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Abstract

Conventional audio event detection (AED) models are based on supervised ap-

proaches. For supervised approaches, strongly labeled data is required. However,

collecting large-scale strongly labeled data of audio events is challenging due to the

diversity of audio event types and labeling difficulties. In this thesis, we propose

data-efficient and weakly supervised techniques for AED.

In the first approach, a data-efficient AED system is proposed. In the proposed

system, data augmentation is performed to deal with the data sparsity problem and

generate polyphonic event examples. An exemplar-based noise reduction algorithm

is proposed for feature enhancement. For polyphonic event detection, a multi-labeled

deep neural network (DNN) classifier is employed. An adaptive thresholding algo-

rithm is applied as a post-processing method for robust event detection in noisy con-

ditions. From the experimental results, the proposed algorithm has shown promising

performance for AED on a low-resource dataset.

In the second approach, a convolutional neural network (CNN)-based audio tag-

ging system is proposed. The proposed model consists of a local detector and a global

classifier. The local detector detects local audio words that contain distinct charac-

teristics of events, and the global classifier summarizes the information to predict

audio events on the recording. From the experimental results, we have found that
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the proposed model outperforms conventional artificial neural network models.

In the final approach, we propose a weakly supervised AED model. The pro-

posed model takes advantage of strengthening feature propagation from DenseNet

and modeling channel-wise relationships by SENet. Also, the correlations among

segments in audio recordings are represented by a recurrent neural network (RNN)

and conditional random field (CRF). RNN utilizes contextual information and CRF

post-processing helps to refine segment-level predictions. We evaluate our proposed

method and compare its performance with a CNN based baseline approach. From

a number of experiments, it has been shown that the proposed method is effective

both on audio tagging and weakly supervised AED.

Keywords: Audio event detection, data-efficient, weakly supervised learning, deep

learning.

Student number: 2012-23248
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Chapter 1

Introduction

Audio signals carry a large amount of information about our human activities

and physical events with meaningful information. Audio event detection (AED) is a

key role to utilize this information. AED aims to identify the occurrence of specific

sounds in audio recordings. As the amount of multimedia data on the internet is

growing rapidly, analyzing audio events will help to describe and to understand

environmental and social activities in video and audio content. AED is also useful in

many other applications, including surveillance, self-driving cars, healthcare, smart

home systems, and military applications.

In early studies on AED, several approaches were proposed based on signal pro-

cessing and machine learning techniques. Several approaches were proposed based

on Gaussian mixture model (GMM) and hidden Markov model (HMM), similar to

speech recognition techniques. In other studies, support vector machine (SVM) was

also applied to AED as a classifier. Non-negative matrix factorization (NMF) was

used to represent audio events as a combination of bases in some studies. Bag of

words representation was used to represent and detect audio events with various
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classifiers. Recently, deep learning methods have been widely applied in AED. Deep

neural networks (DNNs), convolutional neural networks (CNNs), and recurrent neu-

ral networks (RNNs) were used to classify audio events.

One of the difficulties in learning AED models is the lack of fully supervised data.

In conventional AED approaches, strongly labeled data is used. In strongly labeled

data, either audio event examples are directly provided, or the exact time of each

audio event is given. Building a large fully labeled database is a time-consuming and

challenging work because it is difficult for humans to identify the onsets and offsets

of audio events exactly. For this reason, there exist only a few publicly available

large-scale fully supervised audio event datasets. Therefore, supervised AED models

should consider the data sparsity problem when where is not enough data. Another

way to deal with the lack of fully supervised data is to utilize weakly supervised

datasets. In weakly supervised datasets, only the presences or absences of events in

the recording are provided. Therefore, we can obtain weakly labeled datasets much

easier than strongly labeled datasets.

In this thesis, we propose data-efficient and weakly supervised techniques for

AED. The proposed approaches are based on deep learning methods and can be

applied to different theoretical cases for audio event detection. In Chapter 3, we

propose data-efficient techniques for AED. In the proposed system, data augmenta-

tion is performed to deal with the data sparsity problem in a small training dataset

and generate polyphonic event examples. An exemplar-based noise reduction algo-

rithm is proposed for feature enhancement. A DNN classifier is used for polyphonic

event detection and an adaptive thresholding algorithm is applied as post-processing

for robust event detection in noisy conditions. The proposed algorithm was evaluated

on the DCASE 2016 task 2 dataset and showed good performance.
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In Chapter 4, we propose an audio tagging system on weakly supervised data,

which is labeled with only the existence of events. The model consists of a local

detector and a global classifier. The local detector detects local audio words that

contain distinct characteristics of events, and the global classifier summarizes the

information to make a decision on the recording. The experiments show that the

proposed model has better performance on the CHiME Home dataset than other

neural network-based models.

In Chapter 5, we propose an AED model based on DenseNet and SENet for

weakly supervised AED. We take advantage of strengthening feature propagation

from DenseNet and modeling channel-wise relationships by SENet. Also, the correla-

tions among segments in recordings are considered through an RNN and conditional

random field (CRF) [1]. We evaluate our proposed method and compare its per-

formance with a CNN based baseline approach. Empirical results show that the

proposed method outperforms the baseline on the DCASE 2017 task 4 dataset.

The rest of this thesis is organized as follows: The next chapter introduces the

different theoretical cases for audio event detection covered in this thesis. In Chapter

3, we propose data-efficient techniques for AED. In Chapter 4, we propose the audio

tagging system for weakly supervised data, which is labeled with only the existence

of events. In Chapter 5, we propose the deep CNN based on DenseNet and SENet

for weakly supervised AED. The conclusions are drawn in Chapter 6.
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Chapter 2

Audio Event Detection

There are different theoretical cases for audio event detection, depending on the

information to be estimated. The term audio event classification is used to indicate a

multi-class single-label case, where a single audio sample is assigned to a single event

class. When multiple labels are assigned to a single audio sample, the task is referred

to as audio tagging. In audio event detection, the presence and temporal activity of

audio events in audio recordings are estimated. In our study, we focus on audio event

detection and audio tagging. In order to evaluate the performance of the proposed

techniques, the datasets suitable for each task are required. In the case of speech,

there are databases commonly used in many studies such as TIMIT, Aurora-4 DB,

and LibreSpeech, so it is easy to compare the results of the studies. However, AED

studies often use different databases depending on the targeted acoustic events, and

there are some studies that use unpublished databases. Therefore, it is important to

select an appropriate database to confirm the performance of the algorithms. In order

to fairly compare the proposed algorithm with other studies, we conducted the study

using a DCASE challenge database that many researchers utilize. DCASE challenge
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was first organized in 2013 and has been held annually since 2016. The subject of

the DCASE challenge is the computational auditory scene analysis (CASA), which

covers AED and scene classification. The challenge aims to provide open data for

researchers to use in their work and successive reference points for performance

comparison for AED algorithms. The DCASE challenge consists of four to five tasks

that change every year, and each task is given a database that fits its purpose. We

used databases from the tasks suitable for our studies.

2.1 Data-Efficient Audio Event Detection

AED is defined as the task of finding individual audio events in audio recordings

by indicating onset, offset, and class labels for each audio event. In general, AED

models are trained by supervised methods that require strongly labeled data. In

strongly labeled data, either acoustic event examples are directly provided, or the

exact locations of the acoustic events in the recordings are given so that specific

events can be extracted from the entire recordings. However, there are not many

publicly available large-scale datasets with strong labels. Therefore, it is important

that AED models should be robust even when there is not enough data.

We used the DCASE 2016 task2 dataset for low-resource supervised AED. DCASE

2016 task2 focused on event detection of office audio events and will use training

material provided as isolated audio events for each class, and synthetic mixtures

of the same examples in multiple SNR and event density conditions. The test data

consists of synthetic mixtures of audio events at various SNR levels, event density

conditions, and polyphony. The training dataset was composed of mono record-

ings of isolated acoustic events typically found in an office environment. 11 classes

6
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Audio event labels (with timestamps)

Figure 2.1: Audio event detection system.

were available: clearthroat, cough, doorslam, drawer, keyboard, keys, knock, laugh-

ter, pageturn, phone, speech and each class was represented by 20 recordings in

the training dataset. The development dataset consisted of 18 two-minute record-

ings in various noise and event density conditions. The test dataset consisted of 54

two-minute recordings similar to the development dataset. The training and devel-

opment dataset was used for training the model, and the test dataset was used only

for performance evaluation.

