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Abstract 
 

Autonomous machines have begun to be widely used in various 

application domains due to recent remarkable advances in machine 

intelligence. As these autonomous machines are equipped with 

diverse sensors, multicore processors and distributed computing 

nodes, the complexity of the underlying software platform is 

increasing at a rapid pace, overwhelming the developers with 

implementation details. This leads to a demand for a new 

programming framework that has an easy-to-use programming 

abstraction.  

In this thesis, we present a graphical programming framework 

named Splash that explicitly addresses the programming challenges 

that arise during the development of an autonomous machine. We set 

four design goals to solve the challenges. First, Splash should provide 

an easy-to-use, effective programming abstraction. Second, it must 

support real-time stream processing for deep-learning based 

machine learning intelligence. Third, it must provide programming 

support for real-time control system of autonomous machines such 

as sensor fusion and mode change. Finally, it should support 

performance optimization of software system running on a 

heterogeneous multicore distributed computing platform. 

Splash allows programmers to specify genuine, end-to-end 

timing constraints. Also, it provides a best-effort runtime system 

that tries to meet the annotated timing constraints and exception 

handling mechanisms to monitor the violation of such constraints. To 

implement these runtime mechanisms, Splash provides underlying 

timing semantics: (1) it provides an abstract global clock that is 

shared by machines in the distributed system and (2) it supports 
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programmers to write birthmark on every stream data item. 

Splash offers a multithreaded process model to support 

concurrent programming. In the multithreaded process model, a 

programmer can write a multithreaded program using Splash threads 

we call sthreads. An sthread is a logical entity of independent 

execution. In addition, Splash provides a language construct named 

build unit that allows programmers to allocate sthreads to processes 

and threads of an underlying operating system. 

Splash provides three additional language semantics to support 

real-time stream processing and real-time control systems. First, it 

provides rate control semantics to solve uncontrolled jitter and an 

unbounded FIFO queue problem due to the variability in 

communication delay and execution time. Second, it supports fusion 

semantics to handle timing issues caused by asynchronous sensors 

in the system. Finally, it provides mode change semantics to meet 

varying requirements in the real-time control systems. In this paper, 

we describe each language semantics and runtime mechanism that 

realizes such semantics in detail. 

To show the utility of our framework, we have written a lane 

keeping assist system (LKAS) in Splash as an example. We evaluated 

rate control, sensor fusion, mode change and build unit-based 

allocation. First, using rate controller, the jitter was reduced from 

30.61 milliseconds to 1.66 milliseconds. Also, average lateral 

deviation and heading angle is reduced from 0.180 meters to 0.016 

meters and 0.043 rad to 0.008 rad, respectively. Second, we showed 

that the fusion operator works normally as intended, with a run-time 

overhead of only 7 microseconds on average. Third, the mode change 

mechanism operated correctly and incurred a run-time overhead of 

only 0.53 milliseconds. Finally, as we increased the number of build 
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units from 1 to 8, the average end-to-end latency was increased 

from 75.79 microseconds to 2022.96 microseconds. These results 

show that the language semantics and runtime mechanisms proposed 

in this thesis are designed and implemented correctly, and Splash can 

be used to effectively develop applications for an autonomous 

machine. 

 

Keywords : Autonomous Machine, Real-time Stream Processing, 

Rate Control, Sensor Fusion, Mode Change 

Student Number : 2013-20785 
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Chapter 1. Introduction 
 

 

With recent remarkable advances in machine intelligence, 

autonomous machines have been actively developed and begun to be 

widely used in various application domains. Representative examples 

of such machines include drones, robots and self-driving cars [1–3]. 

Often times, they are equipped with diverse sensors for perception, 

localization and positioning [4,5]. They also include high performance 

multicore processors for intelligence and microcontrollers for real-

time control [6,7]. 

These hardware components are interconnected via onboard 

networks inside autonomous machines [8–10]. Due to the 

heterogeneous, distributed and multicore nature of the underlying 

computing platform, the software architecture of an autonomous 

machine has become more and more complex. Its complexity has 

reached a point where programmers must resort to a versatile 

programming framework that has an easy-to-use programming 

abstraction. 

The programming framework for autonomous machine should 

achieve four key design goals. First, it should provide an easy-to-

use, effective programming abstraction that can hide implementation 

details and supports a model-based code generation capability. 

Second, it must support real-time stream processing for deep-

learning based machine learning intelligence. Third, it must provide 
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programming support for real-time control system of autonomous 

machine such as sensor fusion and mode change. Finally, it needs to 

support performance optimization of software system running on a 

heterogeneous multicore distributed computing platform. 

In this thesis, we present a graphical programming framework 

named Splash that achieves four design goals. We present the syntax 

and semantics of the key language constructs of Splash and show 

how we achieve our design goals. Furthermore, we present the 

internal workings of the proposed programming framework and 

validate its effectiveness via a lane keeping assist system (LKAS). 

Section 1.1 describes the motivation. Then, Section 1.2 gives 

overview of our work. Finally, Section 1.3 explains how this 

dissertation is organized. 

 

1.1  Motivation 
 

Quite a few graphical programming frameworks have been widely 

used for developing autonomous machines, particularly for automatic 

control and signal processing domains. Such frameworks include 

Simulink and RTMaps [11,12]. Also, several academic programming 

frameworks such as Ptolemy II exist for research purposes [13]. 

Most of the existing frameworks were designed and developed for a 

broad range of reactive embedded systems. 

Simulink is one of the most representative commercial 

programming frameworks. It can support both time-driven and 
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event-driven data processing. It also offers a wide range of plug-

ins such as Stateflow, SimEvents and Deep Learning Toolbox to 

support programmers to develop embedded applications[14]. 

Unfortunately, it does not fulfil our design goals; it does not support 

end-to-end timing constraints that must be considered when 

implementing an autonomous machine; it does not offer language 

constructs for exception handling and sensor fusion; and it provides 

little or no support for the performance optimization and tuning of a 

resultant system to run on a distributed multicore computing platform. 

RTMaps is well suited for the development of a system that must 

deal with multiple sensors and actuators like an autonomous machine. 

It has many features in common with our approach. RTMaps supports 

time as a first-class entity and records a timestamp on each data 

item. As result, it can offer a method for specifying and handling 

freshness and correlation constraints. It allows programmers to write 

applications in both data and time-driven programming styles. 

However, it has several limitations that makes it unfit for our design 

goals. First, RTMaps does not consider a rate constraint in an explicit 

manner. Thus, programmers must independently develop their own 

rate control mechanism, creating spaces for error. Second, it does 

not support concurrency models explicitly, leaving programmers with 

the responsibility of thread creation and synchronization. Third, 

RTMaps does not offer a language construct for asynchronous event 

notification and handling. Finally, RTMaps lacks support for control 

systems such as mode change and exception handling. 
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Ptolemy II is an academic programming framework capable of 

supporting a wide variety of process network models. Thus, 

programmers can write an application utilizing several different 

models at the same time. Ptolemy II offers rich support for imperative 

programing such as mode change and exception handling. However, 

Ptolemy II lacks support for real-time stream processing. But it does 

not support a rate constraint or a correlation constraint. Like RTMaps, 

Ptolemy II lacks a concurrency model or a thread-to-core allocation 

mechanism inside a process. Simply, it maps each process to a Java 

thread and delegates thread scheduling to the underlying operating 

system. 

Due to the limitations of these programming frameworks, many 

programmers choose to develop autonomous machines without using 

these programming frameworks. ROS is a representative open-

source runtime software system that is commonly used to develop an 

autonomous machine [15]. However, existing runtime software 

systems including ROS does not support any method for specifying 

and handling end-to-end timing constraints for real-time stream 

processing. In order to overcome the limitation of the ROS, ROS 2 is 

currently under development based on data distribution service 

(DDS), a communication standard that supports real-time publish-

subscribe communication. However, each function in ROS 2 is not yet 

fully implemented and verified since it is still in the early stage of 

development [15,16].  

Therefore, we need a new programming framework that 
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overcomes the limitations of existing programming frameworks and 

runtime software. Unlike existing approaches, the proposed 

programming framework must be able to achieve all four design goals. 

 

1.2  Splash Overview 
 

In this thesis, we present a graphical programming framework named 

Splash that achieves all design goals. The name Splash is named after 

the first letter of the first three words in the stream processing 

language for an autonomous machine. 

Splash is designed based on the Kahn process network (KPN), 

which offers a programming model in such a way that developers can 

write an application in a parallel way such that constituent processes 

are independently written [17,18]. KPN provides graphical 

programming abstraction to programmers and helps them avoid 

error-prone issues such as data races and non-determinism. 

However, KPN cannot be directly used to develop an autonomous 

machine since it fails to achieve our four design goals. To overcome 

this limitation, Splash offers six additional language semantics: (1) 

timing semantics, (2) exception handling semantics, (3) multi-

threaded processing model and build unit-based allocation, (4) rate 

control semantics, (5) sensor fusion semantics and (6) mode change 

semantics. 

One of the most important design goal of Splash is to support 

real-time processing. To achieve this goal, Splash allows 
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programmers to specify three essential end-to-end timing 

constraints: freshness constraint, correlation constraint and rate 

constraint. It provides a best-effort runtime system to satisfy the 

timing constraints annotated in the program. Splash also provides 

exception handling mechanism to monitor and to handle violations of 

such constraints at runtime. 

Splash provides timing semantics which is the basis for all other 

language semantics of Splash. Splash supports an abstract global 

clock that is possibly implemented via distributed local clock 

synchronization. It also enables programmers to write birthmark on 

every stream data item, and guarantees that data items always go 

through a communication channel in the order of their birthmarks. 

This is called in-order delivery semantics. 

Splash offers a multithreaded process model to exploit 

parallelism explicitly from the underlying operating system and 

computing platform. In the multithreaded process model, a 

programmer can write a multithreaded program using sthread that is 

a logical entity of execution. Splash also supports a language 

construct named build unit to allocate sthreads to processes and 

threads on the underlying operating system. 

Splash takes the data-driven processing as the default style, 

unless specified otherwise in a program. However, data-driven 

triggering is not the most suitable programming abstraction for an 

autonomous machine since it may have serious side effects such as 

uncontrolled jitter and an unbounded queue. Variability in 
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communication delay and execution time in a physical system can 

easily cause bursty data traffic on communication channels and 

eventually deteriorate the resultant control quality to a significant 

degree. To solve these problems, Splash provides rate control 

semantics. 

Splash also offers a language construct named fusion operator 

that handles complex implementation issues caused by asynchronous 

sensor inputs during the development of sensor fusion algorithms 

[19,20]. Using the fusion operator, a programmer can clearly specify 

temporal requirements of a fusion algorithm. Then, Splash provides 

a runtime system that handles these issues automatically. 

Finally, Splash provides mode change semantics that is often 

used in real-time control systems. The Splash provide a language 

construct named multimode factory to support multiple modes of 

operations. A programmer can describe the behavior of each mode 

and the specification of mode change. The Splash runtime system 

then performs mode changes according to the programmer’s 

specification. During the mode change, the consistency of data used 

by sthreads is preserved. 

The proposed language semantics of Splash achieves our key 

design goals as follow: 

 

(1) The Splash’s language semantics is designed to provide 

programmers with an easy-to-use programming abstraction. 

It allows programmers to focus on developing their business 
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logic without worrying about the specific implementation 

issues that arise during the development of an autonomous 

machine. 

(2) The Splash enables programmers to specify three essential 

end-to-end timing constraints and provides timing semantics, 

rate control semantics and sensor fusion semantics to satisfy 

such constraints. Also, it supports exception handling 

semantics to monitor and to handle the timing constraint 

violation. 

(3) In order to provide programming supports for the 

development of real-time control systems, Splash provides 

fusion semantics, mode change semantics and exception 

handling semantics. 

(4) To support development and performance optimization in the 

multicore distributed computing platform, The Splash 

provides multithread process model based on sthread and 

build unit-based allocation 

 

To show the effectiveness of our framework, we wrote a lane 

keeping assist system (LKAS) as a Splash program example. We 

then evaluated rate control mechanism, sensor fusion mechanism, 

mode change mechanism and build unit-based allocation. First, the 

jitter was reduced from 30.61 milliseconds to 1.66 milliseconds when 

using a rate controller. As a result, average lateral deviation and 

heading angle is also reduced  from 0.180 meters to 0.016 meters 
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and 0.043 rad to 0.008 rad, respectively. Second, we showed that the 

fusion operator successfully satisfies temporal requirements that is 

annotated in the program with 7 microseconds of run-time overhead. 

Third, we showed that the mode change mechanism works as 

intended, with a run-time overhead of only 0.53 milliseconds. Finally, 

as we increased the number of build units from 1 to 8, the average 

end-to-end latency was increased from 75.79 microseconds to 

2022.96 microseconds. These results show that the language 

semantics and runtime mechanisms proposed in this paper are 

designed and implemented correctly.  

 

1.3  Organization of This Dissertation 
 

This dissertation is organized as follows. Chapter 2 explains the 

background and related work of our work. Chapter 3 describes the 

motivation and contributions of this dissertation. Chapter 4 explains 

the underlying timing semantics of Splash. Chapter 5 then presents 

language constructs of Splash. Chapter 6 explains runtime 

mechanisms of Splash. Chapter 7 presents code generation and 

Splash runtime system. Chapter 8 reports on the experimental 

evaluation. Finally, Chapter 8 concludes the dissertation. 
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Chapter 2. Related Work 
 

 

This chapter presents background underlying Splash and related 

work on (1) programming frameworks for an autonomous machine, 

(2) runtime systems for an autonomous machine, (3) rate control, (4) 

sensor fusion and (5) mode change. 

 

2.1  Kahn Process Network 
 

Kahn process network is a fundamental process network model 

underlying the Splash programming language [17,18]. A KPN offers 

a programming model in that developers are allowed to write an 

application in a parallel way such that constituent processes are 

independently written, allocated and executed on a multiprocessor 

system such as a modern multicore system. Unlike thread 

programming on a shared-memory machine, the KPN model helps 

developers avoid error-prone issues such as data races and non-

determinism. 

A KPN is rendered in a directed graph format, where for a given 

graph 𝐺(𝑉, 𝐸): 

 

 𝑉 is a set of processes. A process 𝑣𝑖 ∈ 𝑉 computes on data 

items coming from its incoming edges to produce data items 

on its outgoing edges. 

 𝐸 ⊆ (𝑉 × 𝑉) is a set of unbounded unidirectional edges. An 
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edge (𝑣𝑖, 𝑣𝑗) ∈ 𝐸 denotes a FIFO channel that is able to carry 

data items of a given data type from the process 𝑣𝑖 to the 

process 𝑣𝑗. There is no restriction on the number of incoming 

edges or the number of outgoing edges for a process in a KPN. 

A KPN may be either cyclic or acyclic. 

 

 For syntactic clarity, a process in a KPN has an input port 

connected to an incoming edge and an output port connected to an 

outgoing edge as described in [18]. Figure 1 shows an example KPN 

graph that has one source, one sink and a cycle. 

