

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. Dissertation

Design of the Splash

Programming Language to

Support Real-Time Stream

Processing and Sensor Fusion for

an Autonomous Machine

Autonomous Machine을 위한

실시간 스트림 처리와 센서 퓨전을 지원하는

Splash 프로그래밍 언어의 설계

February 2020

Department of Electrical Engineering and

Computer Science

College of Engineering

Seoul National University

Soonhyun Noh

Ph.D. Dissertation

Design of the Splash

Programming Language to

Support Real-Time Stream

Processing and Sensor Fusion for

an Autonomous Machine

Autonomous Machine을 위한

실시간 스트림 처리와 센서 퓨전을 지원하는

Splash 프로그래밍 언어의 설계

February 2020

Department of Electrical Engineering and

Computer Science

College of Engineering

Seoul National University

Soonhyun Noh

 i

Abstract

Autonomous machines have begun to be widely used in various

application domains due to recent remarkable advances in machine

intelligence. As these autonomous machines are equipped with

diverse sensors, multicore processors and distributed computing

nodes, the complexity of the underlying software platform is

increasing at a rapid pace, overwhelming the developers with

implementation details. This leads to a demand for a new

programming framework that has an easy-to-use programming

abstraction.

In this thesis, we present a graphical programming framework

named Splash that explicitly addresses the programming challenges

that arise during the development of an autonomous machine. We set

four design goals to solve the challenges. First, Splash should provide

an easy-to-use, effective programming abstraction. Second, it must

support real-time stream processing for deep-learning based

machine learning intelligence. Third, it must provide programming

support for real-time control system of autonomous machines such

as sensor fusion and mode change. Finally, it should support

performance optimization of software system running on a

heterogeneous multicore distributed computing platform.

Splash allows programmers to specify genuine, end-to-end

timing constraints. Also, it provides a best-effort runtime system

that tries to meet the annotated timing constraints and exception

handling mechanisms to monitor the violation of such constraints. To

implement these runtime mechanisms, Splash provides underlying

timing semantics: (1) it provides an abstract global clock that is

shared by machines in the distributed system and (2) it supports

 ii

programmers to write birthmark on every stream data item.

Splash offers a multithreaded process model to support

concurrent programming. In the multithreaded process model, a

programmer can write a multithreaded program using Splash threads

we call sthreads. An sthread is a logical entity of independent

execution. In addition, Splash provides a language construct named

build unit that allows programmers to allocate sthreads to processes

and threads of an underlying operating system.

Splash provides three additional language semantics to support

real-time stream processing and real-time control systems. First, it

provides rate control semantics to solve uncontrolled jitter and an

unbounded FIFO queue problem due to the variability in

communication delay and execution time. Second, it supports fusion

semantics to handle timing issues caused by asynchronous sensors

in the system. Finally, it provides mode change semantics to meet

varying requirements in the real-time control systems. In this paper,

we describe each language semantics and runtime mechanism that

realizes such semantics in detail.

To show the utility of our framework, we have written a lane

keeping assist system (LKAS) in Splash as an example. We evaluated

rate control, sensor fusion, mode change and build unit-based

allocation. First, using rate controller, the jitter was reduced from

30.61 milliseconds to 1.66 milliseconds. Also, average lateral

deviation and heading angle is reduced from 0.180 meters to 0.016

meters and 0.043 rad to 0.008 rad, respectively. Second, we showed

that the fusion operator works normally as intended, with a run-time

overhead of only 7 microseconds on average. Third, the mode change

mechanism operated correctly and incurred a run-time overhead of

only 0.53 milliseconds. Finally, as we increased the number of build

 iii

units from 1 to 8, the average end-to-end latency was increased

from 75.79 microseconds to 2022.96 microseconds. These results

show that the language semantics and runtime mechanisms proposed

in this thesis are designed and implemented correctly, and Splash can

be used to effectively develop applications for an autonomous

machine.

Keywords : Autonomous Machine, Real-time Stream Processing,

Rate Control, Sensor Fusion, Mode Change

Student Number : 2013-20785

 iv

Table of Contents

Abstract i

Table of Contents ... iv

List of Tables... vii

List of Figures .. viii

Chapter 1 Introduction ... 1

1.1 Motivation .. 2

1.2 Splash Overview .. 5

1.3 Organization of This Dissertation 9

Chapter 2 Related Work .. 10

2.1 Kahn Process Network ... 10

2.2 Firing Rule Applied to a Process 13

2.3 Programming Framework for an Autonomous Machine .. 14

2.4 Runtime Software for an Autonomous Machine 16

2.5 Rate Control ... 18

2.5.1 Traffic Shaping .. 20

2.5.2 Traffic Policing .. 22

2.6 Sensor Fusion .. 23

2.6.1 Measurement Fusion ... 24

2.6.2 Situation Fusion ... 27

2.7 Mode Change ... 30

2.7.1 Synchronous Mode Change 32

2.7.2 Asynchronous Mode Change 32

 v

Chapter 3 Motivation and Contributions 34

3.1 Problem Description .. 34

3.2 Limitations of Kahn Process Network 36

3.3 Contributions of this Dissertation 38

Chapter 4 Underlying Timing Semantics of Splash 41

4.1 End-to-End Timing Constraints 41

4.2 Global Time Base and In-order Delivery 42

4.3 Integrating Three Distinct Computing Models................. 43

Chapter 5 Splash Language Constructs 45

5.1 Processing Component .. 46

5.2 Port .. 49

5.3 Channel and Clink .. 52

5.4 Fusion Operator ... 54

5.5 Factory and Mode Change .. 60

5.6 Build Unit ... 65

5.7 Exception Handling ... 67

Chapter 6 Splash Runtime Mechanisms............................... 69

6.1 Rate Control Mechanism ... 69

6.2 Sensor Fusion Mechanism .. 70

6.3 Mode Change Mechanism ... 77

Chapter 7 Code Generation and Runtime System 80

7.1 Build Unit-based Allocation ... 80

7.2 Code Generation Template ... 82

7.3 Splash Runtime System .. 84

 vi

Chapter 8 Experimental Evaluation 86

8.1 LKAS Program .. 86

8.2 Experimental Environment ... 91

8.3 Evaluating Rate Control .. 92

8.4 Evaluating Sensor Fusion ... 96

8.5 Evaluating Mode Change ... 97

8.6 Evaluating Build Unit-based Allocation 99

Chapter 9 Conclusion ... 102

Bibliography ... 104

Abstract in Korean .. 113

 vii

List of Tables

Table 1 Graphical symbols for ports 49

Table 2 Example of mode change table 63

Table 3 Experimental environment 91

 viii

List of Figures

Figure 1 Example of Kahn Process Network graph 11

Figure 2 Traffic shaping .. 19

Figure 3 Traffic policing .. 20

Figure 4 Measurement fusion .. 25

Figure 5 Situation fusion ... 28

Figure 6 Hierarchy of Splash components 45

Figure 7 Splash program example: 2D object detection 46

Figure 8 Processing component .. 46

Figure 9 Processing component and its sthreads 47

Figure 10 Source component .. 48

Figure 11 Sink component ... 48

Figure 12 Input and output ports as subtype of port 50

Figure 13 Hierarchy of port interfaces 50

Figure 14 Rate-controlled stream output port 51

Figure 15 Behavior of a rate controller 52

Figure 16 Channel ... 53

Figure 17 Channel with three fan-outs 53

Figure 18 Clinks .. 54

Figure 19 Fusion operator ... 55

Figure 20 A multimode factory with two modes 61

Figure 21 Example of mode factory 62

 ix

Figure 22 Internal data items of a multimode factory 64

Figure 23 Example of component-build unit mapping 67

Figure 24 Hierarchy of exception class 68

Figure 25 Runtime mechanism of a rate controller 69

Figure 26 Runtime mechanism of a fusion operator 71

Figure 27 Pseudocode of FINDVALIDINPUTTUPLE algorithm72

Figure 28 Example of 𝑰𝐨𝐥𝐝𝐞𝐫, 𝑰𝐚𝐧𝐬𝐰𝐞𝐫, 𝑰𝐧𝐞𝐰𝐞𝐫 74

Figure 29 The relationship between 𝒅𝒌
′ , 𝒅𝒌

′′, 𝒅𝒋
′ and 𝒅𝒋

′′. 76

Figure 30 Runtime mechanism of mode change 78

Figure 31 Pseudocode of CHANGEMODE algorithm 79

Figure 32 Example of template source code 83

Figure 33 Splash runtime architecture 85

Figure 34 LKAS factory .. 86

Figure 35 Lane departure detection factory 87

Figure 36 Lane center estimation factory 88

Figure 37 Lane keeping control factory 89

Figure 38 Steering angle selection factory 89

Figure 39 Timing constraints of LKAS factory 90

Figure 40 Software components of the platform 91

Figure 41 Comparison of the number of the accumulated

output items .. 93

Figure 42 Comparison of the end-to-end latency 94

Figure 43 The number of data items in the output queue

 x

 .. 95

Figure 44 Comparison of the lateral deviation of the ego

vehicle .. 95

Figure 45 Comparison of the heading angle of the ego vehicle

 .. 96

Figure 46 Maximum birthmark difference of input tuples

chosen by the fusion operator 97

Figure 47 The steering angle selected using mode change

 .. 98

Figure 48 A Splash program and its build unit configurations

 .. 100

Figure 49 End-to-end latencies of the distinct build unit

configurations ... 101

 1

Chapter 1. Introduction

With recent remarkable advances in machine intelligence,

autonomous machines have been actively developed and begun to be

widely used in various application domains. Representative examples

of such machines include drones, robots and self-driving cars [1–3].

Often times, they are equipped with diverse sensors for perception,

localization and positioning [4,5]. They also include high performance

multicore processors for intelligence and microcontrollers for real-

time control [6,7].

These hardware components are interconnected via onboard

networks inside autonomous machines [8–10]. Due to the

heterogeneous, distributed and multicore nature of the underlying

computing platform, the software architecture of an autonomous

machine has become more and more complex. Its complexity has

reached a point where programmers must resort to a versatile

programming framework that has an easy-to-use programming

abstraction.

The programming framework for autonomous machine should

achieve four key design goals. First, it should provide an easy-to-

use, effective programming abstraction that can hide implementation

details and supports a model-based code generation capability.

Second, it must support real-time stream processing for deep-

learning based machine learning intelligence. Third, it must provide

 2

programming support for real-time control system of autonomous

machine such as sensor fusion and mode change. Finally, it needs to

support performance optimization of software system running on a

heterogeneous multicore distributed computing platform.

In this thesis, we present a graphical programming framework

named Splash that achieves four design goals. We present the syntax

and semantics of the key language constructs of Splash and show

how we achieve our design goals. Furthermore, we present the

internal workings of the proposed programming framework and

validate its effectiveness via a lane keeping assist system (LKAS).

Section 1.1 describes the motivation. Then, Section 1.2 gives

overview of our work. Finally, Section 1.3 explains how this

dissertation is organized.

1.1 Motivation

Quite a few graphical programming frameworks have been widely

used for developing autonomous machines, particularly for automatic

control and signal processing domains. Such frameworks include

Simulink and RTMaps [11,12]. Also, several academic programming

frameworks such as Ptolemy II exist for research purposes [13].

Most of the existing frameworks were designed and developed for a

broad range of reactive embedded systems.

Simulink is one of the most representative commercial

programming frameworks. It can support both time-driven and

 3

event-driven data processing. It also offers a wide range of plug-

ins such as Stateflow, SimEvents and Deep Learning Toolbox to

support programmers to develop embedded applications[14].

Unfortunately, it does not fulfil our design goals; it does not support

end-to-end timing constraints that must be considered when

implementing an autonomous machine; it does not offer language

constructs for exception handling and sensor fusion; and it provides

little or no support for the performance optimization and tuning of a

resultant system to run on a distributed multicore computing platform.

RTMaps is well suited for the development of a system that must

deal with multiple sensors and actuators like an autonomous machine.

It has many features in common with our approach. RTMaps supports

time as a first-class entity and records a timestamp on each data

item. As result, it can offer a method for specifying and handling

freshness and correlation constraints. It allows programmers to write

applications in both data and time-driven programming styles.

However, it has several limitations that makes it unfit for our design

goals. First, RTMaps does not consider a rate constraint in an explicit

manner. Thus, programmers must independently develop their own

rate control mechanism, creating spaces for error. Second, it does

not support concurrency models explicitly, leaving programmers with

the responsibility of thread creation and synchronization. Third,

RTMaps does not offer a language construct for asynchronous event

notification and handling. Finally, RTMaps lacks support for control

systems such as mode change and exception handling.

 4

Ptolemy II is an academic programming framework capable of

supporting a wide variety of process network models. Thus,

programmers can write an application utilizing several different

models at the same time. Ptolemy II offers rich support for imperative

programing such as mode change and exception handling. However,

Ptolemy II lacks support for real-time stream processing. But it does

not support a rate constraint or a correlation constraint. Like RTMaps,

Ptolemy II lacks a concurrency model or a thread-to-core allocation

mechanism inside a process. Simply, it maps each process to a Java

thread and delegates thread scheduling to the underlying operating

system.

Due to the limitations of these programming frameworks, many

programmers choose to develop autonomous machines without using

these programming frameworks. ROS is a representative open-

source runtime software system that is commonly used to develop an

autonomous machine [15]. However, existing runtime software

systems including ROS does not support any method for specifying

and handling end-to-end timing constraints for real-time stream

processing. In order to overcome the limitation of the ROS, ROS 2 is

currently under development based on data distribution service

(DDS), a communication standard that supports real-time publish-

subscribe communication. However, each function in ROS 2 is not yet

fully implemented and verified since it is still in the early stage of

development [15,16].

Therefore, we need a new programming framework that

 5

overcomes the limitations of existing programming frameworks and

runtime software. Unlike existing approaches, the proposed

programming framework must be able to achieve all four design goals.

1.2 Splash Overview

In this thesis, we present a graphical programming framework named

Splash that achieves all design goals. The name Splash is named after

the first letter of the first three words in the stream processing

language for an autonomous machine.

Splash is designed based on the Kahn process network (KPN),

which offers a programming model in such a way that developers can

write an application in a parallel way such that constituent processes

are independently written [17,18]. KPN provides graphical

programming abstraction to programmers and helps them avoid

error-prone issues such as data races and non-determinism.

However, KPN cannot be directly used to develop an autonomous

machine since it fails to achieve our four design goals. To overcome

this limitation, Splash offers six additional language semantics: (1)

timing semantics, (2) exception handling semantics, (3) multi-

threaded processing model and build unit-based allocation, (4) rate

control semantics, (5) sensor fusion semantics and (6) mode change

semantics.

One of the most important design goal of Splash is to support

real-time processing. To achieve this goal, Splash allows

 6

programmers to specify three essential end-to-end timing

constraints: freshness constraint, correlation constraint and rate

constraint. It provides a best-effort runtime system to satisfy the

timing constraints annotated in the program. Splash also provides

exception handling mechanism to monitor and to handle violations of

such constraints at runtime.

Splash provides timing semantics which is the basis for all other

language semantics of Splash. Splash supports an abstract global

clock that is possibly implemented via distributed local clock

synchronization. It also enables programmers to write birthmark on

every stream data item, and guarantees that data items always go

through a communication channel in the order of their birthmarks.

This is called in-order delivery semantics.

Splash offers a multithreaded process model to exploit

parallelism explicitly from the underlying operating system and

computing platform. In the multithreaded process model, a

programmer can write a multithreaded program using sthread that is

a logical entity of execution. Splash also supports a language

construct named build unit to allocate sthreads to processes and

threads on the underlying operating system.

Splash takes the data-driven processing as the default style,

unless specified otherwise in a program. However, data-driven

triggering is not the most suitable programming abstraction for an

autonomous machine since it may have serious side effects such as

uncontrolled jitter and an unbounded queue. Variability in

 7

communication delay and execution time in a physical system can

easily cause bursty data traffic on communication channels and

eventually deteriorate the resultant control quality to a significant

degree. To solve these problems, Splash provides rate control

semantics.

Splash also offers a language construct named fusion operator

that handles complex implementation issues caused by asynchronous

sensor inputs during the development of sensor fusion algorithms

[19,20]. Using the fusion operator, a programmer can clearly specify

temporal requirements of a fusion algorithm. Then, Splash provides

a runtime system that handles these issues automatically.

Finally, Splash provides mode change semantics that is often

used in real-time control systems. The Splash provide a language

construct named multimode factory to support multiple modes of

operations. A programmer can describe the behavior of each mode

and the specification of mode change. The Splash runtime system

then performs mode changes according to the programmer’s

specification. During the mode change, the consistency of data used

by sthreads is preserved.

The proposed language semantics of Splash achieves our key

design goals as follow:

(1) The Splash’s language semantics is designed to provide

programmers with an easy-to-use programming abstraction.

It allows programmers to focus on developing their business

 8

logic without worrying about the specific implementation

issues that arise during the development of an autonomous

machine.

(2) The Splash enables programmers to specify three essential

end-to-end timing constraints and provides timing semantics,

rate control semantics and sensor fusion semantics to satisfy

such constraints. Also, it supports exception handling

semantics to monitor and to handle the timing constraint

violation.

(3) In order to provide programming supports for the

development of real-time control systems, Splash provides

fusion semantics, mode change semantics and exception

handling semantics.

(4) To support development and performance optimization in the

multicore distributed computing platform, The Splash

provides multithread process model based on sthread and

build unit-based allocation

To show the effectiveness of our framework, we wrote a lane

keeping assist system (LKAS) as a Splash program example. We

then evaluated rate control mechanism, sensor fusion mechanism,

mode change mechanism and build unit-based allocation. First, the

jitter was reduced from 30.61 milliseconds to 1.66 milliseconds when

using a rate controller. As a result, average lateral deviation and

heading angle is also reduced from 0.180 meters to 0.016 meters

 9

and 0.043 rad to 0.008 rad, respectively. Second, we showed that the

fusion operator successfully satisfies temporal requirements that is

annotated in the program with 7 microseconds of run-time overhead.

Third, we showed that the mode change mechanism works as

intended, with a run-time overhead of only 0.53 milliseconds. Finally,

as we increased the number of build units from 1 to 8, the average

end-to-end latency was increased from 75.79 microseconds to

2022.96 microseconds. These results show that the language

semantics and runtime mechanisms proposed in this paper are

designed and implemented correctly.