2.2 Audio Tagging

Audio tagging is defined as a multi-label classification problem, in which each

possible label corresponds to a class of audio events which may occur in the audio

sample. Unlike AED, the onset and offset of events are not requested in audio tag-

ging. Thus, weakly labeled data without timestamps of audio events can be used
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Figure 2.2: Audio tagging system.

for learning an audio tagging system. A practical benefit of audio tagging comes

from the uncomplicated annotation process, which does not require manual event

boundaries.

For the evaluation of the proposed audio tagging algorithm, we employ the

CHiME-Home dataset [2], which was used in DCASE 2016 task 4. The acoustic

environment comprises the following audio sources: Two adults and two children,

television and electronic gadgets, kitchen appliances, footsteps, and knocks produced

by human activity, further to sound originating from outside the house. The audio

data are provided at sampling rates of 16 kHz single-channel recordings. The de-

velopment set consists of 4378 recordings, and another 1759 recordings are used for

evaluation. Each recording has 4 seconds duration. The event classes in the dataset
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are child speech, male speech, female speech, TV, percussive sounds, broadband

noise, and other identifiable sounds. The dataset includes only record-level labels

without timestamps.

2.3 Weakly Supervised Audio Event Detection

In early studies on AED, most of the studies were based on fully supervised

learning methods that require strongly labeled data. In strongly labeled data, either

audio event examples are directly provided, or the exact time of each audio event is

given. However, building a large strongly labeled database is a time-consuming and

challenging work. For these reasons, there exist only a few publicly available large-

scale audio event datasets with strong labels. In weakly supervised approaches, AED

models are learned based on weakly labeled data that provides only the presence

or absence of events in the recording. The difference with audio tagging is that

weakly supervised AED also aims to predict the onset and offset in addition to the

presence of events. The task thus raises an interesting technical challenge, how to

learn a model that predicts strong labels with timestamps from weakly labeled data

without timestamps.

We used the DCASE 2017 task4 dataset for the evaluation of the proposed

algorithm. The DCASE 2017 task 4 Dataset [3] was published for the task of “Large-

scale weakly supervised sound event detection for smart cars” in the DCASE 2017

challenge. The dataset employs a subset of AudioSet by Google [4]. The DCASE 2017

task 4 Dataset consists of 17 audio events divided into two categories: “Warning” and

“Vehicle”. The dataset contains audio classes for self-driving cars, smart cities, and

related areas. The dataset contains 51,172 clips of the training set, 488 clips of the

9
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Figure 2.3: Weakly supervised audio event detection system.

validation set, and 1,103 clips of evaluation set. Every clip is less than 10 seconds

long. Each clip may correspond to more than one audio event and possibly has

overlapping audio events. The dataset is obtained by collecting real-life recordings

that contain noise and unknown class signals. The training set has weak labels

denoting the presence of a given audio event in the clip, and no timestamps are

provided. For the validation and evaluation sets, strong labels with timestamps are

provided for the purpose of performance evaluation.

2.4 Metrics

Evaluation of the performance of AED systems is done by comparing the system

output with a reference available for the test data. Suitable metrics are required for
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Figure 2.4: Calculation of f-score and error rate.

the performance comparison of the AED systems. Metrics from neighboring fields

such as speech recognition can be used, but they need to be partially redefined to

deal with multi-label classification results. In our study, we used the metrics for

measuring the performance of polyphonic AED proposed in [5].

In AED tasks, the comparison between the system output and reference can

be done in fixed-length intervals. These intervals may be short or the entire length

of the audio signal. For evaluation of metrics, we need to define what constitutes

correct detection and what type of errors the system produces. These are referred

to as intermediate statistics that count the correct and incorrect predictions of the

system separately. For intermediate statistics, the active/inactive state of each event

class is determined in a fixed-length interval. The intermediate statistics are defined

as:

• true positive (TP): the reference and system prediction both indicate an event

11



to be active in the segment.

• true negative (TN): the reference and system prediction both indicate an event

to be inactive in the segment.

• false positive (FP): the reference indicates an event to be inactive in the seg-

ment, but the system prediction indicates it as active.

• false negative (FN): the reference indicates an event to be active in the segment,

but the system prediction indicates it as inactive.

Base on these intermediate statistics, precision (P), recall (R), and f-score (F) are

introduced. Precision is the fraction of correctly retrieved instances among all re-

trieved instances, and recall is the fraction of correctly retrieved instances among all

relevant instances. They are defined as

P =
TP

TP + FP
(2.1)

R =
TP

TP + FN
. (2.2)

Based on precision and recall, f-score is determined as a measure of effectiveness of

retrieval. F-score is calculated as

F =
2 · P ·R
P +R

=
2 · TP

2 · TP + FP + FN
. (2.3)

Error rate (ER) represents the number of errors in terms of insertions (I), dele-

tions (D), and substitutions (S). ER is calculated in a segment-wise manner. In a

segment k, the number of substitution errors S(k) is the number of predicted false

events when the reference indicates other undetected events. This is determined

12



by pairing false positives and false negatives, without considering which erroneous

event substitutes which. The number of deletion errors D(k) is the number of missing

events that the reference indicates active events, but the system doesn’t detect (false

negatives after substitutions are accounted for). The number of insertion errors I(k)

is the number of predicted false events that the reference indicates no events (false

negatives after substitutions are accounted for). They are defined as

S(k) = min(FP (k), FN(k)) (2.4)

D(k) = max(0, FN(k)− FP (k)) (2.5)

I(k) = max(0, FP (k)− FN(k)). (2.6)

Total error rate is calculated by integrating segment-wise counts over the total

number of segments, given as

ER =

∑
S(k) +

∑
D(k) +

∑
I(k)∑

N(k)
(2.7)

where N(k) is the number of active events at segment k in the reference. The calcu-

lation of f-score and error rate is illustrated in Fig. 2.4.

Equal error rate (EER) is also used for performance evaluation. To calculate

EER, FP and FN errors are used. Multi-label AED systems generally output scores

for each event. This score is a scalar variable that represents the possibility of an

event to be present. To make a decision, the AED system needs to use a threshold

value to decide whether an event is active or not. If the threshold is too low, there

will be a lot of FP errors, whereas if the threshold is too high, there will be too

13



Figure 2.5: Example of a DET curve.

many FN errors. According to these definitions, two error rates are defined as

False PositiveRate (FPR) =
Number of FP errors

Number of inactive events in the reference
(2.8)

FalseNegativeRate (FNR) =
Number of FN errors

Number of active events in the reference
. (2.9)

The EER is defined as the FPR and FNR values when they become equal. To

calculate EER, we should find a point where the FAR and FRR become equal by

changing the threshold. To represent the performance of detection systems graph-
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ically, the detection error tradeoff (DET) curve is generally employed. The DET

curve is a plot of the FPR versus FNR on different thresholds. An example DET

curve is shown in Fig. 2.5. When the performance of the system is better, the curve

is closer to the origin.
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Chapter 3

Data-Efficient Techniques for

Audio Event Detection

3.1 Introduction

Audio event detection plays an important role in computational auditory scene

analysis, with a specific purpose of detecting meaningful sounds, generally referred

to as audio events. Detecting audio events such as speech, footstep, and door slam

provides fundamental information for understanding the situation using acoustic

signals. Furthermore, AED could be utilized in many applications, including auto-

mated surveillance systems, information retrieval, smart home systems, and military

applications.

Many previous works on AED were based on conventional speech recognition

techniques. The most common approach is to use a system based on spectral fea-

tures such as mel-frequency cepstral coefficients (MFCCs) and HMM for audio event

classification [6], [7]. In recent works, approaches based on SVM [8]–[10] or NMF [11]–

17



[13] were also proposed for AED. Most of the previous works were monophonic AED,

which focused on detecting a single event at the same time. However, more than two

events can happen simultaneously in real environments. In this case, conventional

monophonic AED approaches may not be suitable for detecting overlapping events.

Polyphonic AED aims to detect multiple audio events in the same time instance of

the audio data. A polyphonic AED system that used MFCC for feature and HMMs

as classifiers with consecutive passes of the Viterbi algorithm was proposed [14].

In [15], a generalized Hough transform (GHT) voting system has been used to rec-

ognize overlapping audio events. In another work, the NMF-based approach was

used for source separation, and then events were detected from each stream [16].

In [17], they showed that DNNs outperform the SVM and GMM models. DNNs

have shown good performance for polyphonic AED by modeling overlapping audio

events in a natural way [18].