The KPN model provides two predefined functions for processes: 

get() and put(). A process uses get() to obtain a data item from a 

channel connected to an input port. If the channel is empty, the 

process stays blocked on get() until some data item is being sent 

into the input port. A process calls put() to send a data item along a 

 

Figure 1. Example of Kahn Process Network graph.  

P2

Source P3 Sink

P1

P4
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channel connected to an output port. In contrast to get(), nothing 

can block a process from performing put(). 

The behavior of a process is specified with a sequential program 

written in an imperative programming language. Typically, a process 

sequentially reads in data items from inputs ports, computes on the 

data items and writes generated data items into output ports. A 

process may skip reading data items from certain input ports, but this 

leads to a problem of infinitely stored data on a channel. A KPN is 

referred to as an effective process network if it is free of such 

problem [21]. 

Each process in a KPN is viewed as a function that maps the 

complete history of data items received on its input channels to the 

complete history of data items emitted on its output channels. The 

most intriguing property of a KPN is that the network is determinate. 

A process network is determinate if and only if it defines a unique 

history of data items on each channel between processes. Whereas a 

process may have a private state, no shared state between any two 

processes is allowed. This is required for maintaining the 

determinacy of a KPN. 

It is also shown that any two fair and maximal executions of a 

KPN produce the same history of data items on each channel. A fair 

execution is one that ensures that if any process is able to produce 

an output data item or read an input data item, then it will eventually 

be allowed to do so. A maximal execution is an execution that either 

does not halt, or if it halts, has produced exactly every sequence 
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defined by the network. This property is known as the Kahn principle 

[22,23]. 

 

2.2  Firing Rule Applied to a Process 
 

Lee et al. proposed a dataflow process network [24–26] that extends 

the KPN by incorporating the notion of firing which was first 

introduced by Dennis [27]. In a dataflow process network, the 

behavior of a process is specified with a set of firings instead of a 

sequential program with the functions get() and put(). A firing is 

an atomic computation that consumes a finite number of input data 

items and produce a finite number of output data items. A firing is 

invoked if and only if its associated firing rule is satisfied. 

A dataflow process with 𝑚 input ports and 𝑛 output ports has a 

set 𝑈 = {𝑅1, 𝑅2, … , 𝑅𝑘} of firing rules. A firing rule 𝑅𝑖 = (𝑟𝑖,1, 𝑟𝑖,2, … , 𝑟𝑖,𝑚) 

is a tuple that consists of finite sequences 𝑟𝑖,𝑗 of data items that will 

be consumed from the 𝑗th input port when the process fires. A firing 

rule 𝑅𝑖 is satisfied if and only if each sequence 𝑟𝑖,𝑗 in 𝑅𝑖 forms a 

prefix of the sequence of unconsumed data items on the channel 

connected to the 𝑗th input port. 

Lee et al. also showed that a sufficient condition for a dataflow 

process network to be determinate is that all processes in the 

network are functional and a set of firing rules of each process is 

sequential [24]. A process is functional if it is free from side effects, 

i.e., the outputs of the process firing are purely a function of the 
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inputs. A set of firing rules is sequential if the outputs are 

independent of how a choice between firing rules is made when two 

or more firing rules are satisfied at the same time. 

 

2.3  Programming Framework for an Autonomous Machine 
 

There is a plethora of graphical programming frameworks that 

provides programming abstraction to programmers in the 

development process of an autonomous machine. Representative 

examples include RTMaps, Simulink and Ptolemy II [11–13]. Like 

Splash, these frameworks are more or less based on the KPN model 

and have some extensions to satisfy engineering needs that arise 

during production-quality system development. 

We set four design goals for these programming frameworks: (1) 

they should provide easy-to-use, effective programming 

abstraction, (2) they must support real-time stream processing for 

machine intelligence, (3) they must provide programming supports 

for a real-time control system and (4) they should support 

performance optimization on distributed multicore computing 

platform. We analyze the pros and cons of the above frameworks with 

respect to these design goals. 

Simulink is a commercial modeling framework which is widely 

used particularly in automatic control and signal processing systems. 

It offers as a primary programming abstraction a time-driven 

process network model in that a process is triggered at periodic 
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sampling time points specified by programmers. Simulink supports 

the event-driven programming style as well, via an event port. 

However, Simulink has several limitations to be used in the 

development of an autonomous machine. First, it does not provide 

programming abstraction for data-driven programming style that is 

commonly used for stream processing. Second, it does not support 

timing constraints annotation and handling which is essential for 

supporting real-time stream processing. Third, it does not provide 

language constructs for mode switch and exception handling that is 

needed for the development of real-time control systems. Finally, it 

does not have an explicit concurrency model inside a process. 

RTMaps is well suited for the development of an application that 

must deal with multiple sensors and actuators like an autonomous 

machine. RTMaps supports time as a first-class entity and records 

a timestamp on each data item. As result, it can offer a method for 

specifying and handling freshness and correlation constraints. It 

allows programmers to write applications in both data and time-

driven programming styles. However, it also has several limitations 

to be used in the development of an autonomous machine. First, 

RTMaps does not offer a language construct for asynchronous event 

notification and handling. Second, it does not consider a rate 

constraint in an explicit manner. Thus, programmers are left with a 

burden to implement a rate control mechanism in user-level code by 

themselves; or they need to rely on time-driven, periodic task 

invocation to maintain a desired output rate. Either way, lower-level 
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implementation details are exposed to users in the programming 

abstraction of RTMaps. Third, it lacks support for real-time control 

systems such as mode switch and exception handling. Finally, 

RTMaps does not make a concurrency model explicit inside a process, 

leaving programmers  responsible for thread creation and 

synchronization. 

Ptolemy II is an academic programming framework that can 

support a wide variety of process network models. It even allows 

programmers to create an application using several different models 

at the same time. Ptolemy II offers rich support for imperative 

programing such as mode switch and exception handling. However, 

most of the process network models of Ptolemy II lack support for 

real-time stream processing. Only Ptide which is an experimental 

model for academic research allows a freshness constraint to be 

specified for a sensor value [28]. But it does not support a rate 

constraint or a correlation constraint. Like RTMaps, Ptolemy II does 

not specify a concurrency model or thread-to-core allocation inside 

a process. Simply, it maps each process to a Java thread and 

delegates thread scheduling to the underlying operating system. 

 

2.4  Runtime Software for an Autonomous Machine 
 

Since existing programming frameworks have limitations in the 

development of an autonomous machine, many companies and 

laboratories choose to develop autonomous machines without using 



 

 17 

these programming frameworks. ROS is a representative open-

source runtime software system that is commonly used to develop an 

autonomous machine [29]. ROS comes with a publish-subscribe 

communication mechanism for transferring data items between 

processes in distributed systems and provides an interface for 

programmers to easily use it. Also, it supports ROS package that 

allows programmers to provide their own programs to other 

developers as libraries. ROS has become a representative software 

framework for the development of autonomous machines due to its 

easy-to-use communication interface and vast developers’ 

community based on the ROS package. 

However, when developing an autonomous machine using ROS, 

most implementation issues except for inter-process communication 

must be dealt with by the programmer. For example, ROS provides 

no support for specifying and handling end-to-end timing 

constraints. As a result, tuning and exception handling to satisfy 

timing constrains should be carried out by the programmer himself. 

Also, functions such as sensor fusion, mode change, and exception 

processing are not supported by ROS. 

In order to overcome the weaknesses of ROS, ROS 2 is currently 

under development based on data distribution service (DDS), a 

communication standard that supports real-time publish-subscribe 

communication [15,30]. ROS 2 utilizes quality of service (QoS) 

policies of DDS to provide features to reduce communication latency 

or increase reliability of the transmission. However, each function is 



 

 18 

not yet fully implemented and verified since it is still in the early 

stage of development [31]. 

 

2.5  Rate Control 
 

In the processing of stream data items, serious problems such as 

uncontrolled jitter and an unbounded queue can occur. Variability in 

communication delay and execution time in a physical system can 

easily cause bursty data traffic on communication channels and 

eventually deteriorate the resultant control quality to a significant 

degree. 

Rate control is a technique that prevents bursty data traffic by 

limiting the number of output data items that are generated per unit 

time. Existing approaches on rate control can be classified as traffic 

shaping and traffic policing, depending on how the bursty data traffic 

is handled. Traffic shaping is a technique that delays the output data 

items that are generated above the target rate, as shown in Figure 2. 

In order to implement traffic shaping mechanism, we need a buffer to 

temporarily store delayed data items. Traffic shaping has the 

advantage of low data item loss because it stores the data items 

instead of discarding them, but there is the disadvantage that 

additional delays occur while storing the data items in the buffer. 

Traffic policing is a technique that drops the data items that are 

generated above the target rate, as shown in Figure 3. Traffic policing 

incurs less additional delays compared to traffic shaping because data 
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items are not stored in the buffer. However, the data item is always 

lost if the data items are generated above the target rate. 

The loss of data items on an autonomous machine is undesirable 

since it causes a performance degradation of the control system. 

Therefore, Splash chooses traffic shaping among the two rate control 

methods to reduce the loss of data items. In addition, Splash includes 

a mechanism to limit delays that occur during traffic shaping. The 

Splash’s traffic shaper checks whether there will be a violation of a 

freshness constraint before putting the data item into the buffer. It 

only puts the data item in the buffer if there will be no violation of the 

freshness constraint. If the violation might occur, it immediately 

 

Figure 2. Traffic shaping.  
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throws away the data item. 

In the following sections, we introduce existing studies about 

traffic shaping and traffic policing. 

 

2.5.1  Traffic Shaping 
 

Many stream processing frameworks support traffic shaping that 

limits output stream rate at predefined target rate [32–34]. 

Tolosana-Calasanz et al. proposed a traffic shaper using token 

bucket algorithm that is one of the most fundamental algorithm used 

for rate control [32]. A token bucket-based traffic shaper has three 

 

Figure 3. Traffic policing. 
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parameters: 𝑅, 𝐶 and 𝑏. Among three parameters, token generation 

rate 𝑅 and buffer capacity 𝐶 are predefined constants. On the other 

hand, bucket size 𝑏 is a variable that changes during the execution 

of the algorithm. 𝑏  is initialized to zero at the beginning of the 

algorithm and increases at a rate of 𝑅 over time until 𝑏 reaches 𝐶. 

When the token bucket-based traffic shaper receives a request to 

output a data item, it checks whether 𝑏 is larger than the size of the 

data item to be produced. If 𝑏 is larger, the traffic shaper subtracts 

𝑏 by the size of the data item and outputs the data item. If 𝑏 is not 

larger, it puts the data item into the buffer and wait until 𝑏 becomes 

large enough to be produced. 

Amini et al. proposed a resource management and traffic shaping 

technique to maximize throughput on distributed stream processing 

systems [33]. In the first step, it determines on which processing 

node the processing elements are to be executed. A processing 

element the basic unit of stream processing. In the second step, the 

target input and output rate of each processing element is derived 

based on the placement of the processing elements. It then uses 

token bucket-based traffic shapers to meet the target rates. 

However, [32,33] have no guarantees about the delay incurred while 

storing data items in a buffer, which is an inherent problem of traffic 

shaping, and thus there is a limitation to use them in the real-time 

stream processing applications. 

In order to overcome this limitation, Ernesto conducted a study 

to bound the maximum delay and the maximum buffer size of traffic 
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shaper [34]. They used real-time calculus that extends network 

calculus during the analysis of traffic shaper [35,36]. The proposed 

approach takes two inputs: (1) upper and lower arrival curve that 

specifies the maximum and minimum number of incoming data items 

of each stream input and (2) upper and lower service curve that 

specifies the maximum and minimum capacity of each resource. 

These inputs are then used to calculate the maximum latency and 

maximum buffer size of the traffic shaper. However, this approach 

also has limitations since it is difficult to specify tight upper and lower 

arrival and service curves in many practical applications. 

All the aforementioned approaches perform traffic shaping using 

a predetermined target rate. There are traffic shaping mechanisms 

that vary the target rate at runtime. One of the representative 

mechanisms is RADAR [37] which is designed for distributed stream 

processing systems. This approach monitors application delays and 

system loads, and dynamically determines the target rate of the 

traffic shaper based on the monitored information. While doing so, it 

utilizes Lagrange Multiplier technique to maximize the system 

utilization of the target system. 

 

2.5.2  Traffic Policing 
 

[38,39] introduced traffic policing mechanisms that drop data items 

when a predefined target rate exceeds. However, these approaches 

are rarely used recently since they cause excessive data item loss 
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every time bursty data traffic occurs. 

In contrast, many traffic policing approaches have been proposed 

to detect bursty data traffic without a predefined constant target rate. 

This type of techniques is also called load shedding. Aurora is one of 

the representative database management systems (DBMS) for 

stream data that supports load shedding [40]. It provides 

programmers with continuous queries for manipulating stream data, 

and a runtime system that processes the requested queries 

efficiently. Aurora lets programmers specify a QoS (quality of 

service) function that takes output delays, data item loss rate, output 

values as input. When bursty data traffic occurs, the runtime system 

drops data items in such a way that the QoS is maximized. 

Simmhan et al. proposed a traffic policing mechanism that adjust 

target rate based on the application’s context [41]. A programmer 

sets the minimum and maximum threshold of the target rate and 

describes a policy that adjusts the target rate. Then, the proposed 

approach automatically updates the target rate according to the policy 

at runtime. 

 

2.6  Sensor Fusion 
 

Multisensor data fusion, or sensor fusion, is a technique that 

estimates information about nearby situation by processing data from 

multiple sensors [5,42]. Sensor fusion-based algorithms are widely 

used in real-time control systems since they have higher accuracy, 
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reliability and robustness than algorithms using a single sensor. For 

example, an autonomous vehicle, one of the representative 

autonomous machines, fuses various sensors such as camera, LiDAR 

and radar to perform recognition algorithms such as object detection 

and localization [43–45]. 

The research on sensor fusion can be divided into measurement 

fusion and situation fusion. The measurement fusion receives raw 

measurement data from each sensor and performs sensor fusion 

[43,46–48]. In contrast, the situation fusion first estimates the 

situation individually for each sensor, and then uses the results to 

perform sensor fusion [44,45,49]. In the following sections, we 

introduce existing studies about measurement fusion and situation 

fusion. 

 

2.6.1  Measurement Fusion 
 

The measurement fusion takes a set {𝑧1, 𝑧2, … , 𝑧𝑚} of measurements 

from each sensor as inputs and outputs an estimation 𝑠̃ of the current 

situation 𝑠 as shown in Figure 4. It is also called low-level sensor 

fusion because it performs sensor fusion on raw sensor data. 

Programmers have high degree of freedom when developing 

algorithms with the measurement fusion because they have access to 

raw data from all sensors. However, the measurement fusion has 

limitations to be used in the distributed systems. First, it is difficult 

to distribute work throughout machine since the process for fusion 
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should do all the work for estimation alone. Second, excessive 

communication overhead occurs in transferring large raw data 

between processes. 