1.3 Organization of This Dissertation

This dissertation is organized as follows. Chapter 2 explains the

background and related work of our work. Chapter 3 describes the

motivation and contributions of this dissertation. Chapter 4 explains

the underlying timing semantics of Splash. Chapter 5 then presents

language constructs of Splash. Chapter 6 explains runtime

mechanisms of Splash. Chapter 7 presents code generation and

Splash runtime system. Chapter 8 reports on the experimental

evaluation. Finally, Chapter 8 concludes the dissertation.

 10

Chapter 2. Related Work

This chapter presents background underlying Splash and related

work on (1) programming frameworks for an autonomous machine,

(2) runtime systems for an autonomous machine, (3) rate control, (4)

sensor fusion and (5) mode change.

2.1 Kahn Process Network

Kahn process network is a fundamental process network model

underlying the Splash programming language [17,18]. A KPN offers

a programming model in that developers are allowed to write an

application in a parallel way such that constituent processes are

independently written, allocated and executed on a multiprocessor

system such as a modern multicore system. Unlike thread

programming on a shared-memory machine, the KPN model helps

developers avoid error-prone issues such as data races and non-

determinism.

A KPN is rendered in a directed graph format, where for a given

graph 𝐺(𝑉, 𝐸):

 𝑉 is a set of processes. A process 𝑣𝑖 ∈ 𝑉 computes on data

items coming from its incoming edges to produce data items

on its outgoing edges.

 𝐸 ⊆ (𝑉 × 𝑉) is a set of unbounded unidirectional edges. An

 11

edge (𝑣𝑖, 𝑣𝑗) ∈ 𝐸 denotes a FIFO channel that is able to carry

data items of a given data type from the process 𝑣𝑖 to the

process 𝑣𝑗. There is no restriction on the number of incoming

edges or the number of outgoing edges for a process in a KPN.

A KPN may be either cyclic or acyclic.

 For syntactic clarity, a process in a KPN has an input port

connected to an incoming edge and an output port connected to an

outgoing edge as described in [18]. Figure 1 shows an example KPN

graph that has one source, one sink and a cycle.

The KPN model provides two predefined functions for processes:

get() and put(). A process uses get() to obtain a data item from a

channel connected to an input port. If the channel is empty, the

process stays blocked on get() until some data item is being sent

into the input port. A process calls put() to send a data item along a

Figure 1. Example of Kahn Process Network graph.

P2

Source P3 Sink

P1

P4

 12

channel connected to an output port. In contrast to get(), nothing

can block a process from performing put().

The behavior of a process is specified with a sequential program

written in an imperative programming language. Typically, a process

sequentially reads in data items from inputs ports, computes on the

data items and writes generated data items into output ports. A

process may skip reading data items from certain input ports, but this

leads to a problem of infinitely stored data on a channel. A KPN is

referred to as an effective process network if it is free of such

problem [21].

Each process in a KPN is viewed as a function that maps the

complete history of data items received on its input channels to the

complete history of data items emitted on its output channels. The

most intriguing property of a KPN is that the network is determinate.

A process network is determinate if and only if it defines a unique

history of data items on each channel between processes. Whereas a

process may have a private state, no shared state between any two

processes is allowed. This is required for maintaining the

determinacy of a KPN.

It is also shown that any two fair and maximal executions of a

KPN produce the same history of data items on each channel. A fair

execution is one that ensures that if any process is able to produce

an output data item or read an input data item, then it will eventually

be allowed to do so. A maximal execution is an execution that either

does not halt, or if it halts, has produced exactly every sequence

 13

defined by the network. This property is known as the Kahn principle

[22,23].

2.2 Firing Rule Applied to a Process

Lee et al. proposed a dataflow process network [24–26] that extends

the KPN by incorporating the notion of firing which was first

introduced by Dennis [27]. In a dataflow process network, the

behavior of a process is specified with a set of firings instead of a

sequential program with the functions get() and put(). A firing is

an atomic computation that consumes a finite number of input data

items and produce a finite number of output data items. A firing is

invoked if and only if its associated firing rule is satisfied.

A dataflow process with 𝑚 input ports and 𝑛 output ports has a

set 𝑈 = {𝑅1, 𝑅2, … , 𝑅𝑘} of firing rules. A firing rule 𝑅𝑖 = (𝑟𝑖,1, 𝑟𝑖,2, … , 𝑟𝑖,𝑚)

is a tuple that consists of finite sequences 𝑟𝑖,𝑗 of data items that will

be consumed from the 𝑗th input port when the process fires. A firing

rule 𝑅𝑖 is satisfied if and only if each sequence 𝑟𝑖,𝑗 in 𝑅𝑖 forms a

prefix of the sequence of unconsumed data items on the channel

connected to the 𝑗th input port.

Lee et al. also showed that a sufficient condition for a dataflow

process network to be determinate is that all processes in the

network are functional and a set of firing rules of each process is

sequential [24]. A process is functional if it is free from side effects,

i.e., the outputs of the process firing are purely a function of the

 14

inputs. A set of firing rules is sequential if the outputs are

independent of how a choice between firing rules is made when two

or more firing rules are satisfied at the same time.

2.3 Programming Framework for an Autonomous Machine

There is a plethora of graphical programming frameworks that

provides programming abstraction to programmers in the

development process of an autonomous machine. Representative

examples include RTMaps, Simulink and Ptolemy II [11–13]. Like

Splash, these frameworks are more or less based on the KPN model

and have some extensions to satisfy engineering needs that arise

during production-quality system development.

We set four design goals for these programming frameworks: (1)

they should provide easy-to-use, effective programming

abstraction, (2) they must support real-time stream processing for

machine intelligence, (3) they must provide programming supports

for a real-time control system and (4) they should support

performance optimization on distributed multicore computing

platform. We analyze the pros and cons of the above frameworks with

respect to these design goals.

Simulink is a commercial modeling framework which is widely

used particularly in automatic control and signal processing systems.

It offers as a primary programming abstraction a time-driven

process network model in that a process is triggered at periodic

 15

sampling time points specified by programmers. Simulink supports

the event-driven programming style as well, via an event port.

However, Simulink has several limitations to be used in the

development of an autonomous machine. First, it does not provide

programming abstraction for data-driven programming style that is

commonly used for stream processing. Second, it does not support

timing constraints annotation and handling which is essential for

supporting real-time stream processing. Third, it does not provide

language constructs for mode switch and exception handling that is

needed for the development of real-time control systems. Finally, it

does not have an explicit concurrency model inside a process.

RTMaps is well suited for the development of an application that

must deal with multiple sensors and actuators like an autonomous

machine. RTMaps supports time as a first-class entity and records

a timestamp on each data item. As result, it can offer a method for

specifying and handling freshness and correlation constraints. It

allows programmers to write applications in both data and time-

driven programming styles. However, it also has several limitations

to be used in the development of an autonomous machine. First,

RTMaps does not offer a language construct for asynchronous event

notification and handling. Second, it does not consider a rate

constraint in an explicit manner. Thus, programmers are left with a

burden to implement a rate control mechanism in user-level code by

themselves; or they need to rely on time-driven, periodic task

invocation to maintain a desired output rate. Either way, lower-level

 16

implementation details are exposed to users in the programming

abstraction of RTMaps. Third, it lacks support for real-time control

systems such as mode switch and exception handling. Finally,

RTMaps does not make a concurrency model explicit inside a process,

leaving programmers responsible for thread creation and

synchronization.

Ptolemy II is an academic programming framework that can

support a wide variety of process network models. It even allows

programmers to create an application using several different models

at the same time. Ptolemy II offers rich support for imperative

programing such as mode switch and exception handling. However,

most of the process network models of Ptolemy II lack support for

real-time stream processing. Only Ptide which is an experimental

model for academic research allows a freshness constraint to be

specified for a sensor value [28]. But it does not support a rate

constraint or a correlation constraint. Like RTMaps, Ptolemy II does

not specify a concurrency model or thread-to-core allocation inside

a process. Simply, it maps each process to a Java thread and

delegates thread scheduling to the underlying operating system.

2.4 Runtime Software for an Autonomous Machine

Since existing programming frameworks have limitations in the

development of an autonomous machine, many companies and

laboratories choose to develop autonomous machines without using

 17

these programming frameworks. ROS is a representative open-

source runtime software system that is commonly used to develop an

autonomous machine [29]. ROS comes with a publish-subscribe

communication mechanism for transferring data items between

processes in distributed systems and provides an interface for

programmers to easily use it. Also, it supports ROS package that

allows programmers to provide their own programs to other

developers as libraries. ROS has become a representative software

framework for the development of autonomous machines due to its

easy-to-use communication interface and vast developers’

community based on the ROS package.

However, when developing an autonomous machine using ROS,

most implementation issues except for inter-process communication

must be dealt with by the programmer. For example, ROS provides

no support for specifying and handling end-to-end timing

constraints. As a result, tuning and exception handling to satisfy

timing constrains should be carried out by the programmer himself.

Also, functions such as sensor fusion, mode change, and exception

processing are not supported by ROS.

In order to overcome the weaknesses of ROS, ROS 2 is currently

under development based on data distribution service (DDS), a

communication standard that supports real-time publish-subscribe

communication [15,30]. ROS 2 utilizes quality of service (QoS)

policies of DDS to provide features to reduce communication latency

or increase reliability of the transmission. However, each function is

 18

not yet fully implemented and verified since it is still in the early

stage of development [31].

2.5 Rate Control

In the processing of stream data items, serious problems such as

uncontrolled jitter and an unbounded queue can occur. Variability in

communication delay and execution time in a physical system can

easily cause bursty data traffic on communication channels and

eventually deteriorate the resultant control quality to a significant

degree.

Rate control is a technique that prevents bursty data traffic by

limiting the number of output data items that are generated per unit

time. Existing approaches on rate control can be classified as traffic

shaping and traffic policing, depending on how the bursty data traffic

is handled. Traffic shaping is a technique that delays the output data

items that are generated above the target rate, as shown in Figure 2.

In order to implement traffic shaping mechanism, we need a buffer to

temporarily store delayed data items. Traffic shaping has the

advantage of low data item loss because it stores the data items

instead of discarding them, but there is the disadvantage that

additional delays occur while storing the data items in the buffer.

Traffic policing is a technique that drops the data items that are

generated above the target rate, as shown in Figure 3. Traffic policing

incurs less additional delays compared to traffic shaping because data

 19

items are not stored in the buffer. However, the data item is always

lost if the data items are generated above the target rate.

The loss of data items on an autonomous machine is undesirable

since it causes a performance degradation of the control system.

Therefore, Splash chooses traffic shaping among the two rate control

methods to reduce the loss of data items. In addition, Splash includes

a mechanism to limit delays that occur during traffic shaping. The

Splash’s traffic shaper checks whether there will be a violation of a

freshness constraint before putting the data item into the buffer. It

only puts the data item in the buffer if there will be no violation of the

freshness constraint. If the violation might occur, it immediately

Figure 2. Traffic shaping.

Time

Traffic

Rate

Time

Traffic

Rate

Delay the

Items
Target
Rate

Target
Rate

Delay the

Items

 20

throws away the data item.

In the following sections, we introduce existing studies about

traffic shaping and traffic policing.

2.5.1 Traffic Shaping

Many stream processing frameworks support traffic shaping that

limits output stream rate at predefined target rate [32–34].

Tolosana-Calasanz et al. proposed a traffic shaper using token

bucket algorithm that is one of the most fundamental algorithm used

for rate control [32]. A token bucket-based traffic shaper has three

Figure 3. Traffic policing.

Time

Traffic

Rate

Time

Traffic

Rate
Drop the Items Drop the Items

Target
Rate

Target
Rate

 21

parameters: 𝑅, 𝐶 and 𝑏. Among three parameters, token generation

rate 𝑅 and buffer capacity 𝐶 are predefined constants. On the other

hand, bucket size 𝑏 is a variable that changes during the execution

of the algorithm. 𝑏 is initialized to zero at the beginning of the

algorithm and increases at a rate of 𝑅 over time until 𝑏 reaches 𝐶.

When the token bucket-based traffic shaper receives a request to

output a data item, it checks whether 𝑏 is larger than the size of the

data item to be produced. If 𝑏 is larger, the traffic shaper subtracts

𝑏 by the size of the data item and outputs the data item. If 𝑏 is not

larger, it puts the data item into the buffer and wait until 𝑏 becomes

large enough to be produced.

Amini et al. proposed a resource management and traffic shaping

technique to maximize throughput on distributed stream processing

systems [33]. In the first step, it determines on which processing

node the processing elements are to be executed. A processing

element the basic unit of stream processing. In the second step, the

target input and output rate of each processing element is derived

based on the placement of the processing elements. It then uses

token bucket-based traffic shapers to meet the target rates.

However, [32,33] have no guarantees about the delay incurred while

storing data items in a buffer, which is an inherent problem of traffic

shaping, and thus there is a limitation to use them in the real-time

stream processing applications.

In order to overcome this limitation, Ernesto conducted a study

to bound the maximum delay and the maximum buffer size of traffic

 22

shaper [34]. They used real-time calculus that extends network

calculus during the analysis of traffic shaper [35,36]. The proposed

approach takes two inputs: (1) upper and lower arrival curve that

specifies the maximum and minimum number of incoming data items

of each stream input and (2) upper and lower service curve that

specifies the maximum and minimum capacity of each resource.

These inputs are then used to calculate the maximum latency and

maximum buffer size of the traffic shaper. However, this approach

also has limitations since it is difficult to specify tight upper and lower

arrival and service curves in many practical applications.

All the aforementioned approaches perform traffic shaping using

a predetermined target rate. There are traffic shaping mechanisms

that vary the target rate at runtime. One of the representative

mechanisms is RADAR [37] which is designed for distributed stream

processing systems. This approach monitors application delays and

system loads, and dynamically determines the target rate of the

traffic shaper based on the monitored information. While doing so, it

utilizes Lagrange Multiplier technique to maximize the system

utilization of the target system.

2.5.2 Traffic Policing

[38,39] introduced traffic policing mechanisms that drop data items

when a predefined target rate exceeds. However, these approaches

are rarely used recently since they cause excessive data item loss

 23

every time bursty data traffic occurs.

In contrast, many traffic policing approaches have been proposed

to detect bursty data traffic without a predefined constant target rate.

This type of techniques is also called load shedding. Aurora is one of

the representative database management systems (DBMS) for

stream data that supports load shedding [40]. It provides

programmers with continuous queries for manipulating stream data,

and a runtime system that processes the requested queries

efficiently. Aurora lets programmers specify a QoS (quality of

service) function that takes output delays, data item loss rate, output

values as input. When bursty data traffic occurs, the runtime system

drops data items in such a way that the QoS is maximized.

Simmhan et al. proposed a traffic policing mechanism that adjust

target rate based on the application’s context [41]. A programmer

sets the minimum and maximum threshold of the target rate and

describes a policy that adjusts the target rate. Then, the proposed

approach automatically updates the target rate according to the policy

at runtime.

2.6 Sensor Fusion

Multisensor data fusion, or sensor fusion, is a technique that

estimates information about nearby situation by processing data from

multiple sensors [5,42]. Sensor fusion-based algorithms are widely

used in real-time control systems since they have higher accuracy,

 24

reliability and robustness than algorithms using a single sensor. For

example, an autonomous vehicle, one of the representative

autonomous machines, fuses various sensors such as camera, LiDAR

and radar to perform recognition algorithms such as object detection

and localization [43–45].

The research on sensor fusion can be divided into measurement

fusion and situation fusion. The measurement fusion receives raw

measurement data from each sensor and performs sensor fusion

[43,46–48]. In contrast, the situation fusion first estimates the

situation individually for each sensor, and then uses the results to

perform sensor fusion [44,45,49]. In the following sections, we

introduce existing studies about measurement fusion and situation

fusion.

2.6.1 Measurement Fusion

The measurement fusion takes a set {𝑧1, 𝑧2, … , 𝑧𝑚} of measurements

from each sensor as inputs and outputs an estimation 𝑠̃ of the current

situation 𝑠 as shown in Figure 4. It is also called low-level sensor

fusion because it performs sensor fusion on raw sensor data.

Programmers have high degree of freedom when developing

algorithms with the measurement fusion because they have access to

raw data from all sensors. However, the measurement fusion has

limitations to be used in the distributed systems. First, it is difficult

to distribute work throughout machine since the process for fusion

 25

should do all the work for estimation alone. Second, excessive

communication overhead occurs in transferring large raw data

between processes.

The most primitive form of measurement fusion is stateless

fusion. In the stateless fusion, an estimation 𝑠̃ of the situation 𝑠 is

computed through a pure function of a set {𝑧1, 𝑧2, … , 𝑧𝑚} of

measurements currently arrived. It does not use any state during the

estimation. However, these stateless fusion algorithms are

vulnerable to sensor’s noise or malfunctions because they do not

utilize past results of the estimation. Therefore, they are rarely used

in recent research on sensor fusion.

In the other hand, state fusion computes an estimation 𝑠̃ of the

situation 𝑠 using a function of a set {𝑧1, 𝑧2, … , 𝑧𝑚} of measurements

and its internal state 𝜑. Unlike stateless fusion, state fusion outputs

a more stable and robust results since past estimations are reflected

in the state 𝜑.

Drolet et al. proposed a positioning system using an underwater

Figure 4. Measurement fusion.

Measurement

Fusion…

𝑠̃

𝑧1

𝑧2

𝑧𝑚

 26

positioning sensor and an accelerometer for underwater ROV

(remotely operated vehicle) [46]. The proposed approach

periodically invokes a fusion algorithm that estimates the current

position of the ROV using the Kalman filter [50,51]. Since

measurements may not yet arrive from some sensors at the time of

invocation, the fusion algorithm performs estimation by selecting one

of Kalman filters according to the currently available input

combination.

Liu et al. proposed a sensor fusion-based moving object

detection and tracking for self-driving cars [47]. This approach

takes measurements from camera and radar sensor as inputs and

estimates the position, velocity and acceleration of objects near the

ego vehicle. Unlike [46], Liu took the data-driven processing. The

fusion algorithm is invoked whenever a measurement from the radar

sensor is received. This is because the measurement frequency of

the radar is relatively lower than that of the camera. On invocation,

the fusion algorithm performs estimation using the radar input and a

set of the camera inputs that have arrived after the previous

invocation.

