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Abstract

In this study, a prediction model for casualty crash occurrence was

developed considering whether to install SSES and the effect of

SSES installation was quantified by dividing it into direct and

indirect effects through the analysis of mediation effect. Also, it was

recommended what needs to be considered in selecting the candidate

sites for SSES installation. For this, crash prediction model was

developed by using the machine learning for binary classification

based on whether or not casualty crash occurred and the effects of

SSES installation were analyzed based on crashes and speed-related

variables. Especially, the IML methodology was applied that considered

the predictive performance as well as the interpretability of the forecast

results as important. When developing the IML which consisted of

black-box and interpretable model, KNN, RF, and SVM were reviewed

as black-box model, and DT and BLR were reviewed as interpretable

model. In the model development, the hyper-parameters that could be

set in each methodology were optimized through k-fold cross

validation. The SVM with a polynomial kernel trick was selected as

black-box model and the BLR was selected as interpretable model to

predict the probability of casualty crash occurrence.

For the developed IML model, the evaluation was conducted

through comparison with the typical BLR from the perspective of the

PDR framework. The evaluation confirmed that the results of the IML

were more excellent than the typical BLR in terms of predictive

accuracy, descriptive accuracy, and relevancy from a human in the loop.
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Using the result of IML's model development, the effect on SSES

installation were quantified based on the probability equation of

casualty crash occurrence. The equation is the logistic function that

consists of SSES, SOR, SV, TVL, HVR, and CR. The result of

analysis confirmed that the SSES installation reduced the probability

of casualty crash occurrence by about 28%. In addition, the analysis

of mediation effects on the variables affected by installing SSES was

conducted to quantify the direct and indirect effects on the probability

of reducing the casualty crashes caused by the SSES installation.

The proportion of indirect effects through reducing the ratio of

exceeding the speed limit (SOR) was about 30% and the proportion

of indirect effects through reduction of speed variance (SV) was not

statistically significant at the 95% confidence level.

Finally, the probability equation of casualty crash occurrence developed

in this study was applied to the sections of Yeongdong Expressway to

compare the crash risk section with the actual crash data to examine the

applicability of the development model. The analysis result verified that

the equation was reasonable. Therefore, it may be considered to select

dangerous sites based on casualty crash and speeding firstly, and then to

install SSES at the section where traffic volume (TVL), heavy vehicle

ratio (HVR), and curve ratio (CR) are higher than the other sections.

Keywords: binary classification, casualty crash prediction,

Interpretable Machine Learning (IML), mediation effect

analysis, Section Speed Enforcement System (SSES)

Student Number: 2010-31011
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1. Introduction

1.1. Background of research

Because speeding is one of the most significant contributing

factors to fatal crashes, most road traffic agencies attempt to achieve

the right operating speed by imposing speed limits. Speed limit

violations are prevalent, even on roadways with speed cameras. But,

a problem with automated speed enforcement system is that some

drivers brake before passing a camera location and then exceed the

speed limit after passing. This sudden braking can cause dangerous

situations, crashes, and traffic jams (Montella 2012).

A new technique to overcome these problems is the Section Speed

Enforcement System (SSES). Unlike conventional automated speed

enforcement, which measure the speed of a vehicle at one spot, the

SSES calculates the average speed over a long distance (at least 500m

and up to several kilometers).

[Figure 1-1] Configuration of SSES
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SSES has cameras installed on all lanes, slave camera enforcement

system is installed at the start point, and master camera enforcement

system is installed at the end point as shown in [Figure 1-1]. The

operating principles of SSES are as follows. The vehicle passes on

the level of the camera which records the number plate and the

specific time of passage in the salve camera enforcement system and

they are sent to the master camera enforcement system. it passes in

front of a second camera which again read the number plate and

specific time in the master camera enforcement system. The controller

of master system calculates the average speed.

Since its first introduction in the Netherlands, it has been in

operation in France, Austria, Germany, UK, Italia, Norway, Australia,

New Zealand, etc. In South Korea, the automated traffic enforcement

system was introduced at 32 locations nationwide in 1997. The types

of automated traffic enforcement system which is installed and

operated by Korean National Police Agency (KNPA) are (spot) speed,

red-light, SSES and mobile cameras. They have been expanded and

installed in succession because the effectiveness of reducing crashes is

high. Current state of installation in the Korea is shown in <Table 1-1>.

Type Speed Red-light SSES Mobile Total

No. of cameras 3,091 5,042 469 399 9,001

Proportion (%) 34.4 56.0 5.2 4.4 100.0

Source: KNPA(2020. 01.)

<Table 1-1> Automated traffic enforcement camera system in Korea
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In case of SSES, a total of 469 cameras have been operating in 97

sections, since it was first set up on the Seohaean expressway in 2007.

This accounts for about 5.2% of all automatic traffic enforcement

systems. In this regard, the KNPA also acknowledges the need to

expand the SSES, which has a greater effectiveness of preventing

casualty crashes and stabilizing traffic flow compared with other

automated traffic enforcement systems. However, it is difficult to

expand the installation of SSES because there is no quantitative

installation criteria.

When reviewing research related to SSES, most studies on

installation effectiveness are focused on speed, crash, and environmental

pollutant emissions. The effectiveness analysis for SSES installation

is being performed using naive before-after test, Comparison-Group

(C-G) method, and Empirical Bayes (EB) method. In addition, some

studies have been conducted on the installation criteria of SSES,

mostly in the form of suggestions for qualitative criteria rather than

quantitative ones. The qualitative criteria suggest that crash

frequency, crash severity, speed, proportion of exceeding speed limit,

traffic volume, and heavy vehicle ratio should be considered when

selecting the location for the installation of SSES.

When reviewing an crash prediction model related to SSES, it is

mainly a model that predicts crash frequency or crash severity. Most

of the studies, the prediction for crash frequency is developed by

applying Generalized Linear Model (GLM) such as Poisson model and

negative binomial model, and the prediction for crash severity is
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developed by applying machine learning using classification techniques

such as Binary Logistic Regression (BLR), Random Forest (RF),

Support Vector Machine (SVM) and Artificial Neural Network (ANN).

There is no model that considered SSES as a independent variable

when developing the crash prediction model. Therefore, it is

necessary to develop an crash prediction model to quantify the

installation effectiveness of SSES and to make suggestions on what

needs to be considered in selecting the location for SSES installation.

1.2. Objective of research

The purpose of this study is to develop the prediction model of

casualty crash occurrence, to quantify the effectiveness of SSES

installation and to make suggestions on what needs to be considered

in selecting the location for SSES installation. To achieve the purpose

of the study, it is important to improve the prediction accuracy for

the prediction model of casualty crash occurrence. In addition, the

interpretability of prediction model is also important to quantify the

effect of SSES on casualty crash reduction and to recommend the

candidate sites for SSES installation. Therefore, Interpretable Machine

Learning (IML) methodology is applied to improve the model's

performance and interpretability in the model development. IML is a

methodology that has been introduced to increase the ability to

explain machine learning techniques that have excellent predictive

performance, such as RF, SVM, and DNN, but lack the ability to
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interpret forecast results, and has been actively researched in

medicine and engineering.

To quantify the installation effects of SSES, a model for

probability of casualty crash occurrence is developed and the indirect

effects of variables (e.g. mean speed, the ratio of exceeding the speed

limit and speed variance) related to speed are analyzed separately

from the direct effects of reducing probability of casualty crash

occurrence caused by installation of SSES. For this, the process of

mediation effect analysis is carried out. And the methodology is

proposed to select candidates for installation of SSES based on the

developed probability formula of casualty crash occurrence.

The differentiations in this study from prior studies are as follows.

First of all, there is no crash prediction model considering whether or

not SSES is installed. It is necessary to develop an crash prediction

model to quantify the installation effects of SSES.

Secondly, many prior studies have analyzed the effectiveness of

crash reduction before-after SSES installation, but this study

quantifies the effects of SSES installation by developing a prediction

model for the probability of casualty crash occurrence. In other word,

the effects of reducing the number of crashes were analyzed in prior

studies, but in this study, the effects of reducing probability of

casualty crash occurrence are analyzed.

Thirdly, when the effectiveness of SSES installation is quantified,

direct effects on the reduction of casualty crash caused by the

installation of SSES and indirect effects by the induction of speed
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reduction are divided through the analysis of the mediation effects.

Finally, in this study, it is recommended what needs to be

considered in selecting the location for SSES installation based on the

result of developing crash prediction models. Through this, it can

support the decision making of KNPA when installing SSES, and can

also be used as a basic qualitative criteria to select candidate

locations for SSES installation.

1.3. Research Flow

The purpose of this study is to develop the prediction model of

casualty crash occurrence using the IML and to quantify the

effectiveness of SSES installation through mediation effect analysis.

In order to achieve the purpose of study, the following processes and

methodologies have been carried out. The overall research flow of

this study is shown in [Figure 1-2] and each chapter covers the

following contents.

In the chapter 2, literature review is conducted to set the direction

of model development. the prior studies on the effectiveness of SSES,

the installation criteria of SSES, crash prediction model and machine

learning algorithm are reviewed. First of all, in the research on the

analysis of SSES effects, the methodology of analyzing the effect and

analysis results are reviewed. Secondly, the installation criteria of

SSES in foreign countries are reviewed and compared with the

domestic criteria. Thirdly, the crash prediction model are reviewed.
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Crash prediction models are largely divided into those that predict the

frequency and severity of crashes. Through a review of the model,

implications and differentiations for the model to apply in this study

are reviewed. Finally, researches on machine learning algorithms for

binary classification are reviewed (e.g. parametric methodologies such

as DT and BLR, and non-parametric methodologies such as KNN,

RF, SVM, and DNN). Especially, researches on the IML for definition,

method and application are also reviewed.

[Figure 1-2] Flowchart of research

In the chapter 3, the process of model specification has been

carried out. For its purpose, data collection is conducted on SSES

locations installed in the Korean expressway. Road, traffic and control
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conditions which are used as independent variables are collected.

Basic statistics such as scatter plot, correlation and box plot between

variables are analyzed for data’s refining and filtering. The effect

analysis of SSES installation is conducted with the Measures Of

Effectiveness (MOE) such as speeds and crashes. A specification of

the response variable applicable to the model development is carried

out. Next, the applicability of the IML techniques for the development

of the casualty crash model are reviewed. In addition, the methodologies

for mediation effect analysis are reviewed to quantify the effects of

SSES installation separately from the direct and indirect effects.

In the chapter 4, prediction model for casualty crash occurrence is

developed considering whether or not the SSES installation. The

developed prediction model is applied with machine learning for

binary classification to predict whether or not an casualty crash has

occurred. IML is used to improve the prediction model's performance

and interpretability. It usually uses non-parametric method as

black-box model for improving the accuracy of prediction and

parametric method as interpretable (surrogate) model for improving the

interpretability. In this study, KNN, RF, and SVM are applied to

black-box models, and Decision Tree (DT) and BLR are applied to

interpretable models.

In the chapter 5, a performance evaluation is conducted against the

developed IML model compared with the typical BLR model in the

perspective of the PDR (Predictive accuracy, Descriptive accuracy and

Relevancy) framework. Based on the IML model developed, the
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effects of casualty crash reduction due to SSES installation are

quantified, and the effects of SSES installation are analyzed by

separating it by direct and indirect effects through the analysis of

mediation effects. Finally, it is suggested what needs to be considered

in selecting the location for SSES installation based on the probability

formula for casualty crash occurrence.

In the final chapter 6, the findings of this study are summarized

and it is reviewed that they can be used to implement policies by the

KNPA related to the installation and operation of SSES. Finally, the

limitations of the study results are reviewed and the directions of

future research are suggested.
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2. Literature Review

2.1. Research related to SSES

2.1.1. Effectiveness of SSES

In most prior studies, MOEs are used in terms of traffic safety,

operation and environment when analyzing the effects of installing the

SSES as shown in <Table 2-1>.

Author Year Subject Methodology Results

Torre et
al.

2019
Safety effects of automated section
speed control on the Italian
motorway network

EB
analysis

PDO crash: 22%↓
Fatal injury 18%↓

Montella
et al.

2015
Effect on speed and safety of
point-to-point speed enforcement
systems

EB
analysis

Stdev of speed: 26%↓
% of exceeding speed
limit: 77~84%↓
Total crash: 22%↓

Cascetta
et al.

2011
Effects of section speed enforcement
system on traffic flow at freeway
bottlenecks

Empirical
analysis

Mean speed↓
speed variation↓
Bottleneck↓

Jung
et al.

2014
Traffic accident reduction effects of
section speed enforcement system
(SSES) operation in freeways

C-G
method

Total crash: 32% ↓
Fatal injury 42%↓

Yun 2011
Effect of the point-to-point speed
enforcement system

C-G
method

Total crash: 50%↓

Thornton 2010
Reduction in CO2 emissions and fuel
consumption with SSES

Empirical
analysis

CO2 emission: 11%↓
fuel consumption:
30%↓

<Table 2-1> Effectiveness of SSES

Torre et al. (2019) evaluated the impact of the Automated Section

Speed Control (ASSC) system on the expected crash frequency using
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Empirical Bayes (EB) methodology. This study was carried out on a

sample of 125 ASSC sites of the Italian motorway network covering

1,252km, where a total of 21,721 crashes were recorded during a

10-year analysis period from 2004 to 2013. The EB analysis estimated

a significant 22% reduction in the expected crash frequency due to

the implementation of the ASSC system. The analysis indicated that

the effect is slightly larger on Property Damage Only (PDO) crashes

(−23%) than on fatal injury (FI) crashes (−18%), and that the

highest reductions in crash frequency are expected for multi-vehicle

FI crashes (−25%) and multi-vehicle PDO crashes (−31%).

Furthermore, the results indicated that the ASSC system was more

effective in reducing crash rates when traffic volume increased and it

was therefore strongly recommended as a countermeasure to improve

safety on high traffic volume motorway sections.

Montella et al. (2015) evaluated the effects on speed and safety of

the point-to-point (P2P) speed enforcement system activated on the

urban motorway A56 in Italy. The P2P system led to very positive

effects on both speed and safety. As far as the effects on the section

average travel speeds, the system yielded to a reduction in the mean

speed, the 85th percentile speed, the standard deviation of speed, and

the proportion of exceeding the speed limits, exceeding the speed

limits more than 10km/h, and exceeding the speed limits more than

20km/h. The best results were the decrease of the speed variability

and the reduction of the excessive speeding behaviour. The decrease

in the standard deviation of speed was 26% while the proportion of
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light and heavy vehicles exceeding the speed limits more than

20km/h was reduced respectively by 84 and 77%. As far as the

safety effects, the P2P system yielded to a 32% reduction in the total

crashes, with a lower 95% confidence limit of the estimate equal to

22%. The greatest crash reductions were in rainy weather (57%), on

wet pavement (51%), on curves (49%), for single vehicle crashes

(44%), and for injury crashes (37%).

Cascetta (2011) analyzed the traffic flow conditions (bottleneck

phenomenon) before and after the installation of the section control

equipment using an empirical analysis. Gathered data consisted of

point measurements at detectors and average travel speeds of each

vehicle crossing the stretch. The main observed features were

following;

• a strong homogenization of individual speeds and of mean

speeds among the lanes,

• a reduction in the strength of the bottleneck,

• the emergence of significant oscillations in time of traffic

characteristics,

• a sensible reduction of travel times during the congestion

pattern caused by the bottleneck moving down-stream of the

section.

Empirical evidence suggested that driver compliance with speed

limits was the key factor in analysis of such speed management

systems and that their concurrent application with dynamic speed

limit strategies should be thoroughly evaluated with a particular focus
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on this measure.

Jeong et al. (2014) analyzed the effects of crash reduction by using

the C-G method for SSES operation sections. The number of crashes

was reduced by 32.0%, the number of casualty crashes was reduced

by 17.1%, and the number of fatal crashes was reduced by 41.7%.

Yun (2011) conducted an analysis of the installation effect of the

SSES using the C-G method. The scope of study was analyzed for

the number of crashes during one year in three SSES sections

installed in 2008, and the result of C-G method showed that the

crash reduction was by 49.97%.

Thornton (2010) analyzed annual reduction of passenger car CO2

emissions and fuel consumption. The analysis results showed that the

fuel consumption and CO2 emissions of passenger cars were reduced

by 11% by installing the SSES on highways, and that the speed limit

of 50 mph could be reduced by up to 30% by the fuel consumption

and CO2 emissions. The greater the variation in the speed of traffic,

the more frequent the braking conditions of the vehicles occurred, and

the subsequent driver of the preceding vehicle would also apply the

brakes, which in turn caused increased fuel consumption and CO2

emissions, so smooth driving through the implementation of sectional

speeding had been identified as reducing fuel consumption and CO2

emissions. Further, it was analyzed that the effect of reducing

congestion during peak hours was demonstrated in the section of the

road construction due to the implementation of section speeding, and

that it had a positive effect on reducing the fuel consumption and
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traffic congestion.