The most primitive form of measurement fusion is stateless 

fusion. In the stateless fusion, an estimation 𝑠̃ of the situation 𝑠 is 

computed through a pure function of a set {𝑧1, 𝑧2, … , 𝑧𝑚}  of 

measurements currently arrived. It does not use any state during the 

estimation. However, these stateless fusion algorithms are 

vulnerable to sensor’s noise or malfunctions because they do not 

utilize past results of the estimation. Therefore, they are rarely used 

in recent research on sensor fusion. 

In the other hand, state fusion computes an estimation 𝑠̃ of the 

situation 𝑠 using a function of a set {𝑧1, 𝑧2, … , 𝑧𝑚} of measurements 

and its internal state 𝜑. Unlike stateless fusion, state fusion outputs 

a more stable and robust results since past estimations are reflected 

in the state 𝜑. 

Drolet et al. proposed a positioning system using an underwater 

 

Figure 4. Measurement fusion. 
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positioning sensor and an accelerometer for underwater ROV 

(remotely operated vehicle) [46]. The proposed approach 

periodically invokes a fusion algorithm that estimates the current 

position of the ROV using the Kalman filter [50,51]. Since 

measurements may not yet arrive from some sensors at the time of 

invocation, the fusion algorithm performs estimation by selecting one 

of Kalman filters according to the currently available input 

combination.  

Liu et al. proposed a sensor fusion-based moving object 

detection and tracking for self-driving cars [47]. This approach 

takes measurements from camera and radar sensor as inputs and 

estimates the position, velocity and acceleration of objects near the 

ego vehicle. Unlike [46], Liu took the data-driven processing. The 

fusion algorithm is invoked whenever a measurement from the radar 

sensor is received. This is because the measurement frequency of 

the radar is relatively lower than that of the camera. On invocation, 

the fusion algorithm performs estimation using the radar input and a 

set of the camera inputs that have arrived after the previous 

invocation. 

Geneva et al. presented a localization technique that estimates 

the current position of an autonomous vehicle using GPS, camera and 

LiDAR sensors [48]. Similar to [47], this approach also  calls a 

fusion algorithm when the measurement from the LiDAR, which has 

the lowest frequency, comes in. The proposed approach additionally 

performs linear interpolation and extrapolation on the sensor inputs 
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that did not arrived on invocation and use them as the inputs of the 

algorithm. 

Cho et al. proposed a multi-sensor fusion system for moving 

object detection and tracking in urban driving environments [43]. 

The proposed approach takes cameras, LiDAR and radar sensors as 

inputs and outputs the estimation of position, velocity and 

acceleration of nearby objects. It also takes the data-driven 

processing, but it invokes the fusion algorithm every time a 

measurement comes in from any one of sensors. 

As a result of analyzing the existing approaches on measurement 

fusion, the programming framework should support two important 

implementation issues: (1) it should allow the programmer to specify 

the triggering condition for the fusion algorithm and (2) it must 

enable the programmer to determine which of the measurement from 

each sensor to select as input to the fusion algorithm. In Splash, we 

provide a language construct named fusion operator to meet these 

requirements. More information about the fusion operator is covered 

in Chapter 5. 

 

2.6.2  Situation Fusion 
 

The situation fusion first computes the estimation 𝑠̃𝑖 of the situation 

𝑠 using the measurement 𝑧𝑖 from each sensor, then fuses a set of 

estimations {𝑠̃1, 𝑠̃2, … , 𝑠̃𝑚}  of 𝑠  to compute the final estimation 𝑠̃ . 

Figure 5 shows the overall architecture of the situation fusion. It is 
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also called high-level sensor fusion since it performs sensor fusion 

on the high-level data that has already been processed once. 

Programmers have relatively low degree of freedom when developing 

algorithms with the situation fusion. However, the situation fusion has 

advantages to be used in the distributed systems. First, it is easier 

to distribute work throughout machine since the tasks for estimation 

are divided between the processes of estimating using individual 

sensors and the process of fusing individual estimations. Second, the 

amount of data communication is reduced because the size of 

estimation 𝑠̃𝑖 is smaller than the measurement 𝑧𝑖 in most cases [42]. 

In the situation fusion, each sensor’s noise or malfunction is 

handled in per-sensor estimation phase. Therefore, the situation 

fusion assumes that reliable and robust estimations are taken as 

inputs and uses stateless fusion to merge a set of estimations. 

Floudas et al. proposed two sensor fusion techniques for object 

detection in self-driving cars using the camera and radar sensors 

 

Figure 5. Situation fusion. 
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[49]. First, they introduced the track-level fusion that first 

estimates the position and size of objects on the road using each 

sensor, then merges them together using multidimensional data 

association [52]. Second, they proposed the grid-based fusion that 

computes occupancy grid which maintains probabilistic estimates of 

the occupancy state of each cell in a lattice for each sensor, and 

combines them together using Bayesian inference [53]. 

Chavez-Garcia and Aycard proposed a sensor fusion method that 

merges the results of object detection using camera, radar and LiDAR 

sensors [45]. Similar to [49], they used the data association 

technique. The proposed approach determines whether two objects 

detected by different sensors are identical by using information such 

as the location, shape and type of the objects. 

Zhang et al. presented a semantic segmentation method using 

camera and LiDAR sensor for autonomous vehicle [44]. The 

proposed approach uses separate classifiers in each sensor to 

perform semantic segmentation. It then trains an additional classifier 

named a fusion classifier with previous classifier outputs 

incorporated as input features for regions with overlapping sensor 

coverage. They used the stacking hierarchical labeling to train the 

fusion classifier [54]. 

Existing studies on situation fusion assumes that they use 

temporally synchronized sensors as inputs. However, to be deployed 

to the real platform, they must handle implementation issues caused 

by asynchronous sensors. Like the measurement fusion, the situation 
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fusion also should allow the programmer to specify the triggering 

condition and enable the programmer to determine which of the 

measurement from each sensor to select as inputs. 

 

2.7  Mode Change 
 

The functional and non-functional requirements of the real-time 

control system of an autonomous machine can vary depending on the 

situation. One of the example system with variable requirements is 

an aircraft control system. It has different requirements depending 

on the situation of the aircraft, such as take-off, normal cruise, 

landing and emergency [55]. 

The real-time control systems with varying requirements must 

support a multimode system which can change its internal execution 

logic depending on the situation [55–57]. A multimode system is 

defined through a set of modes and a set of mode changes. Each mode 

is presented by a set of tasks that are executed in the mode. One of 

these modes is designated as the initial mode. Each mode change 

specifies which mode the system should change to when a particular 

event occurs. 

In the mode change process, there is a transient state where the 

tasks of the previous mode remain and the tasks of the next mode 

are not prepared. Mode change techniques are classified into two 

categories depending on how the transient state is handled. The first 

category is a synchronous mode change that starts the execution of 
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next mode tasks after completing the previous mode tasks. This type 

of mode change has the disadvantage that the start time of the next 

mode tasks is relatively late, but there is no performance 

interference between the previous mode tasks and the next mode 

tasks. 

The second category is an asynchronous mode change that starts 

the execution of next mode tasks before completing the previous 

mode tasks. The asynchronous mode change can start the next mode 

tasks faster than the synchronous mode change. However, there is 

performance interference between the previous mode tasks and the 

next mode tasks. In order to use asynchronous mode change in real-

time control systems, delays due to these performance interferences 

should be analyzed in advance to ensure that all tasks complete their 

execution in time. 

Splash selects a synchronous mode change that can prevent 

performance interference between tasks in the previous and next 

modes. To overcome the limitations of the synchronous mode change, 

Splash provides a runtime mechanism that tries to finish the 

execution of the previous mode tasks as soon as possible. 

The following subsections explain existing approaches about the 

synchronous and asynchronous mode change. 

 

2.7.1  Synchronous Mode Change 
 

Tindell and Alonso proposed a simple synchronous mode change 
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mechanism that waits for all CPUs to become idle before starting the 

tasks in the next mode [58]. When all CPUs became idle, a task 

named mode changer prevents further execution of previous mode 

tasks and starts running the next mode tasks. The proposed approach 

takes a long time to change modes since it should wait indefinitely 

until all the tasks in the previous modes are finished. 

Real proposed a synchronous mode change that reduces the 

delay incurred during the mode change [59]. It prevents tasks of 

previous mode from starting additional job after a mode change event 

occurs. When the tasks in the previous mode are finished, the next 

mode tasks are started. Unlike [58], the mode change delay of this 

approach is bounded to a constant.  

 

2.7.2  Asynchronous Mode Change 
 

Sha et al. proposed an asynchronous mode change scheme [62] for 

systems that use rate monotonic scheduling [60] and priority 

inheritance protocol [61]. This approach performs a schedulability 

analysis based on the current CPU utilization when the next mode 

task is requested. It allows the task to start only when the 

schedulability analysis is passed. If not, it should wait for the tasks 

in the previous mode to be completed and it passes the schedulability 

analysis. 

Tindell et al. proposed an asynchronous mode change mechanism 

[64] for systems that use deadline monotonic scheduling [63]. The 
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proposed approach prevents the previous mode tasks from starting a 

new job after a mode change event occurs, and allows the execution 

of the next mode tasks after the end of the previous mode tasks’ 

period. They provided a method to perform a schedulability analysis 

for the proposed approach so that it can be used in real-time systems. 
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Chapter 3. Motivation and Contributions 
 

 

This chapter explains the motivation of the Splash. First, Section 3.1 

defines the problems we are trying to solve. Then, Section 3.2 

explains the limitations of the KPN. Finally, Section 3.3 describes the 

main contribution of this dissertation. 

 

3.1  Problem Description 
 

This dissertation aims to propose Splash, a new graphical 

programming framework for autonomous machines. Splash should 

achieve four key design goals. First, it should provide an easy-to-

use, effective programming abstraction that can hide implementation 

details and supports a model-based code generation capability. 

Second, it must support real-time stream processing for deep-

learning based machine learning intelligence. Third, it must provide 

programming support for real-time control system of autonomous 

machine such as sensor fusion and mode change. Finally, it needs to 

support performance optimization of software system running on a 

heterogeneous multicore distributed computing platform. 

We describe the issues that Splash must address to achieve its 

four goals. First, Splash must provide programming abstraction for 

three distinct programming style: time-triggered, event-triggered 

and data-triggered. Programming an autonomous machine is a 

collaborative effort among developers having diverse technical 
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backgrounds such as control engineers, software programmers, and 

AI engineers. Whereas control engineers favor time-driven 

triggering such that periodically invoked tasks execute the control 

algorithms, AI engineers prefer data-driven triggering such that an 

incoming data item on a channel wakes up a handler task. On the other 

hand, software programmers often rely on event-driven triggering. 

In order for Splash to effectively support collaboration between them, 

all three programming styles must be supported without restriction. 

Also, support for integration between them should be provided. 

Second, Splash must support specifying and handling end-to-

end timing constraints for real-time stream processing. 

Programmers should be able to specify the genuine, end-to-end 

timing constraints: freshness constraint, correlation constraint and 

rate constraint while developing the Splash program [65]. Also, it 

should provide a best-effort runtime system to satisfy the timing 

constraints annotated in the program, and exception handling 

mechanism to monitor and handle violations of such constraints. 

Third, Splash should provide programming support for real-time 

control systems, such as sensor fusion and mode change. Since many 

sensors on autonomous machines are not timely synchronized, 

complex implementation issues arise while performing sensor fusion, 

such as determining the triggering condition, selecting input data 

items for the fusion algorithm and handling timeout. Similarly, in the 

case of mode change, complex implementation issues arise in order 

to develop safe and fast mode change mechanism, such as processing 
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data items in transition state and ensuring consistency of shared data. 

Splash should provide a programming abstraction that can hide these 

implementation details. 

Finally, Splash should provide multithreaded process model to 

exploit parallelism explicitly from the distributed multicore 

computing platform. In addition, it should help programmers easily 

determine where to execute the processes and threads on the 

distributed multicore computing platforms. 

 

3.2  Limitations of Kahn Process Network 
 

Splash is based on the KPN, a process network that offers a 

programming model in that developers are allowed to write an 

application in a parallel way such that constituent processes are 

independently written, allocated and executed on a multiprocessor 

system. The KPN model helps developers avoid error-prone issues 

such as data races and non-determinism. In accordance with these 

advantages, many programming models provided a programming 

abstraction based on the KPN [24,66–69]. 

However, the pure form of the KPN cannot be used directly in 

the programming framework for the automatic machine because it 

fails to achieve our design goals. First, the KPN only supports the 

data-driven processing and does not support the time-driven or 

event-driven processing. Also, the KPN has inherent practical 

limitations in terms of the expressibility of program logic and the 
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performance of a resultant system. This is because the KPN model 

is based on many simplifying restrictions such as freedom of global 

side effects to achieve determinacy. 

Second, the KPN lacks support for real-time processing. It does 

not support the specification and handling of end-to-end timing 

constraints. Therefore, developers still have to resort to time-

consuming and error-prone manual tuning in the implementation 

phase of an autonomous machine to meet such timing constraints. 

Third, the KPN provides not support for sensor fusion or mode 

change. Therefore, when developing a sensor fusion algorithm, 

programmers must deal with complex implementation issues such as 

triggering the algorithm, selecting input data items and handling 

timeouts. Also, when implementing a mode change mechanism, 

programmers should handle implementation issues such as keeping 

consistency of shared data. 

Finally, the KPN does not support multithreaded process model, 

leaving programmers responsible for thread creation and 

synchronization. In addition, it does not support any programming 

abstraction for performance optimization in distributed multicore 

computing platforms. 

As a consequence, they are still in need of a high level 

programming paradigm that has a versatile programming abstraction 

for specifying the complex software architecture of an autonomous 

machine. We present a new programming framework named Splash 

to address such grave problems arising in programming an 
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autonomous machine. Splash eliminates the determinism, one of the 

benefits of the KPN, but instead effectively achieves all four core 

goals of this paper. 

 

3.3  Contributions of this Dissertation 
 

In this thesis, we propose a new graphical programming framework 

for an autonomous machine that overcomes the KPN’s limitations 

described in the previous section. The main technical contributions 

can be summarized as below. 

 

 Providing a best-effort runtime system that tries to meet the 

annotated timing constraints and exception handling 

mechanisms to monitor the violation of such constraints 

- We propose a graphical programming language that allows 

developers to specify three genuine end-to-end timing 

constraints: freshness constraint, correlation constraint 

and rate constraint. Splash provides a best-effort runtime 

system to satisfy the timing constraints annotated in the 

program. It also supports exception handling mechanism 

to monitor and handle timing constraint violations at 

runtime. 

 Introduction of the sthreads and the build units for 

development in distributed multicore computing platforms 

- In order to exploit parallelism explicitly from the 
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underlying operating system and distributed multicore 

computing platform, Splash offers a multithreaded 

process model. In the multithreaded process model, a 

processing component consists of a group of sthreads that 

are logical entities of independent execution. As an 

sthread is an abstract entity, it needs to be mapped to a 

process and a thread of an underlying operating system 

during the system implementation process. To facilitate 

this process, Splash offers an allocation entity called a 

build unit. 

