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Abstract 

In this paper, we experimentally verified the length (LESC) and the concentration (cESC) of the extended space charge 
(ESC) layer in front of the electrical double layer (EDL) using the chronopotentiometric measurement and the 
equivalent circuit model analysis. From the experimentation, the coupled-response of the EDL and the ESC layer was 
discriminated from the contribution of electro-osmotic flow (EOF). In addition, we derived the potential differences 
across the ESC (VESC) layer using the circuit model of the ICP layer under rigorous consideration of ESC and EDL. As a 
result, we obtained that VESC was linearly proportional to the square of the applied current (iapplied). Hence, LESC and cESC 
were quantitatively provided, where LESC is linear to the iapplied and cESC is constant regardless of iapplied. Thus, this experi-
mentation could not only clarify an essential ICP theory but also guide in ESC-based applications.
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Introduction
Perm-selective ion selective transportation through an 
electrochemical nanoporous membrane has been widely 
utilized for numerous engineering applications such as 
desalination [1–7], preconcentration [8–17] and energy 
harvesting [2, 18–22]. In such systems, ion concentration 
gradients are formed on both sides of the nanoporous 
membrane, which is called an ion concentration polariza-
tion (ICP) phenomenon [23, 24]. Typically, a zone where 
electrolyte concentration was extremely low was formed 
at the anodic side of membrane, while the electrolyte 
concentration significantly increased at the cathodic side 
of membrane in the case of cation-selective membrane 
[25]. These zones were called the ion depletion zone 
and the ion enrichment zone, respectively. In order to 
characterize these zone, numerous theories and experi-
mentations had been conducted such as the possible 

overlimiting conductance (OLC) mechanisms by instabil-
ities [26–32], diffusioosmosis [33], electro-osmotic flow 
(EOF) and surface conduction (SC) [34–38], etc. Most 
of these studies pointed that all these nonlinear electro-
kinetic phenomena were stemming from the develop-
ment of extended space charge (ESC) layer in front of the 
electrical double layer (EDL) at an overlimiting current 
regime, predicted by Rubinstein and Zaltzman [39, 40]. 
Recently, the electrical impedance spectroscopy (EIS) 
have been proposed to probe the existence of the ESC 
layer [41–43]. However, the direct confirmation based on 
AC electric field analysis was lacking, because the elec-
trical response was tightly involved with the couplings of 
EDL, ESC layer and EOF.

Therefore, in this study, we suggested an experiment 
and a circuit analysis for obtaining the potential across 
the ESC layer (VESC). First of all, chronopotentiometric 
measurement (dc bias with constant current) was used to 
discriminate the electrical response of both the EDL and 
the ESC layer out of EOF. Furthermore, we proposed the 
equivalent circuit model of an ion depletion zone reflect-
ing EDL and ESC layer, where each resistor and each 
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capacitor are serially connected. From those analyses, we 
finally obtained the relationship between VESC and the 
applied current, which has never been proposed before. 
Finally, we quantitatively derived the ESC layer informa-
tion such as the length, the total charge and the concen-
tration. Therefore, this study would be one of essential 
basis for ICP research not only in fundamental aspect but 
also various applications based on ICP.

Materials and methods
Device fabrication
As shown in Fig.  1a, we fabricated a micro/nano-
fluidic device consisting of the main microchannel 
(1  cm length, 100  μm height and 15  μm depth), the 
buffer microchannel (1 cm length, 100 μm height, and 
15  μm) and two side microchannels (40  mm length, 
15  μm height and 15  μm depth). For the external 
hydrodynamic injection, the two side microchannels 

were tangentially connected to the main microchan-
nel, which is 50 μm apart from the end of the main 
microchannel. The side microchannels on both sides 
of the main microchannel was installed for easiness 
of the experiment [44] and preventing ever-increasing 
ICP layer [45]. By injecting fresh electrolyte solution 
through the side microchannels, the diffusion length 
was reduced as an order of a hundred micron, confin-
ing the ICP layer as the triangular shape as shown in 
Fig. 1b, c. The main building block of device were made 
of a polydimethyl siloxane (PDMS, Sylgard 184 silicone 
elastomer kit, Dow corning). We followed the general 
soft-lithographical fabrication method for PDMS [46]. 
The Nafion nanoporous membrane was patterned 
on the glass substrate based on the surface pattern-
ing method [45, 47]. Simply, Nafion was patterned 
using a straight microchannel (200  μm width × 50  μm 
depth) on a glass side, and the PDMS piece of the main 
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Fig. 1  a Image of micro/nanofluidic device used in this work and the magnified view of the device. Main and buffer microchannel had the 
dimension of 15 μm depth × 100 μm width and the side microchannel had one of 15 μm depth × 150 μm. The ICP layer b without or c with 
external flow from two side microchannels