In prior studies, the analysis results showed that installation of the

SSES was very effective in reducing the number of crashes and the

crash severity, and it also affected the reduction of the vehicle's

driving speed and ratio of exceeding the speed limit. In addition, by

uniformizing traffic flows of vehicles through install the SSES, the

incidental effects of reducing pollutant emissions such as CO2 were

identified.

2.1.2. Installation criteria of SSES

In order to recommend the installation criteria for SSES, one of the

purposes of this study, the prior researches related to the installation

criteria are reviewed. SSES is widely installed and being operated in

the U.S., Australia and Europe, and the installation criteria presented

in major countries are shown in <Table 2-2>.

Nation Installation criteria (accident, speed, etc.) AADT Length

Australia
(NSW)

• Crash frequency of the heavy vehicle
• Proportion of exceeding the speed limit for the heavy
vehicle

- 6~75km

New
Zealand

• No. of crashes, crash severity
• Without sections in which enforcement is avoided

> 15,000
 Over
2km

UK
• Installation criteria of spot enforcement: 3 KSI/Km   
   * KSI (Killed or Seriously Injured)
• More than 3 spots in the section of SSES

- 5~20km

Norway
• Mean speed>Speed limit
• Same speed limit for the entire section

Not any exit
> 250

2~10km

<Table 2-2> Installation criteria of SSES
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First of all, Australia's NSW state is operating SSES for the

purpose of reducing crashes to heavy vehicles. Therefore, it is

recommended to install the SSES based on the crash data related to

the heavy vehicle and the rate of exceeding speed limit for the heavy

vehicle. In addition, the section length of SSES is recommended to

set in the range of approximately 6 to 75km.

In New Zealand, the installation site of SSES is selected based on

the crash frequency and the crash severity. It is recommended to

avoid sections which contain intersections. Also, It is required that

daily average traffic volume is more than 15,000 vehicles in the

section, and section length is more than 2km (Lynch 2011).

In the U.K., if there are more than three KSI (Killed or Seriously

Injured) crashes per km annually, it is required to be selected as

candidate site for installing the spot speed enforcement system. And if

there are more than three candidate sites of the spot speed enforcement

within a given section, the SSES should be installed. The length of

the section is to be set in the range of 5 to 10km (DfT 2007).

In the Norway, SSES should be installed in sections where the

average speed exceeds the speed limit and the speed limit remains

the same for the entire section. It is required that traffic volume to

diverge or to merge within the control section is less than 250 per

day. In addition, the section length of SSES is recommended to set in

the range of about 2 to 10 km (Ragnøy 2011).

As discussed above, the installation criteria for SSES, including the

number of crashes, crash severity, speed, heavy vehicle ratio, and
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uninterrupted traffic flow sections are provided. These installation

criteria are qualitative rather than quantitative.

In Korea, there are no specific criteria for installation provided by

the KNPA, and each local police agency that is responsible for the

installation of SSES. Generally, They select candidate sites

considering the number of crashes, Equivalent Property Damage Only

(EPDO) and feasibility of installing SSES at the sites.

2.2. Machine learning about transportation

2.2.1. Machine learning algorithm

Arthur Samuel defined machine learning as "a field of research

that allows computers to learn without explicitly being programmed".

There are three kinds of machine learning: supervised, non-supervised

and reinforcement learning.

Supervised learning should include the desired answer or label in

the training data that is injected into the algorithm. Classification is a

typical map learning task, and number recognition is a good example.

Another action is to use a feature called a prediction variable to

predict the final result. These kinds of actions are called regression.

Some regression algorithms can be used for classification, and

sometimes they can't be used. Logistic regression, which is widely

used in classification, outputs a probability of belonging to the class.

Below are some of the most important mapping algorithms.

• K-Nearest Neighbors (KNN)
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• Binary Logistic Regression (BLR)

• Support Vector Machine (SVM)

• Decision Tree (DT)

• Random Forest (RF)

• Neural Network (NN)

Non-supervised learning does not require the label required for

supervised learning. The system must learn without any help.

Below is the most important non-map learning algorithm.

○ Cluster

• K-Means

• Hierarchical Cluster Analysis (HCA)

• Expectation Maximization

○ Visualization and Dimension Reduction

• Principal Component Analysis (PCA)

• Kernel PCA

• Local Linear Embedding (LLE)

• t-distributed Stochastic Neighbor Embedding (t-SNE)

○ Associate Rule Learning

• Apriori

• Eclat

Hierarchy clustering algorithms allow you to subdivide each group

into smaller groups. The visualization algorithm creates a 2D or 3D

representation that can be schematic by inserting large, unlabeled,



- 19 -

high dimensional. Dimension reduction is used to simplify data

without losing too much information. For example, the mileage of a

car is very associated with the model year, so a dimension reduction

algorithm can combine the two characteristics into one characteristic

that represents the degree of the car’s wear. This is called feature

extraction. Abnormal detection is an automatic removal of unusual

values from a dataset before injecting them into the learning algorithm.

Reinforcement learning is a very different kind of algorithm. In this

case, the learning system is called the agent, and you observe the

environment to act and receive rewards. Learn for yourself the best

strategy we call policy to get the most rewards over time. Policy is

agent is to determine how to behave in a given situation. Deep

Mind's Alpha-Go program is also a good example of enhanced learning.

2.2.2. Machine learning algorithm about transportation

The use of machine learning in the areas of transportation varies.

The predictions of traffic flow, travel time, real-time traffic density,

pedestrian detection and trip routing are as shown in <Table 2-3>.

Author Year Classification of prediction Machine learning algorithm

Diao et al. 2019 Short term traffic flow ANN

Dogru et al. 2018 Traffic accident detection Random Forest

Ma et al. 2015 Real time traffic speed LSTM-NN

Chung et al 2018 Real time traffic density Deep-CNN

Kim et al. 2013 Pedestrian detection Logistic regression

<Table 2-3> Summary of reviews on machine learning about transportation
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Diao et al. (2019) conducted a study on the prediction of short-

term traffic volume using machine learning The study proposed a

new hybrid model that accurately predicts the amount of multi-stage

forward passenger flow, taking factors into account in terms of time,

origin purpose space, frequency and self similarity. For its purpose,

first, discrete wavelet transformations were applied to break down the

traffic volume series into dedicated and several detailed components.

Then, a more efficient tracking model for predicting expenditure

elements and a new Gaussian process model for predicting detail

were proposed. The predicted performance was evaluated by real-time

passenger flow data in Chongqing, China. Simulation results showed

that hybrid models could improve accuracy by an average of 20% to

50% especially during rush hours.

Dogru et al. (2018) developed the algorithm of traffic crash

detection using RF. This study presented an intelligent traffic crash

detection system in which vehicles exchanged minute vehicle

variables. The proposed system used simulated data collected from

the vehicle's special network (VANET) based on the speed and

coordinates of the vehicle, and then transmitted a traffic alert to the

driver. It also demonstrated how machine learning algorithms could

be utilized to detect crashes occurring on the highways of the ITS.

A model was developed to distinguish crash cases from general cases

by implementing supervised machine learning algorithms such as

ANN, SVM, and RF for traffic data. In terms of accuracy, the

performance of the RF algorithm was judged to be superior to that of
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the ANN and SVM algorithms. RF algorithms performed better with

accuracy of 91.56% than ANN with 88.71% SVM with 90.02%.

Ma et al. (2015) developed prediction model of traffic speed using

remote microwave sensor data. This study proposed Long Short

Term Neural Network (LSTM-NN), a new structure of neural

network, to effectively capture nonlinear transport dynamics. LSTM-

NN could overcome the problem of back propagated error decay

through memory blocks, thus demonstrating excellent ability in time

series prediction with long term time dependence. LSTM-NN could

also automatically determine the optimum time delay. To verify the

effects of LSTM-NN, the moving speed data of the traffic microwave

detector in Beijing was used for model training and testing.

Comparisons with different topology and other dominant parameters

and non-parametric algorithms of dynamic neural networks have

shown that LSTM-NN could achieve the best predictive performance

in terms of accuracy and stability.

Chung et al. (2018) developed the image based learning methodology

to measure traffic density. In this paper, a supervised learning

methodology that required no such feature engineering was used.

A deep Convolutional Neural Network (CNN) was devised to count

the number of vehicles on a road segment based solely on video

images. The present methodology did not regard an individual vehicle

as an object to be detected separately; rather, it collectively counted

the number of vehicles as a human would. The test results showed

that the proposed methodology outperformed existing schemes.



- 22 -

Kim et al. (2013) studied a pedestrian detection method using

feature selection based on logistic regression analysis. As the parent

features, Haar-like and Histograms of Oriented Gradients (HOG)

features were used manually. For the statistical analysis, stepwise

forward selection, backward elimination, and Least Absolute Shrinkage

and Selection Operator (LASSO) methods were applied to Logistic

Regression Model for Pedestrian Detection (LRMPD). The results of

experiment showed that the average of 48.5% of a full model were

selected for LRMPD and this classifier shows performance of up to

95% for detection rate with an approximately 10% false positive rate.

Yu et al. (2010) developed hybrid models based on SVM and

Kalman filtering techniques to predict bus arrival times. First of all,

using the SVM model, reference travel time was predicted for a

given time, weather conditions, path segments, time of movement in

the current segment, and the latest time of movement in the

predicted segment. In addition, the latest bus arrival information was

predicted using the Kalman filtering-based dynamic algorithm. The

results showed that the hybrid model proposed in this paper was

feasible and applicable in the area of bus arrival time prediction and

generally provided better performance than the ANN based method.
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2.3. Crash prediction model

2.3.1. Frequency of crashes

Crash prediction models for the frequency of crashes are mostly

developed based on GLM such as negative binomial or Poisson

function. They have also been developed on the Safety Performance

Functions (SPFs) basis. The summary of relevant researches are

shown in <Table 2-4>.

Author Year Subject Methodology

Torre et al. 2019
Development of an accident prediction
model

SPF/CMF

Popoola et al. 2017
Accident prediction model on pavement
condition and traffic characteristics

(Zero-Inflated) Negative
Binomial & Ordered
logistic model

Fink et al. 2016
Quantifying the impact of adaptive
traffic control systems on crash
frequency and severity

Negative binomial &
Multinomial logit model

Gianfranco et al. 2018
Accident prediction model for urban
road networks

Poisson and Negative
binomial regression

<Table 2-4> Summary of reviews on crash frequency

Torre et al. (2019) developed an Accident Prediction Model (APM)

based on SPFs. APMs represent one of the best tools to perform a

road safety quantitative evaluation. This study defined two APMs for

single and multiple vehicle fatal-and-injury crashes to be applied on

Italian rural freeway segments, based on jurisdictional specific Safety

Performance Functions (SPFs) developed in the PRACT project. The

proposed procedure was based on the Highway Safety Manual (HSM)
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approach, and it introduced a new methodology to transfer the HSM

to European motorways. In order to improve the prediction accuracy,

the proposed APMs consisted in a jurisdictional specific base SPF,

developed for the base data set as a function of Annual Average

Daily Traffic (AADT) and segment length, combined with Crash

Modification Factors (CMFs), in order to account for differences

between each site and the base conditions. The full models were then

calibrated based on the total number of crashes observed in the wide

data set. For both full models (one for single-vehicle and one for

multiple-vehicle crashes), the goodness of fit was evaluated in terms

of chi square test, root mean square error. The results showed a

good aptitude of both models to describe the analysis data set. The

proposed models represented a solid and reliable tool for practitioners

to perform crash predictions along the Italian freeway network.

Popoola et al. (2017) developed a model for predicting the

frequency of crashes on the integration of pavement condition and

traffic characteristics in Nigeria. A comparative analysis of the road

crash frequency prediction model of the IIesha-Akure-Owo road

based on the observed data between 2012 and 2014 was made.

Negative Binomial (NB), Ordered Logistic (OL), and Zero Inflated

Negative Binomial (ZINB) models were used to model the frequency

of crash occurrence using crash data. The explanatory variables

included Annual Average Daily Traffic (AADT), Shoulder Factor (SF),

Rut Depth (RD), Pavement Condition Index (PCI), and International

Roughness Index (IRI). Statistically significant explanatory variables
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for the three models were AADT, SF, and IRI. The estimated

coefficients having the expected signs. Crashes on roads increased

with traffic volume and international roughness index, while

decreasing with shoulder factors. The systematic variation explained

by the models amounts to 87.7%, 78.1%, and 74.4% for NB, ZINB, and

OL respectively.

Fink et al. (2016) conducted a study to quantify the impact of

adaptive traffic control systems on crashes frequency and severity.

This study examined the safety benefits of adaptive traffic control

systems using a large SCATS-based system in Oakland County,

known as FAST-TRAC. The study used data obtained from

FAST-TRAC controlled intersections in Oakland County, comparing

similar intersections in other metropolitan areas of Michigan with a

wide range of geometric, traffic and collision characteristics. A cross

-sectional analysis was performed using data obtained from 498

signalized intersections. The negative binomial model was used to

estimate the model for three dependent crashes variables. The multi-

nomial logit model was used to estimate the injury severity model.

Studies showed that if SCATS-based controllers were at intersections,

angular collisions were reduced by up to 19.3%. Severity results

showed a statistically significant increase in non- critical injuries, but

not a significant decrease in incapacitation or fatal crashes.

Gianfranco et al. (2018) developed an crash prediction model for

urban road networks. The study developed a predictive model of

urban roads that could estimate the number of crashes for the three
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situations of urban road networks, detours, three-distance or range

bifurcation points, and straight roads. Model development was based

on a binary algorithm of Poisson and negative and could be easily

applied to crash prediction or the identification of black spots.

2.3.2. Severity of crash

Most of the models that predicted crash severity conducted the

research using machine learning algorithms for classification. The

summary of relevant researches are shown in <Table 2-5>.

Author Year Subject Methodology

Chang et al. 2006 Analysis of traffic injury severity CART

Olutayo et al. 2014 Traffic accident analysis DTs & NN

Alkheder et al. 2016
Severity prediction of traffic accident using
an artificial neural network

ANN

Iranitalab et al. 2017
Comparison of four machine learning
algorithms for crash severity prediction

MNL, NNC, SVM, RF

Sameen et al 2017 Severity prediction of traffic accidents RNN

Wang et al. 2017
Analysis of roadway and environment
factors affecting traffic crash severities

Logistic regression

<Table 2-5> Summary of reviews on crash severity

Chang et al. (2006) analyzed traffic injury severity using non-

parametric classification tree techniques. Statistical regression models,

such as logit or probit models, have been widely adopted to analyze

the severity of injuries in crashes However, most regression models

have their own model assumptions and predefine base relationships

between dependent and independent variables. If this assumption is
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violated, the model may incorrectly estimate the likelihood of injury.

On the other hand, The Classification And Regression Tree (CART)

does not require a predefined base relationship between the target

(dependent) and predictor (independent) variables, and is being used

as a powerful tool to deal with predictive and classification issues in

particular. In this study, using crash data from 2001 in Taipei,

Taiwan, the development of the CART model was carried out to

establish the relationship between injury severity and driver/vehicle

characteristics, highway/environmental variables and crash variables.

The result of study showed that the most important variable related

to crash severity was the vehicle type. Pedestrians, motorcycles and

cyclists were found to have a higher risk of injury than other types

of motorists in crashes.

Olutayo et al. (2014) studied crash analysis using ANN and DT

techniques to analyze the causes of crashes on Nigeria's busiest

roads. The data were compiled into continuous and categorical data.

Continuous data was analyzed using ANN techniques and categorical

data was also analyzed using DT techniques. Performance measures

used to determine the performance of techniques included instances

that were correctly classified as Mean Absolute Error (MAE), confusion

matrix, accuracy rate, true positive, false positive and percentage.

According to the evaluation results, the DT approach between the

machine learning paradigms considered surpassed the ANN with low

error rates and high accuracy. It also showed that the three most

important causes of the crash were tire rupture, loss of control, and
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over speeding.

Alkheder et al. (2016) studied severity prediction of crash using an

ANN. The model was developed to predict the severity of crashes

based on crash records in Abu-Dhabi. An ANN classifier was built

using Wikato Environment for Knowledge Analysis (WEKA) data

mining software for knowledge analysis. The experimental results

showed that the developed ANN classifier could predict the severity

of the crash with reasonable accuracy. The overall model's forecast

performance was 74.6%. To improve the predictive accuracy of ANN

classifiers, crash data were divided into three clusters using k-means

algorithms. The post-clustering results showed a significant improvement

in the predicted accuracy of the ANN classifier. In this study, the

sequential provisioning model was also used as a comparative

benchmark to verify the performance of the ANN model. The R tool

was used to perform an ordered probit. For each crash, the ordered

probit model showed how likely this crash would result in each class

(minor, moderate, severe and death). The accuracy of 59.5% obtained

from the ordered probit model was clearly less than the ANN

accuracy value of 74.6%.