 Integrating three distinct triggering styles: time-driven, data-

driven and event-driven 

- To be an effective programming language with sufficient 

expressibility, Splash supports all the three triggering 

styles in a unified manner. Among the three, Splash takes 

the data-driven triggering as the default style, unless 

specified otherwise. We notice that the data-driven 

triggering in its purest form is not the most suitable 

programming abstraction for autonomous machine 

developers since it may have serious side effects such as 

uncontrolled jitter and an unbounded FIFO queue. To 

solve this problem, Splash offers rate control semantics. 

 Introduction of the fusion operator to effectively handle timing 

issues in sensor fusion 

- We propose a language construct named fusion operator 
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to automatically handle the complex time synchronization 

issues of sensor fusion. The fusion operator provides a 

fusion rule and a fusion function that can be used by 

programmers to clearly specify the triggering condition 

and input data item selection policy of the fusion algorithm. 

We also introduce a runtime mechanism that automatically 

satisfies the conditions specified using the fusion operator. 

 Support for mode change to satisfy the variable requirements 

of the real-time control systems 

- Splash provides a language construct named multimode 

factory to support multiple modes of operations. A 

programmer can describe the behavior of each mode and 

the specification of mode change. The Splash runtime 

system then performs mode changes according to the 

programmer’s specification. During the mode change, the 

consistency of data used by sthreads is preserved. 
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Chapter 4. Underlying Timing Semantics of Splash 
 

 

Time is a first-class entity in Splash. This chapter explains Splash’s 

underlying timing semantics that is the basis for the all other language 

semantics provided by the Splash. Section 4.1 introduces three 

genuine end-to-end timing constrains required by autonomous 

machines. Section 4.2 describes the global time base that Splash 

provides to handle end-to-end timing constraints. This section also 

introduces in-order delivery semantics that is the most basic 

programming abstraction provided by Splash. Finally, Section 4.3 

explains three distinct computing models which Splash deals with. 

 

4.1  End-to-End Timing Constraints 
 

Splash supports three types of genuine, end-to-end timing 

constraints [65]. 

 

(1) A freshness constraint on a single sensor value 

 It bounds the time it takes for a sensor value to flow 

through the system. A sensor value will become useless 

if it exceeds the freshness constraint since a sensor value 

gets stale with time. 

(2) A correlation constraint on multiple sensor values 

 It limits the maximum time difference among a group of 

distinct sensor values used for sensor fusion. 
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(3) A rate constraint on an output port of a process 

 It defines the number of output data items produced per 

second. A rate constraint is a soft real-time constraint in 

a sense that the Splash runtime tries its best to minimize 

the jitter between consecutive data items on a channel but 

cannot guarantee that the stream output port is jitter-free. 

 

Developers can explicitly annotate these three types of timing 

constraints via language constructs in a Splash program. The Splash 

runtime provides mechanisms to satisfy annotated timing constraints 

as much as possible. It also raises an exception if it detects the 

violation of the timing constraint at runtime. 

 

4.2  Global Time Base and In-order Delivery 
 

Reading the time in a Splash program is supported by an abstract 

global clock that is possibly implemented via distributed local clock 

synchronization such as precision time protocol(PTP) [70,71]. In 

Splash, a data item that flows through the system carries the 

timestamps of noticeable event occurrences associated with it. The 

primary timestamp required for a data item is its own creation time. 

Often, this time stamp is created through a sensor. We call this the 

birthmark of a data item. 

In Splash, every live data item is assigned with its own birthmark. 

The birthmark can also be inherited from its oldest ancestor if the 
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data item is generated by an intermediate process. Enforcing time 

constraints involves comparing the birthmark of a data item with the 

current time provided by the abstract global clock. The ways of 

handling each type of timing constraint is covered in more detail in 

the next chapter. 

 

4.3  Integrating Three Distinct Computing Models 
 

Programming an autonomous machine is a collaborative effort among 

developers having diverse technical backgrounds such as control 

engineers, software programmers and AI engineers. Whereas control 

engineers favor time-driven triggering such that periodically invoked 

tasks execute the control algorithms, AI engineers prefer data-

driven triggering such that an incoming data item on a channel wakes 

up a handler task. On the other hand, software programmers often 

rely on event-driven triggering. To be an effective programming 

language with sufficient expressibility, Splash supports all the three 

triggering styles in a unified manner. 

Among the three, Splash takes the data-driven processing as the 

default style, unless specified otherwise in a program. The data-

driven processing is the most commonly used programming style in 

data stream processing [72,73]. However, we noticed that the data-

driven triggering, in its purest form, was not the most suitable 

programming abstraction for an autonomous machine since it may 

have serious side effects such as uncontrolled jitter and an 
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unbounded FIFO queue on a port. Variability in communication delay 

and execution time in a physical system can easily cause bursty data 

traffic on communication channels and eventually deteriorate the 

resultant control quality to a significant degree. To solve these 

problems, Splash provides a programming abstraction for rate control. 

The details are explained in the next chapter. 
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Chapter 5. Splash Language Constructs 
 

 

A Splash program consists of processing nodes and edges between 

two processing nodes. In the Splash terminology, a node and an edge 

are called a component and a channel, respectively. A component in 

a Splash program is either an atomic component or a composite 

component. A composite component is also called a factory. Atomic 

components are further classified into four different types: (1) a 

processing component, (2) a source component, (3) a sink 

component and (4) a fusion operator. Figure 6 shows the hierarchical 

relationships among the diverse Splash components in the UML 

diagram format. 

The Splash component can have stream input ports and stream 

output ports. The stream output port of an upstream component is 

connected to the stream input port of a downstream component and 

such connection creates a channel. Figure 7 shows a sample Splash 

 

Figure 6. Hierarchy of Splash components. 
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program that consists of various components, channels and ports. 

 

5.1  Processing Component 
 

The most essential language construct in Splash is a processing 

component since it actually performs computation on input data items 

and produces output data items. Surely, a processing component 

serves as a building block for constructing a Splash program. Figure 

8 shows the graphical representation of a processing component with 

two stream input ports and two stream output ports. 

In order to exploit parallelism explicitly from the underlying 

operating system and computing platform, Splash offers a 

 

Figure 7. Splash program example: 2D object detection. 
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multithreaded process model. In the multithreaded process model, a 

processing component consists of a group of Splash threads we call 

sthreads. An sthread is a logical entity of independent execution 

inside a processing component. The sthreads are classified into 

dedicated sthreads that are attached to each stream input port and 

internal sthreads that are generated from other sthreads. When using 

an internal sthread, a programmer should specify which sthread the 

internal sthread is created from. The programmer must also specify 

which stream output ports each sthread writes to. Then, Splash 

automatically generates code based on information specified by the 

programmer. Figure 9 shows a processing component example where 

a dedicated sthread is attached to each port and internal sthreads 

serve as worker threads as in the concurrent server design pattern 

[74]. 

 

Figure 9. Processing component and its sthreads. 
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A source component is an atomic component that produces 

stream data items from a sensor. It has a single stream output port. 

Figure 10 shows the graphical representation of a source component. 

All data items produced from a source component must have its 

own birthmarks. The programmer of a source component is 

responsible for recording a birthmark. An exception is raised 

whenever a data item without a birthmark is found at runtime. 

Programmers can annotate a freshness constraint on a source 

component. Such freshness constraint is automatically recorded on 

all data items generated by the source component. The Splash 

runtime checks whether a data item violates its freshness constraint 

each time it is enqueued into or dequeued from a FIFO queue on a 

channel. If a freshness constraint is violated, the data item is 

discarded immediately. Programmers may regard it as an exception 

and execute a handler. 

A sink component is an atomic component that consumes stream 

data items and delivers each of them to an actuator. It has a single 

stream input port and no stream output port. The graphical 

 

Figure 10. Source component. 

 

 

 

Figure 11. Sink component. 
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representation of a sink component is shown in Figure 11. 

 

5.2  Port 
 

Splash supports three types of ports: (1) stream input/output ports 

for sending and receiving stream data, (2) event input/output ports 

for delivering events and (3) mode change input/output port for 

passing mode change signals. Each port type has a unique graphical 

symbol as shown in Table 1. 

A stream output port is connected to a stream input port via a 

channel. We differentiate from a channel a connection between event 

ports or a connection between mode change ports. Such connections 

carry control signals or discrete data items, instead of a data stream. 

We refer to them as control links or clinks for short. 

Input and output port types are the subtypes of the port type as 

described in Figure 12. Each port type is associated with one of three 

port interfaces: stream, event and mode change port interfaces. 

Table 1. Graphical Symbols for Ports 

Port Type Input Output 

Stream 

Port    

Event 

Port 
  

Mode 

Change 

Port   
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Clearly, an output port and an input port connected by a channel or a 

clink must share the same port interface. Figure 13 shows the three 

port interfaces. As in the figure, each port interface has a data type 

for data items it sends or receives. A data type can be a primitive 

data type or a composite data type. Splash supports five primitive 

 

Figure 12. Input and output ports as subtype of port. 
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data types: (1) a Boolean type, (2) an integer type, (3) a real type, 

(4) a character type and (5) a string type. Splash supports two 

composite data types: (1) arrays and (2) records. 

Splash developers can annotate a rate constraint on a stream 

output port. Also, programmers can selectively specify a stream 

output port as a rate-controlled stream output port. Then the Splash 

code generator transparently attaches a rate-controlling module to 

the stream output port. We call the module a rate controller, which 

reduces jitter and bounds the maximum FIFO queue size, at the cost 

of tolerable delay of a data item. The existence of a rate controller is 

hidden from programmers. Figure 14 pictorially depicts a stream 

output port annotated with a desired data generation rate. The stream 

output ports that have been augmented with rate controllers are 

marked with a different symbol for the user to distinguish from the 

ones that are not. 

By definition, a stream output port with a rate constraint 𝑟 is 

assigned a time window of size 1/𝑟 . The semantics of a rate-

controlled stream output port is that it will guarantee the production 

of exactly one data item in each time window. More formally, the port 

will generate one data item each time interval [𝑡0 + 𝑛/𝑟, 𝑡0 + (𝑛 + 1)/𝑟) 

 

Figure 14. Rate-controlled stream output port. 
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where 𝑡0 is the time when the first data item is generated, and 𝑛 is 

an index starting from 0. Figure 15 shows the behavior of the rate-

controlled output stream port. 

The rate-controlled stream output port generates two types of 

outputs. The first output is a genuine data item while the second 

output is an extrapolation command. A rate-controlled stream output 

port yields a genuine data time if it has a data item to send within the 

current time window; otherwise, it outputs an extrapolation command. 

When a processing component receives an extrapolation command 

from its stream input port, it must invoke a function that performs a 

required extrapolation task. Splash enables programmers to write an 

extrapolation handler for a processing component associated with a 

stream input port connected to a rate-controlled stream output port. 

  

5.3  Channel and Clink 
 

A channel is a delivery path for steam data. It is represented by a 

solid line from a stream output port to a stream input port. Figure 16 

shows the graphical representation of a channel. 

In order to store data items on a channel until they are consumed 

 

Figure 15. Behavior of a rate controller. 
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by a downstream component, a queue is used. In Splash, a queue is 

considered to be on the stream input port of the downstream 

component instead of the stream output port of the upstream 

component. The fan-in of a channel is restricted to one, but the fan-

out of a channel can be greater than one. Figure 17 shows a channel 

with three fan-outs to distinct stream input ports. Where a channel 

is connected to multiple input ports, all data items generated from an 

output port are replicated and enqueued into each of the FIFO queues 

on the input ports of downstream components. 

A clink is a delivery path for events and mode change signals. It 

is represented by a dotted line from an output port to an input port. 

 

Figure 16. Channel. 

 

 

 

Figure 17. Channel with three fan-outs. 
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Figure 18 shows the graphical representation of a clink between 

event ports and a clink between mode change ports. Unlike channel, 

both fan-in and fan-out of a clink can be greater than one. 

The graphical presentation of clinks can be omitted to reduce the 

complexity of the program. In this case, the connections between 

event ports and mode change ports should be indicated using a table. 

 

5.4  Fusion Operator 
 

A fusion operator is a component that merges multiple stream data 

into a single stream data. It has multiple stream input ports and one 

stream output port. The graphical representation of a fusion operator 

is shown in Figure 19. Fusion operators provide a way for 

programmers to handle the complex implementation issues of sensor 

fusion algorithms. Specifically, the programmer can use the fusion 

operator to clearly describe two issues: (1) specifying triggering 

 

Figure 18. Clinks. 

 

 



 

 55 

conditions of the fusion algorithm and (2) choosing which data items 

in the input queues to use as inputs for the fusion algorithm. 

A fusion operator with a set of 𝑚  stream input ports 𝑃 =

{𝑝1, 𝑝2, … , 𝑝𝑚} has a fusion rule 𝑅 associated with a fusion function 𝑓. 

A fusion rule 𝑅 is defined as follows. 

 

DEFINITION 1: A fusion rule 𝑅 = (𝑀,𝑂, 𝜃, 𝑐) is a tuple where 𝑀 ⊆ 𝑃 is 

a set of mandatory ports and 𝑂 ⊆ 𝑃 is a set of optional ports (𝑀 ∩

𝑂 ≠ ∅). Also, 𝜃  is optional ports threshold and 𝑐  is a correlation 

constraint. Let (𝑑1, 𝑑2, … , 𝑑𝑚) be an input tuple where 𝑑𝑖  is a data 

item placed in the input queue of the port 𝑝𝑖 or an empty data item. 

If 𝑑𝑖  is an empty data item, we denote it as 𝑑𝑖 = ⊥. For 𝑅 to be 

satisfied, there must exist an input tuple (𝑑1, 𝑑2, … , 𝑑𝑚) that meets the 

following conditions. 

 

(1) For any mandatory port 𝑝𝑖 ∈ 𝑀, the data item 𝑑𝑖 is placed in 

the input queue of 𝑝𝑖  

(2) Let us denote the number of optional ports 𝑝𝑖 ∈ 𝑂 where the 

data item 𝑑𝑖  is placed in the input queue of 𝑝𝑖  as 

 

Figure 19. Fusion operator. 
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𝑛(𝑂, (𝑑1, 𝑑2, … , 𝑑𝑚)). Then, 𝑛(𝑂, (𝑑1, 𝑑2, … , 𝑑𝑚)) ≥ 𝜃𝑖. 

(3) For any two data items 𝑑𝑖  and 𝑑𝑗 , |𝑏(𝑑𝑖) − 𝑏(𝑑𝑗)| ≤ 𝑐 where 

𝑏(𝑑) is the birthmark of a data item 𝑑 (𝑑𝑖 ≠ ⊥, 𝑑𝑗 ≠ ⊥). 

 

We call (𝑑1, 𝑑2, … , 𝑑𝑚) an input tuple that satisfies the fusion rule 𝑅. 

