 𝑓𝑣

𝑡 − 𝜄𝜒}} 

 

5.3.2.3. Seoul Facilities Corporation policy 

 

According to the operation manual of SFC, the operating agency of the PBS system 

in Seoul, a repositioning employee tries to keep the inventory rate of the station 

between 20 percent and 80 percent. If the rate is violated, the employee moves to the 

station and carries out the repositioning. This policy is the same as STR policy in 

Section 5.3.2.1, except that the safety buffer is fixed as 𝛽 = 0.2  and that the 

reposition amount is determined from the inventory, which is maintained at 50% of 

station capacity. 

 

5.3.3 Comparison between dynamic programming and RTDP 

 

Table 5.2 shows the performance comparison between dynamic programming and 

RTDP. Dynamic programming took several hours to compute to convergence even 

for small networks, but the calculation time of RTDP was drastically reduced. RTDP 

required only roughly a third of the updates that dynamic programming did. RTDP 

updated the values of 99.98% of the states no more than 100 times and 8,606 states 

were not updated at all in an average run. RTDP as well as reinforcement learning 

takes a lot of time to be applied in real-time. Still, it is more time-efficient than 

dynamic programming because RTDP and reinforcement learning can store values 

and update continuously. 
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Table 5.2 Performance comparison between dynamic programming and RTDP 

 
Dynamic 

programming 
RTDP 

Computation time 34,482 seconds 1,784 seconds 

Average computation to convergence 3 sweeps 1,000 episodes 

Average number of updates to convergence 26,400 8,578 

Average number of updates per episode - 8.6 

% of states updated ≤ 100 times - 99.98 

% of states updated ≤ 10 times - 99.24 

% of states updated 0 times - 81.50 

 

5.3.4 Performances of RTDP 

 

5.3.4.1. Computation time 

 

The computation time of RTDP taken for ten iterations according to the number of 

stations is shown as Figure 5.5. The computation time by the number of stations 

grows exponentially with |𝑁| . These observations are consistent with the 

computation of the dimension of the state space. As described in 3.2.1.2, each station 

has two values for a fill rate index (0 or 1), so the dimension of the state space is 

|𝑆| ≤ |𝑇| ∙ |𝑁| ∙ 2|𝑁|. 
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Figure 5.5 Computation time needed for 10 iterations 

 

5.3.4.2. Comparison with benchmark policies 

 

As illustrated in Section 5.3.2, three benchmark policies are analyzed to compare the 

effectiveness of the strategy developed in this study. Unmet demands, travel time, 

and delivery amount averaged from ten simulations for each policy. The unmet 

demands were considered for all stations and the delivery amount by the agent is the 

sum of both the number of loaded and unloaded bicycles. The results of the 

comparison are presented in Table 5.3 and Figure 5.6. For five stations and the depot, 

the analysis time is weekday morning from 07:00 to 09:00. 

It is common for the delivery amount to decrease as vehicle travel time 

increases (or vice versa) within a limited time. However, when the idling of a 

repositioning vehicle is long or the movement due to the meaningless inventory 

decision (𝜄 = 0) increases, both the delivery amount and the travel time decrease. 

SLA, a strategy that utilizes predicted demand information, has a lower performance 

than STR and SFC. The stations that need relocation are well selected in the SLA. 

However, they cannot be relocated due to restrictions on the inventory decision (at 
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least 25% of station capacity). As the analysis time was on the weekday morning, 

the demand for returns was higher than the demand for pickups. Even in a situation 

where all the bicycles at a station need to be withdrawn, the employee has no choice 

but to choose 25% of capacity. Besides, if revisit were allowed, the agent could have 

relocated bicycles later after the relocation staff person couldn't reposition them at 

the first visit. 

 

Table 5.3 Key performance indicators by benchmark strategies 

Strategies Average unmet 

demands 

Average travel 

time (min) 

Average delivery 

amount 

No reposition 10.6 - - 

STR(0.2) 8.5 19.8 2.7 

SLA 9.6 40.2 11.7 

SFC 5.8 19.8 5.7 

RTDP(1.00) 3.8 37.1 16.8 

RTDP(1.65) 3.5 37.2 21.9 

RTDP(2.33) 2.3 38.3 21.4 

 

STR is a strategy to visit as many stations as possible by relocating the 

minimum number of bicycles at the station. This strategy was found to be vulnerable 

to a sudden high demand. The failed demand occurred due to an intensive demand 

during the safety buffer or after the withdrawal of bicycles to prevent the station from 

filling up. Since STR and SFC are reactive strategies, the agent visits a station after 

a failure has already occurred. SLA has limited choices in inventory decisions (25%, 

50%, or 75% of the station capacity) which make for unnecessary travel. In addition, 

the constraint that the agent can visit a station at most once makes the performance 

worse. 