Iranitalab et al. (2017) developed a model that predicted crash

severity by applying four statistical and machine learning algorithms.

In predicting the severity of crashes, predictive performance was

compared using Multi-Nomial Logit (MNL), Nearest Neighbor

Classification (NNC), SVM, and RF. In addition, the effects of the

method of data clustering consisting of constant prediction, K-means
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Clustering (KC), and Latent Class Clustering (LCC) on the

performance of the crash severity prediction model were investigated.

The four prediction methods were trained/estimated using the

training/estimation dataset and the correct prediction rates for each

crash severity level, overall correct prediction rate and a proposed

crash costs-based accuracy measure were obtained for the validation

dataset. Results of study have shown that NNCs had the best

predictive performance in overall and more severe collisions. Next, RF

and SVM had sufficient performance and MNL was the weakest.

Data clustering did not affect the forecast results of the SVM, but

KC improved the predictive performance of MNL, NNC, and RF,

while LCC resulted in improvements in MNL and RF, but weakened

the performance of the NNC.

Samaine et al. (2017) developed an deep learning model that

predicted the degree of injury to crashes based on the record of

crashes occurring on Malaysia's North-South Expressway using

Recurrent Neural Network (RNN). Compared to the traditional Neural

Networks (NN), the RNN method was expected to be more effective

in sequential data and capture time correlation during crash records.

The selected network architecture consisted of a Long Short Term

Memory (LSTM) layer, two fully connected (dense) layers, and a

Soft-max layer. Next, 0.3 probability dropout technique was applied to

avoid over-fitting. In addition, networks were trained in the Tensor

-flow framework with Stochastic Gradient Descent (SGD) algorithms

(learning rate = 0.01). Additional sensitivity analyses of RNN models
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were performed to determine the effect of factors on injury severity

results. Performance was also evaluated by comparing the proposed

RNN model with the Multi Layer Perceptron (MLP) and Bayesian

Logistic Regression (BLR). Comparative analysis has shown that the

RNN model outperforms the MLP and BLR Validation accuracy of

RNN models reached 71.77%, while MLP and BLR models achieved

65.48% and 58.30%, respectively. The results of this study indicated

that in a deep learning framework, the RNN model could be a promising

tool for predicting the severity of injuries in crashes.

Wang et al. (2017) analyzed road and environmental factors

affecting the severity of crashes. This study identified and quantified

the effects of several major road and environmental factors on the

severity of crashes, and then proposed ways to reduce traffic

fatalities and injuries by emphasizing specific road types under certain

environmental conditions. A logistic regression model was developed

to predict the probability that a crash would cause fatal/serious injury

depending on the combination of different roads and environmental

conditions. The results of the study showed that the road function

class, crash location, road alignment, lighting condition, road surface

condition, and speed limit had a significant effect on the severity of

traffic collision. The high severity of the impact was associated with

rural roads, major arterial roads other than intersection positions,

curved positions, dark and dry road conditions without street lights,

and high speed limits.
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2.4. Interpretable Machine Learning (IML)

2.4.1. Introduction

Machine learning models have demonstrated great success in

learning complex patterns that enable them to make predictions about

unobserved data. In addition to using models for prediction, the ability

to interpret what a model has learned is receiving an increasing

amount of attention. However, this increased focus has led to

considerable confusion about the notion of interpretability. In

particular, it is unclear how the wide array of proposed interpretation

methods are related, and what common concepts can be used to

evaluate them. In this regard, research on IML techniques that take

into account not only the predictive performance of machine learning

but also the interpretability has been attempted recently. The studies

of IML’s definitions, methods, and applications are introduced as

shown in <Table 2-6>.

Author Year Subject

Murdoch et al. 2018 Interpretable machine learning; definitions, methods, and applications

Du et al. 2019
Techniques for Interpretable Machine Learning;
designing user-friendly explanations and developing comprehensive
evaluation metrics

Mohseni et al. 2018
A Survey of Evaluation Methods and Measures for Interpretable
Machine Learning

<Table 2-6> Introduction on IML techniques
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Murdoch et al. (2018) defined interpretability in the context of

machine learning and introducing the Predictive, Descriptive, and

Relevant (PDR) framework for discussing interpretations. The PDR

framework provides three overarching desiderata for evaluation:

predictive accuracy, descriptive accuracy, and relevancy, with

relevancy judged relative to a human audience. Moreover, to help

manage the deluge of interpretation methods, they introduced a

categorization of existing techniques into model-based and post-hoc

categories, with sub-groups including sparsity, modularity and

simulatability.

Du et al. (2019) provided a survey covering existing techniques to

increase the interpretability of machine learning models. they also

discussed crucial issues that the community should consider in future

work such as designing user-friendly explanations and developing

comprehensive evaluation metrics to further push forward the area of IML.

Mohseni et al. (2018) proposed the different evaluation goals in

interpretable machine learning research by a thorough review of

evaluation methodologies used in machine-explanation research across

the fields of human-computer interaction, visual analytics, and machine

learning. They presented a 2D categorization of IML evaluation

methods and showed a mapping between user groups and evaluation

measures. Further, they addressed the essential factors and steps for

a right evaluation plan by proposing a nested model for design and

evaluation of explainable artificial intelligence systems.
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2.4.2. Application of IML

IML techniques are actively studied in engineering fields such as

energy, logistics, pattern recognition, and medical fields such as

diagnosis of disease. Reviews of the IML methodologies applicable to

each field are shown in <Table 2-7>.

Author Year Subject

Methodology

Black-box
model

Interpretable
model

Fan et al. 2018
A novel methodology to explain and
evaluate data-driven building energy
performance models

GLM, MLP,
SVM,
RF, XGB

LIME

Baryannis et al. 2019
Predicting supply chain risks using
machine learning

SVM
Decision
Tree

Karatekin et al. 2019
Interpretable Machine Learning in
Healthcare : Predicting Severe
Retinopathy of Prematurity

DNN
Logistic
regression

Xi et al. 2018
Interpretable Machine Learning with
labelled handwriting digits

CNN
Fuzzy logic
based rule

<Table 2-7> Summary of reviews on IML

Fan et al. (2018) proposed a comprehensive methodology to explain

and evaluate data-driven building energy performance models. The

methodology was developed based on the framework of IML. It can

help building professionals to understand the inference mechanism

learnt, e.g., why a certain prediction is made and what are the

supporting and conflicting evidences towards the prediction. A novel

metric was proposed as an alternative approach other than

conventional accuracy metrics to evaluate model performance. The
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methodology has been validated based on actual building operational

data. The results obtained were valuable for the development of

intelligent and user-friendly building management systems.

Baryannis et al. (2019) proposed a supply chain risk prediction

framework using data-driven AI techniques and relying on the

synergy between AI and supply chain experts. They then explored

the trade-off between prediction performance and interpretability by

implementing and applying the framework on the case of predicting

delivery delays in a real world multi-tier manufacturing supply chain.

Experiment results showed that prioritizing interpretability over

performance might require a level of compromise, especially with

regard to average precision scores.

Karatekin et al. (2019) investigated the risk factors that lead to

severe retinopathy of prematurity using statistical analysis and

logistic regression as a form of Generalized Additive Model (GAM)

with pair-wise interaction terms (GA2M). In this process, they

discussed the trade-off between accuracy and interpretability of these

machine learning techniques on clinical data. They also confirmed the

intuition of expert neonatologists on a few risk factors, such as gender,

that were previously deemed as clinically not significant in RoP prediction.

Xi et al. (2018) developed the IML methodology for recognizing

labelled handwriting digits. For this, a CNN learning structure was

proposed, with added interpretability-oriented layers, in the form of Fuzzy

Logic based rules. This was achieved by creating a classification

layer based on a Neural-Fuzzy classifier, and integrating it into the
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overall learning mechanism within the deep learning structure. Using

this structure, one could extract linguistic Fuzzy Logic based rules

from the deep learning structure directly, which enhanced the

interpretability of the overall system. The classification layer was

realized via a Radial Basis Function (RBF) Neural-Network, that was

a direct equivalent of a class of Fuzzy Logic-based systems. In this

work, the development of the RBF neural-fuzzy system and its

integration into the deep-learning CNN was presented. The proposed

hybrid CNN RBF-NF structure could form a fundamental building

block, towards building more complex deep learning structures with

Fuzzy Logic based interpretability. Using simulation results on a

benchmark data-driven modelling and classification problem they

showed that the proposed learning structure maintained a good level

of prediction accuracy (> 96% on unseen data) compared to state-of-

the-art CNN deep learning structures, while providing linguistic

interpretability to the classification layer.
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3. Model Specification

3.1. Analysis of SSES effectiveness

3.1.1. Crashes analysis

Crash data were collected from sections of SSES installed on

Korean expressways from 2007 to 2019. When collecting data, the

crashes of toll gates, lamps, inter-changes, and rest areas were

excluded from the scope of collection because it was difficult to

determine due to the effects from installing the SSES.

The analyzed results of the total crashes, EPDO, and casualty

crashes before-after installation of SSES using the naive before-after

test are shown in <Table 3-1>.

Before After % Change t-value

Total crash
(annual average)

3.87 2.24 -42.15 2.767***

EPDO
(annual average)

26.05 7.65 -70.64 1.674*

Casualty crash
(annual average)

1.54 0.84 -45.35 1.833*

*p<0.1 **p<0.05 ***p<0.01

<Table 3-1> Result of crash analysis (naive before-after test)

Reduction rate of the total crash was 42.15%, that of EPDO was

70.64%, and that of casualty crash was 45.35%. The result of

independent sample t-test between the before-after showed that the
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total crash was statistically significant at the 99% confidence level

and the EPDO and the casualty crash were statistically significant at

the 90% confidence level.

The analysis results of total crashes, EPDO and casualty crashes

before-after installing the SSES using the C-G method are shown in

<Table 3-2>.

Total crash
(annual average)

EPDO
(annual average)

Casualty crash
(annual average)

Number of crash in target
group (before)

185 26.05 75

Number of crash in target
group (after) ()

109 7.65 37

Number of crash in
comparison group (before)

133 13.65 61

Number of crash in
comparison group (after)

115 12.89 34

Number of prediction crash
in target group (after) ( )

158.77 22.92 41.13

Reduction in crash () 47.77 15.27 4.13

Effectiveness Index () 0.67 0.28 0.84

Variation rate (%) -31.35 -66.62 -10.04

※ comparison groups are the same section in the opposite direction of the installation of SSES

<Table 3-2> Result of crash analysis (C-G method)

Reduction rate of the total crash was 31.35%, that of EPDO was

66.62%, and that of casualty crash was 10.04%. Because all of the

effectiveness index (θ) are smaller than 1, there are the effect of

reducing the total crashes, EPDO, and casualty crashes when

installing the SSES.
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3.1.2. Speed analysis

Speed analysis was carried out through the Vehicle Detection

System (VDS) data within a one-year period before-after installation

of SSES. The results of the analysis for average speed and

proportion of exceeding the speed limit before-after installation of

SSES using the naive before-after test are shown in <Table 3-3>.

Before After % Change t-value

Average speed 97.57km/h 90.82km/h -6.92% 4.156***

Proportion of exceeding
the speed limit

28.76% 8.26% -20.50%p 3.388***

**p<0.05, ***p<0.01

<Table 3-3> Result of speed analysis (naive before-after test)

Reduction rate of the average speed was 6.92% and proportion of

exceeding the speed limit was 20.50p%. The results of independent

sample t-test between the before-after showed that both the average

speed and proportion of exceeding the speed limit were statistically

significant at the 99% confidence level.

In addition, the results of the analysis for the average speed and

proportion of exceeding the speed limit before-after installation of

SSES using the C-G method are shown in <Table 3-4>. Reduction

rate of the average speed was 3.49% and proportion of exceeding the

speed limit was 56.65%. Because all of the effectiveness index (θ) are

smaller than 1, there are the effects of reducing the average speed

and proportion of exceeding the speed limit when installing the SSES.
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Average speed
Proportion of exceeding
the speed limit

Speed in target group (before) 97.57km/h 28.76%

Speed in target group (after) () 90.82km/h 8.26%

Speed in comparison group (before) 98.96km/h 35.03%

Speed in comparison group (after) 96.41km/h 23.87%

Prediction Speed
in target group (after) ( )

94.10 19.05

Reduction in speed () 3.28 10.79

Effectiveness Index () 0.93 0.39

Variation rate (%) -3.49 -56.65

※ comparison groups are 2km of the upper and lower sections of the installation section of SSES.

<Table 3-4> Result of speed analysis (C-G method)

The speed analysis showed that the installation of SSES greatly

affected the reduction proportion of exceeding the speed limit rather

than the average speed, since it reduced the speed of the vehicle

below the speed limit. It was also found that the rate of speed

reduction using the C-G method was less effective than that of the

naive before-after test.

3.2. Data collection & pre-analysis

3.2.1. Data collection

As of 2019, SSESs are installed and being operated in 97

nationwide sections. Data were collected on Korean expressways,
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where data needed for the development of the crash prediction model

was collected. The scope of data collection is shown in <Table 3-5>.

The temporal scope of data collection is from 2010 to 2019, the

spatial scope is the sections of SSES installation and same sections

in the opposite direction of the SSES installation. The content scope

is crash data, road conditions, traffic conditions, and control

conditions.

Scope Data collection

Temporal ․2010 ~ 2019

Spatial
․Sections of SSES installed in the Korean expressway
․Same sections in the opposite direction of the SSES installed

Content ․Crashes, speed, traffic volume, road conditions, etc.

<Table 3-5> Scope of data collection

The contents of data collection are shown in <Table 3-6>. The

number of lanes, entry and exit, the length or ratio of slopes, tunnels,

bridges were collected as the road conditions. Traffic volume, heavy

vehicle ratio, average speed, speed variation, and the proportion of

exceeding the speed limit were collected as the traffic conditions. And

speed limit, whether or not SSES installation were as the control

conditions.
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Contents Variables

Road condition
No. of lanes, slopes, curves, tunnels(number/length),
bridges(number/length), No. of entry/exit

Traffic condition
Traffic volume, heavy vehicle ratio, average speed, speed variation,
proportion of exceeding the speed limit

Control condition Speed limit, SSES(O/X), length of SSES section

<Table 3-6> Contents of data collection

3.2.2. Basic statistics of variables

First of all, a basic analysis of the relationship between SSES and

casualty crash was conducted prior to quantifying the effect of

reducing the casualty crash due to the installation of SSES, which

was the objective of this study. As shown in the <Table 3-7>, cross

table was drawn on whether or not SSES installation and whether or

not a casualty crash occurrence.

SSES
Total

0 1

Casualty
0 88 70 158 (56.4%)

1 91 31 122 (43.6%)

Total 179 (63.9%) 101 (36.1%) 280 (100%)

<Table 3-7> Contingency table between SSES and casualty

Of the total data, 36.1% of the sections was installed with SSES

and 63.9% of the sections was not. In addition, 43.6% of the sections

where the casualty crash occurred, and 56.4% of the sections that
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were not occurred.

Secondly, basic statistics were analyzed for the collected variables,

such as speed, traffic volume, and geometry. The definition and

description of collected variables are as shown in <Table 3-8>.

Variable Definition Description

MS Mean Speed
Average of the all’s VDS speed every 5 minutes
within the section  

SV Speed Variance
Speed variance between average speeds of each
VDS every 5 minutes within the section

SOR Speed Over Ratio
The proportion of time exceeding the speed limit
among all’s VDS speed every 5 minute within the
section   

TVL Traffic Volume Lane
ln(annual average daily traffic volume per lane)
within the section

HVR Heavy Vehicle Ratio
The ratio of trucks more than 2.5t or buses more
than 16 passengers

BR Bridge Ratio
(Total length of bridge(s) within section/section
length) *100

TR Tunnel Ratio
(Total length of tunnel(s) within section/section
length) *100

CR Curve Ratio
(Total length of curve(s) within section/section
length) *100
※ curve: side slope percentage is more than 3%

SR Slope Ratio

(Total length of slope(s) within section/section
length)*100
※ slope: upward or downward slope percentage is

more than 2%

SL Speed Limit Speed limit within the section

LS Length Section The length from start point to end point of SSES

L Lane Number of lanes

※ Section: area from start point to end point of SSES

<Table 3-8> Variable description
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The results of analysis for minimum, maximum, average, and

standard deviation of variables are shown in <Table 3-9>.