 

A fusion operator invokes its fusion function 𝑓 when its fusion 

rule 𝑅 is satisfied. On invocation,  𝑓 produces an output data item 

using an input tuple that satisfies  𝑅. If more than one such input 

tuple exists, the fusion operator selects one that meets the following 

two goals. 

 

(1) A fusion operator first chooses a data item with smaller 

birthmark to build an input tuple. By processing older data 

items first, we can reduce the number of freshness constraint 

violation of data items stored in the input queues. 

(2) A fusion operator tries to select data items from as many 

optional ports as possible. This is to provide the fusion 

algorithm with information from as many sensors as possible. 

However, in the case of conflict between (1) and (2), the 

fusion operator prioritizes (1). 

 

We denote a set of input tuples that satisfy a fusion rule 𝑅 as 

𝑉(𝑅). We now define a binary relation over 𝑉(𝑅) as follows. 

 



 

 57 

DEFINITION 2: For any two input tuples (𝑑1, 𝑑2, … , 𝑑𝑚) ∈ 𝑉(𝑅)  and 

(𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′ ) ∈ 𝑉(𝑅)  that satisfy a fusion rule 𝑅 = (𝑀,𝑂, 𝜃, 𝑐) , we 

define a binary relation (𝑑1, 𝑑2, … , 𝑑𝑚) ≤ (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′ ) on 𝑉(𝑅) by 

 

 For any mandatory port 𝑝𝑖 ∈ 𝑀, 𝑏(𝑑𝑖) ≤ 𝑏(𝑑𝑖
′). 

 Let 𝐷(𝑂, (𝑑1, 𝑑2, … , 𝑑𝑚)) be a set of data items stored in the 

input queue of any optional port among 𝑑1, 𝑑2, … , 𝑑𝑚. Also, let 

𝑙(𝑘, 𝑆) be a birthmark of the 𝑘th oldest data item in a set 𝑆 of 

data items when 𝑘 ≤ |𝑆|, and ∞ when 𝑘 > |𝑆| (⊥ ∉ 𝑆). For any 

integer 𝑘 where 1 ≤ 𝑘 ≤ |𝑂|, the following inequality holds. 

 

𝑙(𝑘, 𝐷(𝑂, (𝑑1, 𝑑2, … , 𝑑𝑚))) ≤ 𝑙(𝑘, 𝐷(𝑂, (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′ ))) 

 

The fusion operator selects the least input tuple among the 

elements of 𝑉(𝑅) as defined below. 

 

DEFINITION 3: For a set 𝑉(𝑅) of input tuples that satisfy a fusion rule 

𝑅 = (𝑀,𝑂, 𝜃, 𝑐), we define a least input tuple (𝑑1, 𝑑2, … , 𝑑𝑚) as an input 

tuple that satisfies the following condition. 

 

∀(𝑣1, 𝑣2, … , 𝑣𝑚) ∈ 𝑉(𝑅), (𝑑1, 𝑑2, … , 𝑑𝑚) ≤ (𝑣1, 𝑣2, … , 𝑣𝑚) 

 

The theorem that follows states that a least input tuple of 𝑉(𝑅) 

always uniquely exist unless 𝑉(𝑅) = ∅. 
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THEOREM 1: For a fusion rule 𝑅 = (𝑀,𝑂, 𝜃, 𝑐), there always exist a 

unique least input tuple of 𝑉(𝑅) unless 𝑉(𝑅) = ∅. 

 

PROOF: We first prove the existence a least input tuple of 𝑉(𝑅). Let 

𝑏𝑖
min be the birthmark of the oldest data item among the 𝑖th elements 

of input tuples that belong to 𝑉(𝑅). However, if 𝑑𝑖 = ⊥ for all input 

tuples (𝑑1, 𝑑2, … , 𝑑𝑚) ∈ 𝑉(𝑅), we set 𝑏𝑖
min to ∞. We define an input 

tuple (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′ ) that satisfies three following conditions. 

 

 For all mandatory ports 𝑝𝑖 ∈ 𝑀, we select a data item 𝑑𝑖
′ such 

that 𝑏(𝑑𝑖
′) = 𝑏𝑖

min 

 For optional ports 𝑝𝑖 ∈ 𝑂  where |𝑏𝑖
min − min

1≤𝑘≤𝑚
𝑏𝑘
min| ≤ 𝑐𝑖 , we 

also select a data item 𝑑𝑖
′ such that 𝑏(𝑑𝑖

′) = 𝑏𝑖
min 

 For all input ports 𝑝𝑖  that does not meet the above two 

conditions, we select an empty data item 𝑑𝑖
′ = ⊥ 

 

To prove the existence of the least input tuple in 𝑉(𝑅), we first 

show that (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′ ) ∈ 𝑉(𝑅), then we show that (𝑑1

′ , 𝑑2
′ , … , 𝑑𝑚

′ ) is 

the least input tuple of a set 𝑉(𝑅)  and a binary relation ≤ . 

(𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′ ) satisfies all three conditions of DEFINITION 1 as follows. 

 

(1) For all mandatory ports 𝑝𝑖 ∈ 𝑀, 𝑑𝑖
′ is a data item placed in the 

input queue of 𝑝𝑖. 

(2) There exists at least one input tuple (𝑑1
′′, 𝑑2

′′, … , 𝑑𝑚
′′ ) ∈ 𝑉(𝑅) 
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that contains a data item with the birthmark of min
1≤𝑘≤𝑚

𝑏𝑘
min . 

Since 𝑛(𝑂, (𝑑1
′′, 𝑑2

′′, … , 𝑑𝑚
′′ )) ≥ 𝜃  and 𝑛(𝑂, (𝑑1

′ , 𝑑2
′ , … , 𝑑𝑚

′ )) ≥

𝑛(𝑂, (𝑑1
′′, 𝑑2

′′, … , 𝑑𝑚
′′ )) hold, 𝑛(𝑂, (𝑑1

′ , 𝑑2
′ , … , 𝑑𝑚

′ )) ≥ 𝜃. 

(3) In order to show that (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′ ) satisfies the condition (3) 

of DEFINITION 1, we prove |𝑏(𝑑𝑖
′) − min

1≤𝑘≤𝑚
𝑏𝑘
min | ≤ 𝑐 holds for 

1 ≤ 𝑖 ≤ 𝑚 (𝑑𝑖
′ ≠ ⊥). Obviously, this inequality holds for each 

optional port 𝑝𝑖 ∈ 𝑂. To prove that the inequality holds for a 

mandatory port 𝑝𝑖 ∈ 𝑀 , we select an input tuple 

(𝑑1
′′, 𝑑2

′′, … , 𝑑𝑚
′′ ) ∈ 𝑉(𝑅)  that contains a data item with the 

birthmark of min
1≤𝑘≤𝑚

𝑏𝑘
min . Since |𝑏(𝑑𝑖

′′) − min
1≤𝑘≤𝑚

𝑏𝑘
min | ≤ 𝑐  and 

𝑏(𝑑𝑖
′) ≤ 𝑏(𝑑𝑖

′′) hold for 1 ≤ 𝑖 ≤ 𝑚, |𝑏(𝑑𝑖
′) − min

1≤𝑘≤𝑚
𝑏𝑘
min | ≤ 𝑐. 

 

Therefore, (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′ ) ∈ 𝑉(𝑅). 

 

Now we prove that (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′ ) is the least input tuple of a set 

𝑉(𝑅) and a binary relation ≤. The following two conditions always 

hold for any input tuple (𝑣1, 𝑣2, … , 𝑣𝑚) ∈ 𝑉(𝑅). 

 

 For any mandatory port 𝑝𝑖 ∈ 𝑀, 𝑏(𝑑𝑖
′) = 𝑏𝑖

min ≤ 𝑏(𝑣𝑖). 

 𝑙(𝑘, 𝐷(𝑂, (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′ ))) ≤ 𝑙(𝑘, 𝐷(𝑂, (𝑣1, 𝑣2, … , 𝑣𝑚)))  holds for 

1 ≤ 𝑘 ≤ |𝑂|.  

 

Therefore, the least input tuple of 𝑉(𝑅)  and ≤  always exists if 

𝑉(𝑅) ≠ ∅. 
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Now we prove the uniqueness of the least input tuple. Suppose 

for the purpose of contradiction that two distinct input tuples 

(𝑑1, 𝑑2, … , 𝑑𝑚)  and (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′ )  in 𝑉(𝑅)  are both the least input 

tuples. From the definition of the least input tuple, (𝑑1, 𝑑2, … , 𝑑𝑚) ≤

(𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′ )  and (𝑑1

′ , 𝑑2
′ , … , 𝑑𝑚

′ ) ≤ (𝑑1, 𝑑2, … , 𝑑𝑚) . Therefore, the 

followings two conditions hold. 

 

 For any mandatory port 𝑝𝑖 ∈ 𝑀, 𝑏(𝑑𝑖) = 𝑏(𝑑𝑖
′) 

 𝑙(𝑘, (𝑑1, 𝑑2, … , 𝑑𝑚)) = 𝑙(𝑘, 𝑜(𝑅𝑖, (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′ ))) for 1 ≤ 𝑘 ≤ |𝑂| 

 

Since 𝐷 ≠ 𝐷′ , there exist two distinct optional ports 𝑝𝑖, 𝑝𝑗 ∈ 𝑂 

such that 𝑏(𝑑𝑖) = 𝑏(𝑑𝑗
′) and 𝑑𝑖

′ = 𝑑𝑗 = ⊥. There exists an input tuple 

(𝑑1
′′, 𝑑2

′′, … , 𝑑𝑚
′′ ) ∈ 𝑉(𝑅) such that 𝑑𝑟

′′ = 𝑑𝑟
′  if 𝑟 = 𝑗, and 𝑑𝑟

′′ = 𝑑𝑟 if 𝑟 ≠ 𝑗 

for 1 ≤ 𝑟 ≤ 𝑚 . Then, (𝑑1, 𝑑2, … , 𝑑𝑚) ≤ (𝑑1
′′, 𝑑2

′′, … , 𝑑𝑚
′′ )  does not hold, 

which is a contradiction since (𝑑1, 𝑑2, … , 𝑑𝑚) is the least input tuple. 

Therefore, the least input tuple of 𝑉(𝑅) and ≤ is unique            

 

The fusion operator additionally provides a timeout mechanism 

that outputs an extrapolation command when its fusion rule is not 

satisfied for a certain period. If a timeout value is specified for a 

fusion operator, programmers must write an extrapolation handler in 

the next processing component connected with this fusion operator. 

 

5.5  Factory and Mode Change 
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A factory is the largest building block of a Splash program. It contains 

a piece of a Splash program that serves as a subprogram in a 

procedural language. In the Splash program, the largest factory is 

called the top-level factory, and the internal factory is each called a 

subfactory. 

In Splash, a factory may have multiple modes of operations. Such 

a factory is called a multimode factory. A multimode factory consists 

of as many alternative factories as the mode. Each alternative factory 

corresponds to a certain mode. Figure 20 shows a factory with two 

operation modes. Mode change is triggered by a mode change signal 

that arrives on the mode change input port of a factory. 

A set of mode in a multimode factory is denoted by 𝑀 =

{𝑚0,𝑚1, … ,𝑚𝑛−1}. The mode 𝑚0 is the mode of this factory when the 

program starts. It is called initial mode. Alternative factories that are 

mapped to each mode of the factory is called mode factories. 

Figure 21 shows an example of mode factories. The localization 

factory in this example has three stream input ports for GPS signal, 

previous position of the ego vehicle, and current acceleration of the 

 

Figure 20. A multimode factory with two modes. 
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ego vehicle. It also has a stream output port to produce current 

position of the ego vehicle. The localization factory has two modes: 

GPS and ACC. The mode factory of GPS and ACC are placed in the 

top and bottom of the figure, respectively. 

The mode change of a multimode factory is triggered when the 

factory receives a mode change event. Let 𝐸 be a set of all mode 

change events that can be received by the multimode factory. The 

mode change rule of the factory is defined using a mode change 

 

 

Figure 21. Example of mode factory. 
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function 𝛿:𝑀 × 𝐸 → 𝑀. For two modes 𝑚𝑖, 𝑚𝑗 ∈ 𝑀 and a mode change 

event 𝑒 ∈ 𝐸, 𝛿(𝑚𝑖, 𝑒) = 𝑚𝑗 if and only if the mode of the factory with 

mode 𝑚𝑖  is changed to 𝑚𝑗  when 𝑒  occurs. A programmer can 

determine a mode change function 𝛿 using a mode change table as 

shown in Table 1. For two modes 𝑚𝑖, 𝑚𝑗 ∈ 𝑀 and a mode change 

event 𝑒 ∈ 𝐸 that satisfy 𝛿(𝑚𝑖, 𝑒) = 𝑚𝑗, the programmer should fill in 

𝑚𝑖 , 𝑒 and 𝑚𝑗  in the previous mode, mode change event and next 

mode columns in the mode change table, respectively. In addition, the 

programmer should determine whether the factory should process 

and output the remaining internal data items that were being 

processed in the previous mode. 

During the mode change, the factory’s internal data items are 

classified into (1) queued data items and (2) in-processing data 

items. The queued data items are stored in the input queues of each 

component. The in-processing data items are data items that are 

currently being processed by sthreads and will be produced as 

outputs. Figure 22 shows queued data items and in-processing data 

Table 2. Example of Mode Change Table 

Previous 

Mode 
Mode Change Event 

Next 

Mode 

Output Remaining 

Internal Data Items 

GPS 

GPS_signal_found GPS - 

GPS_signal_lost ACC X 

ACC 

GPS_signal_found GPS O 

GPS_signal_lost ACC - 

 



 

 64 

items of a multimode factory. 

Splash runtime provides two types of synchronous mode change 

behavior depending on how the programmer decided whether to 

output remaining internal data items during the mode change. If the 

programmer decided to output internal data items, the mode change 

is performed as follows. 

 

(1) The incoming data items of the factory are blocked 

(2) Sthreads of the factory continue to process data items. If an 

output data item is generated during the execution of a 

sthread, the item is produced using the stream output port as 

usual. 

(3) When all input and output queues are empty and all sthreads 

become idle, the factory changes its mode to the next mode 

 

Figure 22. Internal data items of a multimode factory. 
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and resumes execution. 

 

If the programmer chose not to output internal data items, the 

mode change is performed as follows. 

 

(1) The incoming data items of the factory are blocked 

(2) The sthreads are configured to no longer retrieve data items 

from input and output queues inside the factory. 

(3) Wait for all sthreads to finish their iteration. While doing so, 

all output data items generated during the execution of a 

sthread are dropped. 

(4) When the iteration of all sthreads is complete, the factory 

changes its mode to the next mode and resumes execution. 

Data items remaining in the input and output queues of inside 

the factory are discarded. 

 

In both mode change operations Splash’s mode change 

mechanism guarantees that an sthread does not terminate during its 

iteration. By doing so, the consistency of global data used by sthreads 

is preserved. 

 

5.6  Build Unit 
 

As an sthread is an abstract entity, it needs to be mapped to a process 

and a thread of an underlying operating system during the system 
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implementation process. Since the process and thread are execution 

entities, they must eventually run on a specific core of a specific 

processor on a specific computing node. To facilitate this process, 

Splash offers an allocation entity called a build unit. 