Geneva et al. presented a localization technique that estimates

the current position of an autonomous vehicle using GPS, camera and

LiDAR sensors [48]. Similar to [47], this approach also calls a

fusion algorithm when the measurement from the LiDAR, which has

the lowest frequency, comes in. The proposed approach additionally

performs linear interpolation and extrapolation on the sensor inputs

 27

that did not arrived on invocation and use them as the inputs of the

algorithm.

Cho et al. proposed a multi-sensor fusion system for moving

object detection and tracking in urban driving environments [43].

The proposed approach takes cameras, LiDAR and radar sensors as

inputs and outputs the estimation of position, velocity and

acceleration of nearby objects. It also takes the data-driven

processing, but it invokes the fusion algorithm every time a

measurement comes in from any one of sensors.

As a result of analyzing the existing approaches on measurement

fusion, the programming framework should support two important

implementation issues: (1) it should allow the programmer to specify

the triggering condition for the fusion algorithm and (2) it must

enable the programmer to determine which of the measurement from

each sensor to select as input to the fusion algorithm. In Splash, we

provide a language construct named fusion operator to meet these

requirements. More information about the fusion operator is covered

in Chapter 5.

2.6.2 Situation Fusion

The situation fusion first computes the estimation 𝑠̃𝑖 of the situation

𝑠 using the measurement 𝑧𝑖 from each sensor, then fuses a set of

estimations {𝑠̃1, 𝑠̃2, … , 𝑠̃𝑚} of 𝑠 to compute the final estimation 𝑠̃ .

Figure 5 shows the overall architecture of the situation fusion. It is

 28

also called high-level sensor fusion since it performs sensor fusion

on the high-level data that has already been processed once.

Programmers have relatively low degree of freedom when developing

algorithms with the situation fusion. However, the situation fusion has

advantages to be used in the distributed systems. First, it is easier

to distribute work throughout machine since the tasks for estimation

are divided between the processes of estimating using individual

sensors and the process of fusing individual estimations. Second, the

amount of data communication is reduced because the size of

estimation 𝑠̃𝑖 is smaller than the measurement 𝑧𝑖 in most cases [42].

In the situation fusion, each sensor’s noise or malfunction is

handled in per-sensor estimation phase. Therefore, the situation

fusion assumes that reliable and robust estimations are taken as

inputs and uses stateless fusion to merge a set of estimations.

Floudas et al. proposed two sensor fusion techniques for object

detection in self-driving cars using the camera and radar sensors

Figure 5. Situation fusion.

Situation

Fusion
𝑠̃

Situation

Estimation

𝑠̃1

Situation

Estimation

𝑠̃2

𝑧1

𝑧2

𝑧𝑚
Situation

Estimation

𝑠̃𝑚

…

 29

[49]. First, they introduced the track-level fusion that first

estimates the position and size of objects on the road using each

sensor, then merges them together using multidimensional data

association [52]. Second, they proposed the grid-based fusion that

computes occupancy grid which maintains probabilistic estimates of

the occupancy state of each cell in a lattice for each sensor, and

combines them together using Bayesian inference [53].

Chavez-Garcia and Aycard proposed a sensor fusion method that

merges the results of object detection using camera, radar and LiDAR

sensors [45]. Similar to [49], they used the data association

technique. The proposed approach determines whether two objects

detected by different sensors are identical by using information such

as the location, shape and type of the objects.

Zhang et al. presented a semantic segmentation method using

camera and LiDAR sensor for autonomous vehicle [44]. The

proposed approach uses separate classifiers in each sensor to

perform semantic segmentation. It then trains an additional classifier

named a fusion classifier with previous classifier outputs

incorporated as input features for regions with overlapping sensor

coverage. They used the stacking hierarchical labeling to train the

fusion classifier [54].

Existing studies on situation fusion assumes that they use

temporally synchronized sensors as inputs. However, to be deployed

to the real platform, they must handle implementation issues caused

by asynchronous sensors. Like the measurement fusion, the situation

 30

fusion also should allow the programmer to specify the triggering

condition and enable the programmer to determine which of the

measurement from each sensor to select as inputs.

2.7 Mode Change

The functional and non-functional requirements of the real-time

control system of an autonomous machine can vary depending on the

situation. One of the example system with variable requirements is

an aircraft control system. It has different requirements depending

on the situation of the aircraft, such as take-off, normal cruise,

landing and emergency [55].

The real-time control systems with varying requirements must

support a multimode system which can change its internal execution

logic depending on the situation [55–57]. A multimode system is

defined through a set of modes and a set of mode changes. Each mode

is presented by a set of tasks that are executed in the mode. One of

these modes is designated as the initial mode. Each mode change

specifies which mode the system should change to when a particular

event occurs.

In the mode change process, there is a transient state where the

tasks of the previous mode remain and the tasks of the next mode

are not prepared. Mode change techniques are classified into two

categories depending on how the transient state is handled. The first

category is a synchronous mode change that starts the execution of

 31

next mode tasks after completing the previous mode tasks. This type

of mode change has the disadvantage that the start time of the next

mode tasks is relatively late, but there is no performance

interference between the previous mode tasks and the next mode

tasks.

The second category is an asynchronous mode change that starts

the execution of next mode tasks before completing the previous

mode tasks. The asynchronous mode change can start the next mode

tasks faster than the synchronous mode change. However, there is

performance interference between the previous mode tasks and the

next mode tasks. In order to use asynchronous mode change in real-

time control systems, delays due to these performance interferences

should be analyzed in advance to ensure that all tasks complete their

execution in time.

Splash selects a synchronous mode change that can prevent

performance interference between tasks in the previous and next

modes. To overcome the limitations of the synchronous mode change,

Splash provides a runtime mechanism that tries to finish the

execution of the previous mode tasks as soon as possible.

The following subsections explain existing approaches about the

synchronous and asynchronous mode change.

2.7.1 Synchronous Mode Change

Tindell and Alonso proposed a simple synchronous mode change

 32

mechanism that waits for all CPUs to become idle before starting the

tasks in the next mode [58]. When all CPUs became idle, a task

named mode changer prevents further execution of previous mode

tasks and starts running the next mode tasks. The proposed approach

takes a long time to change modes since it should wait indefinitely

until all the tasks in the previous modes are finished.

Real proposed a synchronous mode change that reduces the

delay incurred during the mode change [59]. It prevents tasks of

previous mode from starting additional job after a mode change event

occurs. When the tasks in the previous mode are finished, the next

mode tasks are started. Unlike [58], the mode change delay of this

approach is bounded to a constant.

2.7.2 Asynchronous Mode Change

Sha et al. proposed an asynchronous mode change scheme [62] for

systems that use rate monotonic scheduling [60] and priority

inheritance protocol [61]. This approach performs a schedulability

analysis based on the current CPU utilization when the next mode

task is requested. It allows the task to start only when the

schedulability analysis is passed. If not, it should wait for the tasks

in the previous mode to be completed and it passes the schedulability

analysis.

Tindell et al. proposed an asynchronous mode change mechanism

[64] for systems that use deadline monotonic scheduling [63]. The

 33

proposed approach prevents the previous mode tasks from starting a

new job after a mode change event occurs, and allows the execution

of the next mode tasks after the end of the previous mode tasks’

period. They provided a method to perform a schedulability analysis

for the proposed approach so that it can be used in real-time systems.

 34

Chapter 3. Motivation and Contributions

This chapter explains the motivation of the Splash. First, Section 3.1

defines the problems we are trying to solve. Then, Section 3.2

explains the limitations of the KPN. Finally, Section 3.3 describes the

main contribution of this dissertation.

3.1 Problem Description

This dissertation aims to propose Splash, a new graphical

programming framework for autonomous machines. Splash should

achieve four key design goals. First, it should provide an easy-to-

use, effective programming abstraction that can hide implementation

details and supports a model-based code generation capability.

Second, it must support real-time stream processing for deep-

learning based machine learning intelligence. Third, it must provide

programming support for real-time control system of autonomous

machine such as sensor fusion and mode change. Finally, it needs to

support performance optimization of software system running on a

heterogeneous multicore distributed computing platform.

We describe the issues that Splash must address to achieve its

four goals. First, Splash must provide programming abstraction for

three distinct programming style: time-triggered, event-triggered

and data-triggered. Programming an autonomous machine is a

collaborative effort among developers having diverse technical

 35

backgrounds such as control engineers, software programmers, and

AI engineers. Whereas control engineers favor time-driven

triggering such that periodically invoked tasks execute the control

algorithms, AI engineers prefer data-driven triggering such that an

incoming data item on a channel wakes up a handler task. On the other

hand, software programmers often rely on event-driven triggering.

In order for Splash to effectively support collaboration between them,

all three programming styles must be supported without restriction.

Also, support for integration between them should be provided.

Second, Splash must support specifying and handling end-to-

end timing constraints for real-time stream processing.

Programmers should be able to specify the genuine, end-to-end

timing constraints: freshness constraint, correlation constraint and

rate constraint while developing the Splash program [65]. Also, it

should provide a best-effort runtime system to satisfy the timing

constraints annotated in the program, and exception handling

mechanism to monitor and handle violations of such constraints.

Third, Splash should provide programming support for real-time

control systems, such as sensor fusion and mode change. Since many

sensors on autonomous machines are not timely synchronized,

complex implementation issues arise while performing sensor fusion,

such as determining the triggering condition, selecting input data

items for the fusion algorithm and handling timeout. Similarly, in the

case of mode change, complex implementation issues arise in order

to develop safe and fast mode change mechanism, such as processing

 36

data items in transition state and ensuring consistency of shared data.

Splash should provide a programming abstraction that can hide these

implementation details.

Finally, Splash should provide multithreaded process model to

exploit parallelism explicitly from the distributed multicore

computing platform. In addition, it should help programmers easily

determine where to execute the processes and threads on the

distributed multicore computing platforms.

3.2 Limitations of Kahn Process Network

Splash is based on the KPN, a process network that offers a

programming model in that developers are allowed to write an

application in a parallel way such that constituent processes are

independently written, allocated and executed on a multiprocessor

system. The KPN model helps developers avoid error-prone issues

such as data races and non-determinism. In accordance with these

advantages, many programming models provided a programming

abstraction based on the KPN [24,66–69].

However, the pure form of the KPN cannot be used directly in

the programming framework for the automatic machine because it

fails to achieve our design goals. First, the KPN only supports the

data-driven processing and does not support the time-driven or

event-driven processing. Also, the KPN has inherent practical

limitations in terms of the expressibility of program logic and the

 37

performance of a resultant system. This is because the KPN model

is based on many simplifying restrictions such as freedom of global

side effects to achieve determinacy.

Second, the KPN lacks support for real-time processing. It does

not support the specification and handling of end-to-end timing

constraints. Therefore, developers still have to resort to time-

consuming and error-prone manual tuning in the implementation

phase of an autonomous machine to meet such timing constraints.

Third, the KPN provides not support for sensor fusion or mode

change. Therefore, when developing a sensor fusion algorithm,

programmers must deal with complex implementation issues such as

triggering the algorithm, selecting input data items and handling

timeouts. Also, when implementing a mode change mechanism,

programmers should handle implementation issues such as keeping

consistency of shared data.

Finally, the KPN does not support multithreaded process model,

leaving programmers responsible for thread creation and

synchronization. In addition, it does not support any programming

abstraction for performance optimization in distributed multicore

computing platforms.

As a consequence, they are still in need of a high level

programming paradigm that has a versatile programming abstraction

for specifying the complex software architecture of an autonomous

machine. We present a new programming framework named Splash

to address such grave problems arising in programming an

 38

autonomous machine. Splash eliminates the determinism, one of the

benefits of the KPN, but instead effectively achieves all four core

goals of this paper.

3.3 Contributions of this Dissertation

In this thesis, we propose a new graphical programming framework

for an autonomous machine that overcomes the KPN’s limitations

described in the previous section. The main technical contributions

can be summarized as below.

 Providing a best-effort runtime system that tries to meet the

annotated timing constraints and exception handling

mechanisms to monitor the violation of such constraints

- We propose a graphical programming language that allows

developers to specify three genuine end-to-end timing

constraints: freshness constraint, correlation constraint

and rate constraint. Splash provides a best-effort runtime

system to satisfy the timing constraints annotated in the

program. It also supports exception handling mechanism

to monitor and handle timing constraint violations at

runtime.

 Introduction of the sthreads and the build units for

development in distributed multicore computing platforms

- In order to exploit parallelism explicitly from the

 39

underlying operating system and distributed multicore

computing platform, Splash offers a multithreaded

process model. In the multithreaded process model, a

processing component consists of a group of sthreads that

are logical entities of independent execution. As an

sthread is an abstract entity, it needs to be mapped to a

process and a thread of an underlying operating system

during the system implementation process. To facilitate

this process, Splash offers an allocation entity called a

build unit.

 Integrating three distinct triggering styles: time-driven, data-

driven and event-driven

- To be an effective programming language with sufficient

expressibility, Splash supports all the three triggering

styles in a unified manner. Among the three, Splash takes

the data-driven triggering as the default style, unless

specified otherwise. We notice that the data-driven

triggering in its purest form is not the most suitable

programming abstraction for autonomous machine

developers since it may have serious side effects such as

uncontrolled jitter and an unbounded FIFO queue. To

solve this problem, Splash offers rate control semantics.

 Introduction of the fusion operator to effectively handle timing

issues in sensor fusion

- We propose a language construct named fusion operator

 40

to automatically handle the complex time synchronization

issues of sensor fusion. The fusion operator provides a

fusion rule and a fusion function that can be used by

programmers to clearly specify the triggering condition

and input data item selection policy of the fusion algorithm.

We also introduce a runtime mechanism that automatically

satisfies the conditions specified using the fusion operator.

 Support for mode change to satisfy the variable requirements

of the real-time control systems

- Splash provides a language construct named multimode

factory to support multiple modes of operations. A

programmer can describe the behavior of each mode and

the specification of mode change. The Splash runtime

system then performs mode changes according to the

programmer’s specification. During the mode change, the

consistency of data used by sthreads is preserved.

 41

Chapter 4. Underlying Timing Semantics of Splash

Time is a first-class entity in Splash. This chapter explains Splash’s

underlying timing semantics that is the basis for the all other language

semantics provided by the Splash. Section 4.1 introduces three

genuine end-to-end timing constrains required by autonomous

machines. Section 4.2 describes the global time base that Splash

provides to handle end-to-end timing constraints. This section also

introduces in-order delivery semantics that is the most basic

programming abstraction provided by Splash. Finally, Section 4.3

explains three distinct computing models which Splash deals with.

4.1 End-to-End Timing Constraints

Splash supports three types of genuine, end-to-end timing

constraints [65].

(1) A freshness constraint on a single sensor value

 It bounds the time it takes for a sensor value to flow

through the system. A sensor value will become useless

if it exceeds the freshness constraint since a sensor value

gets stale with time.

(2) A correlation constraint on multiple sensor values

 It limits the maximum time difference among a group of

distinct sensor values used for sensor fusion.

 42

(3) A rate constraint on an output port of a process

 It defines the number of output data items produced per

second. A rate constraint is a soft real-time constraint in

a sense that the Splash runtime tries its best to minimize

the jitter between consecutive data items on a channel but

cannot guarantee that the stream output port is jitter-free.

Developers can explicitly annotate these three types of timing

constraints via language constructs in a Splash program. The Splash

runtime provides mechanisms to satisfy annotated timing constraints

as much as possible. It also raises an exception if it detects the

violation of the timing constraint at runtime.

4.2 Global Time Base and In-order Delivery

Reading the time in a Splash program is supported by an abstract

global clock that is possibly implemented via distributed local clock

synchronization such as precision time protocol(PTP) [70,71]. In

Splash, a data item that flows through the system carries the

timestamps of noticeable event occurrences associated with it. The

primary timestamp required for a data item is its own creation time.

Often, this time stamp is created through a sensor. We call this the

birthmark of a data item.

In Splash, every live data item is assigned with its own birthmark.

The birthmark can also be inherited from its oldest ancestor if the

 43

data item is generated by an intermediate process. Enforcing time

constraints involves comparing the birthmark of a data item with the

current time provided by the abstract global clock. The ways of

handling each type of timing constraint is covered in more detail in

the next chapter.

4.3 Integrating Three Distinct Computing Models

Programming an autonomous machine is a collaborative effort among

developers having diverse technical backgrounds such as control

engineers, software programmers and AI engineers. Whereas control

engineers favor time-driven triggering such that periodically invoked

tasks execute the control algorithms, AI engineers prefer data-

driven triggering such that an incoming data item on a channel wakes

up a handler task. On the other hand, software programmers often

rely on event-driven triggering. To be an effective programming

language with sufficient expressibility, Splash supports all the three

triggering styles in a unified manner.

Among the three, Splash takes the data-driven processing as the

default style, unless specified otherwise in a program. The data-

driven processing is the most commonly used programming style in

data stream processing [72,73]. However, we noticed that the data-

driven triggering, in its purest form, was not the most suitable

programming abstraction for an autonomous machine since it may

have serious side effects such as uncontrolled jitter and an

 44

unbounded FIFO queue on a port. Variability in communication delay

and execution time in a physical system can easily cause bursty data

traffic on communication channels and eventually deteriorate the

resultant control quality to a significant degree. To solve these

problems, Splash provides a programming abstraction for rate control.

The details are explained in the next chapter.

 45

Chapter 5. Splash Language Constructs

A Splash program consists of processing nodes and edges between

two processing nodes. In the Splash terminology, a node and an edge

are called a component and a channel, respectively. A component in

a Splash program is either an atomic component or a composite

component. A composite component is also called a factory. Atomic

components are further classified into four different types: (1) a

processing component, (2) a source component, (3) a sink

component and (4) a fusion operator. Figure 6 shows the hierarchical

relationships among the diverse Splash components in the UML

diagram format.

The Splash component can have stream input ports and stream

output ports. The stream output port of an upstream component is

connected to the stream input port of a downstream component and

such connection creates a channel. Figure 7 shows a sample Splash

Figure 6. Hierarchy of Splash components.