Variable Min Max Mean Stdev

MS 81.45 112.24 95.82 6.24

SV 4.19 368.05 67.74 59.19

SOR 0.00 99.73 27.08 30.91

TVL 7.49 10.90 9.14 0.65

HVR 9.35 35.23 20.04 5.78

BR 0.86 47.92 12.74 10.61

TR 0.00 82.14 11.76 19.41

CR 2.58 39.11 11.59 8.81

SR 0.00 47.19 31.70 21.26

SL 80 110 101.79 5.65

LS 4.90 19.50 9.98 3.81

L 2 4 2.38 0.74

<Table 3-9> Basic statistics value

Thirdly, A scatter plot between variables is drawn in [Figure 3-1].

It is a type of plot or mathematical diagram using cartesian

coordinates to display values for typically two variables for a set of

data. The data are displayed as a collection of points, each having

the value of one variable determining the position on the horizontal

axis and the value of the other variable determining the position on

the vertical axis.
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[Figure 3-1] Scatter plot between variables

Also, a correlation analysis was conducted as shown in <Table

3-10>. It is a numerical measure of some type of correlation,

meaning a statistical relationship between two variables. The

variables may be two columns of a given data set of observations,

often called a sample, or two components of a multi-variate random

variable with a known distribution. Several types of correlation

coefficient exist, each with their own definition and own range of

usability and characteristics. They all assume values in the range

from 1 to +1, where ±1 indicates the strongest possible agreement

and 0 the strongest possible disagreement.
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casualty SSES SM SV SOR TVL HVR BR TR CR SR SL LS L

casualty 1 -.411** .155** .177** .280** .185** 0.096 0.070 -0.028 0.064 0.042 -0.023 0.061 -0.002

SSES 1 -.321** -.229** -.416** 0.027 -0.098 -0.003 -0.003 0.002 -0.012 0.016 -0.025 0.025

SM 1 -0.061 .566** -.326** -0.034 .173** .399** .229** -.152* .234** .120* -.210**

SV 1 -0.023 .174** -.201** 0.084 .217** .196** 0.065 .215** -0.059 0.046

SOR 1 -.124* -.169** -.183** .378** .137* .129* -.504** .238** -.178**

TVL 1 -0.012 -0.045 -.142* 0.012 0.108 -0.044 -.316** .209**

HVR 1 0.064 -.262** -.299** -.228** 0.114 .148* -.135*

BR 1 -.159** 0.108 .121* .463** 0.086 -.405**

TR 1 .507** -.148* -0.092 -.157** -.252**

CR 1 -0.067 0.063 -.322** -.145*

SR 1 -.348** .130* -.191**

SL 1 -0.112 0.043

LS 1 -.262**

L 1

*p<0.1 **p<0.05 ***p<0.01

<Table 3-10> Correlation coefficient between variables

A box plot is a method for graphically depicting groups of

numerical data through their quartiles. Box plots may also have lines

extending from the boxes (whiskers) indicating variability outside the

upper and lower quartiles, hence the terms box-and-whisker plot and

box-and-whisker diagram. Outliers may be plotted as individual

points. Box plots are non-parametric and they display variation in

samples of a statistical population without making any assumptions of

the underlying statistical distribution. The spacings between the

different parts of the box indicate the degree of dispersion and
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skewness in the data, and show outliers. In addition to the points

themselves, they allow one to visually estimate various L-estimators,

notably the inter-quartile range, mid-hinge, range, mid-range, and

tri-mean. The results of the bot-plot between the major independent

variables and the occurrence of a casualty crash are shown in the

following [Figure 3-2].

<SM> <SV>

<SOR> <TVL>
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Also, the independent sample t-test between the major independent

variables and the occurrence of a casualty crash were conducted. The

SM, SV, SOR, and TVL of the independent variables were found to

be statistically significant in the least 95% confidence level and the

other variables were not statistically significant. Casualty crash can

<HVR> <L>

<BR> <TR>

<CR> <SR>

<SL> <LS>

[Figure 3-2] Box and whisker plot
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be judged to be significantly affected by related variables with speed

and traffic volume. Independent sample t-test results are shown in

the following <Table 3-11>.

Casualty SM SV SOR TVL HVR BR TR CR SR SL LS L

0 94.97 58.57 19.48 9.04 19.55 12.10 12.23 11.10 55.53 101.90 9.78 2.38

1 96.92 79.61 36.92 9.28 20.66 13.58 11.14 12.23 58.23 101.64 10.25 2.38

t-value -2.611** -2.991*** -4.867*** -3.137*** -1.605 -1.162 0.467 -1.068 -0.708 0.380 -1.023 0.030

**p<0.05, ***p<0.01

<Table 3-11> t–test results for casualty

The similar process was conducted considering that whether or not

SSES was installed. SM, SV, and SOR of the independent variables

were found to be statistically significant in the 99% confidence level

and the other variables were not statistically significant. It could be

seen that variables related to speed are greatly reduced by the

installation of SSES. The results of the independent sample t-test

between the independent variables and whether or not the SSES

installation are shown in <Table 3-12>.

SSES SM SV SOR TVL HVR BR TR CR SR SL LS L

0 97.24 77.37 36.21 9.13 20.44 12.77 11.80 11.58 56.97 101.72 10.05 2.37

1 93.01 48.68 9.03 9.17 19.24 12.70 11.67 11.62 56.19 101.91 9.85 2.40

t-value 5.654*** 3.929*** 7.627*** -0.444 1.649 0.053 0.051 -0.031 0.194 -0.272 0.411 -0.411

**p<0.05, ***p<0.01

<Table 3-12> t–test results for SSES
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3.3. Response variable selection

As mentioned in the chapter 1, the KNPA is installing the SSES

for the purpose of reducing casualty crashes through speed control. In

this regard, this study conducted the response variable selection

process for model development with MOEs used in the analysis of

SSES installation effects as considered in the chapter 2 literature

review. The selection process of response variable is as shown in

[Figure 3-3].

[Figure 3-3] Response variable selection process

According to a study by Cassetta et al. (2011), variables related to

crash, speed, and environment are used as MOEs for analysis of the

effectiveness of SSES. The main purpose of installing SSES is to
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reduce crashes by control the speed. Variables (e.g. mean speed, speed

variation, ratio of exceeding the speed limit) related to speed act as the

mediation effects in reducing crashes through speed control. Also variables

related to environment such as CO2 emissions may be subordinate effects

of installing the SSES.

Therefore, the crash is selected as the primary response variable.

The variables related to crash can be divided into the number of

crashes, EPDO, and casualties. Total crashes are difficult to represent

the purpose of SSES installation which is to reduce casualties

through speed control because they contain PDO crashes which are

not related to speeding. In the case of EPDO, it is likely to have

significant distortion in its prediction of the effects if a major crash

including buses and trucks occurs. Therefore, casualty crashes were

selected as a response variable in this study. According to the results

of effect analysis for SSES, the number of casualty crashes before

installing SSES was 1.54 (annually) and after installing SSES was

0.84 (annually). And their variation and standard deviation were large

when they were compared with average of casualty crashes.

Therefore, it was judged to be possible to apply the binary

classification technique to predict the occurrence of casualty crash,

not the number of casualty crashes.

Through such a selection process, the occurrence of casualty crash

was selected as the response variable in this study and machine

learning algorithms of binary classification were used to develop the

model.
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3.4. Model selection

3.4.1. Binary classification

Binary classification is the task of classifying the elements of a

given set into two groups on the basis of a classification rule.

Contexts requiring a decision as to whether or not an item has some

qualitative property, some specified characteristic, or some typical

binary classification include. Binary classification is dichotomization

applied to practical purposes, and in many practical binary

classification problems, the two groups are not symmetric - rather

than overall accuracy, the relative proportion of different types of

errors is of interest. For example, in medical testing, a false positive

(detecting a disease when it is not present) is considered differently

from a false negative (not detecting a disease when it is present).

Statistical classification is a problem studied in machine learning. It

is a type of supervised learning, a method of machine learning where

the categories are predefined, is used to categorize new probabilistic

observations into said categories. When there are only two categories,

the problem is known as statistical binary classification.

Some of the methods commonly used for binary classification are:

• Decision Trees (DT)

• Random Forest (RF)

• K-Nearest Neighbors (KNN)

• Bayesian networks

• Support Vector Machines (SVM)
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• Deep Neural Networks (DNN)

• Binary Logistic Regression (BLR)

• Probit model

Each classifier is best in only a select domain based upon the

number of observations, the dimensionality of the feature vector, the

noise in the data and many other factors. For example, RFs perform

better than SVM classifiers for 3D point clouds.

3.4.2. Accuracy vs. Interpretability

The relation between the accuracy and interpretability capabilities

of machine learning models is the friction between being able to

accomplish complex knowledge tasks and understanding how those

tasks are accomplished. Knowledge vs. Control, Performance vs.

Accountability, Efficiency vs. Simplicity, and so on pick your favorite

dilemma and they all can be explained by balancing the tradeoffs

between accuracy and interpretability.

[Figure 3-4] Relation between interpretability and accuracy
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Many machine learning algorithms are complex in nature and,

although they result very accurate in many scenarios, they can

become difficult to interpret. The correlation between accuracy and

interpretability of the well known machine learning algorithms can be

shown in [Figure 3-4].

3.4.3. Overview of IML

Machine learning is proceeding at an alarming rate by complex

models such as ensemble models and DNN. These models range from

real life applications such as Netflix's movie recommendations,

Google's translation and Amazon's Alexa's voice recognition. In spite

of its success, machine learning has its limitations and disadvantages.

Most important is the lack of transparency behind their actions,

which leaves users with little understanding of how specific decisions

are made by these models. For example, a self-driving car with

various machine learning algorithms does not brake or decelerate when

confronted with a stationary fire engine. This unexpected behavior

can frustrate and confuse users, so they can wonder why. Worries

about the black-box characteristics of complex models have hindered

their further application in our society, especially in important decision

making areas such as self-driving cars (Du et al. 2020).

IML is an effective tool to reduce these problems. It gives a

machine learning model the ability to explain their behavior in terms

that are understandable to humans, which is called interpretability or

explainability (Doshi-Velez et al. 2017). Interpretability will be an
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integral part of the machine learning model to better serve humans

and bring benefits to society. For end users, the explanation will

encourage increased reliability of a machine learning system. From

the perspective of machine learning system developers, the explanations

provided can help them better understand why models fail.

IML techniques can generally be divided into two categories:

intrinsic interpretability and post-hoc interpretability, depending on the

time they are acquired. Intrinsic interpretability is achieved by

constructing self-explanatory models which incorporate interpretability

directly to their structures. The models of this category include DT,

rule-based model, linear model, and attention model. In contrast,

post-hoc requires the creation of a second model that provides a

description of the existing model. The main difference between these

two groups lies in the trade-off between model accuracy and

explanation fidelity. Essentially interpretable models can provide

accurate and inconsistent explanations, but they can cost some

predictive performance. Post-hoc has limitations on approximate nature

while retaining the accuracy of the underlying model (Molnar 2018).

IML is further distinguished by two types of interpretability: global

interpretability and local interpretability. Global interpretability means

that users can understand how the model works globally by

examining the structure of a complex model, and local interpretability

examines the individual predictions of the model locally to determine

why the model makes the decision. These two types bring different

benefits. Global interpretability can enhance transparency by shedding
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light on the internal mechanism of machine learning models. Local

interpretability can help to identify the causal relationship between a

particular input and its model predictions.

IML consists of a black-box model and an interpretable model, as

shown in the [Figure 3-5]. The structure of IML is that prediction

results of black-box model with high accuracy performance are

interpreted by interpretable model with high explainable performance.

[Figure 3-5] Interpretable machine learning

Black-box models such as DNN, RF, or SVM often provide great

accuracy. The inner workings of these models are harder to

understand and they don’t provide an estimate of the importance of

each feature on the model predictions, nor is it easy to understand

how the different features interact. Whereas interpretable models such

as BLR or DTs on the other hand provide less predictive capacity

and are not always capable of modelling the inherent complexity of

the dataset (i.e. feature interactions). They are however significantly
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easier to explain and interpret.

In Carvalho (2019)'s study, these interpretable models are grouped

according to the purpose of explanation, as shown in <Table 3-13>.

Classification Content

Interpretability
importance

Satisfy human curiosity; Scientific findings; Find meaning
Regulation requirements; Social acceptance and trust; Safety
Acquire new knowledge

Taxonomy of
interpretability

Pre-model vs. In-model vs. Post-model
Intrinsic vs. Post-hoc
Model-specific vs. Model-agnostic

Scope of interpretability
Algorithm transparency
Global model interpretability (holistic vs. modular)
Local model interpretability (single vs. group of predictions)

Properties of
explanation methods

Expressive power; Translucency; Portability;
Algorithmic complexity

Properties of explanations
Accuracy; Fidelity; Consistency; Stability; Comprehensibility;
Certainty; Importance; Novelty; Representativeness

Human-friendly
explanations

Contrastiveness; Selectivity; Social; Focus on the abnormal;
Truthful; Consistent with prior beliefs; General and probable

Interpretability evaluation Application-level; Human-level; Functional-level

Interpretability goals Accuracy; Understandability; Efficiency

<Table 3-13> Summary of interpretable models classification (Carvalho et al. 2019)

3.4.4. Process of model specification

In this study, based on the analysis results of SSES installation

effects, the occurrence of casualty crash was finally selected as the

response variable and machine learning methodology for binary

classification was used to develop the casualty crash prediction model.
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Non-parametric models with higher accuracy but lower

interpretability and parametric models with higher interpretability but

lower accuracy were considered for binary classification machine

learning algorithms. To overcome the shortcomings of these two

categorial models, the IML methodology was applied to develop a

predictive model for casualty crash. In addition, the effect of SSES

installation was quantified by performing a mediation effect analysis

between SSES and variables related to speed. Finally, the criteria for

installation of SSES were proposed using a casualty crash prediction

model using the IML methodology.

A summary of the model specification process is shown in the

following [Figure 3-6].

[Figure 3-6] Process of model specification
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4. Model development

4.1. Black-box and interpretable model

4.1.1. Consists of IML

IML consists of a black-box model and an interpretable model as

shown in [Figure 4-1]. The structure of IML is that prediction result

of black-box model with high accuracy performance are interpreted

by interpretable model with high explainable performance. In this

study, KNN, RF, and SVM were considered as black-box model to

increase the accuracy performance, and DT and BLR were considered

as interpretable model to increase the interpretability for IML model

which predicted the occurrence of casualty crash.

[Figure 4-1] Model selection for IML

The interpretable model is a model that describes the predictive

results of a highly predictable black-box model in terms of a human
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perspective. The process of obtaining interpretable model is as follows

(Molnar, 2018).

○ step-1 Choose a dataset X. This could be the same dataset that

was used for training the black-box model or a new

dataset from the same distribution. You could even

choose a subset of the data or a grid of points,

depending on your application.

○ step-2 For the chosen dataset X, get the predictions  of the

black-box model.

○ step-3 Choose an interpretable (surrogate) model.

○ step-4 Train the interpretable model on the dataset X and its

predictions .

○ step-5 You now have a surrogate model.

○ step-6 Measure how well the surrogate model replicates the

prediction of the black-box model.

○ step-7 Interpret / visualize the surrogate model.

4.1.2. Black-box model

1) KNN

KNN is a non-parametric method used for classification and

regression. KNN makes no assumptions about the functional form of

the problem being solved (Altman, 1992). In both cases, the input
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consists of the k closest training examples in the feature space. The

output depends on whether KNN is used for classification or

regression. In KNN classification, the output is a class membership.

An object is classified by a plurality vote of its neighbors, with the

object being assigned to the class most common among its k nearest

neighbors (k is a positive integer, typically small). Whereas in KNN

regression, the output is the property value for the object. Its value

is the average of the values of k nearest neighbors.

KNN is a type of instance-based learning, or lazy learning, where

the function is only approximated locally and all computation is

deferred until function evaluation. KNN algorithm at the training

phase just stores the dataset and when it gets new data, then it

classifies that data into a category that is much similar to the new

data. The concept of KNN classification is shown in [Figure 4-2].

[Figure 4-2] Concept of KNN classification

There are two main hyper parameters that KNN has to set up to
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find the best performance. The first is the distance to represent the

distance between data and the second is the value of K to be

specified by the algorithm.

The distance between data in the KNN model is an important

indicator and variable. Because of depending on how you measure

distances and set criteria, the classification of new data is different.

Commonly used as a way to get the distance are Euclidean’s,

Manhattan’s, Hamming’s, and so on. In this study, the Euclidean

distance, which is the most commonly used distance calculation, is

used. It can get through the distance between two points in the

n-dimensional, as shown in [Figure 4-3].