In this chapter, we propose a DNN-based data-efficient AED system. In the

proposed system, data augmentation is performed to deal with the data sparsity

problem in small training datasets and generate polyphonic event examples. An

exemplar-based noise reduction algorithm is proposed for feature enhancement. DNN

classifier is trained for polyphonic event detection, and an adaptive thresholding

algorithm is applied as post-processing for robust event detection in noisy conditions.

3.2 DNN-Based AED system

The proposed system consists of 4 main processing stages. The overall system is

illustrated in Fig. 3.1. First, data augmentation is performed to generate artificial

audio event scenes that are used for training the classifier. In the second stage, mel
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Figure 3.1: Flowchart of the proposed system.
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filterbank features are extracted and enhanced by exemplar-based noise reduction.

Third, the enhanced feature is fed to a DNN classifier. The features from artifi-

cial audio event scenes are used for training the DNN classifier. In the final stage,

the audio events are detected by filtering and thresholding the output of the DNN

classifier.

3.2.1 Data Augmentation

DNNs have shown good performance as classifiers in many applications. When

the training data is large, the DNN could learn from the variations presented in

the training data under the same labels and make classifications that are robust to

intra-class variations. However, if the training data from each class is not sufficient

to cover its intra-class variations, the DNN classifier trained with the data may have

poor generalization ability, leading to low classification performance for test samples.

In [19], the data augmentation approach was used for training DNNs to deal with

the data sparsity problem.

Unlike speech datasets, which usually consist of hours of data or more, conven-

tional audio event datasets are not sufficiently long enough to train a robust DNN

classifier. Under this condition, data augmentation can help to enhance the perfor-

mance of the DNN classifier by improving the generalization ability of the neural

network. In recent research, data augmentation approaches were performed for bet-

ter performance in polyphonic AED [20]. In our model, artificial event scenes are

generated using data augmentation. In the artificial event scenes, events are over-

lapped with each other or manipulated by time stretching and power modification

for the diversity of data. These event scenes are corrupted by white, blue, and pink

noises.

20



Figure 3.2: Exemplar-based approach for noise reduction.

3.2.2 Exemplar-Based Approach for Noise Reduction

In real life recordings, various noises exist and make it challenging to detect audio

events correctly. To alleviate the effect of the noises, noise reduction is performed for

feature enhancement. Since we assume that the test noise conditions are unknown,

model adaptation-based approaches for noise robustness may not be suitable. In

order to suppress unseen noises in test conditions, an exemplar-based noise reduction

approach is proposed. In this approach, noise exemplars are selected from the event

scene features, and then the noise is directly subtracted from the event scene features

by using the noise exemplars.

For each event scene, mel filterbank features are extracted, and the features that

have L1 norm corresponding to the lower 30% are considered to be noise candidates.

From the candidates, K noise frames are selected randomly or using K-means algo-

rithm for noise exemplars. For each frame, the best matching noise exemplar that
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minimizes the noise estimation error, defined as in (3.1), is selected.

Ek = ||max(Xt −Nk, 0)||1 + α · ||max(Nk −Xt, 0)||1 . (3.1)

Ek is the noise estimation error of a noise exemplar Nk and Xt is a feature vector at

time index t. Noise estimation error Ek is the summation of underestimation error

and overestimation error with a ratio of α. The selected noise exemplar is subtracted

from the frame feature for noise reduction. The proposed noise reduction process is

illustrated in Fig. 3.2.

3.2.3 DNN Classifier

We propose a DNN-based classifier for AED. Unlike speech, audio events come

from different physical sources, so they possess unique characteristics that are dis-

tinct from one another. The DNN structure is employed to represent distinct audio

events in a single model successfully. The DNN system for AED is illustrated in

Fig. 3.3. The DNN consists of an input layer, a few hidden layers, and an output

layer which are fully connected to their adjacent layers. As for the input, mel fil-

terbank features enhanced by the proposed noise reduction approach are used. To

consider temporal information, several adjacent frame features are concatenated for

a single frame input. The output of the DNN is the estimated labels for input frames.

The number of the output unit is the same as that of the event classes, and each

output unit is matched to each class. When the event exists in the input frame, the

output unit of the class is set to 1; otherwise, it is set to 0. We used rectified linear

units (ReLUs) for hidden layers and sigmoid function units for the output layer.

Artificial event data generated by data augmentation is used for training the
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Figure 3.3: A DNN structure for the proposed AED system.

DNN classifier. In the fine-tuning stage, the backpropagation algorithm with the

minimum mean squared error (MMSE) function between the correct label and the

estimated label is employed to train to the DNN. A stochastic gradient descent

algorithm is performed in mini-batches to improve learning convergence. To deal

with the overfitting problem, we used the dropout technique, which has already

proved its regularization capability for training DNN [21].

3.2.4 Post-Processing

The output of the DNN classifier is filtered for robust event detection. An av-

eraging filter may help to remove outliers, but also discourage precise detection in

onset or offset period of an event due to non-event periods nearby. For precise onset

and offset detection, we used two filters: one of which is a sigmoid function, and
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the other is the former reflected about the y-axis. The former one is sensitive to the

onset, and the latter one is sensitive to the offset of an event. To detect both onset

and offset of an event correctly, larger values of the output of two filters are taken

from both outputs of the filters.

Generally, static threshold values are used for detection. However, in noisy event

scenes, static threshold values can lead to a high false detection error rate when

the noise has a similar characteristic to the events. To consider the noise effect on

detection, adaptive threshold values are defined as

thk = thbase,k + β · 1

T

∑
yt,k (3.2)

where thk is an adaptive threshold value for class k, thbase,k is a base threshold value,

yt,k is the DNN output of the class k at tth segment. When noise characteristic is

similar to class k, thk gets higher and reduces false detection error rate of class k.

3.3 Experiments

In order to evaluate the performance of the proposed system, we conducted ex-

periments on the DCASE 2016 challenge task 2 dataset [22]. The training dataset

was composed of mono recordings of isolated acoustic events typically found in an

office environment. 11 classes were available: clearthroat, cough, doorslam, drawer,

keyboard, keys, knock, laughter, pageturn, phone, speech, and each class was repre-

sented by 20 recordings in the training dataset. The development dataset consisted

of 18 two-minute recordings in various noise and event density conditions. Only

training dataset and noises sampled from probability density functions were used

for training the system, and the development dataset was used for evaluation.
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Data augmentation was performed for generating the training event scene. Each

audio event scene was about two-minute-long. All events in the training dataset

were normalized to have the same power, and 30 of them were randomly selected for

one event scene. To diversify the training data, half of the events were manipulated

by stretching the time at a ±10% rate and modifying the power in the range of

50% ∼ 200%. One-third of the events were overlapped to each other for polyphonic

event examples. To consider the effect of noise on events, white Gaussian noise at a

signal-to-noise ratio (SNR) levels 6 to 18 dB and pink noise and blue noise at SNR

level 12 dB were mixed. 180 artificial event scenes were generated for training the

system.

We used mel filterbank features for our system. Instead of original frequency 44.1

kHz, we used the sampling frequency of 30 kHz, spanning 50 bands between 16 Hz

and 15 kHz. We used a hamming window with a frame length of 25 ms and a shift of

10 ms for frame segmentation. For noise reduction, 100 noise exemplars are selected,

and α is set to 3. As training data and test data may have a power mismatch, the

features extracted from each event scene are normalized.

For training the DNN-based classifier, 50-dimensional mel filterbank features

were used as input. The input layer for DNN was formed by applying a context

window of 15 frames, having 750 visible units for the network. The DNN had three

hidden layers with 768 ReLUs, and the final sigmoid output layer had 11 units, each

corresponding to the event classes. The fine-tuning of the network was performed

using mean squared error as the loss function by error backpropagation supervised

by the correct label of frames. The mini-batch size for the stochastic gradient de-

scent algorithm was set to be 128. The dropout percentage of 20% was applied for

regularization.
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Table 3.1: Average detection results on the IEEE DCASE 2016 challenge task 2
evaluation dataset

Metrics Segment-based Event-based

Precision 0.8929 0.7270

Recall 0.7643 0.6622

F-score 0.8236 0.6931

Substitutions 0.0328 0.0337

Deletions 0.2029 0.3042

Insertions 0.0589 0.2149

ER 0.2946 0.5527

In the post-processing stage, two 11-tap sigmoid shape filters are applied for

smoothing the output of the DNN. Larger values are taken from both the outputs

of the filters and thresholded for event detection. We set thbase,k to 0.8 for doorslam

class and 0.6 for other classes and β to 0.5 for adaptive thresholding. The same

events within 300 ms gap are concatenated, and events shorter than 150 ms are

removed. As evaluation measures, f-score and ER are used on the segment-based

and event-based level. These measures are explained in Chapter 2.