Component +component

0..*

Atomic

Component
Factory

Sink

Component

Source

Component

Processing

Component

Fusion

Operator

 46

program that consists of various components, channels and ports.

5.1 Processing Component

The most essential language construct in Splash is a processing

component since it actually performs computation on input data items

and produces output data items. Surely, a processing component

serves as a building block for constructing a Splash program. Figure

8 shows the graphical representation of a processing component with

two stream input ports and two stream output ports.

In order to exploit parallelism explicitly from the underlying

operating system and computing platform, Splash offers a

Figure 7. Splash program example: 2D object detection.

2D Object Detection

Detect

Objects

Interpolate

Objects

Track

Objects

Camera

Image Labeled

Objects

Figure 8. Processing component.

.

 47

multithreaded process model. In the multithreaded process model, a

processing component consists of a group of Splash threads we call

sthreads. An sthread is a logical entity of independent execution

inside a processing component. The sthreads are classified into

dedicated sthreads that are attached to each stream input port and

internal sthreads that are generated from other sthreads. When using

an internal sthread, a programmer should specify which sthread the

internal sthread is created from. The programmer must also specify

which stream output ports each sthread writes to. Then, Splash

automatically generates code based on information specified by the

programmer. Figure 9 shows a processing component example where

a dedicated sthread is attached to each port and internal sthreads

serve as worker threads as in the concurrent server design pattern

[74].

Figure 9. Processing component and its sthreads.

Dedicated

Sthread

Internal

Sthread

Dedicated

Sthread

Internal

Sthread

Input Port 1

Input Port 2

Output Port 1

Output Port 2

 48

A source component is an atomic component that produces

stream data items from a sensor. It has a single stream output port.

Figure 10 shows the graphical representation of a source component.

All data items produced from a source component must have its

own birthmarks. The programmer of a source component is

responsible for recording a birthmark. An exception is raised

whenever a data item without a birthmark is found at runtime.

Programmers can annotate a freshness constraint on a source

component. Such freshness constraint is automatically recorded on

all data items generated by the source component. The Splash

runtime checks whether a data item violates its freshness constraint

each time it is enqueued into or dequeued from a FIFO queue on a

channel. If a freshness constraint is violated, the data item is

discarded immediately. Programmers may regard it as an exception

and execute a handler.

A sink component is an atomic component that consumes stream

data items and delivers each of them to an actuator. It has a single

stream input port and no stream output port. The graphical

Figure 10. Source component.

Figure 11. Sink component.

 49

representation of a sink component is shown in Figure 11.

5.2 Port

Splash supports three types of ports: (1) stream input/output ports

for sending and receiving stream data, (2) event input/output ports

for delivering events and (3) mode change input/output port for

passing mode change signals. Each port type has a unique graphical

symbol as shown in Table 1.

A stream output port is connected to a stream input port via a

channel. We differentiate from a channel a connection between event

ports or a connection between mode change ports. Such connections

carry control signals or discrete data items, instead of a data stream.

We refer to them as control links or clinks for short.

Input and output port types are the subtypes of the port type as

described in Figure 12. Each port type is associated with one of three

port interfaces: stream, event and mode change port interfaces.

Table 1. Graphical Symbols for Ports

Port Type Input Output

Stream

Port

Event

Port

Mode

Change

Port

 50

Clearly, an output port and an input port connected by a channel or a

clink must share the same port interface. Figure 13 shows the three

port interfaces. As in the figure, each port interface has a data type

for data items it sends or receives. A data type can be a primitive

data type or a composite data type. Splash supports five primitive

Figure 12. Input and output ports as subtype of port.

Port+port

1..*

InputPort OutputPort

PortInterface

+inputInterface +outputInterface1 1

Component

Figure 13. Hierarchy of port interfaces.

PortInterface

StreamInterface ModeChangeInterfaceEventInterface

1..*+dataItem

DataType

1..* 1..*+mode+event

 51

data types: (1) a Boolean type, (2) an integer type, (3) a real type,

(4) a character type and (5) a string type. Splash supports two

composite data types: (1) arrays and (2) records.

Splash developers can annotate a rate constraint on a stream

output port. Also, programmers can selectively specify a stream

output port as a rate-controlled stream output port. Then the Splash

code generator transparently attaches a rate-controlling module to

the stream output port. We call the module a rate controller, which

reduces jitter and bounds the maximum FIFO queue size, at the cost

of tolerable delay of a data item. The existence of a rate controller is

hidden from programmers. Figure 14 pictorially depicts a stream

output port annotated with a desired data generation rate. The stream

output ports that have been augmented with rate controllers are

marked with a different symbol for the user to distinguish from the

ones that are not.

By definition, a stream output port with a rate constraint 𝑟 is

assigned a time window of size 1/𝑟 . The semantics of a rate-

controlled stream output port is that it will guarantee the production

of exactly one data item in each time window. More formally, the port

will generate one data item each time interval [𝑡0 + 𝑛/𝑟, 𝑡0 + (𝑛 + 1)/𝑟)

Figure 14. Rate-controlled stream output port.

Output Port Attributes

Rate Constraint 30Hz

 52

where 𝑡0 is the time when the first data item is generated, and 𝑛 is

an index starting from 0. Figure 15 shows the behavior of the rate-

controlled output stream port.

The rate-controlled stream output port generates two types of

outputs. The first output is a genuine data item while the second

output is an extrapolation command. A rate-controlled stream output

port yields a genuine data time if it has a data item to send within the

current time window; otherwise, it outputs an extrapolation command.

When a processing component receives an extrapolation command

from its stream input port, it must invoke a function that performs a

required extrapolation task. Splash enables programmers to write an

extrapolation handler for a processing component associated with a

stream input port connected to a rate-controlled stream output port.

5.3 Channel and Clink

A channel is a delivery path for steam data. It is represented by a

solid line from a stream output port to a stream input port. Figure 16

shows the graphical representation of a channel.

In order to store data items on a channel until they are consumed

Figure 15. Behavior of a rate controller.

1/𝑟

𝑡0 𝑡0 +
1

𝑟
𝑡0 +

𝑟
𝑡0 +

𝑟
𝑡0 +

𝑟
𝑡0 +

𝑟

Time

 53

by a downstream component, a queue is used. In Splash, a queue is

considered to be on the stream input port of the downstream

component instead of the stream output port of the upstream

component. The fan-in of a channel is restricted to one, but the fan-

out of a channel can be greater than one. Figure 17 shows a channel

with three fan-outs to distinct stream input ports. Where a channel

is connected to multiple input ports, all data items generated from an

output port are replicated and enqueued into each of the FIFO queues

on the input ports of downstream components.

A clink is a delivery path for events and mode change signals. It

is represented by a dotted line from an output port to an input port.

Figure 16. Channel.

Figure 17. Channel with three fan-outs.

 54

Figure 18 shows the graphical representation of a clink between

event ports and a clink between mode change ports. Unlike channel,

both fan-in and fan-out of a clink can be greater than one.

The graphical presentation of clinks can be omitted to reduce the

complexity of the program. In this case, the connections between

event ports and mode change ports should be indicated using a table.

5.4 Fusion Operator

A fusion operator is a component that merges multiple stream data

into a single stream data. It has multiple stream input ports and one

stream output port. The graphical representation of a fusion operator

is shown in Figure 19. Fusion operators provide a way for

programmers to handle the complex implementation issues of sensor

fusion algorithms. Specifically, the programmer can use the fusion

operator to clearly describe two issues: (1) specifying triggering

Figure 18. Clinks.

 55

conditions of the fusion algorithm and (2) choosing which data items

in the input queues to use as inputs for the fusion algorithm.

A fusion operator with a set of 𝑚 stream input ports 𝑃 =

{𝑝1, 𝑝2, … , 𝑝𝑚} has a fusion rule 𝑅 associated with a fusion function 𝑓.

A fusion rule 𝑅 is defined as follows.

DEFINITION 1: A fusion rule 𝑅 = (𝑀,𝑂, 𝜃, 𝑐) is a tuple where 𝑀 ⊆ 𝑃 is

a set of mandatory ports and 𝑂 ⊆ 𝑃 is a set of optional ports (𝑀 ∩

𝑂 ≠ ∅). Also, 𝜃 is optional ports threshold and 𝑐 is a correlation

constraint. Let (𝑑1, 𝑑2, … , 𝑑𝑚) be an input tuple where 𝑑𝑖 is a data

item placed in the input queue of the port 𝑝𝑖 or an empty data item.

If 𝑑𝑖 is an empty data item, we denote it as 𝑑𝑖 = ⊥. For 𝑅 to be

satisfied, there must exist an input tuple (𝑑1, 𝑑2, … , 𝑑𝑚) that meets the

following conditions.

(1) For any mandatory port 𝑝𝑖 ∈ 𝑀, the data item 𝑑𝑖 is placed in

the input queue of 𝑝𝑖

(2) Let us denote the number of optional ports 𝑝𝑖 ∈ 𝑂 where the

data item 𝑑𝑖 is placed in the input queue of 𝑝𝑖 as

Figure 19. Fusion operator.

 56

𝑛(𝑂, (𝑑1, 𝑑2, … , 𝑑𝑚)). Then, 𝑛(𝑂, (𝑑1, 𝑑2, … , 𝑑𝑚)) ≥ 𝜃𝑖.

(3) For any two data items 𝑑𝑖 and 𝑑𝑗 , |𝑏(𝑑𝑖) − 𝑏(𝑑𝑗)| ≤ 𝑐 where

𝑏(𝑑) is the birthmark of a data item 𝑑 (𝑑𝑖 ≠ ⊥, 𝑑𝑗 ≠ ⊥).

We call (𝑑1, 𝑑2, … , 𝑑𝑚) an input tuple that satisfies the fusion rule 𝑅.

A fusion operator invokes its fusion function 𝑓 when its fusion

rule 𝑅 is satisfied. On invocation, 𝑓 produces an output data item

using an input tuple that satisfies 𝑅. If more than one such input

tuple exists, the fusion operator selects one that meets the following

two goals.

(1) A fusion operator first chooses a data item with smaller

birthmark to build an input tuple. By processing older data

items first, we can reduce the number of freshness constraint

violation of data items stored in the input queues.

(2) A fusion operator tries to select data items from as many

optional ports as possible. This is to provide the fusion

algorithm with information from as many sensors as possible.

However, in the case of conflict between (1) and (2), the

fusion operator prioritizes (1).

We denote a set of input tuples that satisfy a fusion rule 𝑅 as

𝑉(𝑅). We now define a binary relation over 𝑉(𝑅) as follows.

 57

DEFINITION 2: For any two input tuples (𝑑1, 𝑑2, … , 𝑑𝑚) ∈ 𝑉(𝑅) and

(𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′) ∈ 𝑉(𝑅) that satisfy a fusion rule 𝑅 = (𝑀,𝑂, 𝜃, 𝑐) , we

define a binary relation (𝑑1, 𝑑2, … , 𝑑𝑚) ≤ (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′) on 𝑉(𝑅) by

 For any mandatory port 𝑝𝑖 ∈ 𝑀, 𝑏(𝑑𝑖) ≤ 𝑏(𝑑𝑖
′).

 Let 𝐷(𝑂, (𝑑1, 𝑑2, … , 𝑑𝑚)) be a set of data items stored in the

input queue of any optional port among 𝑑1, 𝑑2, … , 𝑑𝑚. Also, let

𝑙(𝑘, 𝑆) be a birthmark of the 𝑘th oldest data item in a set 𝑆 of

data items when 𝑘 ≤ |𝑆|, and ∞ when 𝑘 > |𝑆| (⊥ ∉ 𝑆). For any

integer 𝑘 where 1 ≤ 𝑘 ≤ |𝑂|, the following inequality holds.

𝑙(𝑘, 𝐷(𝑂, (𝑑1, 𝑑2, … , 𝑑𝑚))) ≤ 𝑙(𝑘, 𝐷(𝑂, (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′)))

The fusion operator selects the least input tuple among the

elements of 𝑉(𝑅) as defined below.

DEFINITION 3: For a set 𝑉(𝑅) of input tuples that satisfy a fusion rule

𝑅 = (𝑀,𝑂, 𝜃, 𝑐), we define a least input tuple (𝑑1, 𝑑2, … , 𝑑𝑚) as an input

tuple that satisfies the following condition.

∀(𝑣1, 𝑣2, … , 𝑣𝑚) ∈ 𝑉(𝑅), (𝑑1, 𝑑2, … , 𝑑𝑚) ≤ (𝑣1, 𝑣2, … , 𝑣𝑚)

The theorem that follows states that a least input tuple of 𝑉(𝑅)

always uniquely exist unless 𝑉(𝑅) = ∅.

 58

THEOREM 1: For a fusion rule 𝑅 = (𝑀,𝑂, 𝜃, 𝑐), there always exist a

unique least input tuple of 𝑉(𝑅) unless 𝑉(𝑅) = ∅.

PROOF: We first prove the existence a least input tuple of 𝑉(𝑅). Let

𝑏𝑖
min be the birthmark of the oldest data item among the 𝑖th elements

of input tuples that belong to 𝑉(𝑅). However, if 𝑑𝑖 = ⊥ for all input

tuples (𝑑1, 𝑑2, … , 𝑑𝑚) ∈ 𝑉(𝑅), we set 𝑏𝑖
min to ∞. We define an input

tuple (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′) that satisfies three following conditions.

 For all mandatory ports 𝑝𝑖 ∈ 𝑀, we select a data item 𝑑𝑖
′ such

that 𝑏(𝑑𝑖
′) = 𝑏𝑖

min

 For optional ports 𝑝𝑖 ∈ 𝑂 where |𝑏𝑖
min − min

1≤𝑘≤𝑚
𝑏𝑘
min| ≤ 𝑐𝑖 , we

also select a data item 𝑑𝑖
′ such that 𝑏(𝑑𝑖

′) = 𝑏𝑖
min

 For all input ports 𝑝𝑖 that does not meet the above two

conditions, we select an empty data item 𝑑𝑖
′ = ⊥

To prove the existence of the least input tuple in 𝑉(𝑅), we first

show that (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′) ∈ 𝑉(𝑅), then we show that (𝑑1

′ , 𝑑2
′ , … , 𝑑𝑚

′) is

the least input tuple of a set 𝑉(𝑅) and a binary relation ≤ .

(𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′) satisfies all three conditions of DEFINITION 1 as follows.

(1) For all mandatory ports 𝑝𝑖 ∈ 𝑀, 𝑑𝑖
′ is a data item placed in the

input queue of 𝑝𝑖.

(2) There exists at least one input tuple (𝑑1
′′, 𝑑2

′′, … , 𝑑𝑚
′′) ∈ 𝑉(𝑅)

 59

that contains a data item with the birthmark of min
1≤𝑘≤𝑚

𝑏𝑘
min .

Since 𝑛(𝑂, (𝑑1
′′, 𝑑2

′′, … , 𝑑𝑚
′′)) ≥ 𝜃 and 𝑛(𝑂, (𝑑1

′ , 𝑑2
′ , … , 𝑑𝑚

′)) ≥

𝑛(𝑂, (𝑑1
′′, 𝑑2

′′, … , 𝑑𝑚
′′)) hold, 𝑛(𝑂, (𝑑1

′ , 𝑑2
′ , … , 𝑑𝑚

′)) ≥ 𝜃.

(3) In order to show that (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′) satisfies the condition (3)

of DEFINITION 1, we prove |𝑏(𝑑𝑖
′) − min

1≤𝑘≤𝑚
𝑏𝑘
min | ≤ 𝑐 holds for

1 ≤ 𝑖 ≤ 𝑚 (𝑑𝑖
′ ≠ ⊥). Obviously, this inequality holds for each

optional port 𝑝𝑖 ∈ 𝑂. To prove that the inequality holds for a

mandatory port 𝑝𝑖 ∈ 𝑀 , we select an input tuple

(𝑑1
′′, 𝑑2

′′, … , 𝑑𝑚
′′) ∈ 𝑉(𝑅) that contains a data item with the

birthmark of min
1≤𝑘≤𝑚

𝑏𝑘
min . Since |𝑏(𝑑𝑖

′′) − min
1≤𝑘≤𝑚

𝑏𝑘
min | ≤ 𝑐 and

𝑏(𝑑𝑖
′) ≤ 𝑏(𝑑𝑖

′′) hold for 1 ≤ 𝑖 ≤ 𝑚, |𝑏(𝑑𝑖
′) − min

1≤𝑘≤𝑚
𝑏𝑘
min | ≤ 𝑐.

Therefore, (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′) ∈ 𝑉(𝑅).

Now we prove that (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′) is the least input tuple of a set

𝑉(𝑅) and a binary relation ≤. The following two conditions always

hold for any input tuple (𝑣1, 𝑣2, … , 𝑣𝑚) ∈ 𝑉(𝑅).

 For any mandatory port 𝑝𝑖 ∈ 𝑀, 𝑏(𝑑𝑖
′) = 𝑏𝑖

min ≤ 𝑏(𝑣𝑖).

 𝑙(𝑘, 𝐷(𝑂, (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′))) ≤ 𝑙(𝑘, 𝐷(𝑂, (𝑣1, 𝑣2, … , 𝑣𝑚))) holds for

1 ≤ 𝑘 ≤ |𝑂|.

Therefore, the least input tuple of 𝑉(𝑅) and ≤ always exists if

𝑉(𝑅) ≠ ∅.

 60

Now we prove the uniqueness of the least input tuple. Suppose

for the purpose of contradiction that two distinct input tuples

(𝑑1, 𝑑2, … , 𝑑𝑚) and (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′) in 𝑉(𝑅) are both the least input

tuples. From the definition of the least input tuple, (𝑑1, 𝑑2, … , 𝑑𝑚) ≤

(𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′) and (𝑑1

′ , 𝑑2
′ , … , 𝑑𝑚

′) ≤ (𝑑1, 𝑑2, … , 𝑑𝑚) . Therefore, the

followings two conditions hold.