[Figure 4-3] Euclidean distance

The next important hyper-parameter is the K value. K value

means how many neighbors to participate in the KNN algorithm.

From a model's conformance perspective, it can determine whether

the model is over-fitting or under-fitting. If the k value is too small,

the classification criteria will be too much strict, so that the accuracy
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in the train data is high, but the results of high error and low

accuracy in the test data can be displayed. In other words, it can be

an over-fitting model. On the other hand, if the k value is too large,

the classification criteria may be too much general, which makes it less

accurate to test data because it is not accurate to the classification of

new data. It can be an under-fitting model.

The KNN algorithm is performed according to the following

process:

○ Step-1 Select the number K of the neighbors

○ Step-2 Calculate the Euclidean distance of K number of neighbors

○ Step-3 Take the K nearest neighbors as per the calculated Euclidean

distance.

○ Step-4 Among these k neighbors, count the number of the data

points in each category.

○ Step-5 Assign the new data points to that category for which

the number of the neighbor is maximum.

○ Step-6 KNN model is ready.

Advantages and disadvantages of KNN are following:

○ Advantages

• KNN does not learn anything in the training period.

• New data can be added seamlessly.

• KNN is very easy to implement.
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○ Disadvantages

• KNN does not work well with large dataset.

• KNN does not work well with high dimensions.

• It is needed to do feature scaling (normalization) before applying

KNN algorithm to any dataset.

• KNN is sensitive to noisy data, missing values and outliers.

2) RF

RF is machine learning algorithm that fits many CART models to

random subsets of the input data and uses the combined result for

prediction (Breiman, 2001). RF is a supervised learning algorithm

which is used for both classification as well as regression. But

however, it is mainly used for classification problems. RF algorithm

creates DTs on data samples and then gets the prediction from each

of them and finally selects the best solution by means of voting. It is

an ensemble method which is better than a single DT because it

reduces the over-fitting by averaging the result.

The RF algorithm works as the following [Figure 4-4] and is

performed according to the following process:

○ Step-1 Start with the selection of random samples from a given

dataset.

○ Step-2 This algorithm will construct a DT for every sample.

Then it will get the prediction result from every DT.
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○ Step-3 Voting will be performed for every predicted result.

○ Step-4 Select the most voted prediction result as the final

prediction result.

[Figure 4-4] Working of RF algorithm

The final result of model is calculated by averaging over all

predictions from these sampled trees or by majority vote.

Advantages and disadvantages of RF are following:

○ Advantages

• RF overcomes the problem of over-fitting by averaging or

combining the results of different DTs.

• RF works well for a large range of data items than single DT.

• RF has less variance then single DT.

• RFs are very flexible and possess very high accuracy.

• Scaling of data does not require in RF algorithm. It maintains
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good accuracy even after providing data without scaling.

• RF algorithms maintains good accuracy even a large proportion

of the data is missing.

○ Disadvantages

• Complexity is the main disadvantage of RF algorithms.

• Construction of RF is much harder and more time-consuming

than DT.

• More computational resources are required to implement RF

algorithm.

• It is less intuitive in case when we have a large collection of DT.

• The prediction process using RFs is very time-consuming in

comparison with other algorithms

3) SVM

SVM is supervised learning models with associated learning

algorithms that analyze data used for classification and regression

analysis. Given a set of training examples, each marked as belonging

to one or the other of two categories, an SVM training algorithm

builds a model that assigns new examples to one category or the

other, making it a non-probabilistic binary linear classifier. An SVM

model is a representation of the examples as points in space, mapped

so that the examples of the separate categories are divided by a clear

gap that is as wide as possible. New examples are then mapped into

that same space and predicted to belong to a category based on the
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side of the gap on which they fall.

In addition to performing linear classification, SVM can efficiently

perform a non-linear classification using what is called the kernel

trick, implicitly mapping their inputs into high-dimensional feature

spaces.

Advantages and disadvantages of SVM are following:

○ Advantages

• SVM is very good when there is no idea on the data.

• SVM works well with even unstructured and semi structured

data like text, images and trees.

• The kernel trick is real strength of SVM. With an appropriate

kernel function, it can solve any complex problem.

• Unlike in neural networks, SVM is not solved for local optima.

• It scales relatively well to high dimensional data.

• SVM models have generalization in practice, the risk of over-

fitting is less in SVM.

• When compared to ANN models, SVM gives better results.

○ Disadvantages

• Choosing a good kernel function is not easy.

• Long training time for large data-sets is needed.

• It is difficult to understand and interpret the final model, variable

weights and individual impact.

• Since the final model is not so easy to see, we can not do

small calibrations to the model hence its tough to incorporate
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our business logic.

• The SVM hyper-parameters are cost and gamma. It is not

that easy to fine-tune these hyper-parameters. It is hard to

visualize their impact.

4.1.3. Interpretable model

1) DT

DT is a decision support tool that uses a tree-like model of

decisions and their possible consequences, including chance event

outcomes, resource costs, and utility. It is one way to display an

algorithm that only contains conditional control statements. DTs are

commonly used in operations research, specifically in decision

analysis, to help identify a strategy most likely to reach a goal, but

are also a popular tool in machine learning.

DT is a flowchart-like structure in which each internal node

represents a "test" on an attribute (e.g. whether a coin flip comes up

heads or tails), each branch represents the outcome of the test, and

each leaf node represents a class label. The paths from root to leaf

represent classification rules.

In decision analysis, DT and the closely related influence diagram

are used as a visual and analytical decision support tool, where the

expected values of competing alternatives are calculated.

The DT can be linearized into decision rules, where the outcome is

the contents of the leaf node, and the conditions along the path form
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a conjunction in the if-clause. In general, the rules have the form:

• if condition 1 and condition 2 and condition 3 then outcome.

Decision rules can be generated by constructing association rules

with the target variable on the right. They can also denote temporal

or causal relations.

Advantages and disadvantages of DT are following:

○ Advantages

• DT is simple to understand, interpret and visualize.

• DT implicitly performs variable screening or feature selection.

• DT can handle both numerical and categorical data. Can also

handle multi-output problems.

• DT requires relatively little effort for data preparation.

• Non-linear relationships between parameters do not affect tree

performance.

○ Disadvantages

• DT learners can create over-complex trees that do not

generalize the data well. This is called over-fitting.

• DT can be unstable because small variations in the data might

result in a completely different tree being generated. This is

called variance, which needs to be lowered by methods like

bagging and boosting.

• Greedy algorithms can’t guarantee to return the globally

optimal DT. This can be mitigated by training multiple trees,
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where the features and samples are randomly sampled with

replacement.

• DT learners create biased trees if some classes dominate. It is

therefore recommended to balance the data set prior to fitting

with the DT.

2) BLR

In statistics, the logistic model (or logit model) is used to model

the probability of a certain class or event existing such as pass/fail,

win/lose, alive/dead or healthy/sick. This can be extended to model

several classes of events such as determining whether an image

contains a cat, dog, lion, etc. Each object being detected in the image

would be assigned a probability between 0 and 1 and the sum adding

to one. BLR measures the relationship between the response variable

and the one or more independent variables, by estimating probabilities

using it’s underlying logistic function. These probabilities must then

be transformed into binary values in order to actually make a

prediction. This is the task of the logistic function, also called the

sigmoid function. The sigmoid function is an S-shaped curve that can

take any real-valued number and map it into a value between the

range of 0 and 1, but never exactly at those limits. This values

between 0 and 1 will then be transformed into either 0 or 1 using a

threshold classifier. [Figure 4-5] illustrates the steps that logistic

regression goes through to get desired output.
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[Figure 4-5] Working of BLR algorithm

Advantages and disadvantages of BLR are following:

○ Advantages of BLR

• BLR is a widely used technique because it is very efficient,

does not require too many computational resources,

• BLR is highly interpretable, it does not require input features

to be scaled, it does not require any tuning, it’s easy to

regularize, and it outputs well-calibrated predicted probabilities.

• BLR does work better when removing attributes that are

unrelated to the output variable as well as attributes that are

very similar to each other.

• BLR is easy to implement and very efficient to train. it is

possible to use BLR as a benchmark and try using more

complex algorithms from there on.

• BLR is a good baseline that it can be to use to measure the

performance of other more complex algorithms.
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○ Disadvantages of BLR

• BLR can’t solve non-linear problems since it’s decision surface

is linear.

• BLR is also not one of the most powerful algorithms out there

and can be easily outperformed by more complex ones.

• BLR is not a useful tool unless you have already identified all

the important independent variables.

• BLR can only predict a categorical outcome.

• BLR is also an algorithm that is known for its vulnerability to

over-fitting.

4.2. Model development

4.2.1. Procedure

In this study, a statistical analysis package, R-studio (version

1.2.1335), was used to develop a model for the casualty crash

prediction. Training and test data were divided into 8:2 proportion for

the application of machine learning algorithm for development of

black-box model and interpretable model. When dividing training and

test data, random sampling process was conducted considering

whether or not a casualty crash was occurred.

The procedure of model development is shown in [Figure 4-6].
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[Figure 4-6] Procedure of model development

As mentioned earlier, the black-box model in the first step applied

three machine learning algorithms which were KNN, RF, and SVM,

And they were trained using the K-fold cross validation process for

hyper-parameters that required tunings in each methodology. The

performance of the three machine learning algorithms was evaluated

for accuracy, sensitivity, specificity, and accuracy through the

conduction matrix. In this way, the prediction performance of the

black-box model was evaluated. Among the three machine learning

algorithms, the best methodology was chosen as the black-box model.

Next, DT and BLR were applied to the interpretable model. In the

interpretable model, the K-fold cross validation process was used to

train for hyper-parameter tuning in the same way as the black-box
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model development. The performance of the two machine learning

algorithms was evaluated for accuracy, sensitivity, specificity, and

accuracy through the conduction matrix, and a comparative evaluation

of AUC was conducted. In this way, the descriptive accuracy of the

interpretable model was evaluated and the best methodology was

chosen as the interpretable model.

4.2.2. Measures of effectiveness

In the field of machine learning of statistical classification,

confusion matrix is a table that is often used to describe the

performance of a classification model on a set of test data for which

the true values are known. A confusion matrix is a summary of

prediction results on a classification problem as shown in <Table

4-1>. The number of correct and incorrect predictions is summarized

with count values and broken down by each class. This is the key to

the confusion matrix. The confusion matrix shows the ways in which

its classification model is confused when it makes predictions. It

gives us insight not only into the errors being made by a classifier

but more importantly the types of errors that are being made.

Confusion Matrix
Prediction Model

MOE
Positive Negative

Reference
Positive TP (True Positive) FN (False Negative) Sensitivity

Negative FP (False Positive) TN (True Negative) Specificity

MOE Precision - Accuracy

<Table 4-1> Confusion matrix for MOE
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○ Definition of the terms

• Positive (P): Observation is positive.

• Negative (N): Observation is not positive.

• True Positive (TP): Observation is positive, and is predicted to

be positive.

• False Negative (FN): Observation is positive, but is predicted

negative.

• True Negative (TN): Observation is negative, and is predicted

to be negative.

• False Positive (FP): Observation is negative, but is predicted

positive.

MOE Formula MOE Formula

Accuracy 


Sensitivity 


Specificity 


Precision 



<Table 4-2> MOE for machine learning

The formula for accuracy, sensitivity, specificity, and precision, the

MOEs of machine learning to be used in this study, are shown in <

Table 4-2>. Accuracy assumes equal costs for both kinds of errors.

A 99% accuracy can be excellent, good, fair, poor or terrible

depending upon the problem. Sensitivity can be defined as the ratio

of the total number of correctly classified positive examples divide to

the total number of positive examples. High sensitivity indicates the
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class is correctly recognized. To get the value of precision we divide

the total number of correctly classified positive examples by the total

number of predicted positive examples. High precision indicates an

example labelled as positive is indeed positive.

• High sensitivity, low precision: This means that most of the

positive examples are correctly recognized (low FN), but there

are a lot of false positives.

• Low sensitivity, high precision: This shows that we miss a lot

of positive examples (high FN), but those we predict as

positive are indeed positive (low FP).

4.2.3. K-fold cross validation

Cross validation is a re-sampling procedure used to evaluate

machine learning models on a limited data sample. The procedure has

a single parameter called k that refers to the number of groups that

a given data sample is to be split into. As such, the procedure is

often called k-fold cross validation. When a specific value for k is

chosen, it may be used in place of k in the reference to the model,

such as k=10 becoming 10-fold cross validation.

The configuration of k-fold cross validation is shown in [Figure

4-7] and general procedure is as follows.

○ step-1 Partition the original training data set into k equal

subsets. Each subset is called a fold. Let the folds be

named as   ⋯  . For i = 1 to i = k
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○ step-2 Keep the fold  as validation set and keep all the

remaining k-1 folds in the cross validation training set.

○ step-3 Train your machine learning model using the cross

validation training set and calculate the accuracy of

your model by validating the predicted results against

the validation set.

○ step-4 Estimate the accuracy of your machine learning model

by averaging the accuracies derived in all the k cases

of cross validation.

[Figure 4-7] K-fold cross validation

Cross validation is primarily used in applied machine learning to

estimate the skill of a machine learning model on unseen data. That

is, to use a limited sample in order to estimate how the model is

expected to perform in general when used to make predictions on

data not used during the training of the model. It is a popular
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method because it is simple to understand and because it generally

results in a less biased or less optimistic estimate of the model skill

than other methods, such as a simple train/test split.

4.3. Result of model development

4.3.1. Result of black-box model

1) KNN

In this study, k values with the best accuracy performance were

found through 10-fold cross validation process according to the above

KNN algorithm performance procedure.

As the k value increases, the accuracy is also increased and the k

value becomes the maximum value when the k value is 5 and then

decreases again. The optimal value was found to be 80.36% in case

of k=5 as shown in [Figure 4-8].

[Figure 4-8] Validation for optimal k
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In addition, k=5 was applied to verify performance of KNN

algorithm with the test data, and accuracy was found to be 80.36%.

MOE Accuracy Sensitivity Specificity Precision

Value 0.8036 0.8889 0.7241 0.7500

<Table 4-3> Predicted result of KNN

The results of evaluating the MOE are shown in <Table 4-3>:

accuracy = 0.8036, sensitivity = 0.8889, specificity = 0.7241, and

precision = 0.75.

2) RF

There are many hyper-parameters that RF has to set up to find

the best performance. The main hyper-parameters which used in this

study are following:

• m-try: Number of variables randomly sampled as candidates at

each split. Note that the default values are different for

classification ( where p is number of variables in x) and

regression (

).

• Max-nodes: Maximum number of terminal nodes trees in the

forest can have. If not given, trees are grown to the

maximum possible (subject to limits by node-size). If set

larger than maximum possible, a warning is issued.

• n-tree: Number of trees to grow. This should not be set to
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too small a number, to ensure that every input row gets

predicted at least a few times.

In this study, three hyper-parameters with the best accuracy

performance were found through 10-fold cross validation process as

shown in [Figure 4-9] to [Figure 4-11].

[Figure 4-9] Tuning the hyper-parameter (m-try)

[Figure 4-10] Tuning the hyper-parameter (max-nodes)
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[Figure 4-11] Tuning the hyper-parameter (n-tree)

The resulting “best” hyper-parameters are as follows: m-try = 3,

max-nodes = 27 and n-tree = 41. Again, a new RF algorithm was

run using these values as hyper-parameter inputs to evaluate the

performance through test data, and accuracy was found to be 83.93%.

MOE Accuracy Sensitivity Specificity Precision

Value 0.8393 0.8333 08438 0.8000

<Table 4-4> Predicted result of RF

The results of evaluating the MOE are in shown <Table 4-4>:

accuracy = 0.8393, sensitivity = 0.8333, specificity = 0.8438, and

precision = 0.8.
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3) SVM

There are many hyper-parameters that SVM has to set up to find

the best performance. The main hyper-parameters which used in this

study are followings:

• kernel: the kernel type to be used.

The most common kernels are radial basis function (this is

the default value), polynomial or sigmoid, but it is possible to

create researcher’s own kernel.

•  (cost): it means the SVM optimization how much you want

to avoid miss-classifying each training example.

If the  is higher, the optimization will choose smaller margin

hyper-plane, so training data miss-classification rate will be

lower.

If the  is low, then the margin will be big, even if there will

be miss-classified training data examples.

•  (gamma): it defines how far the influence of a single training

example reaches.

This means that high  will consider only points close to the

plausible hyper-plane and low  will consider points at greater

distance.

•  (degree): it is used only if the chosen kernel is poly and sets

the degree of the polynomial.
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Kernel Formula Parameters

Linear ⊤ (none)

Polynomial ⊤      

Radial basis function exp    

Sigmoid tanh⊤     

<Table 4-5> Formula and parameters for kernel functions in the SVM

The kernel functions of used in this study are linear, polynomial,

radial basis function and sigmoid. The hyper-parameters that can be

tuned for each kernel function are in shown <Table 4-5>.