For DCASE 2016 task 2 challenge evaluation, both training data and develop-

ment data are used for training DNN classifier. The results on the evaluation dataset

are shown in Table 3.1. F-score and ER on segment-based metrics are 0.8236 and

0.2946, respectively. On event-based overall metrics, F-score and ER are 0.6931 and

0.5527, respectively. Class-wise detection performance on the evaluation dataset is

shown in Table 3.2. In most cases, similar performance is achieved, but it is particu-

larly poor on the ”door slam” events. This is because the door slam event consists of

concise signals, and the proposed system is not optimized for short signal detection

in the post-processing stage.
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Table 3.2: Class-wise detection results on IEEE DCASE 2016 Challenge Task 2
Evaluation Dataset

Class F-score ER

Clearing throat 0.8116 0.3373

Coughing 0.8090 0.4175

Door knock 0.8783 0.2268

Door slam 0.3485 0.8916

Drawer 0.7253 0.4488

Keyboard 0.9338 0.1379

Keys 0.8420 0.2920

Human laughter 0.7719 0.4196

Page turning 0.8590 0.2722

Phone ringing 0.9314 0.1316

Speech 0.8585 0.2988

3.4 Summary

We presented a data-efficient AED system based on a DNN. We used data aug-

mentation to deal with data sparsity problem and exemplar-based approach for noise

reduction. We trained a DNN for classification, and adaptive thresholding are used

for detecting events. The proposed system has shown promising results on IEEE

DCASE 2016 Challenge Task 2 Datasets.
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Chapter 4

Audio Tagging using Local

Detector and Global Classifier

4.1 Introduction

The topic of AED covers the detection and classification of acoustic events in

recordings. Acoustic events help to describe and to understand the environment and

social activities using acoustic information. For example, detecting acoustic events

such as speech, footstep, and keyboard typing provides information on the office envi-

ronment. AED could be utilized in many applications, including automated surveil-

lance systems, information retrieval, smart home systems, and military applications.

In the early works, most of the studies focused on detecting monophonic acoustic

events. Several approaches have been proposed based on HMM [6], [7], SVM [8]–[10]

and NMF [11]–[13]. In real environments, more than two events can occur simulta-

neously. Recently, several studies have focused on polyphonic AED, which aims to

detect overlapping acoustic events simultaneously in the recordings. A polyphonic
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AED system that uses HMMs as classifiers with consecutive passes of the Viterbi al-

gorithm is proposed [14]. In [16], NMF is used for source separation, and then events

are detected from each stream. DNNs have shown good performance for polyphonic

AED by modeling overlapping acoustic events in a natural way [18].

In previous works, most studies were based on fully supervised methods using

strongly labeled data. In strongly labeled data, either acoustic event examples are

directly provided, or the exact locations of the acoustic events in the recordings

are given so that specific events can be extracted from the entire recordings. How-

ever, producing a large amount of strongly labeled database is a difficult and time-

consuming process. Additionally, finding the exact time stamps of acoustic events is

very difficult when different events occur at the same time. For these reasons, there

are not many publicly available large-scale datasets with strong labels.

Recently, there have been some studies on audio tagging [23], [24]. These studies

focus on learning acoustic event detectors based on weakly labeled data. In weakly

labeled data, only the presence or absence of an event in the recording is known.

The onset and offset of events are not requested in audio tagging. We can obtain

weakly labeled datasets much easier than fully supervised datasets. For example,

we can collect a huge amount of data by collecting videos uploaded on the internet.

The tags of the videos can be used as weak labels for each video. However, there

are some problems with using weakly labeled data for AED. The exact occurrence

times of the events are not known, so learning a model for a specific class is difficult

due to the interference of other data. Furthermore, It is more challenging to extract

correct information when events in the recordings are overlapped.

There have been several studies on audio tagging. Kumar et al. proposed an ap-

proach of multiple instance learning (MIL) [23]. They propose two MIL frameworks
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based on neural networks and SVM for weakly labeled datasets. In [24], they also

propose a more general framework for supervised and weakly supervised learning

(SWSL). Their proposed framework can be applied for both fully supervised and

weakly supervised cases. Also, various approaches were proposed for audio tagging

in DCASE 2016 task 4 [25]. Several algorithms using neural network techniques

such as DNNs, CNNs, and RNNs with various input features, e.g., spectrogram,

MFCCs, mel-band energy, and constant Q transform (CQT) are proposed [26]–[28].

In [29], a fully convolutional neural network is applied to the UrbanSound dataset.

Moreover, an event-specific Gaussian filter layer is designed to advance its learning

ability. In [30], a joint detection-classification (JDC) model is proposed to detect

and classify the audio recording simultaneously. The JDC model has the ability to

attend to informative sounds while ignoring uninformative sounds.

In this chapter, we propose an acoustic event detection framework for weakly su-

pervised data, which is labeled with only the existence of events. The model consists

of a local detector and a global classifier. The local detector detects local audio words

that contain distinct characteristics of events, and the global classifier summarizes

the information to make a decision on the recording.

4.2 CNN-Based Audio Tagging Model

In audio tagging, we only have one multi-label for each recording. Generally, the

recordings are divided into frames, so we should handle multiple frame instances

with one label. One of the basic approaches is an average model. In the average

model, estimated labels of frames are averaged into a record-level label. The model

is trained by minimizing the cross-entropy between the averaged label and the record-

31



Global classifierLocal detector

…

...

DNN 

local detector
Mel band energy

features

Detected

Audio words

Convolutional

layer
Global max 

pooling layer

Segment-

level

prediction

Clip-level

prediction

...

...

Figure 4.1: The overview of the proposed local detector and global classifier model.

level label. Thus the model uses the average label of all frames, which may cause

confusion of information from different events and noise.

4.2.1 Local Detector and Global Classifier

In audio tagging, it is important to extract class-wise information from the

recordings. One possible approach for this is to locally detect distinct character-

istics of events and globally summarize the information. To do this, we propose a

framework based on a local detector and global classifier (LDGC).

For the detailed analysis of the events, we can assume that each event consists

of audio words. Audio words are short and distinct acoustic components of the

events. In a case of voices, general phonemes, laughter sounds, and screams can

be considered as audio words of voices. Moreover, different events can share audio

words. For example, TV sound can have the same audio words from voice or music.

These audio words can be used for describing local characteristics of each event in

detail.

By detecting audio words, we can extract local characteristics from the recordings

as audio words containing short-term information of the events. We use a local
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detector to detect audio words from each frame. The input of the local detector is a

frame-level feature vector, and the output is multi-label of audio words as different

audio words can occur simultaneously. Since audio words are not clearly defined,

the audio words are determined by jointly training the local detector with a global

classifier. The number of total audio words is determined experimentally.

The global classifier determines whether or not an event exists in the recordings

based on the information of the local audio words. We use a convolutional layer

with large filters to summarize the information in a large context window. The

convolutional layer learns temporal correlations of the estimated frame-level audio

words and finds robust estimations of the event labels. The global classifier should

find an event even if there is an event only in a short interval, so we use a global

max-pooling layer for the final decision.

In detail, our proposed model is shown in Fig. 4.1. For input features, we use

mel filterbank features, and adjacent frame features are concatenated for temporal

information. In this model, a fully connected DNN is used for the local detector. The

purpose of the DNN local detector is to detect frame-level audio words. The DNN

local detector takes the mel filterbank features as input and returns the estimated

frame-level audio word labels. The activation function of the output layer is a sigmoid

so that the detector can detect multiple audio words simultaneously. The number

of the output node is K, which is the number of audio words. Since we can not

directly train this detector as we don’t have a ground truth label of audio words

in each frame, the local detector should be trained jointly with the global classifier.

For a global classifier, a convolutional layer and global max-pooling are used. The

convolutional layer with N channels is learned, where N is the number of total

event classes. The output from each channel determines the estimated labels for
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each event. The record-level label is generated by a global max-pooling layer after

the convolutional layer. The global max-pooling layer selects the highest estimation

score in each output channel of the convolutional layer as the final score of each

class.