 For any mandatory port 𝑝𝑖 ∈ 𝑀, 𝑏(𝑑𝑖) = 𝑏(𝑑𝑖
′)

 𝑙(𝑘, (𝑑1, 𝑑2, … , 𝑑𝑚)) = 𝑙(𝑘, 𝑜(𝑅𝑖, (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′))) for 1 ≤ 𝑘 ≤ |𝑂|

Since 𝐷 ≠ 𝐷′ , there exist two distinct optional ports 𝑝𝑖, 𝑝𝑗 ∈ 𝑂

such that 𝑏(𝑑𝑖) = 𝑏(𝑑𝑗
′) and 𝑑𝑖

′ = 𝑑𝑗 = ⊥. There exists an input tuple

(𝑑1
′′, 𝑑2

′′, … , 𝑑𝑚
′′) ∈ 𝑉(𝑅) such that 𝑑𝑟

′′ = 𝑑𝑟
′ if 𝑟 = 𝑗, and 𝑑𝑟

′′ = 𝑑𝑟 if 𝑟 ≠ 𝑗

for 1 ≤ 𝑟 ≤ 𝑚 . Then, (𝑑1, 𝑑2, … , 𝑑𝑚) ≤ (𝑑1
′′, 𝑑2

′′, … , 𝑑𝑚
′′) does not hold,

which is a contradiction since (𝑑1, 𝑑2, … , 𝑑𝑚) is the least input tuple.

Therefore, the least input tuple of 𝑉(𝑅) and ≤ is unique

The fusion operator additionally provides a timeout mechanism

that outputs an extrapolation command when its fusion rule is not

satisfied for a certain period. If a timeout value is specified for a

fusion operator, programmers must write an extrapolation handler in

the next processing component connected with this fusion operator.

5.5 Factory and Mode Change

 61

A factory is the largest building block of a Splash program. It contains

a piece of a Splash program that serves as a subprogram in a

procedural language. In the Splash program, the largest factory is

called the top-level factory, and the internal factory is each called a

subfactory.

In Splash, a factory may have multiple modes of operations. Such

a factory is called a multimode factory. A multimode factory consists

of as many alternative factories as the mode. Each alternative factory

corresponds to a certain mode. Figure 20 shows a factory with two

operation modes. Mode change is triggered by a mode change signal

that arrives on the mode change input port of a factory.

A set of mode in a multimode factory is denoted by 𝑀 =

{𝑚0,𝑚1, … ,𝑚𝑛−1}. The mode 𝑚0 is the mode of this factory when the

program starts. It is called initial mode. Alternative factories that are

mapped to each mode of the factory is called mode factories.

Figure 21 shows an example of mode factories. The localization

factory in this example has three stream input ports for GPS signal,

previous position of the ego vehicle, and current acceleration of the

Figure 20. A multimode factory with two modes.

 Mode BMode A

 62

ego vehicle. It also has a stream output port to produce current

position of the ego vehicle. The localization factory has two modes:

GPS and ACC. The mode factory of GPS and ACC are placed in the

top and bottom of the figure, respectively.

The mode change of a multimode factory is triggered when the

factory receives a mode change event. Let 𝐸 be a set of all mode

change events that can be received by the multimode factory. The

mode change rule of the factory is defined using a mode change

Figure 21. Example of mode factory.

ACC

Localization Factory

 GPS

Compute
Coordinate

Estimate Position
with GPS Signal

Localization Factory

 GPS

Estimate Position
with Acceleration

ACC

 63

function 𝛿:𝑀 × 𝐸 → 𝑀. For two modes 𝑚𝑖, 𝑚𝑗 ∈ 𝑀 and a mode change

event 𝑒 ∈ 𝐸, 𝛿(𝑚𝑖, 𝑒) = 𝑚𝑗 if and only if the mode of the factory with

mode 𝑚𝑖 is changed to 𝑚𝑗 when 𝑒 occurs. A programmer can

determine a mode change function 𝛿 using a mode change table as

shown in Table 1. For two modes 𝑚𝑖, 𝑚𝑗 ∈ 𝑀 and a mode change

event 𝑒 ∈ 𝐸 that satisfy 𝛿(𝑚𝑖, 𝑒) = 𝑚𝑗, the programmer should fill in

𝑚𝑖 , 𝑒 and 𝑚𝑗 in the previous mode, mode change event and next

mode columns in the mode change table, respectively. In addition, the

programmer should determine whether the factory should process

and output the remaining internal data items that were being

processed in the previous mode.

During the mode change, the factory’s internal data items are

classified into (1) queued data items and (2) in-processing data

items. The queued data items are stored in the input queues of each

component. The in-processing data items are data items that are

currently being processed by sthreads and will be produced as

outputs. Figure 22 shows queued data items and in-processing data

Table 2. Example of Mode Change Table

Previous

Mode
Mode Change Event

Next

Mode

Output Remaining

Internal Data Items

GPS

GPS_signal_found GPS -

GPS_signal_lost ACC X

ACC

GPS_signal_found GPS O

GPS_signal_lost ACC -

 64

items of a multimode factory.

Splash runtime provides two types of synchronous mode change

behavior depending on how the programmer decided whether to

output remaining internal data items during the mode change. If the

programmer decided to output internal data items, the mode change

is performed as follows.

(1) The incoming data items of the factory are blocked

(2) Sthreads of the factory continue to process data items. If an

output data item is generated during the execution of a

sthread, the item is produced using the stream output port as

usual.

(3) When all input and output queues are empty and all sthreads

become idle, the factory changes its mode to the next mode

Figure 22. Internal data items of a multimode factory.

 Mode BMode A

Input Queue Sthreads Input Queue Sthreads

: Queued Data Item : In-Processing Data Item

 65

and resumes execution.

If the programmer chose not to output internal data items, the

mode change is performed as follows.

(1) The incoming data items of the factory are blocked

(2) The sthreads are configured to no longer retrieve data items

from input and output queues inside the factory.

(3) Wait for all sthreads to finish their iteration. While doing so,

all output data items generated during the execution of a

sthread are dropped.

(4) When the iteration of all sthreads is complete, the factory

changes its mode to the next mode and resumes execution.

Data items remaining in the input and output queues of inside

the factory are discarded.

In both mode change operations Splash’s mode change

mechanism guarantees that an sthread does not terminate during its

iteration. By doing so, the consistency of global data used by sthreads

is preserved.

5.6 Build Unit

As an sthread is an abstract entity, it needs to be mapped to a process

and a thread of an underlying operating system during the system

 66

implementation process. Since the process and thread are execution

entities, they must eventually run on a specific core of a specific

processor on a specific computing node. To facilitate this process,

Splash offers an allocation entity called a build unit.

A build unit is an entity that allocates a set of sthreads to a

process. Each build unit is mapped to one or more components in the

Splash program. The following rules should be observed in the

process of mapping components and build units.

(1) All atomic components must be mapped to a build unit.

(2) A factory can be mapped to a build unit. However, when a

factory is mapped to a build unit, all components belonging to

that factory must also be mapped to the same build unit.

Splash automatically detects and generates a syntax error if the

programmer does not follow the abovementioned rules. Figure 23

shows an example of component-build unit mapping.

Splash allocates sthreads to processes and threads based on the

component-build unit mapping. Splash assigns a single process to all

sthreads of components mapped to the same build unit. On the other

hand, Splash attempts to reduce context switches and communication

overhead by reducing the maximum number of threads while

allocating sthreads to threads. The details of the build unit-based

allocation are explained in Chapter 7.

 67

5.7 Exception Handling

Splash provides exception handling to automatically handle

exceptions. The Splash runtime monitors the occurrence of

exceptions specified by programmers at runtime. If an exception is

detected, the Splash runtime creates an exception object

corresponding to the exception and invokes an exception handler with

the exception object.

Splash supports three types of exceptions. Figure 24 shows the

hierarchy of exception class in the UML diagram format. The first

type of exception is a timing violation exception that is caused by a

violation of end-to-end timing constraints. Splash specifically

supports the handling of freshness constraint violation. The Splash

runtime checks for violations of freshness constraints at the time

each data item is inserted or removed from the input and output

queues. If a freshness constraint is violated, the Splash runtime calls

Figure 23. Example of component-build unit mapping.

: Build Unit A : Build Unit B : Build Unit C : Build Unit D

 68

a default exception handler that removes the data item immediately.

The second type of exception is a data absence exception that

occurs when a data item is not arrived when needed. The exception

handler for the data absence exception should be written by the

programmer.

The last type of exception is a data corruption exception that is

caused by a stream data item, event or mode change event with

unacceptable value. If a programmer specifies a range of values that

are allowed for a stream data item, event or mode change event, the

Splash runtime checks for an input outside of the range and throws

an exception. The exception handler for the data corruption

exception also should be written by the programmer.

Figure 24. Hierarchy of exception class.

Exception

Invalid Event
Invalid Mode

Change Event

Invalid

Stream Data

Freshness

Constraint Violation

Timing Violation

Exception

Data Absence

Exception

Data Corruption

Exception

 69

Chapter 6. Splash Runtime Mechanisms

This chapter describes the runtime mechanism that realizes language

semantics of Splash. Section 6.1 explains a rate control mechanism

for implementing rate control semantics. Then, Section 6.2 describes

a sensor fusion mechanism that implements a fusion operator. Finally,

Section 6.3 explains a mode change mechanism for a multimode

factory.

6.1 Rate Control Mechanism

The runtime mechanism of a rate-controlled stream output port

consists of an output queue and a rate controller as shown Figure 25.

A sthread inside a processing component enqueues a data item into

the output queue. Our runtime mechanism can effectively bound the

size of the output queue via the freshness constraint of data items

Figure 25. Runtime mechanism of a rate controller.

Input Queue Sthreads
Output

Queue

Rate

Controller

Stream

Input

Rate

Controlled
Stream

Output

 70

stored in the queue. The bound is computed as below.

𝑠max = ⌊𝑟 × 𝑓⌋

where the 𝑠max is the output queue size and 𝑓 is the freshness

constraint of the data items.

If the output queue is full when a sthread attempts to insert a

data item, the data item at the front of the output queue is first

discarded and then the incoming data item is stored at the tail of the

output queue.

A rate controller with a rate constraint 𝑟 is invoked every 1/𝑟

interval. Let 𝑑last be the last sent data item and 𝑏(𝑑) be the

birthmark of the data item 𝑑. On each periodic invocation, the rate

controller looks up the output queue from the head to find the first

data item 𝑑next whose birthmark is greater than 𝑏(𝑑last). If there is

such 𝑑next, it discards all the data items before d in the output queue

and sends out 𝑑next ; otherwise, it generates an extrapolation

command. The extrapolation command is newly assigned a birthmark

whose value is 𝑏(𝑑last) + 1/𝑟.

6.2 Sensor Fusion Mechanism

The runtime mechanism of a fusion operator is shown in Figure 26.

Each stream input port in the fusion operator has an input queue that

 71

stores data items in ascending order of their birthmark. A fusion

sthread is invoked when a data item is inserted into one of the input

queues to check whether there are input tuples that satisfy the fusion

rule. If so, it retrieves the data items from each input queue and calls

the corresponding fusion function. After the execution of the fusion

function is completed, the fusion sthread checks again for the

presence of an input tuple that satisfies the fusion rule. If there exists

such a tuple, it retrieves the input data items again and calls the fusion

function. If no satisfying fusion rule exists, the fusion sthread is

blocked until the next data item arrives at one of the input queues.

Figure 27 shows the pseudocode of the FINDVALIDINPUTTUPLE

algorithm used by the fusion sthread. The goal of the algorithm is to

return a least input tuple that satisfies a given fusion rule if one exists.

Its inputs are a fusion rule 𝑅 = (𝑀,𝑂, 𝜃, 𝑐) and a set of sequences 𝑆 =

{𝑠1, 𝑠2, … , 𝑠𝑚} of data items stored in each input queue of the fusion

Figure 26. Runtime mechanism of a fusion operator.

Input Queue

Input Queue

Fusion

Sthread

Stream

Input

Stream

Input

Stream

Output

 72

operator where 𝑠𝑖 is a sequence of data items stored in the 𝑖th input

queue sorted in ascending order according for their birthmark. The

output of the algorithm is an input tuple (𝑑1, 𝑑2, … , 𝑑𝑚). If there is no

input tuple satisfying the fusion rule 𝑅, the algorithm outputs a tuple

of empty data items (⊥, ⊥,… , ⊥).

The FINDVALIDINPUTTUPLE algorithm first initialize the array

index[1 ... 𝑚] which stores indices of sequences 𝑠1, 𝑠2, … , 𝑠𝑚 in lines

1-6. For 1 ≤ 𝑖 ≤ 𝑚, if the port 𝑝𝑖 is a mandatory or optional port and

there is more than one data item in 𝑠𝑖, index[𝑖] is initialized to 1 so

that 𝑠𝑖[index[𝑖]] is a data item with the smallest birthmark in 𝑠𝑖 .

Otherwise, index[𝑖] is initialized to NIL.

The algorithm then iteratively searches for an input tuple that

ALGORITHM 1. FINDVALIDINPUTTUPLE

Input: A fusion rules 𝑅 = (𝑀,𝑂, 𝜃, 𝑐)

A set of data item sequences 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑚}

FINDVALIDINPUTTUPLE(𝑅, 𝑆)

1: let index[1 … 𝑚] be a new array

2: for 𝑖 = 1 to 𝑚

3: if 𝑝𝑖 ∈ 𝑀 ∪ 𝑂 and |𝑠𝑖| > 0

4: index[𝑖] ← 1

5: else

6: index[𝑖] ← NIL

7: while index[𝑖] = NIL for 1 ≤ 𝑖 ≤ 𝑚

8: if ISVALIDTUPLE(𝑅, 𝑆, index)

9: return BUILDTUPLE(𝑆, index)

10: 𝑘 ← GETEARLISTINDEX(𝑆, index)

11: if index[𝑘] < |𝑠𝑘|
12: index[𝑘] ← index[𝑘] + 1

13: else

14: index[𝑘] ← NIL

15: return (⊥, ⊥, … , ⊥)

Figure 27. Pseudocode of FINDVALIDINPUTTUPLE algorithm.

 73

satisfies the fusion rule 𝑅 = (𝑀,𝑂, 𝜃, 𝑐) (lines 7-11). At the start of

each iteration, it invokes the ISVALIDTUPLE function that checks

whether an input tuple that satisfies 𝑅 can be built from the data

items pointed by the index array (line 8). If such input tuple can be

built, the algorithm returns that input tuple by calling the

BUILDTUPLE function (line 9). If such input tuple cannot be built, the

algorithm increases an element in the index array that points to the

oldest data item by one (lines 10-12). If this element is already

pointing to the last data item in the sequence, we set it to NIL instead

of increasing it by one (line 14). If no valid input tuple has been found

until all elements in the index array become NIL, the algorithm

returns a tuple of empty data items (line 15).

The FINDVALIDINPUTTUPLE algorithm always return the least

input tuple in 𝑉(𝑅) if there exists at least one input tuple that

satisfies 𝑅.

THEOREM 2: For a fusion rule 𝑅 = (𝑀,𝑂, 𝜃, 𝑐), let us denote a set of

input tuples that satisfy 𝑅 as 𝑉(𝑅) . The FINDVALIDINPUTTUPLE

algorithm always return the least input tuple in 𝑉(𝑅) if 𝑉(𝑅) ≠ ∅.

PROOF: Let us denote the least input tuple in 𝑉(𝑅) that the

FINDVALIDINPUTTUPLE algorithm should return as (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′) .

The following three sets are defined from a set of data items included

in the any one of sequences 𝑠1, 𝑠2, … , 𝑠𝑚.

 74

𝐼older = {𝑑𝑖: 𝑏(𝑑𝑖) < 𝑏(𝑑𝑖
′) (𝑑𝑖

′ ≠ ⊥)}

𝐼answer = {𝑑𝑖: 𝑑𝑖 = 𝑑𝑖
′ (𝑑𝑖

′ ≠ ⊥)}

𝐼newer = {𝑑𝑖: 𝑏(𝑑𝑖) > 𝑏(𝑑𝑖
′) (𝑑𝑖

′ ≠ ⊥)}

Figure 28 shows an example of 𝐼older, 𝐼answer and 𝐼newer for a fusion

operator with three mandatory input ports.

Now we show that the following loop invariant holds for the while

loop in lines 7-14.

 Let (𝑑1
′′, 𝑑2

′′, … , 𝑑𝑚
′′) be an input tuple pointed by the index

array at the start of each iteration. If 𝑑𝑖
′ ≠ ⊥, 𝑑𝑖

′′ ∈ 𝐼older or

𝑑𝑖
′′ ∈ 𝐼answer for 1 ≤ 𝑖 ≤ 𝑚.

Initialization: For 1 ≤ 𝑖 ≤ 𝑚, the index[𝑖] is initialized to 1 if 𝑑𝑖
′ ≠ ⊥

because the port 𝑝𝑖 is a mandatory or optional port and there is at

Figure 28. Example of 𝑰𝐨𝐥𝐝𝐞𝐫, 𝑰𝐚𝐧𝐬𝐰𝐞𝐫, 𝑰𝐧𝐞𝐰𝐞𝐫.

Birthmark

Data

Items in

Birthmark

Data

Items in

Birthmark

Data

Items in

𝐼older 𝐼answer 𝐼newer

 75

least one data item in 𝑠𝑖. Since the 𝑠𝑖[index[𝑖]] is a data item with

the smallest birthmark in 𝑠𝑖, 𝑏(𝑑𝑖
′′) ≤ 𝑏(𝑑𝑖

′) holds. Therefore, 𝑏(𝑑𝑖
′′) ∈

𝐼older or 𝑏(𝑑𝑖
′′) ∈ 𝐼answer, and thus the loop invariant holds prior to the

first iteration of the loop.

Maintenance: Let us first suppose that the loop invariant holds for the

input tuple (𝑑1
′′, 𝑑2

′′, … , 𝑑𝑚
′′) at the start of the iteration. If this iteration

is not terminated in line 9, index[𝑘] is incremented by 1 on line 12 or

is set to NIL in line 14. Let 𝑑𝑘
∗ be the new data item pointed by the

index[𝑘] if it is not set to NIL and ⊥ if it is set to NIL.