Overall, RTDP outperformed benchmark policies. In RTDP cases, the delivery 

amount was higher than other policies, and the delivery reduced the occurrence of 
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unmet demand. In particular, it had better performance when the z-score is high. 

More demand can be met by withdrawing bikes in the morning when return demand 

was intensive. 

 

 

Figure 5.6 Comparison with benchmark policies 

 

5.3.4.3. Comparison by strategies 

 

As illustrated in Section 4.2.2, an agent considers three strategies: 

• Strategy 1: Consider all stations 

• Strategy 2: Consider stations close to the current station 

• Strategy 3: Consider stations with large forecasting errors 

For seven stations and depot, 100 iterations are performed by each strategy. The 

weight was set to 0.1 to account for the unmet demand and travel time together as a 

total cost. The cost of one unit of unmet demand was assumed to be 1,000 won, 

which is the price of a day voucher. Therefore, the cost of one minute of travel time 

for the agent is 100 won.  
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Table 5.4 shows KPIs for each strategy. A ‘Do nothing’ strategy means that no 

relocation is performed, and 22.8 average failures occurred in 2 hours. It is 

impossible to stay self-sufficient from only user usage because the pickup demand 

is higher than the return demand from 7 a.m. to 9 a.m., which is the analysis time. 

Therefore, this suggests that relocation using a truck is required.  

All strategies showed better performance than a ‘Do nothing’ strategy. The 

rewards of Strategy 2 are similar to the value of a ‘Do nothing’ strategy, but the 

rewards of strategy 1 to 3 include the traveling cost of the vehicle. The reward of 

Strategy 1, considering all stations as the next to visit, was the lowest. In Strategy 3, 

the reward is similar to that of Strategy 1, but the computation time was reduced by 

about 28.5% compared to Strategy 1. 

 

Table 5.4 Key performance indicators by strategies 

Strategies Total cost (won) Time (s) 

Do nothing: No reposition 22,800 - 

Strategy 1: All stations 16,400 2,825.9 

Strategy 2: Near stations 23,600 2,113.0 

Strategy 3: Stations with large errors 16,800 2,021.6 

 

5.4 Sensitivity Analysis 

 

5.4.1 Z-score and safety buffer 

 

This section describes the results of sensitivity analysis on safety stock and safety 

buffer. Increasing the safety stock means that an operator aims to prevent shortages 

with a high probability, so it makes sense to decrease the unmet demand as the Z-

score increases. As shown in Table 5.5 and Figure 5.7, higher 𝑧 can guarantee lower 

unmet demand. However, it is worth noting that higher cycle service levels require 

disproportionally higher Z-scores and disproportionately higher safety stock levels 
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(King, 2011). There is a trade-off between the number of stations to visit and the 

number of delivered bikes. In times of high demand, a higher 𝑧 responds better to 

demand fluctuations. 

A low safety buffer can cause the agent to serve a less urgent station, while a 

high safety buffer can make the employ serve a less critical station. A high safety 

buffer can lead to errors where an employee changes the priority of urgent stations. 

Therefore, it is useful to set an appropriate safety buffer, and this result is consistent 

with the results of the previous study, in which the performance curve was convex 

shape (Brinkmann et al., 2015; Brinkmann et al., 2019). 

 

Table 5.5 Sensitivity analysis with varying Z-score and safety buffer 

𝜷 

𝒛 
0.1 0.2 0.3 

1.00 5.8 3.8 4.0 

1.65 5.0 3.5 4.0 

2.33 4.7 2.3 2.8 

 

 

Figure 5.7 Sensitivity analysis with varying Z-score and safety buffer 
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5.5 Large-scale Cases 

 

5.5.1 Network settings 

 

All 31 stations and the depot were selected in Yeouido area for the large-scale case 

analysis (|𝑁| = 32) . An analysis time period is 20 Sep 2017, 07:00~09:00 

(Weekday morning). Hyperparameters were set with reference to the values used in 

the literature. Hyperparameters in this analysis are as follows: 

• Actor 

o Learning rate: 1 × 10−4 

o Hidden layer units: 16 

• Critic 

o Learning rate: 1 × 10−3 

o Hidden layer units: 16 

 

5.5.2 Results 

 

5.5.2.1. Deterministic demand context 

 

Figure 5.8 shows the performance analysis in a deterministic demand context. The 

deterministic demand used in this analysis is the observed demand on that day. 