4.2.2 Temporal Localization of Events

In record-level event detection, only the existence of events is estimated. In prac-

tice, finding the locations of events in the recording is also important. The proposed

model can be learned with record-level labels, but once the learning is complete, it

can classify frame-level instances as the output of the convolutional layer represents

the estimations of frame-level event probability.

4.3 Experiments

To evaluate the performance of the proposed framework, we train and evaluate

three models, the baseline average model, BP-MIL [23], and the proposed LDGC

model.

4.3.1 Dataset and Feature

For evaluation, we employ CHiME home dataset [2]. The development set con-

sists of 4378 recordings, and another 1759 recordings are used for evaluation. Each

recording has 4 seconds duration. The event classes in the dataset are “child speech”,

“male speech”, “female speech”, “TV’, “percussive sounds”, “broadband noise” and

“other identifiable sounds”, denoted by ‘c’, ‘m’, ‘f’, ‘v’, ‘p’, ‘b’ and ‘o’, respectively.

The dataset includes only record-level labels without event positions. We used mel
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filterbank features as input features. Instead of the original frequency 48 kHz, we

used the sampling frequency of 16 kHz, spanning 60 bands between 16 Hz and 8

kHz. We used a 30 ms Hamming windows with a 33 % overlap for frame segmen-

tation. For temporal information, five frame features are concatenated into total

300-dimensional features.

4.3.2 Model Training

Three models are implemented with TensorFlow [31]. For our proposed LDGC

model, a fully connected DNN is used to model the local detector. The DNN local

detector consists of 3 fully connected layers with 512 units per layer. ReLU is applied

to each layer, and the sigmoid function is applied to the output layer. For the number

of the output node, which is the number of audio words, K = 50 is selected for the

best performance. For the global classifier, a convolutional layer and global max-

pooling are applied. The convolutional layer with filter size 50×21×7 is learned. The

record-level label is generated by a global max-pooling layer after the convolutional

layer.

For the baseline system, a fully connected neural network similar to the local

detector is used to model the frame-level classifier. The baseline model consists of 3

fully connected layers with 512 units per layer. ReLU activation function is applied

to each layer. The sigmoid function is applied to the classifier’s output layer, and

the outputs of the classifier are averaged for record-level classification. BP-MIL has

the same structure as the baseline system. However, instead of using the averaged

output of the classifier for record-level classification, the maximum output of the

classifier is selected for record-level classification.

We use the record-level cross-entropy error as the loss function. We apply Adam
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Table 4.1: EER on CHiME home evaluation dataset.

Baseline BP-MIL LDGC

EER 15.42% 13.13% 11.79%

Table 4.2: The class-wise EER on CHiME home evaluation dataset.

Class BASE MIL LDGC

Child speech 18.17% 12.34% 11.93%
Adult male speech 18.37% 12.23% 12.61%

Adult female speech 21.43% 13.79% 14.20%
Video game / TV 8.41% 6.73% 6.12%
Percussive sounds 25.08% 21.03% 19.82%
Broadband noise 7.27% 21.13% 7.27%

Others 29.60% 28.57% 27.41%

[32] as our update function, and the learning rate was set to 0.00005. We set the

batch size to 1, which means one recording was used for each batch. The training is

stopped after 150 epochs. The dropout rate of 0.2 is applied for regularization. We

use EER as our performance measure, which is explained in Chapter 2.

4.3.3 Results

The model belongs to the epoch with the lowest evaluation EER is selected as

the best model for each algorithm. The DET curves of the models are presented in

Fig. 4.2, and the EERs of the models on the evaluation set are shown in Table 4.3.2.

The baseline model and BP-MIL attains EER of 15.42% and 13.13%, respectively.

The proposed LDGC model has shown better performance at EER of 11.79%. The

class-wise EERs of the models are shown in Table 4.2. The MIL and LDGC model

have shown better performance in most classes. In most classes, the MIL and LDGC

models have shown better performance than the baseline model, but the MIL model

has lower performance on percussive sounds.

36



0.1 0.2 0.5 1 2 5 10 20 40

False Positive Rate (FPR) [%]

0.1

0.2

0.5

1

2

5

10

20

40

F
al

se
 N

eg
at

iv
e 

R
at

e 
(F

N
R

) 
[%

]

Base
MIL
LDGC
EER

Figure 4.2: The DET curves of the models.
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Figure 4.3: (a) Spectrogram of the audio clip. (b) Detector output of the LDGC
model. (c) Ground truth label of the recording.
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The LDGC model is also able to find timestamps of events in recordings. Fig. 4.3(a)

shows the spectrogram which corresponds to a record in the evaluation dataset. The

weak label for this recording includes children speech, female speech, and TV sounds.

Fig. 4.3(b) shows the frame-level scores of the recording, which are activations from

outputs of the convolutional layer after filtering. Fig. 4.3(c) shows the locations of

the actual events in the recording. It is shown that the LDGC model detects the

acoustic events successfully when the event is monophonic. However, it does not

work well when the events are overlapped. This means that polyphonic events are

not properly modeled in the proposed framework. Further research is required to

make a robust model for polyphonic events.

4.4 Summary

We proposed a local detector and a global classifier framework for audio tagging.

The local detector extracts distinct information, and the global classifier summarizes

it to make a decision. Results from the experiments demonstrated that the proposed

model outperformed the other models based on neural networks. The model is able

to locate event positions without temporal annotations during training.
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Chapter 5

Deep Convolutional Neural

Network with Structured

Prediction for Weakly

Supervised Audio Event

Detection

5.1 Introduction

People experience a variety of audio events with meaningful information that

can be useful for human activities. AED aims to identify the occurrence of specific

sounds in audio recordings. As the amount of multimedia data on the internet is

growing rapidly, analyzing audio events will help describing and understanding en-
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vironmental and social activities in video and audio contents. AED is also useful in

many other applications, including surveillance, self-driving cars, healthcare, smart

home systems, and military applications.

In early studies on AED, several approaches were proposed based on signal pro-

cessing and machine learning techniques, and recently deep learning based methods

have been widely developed. Most of these studies were based on fully supervised

learning methods that require strongly labeled data. In strongly labeled data, either

audio event examples are directly provided or the exact time of each audio event

is given. However, building a large strongly labeled database is a time-consuming

and challenging work. For these reasons, there exist only a few publicly available

large-scale audio event datasets with strong labels.

Recently, there have been some studies on weakly supervised AED [23], [24],

[33], [34]. These studies focus on learning AED models based on weakly labeled data

that provides only the presence or absence of events in the recording. We can obtain

weakly labeled datasets much easier than strongly labeled datasets. For example, we

can collect videos uploaded on the internet and use the tags of the videos as weak

labels. However, it is problematic to directly use this data for AED since the exact

occurrence times of the events are not known, which makes it difficult to learn a

model for segment-level predictions.

Most of the AED methods use spectro-temporal representations as input fea-

tures. Since the spectro-temporal feature of an audio signal, such as log mel spectro-

gram, can be considered as a 2D image, computer vision techniques can be applied

to AED. In recent works on computer vision, deep learning approaches including

CNN models such as the residual network (ResNet) [35], the densely connected con-

volution network (DenseNet) [36], the squeeze-and-excitation network (SENet) [37]
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have shown impressive performance. Also, many studies report that better results

are obtained by using structured prediction methods, which consider dependencies

of each pixel-level output [38], [39].

Early works on AED focused on detecting audio events based on various machine

learning techniques. Several approaches were proposed based on HMMs [6], [7]. In [7],

GMM - HMM based modeling similar to speech recognition techniques was proposed

to model audio events. SVM [8], [9], [10] and NMF [11], [12], [13] were also applied

to AED in some studies. Bag of words representation was used to represent and

detect audio events with various classifiers [40], [41]. In [18], the use of multi-label

DNNs is proposed for detecting temporally overlapping audio events in realistic

environments. Many works on AED have been proposed based on CNN [42], [43],

[44], [45]. RNNs have been utilized for AED [46], and also in conjunction with DNNs

or CNNs [47], [48]. However, increasing the size of a fully supervised deep learning

model is difficult due to a lack of large-scale strongly labeled datasets. This limitation

can be somewhat alleviated by model regularization and data augmentation, but it

is difficult to overcome the limitation completely.