In order to prove that the loop invariant is maintained, we must

show that 𝑑𝑘
∗ ∈ 𝐼older or 𝑑𝑘

∗ ∈ 𝐼answer . Suppose for the purpose of

contradiction that 𝑑𝑘
∗ ∈ 𝐼newer ∪ {⊥}. Then, 𝑑𝑘

′′ ∈ 𝐼answer, and thus 𝑑𝑘
′′ =

𝑑𝑘
′ . Since the loop is not terminated in line 9, there exists at least one

data item 𝑑𝑗
′′ in (𝑑1

′′, 𝑑2
′′, … , 𝑑𝑚

′′) where 𝑑𝑗
′′ ∈ 𝐼older (𝑗 ≠ 𝑘) . By the

definition of 𝐼older, 𝑏(𝑑𝑗
′′) < 𝑏(𝑑𝑗

′) holds. Also, 𝑏(𝑑𝑘
′′) < 𝑏(𝑑𝑗

′′) because

𝑑𝑘
′′ is the data item with the smallest birthmark in for the input tuple

(𝑑1
′′, 𝑑2

′′, … , 𝑑𝑚
′′). The relationship between the data items 𝑑𝑘

′ , 𝑑𝑘
′′, 𝑑𝑗

′

and 𝑑𝑗
′′ is illustrated in Figure 29.

Now we define an input tuple (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑗
′′, … , 𝑑𝑚

′) with 𝑑𝑗
′

replaced by 𝑑𝑗
′′ in (𝑑1

′ , 𝑑2
′ , … , 𝑑𝑚

′) . Since (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′) satisfies the

correlation constraint, (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑗
′′, … , 𝑑𝑚

′) also satisfies the

correlation constraint as shown in Figure 29. Therefore,

(𝑑1
′ , 𝑑2

′ , … , 𝑑𝑗
′′, … , 𝑑𝑚

′) ∈ 𝑉. However, (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′) ≤ (𝑑1

′ , 𝑑2
′ , … , 𝑑𝑗

′′, … , 𝑑𝑚
′)

does not hold, which is a contradiction since (𝑑1
′ , 𝑑2

′ , … , 𝑑𝑚
′) is the least

 76

input tuple in 𝑉(𝑅). Therefore, 𝑑𝑘
∗ ∈ 𝐼older or 𝑑𝑘

∗ ∈ 𝐼answer.

Termination: If there exists a data item 𝑑𝑖
′′ ∈ 𝐼older for 1 ≤ 𝑖 ≤ 𝑚, the

while loop cannot be terminated. In a finite number of iterations, the

input tuple (𝑑1
′′, 𝑑2

′′, … , 𝑑𝑚
′′) pointed by the index array satisfies the

following condition.

𝑑𝑖
′ ≠ ⊥ → 𝑑𝑖

′′ ∈ 𝐼answer (1 ≤ 𝑖 ≤ 𝑚)

Then, the algorithm finds the least input tuple in 𝑉(𝑅) and returns it

in line 9. Therefore, THEOREM 2 holds.

We now analyze the runtime complexity of the

FINDVALIDINPUTTUPLE algorithm. Let 𝑚 be the number of input

ports of the fusion operator and 𝑙 be the maximum input queue size.

Figure 29. The relationship between 𝒅𝒌
′ , 𝒅𝒌

′′, 𝒅𝒋
′ and 𝒅𝒋

′′.

Birthmark

Data

Items in 𝒌

Birthmark

Data
Items in 𝒋

𝑑𝑗
′′ 𝑑𝑗

′

𝑑𝑘
′′ = 𝑑𝑘

′

…
…

…

 77

The while loop of the FINDVALIDINPUTTUPLE algorithm is repeated

at most 𝑚 ∙ 𝑙 times. If we implement the ISVALIDTUPLE, BUILDTUPLE

and GETEARLIESTINDEX functions with a linked list, it takes 𝑂(𝑚) to

run lines 7-9 and 𝑂(1) to run lines 10 and 11. Therefore, the time

complexity of the FINDVALIDINPUTTUPLE algorithm is 𝑂(𝑚2 ∙ 𝑙).

6.3 Mode Change Mechanisms

The Splash runtime supports two types of mode change mechanisms

depending on whether internal data items are produced during mode

change. It provides the following five operations to implement these

mechanisms.

(1) BLOCKINPUTDATAITEMS: The incoming data items into the

factory is blocked and stored in a queue/

(2) DISABLESTHREADREAD: The sthreads are configured to no

longer read queued data items from input and output queues

of the factory. Each sthread becomes idle after finishing its

current iteration.

(3) AREQUEUESEMPTY: Check if all input and output queues

inside the factory is empty.

(4) ARESTHREADSIDLE: Check if all sthreads are idle.

(5) CHANGEANDRESUME: Deallocate all input and output queues

and terminate all sthreads of the previous mode. Then,

allocate and initialize input and output queues and create

 78

sthreads for the next mode. Finally, put the data items stored

in the BLOCKINPUTDATAITEMS operation to newly created

input queues, and resume execution.

Figure 30 shows the runtime mechanism of mode change. The

Splash runtime creates a new sthread named mode manager to

support mode change operation. The mode manager has three data

structures. First, it has a queue that stores blocked data items while

running the BLOCKINPUTDATAITEMS operation. This queue stores

data items in birthmark order to provide in-order delivery semantics.

Second, it has a bitmap that checks whether each input queue inside

the factory is empty or not. This data structure is used to implement

Figure 30. Runtime mechanism of mode change.

 Mode BMode A

Input Queue Sthreads Input Queue Sthreads

Mode

Manager

Bitmap for
Input Queues

Hashmap for
Sthreads

2

44

107

Queue for Factory’s
Input Data Items

 79

the AREQUEUESEMPTY operation. Finally, the mode manager has a

hashmap that checks whether each sthread inside the factory is idle

or not. This data structure is used to implement the

ARESTHREADSIDLE operation.

Figure 31 shows the pseudocode of CHANGEMODE algorithm.

This algorithm is invoked by the mode manager when the mode

change event arrives at the mode change port of the factory. The

algorithm first blocks input data items of the factory by calling

BLOCKINPUTDATAITEMS operation in line 1. If the programmer

decided to output the remaining internal data items, the algorithm

waits until there are no more internal data items inside the factory

(line 3). If the programmer decided not to output the internal data

items, the algorithm set all sthreads to no longer read queued data

items (line 5). It then waits until there are no more in-process data

items inside the factory (line 6). When all the work is done, the mode

of the factory is changed to the next mode by calling the

CHANGEANDRESUME operation.

ALGORITHM 2. CHANGEMODE

Input: A flag that indicates whether to output the internal data items 𝑓

CHANGEMODE(𝑓)

1: BLOCKINPUTDATAITEMS()

2: if 𝑓 = true

3: Wait until AREQUEUESEMPTY() and ARESTHREADSIDLE() = true

4: else

5: DISABLESTHREADREAD()

6: Wait until ARESTHREADSIDLE()

7: CHANGEANDRESUME()

Figure 31. Pseudocode of CHANGEMODE algorithm.

 80

Chapter 7. Code Generation and Runtime System

This chapter describes the code generation and runtime system for

executing Splash program. Section 7.1 explains how sthreads are

allocated to processes and threads, and how the communication

between sthreads are implemented. Section 7.2 introduces templates

for the code generation. Section 7.3 explains the runtime system that

runs the Splash program.

7.1 Build Unit-based Allocation

As an sthread is an abstract entity, it needs to be mapped to a process

and a thread of an underlying operating system during the system

implementation process. This process can be divided into two steps:

allocating sthreads to processes and allocating sthreads to threads.

Splash first allocates the sthreads of all components mapped to each

build unit to the same process. It then allocates the sthreads to

threads according to the following rules.

(1) Dedicated sthread of a processing component: Splash allocates

a dedicate sthread to the same thread as the sthread that

sends data items to it. This allocation policy reduces the

context switch overhead and communication overhead by

reducing the number of threads running on the system.

However, in the following four cases, the dedicated sthread is

 81

allocated to a different thread as the sthread that sends data

items to it.

- When an sthread that sends data items to a dedicated

sthread is mapped to a different build unit, they are

allocated to different threads because they are mapped to

different processes.

- When a sthread that sends data items to a dedicated

sthread sends data items to more than one stream output

port, these sthreads are allocated to different threads for

concurrent execution.

- Similarly, when a sthread that sends data items to a

dedicated sthread communicates with two or more

sthreads through a channel with multiple fan-outs, these

sthreads are allocated to different threads.

- If the sthread sending data items to the dedicated sthread

is a rate controller, they are allocated to different threads

in order for the rate controller to work correctly.

(2) Internal sthread of a processing component: Splash assigns

each internal sthread to a separate thread. This is because

the internal sthread is created by the programmer with the

intention of multithreading.

(3) Fusion sthread of a fusion operator: Splash allocates each

fusion sthread to a separate thread to ensure that the fusion

operator to work properly.

 82

Splash provides three different types of implementations for

communications between sthreads. First, communication between

sthreads that are allocated to different processes is implemented

using inter-process communication (IPC) based on DDS (data

distribution service) [15,75]. Second, communication between

sthreads that are allocated to the same process but different threads

is done through a queue located in the global address space shared

by both threads. Finally, Communication between sthreads assigned

to the same process and the same thread is implemented using a

simple function call.

7.2 Code Generation Template

The Splash programming language is a coordination language that

defines the interaction between components. A host language such

as C++ which is used to define subprograms inside a component.

Splash. Splash provides a schematic editor to write a coordination

program in Splash programming language. After the programmers

have completed writing the coordination program, the schematic

editor produces a JSON file to be used as an input to the code

generator. The JSON file contains the information about the factory

and internal language constructs such as processing components,

fusion operators, channels, stream input/output ports and build units.

 83

The code generator takes the generated JSON file of the

schematic editor as an input and produces template source code files

1: SourceComponent sc;

2: ProcessingComponent pc;

3:

4: void sc_user_function();

5: void pc_user_function(void *msg_ptr);

6:

7: int main(void) {

8: StreamOutputPort<fname::data1> sc_sout;

9: StreamInputPort<fname::data1> pc_sin;

10: StreamOutputPort<fname::data2> pc_sout;

11:

12: sc.initialize("sname", 200);

13: pc.initialize("pname");

14: sc_sout.initialize();

15: pc_sin.initialize();

16: pc_sout.initialize(15);

17:

18: sc.registerUserFunction(sc_user_function);

19: pc.registerUserFunction(pc_user_function);

20:

21: sc_sout.attach(&sc, INTRA_THREAD);

22: pc_sin.attach(&pc, INTRA_THREAD);

23: pc_sout.attach(&pc, INTER_PROCESS, "topic1");

24:

25: pc.run();

26: sc.run();

27: }

28:

29: void sc_user_function() {

30: fname::data1 output_data;

31: // Put user logic here

32: sc.write(&output_data);

33: }

34:

35: void pc_user_function(void *msg_ptr) {

36: fname::data0 input_data =

37: *static_cast<fname::data0*>(msg_ptr);

38: fname::data1 output_data;

39: // Put user logic here

40: pc.write(&output_data);

41: }

Figure 32. Example of template source code.

 84

written in C++. A template source code file is created for each build

unit to create, to initialize and to initiate components that are mapped

to the build unit. Figure 32 shows a template code for a source

component and a processing component mapped to a single build unit.

As shown in the figure, the template code is structured in three

segments: declaration (lines 1-10), configuration (lines 12-23) and

execution (lines 25-26).

In declaration, a source component object (line 1), a processing

component object (line 2), user functions for the components (lines

4-5), and internal stream input/output port objects (lines 8-10) are

declared. In configuration, these objects are initialized in order (lines

12-16). Then the user functions are registered to the components

(lines 18-19), and the stream input/output port objects are attached

to the source component and the processing component objects (lines

21-23). In execution, it waits for a data item to come in on the input

port (lines 25-26). When a data item arrives, the user function is

called (lines 29-41). Programmers should fill in the user logic inside

the user function (lines 31 and 39)

7.3 Splash Runtime System

The Splash runtime consists of two layers of software as shown in

Figure 33. At the top layer is the Splash framework that consists of

runtime libraries and modules written in the host language. The

user-augmented template code uses the library provided by the

 85

Splash framework as shown in Figure 32. The runtime libraries are

divided into five types according to their functions: (1) core

execution and communication, (2) fusion, (3) timing management and

(4) exception handling. The Splash framework also comes with three

runtime modules: (1) the rate controller, (2) the mode manger and

(2) the timing behavior monitor.

At the bottom layer lies a runtime system based on DDS (data

distribution services) and Linux kernel. DDS is a well-known

specification for real-time publish-subscribe communication. We

chose OpenSplice DDS because it is open source and implements the

specification efficiently [76].

Figure 33. Splash runtime architecture.

Hardware

Runtime
Systems

Linux Kernel

DDS (Data Distribution Service)

RTPS (Real-Time Publish-Subscribe)

DCPS (Data-Centric Publish-Subscribe)

Splash
Framework

Runtime Libraries Runtime Modules

Fusion
Timing
Mgmt.

Exception
Handling

Rate
Controller

Exec. and
Comm.

Timing
Behavior
Monitor

Mode
Manager

Splash Applications

 86

Chapter 8. Experimental Evaluation

In this chapter, we validate Splash by implementing the LKAS with

the proposed framework and measuring its performance values.

Section 8.1 explain overall application logic of the LKAS along with

its timing constraints annotation and components-to-build unit

mapping. Section 8.2 describes the experimental environment.

Section 8.3 to 8.6 presents the experimental results for rate control,

sensor fusion, mode change, and build unit-base allocation,

respectively.

8.1 LKAS Program

We have designed LKAS based on the algorithm given in [77] with

Splash. This application automatically adjusts the steering angle to

keep the ego vehicle inside the detected lane. Figure 35 shows the

Figure 34. LKAS factory.

LKAS

Lane
Detections

Longitudinal
Velocity

Driver
Steering
Angle

Lane Center
Estimation

Lane Departure
Detection

Lane Keeping Control Target
Steering
Angle

Steering Angle
Selection

LKASDriver

 87

top-level factory of the application. Its inputs include lane detections

from the lane sensor, the longitudinal velocity of the ego vehicle, and

the driver steering angle. Its output is the target steering angle of the

vehicle. The top-level factory consists of four sub-factories: (1)

lane departure detection, (2) lane center estimation, (3)

lane keeping control, (4) steering angle selection.

Figure 35 is the lane departure detection factory. It checks

if the ego vehicle is too close to the lane boundaries by computing

the offset distance of the ego vehicle from both the left and right lane

boundary. It then merges both offsets using a fusion operator and

checks if any offset is lower than the predefined threshold. It any

offset is lower than the threshold, it generates a mode change event.

Figure 36 is the lane center estimation factory. It computes

the curvature of the lane, lateral deviation between the ego vehicle

and center of the lane, and heading angle of the ego vehicle. To do

Figure 35. Lane departure detection factory.

Lane Departure Detection

Compute
Left Offset

Compute
Right Offset

Check Lane
Departure

Combine
Offsets

 88

so, it first checks whether left and right boundaries of the detected

lane is clear enough to be used for estimation. It then computes

curvature, lateral deviation and heading angle based on the selected

boundaries. Finally, it estimates the curvature of the forward lane to

be driven over the next three seconds using the curvature computed

through the current detected lane.

Figure 37 is the lane keeping control factory. It generated

assisted steering angle of the ego vehicle using the outputs of the

lane center estimation factory and longitudinal velocity of the

vehicle. It first uses a fusion operator to update states that will be

sampled by vehicle controller. It then uses a controller which

Figure 36. Lane center estimation factory.

Lane Center Estimation

Check Lane
Strength

Compute
Heading Angle

Compute
Lateral Offset

Compute
Curvature and
Its Derivative

Estimate
Preview

Curvature

 89

periodically invokes adaptive model predictive control logic to

compute the assisted steering angle.

Figure 38 is the steering angle selection factory. It is a

multimode factory which has two modes: Driver mode and LKAS

mode. It takes both driver steering angle and assisted steering angle

Figure 38. Steering angle selection factory.

LKASDriver

Steering Angle Selection

Forward
Steering Angle

 Driver LKAS

Steering Angle Selection

Forward
Steering Angle

Change to
Driver Mode

Figure 37. Lane keeping control factory

Lane Keeping Control

Update
States

Adaptive Model
Predictive Control

 90

as inputs. It outputs driver steering angle for Driver mode and

assisted steering angle for LKAS mode. Mode change from Driver

mode to LKAS mode is triggered by a mode change event sent from

the lane departure detection factory. On the other hand, mode

change from LKAS mode to from Driver mode is triggered by a mode

change event from change to driver mode processing component

inside the steering angle selection factory. This processing

component compared driver steering angle and assisted steering

angle, and generates a mode change event only if it is safe for the

driver to take control.

The end-to-end timing constraints of the LKAS factory is

annotated as shown in Figure 39. First, we set we set freshness

constraints to the same value of 200ms for the three source

components. Second, we annotate a rate constraint of 15Hz for the

stream output port of the LKAS factory. Finally, we set correlations

Figure 39. Timing constraints of LKAS factory

LKAS

Lane
Detections

Longitudinal
Velocity

Driver
Steering
Angle

Lane Center
Estimation

Lane Departure
Detection

Lane Keeping Control Target
Steering
Angle

Steering Angle
Selection

LKASDriver

Source Component Attribute

Freshness Constraint 200ms

Source Component Attribute

Freshness Constraint 200ms

Source Component Attribute

Freshness Constraint 200ms

Output Port Attribute

Rate Constraint 15Hz

 91

constraint of each fusion operator to 10ms.

8.2 Experimental Environment

We simulated a driving environment with the Simulink to validate our

Figure 40. Software components of the platform.

Linux and
OpenSplice DDS

MATLAB Simulink

Driving
Simulator

LKAS

Target
Steering Angle

Sensor Values

Table 3. Experimental Environment

Categories Descriptions

LKAS

HW

CPU Intel Core i7-3770 3.40 GHz

Memory 8 GB

Storage Hitachi HDD 1 TB

SW
OS Linux version 4.15

Framework Vortex OpenSplice version 6.7

Driving

Simulator

HW

CPU Intel Core i7-7700 3.60 GHz

Memory 8 GB

Storage SanDisk X400 SSD 128 GB

SW
OS Windows version 10

Framework MATLAB Simulink version 10.0

 92

LKAS implementation [11]. The software organization is shown in

Figure 40. We essentially created a closed loop simulator on top of

two machines, one running the Splash implementation of LKAS and

the other executing a driving simulator. The LKAS receives sensor

values from the simulator and outputs a target steering wheel angle.