Strategy 1, which searches all stations, requires more iterations to converge because 

the strategy takes more trial and error exploring all stations. Strategy 2 and 3, which 

search only a few stations, converge faster than Strategy 1 due to the reduction of 

the searching area. Among strategies, Strategy 3 has the lowest convergence. 
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Figure 5.8 Performance analysis in deterministic demand context 

Figure 5.9 to Figure 5.11 shows the repositioning results of each strategy. 

Inventory and routing decisions for each strategy are as follows: 

• Strategy 1: Depot → ST-50 (+4) → ST-58 (+2) → ST-68 (+2) → ST-59 (+5) 

→ ST-66 (+2) → ST-71 (-4) → Depot 

• Strategy 2: Depot → ST-65 (+6) → ST-61 (+8) → ST-63 (-3) → ST-60 (+4) 

→ Depot 

• Strategy 3: Depot → ST-55 (+5) → ST-57 (+9) → Depot (-15) → ST-52 (+3) 

→ ST-64 (+1) → Depot 

An inefficient movement was observed in Strategy 1. Since all stations are 

candidates for routing decisions, the delivery amount is reduced by spending a lot of 

time on the move. It is impossible to serve all stations within a limited working time. 

In reality, repositioning staff people in the SBS system serve only about 20 stations 

for 9 hours (working time) due to handling broken bicycles or citizens’ complaints. 

Therefore, a strategy is needed to select the station that needs the most relocation. 

Strategy 2, which searches for nearby stations, can reduce travel time compared 

to Strategy 1, but cannot reduce total unmet demand by failing to serve distant 
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stations that need urgent relocation. This strategy may be useful for SBRP that aims 

to minimize total travel time, but it is not suitable for DBRP where pickup and return 

demand changes in real-time. 

In Strategy 3, the agent goes through the depot again to withdraw bicycles for 

more delivery. On a weekday morning, most stations in Yeouido have much return 

demand rather than pickup demand due to commuting trips. As the analysis duration 

is short as 2 hours, the repositioning effect after the analysis period cannot be 

identified. If the analysis period becomes more extended, Strategy 3 will have better 

performance than other strategies. 

 

 

Figure 5.9 Repositioning result of Strategy 1 
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Figure 5.10 Repositioning result of Strategy 2 

 

Figure 5.11 Repositioning result by Strategy 3 

 

5.5.2.2. Stochastic demand context 

 

In the stochastic demand context, the agent failed to minimize unmet demand with 

the current KPI. Because the unmet demand caused by the fluctuation of stochastic 

demand was larger than the unmet demand reduced by the agent’s relocation, the 
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agent could not learn through the reward. In Figure 5.12, the variation in unmet 

demand is at most 50 bicycles. The agent, however, can only visit limited number of 

stations with a vehicle capacity of 15 bicycles. Since the unmet demand is much 

higher than the satisfied demand on weekday morning, it is necessary to increase the 

supply of public bicycles into Yeouido, including relocation with the repositioning 

vehicle. 

 

 

Figure 5.12 Performance analysis in stochastic demand context 

This difficulty also applies if KPIs are changed into satisfied demands. Figure 

5.12 shows that unmet demands and satisfied demands show the similar trend. 

Therefore, it is necessary to consider the reward by agent’s action (inventory 

decision and routing decision), not the reward of the entire system. KPIs that focus 

on the agent's behavior are as follows: 

• Number of repositioned bikes: The relocated bicycle must be assumed to be 

picked up and the vacant dock by the reposition must be assumed to be used 

for return. In addition, the agent may serve a station that can accommodate 

0

20

40

60

80

100

120

0

8
0
0

1
,6

0
0

2
,4

0
0

3
,2

0
0

4
,0

0
0

4
,8

0
0

5
,6

0
0

6
,4

0
0

7
,2

0
0

8
,0

0
0

8
,8

0
0

9
,6

0
0

1
0
,4

0
0

1
1
,2

0
0

1
2
,0

0
0

1
2
,8

0
0

1
3
,6

0
0

1
4
,4

0
0

1
5
,2

0
0

1
6
,0

0
0

1
6
,8

0
0

1
7
,6

0
0

1
8
,4

0
0

1
9
,2

0
0

2
0
,0

0
0

2
0
,8

0
0

2
1
,6

0
0

D
em

a
n

d
s

Episodes

Unmet demands

Satisfied demands



 

 ８１ 

a lot of bicycles due to a large capacity but that does not need a reposition. 