Page 3 of 8Cho et al. Micro and Nano Syst Lett            (2020) 8:10 	

microchannel was irreversibly bonded in the middle 
using a plasma bonder (CuteMP, Femto Science, Korea) 
to a designated position on top of the Nafion-patterned 
glass.

Chemical preparation
Potassium chloride 1  mM solution were used for the 
experimentation. For tracking the electrokinetic flows 
and visualizing the ion concentration profile around the 
ion concentration polarization (ICP) layer, the negatively 
charged particle (d =  0.2  μm, Invitrogen) and the fluo-
rescent dye (Alexa488, Sigma Aldrich) were mixed in the 
prepared solution [33, 37, 48].

Experimental setup
From the two side microchannels, we pumped the pre-
pared solution with the volume rate, 20 nL/min using a 
syringe pump (PHD2000, Harvard apparatus) for 30 min 
until the injected flows were stabilized at the main micro-
channel. Then, we applied the external current source 
through the reservoir of the main microchannel utilizing 
the source measure unit (SMU 236, Keithley) while the 
two reservoirs of the buffer microchannel were grounded. 
Note that the reservoir of the two side microchannels 
were electrically floated during ICP. With a customized 
LabView program, we performed four experimentations 
as followed: (1) the chronopotentiometric measurement 
(V–t) from 1 to 30  nA with an 1  nA interval for each 
3  min, (2) the chronoamperometric measurement (I–t) 
from 0.3 to 9.9 V with an 0.3 V interval for each 3 min, 
(3) the voltage–current (V–I) responses from 0 to 30 nA 
with a step current 1 nA for every 60 s per step and (4) 
the current–voltage (I–V) responses from 0 to 9.9 V with 
a step voltage 0.3 V for every 60  s per step. In order to 
capture the optical image of an ICP layer, we used a CCD 
camera (DP73, Olympus) and the image was obtained 
through the commercial software program (CellSens, 
Olympus).

Results and discussions
Chronopotentiometric measurement
Figure  2 showed the representing chronopotentiomet-
ric measurement of the ICP system, where the red line 
and the blue line indicated the electrical response at 
both the overlimiting current regime and the ohmic cur-
rent regime, respectively. Previous studies neglected the 
voltage behavior at the ohmic current regime, while they 
described the voltage behavior at the overlimiting current 
regime as: (1) The initial voltage value was ohmic volt-
age which was subject to the electrodialysis system. (2) 
The sharp voltage hop (1st hop) appeared and the volt-
age value depended on the type of membrane. (3) A lin-
ear voltage growth (2nd hop) regime was followed, where 

the electroconvection initiated at this time, and then (4) 
the voltage value was saturated as the microvortices satu-
rated both the size and speed [49, 50] However, the afore-
mentioned steps were insufficient to explain the voltage 
behavior in chronopotentiometry since the ICP layer 
model was missing. Furthermore, the internal structures 
inside ion depletion zone has never been suggested as an 
electrokinetic circuit model. Thus, we would introduce a 
unified equivalent circuit model including EDL and ESC 
as well as 2nd EOF in the following section.

Especially at the OLC regime, the voltage responses 
during the chronopotentiometric measurement showed 
the two voltage hops (V1st and V2nd) as shown in Fig. 3a. 
When the current was applied at t = 0 (sec) from the 
main microchannel, the V1st was followed due to the 
capacitance of both the ESC and the EDL, which the cor-
responding image and the circuit was shown in image i) 
in Fig. 3a and inset of in Fig. 3b, respectively. When the 
EOF was generated at t = 15  s, the voltage was increas-
ing until the EOF size saturated at t > 50 s with the value 
V2nd ~ iapplied as shown in image ii) in Fig. 3a [50]. In this 
experimentation, we applied the various current values 
from 12 nA to 30 nA so that we can obtain the V1st–iap-
plied relations as shown in Fig. 3b. Note that the V1st is not 
linear to the iapplied, indicating that the ohm’s law is not 
valid due to the appearance of the ESC layer as expected 
by Rubinstein and Zaltzman [40].