The simulator in turn receives the steering wheel angle as its input.

Table 3 shows the detailed hardware and software configuration of

our target system.

8.3 Evaluating Rate Control

To validate the effective of Splash’s rate controller, we analyzed five

different metrics of the LKAS. First, we measured the output jitter

of the LKAS to evaluate the controller’s rate manipulability. Second,

we measured the end-to-end latency of LKAS to portray the low

overhead of the rate controller. Third, we measured the change in

the number of data items in the output queue of a rate controller to

check the controller’s ability to bound the number of data items in the

queue. Finally, we measured lateral deviation and heading angle of

the ego vehicle to validate that the performance of the LKAS is

improved by the rate controller.

In order to demonstrate the effectiveness of our approach, we

attached rate controllers running with 10Hz rate constraint to the

stream output ports of the LKAS factory as marked in Figure 39. We

then measured the output jitter with and without the rate controllers,

 93

respectively. We define the output jitter as discussed in [78].

𝐽 = √
∑ (𝐸(𝑂) − 𝑜𝑗)

2ℎ
𝑗=1

ℎ

is a root mean square error where for a given ℎ measurements, 𝑂 is

a set of ℎ consecutive inter-output times of the LKAS, 𝑜𝑗 ∈ 𝑂 and

𝐸(𝑂) is a mean of 𝑂.

Using the above definition as a metric, we found that the output

jitter with our rate controllers was only 1.66 milliseconds, while the

output jitter without rate controllers was 30.61ms milliseconds.

To better illustrate the effectiveness of the rate controller, we

have plotted the accumulated number of data items that are output

from the LKAS in Figure 41. As expected, the LKAS with rate

controllers produced output data item every 66.67ms, while the

Figure 41. Comparison of the number of the accumulated output items.

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600Th
e

 N
u

m
b

e
r

o
f

O
u

tp
u

t
It

e
m

s

Time (ms)

Without Rate
Controller

With Rate
Controller

 94

LKAS without rate controllers produced the output irregularly.

In our second experiment, we measured the end-to-end latency

of the LKAS for each data item, in order to display its minimal

overhead. We defined the end-to-end latency as the time it takes

for an input data to reach from the source component to a sink

component. Figure 42 shows the box plot of the results. The average

end-to-end latency was increased from 90.8ms to 141.7ms. The

increase in the average end-to-end latency was caused by the delay

in the output queue.

In the third experiment, we measured the number of data items

in the output queue of a rate controller. Figure 43 plots the results.

The result confirmed that the controller successfully bounded the

number of items in the queue to ⌊𝑟 × 𝑓⌋ as discussed in Section 6.1.

In the last experiment, we measured the lateral deviation and

heading angle of the ego vehicle while running the LKAS. The

experimental results are shown in Figure 44 and Figure 45. The

Figure 42. Comparison of the end-to-end latency.

 95

average lateral deviation without the rate controller was 0.180

meters, whereas it was only 0.016 meters with the rate controller.

Also, the average heading angle was 0.043 rad without the rate

controller, while it was 0.008 rad with the rate controller. Based on

the results of these two experiments, it can be concluded that the

performance of the LKAS is dramatically improved with a rate

Figure 43. The number of data items in the output queue.

0

1

2

3

4

0 5 10 15 20

Th
e

 N
u

m
b

e
r

o
f

It
e

m
s

in
 t

h
e

 Q
u

e
u

e

Time (sec)

Figure 44. Comparison of the lateral deviation of the ego vehicle.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 20 40 60

La
te

ra
l

D
e

vi
at

io
n

 (
m

)

Time (sec)

Without Rate Controller

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 20 40 60

La
te

ra
l

D
e

vi
at

io
n

 (
m

)

Time (sec)

With Rate Controller

 96

controller.

8.4 Evaluating Sensor Fusion

To validate the fusion operator, we selected two metrics. First, we

measured the maximum birthmark differences between data items of

an input tuple selected by the fusion operator. Second, we measured

the average runtime overhead of the fusion operator incurred by

running the FINDVALIDINPUTTUPLE algorithm.

In our first experiment, we ran the LKAS program for 30 seconds

and measured the maximum birthmark differences of input tuples

selected by the estimate preview curvature fusion operator

inside the lane center estimation factory. Figure 46 shows the

results. As shown in the figure, the maximum birthmark differences

between data items of input tuples were always less than the fusion

operator’s correlation constraint, 10 milliseconds. This result clearly

shows that our fusion operator effectively satisfied the annotated

Figure 45. Comparison of the heading angle of the ego vehicle.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 20 40 60

H
e

ad
in

g
A

n
gl

e
 (

ra
d

)

Time (sec)

Without Rate Controller

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 20 40 60

H
e

ad
in

g
A

n
gl

e
 (

ra
d

)

Time (sec)

With Rate Controller

 97

correlation constraint.

In our second experiment, we measured the average running time

of the FINDVALIDINPUTTUPLE algorithm to evaluate the overhead

incurred by the fusion operator. As expected, the average running

time of the algorithm was only 7 microseconds.

8.5 Evaluating Mode Change

In order to validate the mode change mechanism of Splash, we

measured driving steering angle, assisted steering angle and final

output steering angle of the LKAS factory. We also measured the

average time it took for mode change.

We first ran the LKAS program for 30 seconds and measured

Figure 46. Maximum birthmark difference of input tuples chosen by the

fusion operator.

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30

M
a

x
 B

ir
th

m
a

rk
 D

if
fe

re
n

ce
 (m

s)

Time (sec)

 98

three values: (1) driving steering angle, (2) assisted steering angle

and (3) final output steering angle. Figure 47 shows the result. The

driving steering angle and assisted steering angle is plotted using

dotted lines, and the final out is presented using a solid line. As shown

Figure 47. The steering angle selected using mode change.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 5 10 15 20 25 30

St
e

e
ri

n
g

A
n

gl
e

(r
ad

)

Time (sec)

Assisted
Steer

Driver
Steer

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 5 10 15 20 25 30

St
e

e
ri

n
g

A
n

gl
e

(r
ad

)

Time (sec)

Assisted
Steer

Driver
Steer

Output

Mode Change
from Driver

to LKAS

Mode Change
from LKAS

to Driver

 99

in the graph, the mode change occurred twice while running the

program. The first mode change occurred 15.2 seconds after the

start. At this time, the check lane departure processing

component of the lane departure detection factory detects that

the distance between the ego vehicle and the center of the lane

exceeds the threshold distance. It then sends a mode change event

to the steering angle selection factory to change the factory’s

mode from Driver mode to LKAS mode. On the other hand, the second

mode change occurred 26.1 seconds after the start. The change to

driver mode processing component of the steering angle

selection factory generates a mode change event that changes the

factory’s mode from LKAS mode to Driver mode.

We also measured the runtime overhead of the mode change

mechanism. We measured the completion time of 10 mode changes

and computed their average. Experimental results show that the

mode change takes 0.53 milliseconds on average.

8.6 Evaluating Build Unit-based Allocation

We used a Splash program that runs a synthetic workload to evaluate

build unit-base allocation. The program and its component-build unit

mapping configurations are shown in Figure 48. This program reads

a data item from a source component once per second. It then uses

six processing components placed in series to process the data item.

Each processing component performs the same arithmetic operations.

 100

The result is produced as an output using a sink component.

In the experiment, four component-build unit mappings are used.

First, all components in the program are mapped to one build unit.

Second, the source component and the first three processing

components are mapped into one build unit, and the other three

processing components and the sink component are mapped into one

build unit. Third, each two adjacent atomic components are mapped

into the one build unit. Finally, all atomic components are mapped into

the different build unit.

We measured the end-to-end latency by varying the size of a

data item from 4 bytes to 4 kilobytes. Figure 49 shows the results.

As we increased the number of build units to 1, 2, 4, and 8, the

average end-to-end latency increased to 75.79, 330.80, 591.87, and

Figure 48. A Splash program and its build unit configurations.

 101

2022.96 microseconds. This is because the number of threads and

processes increases as the number of build units increases, resulting

more context switch and communication overhead. Also, the end-

to-end latency tends to increase as the size of a data item increases.

This is because the communication delay time when sending a data

item increases as the size of the data item increases.

Figure 49. End-to-end latencies of the distinct build unit configurations.

0

500

1000

1500

2000

2500

4 16 64 256 1024 4096

En
d

-t
o

-E
n

d
 L

at
e

n
cy

 (u
s)

Size of a Data Item (byte)

Build Unit = 1

Build Unit = 2

Build Unit = 4

Build Unit = 8

 102

Chapter 9. Conclusion

In this dissertation, we presented a graphical programming

framework named Splash for developing an autonomous machine.

The Splash achieves our four design goals: (1) it provides an easy-

to-use, effective programming abstraction, (2) it supports real-time

stream processing for deep-learning based machine learning

intelligence, (3) it provides programming supports for real-time

control system of autonomous machine such as sensor fusion and

mode change and (4) it supports performance optimization of

software system running on a heterogeneous multicore distributed

computing platform. In order to achieve these design goals, Splash

first enables programmers to specify end-to-end timing constraints

and provides timing semantics to handle such constraints at runtime.

Also, it supports multithreaded process model to exploit parallelism

explicitly from the distributed multicore computing platform. Splash

provides exception handling semantics, rate control semantics,

sensor fusion semantics and mode change semantics to support real-

time stream processing and real-time control systems.

We validated the effectiveness of the Splash via the LKAS. First,

the rate controller of the Splash reduced the jitter from 30.61

milliseconds to 1.66 milliseconds. The average lateral deviation and

heading angle is reduced from 0.180 meters to 0.016 meters and

0.043 rad to 0.008 rad, respectively. Second, the sensor fusion and

 103

mode change mechanism of Splash operated correctly with a run-

time overhead of only 7 microseconds and 0.53 milliseconds,

respectively. Finally, the average end-to-end latency was increased

from 75.79 microseconds to 2022.96 microseconds as we increased

the number of build units from 1 to 8.

The proposed approach can be extended in several future

research directions. First, Splash should provide support for

acceleration hardware such as GPU and NPU (neural processing unit).

This support is important because many autonomous machines have

recently been using GPUs or NPUs to improve inference performance

while running deep learning algorithms.

Second, we aim to develop cross-layer optimization techniques

for Linux kernel based on Splash’s timing semantics and runtime

mechanisms. Currently, the Linux kernel has limitations to be used

for autonomous machines because it has little support for real-time

stream processing. However, if non-functional requirements and

application context specified using Splash is passed to the Linux

kernel, we will be able to develop new optimization techniques that

will help Linux kernel to better support real-time stream processing.

Finally, we plan to design and implement various real-time

applications for autonomous vehicles using Splash. To that end, we

expect Splash to be further optimized in terms of performance and

reliability. We look forward to apply Splash to edge computing

technology, which is based on interoperability between cloud and

embedded devices.

 104

Bibliography

[1] M. Daily, S. Medasani, R. Behringer, and M. Trivedi, “Self-

Driving Cars,” Computer (Long. Beach. Calif)., vol. 50, no. 12,

pp. 18–23, Dec. 2017.

[2] A. Loquercio, A. I. Maqueda, C. R. Del-Blanco, and D.

Scaramuzza, “DroNet: Learning to Fly by Driving,” IEEE
Robot. Autom. Lett., vol. 3, no. 2, pp. 1088–1095, Apr. 2018.

[3] A. Mosavi and A. Varkonyi, “Learning in Robotics,” Int. J.
Comput. Appl., vol. 157, no. 1, pp. 8–11, Jan. 2017.

[4] W. Shi, M. B. Alawieh, X. Li, and H. Yu, “Algorithm and

hardware implementation for visual perception system in

autonomous vehicle: A survey,” Integration, vol. 59, no. July,

pp. 148–156, Sep. 2017.

[5] B. Khaleghi, A. Khamis, F. O. Karray, and S. N. Razavi,

“Multisensor data fusion: A review of the state-of-the-art,”

Inf. Fusion, vol. 14, no. 1, pp. 28–44, Jan. 2013.

[6] S.-C. Lin et al., “The Architectural Implications of

Autonomous Driving,” in Proceedings of the Twenty-Third
International Conference on Architectural Support for
Programming Languages and Operating Systems -
ASPLOS ’18, 2018, vol. 53, no. 2, pp. 751–766.

[7] P. K. Gupta, “An overview of NVIDIA’s autonomous vehicles

platform,” 2017.

[8] A. Elkady and T. Sobh, “Robotics Middleware: A

Comprehensive Literature Survey and Attribute-Based

Bibliography,” J. Robot., vol. 2012, pp. 1–15, 2012.

[9] L. Reger, “The EE architecture for autonomous driving a

domain-based approach,” ATZelektronik Worldw., vol. 12, no.

6, pp. 16–21, Dec. 2017.

 105

[10] K. Jo, J. Kim, D. Kim, C. Jang, and M. Sunwoo, “Development

of Autonomous Car - Part I: Distributed System Architecture

and Development Process,” IEEE Trans. Ind. Electron., vol.

61, no. 12, pp. 7131–7140, Dec. 2014.

[11] “Simulink: simulation and model-based design.” [Online].

Available:

https://www.mathworks.com/help/simulink/index.html.

[12] N. Lac, C. Delaunay, G. Michel, J. Gévelot, and I. Moulineaux,

“RTMaps: Real time, multisensor, advanced prototyping

software,” in First National Workshop on Control
Architectures of Robots, 2008.

[13] J. Eker et al., “Taming heterogeneity - the Ptolemy

approach,” Proc. IEEE, vol. 91, no. 1, pp. 127–144, Jan. 2003.

[14] “MathWorks Documentation - Applications.” [Online].

Available:

https://www.mathworks.com/help/index.html?s_tid=CRUX_lftn

av.

[15] OMG, “Data distribution service (DDS) version 1.4,” 2015.

[16] Y. Maruyama, S. Kato, and T. Azumi, “Exploring the

performance of ROS2,” in Proceedings of the 13th
International Conference on Embedded Software -
EMSOFT ’16, 2016, pp. 1–10.

[17] G. Kahn, “The semantics of a simple language for parallel

programming,” Inf. Process. 74 (Proc. IFIP Congr. Stock.
1974), pp. 471–475, 1974.

[18] G. Kahn and D. Macqueen, “Coroutines and networks of

parallel processes,” 1976.

[19] T. Huck, A. Westenberger, M. Fritzsche, T. Schwarz, and K.

Dietmayer, “Precise timestamping and temporal

synchronization in multi-sensor fusion,” IEEE Intell. Veh.

 106

Symp. Proc., no. Iv, pp. 242–247, 2011.

[20] N. Kaempchen and K. Dietmayer, “Data synchronization

strategies for multi-sensor fusion,” Proc. IEEE Conf. Intell.
Transp. Syst., no. November, pp. 1–9, 2003.

[21] M. Geilen and T. Basten, “Requirements on the Execution of

Kahn Process Networks,” in European Symposium on
Programming, 2003, pp. 319–334.

[22] A. A. Faustini, “An operational semantics for pure dataflow,”

in Automata, Languages and Programming, no. 3,

Berlin/Heidelberg: Springer-Verlag, 1981, pp. 212–224.

[23] E. W. Stark, “A Simple Generalization of Kahn’s Principle to

Indeterminate Dataflow Networks,” in Semantics for
Concurrency, Leicester, 1990, pp. 157–174.

[24] E. A. Lee and T. M. Parks, “Dataflow process networks,”

Proc. IEEE, vol. 83, no. 5, pp. 773–801, May 1995.

[25] E. A. Lee, “A denotational semantics for dataflow with firing,”

1997.

[26] E. A. Lee and E. Matsikoudis, “The semantics of dataflow with

firing,” in From Semantics to Computer Science, vol.

9780521518, no. c, Y. Bertot, G. Huet, J.-J. Levy, and G.

Plotkin, Eds. Cambridge: Cambridge University Press, 2009,

pp. 71–94.

[27] J. B. Dennis, “First version of a data flow procedure

language,” 1974, pp. 362–376.

[28] P. Derler, T. Feng, E. Lee, S. Matic, and H. Patel, “PTIDES: A

programming model for distributed real-time embedded

systems,” 2008.

[29] M. Quigley et al., “ROS: an open-source Robot Operating

 107

System,” ICRA Work. Open Source Softw., 2009.

[30] “ROS 2 Documentation.” [Online]. Available:

https://index.ros.org/doc/ros2/.

[31] “ROS 2 - Roadmap.” [Online]. Available:

https://index.ros.org/doc/ros2/Roadmap.

[32] R. Tolosana-Calasanz, J. Á . Bañares, C. Pham, and O. F. Rana,

“Enforcing QoS in scientific workflow systems enacted over

Cloud infrastructures,” J. Comput. Syst. Sci., vol. 78, no. 5, pp.

1300–1315, Sep. 2012.

[33] L. Amini, N. Jain, A. Sehgal, J. Silber, and O. Verscheure,

“Adaptive Control of Extreme-scale Stream Processing

Systems,” in 26th IEEE International Conference on
Distributed Computing Systems (ICDCS’06), 2006, pp. 71–71.

[34] E. Wandeler, A. Maxiaguine, and L. Thiele, “On the use of

greedy shapers in real-time embedded systems,” ACM
Trans. Embed. Comput. Syst., vol. 11, no. 1, pp. 1–22, Mar.

2012.

[35] J.-Y. Le Boudec and P. Thiran, Network Calculus, vol. 2050.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2001.

[36] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time

calculus for scheduling hard real-time systems,” in 2000
IEEE International Symposium on Circuits and Systems.
Emerging Technologies for the 21st Century. Proceedings
(IEEE Cat No.00CH36353), 2000, vol. 4, pp. 101–104.

[37] I. Boutsis and V. Kalogeraki, “RADAR: Adaptive Rate

Allocation in Distributed Stream Processing Systems under

Bursty Workloads,” in 2012 IEEE 31st Symposium on Reliable
Distributed Systems, 2012, pp. 285–290.

[38] K. Santiago and S. Sarkinen, “System and method for

hierarchical policing of flows and subflows of a data stream,”

 108

2010.