• Satisfied demand of the repositioned bikes: The calculation of satisfied 

demands is complex and inaccurate because the demands can only be 

calculated for the corresponding timestep. 

• Satisfied demands of the served station: The agent chooses a station where 

pickup or return demand is high regardless of the amount of relocation. 

• Unmet demands of the served station: Contrary to the satisfied demands of 

the served station, the agent only finds stations with rare pickup or return 

demand, even the agent may choose not to travel. 
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Chapter 6. Conclusions 

 

6.1 Conclusions 

 

6.1.1 Summary 

 

Many cities around the world have operated a PBS system to reduce air pollution 

and traffic congestion and to maintain citizens’ health. Due to spatiotemporal 

demand patterns, however, a shortage of bicycles or docks inevitably occurs. 

Addressing the imbalance of bicycles is essential for the system to succeed, and 

accurate demand forecasting should also be implemented. Based on the forecasted 

demand, it is necessary to establish a repositioning strategy that tackles bicycle 

imbalance under stochastic demands. 

This study developed dynamic programming, RTDP, and reinforcement 

learning methods in the context of the dynamic PBS system with stochastic demand. 

Analysis was done on user demand patterns which are different by time period based 

on historical pickup data. Demand forecasting was done stochastically with a random 

forest technique. The movement of vehicles over time was considered by introducing 

the MDP. The developed models and algorithms were compared with benchmark 

strategies, and the characteristics of the strategies were analyzed under various 

conditions as demand patterns and network characteristics were varied. Using the 

developed model and algorithms, we compared the proposed strategy and benchmark 

strategies under various conditions with demand patterns and network characteristics. 

The developed strategy resulted in better performance than the benchmark strategy. 

In other words, the strategy of focusing on stations with large fluctuations in dynamic 

factors showed a high repositioning effect. 

Most of the previous research about the repositioning problem of public 
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bicycles dealt with the SBRP, in which the repositioning process was assumed to 

occur mainly at nighttime. Even though the publication of the DBRP studies has 

recently increased, users’ demands have been regarded as constant or as deterministic 

values based on historical usage data. In this study, considering the stochastic 

forecasted demands, the vehicle route and the number of bicycles to load or unload 

were determined to minimize unmet demand. This study evaluated the repositioning 

strategy by considering the various dynamic factors. This study proposed a more 

efficient and reliable repositioning strategy and allows the selection of strategies to 

be applied under similar conditions when they are applied in the field. 

 

6.1.2 Guidelines for repositioning 

 

There are a couple of things to consider when applying this strategy to reality to add 

practical value. First, the network size that RTDP can calculate is relatively small. A 

strategic approach such as clustering methods for small regions is required to analyze 

a wide range of networks. 

In order to apply this study to the field, the computation time of the algorithm 

should be reasonable. RTDP and reinforcement learning also take a lot of time to 

converge so it is difficult to apply the algorithms in the field. They are time-efficient 

because they can store values in advance and update continuously. 

 

6.2 Future Research 

 

6.2.1 Limitations 

 

The observed demand was considered as a true demand in this study. Strictly 

speaking, the observed demand represents a low bound of demand, not the true 

demand. For example, if a station does not have any bicycle, it does not appear as an 
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observed demand, even if there is actually a pickup demand. Therefore, there is a 

limit in this study that the true pickup demand was underestimated, and in order to 

solve this problem, an estimate on the true demand is required. There are methods 

for estimating true demand using average using historical data only where all 

demand has been realized (O'Mahony, 2015), or simulations using historical data 

(Negahban, 2019). 

Second, it takes a long time to apply the strategy. Since future repositioning 

strategies are derived by considering the dynamic factors of the latest time period 

(inventory, prediction error, or inventory rate variation), it is a long time to respond 

to rapidly changing demand. Considering the time, it takes to draw future demand 

and vehicle routes and the accuracy of demand forecast shorter than one hour (e.g., 

10 minutes or 30 minutes), however, this time difference can be seen as inevitable 

and can be reduced by the development of computational skills and precise demand 

forecasting techniques. 

Third, travel time between stations was considered static. In Yeouido, the travel 

time was reported to be similar regardless of the time period except for boulevards, 

so this assumption is judged to be reasonable within this study. However, if the 

spatial scope is expanded, the time-dependent travel time should be considered, and 

the actual travel time should be reflected using APIs rather than Euclidean distance. 