In this study, hyper-parameters with the best accuracy performance

were found through 10-fold cross validation process as shown in

<Table 4-6>. The linear kernel does not require parameter tuning,

and the polynomial kernel showed the highest accuracy when  = 1,

 = 3, and  =2. In addition, the radial basis function kernel showed

the highest accuracy when  = 1, and the sigmoid kernel showed the

highest accuracy when  = 0.0625 and  = 1.

Kernel   

Linear - - -

Polynomial 1 3 2

Radial basis function 1 - -

Sigmoid 0.0625 - 1

<Table 4-6> Best parameter for kernel functions in the SVM
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The results of the performance for accuracy, sensitivity, specificity,

and precision for each of the four kernel functions by applying

hyper-parameters optimized through the 10-fold cross validation

process are shown in <Table 4-7>.

Kernel function Accuracy Sensitivity Specificity Precision

Linear 0.7321 0.7895 0.7027 0.5769

Polynomial 0.8750 0.8421 0.8919 0.8000

Radial basis function 0.7857 0.5789 0.8919 0.7333

Sigmoid 0.7143 0.8421 0.6486 0.5517

<Table 4-7> Predicted result of SVM

The results of evaluation for accuracy, sensitivity, specificity, and

precision for four kernel functions show that polynomial kernel

function is the best for all of MOEs (in terms of accuracy,

sensitivity, specificity, and precision).

4) Selection of the black-box model

In this study, KNN, RF, and SVM machine learning algorithms

were applied as black-box models for IML, and the 10-fold cross

validation process optimized hyper-parameters for each machine

learning algorithm. Performance evaluations for each model showed

that SVMs with a polynomial kernel had the highest performance on

all MOEs of accuracy, sensitivity, specificity, and precision as shown

in <Table 4-8>.
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Model Accuracy Sensitivity Specificity Precision

KNN (k=5) 0.8036 0.8889 0.7241 0.7500

RF 0.8393 0.8333 0.8438 0.8000

SVM (polynomial) 0.8750 0.8421 0.8919 0.8000

<Table 4-8> Predicted result of the black-box models

Therefore, SVM with polynomial kernel was chosen as the black

-box model for developing the casualty crash prediction model as

shown in [Figure 4-12].

[Figure 4-12] Black-box model selection

4.3.2. Result of interpretable model

1) DT

It is necessary to optimize the decision tree through the pruning

process, because there are concerns about over fitting. It is common

to find size of tree that minimizes variances through the 10-fold cross

validation. The result of pruning process is shown in [Figure 4-13].
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[Figure 4-13] Tuning the size of tree

X-error is minimized when size of tree is 10 as shown in [Figure

4-13], and variables used in tree construction are HVR, SM, SOR,

SV, SSES, and TVL as shown in [Figure 4-14].

[Figure 4-14] Result of DT
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The results of evaluating the MOE are shown in <Table 4-9>:

accuracy = 0.6964, sensitivity = 0.7143, specificity = 0.6667, and

precision = 0.7813.

MOE Accuracy Sensitivity Specificity Precision

Value 0.6964 0.7143 0.6667 0.7813

<Table 4-9> Result of DT

2) BLR

Generally, when applying BLR, the cut-off value for binary

classification is applied as 0.5. In this study, when developing a

model that used BLR to predict the occurrence of casualty crash, the

cut-off value which had the highest accuracy performance was found

through 10-fold cross validation process and it was 0.433 as shown

in [Figure 4-15].

[Figure 4-15] Tuning the optimal cut-off value
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The results of evaluating the MOE are shown in <Table 4-10>:

accuracy = 0.7636, sensitivity = 0.7917, specificity = 0.7419, and

precision = 0.7073.

MOE Accuracy Sensitivity Specificity Precision

Value 0.7636 0.7917 0.7419 0.7073

<Table 4-10> Result of BLR

3) Selection of the interpretable model

In this study, DT and BLR machine learning algorithms were

applied as interpretable models for IML and the 10-fold cross

validation process optimized hyper-parameters for each machine

learning algorithm. Comparing the performance of DT to BLR, the

sensitivity and specificity of BLR was higher than that of DT,

whereas the precision of DT were higher than that of BLR. Because

the BLR is higher than the DT for total accuracy, BLR was selected

as an interpretable model. The predicted result of comparison between

interpretable models is shown in <Table 4-11>.

Model Accuracy Sensitivity Specificity Precision

DT 0.6964 0.7143 0.6667 0.7813

BLR 0.7636 0.7917 0.7419 0.7073

<Table 4-11> Predicted result of the interpretable models

For the development of IML models, SVM with polynomial kernel
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was applied as black-box model to increase the predictive accuracy

and BLR was applied as an interpretable model to increase the

descriptive accuracy. The final result of IML development is shown

in [Figure 4-16].

[Figure 4-16] Result of model development for IML

In the chapter 5, the performance evaluation will be performed by

comparing with the typical BLR model based on the above IML

model development results.
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5. Evaluation & Application

5.1. Evaluation

5.1.1. The PDR framework for IML

In general, it is unclear how to select and evaluate interpretation

methods for a particular problem. To help guide this process,

Murdoch et al. (2018) introduced the PDR framework, consisting of

three desiderata that should be used to select interpretation methods

for a particular problem: predictive accuracy, descriptive accuracy, and

relevancy. The configuration of PDR framework for IML is shown in

[Figure 5-1].

[Figure 5-1] PDR framework for IML

The information produced by an interpretation method should be

faithful to the underlying process the practitioner is trying to

understand. In the context of machine learning, there are two areas

where errors can arise: when approximating the underlying data
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relationships with a model (predictive accuracy) and when

approximating what the model has learned using an interpretation

method (descriptive accuracy). For an interpretation to be trustworthy,

one should try to maximize both of the accuracies. Evaluating the

quality of a model’s fit has been well studied in supervised machine

learning frameworks, through measures such as test-set accuracy. In

the context of interpretation, this error is described as predictive

accuracy. It is possible to define descriptive accuracy, in the context

of interpretation, as the degree to which an interpretation method

objectively captures the relationships learned by machine learning

models. In selecting what model to use, practitioners are often faced

with a trade-off between predictive and descriptive accuracy. The

simplicity of model-based interpretation methods yields consistently

high descriptive accuracy, but can sometimes result in lower

predictive accuracy on complex data-sets. On the other hand, in

complex settings such as image analysis, complicated models

generally provide high predictive accuracy, but are harder to analyze,

resulting in a lower descriptive accuracy.

It is possible to define an interpretation to be relevant if it

provides insight for a particular audience into a chosen domain

problem. Relevancy often plays a key role in determining the trade-off

between predictive and descriptive accuracy. Depending on the

context of the problem at hand, a practitioner may choose to focus on

one over the other. For instance, when interpretability is used to

audit a model’s predictions, such as to enforce fairness, descriptive
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accuracy can be more important. In contrast, interpretability can also

be used solely as a tool to increase the predictive accuracy of a

model, for instance, through improved feature engineering.

5.1.2. Predictive accuracy

Evaluating the quality of a model’s fit has been well studied in

supervised machine learning frameworks, through measures such as

test-set accuracy. In the context of interpretation, this error is

described as predictive accuracy. This is used to evaluate the

prediction performance of IML's black-box model. This study

compared the predicted performance of the black-box model

IML-SVM with the typical BLR model and evaluated the predictive

accuracy. The predicted result of comparison between BLR and

IML-SVM is shown in <Table 5-1>.

Model Accuracy Sensitivity Specificity Precision

BLR 0.6545 0.7500 0.5806 0.5806

IML-SVM
(Black-box model)

0.8750 0.8421 0.8919 0.8000

<Table 5-1> Predictive accuracy

Comparing the predictive accuracy of IML-SVM to BLR, the

IML-SVM is higher than the BLR for all of MOEs which are

accuracy, sensitivity, specificity, and precision. In particular, for total

accuracy, the IML-SVM, which is applied as a black-box model,

outperformed the BLR by about 22%.
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5.1.3. Descriptive accuracy

It is possible to define descriptive accuracy, in the context of

interpretation, as the degree to which an interpretation method

objectively captures the relationships learned by machine learning

models. This is used to evaluate the prediction performance of IML's

interpretable model. This study compared the predicted performance of

the interpretable model IML-BLR with the typical BLR model and

evaluated the descriptive accuracy. The predicted result of comparison

between BLR and IML-BLR is shown in <Table 5-2>.

Model Accuracy Sensitivity Specificity Precision

BLR 0.6545 0.7500 0.5806 0.5806

IML-BLR
(Interpretable model)

0.7636 0.7917 0.7419 0.7073

<Table 5-2> Descriptive accuracy

Comparing the descriptive accuracy of IML-BLR to BLR, the

IML-BLR is higher than the BLR for all of MOEs which are

accuracy, sensitivity, specificity, and precision. In particular, for total

accuracy, the IML-BLR, which is applied as a interpretable model,

outperformed the BLR by about 10%.

In case of the BLR, specificity which value is 0.5806 is very low.

It means that there are many cases in which casualty crashes are

predicted to occur in sections where no actual accidents have

occurred. Thus, it may face the criticism for over-investment in

traffic safety facilities in such cases.
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Confusion Matrix
Predicted value

Positive (‘1’) Negative (‘0’)

 Actual
value

Positive (‘1’) 19 5

Negative (‘0’) 8 23

<Table 5-3> Confusion matrix of IML-BLR

<Table 5-3> shows the conduction matrix for the IML-BLR

predicted results for the test data. Of the total test data, there are 5

cases of FN (False Negative) and 8 cases of FP (False Positive).

The sample raw data for theses are shown in <Table 5-4>.

Actual Predicted Probability SSES SOR SV ln(TVL) HVR CR

1 0 0.079923 1 0 36.98 9.38 15.8 3.28

1 0 0.183197 1 0 36.29 8.59 22.5 31.04

1 0 0.198303 0 7.22 26.87 8.45 19.57 6.36

1 0 0.202937 1 19.25 58.18 8.28 18.33 39.11

1 0 0.292531 0 17.20 26.93 8.68 18.22 14.23

0 1 0.440532 0 12.52 62.06 7.49 35.23 4.44

0 1 0.515073 0 64.6 88.25 8.53 17.7 7.89

0 1 0.515534 0 17.09 42.53 8.87 25.73 13.25

0 1 0.545896 1 14.11 33.26 10.24 32.79 3.01

0 1 0.653620 0 88.84 49.77 8.02 14.26 39.11

0 1 0.683623 0 0 149.16 9.94 16.85 12.35

0 1 0.745368 0 17.74 64.7 9.66 29.26 10.32

0 1 0.837873 0 99.73 4.52 9.55 24.27 3.43

Average of all samples 27.08 67.74 9.15 20.04 11.59

<Table 5-4> List of miss-classification
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In three of the five FN (False Negative) cases, there was a low

probability of casualty crash occurrence because of SSES installation,

but casualty crashes occurred in reality. This is due to other

independent variables that cannot be explained by the crash prediction

model developed in this study, therefore further studies are needed.

On the other hand, in the case of FP (False Positive), there was a

high probability of casualty crash occurrence, but casualty crashes did

not occur in reality. Therefore an additional analysis for other safety

conditions is also needed.

Next, a comparative evaluation of AUC (Area Under the ROC

Curve) - ROC (Receiver Operating Characteristics) curves between

BLR and IML-BLR was conducted. AUC - ROC are used a lot in

addition to the confusion matrix when evaluating the results of

machine learning.

[Figure 5-2] ROC and AUC
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It is one of the most important evaluation metrics for checking any

classification model’s performance. It is also written as AUROC.

AUROC curve is a performance measurement for classification

problem at various thresholds settings. ROC is a probability curve

and AUC represents degree or measure of separability. It tells how

much model is capable of distinguishing between classes. Higher the

AUC, better the model is at predicting 0s as 0s and 1s as 1s.

The ROC curve is plotted with TPR (True Positive Rate) against

the FPR (False Positive Rate) where TPR is on y-axis and FPR is

on the x-axis as shown in [Figure 5-2].

• TPR : True Positive Rate (=sensitivity)

 



• FPR : False Positive Rate (=1-specificity)

 



An excellent model has AUC near to the 1 which means it has

good measure of separability. A poor model has AUC near to the 0

which means it has worst measure of separability. In fact it means it

is reciprocating the result. It is predicting 0s as 1s and 1s as 0s. And

when AUC is 0.5, it means model has no class separation capacity

whatsoever.

Model performance according to AUC value can be following:
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• excellent =  0.9 ~ 1.0

• good = 0.8 ~ 0.9

• fair = 0.7 ~ 0.8

• poor = 0.6 ~ 0.7

• fail = 0.5 ~ 0.6

In this study, the AUROC curves of BLR and IML-BLR were

compared for evaluation of performance on the descriptive accuracy of

the interpretable model. AUROC curve of BLR is shown in [Figure

5-3] and that of IML-BLR is shown in [Figure 5-4].

[Figure 5-3] AUROC curve of BLR

The AUC value of the BLR was 0.608 and it means that the

performance of the model is poor (0.6 ~ 0.7). Whereas the AUC value

of the IML-BLR was 0.770 which was 0.162 higher than the AUC
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value of the BLR. It means that the performance of the model is fair

(0.7 ~ 0.8).

[Figure 5-4] AUROC curve of IML-BLR

In general, crash prediction models do not often have high

performance in the model because crashes occur very randomly. This

study also shows that predictive performance of typical BLR can be

improved to fair level through the IML methodology.

5.1.4. Relevancy

Relevancy can be defined as an interpretation to be relevant if it

provides insight for a particular audience into a chosen domain

problem. In other words, it is the ability to explain or to present in

understandable terms to a human (Doshi-Velez, 2019). In this study,

to compare IML-BLR and BLR from a relevancy point of view, the
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independent variables applied to the casualty crash prediction model

developed by IML were applied equally to the BLR to compare the

coefficients and significant probabilities of the estimated independent

variables. The following <Table 5-5> and <Table 5-6> show

coefficient, estimated value and significant probabilities for the result

of model development.

Coefficient Estimate Std. Error Z-value Pr (>|z|)

(Intercept) -10.509254 2.631240 -3.994 6.5e-05***

SSES -1.210235 0.398248 -3.039 0.002374***

Speed_Over_Ratio (SOR) 0.020798 0.005764 3.608 0.000308***

Speed_Variance (SV) 0.005467 0.002816 2.542 0.042195**

ln(Traffic_Volume_Lane) (TVL) 0.788860 0.258576 3.051 0.002282***

Heavy_Vehicle_Ratio (HVR) 0.099162 0.030133 3.291 0.000999***

Curve_Ratio (CR) 0.032822 0.019088 2.719 0.045525**

**p<0.05, ***p<0.01

<Table 5-5> Result of IML-BLR

First of all, for IML-BLR as shown in <Table 5-5>, SSES, SOR,

SV, TVL, HVR, and CR variables were selected as independent

variables. For the sign of variables, the installation of SSES resulted

in fewer casualty crashes, and for SV, SOR, TVL, and CR, it was

shown that the increase in its size resulted in more casualty crashes.

The sign of the all independent variables can all be seen as

appropriate from a human point of view. In addition, the significance

probability for all independent variables was shown to be statistically

significant at the least 95% confidence level.
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Coefficient Estimate Std. Error Z-value Pr (>|z|)

(Intercept) -14.697326 2.989560 -4.916 8.82e-07***

SSES -1.648814 0.430585 -3.829 0.000129***

Speed_Over_Ratio (SOR) 0.022930 0.006159 3.723 0.000197***

Speed_Variance (SV) 0.004782 0.003175 1.506 0.332024

Traffic_Volume_Lane (ln(TVL)) 1.278155 0.301404 4.241 2.23e-05***

Heavy_Vehicle_Ratio (HVR) 0.091724 0.031832 2.882 0.003958***

Curve_Ratio (CR) 0.028513 0.019634 1.452 0.146445

**p<0.05, ***p<0.01

<Table 5-6> Result of BLR

Next, for BLR as shown in <Table 5-6>, the selected independent

variables were the same as IML-BLR and their signs were the same.

But, significant probability for SV and CR variables was found to be

not statistically significant at the 95% confidence level.