[39] Roman Avdanin, H. Bots, R. Y. Talla, Abhishek Chauhan, and

R. Mirani, “Systems and methods for platform rate limiting,”

2015.

[40] D. J. Abadi et al., “Aurora: a new model and architecture for

data stream management,” VLDB J. Int. J. Very Large Data
Bases, vol. 12, no. 2, pp. 120–139, Aug. 2003.

[41] Y. Simmhan, B. Cao, M. Giakkoupis, and V. K. Prasanna,

“Adaptive rate stream processing for smart grid applications

on clouds,” in Proceedings of the 2nd international workshop
on Scientific cloud computing - ScienceCloud ’11, 2011, p.

33.

[42] Hugh Durrant-Whyte, “Multi-Sensor Data Fusion,” The

University of Sydney, 2001.

[43] H. Cho, Y.-W. Seo, B. V. K. V. Kumar, and R. R. Rajkumar, “A

multi-sensor fusion system for moving object detection and

tracking in urban driving environments,” in 2014 IEEE
International Conference on Robotics and Automation (ICRA),

2014, pp. 1836–1843.

[44] R. Zhang, S. A. Candra, K. Vetter, and A. Zakhor, “Sensor

fusion for semantic segmentation of urban scenes,” in 2015
IEEE International Conference on Robotics and Automation
(ICRA), 2015, vol. 2015-June, no. June, pp. 1850–1857.

[45] R. O. Chavez-Garcia and O. Aycard, “Multiple Sensor Fusion

and Classification for Moving Object Detection and Tracking,”

IEEE Trans. Intell. Transp. Syst., vol. 17, no. 2, pp. 525–534,

Feb. 2016.

[46] L. Drolet, F. Michaud, and J. Cote, “Adaptable sensor fusion

using multiple Kalman filters,” in Proceedings. 2000 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS 2000) (Cat. No.00CH37113), 2000, vol. 2, pp. 1434–

 109

1439.

[47] Feng Liu, J. Sparbert, and C. Stiller, “IMMPDA vehicle

tracking system using asynchronous sensor fusion of radar

and vision,” in 2008 IEEE Intelligent Vehicles Symposium,

2008, pp. 168–173.

[48] P. Geneva, K. Eckenhoff, and G. Huang, “Asynchronous

Multi-Sensor Fusion for 3D Mapping and Localization,” in

2018 IEEE International Conference on Robotics and
Automation (ICRA), 2018, pp. 1–6.

[49] N. Floudas, A. Polychronopoulos, O. Aycard, J. Burlet, and M.

Ahrholdt, “High Level Sensor Data Fusion Approaches For

Object Recognition In Road Environment,” in 2007 IEEE
Intelligent Vehicles Symposium, 2007, pp. 136–141.

[50] D. Willner, C. Chang, and K. Dunn, “Kalman filter algorithms

for a multi-sensor system,” in 1976 IEEE Conference on
Decision and Control including the 15th Symposium on
Adaptive Processes, 1976, pp. 570–574.

[51] S.-L. Sun and Z.-L. Deng, “Multi-sensor optimal information

fusion Kalman filter,” Automatica, vol. 40, no. 6, pp. 1017–

1023, Jun. 2004.

[52] S. Blackman and Robert Popoli, Design and Analysis of
Modern Tracking Systems. Boston: Artech House, 1999.

[53] C. Coué, T. Fraichard, P. Bessière, and E. Mazer, “Multi-

sensor data fusion using Bayesian programming: An

automotive application,” IEEE Int. Conf. Intell. Robot. Syst.,
vol. 1, pp. 141–146, 2002.

[54] D. Munoz, J. A. Bagnell, and M. Hebert, “Stacked Hierarchical

Labeling,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 6316 LNCS, no. PART 6, 2010,

pp. 57–70.

 110

[55] L. T. X. Phan, I. Lee, and O. Sokolsky, “A Semantic

Framework for Mode Change Protocols,” in 2011 17th IEEE
Real-Time and Embedded Technology and Applications
Symposium, 2011, pp. 91–100.

[56] T. Chen and L. T. X. Phan, “SafeMC: A System for the Design

and Evaluation of Mode-Change Protocols,” in 2018 IEEE
Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2018, pp. 105–116.

[57] J. Real and A. Crespo, “Mode Change Protocols for Real-

Time Systems: A Survey and a New Proposal,” Real-Time
Syst., vol. 26, no. 2, pp. 161–197, Mar. 2004.

[58] K. W. Tindell and A. Alonso, “A very simple protocol for mode

changes in priority preemptive systems.”

[59] J. Real, “Mode change protocols for real-time systems,”

Universidad PoliteÂ cnica de Valencia.

[60] C. L. Liu and J. W. Layland, “Scheduling Algorithms for

Multiprogramming in a Hard-Real-Time Environment,” J.
ACM, vol. 20, no. 1, pp. 46–61, Jan. 1973.

[61] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance

protocols: an approach to real-time synchronization,” IEEE
Trans. Comput., vol. 39, no. 9, pp. 1175–1185, Nov. 1990.

[62] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham, “Mode

change protocols for priority-driven preemptive scheduling,”

Real-Time Syst., vol. 1, no. 3, pp. 243–264, Dec. 1989.

[63] J. Y. T. Leung and J. Whitehead, “On the complexity of fixed-

priority scheduling of periodic, real-time tasks,” Perform.
Eval., vol. 2, no. 4, pp. 237–250, Dec. 1982.

[64] K. W. Tindell, A. Burns, and A. J. Wellings, “Mode changes in

priority preemptively scheduled systems,” in [1992]
Proceedings Real-Time Systems Symposium, pp. 100–109.

 111

[65] R. Gerber, Seongsoo Hong, and M. Saksena, “Guaranteeing

real-time requirements with resource-based calibration of

periodic processes,” IEEE Trans. Softw. Eng., vol. 21, no. 7,

pp. 579–592, Jul. 1995.

[66] R. Stephens, “A survey of stream processing,” Acta Inform.,
vol. 34, no. 7, pp. 491–541, Jul. 1997.

[67] B. Goossens, “Dataflow management, dynamic load balancing,

and concurrent processing for real-time embedded vision

applications using Quasar,” Int. J. Circuit Theory Appl., no.

October 2017, pp. 1733–1755, Aug. 2018.

[68] G. Cugola and A. Margara, “Processing flows of information:

From data stream to complex event processing,” ACM
Comput. Surv., vol. 44, no. 3, pp. 1–62, Jun. 2012.

[69] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:

Distributed Data-Parallel Programs from Sequential Building

Blocks,” ACM SIGOPS Oper. Syst. Rev., vol. 41, no. 3, p. 59,

Jun. 2007.

[70] H. Kopetz and G. Grunsteidl, “TTP - A time-triggered

protocol for fault-tolerant real-time systems,” in FTCS-23
The Twenty-Third International Symposium on Fault-
Tolerant Computing, 1993, pp. 524–533.

[71] IEEE Std 1588-2008, IEEE Standard for a Precision Clock
Synchronization Protocol for Networked Measurement and
Control Systems, vol. 2008, no. July. 2008.

[72] A. Toshniwal et al., “Storm@twitter,” in Proceedings of the
2014 ACM SIGMOD international conference on Management
of data - SIGMOD ’14, 2014, pp. 147–156.

[73] M. Hirzel, S. Schneider, and B. Gedik, “SPL: An Extensible

Language for Distributed Stream Processing,” ACM Trans.
Program. Lang. Syst., vol. 39, no. 1, pp. 1–39, Mar. 2017.

 112

[74] Clay Breshears, The art of concurrency. 2009.

[75] G. Pardo-Castellote, “OMG data-distribution service:

architectural overview,” in 23rd International Conference on
Distributed Computing Systems Workshops, 2003.
Proceedings., 2003, pp. 200–206.

[76] “Vortex OpenSplice.” [Online]. Available:

https://github.com/ADLINK-IST/opensplice.

[77] “Lane keeping assist with lane detection.” [Online]. Available:

https://www.mathworks.com/help/mpc/ug/lane-keeping-

assist-with-lane-detection.html.

[78] Namyun Kim, Minsoo Ryu, Seongsoo Hong, M. Saksena,

Chong-Ho Choi, and Heonshik Shin, “Visual assessment of a

real-time system design: a case study on a CNC controller,”

in 17th IEEE Real-Time Systems Symposium, 1996, no. 3,

pp. 300–310.

 113

초 록

딥 러닝 기반 machine intelligence의 비약적인 발전으로 인해

autonomous machine들이 다양한 분야에서 활용되고 있다. 이런

기기들은 다양한 센서, 멀티코어 프로세서, 분산 컴퓨팅 노드를

장착하고 있기 때문에, 이들을 지원하기 위한 기반 소프트웨어 플랫폼의

복잡도는 빠른 속도로 증가하는 추세이다. 이에 따라 개발자들이 복잡한

소프트웨어 구조를 효과적으로 다룰 수 있도록 해주는 프로그래밍

프레임워크의 필요성이 대두되고 있다.

본 학위논문은 autonomous machine의 개발 과정에서 발생하는

문제들을 해결하기 위한 그래픽 기반 프로그래밍 프레임워크인

Splash를 제안한다. Splash라는 이름은 stream processing language

for autonomous machine에서 앞의 세 단어의 첫 문자들을 따서

지어졌다. 이 이름은 물과 같이 흐르는 스트림 데이터를 다루기 위한

프로그래밍 언어와 런타임 시스템을 개발하겠다는 의도를 가진다. 본

논문에서는 복잡한 소프트웨어 구조를 효과적으로 다루기 위해 네 가지

디자인 목표를 설정한다. 첫째, Splash는 개발자에게 세부적인 구현

이슈를 숨기고, 쉽게 사용할 수 있는 프로그래밍 추상화를 제공하여야

한다. 둘째, Splash는 machine intelligence를 위한 실시간 스트림

처리를 지원할 수 있어야 한다. 셋째, Splash는 실시간 제어 시스템에서

널리 사용되는 센서 퓨전, 모드 변경, 예외 처리와 같은 기능들을 위한

지원을 제공하여야 한다. 넷째, Splash는 이기종 멀티코어 분산 컴퓨팅

플랫폼에서 수행되는 소프트웨어 시스템의 성능 최적화를 지원하여야

한다.

 114

Splash는 실시간 스트림 처리를 위해 개발자가 프로그램 상에

본질적인 end-to-end timing constraints를 명시할 수 있도록 한다.

그리고 개발자가 명시한 timing constraints를 인지하고 이를 최대한

지켜주는 best-effort 런타임 시스템과 timing constraints의 위반을

모니터링하고 처리해주는 예외 처리 메커니즘을 함께 제공한다. 이런

런타임 메커니즘들을 구현하기 위해 Splash는 두 가지 기본적인 timing

semantics를 제공한다. 첫째, 분산 시스템 상에서 모든 머신들이 공유할

수 있는 global time base를 제공한다. 둘째, Splash 상에 들어오는 모든

스트림 데이터 아이템에 자신의 birthmark를 기록하도록 한다.

Splash는 동시성 프로그래밍을 지원하기 위한 멀티 쓰레디드 처리

모델을 제공한다. Splash 프로그래머는 sthread라는 논리적인 수행

단위를 사용하여 프로그램을 개발할 수 있다. 그리고 Splash는

sthread들을 실제 운영체제의 수행 단위인 프로세스와 쓰레드에게

할당하는 과정을 돕기 위한 빌드 유닛이라는 language construct를

제공한다.

Splash는 timing semantics와 멀티 쓰레디드 처리 모델을 기반으로

실시간 스트림 처리와 실시간 제어 시스템을 지원하기 위한 세 가지

language semantics를 추가로 지원한다. 첫째는 스트림 데이터의

통신이나 처리 지연으로 인해 발생하는 지터나 바운드 되지 않는 큐

문제를 해결하기 위한 rate 제어 semantics이다. 둘째는 센서 퓨전

과정에서 시간적으로 동기화되지 않은 센서 입력들로 인한 타이밍

이슈들을 해결하기 위한 퓨전 semantics이다. 마지막은 가변적인 제어

시스템의 요구사항을 충족시키기 위해 수행 로직의 변경을 지원하는

모드 변경 semantics이다. 본 논문에서는 각각의 language

semantics를 구체적으로 설명하고, 이를 실현하기 위한 런타임

 115

메커니즘을 설계하고 구현한다.

Splash의 효용성을 검증하기 위해서, 본 논문은 Splash를 사용하여

LKAS 응용을 개발하고 이를 Splash 런타임 시스템 상에서 수행시키며

실험을 진행하였다. 본 논문에서는 rate 제어 메커니즘, 센서 퓨전

메커니즘, 모드 변경 메커니즘, 빌드 유닛 기반 allocation을 각각

선정된 성능 지표들을 사용하여 검증하였다. 첫째, Splash의 rate

제어기를 사용하면 지터가 30.61ms에서 1.66ms로 감소되었고, 이로

인해 주행 차량의 측면 편차와 방향각이 각각 0.180m에서 0.016m,

0.043rad에서 0.008rad으로 개선된다는 것을 확인하였다. 둘째, 센서

퓨전을 위해 제안된 퓨전 연산자가 설계된 의도대로 정상 동작하고,

평균 7us의 낮은 오버헤드만을 유발한다는 것을 확인하였다. 셋째, 모드

변경 기능의 정상 동작을 검증하였고 그 과정에서 발생하는 시간적

오버헤드는 평균 0.53ms에 불과하였다. 마지막으로, synthetic

workload에 대해 컴포넌트들에 매핑된 빌드 유닛 개수를 1개, 2개, 4개,

8개로 증가시킴에 따라 평균 end-to-end 지연 시간은 75.79us,

330.80us, 591.87us, 2022.96us로 증가하는 것을 확인하였다. 이러한

결과들은 본 논문에서 제안하는 language semantics와 런타임

메커니즘들이 의도대로 설계, 구현되었고, 이를 통해 autonomous

machine의 응용들을 효과적으로 개발할 수 있다는 것을 보여준다.

주요어 : Autonomous Machine, 실시간 스트림 처리, Rate 제어, 센서

퓨전, 모드 변경

학 번 : 2013-20785

	Chapter 1 Introduction
	1.1 Motivation
	1.2 Splash Overview
	1.3 Organization of This Dissertation

	Chapter 2 Related Work
	2.1 Kahn Process Network
	2.2 Firing Rule Applied to a Process
	2.3 Programming Framework for an Autonomous Machine
	2.4 Runtime Software for an Autonomous Machine
	2.5 Rate Control
	2.5.1 Traffic Shaping
	2.5.2 Traffic Policing

	2.6 Sensor Fusion
	2.6.1 Measurement Fusion
	2.6.2 Situation Fusion

	2.7 Mode Change
	2.7.1 Synchronous Mode Change
	2.7.2 Asynchronous Mode Change

	Chapter 3 Motivation and Contributions
	3.1 Problem Description
	3.2 Limitations of Kahn Process Network
	3.3 Contributions of this Dissertation

	Chapter 4 Underlying Timing Semantics of Splash
	4.1 End-to-End Timing Constraints
	4.2 Global Time Base and In-order Delivery
	4.3 Integrating Three Distinct Computing Models

	Chapter 5 Splash Language Constructs
	5.1 Processing Component
	5.2 Port
	5.3 Channel and Clink
	5.4 Fusion Operator
	5.5 Factory and Mode Change
	5.6 Build Unit
	5.7 Exception Handling

	Chapter 6 Splash Runtime Mechanisms
	6.1 Rate Control Mechanism
	6.2 Sensor Fusion Mechanism
	6.3 Mode Change Mechanism

	Chapter 7 Code Generation and Runtime System
	7.1 Build Unit-based Allocation
	7.2 Code Generation Template
	7.3 Splash Runtime System

	Chapter 8 Experimental Evaluation
	8.1 LKAS Program
	8.2 Experimental Environment
	8.3 Evaluating Rate Control
	8.4 Evaluating Sensor Fusion
	8.5 Evaluating Mode Change
	8.6 Evaluating Build Unit-based Allocation

	Chapter 9 Conclusion
	Bibliography
	Abstract in Korean

<startpage>14
Chapter 1 Introduction 1
 1.1 Motivation 2
 1.2 Splash Overview 5
 1.3 Organization of This Dissertation 9
Chapter 2 Related Work 10
 2.1 Kahn Process Network 10
 2.2 Firing Rule Applied to a Process 13
 2.3 Programming Framework for an Autonomous Machine 14
 2.4 Runtime Software for an Autonomous Machine 16
 2.5 Rate Control 18
 2.5.1 Traffic Shaping 20
 2.5.2 Traffic Policing 22
 2.6 Sensor Fusion 23
 2.6.1 Measurement Fusion 24
 2.6.2 Situation Fusion 27
 2.7 Mode Change 30
 2.7.1 Synchronous Mode Change 32
 2.7.2 Asynchronous Mode Change 32
Chapter 3 Motivation and Contributions 34
 3.1 Problem Description 34
 3.2 Limitations of Kahn Process Network 36
 3.3 Contributions of this Dissertation 38
Chapter 4 Underlying Timing Semantics of Splash 41
 4.1 End-to-End Timing Constraints 41
 4.2 Global Time Base and In-order Delivery 42
 4.3 Integrating Three Distinct Computing Models 43
Chapter 5 Splash Language Constructs 45
 5.1 Processing Component 46
 5.2 Port 49
 5.3 Channel and Clink 52
 5.4 Fusion Operator 54
 5.5 Factory and Mode Change 60
 5.6 Build Unit 65
 5.7 Exception Handling 67
Chapter 6 Splash Runtime Mechanisms 69
 6.1 Rate Control Mechanism 69
 6.2 Sensor Fusion Mechanism 70
 6.3 Mode Change Mechanism 77
Chapter 7 Code Generation and Runtime System 80
 7.1 Build Unit-based Allocation 80
 7.2 Code Generation Template 82
 7.3 Splash Runtime System 84
Chapter 8 Experimental Evaluation 86
 8.1 LKAS Program 86
 8.2 Experimental Environment 91
 8.3 Evaluating Rate Control 92
 8.4 Evaluating Sensor Fusion 96
 8.5 Evaluating Mode Change 97
 8.6 Evaluating Build Unit-based Allocation 99
Chapter 9 Conclusion 102
Bibliography 104
Abstract in Korean 113
</body>