There have been several studies on analyzing and detecting audio events in a

weakly supervised scenario. Weakly supervised AED has been widely studied af-

ter the release of AudioSet [4], which contains more than two million 10-second

YouTube clips with weak audio labels. In the early studies of weakly supervised

AED, a MIL [49] based approach was proposed in [23]. The authors formulated

weakly supervised AED as a MIL problem and proposed MIL methods based on

SVM and DNN. Although the training was done using weakly labeled data with-

out temporal information, the authors showed that temporal localization of audio

events was able to be extracted. In [24], the authors proposed a unified framework
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for SWSL using a graph-based model. The proposed model was able to be learned

simultaneously from strongly and weakly labeled data.

Deep learning based methods have been widely proposed for weakly supervised

AED and many of these methods have employed CNNs [33], [34], [50], [51]. In [33],

CNN was applied with an event-specific Gaussian filter layer, which was designed to

improve its learning ability. [34] proposed a CNN structure with adaptive pooling

operators to aggregate temporally dynamic predictions. [50] used CNN to scan and

produce outputs at small segments and then map these segment-level outputs to full

recording level outputs. [51] used transfer learning to effectively convey knowledge

from weakly labeled web audio data to the target data. In the DCASE 2017 [3],

most of the top performing methods on the weakly labeled task relied on CNNs [52],

[53], [54].

Recent improvements in computer hardware have enabled training very deep

CNNs. However, this is not easy due to the problem of vanishing/exploding gradi-

ents particularly in lower layers. Many algorithms have been proposed to solve this

problem such as ResNet [35]. ResNet introduces a residual block that sums a non-

linear transformation of the input and its identity mapping. The identity mapping

is implemented through a shortcut connection which makes the networks avoid the

vanishing gradient problem. The shortcut connections help to improve the perfor-

mance of the networks and obtain faster convergence of training. As an extension of

ResNets, a new CNN architecture, called DenseNet, was introduced in [36]. DenseNet

is built from stacks of dense blocks and pooling operations. The dense blocks consist

of multiple layers with direct connections from any layer to all subsequent layers to

improve the information flow between layers.

In [37], the authors focused on the channel relationship and proposed a novel
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architectural unit, the squeeze-and-excitation (SE) block, that adaptively recali-

brated channel-wise feature responses by explicitly modeling interdependencies be-

tween channels. They proposed to squeeze global spatial information into a channel

descriptor and modeled channel-wise relationships using a lightweight gating mech-

anism. They demonstrated that SE blocks brought significant improvements in the

performance of the state-of-the-art CNNs at a minimal additional computational

cost.

CRFs have been employed to enforce structure consistency in semantic segmen-

tation. In [55], a fully connected CRF was used to consider the structural properties

of the segmentation outputs. More recently, deep learning models integrating the

densely connected CRF were proposed in many studies. DeepLab [38] proposed

deep CNNs with atrous convolution, which is convolution with upsampled filters,

and combined the responses at the final layer with a fully connected CRF. In [39],

an RNN was introduced to approximate the mean-field iterations of CRF optimiza-

tion, allowing for end-to-end training of both the fully convolutional network and

the RNN.

In this chapter, we propose a deep convolutional network based on DenseNet

and SENet for weakly supervised AED. We take advantage of strengthening feature

propagation from DenseNet and modeling channel-wise relationships by SENet. Also,

the correlations among segments in recordings are considered through a recurrent

neural network (RNN) and conditional random field (CRF) [1]. We evaluate our

proposed method and compare its performance with a CNN based baseline approach.

Empirical results show that the proposed method outperforms the baseline on the

DCASE 2017 task 4 dataset.
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Figure 5.1: Overview of the proposed DSNet for weakly supervised AED. (a) The
architecture of DSNet. The dense layer marked with * is replaced by a recurrent
layer in DSNet-RNN. (b) The schema of the dense block. C denotes a concatenation
operation. (c) The schema of the SE block.

5.2 CNN with Structured Prediction for Weakly Super-

vised AED

In this section, we describe our weakly supervised AED model, referred to as

DSNet. The overall structure of the DSNet is depicted in Fig. 5.1. The input of

DSNet is a log mel spectrogram image X ∈ RN×M , where N denotes the number of

frames and M is the number of mel filterbanks. First, convolution is performed on

the log mel spectrogram images to extract feature maps. We use 4 DS blocks which

consist of a dense block, an SE block, and a max-pooling layer. Two fully connected

layers are applied for segment-level prediction. To detect overlapping audio events

simultaneously, we have defined AED as a multi-label classification problem. For this,

segment-level predictions are calculated using sigmoid activation functions at the
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final fully connected layer. A global pooling layer is applied for clip-level prediction.

For structured prediction, DSNet with an RNN is proposed and a fully connected

CRF is applied as a post-processing method. The detailed architectures of DSNet

and DSNet-RNN are given in Section 5.3.

5.2.1 DenseNet

In a standard CNN, the output of the lth layer ol is calculated by applying a

non-linear transformation to the output of the previous layer ol−1

ol = Ll(ol−1) (5.1)

where Ll is a convolution followed by a non-linearity activation function. Conven-

tional CNNs consist of a stack of convolutional layers. However, deeper CNNs are

more difficult to train due to vanishing gradients. In ResNet [35], residual blocks are

used to train deeply structured neural networks. A residual block sums the identity

mapping of the input to the output of the layer. The output ol of a residual block

is given by

ol = Hl(ol−1) + ol−1 (5.2)

where Hl is a non-linear transformation which usually consists of a single layer or

a stack of multiple layers. The identity mapping acts like a skip connection from a

lower layer to the upper layer, which enables input features to be reused and the

gradient to flow directly from the upper layer to the lower layer.

DenseNet [36] is built from stacks of dense blocks. To improve the information

flow between layers, DenseNet uses skip connections from any layer to all subsequent

layers in each dense block. The output of each layer in dense blocks can be expressed
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as

ol = Ll([ol−1, ...,o0]) (5.3)

where [ ] represents the concatenation of feature maps. DenseNet may look similar to

ResNet, which introduces skip connections. However, this small modification makes

a noticeable difference between the two networks. DenseNet is more efficient than

ResNet in parameter usage. Thanks to short connections to all feature maps in

the architecture, information from previously computed feature maps can be reused

easily.

We use 4 convolutional layers and a single bottleneck layer in each dense block. To

improve computational efficiency, the bottleneck layer compresses all feature maps

in the dense block into a reduced number of feature maps using 1×1 convolution. For

all convolutional layers in the model, each side of the inputs is zero-padded by one

pixel to keep the feature map size fixed and batch normalization is applied before

ReLU for better training performance. We use more feature maps on the upper dense

blocks to compensate for feature map size reduction in each max-pooling layer.

5.2.2 Squeeze-and-Excitation

We use SE blocks [37] to consider interdependencies between channels. In the

SE block, global spatial information is squeezed into a channel descriptor using

global average pooling. A channel descriptor z ∈ RC is extracted by averaging the

input feature map U ∈ RH×W×C through its spatial dimensions H ×W . To utilize

the information aggregated in the squeeze operation, a simple gating mechanism

is employed. The channel descriptor z is transformed into a set of channel weights
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s ∈ RC which is given by

s = σ(W2δ(W1z)) (5.4)

where σ and δ respectively refer to sigmoid and rectified linear functions. To reduce

model complexity and aid generalization, a bottleneck is formed by W1 ∈ R
C
r
×C

and W2 ∈ RC×C
r . We set the dimensionality-reduction ratio r to 4 in our system.

The final output of the SE block is obtained by scaling U with channel weights s for

each channel. In this manner, channels possessing more important information can

be emphasized.

5.2.3 Global Pooling for Aggregation

The proposed DSNet aims to predict both segment-level and clip-level labels. To

train DSNet with only weak labels (clip-level labels), we need to aggregate segment-

level predictions to form clip-level predictions. A common approach would be taking

an average over all segment predictions corresponding to a clip-level prediction. In

this approach, all segments of the clip have the same influence on the clip-level

prediction. However, clips with a positive label can also contain negative segments

which disturb the training process. In the multiple instance learning framework,

a global max-pooling is applied to aggregate segment-level predictions into a clip-

level prediction. In the max-pooling approach, the clip-level prediction focuses on

the most positive segment in the clip and disturbance from negative segments can

be reduced. However, with global max-pooling aggregation, only the most positive

segment in each clip is active in training during backpropagation and other segments

are ignored.