When the two models from a human understanding point of view

are compared and analyzed, the results of the BLR can be judged to

be inappropriate to apply due to the very low specificity. If specificity

is low, the criticism of over-investment can be occurred in traffic

safety facilities. On the other hand, IML-BLR's results are appropriate

at the sign and significance probability levels of the variables applied

to model development, and the difference between sensitivity and

specificity is not large, so IML-BLR is appropriate in terms of

utilization of development results.
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5.2. Impact of Casualty Crash Reduction

5.2.1. Quantification of the effectiveness

In this study, BLR function is used to quantify the effect of SSES

installation. Instead of fitting a straight line or hyper-plane, the BLR

model uses a non-linear function, the BLR to squeeze the output of a

linear equation between 0 and 1. The BLR function is defined as:

logexp



And it is shown in [Figure 5-5].

[Figure 5-5] Binary logistic function

The step from linear regression models to BLR is kind of

straightforward. For the classification we prefer probabilities, which

are between 0 and 1, so we wrap the right side of the equation into
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the BLR function and like that force the output to only take on

values between 0 and 1.

 exp



Therefore, the probability formular of casualty crash occurrence

based on the IML development result is as follows:

   


   



The installation effect of SSES was quantified using the probability

of casualty crash occurrence according to the following steps:

○ step-1 The values for the other independent variables except

SSES are replaced by the average values in the

probability of casualty crash equation.

○ step-2 Set the SSES value to zero and calculate the probability

of casualty crash occurrence before installation.

○ step-3 Set the SSES value to 1 and calculate the probability of

casualty crash occurrence after installation.

○ step-4 Probability differences before-after installation quantify the

installation effects of SSES.

According to the above procedure, the probability of casualty crash

occurrence before SSES installation is 51% and the probability of
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casualty crash occurrence after SSES installation is 23%. Therefore, it

is possible to confirm that SSES installation reduces the probability

of casualty crash occurrence by about 28%.

In addition, the probability of casualty crash occurrence after the

installation of SSES can be verified through the probability equation

of the developed IML model. The estimated coefficients of SSES can

be expressed as follows:

 
  

   

∴   

In other words, the probability (   ) of casualty crash

occurrence in case of an SSES installation will be about 0.297 times

lower than in case of no installation. In addition, the probability of

casualty crash occurrence after SSES installation is calculated based

on the above equation as 23%. It can be confirmed that this result is

the same as the probability of casualty crash occurrence after

installation of SSES.

The results of quantifying the SSES installation effects derived

from this study were compared with the results of the relevant prior

studies. The effects of SSES installation in the preceding studies are

shown in <Table 5-7>. The prior studies were classified as foreign

and domestic cases. And the effects of accident reduction were

divided into total crashes and casualty crashes. If SSES is installed,

it can be confirmed that the total crashes have a reduction effect of
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about 22 to 50%, and that casualty crashes have a reduction effect of

about 18 to 42%. The 28% of probability of reducing casualty crashes

quantified through this study is within the range of the reduction in

casualty crash in the prior studies. However, in the case of prior

studies, it is about the effect of decreasing the number of casualty

crashes, it is difficult to make a direct comparison as it is the effect

of decreasing the probability of casualty crash occurrence.

Author &Subject Sites Effectiveness

Foreign

• Torre et al. (2019), safety effects of automated
section speed control on the Italian motorway
network

125
Total crash: 22%↓
Fatal injury 18%↓

• Montella et al. (2015), Effect on speed and
safety of point-to-point speed enforcement
systems

1
Total crash: 32%↓
Injury crash: 37%↓

Domestic

• Jung et al. (2014), Traffic accident reduction
effects of Section Speed Enforcement
System(SSES) Operation in Freeways

9
Total crash: 32%↓
Fatal injury: 42%↓

• Yun et al. (2011), Effectiveness of the
point-to-point speed enforcement system

8 Total crash: 50%↓

• Lee et al. (2013), A Study on the Analysis for
the Effects of the Section Speed - Enforcement
System at the Misiryeong tunnel section

1 Total crash: 46%↓

<Table 5-7> Effectiveness of crash reduction in literature reviews

The effect of reducing the probability of casualty crash occurrence

to be derived from this study can not be ascertained by the prior

studies, rather, is the basis for confirming the differentiation of this

study methodology.
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5.2.2. Mediation effect analysis

1) Mediation effect

In statistics, a mediation model seeks to identify and explain the

mechanism or process that underlies an observed relationship between

an independent variable and a response variable via the inclusion of a

third hypothetical variable, known as a mediator variable. Rather than

a direct relationship between the independent variable and the

response variable, a mediation model proposes that the independent

variable influences the mediator variable, which in turn influences the

response variable. Thus, the mediator variable serves to clarify the

nature of the relationship between the independent and response

variables.

Mediation analysis is employed to understand a known relationship

by exploring the underlying mechanism or process by which one

variable influences another variable through a mediator variable.

Mediation analysis facilitates a better understanding of the

relationship between the independent and response variables, when

the variables appear to not have a definite connection. They are

studied by means of operational definitions and have no existence

apart.

The basic conceptual framework of a mediation process with a

single mediator is shown in [Figure 5-7]. Treatment (T) can impact

the outcome (Y) either indirectly via the mediator (M) or directly. In

health management interventions we may expect a significant
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proportion of the effect to be direct, since there are likely to be

myriad variables not observed through the mediated pathway

(including other unmeasured mediators). Thus, the total treatment

effect is the sum of both direct and indirect effects. These

associations can be expressed statistically using the following set of

linear regressions:

        

        

    ′     

•  : the total effect of T on Y

•  : indirect effect of T on Y

• ′ : the direct effect of T on Y after controlling for M

• ′  

•  : interaction effect of T and M on Y

•  : treatment

•  : mediator

•  : covariates

•  : outcome

•    : intercepts

•    : unexplained or error variance

First equation is a standard outcomes model estimating the

average total effect of the intervention by regressing the outcome Y



- 108 -

on the treatment variable T and one or more pre-intervention

characteristics X. Second equation represents the a pathway in

[Figure 5-7] in which the mediator M is regressed on T and X.

Third equation provides both the b and c’ pathways indicated in

[Figure 5-7] by regressing the outcome on T, M, and X.

[Figure 5-6] Total effect model

[Figure 5-7] Mediation effect model

In the [Figure 5-6] and [Figure 5-7] as shown, the indirect effect

is the product of path coefficients "a" and "b". The direct effect is

the coefficient "c'". The direct effect measures the extent to which

the response variable changes when the independent variable

increases by one unit and the mediator variable remains unaltered. In

contrast, the indirect effect measures the extent to which the

response variable changes when the independent variable is held fixed
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and the mediator variable changes by the amount it would have

changed had the independent variable increased by one unit.

The indirect effect constitutes the extent to which the T variable

influences the Y variable through the mediator. In linear systems, the

total effect is equal to the sum of the direct and indirect (c' + ab in

[Figure 5-7] as shown). Whereas in non-linear models, the total

effect is not generally equal to the sum of the direct and indirect

effects, but to a modified combination of the two.

2) Mediation analysis

The methods implemented via mediation rely on the following

identification result obtained under the sequential ignorability

assumption of Imai et al. (2010).

           

              

•  : the average mediation (indirect) effect

•  : the average direct effect

•  : the observed outcome, mediator, treatment, and

pre-treatment covariates. respectively

The sequential ignorability assumption states that the observed

mediator status is as if randomly assigned conditional on the

randomized treatment variable and the pre-treatment covariates.
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Mediation analysis under this assumption requires two statistical

models;

• the mediator model:  

• the outcome model:  

Once these models are chosen and fitted by researchers, then

mediation will compute the estimated mediation and other relevant

estimates using the algorithms proposed in Imai et al. (2010). The

algorithms also produce uncertainty estimates such as standard errors

and confidence intervals, based on either a non-parametric bootstrap

procedure or a quasi-Bayesian Monte Carlo approximation.

[Figure 5-8] Structure of the mediation package as of version 4.0

In this study, mediation packages are used for mediation effect

analysis and its structure is as shown in [Figure 5-8]. The first step

is to fit the mediator and outcome models using, for example,
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regression models with the usual [lm] or [glm] functions. In the

second step, the analysts takes the output objects from these models,

which in [Figure 5-8] we call [model.m] and [model.y], and use them

as inputs for the main function [mediate]. This function then

estimates the causal mediation (indirect) effect, direct effect, and total

effect along with their uncertainty estimates. Finally, sensitivity

analysis can be conducted via the function [medsens] which takes the

output of [mediate] as an input. For these outputs, there are both

[summary] and [plot] methods to display numerical and graphical

summaries of the analyses, respectively.

Mediator Model Types
Outcome Model Types

Linear GLM Ordered Censored Semi-parametric

Linear ⃝ ⃝ ⃝* ⃝ ⃝*

GLM (BLR) ⃝ ⃝ ⃝* ⃝ ⃝*

Ordered ⃝ ⃝ ⃝* ⃝ ⃝*

Censored(tobit) - - - - -

semi-parametric ⃝* ⃝* ⃝* ⃝* ⃝*

* indicate the model combinations that can only be estimated using the non-parametric bootstrap

<Table 5-8> Type of models possible to estimate mediation effects

The mediation packages make it possible to estimate mediation

effects as shown in <Table 5-8>. In this study, mediator model type

is linear and outcome model type is GLM (e.g. BLR).
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3) Mediation effect of SOR

The effect of SSE installation (treatment) on the casualty crash

(outcome) through speed-over-ratio (mediator) was analyzed as shown in

[Figure 5-9].

[Figure 5-9] Mediation effect model of SOR

For this, mediation analysis under this assumption requires two

statistical models;

• the mediator model:  

            

• the outcome model:  

   


           



• : SSES • : SOR

• : SV, HVR, TVL, CR • : casualty

In <Table 5-9>, ACME (control) is the mediation effect under the

control condition, while ACME (treated) is the mediation effect under
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the treatment condition. The same notation applies to the direct effects.

In this study, to confirm the interaction term between the

treatment and the mediator, the method was analyzed by estimating

the mediation effect by dividing it into treatment group and control

group, and estimating the total effects by the average of each case.

Even though the outcome model does not include an interaction term

between the treatment and mediator, the estimated effects slightly

differ between the treatment and control conditions. This difference,

however, is solely due to the non-linearity in the outcome model and

should be small.

Coefficient Estimate 95% CI Lower 95% CI Upper p-value

ACME (control) -0.1249 -0.1866  -0.06 <2e-16***

ACME (treated) -0.0961  -0.1583  -0.04 <2e-16***

ADE (control) -0.2728  -0.3993  -0.13 <2e-16***

ADE (treated) -0.2440  -0.3647  -0.12 <2e-16***

Total Effect -0.3689  -0.4761  -0.26 <2e-16***

Prop. Mediated (control) 0.3386  0.1598  0.57 <2e-16***

Prop. Mediated (treated) 0.2605  0.1018  0.51 <2e-16***

ACME (average) -0.1105  -0.1703  -0.05 <2e-16***

ADE (average) -0.2584  -0.3816  -0.13 <2e-16***

Prop. Mediated (average) 0.2996  0.1324  0.54 <2e-16***

**p<0.05, ***p<0.01

* ACME: estimated Average Casual Mediation Effect
* ADE: estimated Average Direct Effect
* When the outcome model is non-linear, the ACME and ADE effect estimates will differ
between the treatment and control conditions.

<Table 5-9> Mediation effect analysis of SOR
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The total effect was estimated to be –0.3689, mediation effect was

estimated to be –0.1105 and direct effect was estimated to be -0.2584.

The proportion of total effect via mediation was 29.96% as shown in

<Table 5-9>.

The causal mediation analysis relies on the sequential ignorability

assumption that cannot be directly verified with the observed data.

The assumption implies that the treatment is ignorable given the

observed pre-treatment confounders and that the mediator is

ignorable given the observed treatment and the observed pre-

treatment covariates. In order to probe the plausibility of such a key

identification assumption, analysts must perform a sensitivity analysis.

Sensitivity analysis is interpreted in terms of a range, and has a

high degree of subjectivity, but it may be useful in assessing the

degree to which the bias due to the inclusion of confounders may

affect the interpretation of the effects. It shows how much the

indirect effect changes as a function of  (sensitivity parameter) and

 means the correlation between the error terms of the mediator

model and the outcome model. It can be expressed as following;

≡    

If there exist unobserved pre-treatment confounders which affect

both the mediator and the outcome, we expect that the sequential

ignorability assumption is violated and  is no longer zero. The

sensitivity analysis is conducted by varying the value of  and

examining how the estimated ACME changes.
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<ACME for control group> <ACME for treatment group>

[Figure 5-10] sensitivity analysis of SOR

[Figure 5-11] is a plot of sensitivity analysis and shows, together

with the axes of indirect effect and , the observed mediating effect

(dashed line) and the values that the indirect effect would reach

varying the sensitivity parameter (solid curved line). The confidence

interval is represented with a grey background. It can be confirmed

that the indirect effect to be zero when  is 0.25. It is indicated that

the direction of ACME would be maintained unless  is more than 0.25.

4) Mediation effect of SV

The effect of SSES installation (treatment) on the casualty crash

(outcome) through speed variance (mediator) was analyzed as shown

in [Figure 5-12].
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[Figure 5-11] Mediation effect model of SV

Similar to the case of mediation analysis for SOR, two statistical

models are followings:

• the mediator model:  

           

• the outcome model:  

   


           



• : SSES • : SV

• : SOR, HVR, TVL, CR • : casualty

The estimated average mediation effect along with the

quasi-Bayesian confidence interval are shown in <Table 5-10>. The

total effect was estimated to be –0.302, mediation effect was

estimated to be –0.037 and direct effect was estimated to be -0.265.

The proportion of total effect via mediation was 12.3%. But it was

founded that indirect effects (average ACME=-0.037, p=0.08) and a
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mediated proportion of 0.123 (p=0.08) is not significant at 95%

confidence level. The confidence interval also includes zero for the

indirect effect.

Coefficient Estimate 95% CI Lower 95% CI Upper p-value

ACME (control) -0.041 -0.092 0.00 0.08

ACME (treated) -0.033 -0.076 0.00 0.08

ADE (control) -0.269 -0.408 -0.13 <2e-16***

ADE (treated) -0.260 -0.394 -0.13 <2e-16***

Total Effect -0.302  -0.428 -0.18 <2e-16***

Prop. Mediated (control)  0.137   0.014  0.33 0.08

Prop. Mediated (treated)  0.108   0.009  0.30 0.08

ACME (average) -0.037  -0.083  0.00 0.08

ADE (average) -0.265  -0.399 -0.13 <2e-16***

Prop. Mediated (average)  0.123   0.011  0.32 0.08

**p<0.05, ***p<0.01
* ACME: estimated Average Casual Mediation Effect
* ADE: estimated Average Direct Effect
* When the outcome model is non-linear, the ACME and ADE effect estimates will differ
between the treatment and control conditions.

<Table 5-10> Mediation analysis of SV

This result is expected as a consequence of imposing a zero

correlation between the error terms of the mediator model and the

outcome model. Therefore, the sensitivity analysis was not conducted.
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5.3. Application for the Korean expressway

In this study, the result of IML model development was validated

for applicability in the actual expressway. A prediction model of

probability of casualty crash occurrence considering whether or not

SSES installation developed through this study was applied to the

selection of hazardous sections for Yeongdong Expressway in Korea.

The probability of casualty crash occurrence was calculated for a

total of 35 sections of the Yeongdong Expressway (E-direction) and

confirmed whether actual casualties occurred. The list of the top 10

sections for probability of casualty crash occurrence is shown in

<Table 5-11>.

No. Section
No.

Casualty
Prob. SOR SV TVL HVR CR

1 Ansan IC–Ansan JC 0 83.72 31.31 29.39 9.85 36.00 75.20

2 Manjon JC–Wonju JC 1 83.22 86.70 124.77 8.59 37.00 50.26

3 Hobeop JC–Icheon IC 4 79.37 65.46 41.65 9.62 38.00 25.87

4  Gunja JC–Gunja TG 0 75.69 14.85 28.01 9.79 36.00 71.88

5 Myeonon IC–Pyeongchang IC 0 73.65 83.14 62.78 9.01 30.00 56.49

6 Bugok IC–N.Suwon IC 3 72.07 0.66 26.06 10.11 30.00 86.27

7 Yangji IC–Deokpyeong IC 2 70.80 57.86 20.00 9.53 26.00 74.93

8 Mumak IC–Manjon JC 7 69.89 49.33 39.28 9.06 35.00 59.74

9 Yeoju IC–Mumak IC 6 67.60 47.21 34.76 9.10 35.00 57.63

10 Saemal IC–Dunnae IC 6 66.35 35.23 38.69 8.99 30.00 80.66

<Table 5-11> Top 10 sections for probability of casualty crash occurrence
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Among the top 10 sections, three sections have not experienced

actual casualty crashes in the last three years (2016-2018), including

Ansan IC–Ansan JC, Gunja JC–Gunja TG, and Myeonon IC–Pyeongchang

IC, while the other sections have actual casualty crashes. In other

words, about 70% of them can be found to match the probability of

casualty crash occurrence.