Equivalent electrokinetic circuit model of the ICP layer
At the charged membrane surface, the EDL was com-
posed of both resistor (REDL) and capacitor (CEDL) in par-
allel and they were connected in series to the diffuse layer 
resistor (Rbulk) as in Fig. 4a. This simple circuit coincided 
with the voltage–time behavior in the ohmic regime, 
which showed the gentle slope and the slight voltage 
hop as in Fig. 2. Once the current was applied exceeding 

Fig. 2  Chronopotentiometric measurements for all current values 
through ICP layer
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Fig. 3  a The result of chronopotentiometric measurement at 29 nA (in the regime of OLC regime) and the corresponding images at i) t = 10 s and 
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limiting current, the ESC layer grew between the EDL 
and the diffuse layer, where both resistor (RESC) and 
capacitor (CESC) should be additionally employed as in 
Fig. 4b. This electrical circuit model affected the total RC 
delay time, converting the gentle slope at ohmic current 
regime into the sharp one at overlimiting current regime.

Normally, time-varying voltage responses existed 
where the resistance and the capacitance are parallel in 
the circuit model. Considering that bulk solution was 
regarded to the quasi-neutral regions, one can ignore the 
capacitance. In the meantime, the sufficient charge car-
riers existed inside the electrical double layer (EDL) for 
compensating the charged surface (e.g. Nafion), thus one 
should consider the capacitance of the EDL as well as the 
resistance of one. This means that the voltage responses 
should be divided into the constant term (for diffusion 
layer) and the time-varying one (for EDL) as follows:

where V0 is the potential of diffuse layer, VEDL the poten-
tial of EDL and the τEDL is the RC delay time (τEDL = REDL 
CEDL in the circuit model). As shown in Additional file 1: 
Figure S4, the collapsed data of the VEDL has the linear 
relations to the applied current density, which lead to 
the constant resistance values (REDL–VEDL/I) as 3  MΩ. 
Each component has the value 240 ± 42  MΩ (for Rbulk), 
3 ± 0.7  MΩ (for REDL), 6 ± 1.2 μF (for CEDL), 1.09(I-Ilim) 
MΩ (for RESC) and 2.23(I-Ilim)−1 μF (for CESC), respec-
tively. The simple calculation result and the derivations 
was introduced in supporting materials (Additional file 1: 
Table S1, Figure S4).

Valenca and co-workers reported that the microvorti-
ces by ICP induced the potential difference at V2nd in the 
EC dominant regime [50]. This indicated that, in a certain 
overlimiting current value IOLC > Ilim, one can estimate 

(1)V (t) = V0 + VEDL exp

(

−
t

τEDL

)

the point conductance at IOLC with a simple calculation 
as σOLC= I/V2nd. We also confirmed the conductivities in 
EOF regime, where the applied current is ranging from 
12 nA to 29 nA, leading to OLC by EOF as the constant 
value of 0.21 nS in our system. Note that the experimen-
tal results and the set of data were provided in support-
ing materials (Additional file  1: Figure  S2). In addition, 
critical time (Tc) that initiate the EOF has the relation of 
the OLC conductance(σOLC) and its time-derivative one 
(∂σOLC/∂t). This means that Tc is also subject to the V2nd 
and its time-derivative one (∂V2nd/∂t). The scaling was 
developed and quantified in supporting materials (Addi-
tional file 1: Figure S3).