A build unit is an entity that allocates a set of sthreads to a 

process. Each build unit is mapped to one or more components in the 

Splash program. The following rules should be observed in the 

process of mapping components and build units. 

 

(1) All atomic components must be mapped to a build unit. 

(2) A factory can be mapped to a build unit. However, when a 

factory is mapped to a build unit, all components belonging to 

that factory must also be mapped to the same build unit. 

 

Splash automatically detects and generates a syntax error if the 

programmer does not follow the abovementioned rules. Figure 23 

shows an example of component-build unit mapping. 

Splash allocates sthreads to processes and threads based on the 

component-build unit mapping. Splash assigns a single process to all 

sthreads of components mapped to the same build unit. On the other 

hand, Splash attempts to reduce context switches and communication 

overhead by reducing the maximum number of threads while 

allocating sthreads to threads. The details of the build unit-based 

allocation are explained in Chapter 7. 
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5.7  Exception Handling 
 

Splash provides exception handling to automatically handle 

exceptions. The Splash runtime monitors the occurrence of 

exceptions specified by programmers at runtime. If an exception is 

detected, the Splash runtime creates an exception object 

corresponding to the exception and invokes an exception handler with 

the exception object. 

Splash supports three types of exceptions. Figure 24 shows the 

hierarchy of exception class in the UML diagram format. The first 

type of exception is a timing violation exception that is caused by a 

violation of end-to-end timing constraints. Splash specifically 

supports the handling of freshness constraint violation. The Splash 

runtime checks for violations of freshness constraints at the time 

each data item is inserted or removed from the input and output 

queues. If a freshness constraint is violated, the Splash runtime calls 

 

Figure 23. Example of component-build unit mapping. 
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a default exception handler that removes the data item immediately. 

The second type of exception is a data absence exception that 

occurs when a data item is not arrived when needed. The exception 

handler for the data absence exception should be written by the 

programmer.  

The last type of exception is a data corruption exception that is 

caused by a stream data item, event or mode change event with 

unacceptable value. If a programmer specifies a range of values that 

are allowed for a stream data item, event or mode change event, the 

Splash runtime checks for an input outside of the range and throws 

an exception. The exception handler for the data corruption 

exception also should be written by the programmer.  

  

 

Figure 24. Hierarchy of exception class. 
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Chapter 6. Splash Runtime Mechanisms 
 

 

This chapter describes the runtime mechanism that realizes language 

semantics of Splash. Section 6.1 explains a rate control mechanism 

for implementing rate control semantics. Then, Section 6.2 describes 

a sensor fusion mechanism that implements a fusion operator. Finally, 

Section 6.3 explains a mode change mechanism for a multimode 

factory. 

 

6.1  Rate Control Mechanism 
 

The runtime mechanism of a rate-controlled stream output port 

consists of an output queue and a rate controller as shown Figure 25. 

A sthread inside a processing component enqueues a data item into 

the output queue. Our runtime mechanism can effectively bound the 

size of the output queue via the freshness constraint of data items 

 

Figure 25. Runtime mechanism of a rate controller. 
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stored in the queue. The bound is computed as below. 

 

𝑠max = ⌊𝑟 × 𝑓⌋ 

 

where the 𝑠max  is the output queue size and 𝑓  is the freshness 

constraint of the data items. 

 

If the output queue is full when a sthread attempts to insert a 

data item, the data item at the front of the output queue is first 

discarded and then the incoming data item is stored at the tail of the 

output queue. 

A rate controller with a rate constraint 𝑟 is invoked every 1/𝑟 

interval. Let 𝑑last  be the last sent data item and 𝑏(𝑑)  be the 

birthmark of the data item 𝑑. On each periodic invocation, the rate 

controller looks up the output queue from the head to find the first 

data item 𝑑next whose birthmark is greater than 𝑏(𝑑last). If there is 

such 𝑑next, it discards all the data items before d in the output queue 

and sends out 𝑑next ; otherwise, it generates an extrapolation 

command. The extrapolation command is newly assigned a birthmark 

whose value is 𝑏(𝑑last) + 1/𝑟. 

 

6.2  Sensor Fusion Mechanism 
 

The runtime mechanism of a fusion operator is shown in Figure 26. 

Each stream input port in the fusion operator has an input queue that 
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stores data items in ascending order of their birthmark. A fusion 

sthread is invoked when a data item is inserted into one of the input 

queues to check whether there are input tuples that satisfy the fusion 

rule. If so, it retrieves the data items from each input queue and calls 

the corresponding fusion function. After the execution of the fusion 

function is completed, the fusion sthread checks again for the 

presence of an input tuple that satisfies the fusion rule. If there exists 

such a tuple, it retrieves the input data items again and calls the fusion 

function. If no satisfying fusion rule exists, the fusion sthread is 

blocked until the next data item arrives at one of the input queues. 

Figure 27 shows the pseudocode of the FINDVALIDINPUTTUPLE 

algorithm used by the fusion sthread. The goal of the algorithm is to 

return a least input tuple that satisfies a given fusion rule if one exists. 

Its inputs are a fusion rule 𝑅 = (𝑀,𝑂, 𝜃, 𝑐) and a set of sequences 𝑆 =

{𝑠1, 𝑠2, … , 𝑠𝑚} of data items stored in each input queue of the fusion 

 

Figure 26. Runtime mechanism of a fusion operator. 
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operator where 𝑠𝑖 is a sequence of data items stored in the 𝑖th input 

queue sorted in ascending order according for their birthmark. The 

output of the algorithm is an input tuple (𝑑1, 𝑑2, … , 𝑑𝑚). If there is no 

input tuple satisfying the fusion rule 𝑅, the algorithm outputs a tuple 

of empty data items (⊥, ⊥,… , ⊥). 

The FINDVALIDINPUTTUPLE algorithm first initialize the array 

index[1 ... 𝑚] which stores indices of sequences 𝑠1, 𝑠2, … , 𝑠𝑚 in lines 

1-6. For 1 ≤ 𝑖 ≤ 𝑚, if the port 𝑝𝑖 is a mandatory or optional port and 

there is more than one data item in 𝑠𝑖, index[𝑖] is initialized to 1 so 

that 𝑠𝑖[index[𝑖]] is a data item with the smallest birthmark in 𝑠𝑖 . 

Otherwise, index[𝑖] is initialized to NIL. 

The algorithm then iteratively searches for an input tuple that 

ALGORITHM 1.  FINDVALIDINPUTTUPLE 

Input:  A fusion rules 𝑅 = (𝑀,𝑂, 𝜃, 𝑐)  

A set of data item sequences 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑚} 
 

FINDVALIDINPUTTUPLE(𝑅, 𝑆)   

1:   let index[1 … 𝑚] be a new array 

2:   for 𝑖 = 1 to 𝑚 

3:       if 𝑝𝑖 ∈ 𝑀 ∪ 𝑂 and |𝑠𝑖| > 0 

4:           index[𝑖] ← 1 

5:       else 

6:           index[𝑖] ← NIL 

7:   while index[𝑖] = NIL for 1 ≤ 𝑖 ≤ 𝑚 

8:       if ISVALIDTUPLE(𝑅, 𝑆, index) 

9:           return BUILDTUPLE(𝑆, index) 

10:      𝑘 ← GETEARLISTINDEX(𝑆, index) 

11:      if index[𝑘] < |𝑠𝑘| 
12:          index[𝑘] ← index[𝑘] + 1 

13:      else 

14:          index[𝑘] ← NIL 

15:  return (⊥, ⊥, … , ⊥) 
 

Figure 27. Pseudocode of FINDVALIDINPUTTUPLE algorithm. 
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satisfies the fusion rule 𝑅 = (𝑀,𝑂, 𝜃, 𝑐) (lines 7-11). At the start of 

each iteration, it invokes the ISVALIDTUPLE function that checks 

whether an input tuple that satisfies 𝑅 can be built from the data 

items pointed by the index array (line 8). If such input tuple can be 

built, the algorithm returns that input tuple by calling the 

BUILDTUPLE function (line 9). If such input tuple cannot be built, the 

algorithm increases an element in the index array that points to the 

oldest data item by one (lines 10-12). If this element is already 

pointing to the last data item in the sequence, we set it to NIL instead 

of increasing it by one (line 14). If no valid input tuple has been found 

until all elements in the index array become NIL, the algorithm 

returns a tuple of empty data items (line 15). 

The FINDVALIDINPUTTUPLE algorithm always return the least 

input tuple in 𝑉(𝑅)  if there exists at least one input tuple that 

satisfies 𝑅. 

 

THEOREM 2: For a fusion rule 𝑅 = (𝑀,𝑂, 𝜃, 𝑐), let us denote a set of 

input tuples that satisfy 𝑅  as 𝑉(𝑅) . The FINDVALIDINPUTTUPLE 

algorithm always return the least input tuple in 𝑉(𝑅) if 𝑉(𝑅) ≠ ∅. 

 

PROOF: Let us denote the least input tuple in 𝑉(𝑅)  that the 

FINDVALIDINPUTTUPLE algorithm should return as (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′ ) . 

The following three sets are defined from a set of data items included 

in the any one of sequences 𝑠1, 𝑠2, … , 𝑠𝑚. 
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𝐼older = {𝑑𝑖: 𝑏(𝑑𝑖) < 𝑏(𝑑𝑖
′) (𝑑𝑖

′ ≠ ⊥)} 

𝐼answer = {𝑑𝑖: 𝑑𝑖 = 𝑑𝑖
′ (𝑑𝑖

′ ≠ ⊥)} 

𝐼newer = {𝑑𝑖: 𝑏(𝑑𝑖) > 𝑏(𝑑𝑖
′) (𝑑𝑖

′ ≠ ⊥)} 

 

Figure 28 shows an example of 𝐼older, 𝐼answer and 𝐼newer for a fusion 

operator with three mandatory input ports. 

Now we show that the following loop invariant holds for the while 

loop in lines 7-14. 

 

 Let (𝑑1
′′, 𝑑2

′′, … , 𝑑𝑚
′′ )  be an input tuple pointed by the index 

array at the start of each iteration. If 𝑑𝑖
′ ≠ ⊥, 𝑑𝑖

′′ ∈ 𝐼older or 

𝑑𝑖
′′ ∈ 𝐼answer for 1 ≤ 𝑖 ≤ 𝑚. 

 

Initialization: For 1 ≤ 𝑖 ≤ 𝑚, the index[𝑖] is initialized to 1 if 𝑑𝑖
′ ≠ ⊥ 

because the port 𝑝𝑖 is a mandatory or optional port and there is at 

 

Figure 28. Example of 𝑰𝐨𝐥𝐝𝐞𝐫, 𝑰𝐚𝐧𝐬𝐰𝐞𝐫, 𝑰𝐧𝐞𝐰𝐞𝐫. 
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least one data item in 𝑠𝑖. Since the 𝑠𝑖[index[𝑖]] is a data item with 

the smallest birthmark in 𝑠𝑖, 𝑏(𝑑𝑖
′′) ≤ 𝑏(𝑑𝑖

′) holds. Therefore, 𝑏(𝑑𝑖
′′) ∈

𝐼older or 𝑏(𝑑𝑖
′′) ∈ 𝐼answer, and thus the loop invariant holds prior to the 

first iteration of the loop. 

 

Maintenance: Let us first suppose that the loop invariant holds for the 

input tuple (𝑑1
′′, 𝑑2

′′, … , 𝑑𝑚
′′ ) at the start of the iteration. If this iteration 

is not terminated in line 9, index[𝑘] is incremented by 1 on line 12 or 

is set to NIL in line 14. Let 𝑑𝑘
∗  be the new data item pointed by the 

index[𝑘] if it is not set to NIL and ⊥ if it is set to NIL. 

In order to prove that the loop invariant is maintained, we must 

show that 𝑑𝑘
∗ ∈ 𝐼older  or 𝑑𝑘

∗ ∈ 𝐼answer . Suppose for the purpose of 

contradiction that 𝑑𝑘
∗ ∈ 𝐼newer ∪ {⊥}. Then, 𝑑𝑘

′′ ∈ 𝐼answer, and thus 𝑑𝑘
′′ =

𝑑𝑘
′ . Since the loop is not terminated in line 9, there exists at least one 

data item 𝑑𝑗
′′  in (𝑑1

′′, 𝑑2
′′, … , 𝑑𝑚

′′ )  where 𝑑𝑗
′′ ∈ 𝐼older  (𝑗 ≠ 𝑘) . By the 

definition of 𝐼older, 𝑏(𝑑𝑗
′′) < 𝑏(𝑑𝑗

′) holds. Also, 𝑏(𝑑𝑘
′′) < 𝑏(𝑑𝑗

′′) because 

𝑑𝑘
′′ is the data item with the smallest birthmark in for the input tuple 

(𝑑1
′′, 𝑑2

′′, … , 𝑑𝑚
′′ ). The relationship between the data items 𝑑𝑘

′ , 𝑑𝑘
′′, 𝑑𝑗

′ 

and 𝑑𝑗
′′ is illustrated in Figure 29. 

Now we define an input tuple (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑗
′′, … , 𝑑𝑚

′ )  with 𝑑𝑗
′ 

replaced by 𝑑𝑗
′′  in (𝑑1

′ , 𝑑2
′ , … , 𝑑𝑚

′ ) . Since (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′ )  satisfies the 

correlation constraint, (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑗
′′, … , 𝑑𝑚

′ )  also satisfies the 

correlation constraint as shown in Figure 29. Therefore, 

(𝑑1
′ , 𝑑2

′ , … , 𝑑𝑗
′′, … , 𝑑𝑚

′ ) ∈ 𝑉. However, (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′ ) ≤ (𝑑1

′ , 𝑑2
′ , … , 𝑑𝑗

′′, … , 𝑑𝑚
′ ) 

does not hold, which is a contradiction since (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′ ) is the least 
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input tuple in 𝑉(𝑅). Therefore, 𝑑𝑘
∗ ∈ 𝐼older or 𝑑𝑘

∗ ∈ 𝐼answer. 

 

Termination: If there exists a data item 𝑑𝑖
′′ ∈ 𝐼older for 1 ≤ 𝑖 ≤ 𝑚, the 

while loop cannot be terminated. In a finite number of iterations, the 

input tuple (𝑑1
′′, 𝑑2

′′, … , 𝑑𝑚
′′ ) pointed by the index array satisfies the 

following condition. 

 

𝑑𝑖
′ ≠ ⊥ → 𝑑𝑖

′′ ∈ 𝐼answer (1 ≤ 𝑖 ≤ 𝑚) 

 

Then, the algorithm finds the least input tuple in 𝑉(𝑅) and returns it 

in line 9. Therefore, THEOREM 2 holds.                             

 

We now analyze the runtime complexity of the 

FINDVALIDINPUTTUPLE algorithm. Let 𝑚  be the number of input 

ports of the fusion operator and 𝑙 be the maximum input queue size. 