To take advantage of both methods, we apply the LogSumExp (LSE) function,
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which is a smooth approximation of the max function. The LSE function is given as

yk =
1

α
log(

1

T

T∑
i=1

exp(α ∗ si,k)) (5.5)

where yk is a clip-level prediction for class k, st,k is the segment label of the ith

segment for class k and T is the number of segments in a clip. In (5.5), α is a

hyperparameter to control the sharpness of the function. As α increases, the function

approaches to the max function and as α decreases, the function approaches the

average function. With the LSE pooling, we can use all the segments of the clip

during training and also focus on positive segments in positive clips. We set the

parameter α = 0.5 in our system. To train our model with only weak labels, we

apply the mean square error as the cost function, which is given by

Ccl = ||L− y||2 (5.6)

where L denotes the true label, y is the clip-level prediction.

5.2.4 Structured Prediction for Accurate Event Localization

RNN-based Structured Prediction

Segment-level prediction can be performed using DSNet described earlier. How-

ever, segment-level predictions may not be robust since DSNet does not make good

use of long-term contextual information. Better segment-level prediction results can

be obtained by considering long-term contextual information and incorporating prior

knowledge into our model. To consider long-term dependency between segment pre-

dictions, an RNN is applied at the top of DSNet. We refer to DSNet with RNN as
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DSNet-RNN. The structure of DSNet-RNN is almost the same with DSNet except

that the dense layer marked with ∗ in Fig. 5.1 is replaced by a single layer RNN with

bi-directional GRUs (Bi-GRUs) [56]. However, in weakly supervised learning, there

is a lack of accurate label information on each segment. The incorrect information

on each segment may affect other segments through the RNN. In order to mitigate

this problem, it is desirable to train our model by applying some prior knowledge

that audio events are generally continuous. To utilize this prior knowledge, we define

a prediction smoothness cost Cps as

Cps =

T∑
i,j=1

µ(si, sj)u(i, j),

µ(si, sj) = ||si − sj ||,

u(i, j) = exp(−||pi − pj ||
2

2σ2ps
),

(5.7)

where si is the segment prediction of the ith segment and pi denotes its normal-

ized temporal position. The prediction smoothness cost Cps encourages segment

predictions to be continuous over time by penalizing nearby segments with different

predictions. The cost function for training the DSNet-RNN is given by

C = Ccl + λCps (5.8)

where λ is a compromising parameter.

CRF Post-processing

As the proposed model can produce segment-level predictions, we can deter-

mine the border of audio events through post-processing. A common approach is to
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smooth the segment-level predictions and threshold them for boundary decisions.

However, since this approach does not take dependency between the segments into

account, it is not easy to determine the borders of audio events precisely. In order to

address this issue, we apply CRF for post-processing the segment-level predictions.

To reflect the full relationship among segments, we incorporate the fully connected

CRF model proposed in [55] into our system.

In the conventional approach, segment-level predictions si are smoothed and

thresholded for segment-level classification. The threshold value thv is determined

to have the best f-score on the validation set. In the CRF post-processing approach,

label assignment probability of each class for the ith segment P (i) is calculated as

P (i) = sigmoid((si − thv)). (5.9)

The energy function for the fully connected CRF is given as

E(x) =
∑
i

θi +
∑
ij

θij , (5.10)

θi = − log(P (i)), (5.11)

θij = µ(i, j) ∗ [wmel ∗ exp(−||mi −mj ||2

2σ2mel

)

+ wpos ∗ exp(−||pi − pj ||
2

2σ2pos
)],

(5.12)

where θi represents the unary potential at the ith segment and θij is the pairwise

potential between the ith and jth segments. In the pairwise potential, µ(i, j) = 1
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if the ith and jth segments have different label assignments, and zero otherwise. pi

denotes the temporal position and mi is the log mel spectrum of the ith segment.

The hyperparameters wmel, σmel, wpos, σpos control the Gaussian kernels. The pair-

wise potential penalizes segments with similar log mel spectra and positions having

different labels. This model can efficiently infer the probabilities using mean field

approximation and efficient message passing through high-dimensional filtering [55].

5.3 Experiments

5.3.1 Dataset

The DCASE 2017 task 4 Dataset [3] was published for the task of “Large-scale

weakly supervised sound event detection for smart cars” in the DCASE 2017 chal-

lenge. The dataset employs a subset of AudioSet by Google [4]. The DCASE 2017

task 4 Dataset consists of 17 audio events divided into two categories: “Warning”

and “Vehicle”. The dataset contains audio classes for self-driving cars, smart cities

and related areas. The dataset contains 51,172 clips of the training set, 488 clips of

validation set, and 1,103 clips of evaluation set. Every clip is less than 10 seconds

long. Each clip may correspond to more than one audio event and possibly has over-

lapping audio events. The dataset is obtained by collecting real-life recordings that

contain noise and unknown class signals. The training set has weak labels denoting

the presence of a given audio event in the clip, and no timestamps are provided. For

the validation and evaluation sets, strong labels with timestamps are provided for

the purpose of performance evaluation.
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5.3.2 Feature Extraction

As inputs to the neural networks, we used log mel filterbank features. We ex-

tracted 128 mel bands from 0 Hz to 22050 Hz. We applied a window size of 1100

samples with a shift of 365 samples for frame segmentation to produce 800 frames

in a 10-second clip. The logarithm of the mel band energies are calculated and each

log mel energy was normalized by subtracting its mean and dividing by its standard

deviation computed over the training set. As a result, an 800× 128 normalized log

mel spectrogram image was extracted for each 10-second clip.

5.3.3 DSNet and DSNet-RNN Structures

The specific configuration of the proposed model is described in Table 5.1. The

extracted normalized log mel spectrogram image was used for input to the neural

networks. A convolution layer was used to produce feature maps for dense blocks.

These networks consisted of four dense blocks each with four convolution layers and

one bottleneck layer. The convolution layers consisted of three consecutive opera-

tions: 3×3 convolution, batch normalization and ReLU. We used a 1×1 convolution

layer to reduce channels. An SE block and a max-pooling layer were placed after

each dense block. For segment-level prediction, two dense layers were applied in the

DSNet, and Bi-GRU and a dense layer were applied in the DSNet-RNN. Finally,

the segment-level predictions were aggregated through the global pooling layer for

clip-level prediction. We set σps = 0.1 in (5.7) and λ = 0.01 in (5.8) to train the

DSNet-RNN. The parameter size of the DSNet is 0.32M, which is similar to that of

the baseline CNN. The DSNet-RNN has more parameters than the others due to

the Bi-GRUs used for structured prediction.
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Table 5.1: DSNet and DSNet-RNN architectures
Layers output size DSNet DSNet-RNN

Convolution 800×128×32 [3×3, 32 conv]

Dense block 800×128×32
[3×3, 16 conv]×4

[1×1, 32 conv]

SE block 800×128×32 bottleneck size 8

Max-pooling 800×64×32 1×2 max-pool

Dense block 800×64×48
[3×3, 16 conv]×4

[1×1, 48 conv]

SE block 800×64×48 bottleneck size 12

Max-pooling 400×32×48 2×2 max-pool

Dense block 400×32×64
[3×3, 16 conv]×4

[1×1, 64 conv]

SE block 400×32×64 bottleneck size 16

Max-pooling 200×16×64 2×2 max-pool

Dense block 200×16×64
[3×3, 16 conv]×4

[1×1, 64 conv]

SE block 200×16×64 bottleneck size 16

Max-pooling 100×8×64 2×2 max-pool

Reshape 100×512 100×8×64 to 100×512

Segment-level prediction 100×17
256 dense(ReLU)
17 dense(sigmoid)

128 Bi-GRUs
17 dense(sigmoid)

Clip-level prediction 17 global LSE pooling

Parameters - 0.32M 0.69M
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Table 5.2: Baseline CNN architecture
Layers output size CNN

Convolution 800×128×32 [3×3, 32 conv]×2

Max-pooling 800×64×32 1×2 max-pool

Convolution 800×64×32 [3×3, 32 conv]×2

Max-pooling 400×32×32 2×2 max-pool

Convolution 400×32×64 [3×3, 64 conv]×2

Max-pooling 200×16×64 2×2 max-pool

Convolution 200×16×64 [3×3, 64 conv]×2

Max-pooling 100×8×64 2×2 max-pool

Reshape 100×512 100×8×64 to 100×512

Segment-level prediction 100×17
256 dense(ReLU)
17 dense(sigmoid)

Clip-level prediction 17 global LSE pooling

Parameters - 0.29M

5.3.4 Baseline CNN Structure

To verify the performance of the proposed method, we compared the proposed

method with a baseline model. In the DCASE 2017 challenge, several CNN-based

models were proposed and showed good performance in weakly supervised AED

[52], [53], [54]. We chose a CNN baseline model similar to the models proposed

in the DCASE 2017 Challenge. The specific configuration of the baseline model is

described in Table 5.2. The audio feature for the baseline was the same as that of the

proposed model, a 800 × 128 normalized log mel spectrogram image. The baseline

model consisted of four stacks of two convolution layers and a max-pooling layer.