In addition, the list of the top five sections with a high number of

casualties over the last three years (2016-2018) is shown in <Table

5-12>.

Ranking Section No. Casualty Notes

1 Daegwallyeong IC–Gangneung JC 9 SSES

2 Mumak IC–Manjon JC 7 -

3 E.Dunnae Hi–Myeonon IC 7 SSES

4 Yeoju IC–Mumak IC 6 -

5 Saemal IC–Dunnae IC 6 -

<Table 5-12> Top 5 sections for frequency of casualty crashes

Of these five sections, Mumak IC–Manjon JC, Yeoju IC–Mumak

IC, and Saemal IC–Dunnae IC sections can also be confirmed by the

probability of casualty crash occurrence calculated based on the

results of this study. The results of this study are suitable for

predicting the actual crashes-prone sections. On the other hand, in

the case of Saemal IC–Dunnae IC and E.Dunnae Hi–Myeonon IC

sections, the probability of casualty crash occurrence was not
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included in the crash risk section, which was predicted to have a low

probability of due to the installation of SSES at the end of 2018.

The result of comparison has shown that the crash risk sections of

the development model and the actual sections of multiple crash

occurrences were quite similar. Therefore, it was expected that it

could be used to select candidate sites for SSES installation based on

the result of this study. SSES can be installed in the sections with

high probability of casualty crash based on the developed model.

When selecting candidate sites for SSES installation, it may be

considered to select dangerous sections based on crashes and

speeding firstly, and then to install SSES in sites which traffic

volume, heavy vehicle ratio, and curve ratio in the section are higher

than the other sections.
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6. Conclusion

6.1. Summary and Findings

The purpose of this study is to develop the prediction model of

casualty crash occurrence, to quantify the effectiveness of SSES

installation and to make suggestions on what needs to be considered

in selecting the location for SSES installation. The main results of

study conducted to achieve the objectives are as follows.

First of all, the prior study reviews for SSES installation

effectiveness, installation criteria were conducted. And studies of the

crash prediction model for crashes frequency and crash severity were

also reviewed. In addition, the methodologies of machine learning

applied in transport field were reviewed for binary classification

which was used in this study. The IML which has been actively

researched in recent years, was reviewed to improve predictive

accuracy and interpretive performance. Through these processes, the

differentiation between prior studies and this study has been clarified, and

the issues that are addressed through this study has clearly been defined.

Secondly, a process of model specification was undertaken for the

model development. A crash analysis before-after the installation of

SSES confirmed that total crashes were reduced by about 42%,

EPDO by about 71%, and casualty crash decreased by about 45%,

and C-G methods were also reduced. Also, the speed analysis found

that the average speed was reduced by about 7% and the proportion
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of exceeding speed limit decreased by about 21p% similarly by the

C-G method. Next, data collection was carried out on SSES locations

installed on the Korean expressways. The data of road, traffic and

control conditions which were used with independent variables were

collected, and basic statistics such as scatter plot, correlation analysis

and box plot between variables were conducted for data’s refining

and filtering. In this study, variables related to speed were reflected

in the development of the model through mediation effect analysis,

and variables related to crash were utilized as response variables.

Through analyzing the mean and standard deviation of the number of

crashes, the occurrence of casualty crash was confirmed as the

response variable for the model development. Therefore, the machine

learning model for binary classification was applied and the IML

techniques that are being actively applied in recent studies have been

applied to enhance predictive accuracy and interpretability.

Thirdly, prediction model for casualty crash occurrence was

developed considering the SSES installation. The developed prediction

model was applied with machine learning for binary classification to

predict whether or not an casualty crash occurred. IML was used to

improve the prediction model's performance and description. KNN,

RF, and SVM were applied to black-box models, and DT and BLR

were applied to interpretable models. To improve predictive accuracy,

hyper-parameter tuning went through the 10-fold cross validation

process. The development result of the black-box model showed that

SVM with the polynomial kernel had the best prediction accuracy of
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88%. DT and BLR models were applied to the development of

interpretable model by utilizing the forecast result of the black-box

model. The development result of the interpretable model showed

BLR's prediction accuracy of 76%. In other words, IML's black-box

model was developed as SVM and the interpretable model as BLR.

Fourthly, a performance evaluation was conducted against the

developed IML model compared with the typical BLR model from the

perspective of the PDR framework. Comparing the accuracy of

IML-SVM to BLR, the IML-SVM outperformed the BLR by about

22%. And when comparing the accuracy of IML-BLR to BLR, the

IML-BLR, which was applied as a interpretable model, outperformed

the BLR by about 10%. The AUC value of the IML-BLR was 0.77,

which was 0.16 higher than that of the BLR, and the performance of

the IML-BLR model was fair. The relevancies of BLR and IML-BLR

were compared in terms of the human in the loop. The result of BLR

was not appropriate in terms of significance level of SV and CR. On

the other hand, it was judged that the result of IML-BLR was

suitable in terms of the sign of the all independent variables and the

significance level.

Fifthly, based on the IML model developed, the effects of casualty

crash reduction due to SSES installation was possible to be quantified

through the probability formula of casualty crash occurrence, The

probability of casualty crash occurrence before installing SSES was

51% and that of casualty crash occurrence after installation was 23%.

Therefore, it was possible to confirm that SSES installation reduced
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the probability of casualty crash occurrence by about 28%. The

probability of casualty crash after the installation of SSES could be

confirmed by the estimated coefficient of SSES (odds ratio) in the

probability equation developed in this study. In addition, the effects of

SSES installation were analyzed by separating the effects of SSES

installation by direct and indirect effects through the analysis of

mediation effects. The proportion of indirect effects through reducing

the ratio of exceeding the speed limit was about 30% and the

proportion of indirect effects through reduction of speed variance was

not statistically significant at the 95% confidence level.

Finally, the probability equation of casualty crash occurrence

developed in this study was applied to the sections of Yeongdong

Expressway to compare the crash risk section with the actual crash

data to examine the applicability of the development model. The

result of comparison has shown that the crash risk sections of the

development model and the actual sections of multiple crash

occurrences were quite similar. Therefore, it was expected that it

could be used to select candidate sites for SSES installation based on

the result of this study, the probability equation of casualty crash

occurrence. When selecting candidate sites for SSES installation, it

may be considered to select dangerous sections based on crashes and

speeding firstly, and then to install SSES in sites which traffic

volume, heavy vehicle ratio, and curve ratio in the section are higher

than the other sections.
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6.2. Further Research

The limitations of the this study and further researches to improve

this research are as follows.

First of all, a model for predicting the casualty crash developed

through this study was developed with the uninterrupted traffic flow

including expressways as a spatial scope. Recently, the KNPA is

considering installing the SSES to reduce pedestrian casualty crashes

in the urban interrupted traffic flow section. In this case, there is a

limit to the application of the results developed by this study. For

urban areas, there are additional considerations when installing the

SSES due to delays caused by signalized intersections and detours by

left and right-hand turning vehicles. Therefore, further research is

needed to quantify the impact of SSES installed in urban areas and

to proposed the installation criteria.

Secondly, KNN, RF, and SVM were considered as black-box model

for IML development in this study. Due to the limitations of data

collection for model development, deep learning algorithm such as

DNN, CNN which are widely accepted in recent studies, have not

been applied. For deep learning methodologies, the more data you

collect, the more accurate your prediction. Therefore, it is necessary

to quantify the effect of installation on SSES and to implement the

study using deep learning techniques such as DNN by establishing a

big-data system that systemizes the collection of relevant data for

advanced research on the installation criteria.

In addition, the spatial scope of data collection in the development
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of the model in this study is limited to the section where SSESs are

installed and its opposite direction, which may limit the prediction of

the probability of casualty crash occurrence for all sections. This is

why there have some mis-predicted case of the assessment results

for applicability of the model development to the Yeongdong

Expressway. Therefore, it is deemed necessary to further study the

probability of casualty crash occurrence by expanding the spatial

scope of data collection as a future research project.

Thirdly, in this study, the data samples used for model

development utilized data from one year before and after SSES was

installed. Therefore, further study of time-series analysis is needed

for quantifying the effect of SSES installation, not only one year after

installation, but also for installation effects over time considering the

effect such as “the regression to the mean”.

Fourthly, although the slope ratio was not used as a significant

variable for model development in this study, the difference between

the upward and downward slopes may be significant in terms of the

likelihood of casualty crash. Therefore, for further studies, it is

necessary to develop a model by dividing the variable of slope ratio

into two, the upward and the downward slope ratio in the section.

Finally, in this study, a probability equation for casualty crash

occurrence was developed to quantify the effects of installation of

SSES. And the direct and indirect effects of SSES were also

identified through a mediation effect analysis. However, the mediation

effects of SSES installation were analyzed separately by dividing the
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proportion of exceeding speed limit and speed variation. Therefore, a

systematic analysis of SSES installation and crash reduction among

variables related to speed will be needed through the multiple

mediation effects analysis in future research.
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국문 초록

Interpretable Machine Learning을

활용한 구간단속시스템 설치에 따른

인명피해사고 감소 효과 연구

서울대학교 대학원

공과대학 건설환경공학부

홍 경 식

본 연구에서는 구간단속시스템(Section Speed Enforcement System,

SSES) 설치 효과를 정량화하기 위해 인명피해사고 예측모형을 개발하고,

매개효과 분석을 통해 SSES 설치에 대한 직접효과와 간접효과를 구분하여

정량화하였다. 또한, 개발한 예측모형에 대한 고속도로에서의 적용 가능성을

검토하고, SSES 설치 대상지 선정 시 고려해야할 사항을 제안하였다. 모형

개발에는 인명피해사고 발생 여부를 종속변수로 하는 이진분류형 기계학습을

활용하였으며, 기계학습 중에서는 모형의 예측 성능과 더불어 예측 결과에 대한

해석력을 중요하게 고려하는 인터프리터블 머신 러닝(Interpretable Machine

Learning, IML) 방법론을 적용하였다.

IML은 블랙박스 모델과 인터프리터블 모델로 구성되며, 본 연구에서는

블랙박스 모델로 KNN, RF 및 SVM을, 인터프리터블 모델로 DT와 BLR을

검토하였다. 모형 개발 시에는 각 기법에서 튜닝이 가능한 하이퍼 파라미터에

대하여 교차검증 과정을 거쳐 최적화하였다. 블랙박스 모델은 폴리노미얼 커널
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트릭을 활용한 SVM을, 인터프리터블 모델은 BLR을 적용하여 인명피해

사고 발생 확률을 예측하는 모형을 개발하였다. 개발된 IML 모델에 대해서는

PDR(Predictive accuracy, Descriptive accuracy and Relevancy) 프레임워크

관점에서 (typical) BLR 모델과 비교 평가를 진행하였다. 평가 결과 예측

정확도, 해석 정확도 및 인간의 이해관점에서의 적합성 등에서 모두 IML

모델이 우수함을 확인하였다.

또한, 본 연구에서 개발된 IML 모델 기반의 인명피해사고 발생 확률식은

SSES, SOR, SV, TVL, HVR 및 CR의 독립변수로 구성되었으며, 이 확률식을

기반으로 SSES 설치에 대한 효과를 정량화하였다. 정량화 분석 결과,

SSES 설치로 인해 약 28% 정도의 인명피해사고 발생 확률이 감소함을

확인할 수 있었다. 또한, 모형 개발에 활용된 변수 중 SSES 설치로 인해

영향을 받는 변수들(SOR 및 SV)에 대한 매개효과 분석을 통해 SSES

설치로 인한 인명피해사고 감소 확률을 직접효과와 간접효과를 구분하여

제시하였다. 분석 결과, SSES와 제한속도 초과비율(SOR)의 관계에서

있어서는 약 30%가 간접효과이고, SSES와 속도분산(SV)의 관계에 있어서는

매개효과가 통계적으로 유의하지 않음을 확인할 수 있었다.

마지막으로 영동고속도로를 대상으로 인명피해사고 발생 확률식 기반의

예측 위험구간과 실제 인명사고 다발 구간에 대한 비교 분석을 통해 연구

결과의 활용 가능성을 확인하였다. 또한, SSES 설치 대상지 선정 시에는

사고 및 속도 분석을 통한 위험구간을 선별한 후 교통량(TVL)이 많은 곳,

통과차량 중 중차량 비율(HVR)이 높은 곳 및 구간 내 곡선비율(CR)이

높은 곳을 우선적으로 검토하는 것을 제안하였다.

주요어 : 구간단속시스템, 매개효과, 사고예측모형, 이진분류,

인명피해사고, 인터프리터블 머신러닝

학 번 : 2010-31011


	1. Introduction
	1.1. Background of research
	1.2. Objective of research
	1.3. Research Flow

	2. Literature Review
	2.1. Research related to SSES
	2.1.1. Effectiveness of SSES
	2.1.2. Installation criteria of SSES

	2.2. Machine learning about transportation
	2.2.1. Machine learning algorithm
	2.2.2. Machine learning algorithm about transportation

	2.3. Crash prediction model
	2.3.1. Frequency of crashes
	2.3.2. Severity of crash

	2.4. Interpretable Machine Learning (IML)
	2.4.1. Introduction
	2.4.2. Application of IML


	3. Model Specification
	3.1. Analysis of SSES effectiveness
	3.1.1. Crashes analysis
	3.1.2. Speed analysis

	3.2. Data collection & pre-analysis
	3.2.1. Data collection
	3.2.2. Basic statistics of variables

	3.3. Response variable selection
	3.4. Model selection
	3.4.1. Binary classification
	3.4.2. Accuracy vs. Interpretability
	3.4.3. Overview of IML
	3.4.4. Process of model specification


	4. Model development
	4.1. Black-box and interpretable model
	4.1.1. Consists of IML
	4.1.2. Black-box model
	4.1.3. Interpretable model

	4.2. Model development
	4.2.1. Procedure
	4.2.2. Measures of effectiveness
	4.2.3. K-fold cross validation

	4.3. Result of model development
	4.3.1. Result of black-box model
	4.3.2. Result of interpretable model


	5. Evaluation & Application
	5.1. Evaluation
	5.1.1. The PDR framework for IML
	5.1.2. Predictive accuracy
	5.1.3. Descriptive accuracy
	5.1.4. Relevancy

	5.2. Impact of Casualty Crash Reduction
	5.2.1. Quantification of the effectiveness
	5.2.2. Mediation effect analysis

	5.3. Application for the Korean expressway

	6. Conclusion
	6.1. Summary and Findings
	6.2. Further Research



<startpage>16
1. Introduction 1
 1.1. Background of research 1
 1.2. Objective of research 4
 1.3. Research Flow 6
2. Literature Review 11
 2.1. Research related to SSES 11
  2.1.1. Effectiveness of SSES 11
  2.1.2. Installation criteria of SSES 15
 2.2. Machine learning about transportation 17
  2.2.1. Machine learning algorithm 17
  2.2.2. Machine learning algorithm about transportation 19
 2.3. Crash prediction model 23
  2.3.1. Frequency of crashes 23
  2.3.2. Severity of crash 26
 2.4. Interpretable Machine Learning (IML) 31
  2.4.1. Introduction 31
  2.4.2. Application of IML 33
3. Model Specification 37
 3.1. Analysis of SSES effectiveness 37
  3.1.1. Crashes analysis 37
  3.1.2. Speed analysis 39
 3.2. Data collection & pre-analysis 40
  3.2.1. Data collection 40
  3.2.2. Basic statistics of variables 42
 3.3. Response variable selection 50
 3.4. Model selection 52
  3.4.1. Binary classification 52
  3.4.2. Accuracy vs. Interpretability 53
  3.4.3. Overview of IML 54
  3.4.4. Process of model specification 57
4. Model development 59
 4.1. Black-box and interpretable model 59
  4.1.1. Consists of IML 59
  4.1.2. Black-box model 60
  4.1.3. Interpretable model 68
 4.2. Model development 72
  4.2.1. Procedure 72
  4.2.2. Measures of effectiveness 74
  4.2.3. K-fold cross validation 76
 4.3. Result of model development 78
  4.3.1. Result of black-box model 78
  4.3.2. Result of interpretable model 85
5. Evaluation & Application 91
 5.1. Evaluation 91
  5.1.1. The PDR framework for IML 91
  5.1.2. Predictive accuracy 93
  5.1.3. Descriptive accuracy 94
  5.1.4. Relevancy 99
 5.2. Impact of Casualty Crash Reduction 102
  5.2.1. Quantification of the effectiveness 102
  5.2.2. Mediation effect analysis 106
 5.3. Application for the Korean expressway 118
6. Conclusion 121
 6.1. Summary and Findings 121
 6.2. Further Research 125
</body>