The length (LESC) and the concentration (cESC) of the ESC 
layer
At the ESC layer, the dimensionless length ( ̃LESC , nor-
malized by diffusion length) should be 0.5(3εVESC)(2/3)
(j)(−1/3), the total space charge density (ΣESC) should be 
ε(4/3)(2jVESC)(1/3) and the concentration (cESC) should be 
0.69(ε2ψESC(−1)j2)(1/3) [51, 52]. Here ε is the dimensionless 
Debye length; ψESC is the dimensionless electric potential 
(normalized by the thermal potential RT/F) and the j is 
the dimensionless applied current density (normalized by 
the cross-sectional are of microchannel). In our system, 
the diffusion length was 100  μm, ε was 4.26 × 10−4 and 
ψESC ≈ (7.89 × 10−2) × j2, leading to LESC ≈ 132 × j (nm), 
ΣESC ≈ 0.225 × j (μq/m3) and cESC ≈ 2.30(μM), respec-
tively, leading to the conclusion of LESC ~ japplied, ΣESC ~ jap-
plied and cESC ~ constant inside the ESC layer as shown in 
Fig. 5.

Conclusions
Recent experiments have been conducted for probing the 
space charge at the micro- and nano-channel interface 
device using electrical impedance spectroscopy (EIS), 

Fig. 4  Schematics of equivalent circuit of ICP layer at a ohmic current regime and b overlimiting current regime. c A unified equivalent 
electrokinetic circuit model of ICP layer considering EDL, ESC and 2nd EOF
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employing a conventional equivalent circuit model. How-
ever, those literatures revealed out that the EIS method 
hardly determined the ESC layer response since the mul-
tiple electrokinetic responses were tightly coupled during 
ICP. For example, Yossifon and co-workers probed the 
diffusion layer(DL) and the electrical double layer(EDL) 
using EIS at the micro- and nano-channel systems [43]. 
They found out the detailed components of the EDL by 
separating the electrode-fluidic interface and microchan-
nel–nanochannel interface. From this experiment, they 
clearly captured the resistances and the capacitances 
at both EDL for satisfying the theoretical calculations. 
However, this demonstration fails to present ESC layer 
responses at the higher voltage because of the coupling 
effect where electroconvective flows were involved, 
thereby arousing another issue for differentiating them, 
individually. Thus, we emphasized that this equivalent 
circuit model, for the first time, reflected EDL and ESC 
layer as well as the convective flows using the micro-/
nano-fluidic systems.

In this paper, we experimentally investigated the ESC 
layer using chronopotentiometric measurement and the 
unified equivalent electrokinetic circuit model of inter-
nal ICP structure with the consideration of EDL, ESC 
and 2nd EOF. Each electrical component such as two 
resistors, two capacitors and dependent current source 
were included in the new model, confirming the voltage 
responses in chronopotentiometric measurement. From 
our rigorous experimentation, we obtained the relation-
ship between the potential across the ESC layer and the 
applied current, VESC–iapplied2. Furthermore, we quantitatively 
provided the LESC–japplied and the cESC ~ constant. There-
fore, all this experimental verification of the ESC layer 
could lead to the further development of ICP theory as 
well as the ESC/ICP layer related applications.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s4048​6-020-00112​-1.

Additional file 1: Figure S1. In order to obtain the limiting current values, 
we conducted the voltage-sweeping method in our systems. Under the 
20nL/min flows was applied near the Nafion membrane, the limiting 
current value reaches 12 (nA). Figure S2. The V2nd from the measurement 
has been obtained with the applied current, I. This result showed that the 
slope of V2nd–I, which is the overlimiting conductance (OLC) by electro-
osmotic flows (EOF) have the constant values as 0.21 nS. Figure S3. 
The onset time (τC) of electro-convective flows was obtained from the 
chronopotentiometric measurement. The τC values are between 10 and 
30, which result is coincided our scaling theory, τC–O (101). Figure S4. The 
V1st, which was time-varying potential reflected by the electrical double 
layer, was obtained from the chronopotentiometric measurement. From 
this result, the resistance can be calculated by Ohm’s law (REDL = VEDL/I). (b) 
The RC delay time caused by the electrical double layer was collected in 
ohmic current regime. The RC delay times in our experiments were almost 
constant as the value of 18 s regardless of the applied current. From this 
result, the capacitance can be calculated by (CEDL = tEDL/REDL). Table S1. 
The electrical components of the equivalent circuit model were calculated 
by simple calculation. Note that REDL and CEDL remains same regardless of 
the applied current (I), while RESC and CESC are linearly proportional to the 
current values (I–Ilim), where Ilim is the limiting current values.
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