 

6.2.2 Future research 

 

This study assumed that the bicycle type was homogeneous. If the electric bicycle is 

introduced in the future, the type of public bicycles can be diversified and the 

repositioning strategy changes according to the users’ characteristics to the electric 

bicycle. In addition, because the specifications of the electric bicycle are different 

from the existing bicycle, the combination of loading or unloading from/to the 

vehicle may be also various. 
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Further research is needed to increase the accuracy of public bicycle demand 

forecasting. There are two issues in demand forecasting for public bicycles: the first 

is the accuracy of forecasted demand itself and the second is the estimation of true 

demand (as described in Section 6.2.1). If demand forecasting accuracy is high, the 

movement of the vehicle is closer to the movement in the hindsight problem. Unmet 

demand can be more realistic by using estimated true demand rather than the 

observed demand. 

This study tested repositioning strategies with limited resources in a relatively 

small spatial scope. Future research needs to consider the expansion of the range, 

and additional input of resources such as vehicles and staffs. 
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초    록 

실시간 동적 계획법 및 강화학습  

기반의 공공자전거 시스템의 동적 재

배치 전략 
 

서울대학교 대학원 

공과대학 건설환경공학부 

서 영 현 

 

공공자전거 시스템은 교통혼잡과 대기오염 등 여러 도시문제를 완화할 

수 있는 교통수단이다. 대여소가 위치한 곳이면 언제 어디서든 이용자가 

자전거를 이용할 수 있는 시스템의 특성상 수요의 시공간적 불균형으로 

인해 대여 실패 또는 반납 실패가 발생한다. 시스템 실패를 예방하기 위

해 운영자는 적절한 재배치 전략을 수립해야 한다. 운영자는 예측 수요 

정보를 전제로 의사결정을 하므로 수요예측의 정확성이 중요한 요소이나, 

수요의 불확실성으로 인해 예측 오차의 발생이 불가피하다. 

본 연구의 목적은 공공자전거 수요의 불확실성과 시스템의 동적 특

성을 고려하여 불만족 수요를 최소화하는 재배치 모형을 개발하는 것이

다. 공공자전거 재배치 메커니즘은 순차적 의사결정 문제에 해당하므로, 

본 연구에서는 순차적 의사결정 문제를 모형화할 수 있는 마르코프 결정 

과정을 적용한다. 마르코프 결정 과정을 풀기 위해 복잡한 문제를 간단

한 부문제로 분해하여 정확해를 도출하는 동적 계획법을 이용한다. 하지
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만 마르코프 결정 과정의 상태 집합과 결정 집합의 크기가 커지면 계산 

복잡도가 증가하므로, 동적 계획법을 이용한 정확해를 도출할 수 없다. 

이를 해결하기 위해 근사적 동적 계획법을 도입하여 근사해를 도출하며, 

대규모 공공자전거 네트워크에서 가능해를 얻기 위해 강화학습 모형을 

적용한다. 장래 공공자전거 이용수요의 불확실성을 모사하기 위해, 기계

학습 기법의 일종인 random forest로 예측 수요를 도출하고, 예측 수요

를 평균으로 하는 포아송 분포를 따라 수요를 확률적으로 발생시켰다. 

본 연구에서는 관측 수요와 예측 수요 간의 차이인 예측오차에 빠르

게 대응하는 재배치 전략을 개발하고 효과를 평가한다. 개발된 전략의 

우수성을 검증하기 위해, 기존 연구의 재배치 전략 및 현실에서 적용되

는 전략을 모형화하고 결과를 비교한다. 또한, 재고량의 안전 구간 및 

안전재고량에 관한 민감도 분석을 수행하여 함의점을 제시한다. 

개발된 전략의 효과를 분석한 결과, 기존 연구의 전략 및 현실에서 

적용되는 전략보다 개선된 성능을 보이며, 특히 예측오차가 큰 대여소를 

탐색하는 전략이 전체 대여소를 탐색하는 전략과 재배치 효과가 유사하

면서도 계산시간을 절감할 수 있는 것으로 나타났다. 공공자전거 인프라

를 확대하지 않고도 운영의 효율화를 통해 공공자전거 시스템의 이용률 

및 신뢰성을 제고할 수 있고, 공공자전거 재배치에 관한 정책적 함의점

을 제시한다는 점에서 본 연구의 의의가 있다. 

 

주요어 : 강화학습, 공공자전거 시스템, 마르코프 결정 과정, 실시간 동적 

계획법, 재배치 
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