 

Figure 29. The relationship between 𝒅𝒌
′ , 𝒅𝒌

′′, 𝒅𝒋
′ and 𝒅𝒋

′′. 
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The while loop of the FINDVALIDINPUTTUPLE algorithm is repeated 

at most 𝑚 ∙ 𝑙 times. If we implement the ISVALIDTUPLE, BUILDTUPLE 

and GETEARLIESTINDEX functions with a linked list, it takes 𝑂(𝑚) to 

run lines 7-9 and 𝑂(1) to run lines 10 and 11. Therefore, the time 

complexity of the FINDVALIDINPUTTUPLE algorithm is 𝑂(𝑚2 ∙ 𝑙). 

 

6.3  Mode Change Mechanisms 
 

The Splash runtime supports two types of mode change mechanisms 

depending on whether internal data items are produced during mode 

change. It provides the following five operations to implement these 

mechanisms. 

 

(1) BLOCKINPUTDATAITEMS: The incoming data items into the 

factory is blocked and stored in a queue/ 

(2) DISABLESTHREADREAD: The sthreads are configured to no 

longer read queued data items from input and output queues 

of the factory. Each sthread becomes idle after finishing its 

current iteration. 

(3) AREQUEUESEMPTY: Check if all input and output queues 

inside the factory is empty. 

(4) ARESTHREADSIDLE: Check if all sthreads are idle. 

(5) CHANGEANDRESUME: Deallocate all input and output queues 

and terminate all sthreads of the previous mode. Then, 

allocate and initialize input and output queues and create 



 

 78 

sthreads for the next mode. Finally, put the data items stored 

in the BLOCKINPUTDATAITEMS operation to newly created 

input queues, and resume execution. 

 

Figure 30 shows the runtime mechanism of mode change. The 

Splash runtime creates a new sthread named mode manager to 

support mode change operation. The mode manager has three data 

structures. First, it has a queue that stores blocked data items while 

running the BLOCKINPUTDATAITEMS operation. This queue stores 

data items in birthmark order to provide in-order delivery semantics. 

Second, it has a bitmap that checks whether each input queue inside 

the factory is empty or not. This data structure is used to implement 

 

Figure 30. Runtime mechanism of mode change. 

 

 

 Mode BMode A

Input Queue Sthreads Input Queue Sthreads

Mode

Manager

Bitmap for
Input Queues

Hashmap for
Sthreads

2

44

107

Queue for Factory’s
Input Data Items



 

 79 

the AREQUEUESEMPTY operation. Finally, the mode manager has a 

hashmap that checks whether each sthread inside the factory is idle 

or not.  This data structure is used to implement the 

ARESTHREADSIDLE operation. 

Figure 31 shows the pseudocode of CHANGEMODE algorithm. 

This algorithm is invoked by the mode manager when the mode 

change event arrives at the mode change port of the factory. The 

algorithm first blocks input data items of the factory by calling 

BLOCKINPUTDATAITEMS operation in line 1. If the programmer 

decided to output the remaining internal data items, the algorithm 

waits until there are no more internal data items inside the factory 

(line 3). If the programmer decided not to output the internal data 

items, the algorithm set all sthreads to no longer read queued data 

items (line 5). It then waits until there are no more in-process data 

items inside the factory (line 6). When all the work is done, the mode 

of the factory is changed to the next mode by calling the 

CHANGEANDRESUME operation. 

ALGORITHM 2.  CHANGEMODE 

Input:  A flag that indicates whether to output the internal data items 𝑓 

 

CHANGEMODE(𝑓) 

1:   BLOCKINPUTDATAITEMS() 

2:   if 𝑓 = true 

3:       Wait until AREQUEUESEMPTY() and ARESTHREADSIDLE() = true 

4:   else 

5:       DISABLESTHREADREAD() 

6:       Wait until ARESTHREADSIDLE() 

7:   CHANGEANDRESUME() 

 

Figure 31. Pseudocode of CHANGEMODE algorithm. 
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Chapter 7. Code Generation and Runtime System 
 

 

This chapter describes the code generation and runtime system for 

executing Splash program. Section 7.1 explains how sthreads are 

allocated to processes and threads, and how the communication 

between sthreads are implemented. Section 7.2 introduces templates 

for the code generation. Section 7.3 explains the runtime system that 

runs the Splash program. 

 

7.1  Build Unit-based Allocation 
 

As an sthread is an abstract entity, it needs to be mapped to a process 

and a thread of an underlying operating system during the system 

implementation process. This process can be divided into two steps: 

allocating sthreads to processes and allocating sthreads to threads. 

Splash first allocates the sthreads of all components mapped to each 

build unit to the same process. It then allocates the sthreads to 

threads according to the following rules. 

 

(1) Dedicated sthread of a processing component: Splash allocates 

a dedicate sthread to the same thread as the sthread that 

sends data items to it. This allocation policy reduces the 

context switch overhead and communication overhead by 

reducing the number of threads running on the system. 

However, in the following four cases, the dedicated sthread is 
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allocated to a different thread as the sthread that sends data 

items to it. 

- When an sthread that sends data items to a dedicated 

sthread is mapped to a different build unit, they are 

allocated to different threads because they are mapped to 

different processes. 

- When a sthread that sends data items to a dedicated 

sthread sends data items to more than one stream output 

port, these sthreads are allocated to different threads for 

concurrent execution. 

- Similarly, when a sthread that sends data items to a 

dedicated sthread communicates with two or more 

sthreads through a channel with multiple fan-outs, these 

sthreads are allocated to different threads. 

- If the sthread sending data items to the dedicated sthread 

is a rate controller, they are allocated to different threads 

in order for the rate controller to work correctly. 

(2) Internal sthread of a processing component: Splash assigns 

each internal sthread to a separate thread. This is because 

the internal sthread is created by the programmer with the 

intention of multithreading.  

(3) Fusion sthread of a fusion operator: Splash allocates each 

fusion sthread to a separate thread to ensure that the fusion 

operator to work properly. 
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Splash provides three different types of implementations for 

communications between sthreads. First, communication between 

sthreads that are allocated to different processes is implemented 

using inter-process communication (IPC) based on DDS (data 

distribution service) [15,75]. Second, communication between 

sthreads that are allocated to the same process but different threads 

is done through a queue located in the global address space shared 

by both threads. Finally, Communication between sthreads assigned 

to the same process and the same thread is implemented using a 

simple function call. 

 

7.2  Code Generation Template 
 

The Splash programming language is a coordination language that 

defines the interaction between components. A host language such 

as C++ which is used to define subprograms inside a component. 

Splash. Splash provides a schematic editor to write a coordination 

program in Splash programming language. After the programmers 

have completed writing the coordination program, the schematic 

editor produces a JSON file to be used as an input to the code 

generator. The JSON file contains the information about the factory 

and internal language constructs such as processing components, 

fusion operators, channels, stream input/output ports and build units. 
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The code generator takes the generated JSON file of the 

schematic editor as an input and produces template source code files 

1:   SourceComponent sc; 

2:   ProcessingComponent pc; 

3: 

4:   void sc_user_function(); 

5:   void pc_user_function(void *msg_ptr); 

6: 

7:   int main(void) { 

8:       StreamOutputPort<fname::data1> sc_sout; 

9:       StreamInputPort<fname::data1> pc_sin; 

10:      StreamOutputPort<fname::data2> pc_sout; 

11:       

12:      sc.initialize("sname", 200); 

13:      pc.initialize("pname"); 

14:      sc_sout.initialize(); 

15:      pc_sin.initialize(); 

16:      pc_sout.initialize(15); 

17: 

18:      sc.registerUserFunction(sc_user_function); 

19:      pc.registerUserFunction(pc_user_function); 

20: 

21:      sc_sout.attach(&sc, INTRA_THREAD); 

22:      pc_sin.attach(&pc, INTRA_THREAD); 

23:      pc_sout.attach(&pc, INTER_PROCESS, "topic1"); 

24:       

25:      pc.run(); 

26:      sc.run(); 

27:  } 

28: 

29:  void sc_user_function() { 

30:      fname::data1 output_data; 

31:      // Put user logic here 

32:      sc.write(&output_data); 

33:  } 

34: 

35:  void pc_user_function(void *msg_ptr) { 

36:      fname::data0 input_data = 

37:          *static_cast<fname::data0*>(msg_ptr);  

38:      fname::data1 output_data; 

39:      // Put user logic here 

40:      pc.write(&output_data); 

41:  } 
 

Figure 32. Example of template source code. 
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written in C++. A template source code file is created for each build 

unit to create, to initialize and to initiate components that are mapped 

to the build unit. Figure 32 shows a template code for a source 

component and a processing component mapped to a single build unit. 

As shown in the figure, the template code is structured in three 

segments: declaration (lines 1-10), configuration (lines 12-23) and 

execution (lines 25-26). 

In declaration, a source component object (line 1), a processing 

component object (line 2), user functions for the components (lines 

4-5), and internal stream input/output port objects (lines 8-10) are 

declared. In configuration, these objects are initialized in order (lines 

12-16). Then the user functions are registered to the components 

(lines 18-19), and the stream input/output port objects are attached 

to the source component and the processing component objects (lines 

21-23). In execution, it waits for a data item to come in on the input 

port (lines 25-26). When a data item arrives, the user function is 

called (lines 29-41). Programmers should fill in the user logic inside 

the user function (lines 31 and 39) 

 

7.3  Splash Runtime System 
 

The Splash runtime consists of two layers of software as shown in 

Figure 33. At the top layer is the Splash framework that consists of 

runtime libraries and modules written in the host language. The 

user-augmented template code uses the library provided by the 
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Splash framework as shown in Figure 32. The runtime libraries are 

divided into five types according to their functions: (1) core 

execution and communication, (2) fusion, (3) timing management and 

(4) exception handling. The Splash framework also comes with three 

runtime modules: (1) the rate controller, (2) the mode manger and 

(2) the timing behavior monitor. 

At the bottom layer lies a runtime system based on DDS (data 

distribution services) and Linux kernel. DDS is a well-known 

specification for real-time publish-subscribe communication. We 

chose OpenSplice DDS because it is open source and implements the 

specification efficiently [76].  

 

Figure 33. Splash runtime architecture. 
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Chapter 8. Experimental Evaluation 
 

 

 

In this chapter, we validate Splash by implementing the LKAS with 

the proposed framework and measuring its performance values. 

Section 8.1 explain overall application logic of the LKAS along with 

its timing constraints annotation and components-to-build unit 

mapping. Section 8.2 describes the experimental environment. 

Section 8.3 to 8.6 presents the experimental results for rate control, 

sensor fusion, mode change, and build unit-base allocation, 

respectively. 

 

8.1  LKAS Program 
 

We have designed LKAS based on the algorithm given in [77] with 

Splash. This application automatically adjusts the steering angle to 

keep the ego vehicle inside the detected lane. Figure 35 shows the 

 

Figure 34. LKAS factory. 

 

 

LKAS

Lane 
Detections

Longitudinal 
Velocity

Driver 
Steering 
Angle

Lane Center
Estimation

Lane Departure
Detection

Lane Keeping Control Target
Steering 
Angle

Steering Angle
Selection

LKASDriver  



 

 87 

top-level factory of the application. Its inputs include lane detections 

from the lane sensor, the longitudinal velocity of the ego vehicle, and 

the driver steering angle. Its output is the target steering angle of the 

vehicle. The top-level factory consists of four sub-factories: (1) 

lane departure detection, (2) lane center estimation, (3) 

lane keeping control, (4) steering angle selection. 

Figure 35 is the lane departure detection factory. It checks 

if the ego vehicle is too close to the lane boundaries by computing 

the offset distance of the ego vehicle from both the left and right lane 

boundary. It then merges both offsets using a fusion operator and 

checks if any offset is lower than the predefined threshold. It any 

offset is lower than the threshold, it generates a mode change event. 

Figure 36 is the lane center estimation factory. It computes 

the curvature of the lane, lateral deviation between the ego vehicle 

and center of the lane, and heading angle of the ego vehicle. To do 

 

Figure 35. Lane departure detection factory. 
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so, it first checks whether left and right boundaries of the detected 

lane is clear enough to be used for estimation. It then computes 

curvature, lateral deviation and heading angle based on the selected 

boundaries. Finally, it estimates the curvature of the forward lane to 

be driven over the next three seconds using the curvature computed 

through the current detected lane. 

Figure 37 is the lane keeping control factory. It generated 

assisted steering angle of the ego vehicle using the outputs of the 

lane center estimation factory and longitudinal velocity of the 

vehicle. It first uses a fusion operator to update states that will be 

sampled by vehicle controller. It then uses a controller which 

 

Figure 36. Lane center estimation factory. 
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periodically invokes adaptive model predictive control logic to 

compute the assisted steering angle. 

Figure 38 is the steering angle selection factory. It is a 

multimode factory which has two modes: Driver mode and LKAS 

mode. It takes both driver steering angle and assisted steering angle 

 

Figure 38. Steering angle selection factory. 
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Figure 37. Lane keeping control factory 

 

 

Lane Keeping Control

Update
States

Adaptive Model
Predictive Control



 

 90 

as inputs. It outputs driver steering angle for Driver mode and 

assisted steering angle for LKAS mode. Mode change from Driver 

mode to LKAS mode is triggered by a mode change event sent from 

the lane departure detection factory. On the other hand, mode 

change from LKAS mode to from Driver mode is triggered by a mode 

change event from change to driver mode processing component 

inside the steering angle selection factory. This processing 

component compared driver steering angle and assisted steering 

angle, and generates a mode change event only if it is safe for the 

driver to take control.  

The end-to-end timing constraints of the LKAS factory is 

annotated as shown in Figure 39. First, we set we set freshness 

constraints to the same value of 200ms for the three source 

components. Second, we annotate a rate constraint of 15Hz for the 

stream output port of the LKAS factory. Finally, we set correlations 

 

Figure 39. Timing constraints of LKAS factory 
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constraint of each fusion operator to 10ms. 

 

8.2  Experimental Environment 
 

We simulated a driving environment with the Simulink to validate our 

 

Figure 40. Software components of the platform. 
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HW 
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LKAS implementation [11]. The software organization is shown in 

Figure 40. We essentially created a closed loop simulator on top of 

two machines, one running the Splash implementation of LKAS and 

the other executing a driving simulator. The LKAS receives sensor 

values from the simulator and outputs a target steering wheel angle. 

The simulator in turn receives the steering wheel angle as its input. 

Table 3 shows the detailed hardware and software configuration of 

our target system. 

 

8.3  Evaluating Rate Control 
 

To validate the effective of Splash’s rate controller, we analyzed five 

different metrics of the LKAS. First, we measured the output jitter 

of the LKAS to evaluate the controller’s rate manipulability. Second, 

we measured the end-to-end latency of LKAS to portray the low 

overhead of the rate controller. Third, we measured the change in 

the number of data items in the output queue of a rate controller to 

check the controller’s ability to bound the number of data items in the 

queue. Finally, we measured lateral deviation and heading angle of 

the ego vehicle to validate that the performance of the LKAS is 

improved by the rate controller. 

In order to demonstrate the effectiveness of our approach, we 

attached rate controllers running with 10Hz rate constraint to the 

stream output ports of the LKAS factory as marked in Figure 39. We 

then measured the output jitter with and without the rate controllers, 
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respectively. We define the output jitter as discussed in [78]. 

 

𝐽 = √
∑ (𝐸(𝑂) − 𝑜𝑗)

2ℎ
𝑗=1

ℎ
 

 

is a root mean square error where for a given ℎ measurements, 𝑂 is 

a set of ℎ consecutive inter-output times of the LKAS, 𝑜𝑗 ∈ 𝑂 and 

𝐸(𝑂) is a mean of 𝑂. 

Using the above definition as a metric, we found that the output 

jitter with our rate controllers was only 1.66 milliseconds, while the 

output jitter without rate controllers was 30.61ms milliseconds. 

To better illustrate the effectiveness of the rate controller, we 

have plotted the accumulated number of data items that are output 

from the LKAS in Figure 41. As expected, the LKAS with rate 

controllers produced output data item every 66.67ms, while the 

 

Figure 41. Comparison of the number of the accumulated output items. 

 

 

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600Th
e

 N
u

m
b

e
r 

o
f 

O
u

tp
u

t 
It

e
m

s

Time (ms)

Without Rate
Controller

With Rate
Controller



 

 94 

LKAS without rate controllers produced the output irregularly. 

In our second experiment, we measured the end-to-end latency 

of the LKAS for each data item, in order to display its minimal 

overhead. We defined the end-to-end latency as the time it takes 

for an input data to reach from the source component to a sink 

component. Figure 42 shows the box plot of the results. The average 

end-to-end latency was increased from 90.8ms to 141.7ms. The 

increase in the average end-to-end latency was caused by the delay 

in the output queue. 

In the third experiment, we measured the number of data items 

in the output queue of a rate controller. Figure 43 plots the results. 

The result confirmed that the controller successfully bounded the 

number of items in the queue to ⌊𝑟 × 𝑓⌋ as discussed in Section 6.1. 

In the last experiment, we measured the lateral deviation and 

heading angle of the ego vehicle while running the LKAS. The 

experimental results are shown in Figure 44 and Figure 45. The 

 

Figure 42. Comparison of the end-to-end latency. 
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average lateral deviation without the rate controller was 0.180 

meters, whereas it was only 0.016 meters with the rate controller. 

Also, the average heading angle was 0.043 rad without the rate 

controller, while it was 0.008 rad with the rate controller. Based on 

the results of these two experiments, it can be concluded that the 

performance of the LKAS is dramatically improved with a rate 

 

Figure 43. The number of data items in the output queue. 
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Figure 44. Comparison of the lateral deviation of the ego vehicle. 
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controller. 

 

8.4  Evaluating Sensor Fusion 
 

To validate the fusion operator, we selected two metrics. First, we 

measured the maximum birthmark differences between data items of 

an input tuple selected by the fusion operator. Second, we measured 

the average runtime overhead of the fusion operator incurred by 

running the FINDVALIDINPUTTUPLE algorithm. 

In our first experiment, we ran the LKAS program for 30 seconds 

and measured the maximum birthmark differences of input tuples 

selected by the estimate preview curvature fusion operator 

inside the lane center estimation factory. Figure 46 shows the 

results. As shown in the figure, the maximum birthmark differences 

between data items of input tuples were always less than the fusion 

operator’s correlation constraint, 10 milliseconds. This result clearly 

shows that our fusion operator effectively satisfied the annotated 

 

Figure 45. Comparison of the heading angle of the ego vehicle. 
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correlation constraint. 

In our second experiment, we measured the average running time 

of the FINDVALIDINPUTTUPLE algorithm to evaluate the overhead 

incurred by the fusion operator. As expected, the average running 

time of the algorithm was only 7 microseconds. 

 

8.5  Evaluating Mode Change 
 

In order to validate the mode change mechanism of Splash, we 

measured driving steering angle, assisted steering angle and final 

output steering angle of the LKAS factory. We also measured the 

average time it took for mode change. 

We first ran the LKAS program for 30 seconds and measured 

 

Figure 46. Maximum birthmark difference of input tuples chosen by the 

fusion operator. 
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three values: (1) driving steering angle, (2) assisted steering angle 

and (3) final output steering angle. Figure 47 shows the result. The 

driving steering angle and assisted steering angle is plotted using 

dotted lines, and the final out is presented using a solid line. As shown 

 

Figure 47. The steering angle selected using mode change. 
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in the graph, the mode change occurred twice while running the 

program. The first mode change occurred 15.2 seconds after the 

start. At this time, the check lane departure processing 

component of the lane departure detection factory detects that 

the distance between the ego vehicle and the center of the lane 

exceeds the threshold distance. It then sends a mode change event 

to the steering angle selection factory to change the factory’s 

mode from Driver mode to LKAS mode. On the other hand, the second 

mode change occurred 26.1 seconds after the start. The change to 

driver mode processing component of the steering angle 

selection factory generates a mode change event that changes the 

factory’s mode from LKAS mode to Driver mode. 

We also measured the runtime overhead of the mode change 

mechanism. We measured the completion time of 10 mode changes 

and computed their average. Experimental results show that the 

mode change takes 0.53 milliseconds on average. 

 

8.6  Evaluating Build Unit-based Allocation 
 

We used a Splash program that runs a synthetic workload to evaluate 

build unit-base allocation. The program and its component-build unit 

mapping configurations are shown in Figure 48. This program reads 

a data item from a source component once per second. It then uses 

six processing components placed in series to process the data item. 

Each processing component performs the same arithmetic operations. 
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The result is produced as an output using a sink component. 

In the experiment, four component-build unit mappings are used. 

First, all components in the program are mapped to one build unit. 

Second, the source component and the first three processing 

components are mapped into one build unit, and the other three 

processing components and the sink component are mapped into one 

build unit. Third, each two adjacent atomic components are mapped 

into the one build unit. Finally, all atomic components are mapped into 

the different build unit. 

We measured the end-to-end latency by varying the size of a 

data item from 4 bytes to 4 kilobytes. Figure 49 shows the results. 

As we increased the number of build units to 1, 2, 4, and 8, the 

average end-to-end latency increased to 75.79, 330.80, 591.87, and 

 

Figure 48. A Splash program and its build unit configurations. 
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2022.96 microseconds. This is because the number of threads and 

processes increases as the number of build units increases, resulting 

more context switch and communication overhead. Also, the end-

to-end latency tends to increase as the size of a data item increases. 

This is because the communication delay time when sending a data 

item increases as the size of the data item increases. 

 

   

 

Figure 49. End-to-end latencies of the distinct build unit configurations. 
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Chapter 9. Conclusion 
 

 

In this dissertation, we presented a graphical programming 

framework named Splash for developing an autonomous machine. 

The Splash achieves our four design goals: (1) it provides an easy-

to-use, effective programming abstraction, (2) it supports real-time 

stream processing for deep-learning based machine learning 

intelligence, (3) it provides programming supports for real-time 

control system of autonomous machine such as sensor fusion and 

mode change and (4) it supports performance optimization of 

software system running on a heterogeneous multicore distributed 

computing platform. In order to achieve these design goals, Splash 

first enables programmers to specify end-to-end timing constraints 

and provides timing semantics to handle such constraints at runtime. 

Also, it supports multithreaded process model to exploit parallelism 

explicitly from the distributed multicore computing platform. Splash 

provides exception handling semantics, rate control semantics, 

sensor fusion semantics and mode change semantics to support real-

time stream processing and real-time control systems. 

We validated the effectiveness of the Splash via the LKAS. First, 

the rate controller of the Splash reduced the jitter from 30.61 

milliseconds to 1.66 milliseconds. The average lateral deviation and 

heading angle is reduced from 0.180 meters to 0.016 meters and 

0.043 rad to 0.008 rad, respectively. Second, the sensor fusion and 
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mode change mechanism of Splash operated correctly with a run-

time overhead of only 7 microseconds and 0.53 milliseconds, 

respectively. Finally, the average end-to-end latency was increased 

from 75.79 microseconds to 2022.96 microseconds as we increased 

the number of build units from 1 to 8. 

The proposed approach can be extended in several future 

research directions. First, Splash should provide support for 

acceleration hardware such as GPU and NPU (neural processing unit). 

This support is important because many autonomous machines have 

recently been using GPUs or NPUs to improve inference performance 

while running deep learning algorithms. 

Second, we aim to develop cross-layer optimization techniques 

for Linux kernel based on Splash’s timing semantics and runtime 

mechanisms. Currently, the Linux kernel has limitations to be used 

for autonomous machines because it has little support for real-time 

stream processing. However, if non-functional requirements and 

application context specified using Splash is passed to the Linux 

kernel, we will be able to develop new optimization techniques that 

will help Linux kernel to better support real-time stream processing. 

Finally, we plan to design and implement various real-time 

applications for autonomous vehicles using Splash. To that end, we 

expect Splash to be further optimized in terms of performance and 

reliability. We look forward to apply Splash to edge computing 

technology, which is based on interoperability between cloud and 

embedded devices.  
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초   록 

 

 

딥 러닝 기반 machine intelligence의 비약적인 발전으로 인해 

autonomous machine들이 다양한 분야에서 활용되고 있다. 이런 

기기들은 다양한 센서, 멀티코어 프로세서, 분산 컴퓨팅 노드를 

장착하고 있기 때문에, 이들을 지원하기 위한 기반 소프트웨어 플랫폼의 

복잡도는 빠른 속도로 증가하는 추세이다. 이에 따라 개발자들이 복잡한 

소프트웨어 구조를 효과적으로 다룰 수 있도록 해주는 프로그래밍 

프레임워크의 필요성이 대두되고 있다. 

본 학위논문은 autonomous machine의 개발 과정에서 발생하는 

문제들을 해결하기 위한 그래픽 기반 프로그래밍 프레임워크인 

Splash를 제안한다. Splash라는 이름은 stream processing language 

for autonomous machine에서 앞의 세 단어의 첫 문자들을 따서 

지어졌다. 이 이름은 물과 같이 흐르는 스트림 데이터를 다루기 위한 

프로그래밍 언어와 런타임 시스템을 개발하겠다는 의도를 가진다. 본 

논문에서는 복잡한 소프트웨어 구조를 효과적으로 다루기 위해 네 가지 

디자인 목표를 설정한다. 첫째, Splash는 개발자에게 세부적인 구현 

이슈를 숨기고, 쉽게 사용할 수 있는 프로그래밍 추상화를 제공하여야 

한다. 둘째, Splash는 machine intelligence를 위한 실시간 스트림 

처리를 지원할 수 있어야 한다. 셋째, Splash는 실시간 제어 시스템에서 

널리 사용되는 센서 퓨전, 모드 변경, 예외 처리와 같은 기능들을 위한 

지원을 제공하여야 한다. 넷째, Splash는 이기종 멀티코어 분산 컴퓨팅 

플랫폼에서 수행되는 소프트웨어 시스템의 성능 최적화를 지원하여야 

한다. 
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Splash는 실시간 스트림 처리를 위해 개발자가 프로그램 상에 

본질적인 end-to-end timing constraints를 명시할 수 있도록 한다. 

그리고 개발자가 명시한 timing constraints를 인지하고 이를 최대한 

지켜주는 best-effort 런타임 시스템과 timing constraints의 위반을 

모니터링하고 처리해주는 예외 처리 메커니즘을 함께 제공한다. 이런 

런타임 메커니즘들을 구현하기 위해 Splash는 두 가지 기본적인 timing 

semantics를 제공한다. 첫째, 분산 시스템 상에서 모든 머신들이 공유할 

수 있는 global time base를 제공한다. 둘째, Splash 상에 들어오는 모든 

스트림 데이터 아이템에 자신의 birthmark를 기록하도록 한다. 

Splash는 동시성 프로그래밍을 지원하기 위한 멀티 쓰레디드 처리 

모델을 제공한다. Splash 프로그래머는 sthread라는 논리적인 수행 

단위를 사용하여 프로그램을 개발할 수 있다. 그리고 Splash는 

sthread들을 실제 운영체제의 수행 단위인 프로세스와 쓰레드에게 

할당하는 과정을 돕기 위한 빌드 유닛이라는 language construct를 

제공한다. 

Splash는 timing semantics와 멀티 쓰레디드 처리 모델을 기반으로 

실시간 스트림 처리와 실시간 제어 시스템을 지원하기 위한 세 가지 

language semantics를 추가로 지원한다. 첫째는 스트림 데이터의 

통신이나 처리 지연으로 인해 발생하는 지터나 바운드 되지 않는 큐 

문제를 해결하기 위한 rate 제어 semantics이다. 둘째는 센서 퓨전 

과정에서 시간적으로 동기화되지 않은 센서 입력들로 인한 타이밍 

이슈들을 해결하기 위한 퓨전 semantics이다. 마지막은 가변적인 제어 

시스템의 요구사항을 충족시키기 위해 수행 로직의 변경을 지원하는 

모드 변경 semantics이다. 본 논문에서는 각각의 language 

semantics를 구체적으로 설명하고, 이를 실현하기 위한 런타임 
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메커니즘을 설계하고 구현한다. 

Splash의 효용성을 검증하기 위해서, 본 논문은 Splash를 사용하여 

LKAS 응용을 개발하고 이를 Splash 런타임 시스템 상에서 수행시키며 

실험을 진행하였다. 본 논문에서는 rate 제어 메커니즘, 센서 퓨전 

메커니즘, 모드 변경 메커니즘, 빌드 유닛 기반 allocation을 각각 

선정된 성능 지표들을 사용하여 검증하였다. 첫째, Splash의 rate 

제어기를 사용하면 지터가 30.61ms에서 1.66ms로 감소되었고, 이로 

인해 주행 차량의 측면 편차와 방향각이 각각 0.180m에서 0.016m, 

0.043rad에서 0.008rad으로 개선된다는 것을 확인하였다. 둘째, 센서 

퓨전을 위해 제안된 퓨전 연산자가 설계된 의도대로 정상 동작하고, 

평균 7us의 낮은 오버헤드만을 유발한다는 것을 확인하였다. 셋째, 모드 

변경 기능의 정상 동작을 검증하였고 그 과정에서 발생하는 시간적 

오버헤드는 평균 0.53ms에 불과하였다. 마지막으로, synthetic 

workload에 대해 컴포넌트들에 매핑된 빌드 유닛 개수를 1개, 2개, 4개, 

8개로 증가시킴에 따라 평균 end-to-end 지연 시간은 75.79us, 

330.80us, 591.87us, 2022.96us로 증가하는 것을 확인하였다. 이러한 

결과들은 본 논문에서 제안하는 language semantics와 런타임 

메커니즘들이 의도대로 설계, 구현되었고, 이를 통해 autonomous 

machine의 응용들을 효과적으로 개발할 수 있다는 것을 보여준다. 

 

주요어 : Autonomous Machine, 실시간 스트림 처리, Rate 제어, 센서 

퓨전, 모드 변경 
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