The last max-pooling layer was connected to two dense layers to produce segment-

level predictions, and the segment-level predictions were aggregated in the global

pooling layer.
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5.3.5 Training and Evaluation

The neural network models were implemented using TensorFlow [31]. We set

the hyperparameters such that they provided the highest segmental f-score on the

validation set. All networks were trained with Adam [32]. A dropout [21] rate at 0.1

is applied to the output of the SE blocks and the dense layer with ReLU. We used

mini-batches of 10 clips and a learning rate of 0.0001. We used the validation set to

earlystop the training based on the segmental f-score. To deal with the unbalance

between classes on the training set, we applied undersampling to the classes with

more than 1000 clips. The networks were trained on NVIDIA Tesla M40 GPUs.

For evaluation, the optimal thresholds were selected to have the best performance

on the validation set. The segment-level predictions were smoothed with a Hanning

window of length 41 before thresholding. We set the CRF parameters in (5.12) to

wmel = 1, σmel = 1, wpos = 1 and σpos = 25, which showed the best segment-level

f-score on the validation set. To perform multi-labeled classification, CRF post-

processing was performed separately for each class. We employed 10 mean field

iterations in the test phase.

5.3.6 Metrics

In our work, both clip-level and segment-level evaluation metrics were used.

The default segment length used in this work was 100 ms, which is shorter than the

segment length used in the DCASE challenge, 1 second. This was because our system

aims to detect audio events accurately in time via structured prediction. Since the

dataset for evaluation has multi-label annotations, we used f-score. For segment-level

evaluation, segment-based ER was also measured. A detailed explanation of both
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Table 5.3: Clip-level results on the DCASE 2017 task 4 evaluation set

Model F P R

CNN 0.5506 0.5667 0.5353
DSNet 0.5853 0.5822 0.5883

DSNet-RNN 0.5839 0.5504 0.6281

Table 5.4: Class-wise clip-level f-score results

Class CNN DSNet DSNet-RNN

Train horn 0.5273 0.4615 0.5102
Air horn, truck horn 0.4000 0.5455 0.5783

Car alarm 0.4267 0.4500 0.3836
Reversing beeps 0.3373 0.3765 0.4186

Ambulance 0.5556 0.4681 0.4854
Police car 0.4906 0.5778 0.6525

Fire engine, fire truck 0.5606 0.6055 0.5586
Civil defense siren 0.7704 0.8160 0.8189

Screaming 0.6833 0.7059 0.8333
Bicycle 0.4675 0.4615 0.3294

Skateboard 0.5946 0.7627 0.6372
Car 0.6266 0.6759 0.6411

Car passing by 0.2727 0.2931 0.2468
Bus 0.4238 0.4000 0.2637

Truck 0.4455 0.4541 0.4505
Motorcycle 0.5465 0.6324 0.7009

Train 0.7209 0.7883 0.7759

evaluation metrics is described in Chapter 2.

5.3.7 Results and Discussion

Audio Tagging

Table 5.3 presents the clip-level tagging results on the DCASE 2017 task 4 eval-

uation set and parameter sizes of each model. The results show that the DSNet has

an absolute improvement of 0.0347 over the baseline CNN in terms of f-score. The
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Table 5.5: Segment-level results on the DCASE 2017 task 4 evaluation set

Model F P R ER

CNN 0.4987 0.4598 0.5447 0.7568
DSNet 0.5135 0.4746 0.5593 0.7039

DSNet-RNN 0.5354 0.5074 0.5667 0.6213

performance of the DSNet indicates that DenseNet and SENet are suitable not only

for image processing but also for audio processing. The DSNet-RNN shows almost

the same performance as the DSNet in clip-level metrics, which means the structured

prediction has little effect on the clip-level performance.

The class-wise f-score results for the CNN, DSNet and DSNet-RNN models are

presented in Table 5.4. While there is some variation across classes, the DSNet and

DSNet-RNN show better performance than CNN on most classes. The performance

of the DSNet is considerably better compared to the baseline CNN for the ”air horn,

truck horn”, ”police car”, ”skateboard” and ”motorcycle” classes and the DSNet-

RNN shows better performance than the baseline CNN in the ”air horn, truck horn”,

”police car”, ”screaming” and ”motorcycle” classes. The best performing class for

all models is ”civil defense siren” which consists of long and high volume sounds

and the worst performing class is ”car passing by”, which consists of short and low

volume sounds.

Event Detection with Localization

Table 5.5 presents the segment-level results on the DCASE 2017 task 4 evaluation

set. Both the DSNet and DSNet-RNN outperform the baseline CNN model in f-

score by 0.0148 and 0.0367, respectively. Similar to the clip-level results, the DSNet

performs better than conventional CNN by using DenseNet and SENet. Especially,
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Table 5.6: Segment-level results for the DSNet-RNN at different λ

λ F ER

0 0.5168 0.6564
0.005 0.5184 0.7048
0.01 0.5354 0.6213
0.02 0.5281 0.6867
0.05 0.5039 0.8109

Table 5.7: Effect of CRF on segment-level performance

Before CRF After CRF
Model F ER F ER

CNN 0.4987 0.7568 0.5195 0.6680
DSNet 0.5135 0.7039 0.5265 0.6849

DSNet-RNN 0.5354 0.6213 0.5432 0.6131

the DSNet-RNN shows the best performance in segment-level results. This indicates

that each segment-level prediction benefits from considering contextual information

in the neural network.

The weight λ introduced in (5.8) is a hyperparameter which allows us to control

the dependency of the cost function on structured prediction. The effect of the

weight λ on the DSNet-RNN is presented in Table 5.6. The result shows that when

λ = 0, the model does not show significant performance improvement over the

DSNet. This means that the flow of uncertain information in the RNN may hinder

the training of the model in weakly supervised learning. Overall results show that

the performance of the model can be improved by restricting uncertain information

flow with appropriate constraints based on prior information. The model showed the

best performance when λ = 0.01, which is a default value used when training the

DSNet-RNN.

Table 5.7 presents the performance of CRF post-processing on the segment-level
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Figure 5.2: The results of the DSNet-RNN before and after CRF. (a) Log mel
spectrograms of audio events. (b) Segment-level ground truth labels. (c) Predicted
segment-level labels before CRF. (d) Predicted segment-level labels after CRF.

performances. All the models show performance improvement through CRF post-

processing. In the DSNet-RNN, the performance improvement is relatively low. This

indicates that the DSNet-RNN already reflected contextual information and hence

the additional benefit from CRF post-processing is relatively small. The results of

the DSNet-RNN with and without CRF post-processing are visualized in Fig. 5.2.

By employing CRF post-processing, we can correct isolated inaccurate predictions

and improve the accuracy of the predictions particularly in the boundaries of the

events.

5.3.8 Comparison with the DCASE 2017 task 4 Results

For comparison, the results of our models and the top results from the DCASE

2017 task 4 are presented in Table 5.8. In the DCASE 2017 task 4, Xu et al. [52]
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Table 5.8: Comparison with the DCASE 2017 results on evaluation set

Model Ftag F1s ER1s

DSNet 0.585 0.530 0.689
DSNet+CRF 0.585 0.542 0.644
DSNet-RNN 0.584 0.550 0.606

DSNet-RNN+CRF 0.584 0.557 0.570
Xu et al. [52] 0.556 0.518 0.730
Lee et al. [53] 0.526 0.555 0.660

and Lee et al. [53] showed the best performance in audio tagging (clip-level) and

sound event detection (segment-level), respectively. Xu et al. [52] used the learnable

gated activation function in their model and Lee et al. [53] used CNNs with multiple

scale input. Both of them also used the fusion or ensemble of models for the better

detection performance.

For a fair comparison, we compared the segment-level results of our proposed

model in 1 second time resolution. Our models showed better performance in both

clip-level and segment-level results, even without the fusion or ensemble of models.

The proposed models outperformed Xu et al. [52] in clip-level f-score. In the segment-

level metrics, the DSNet-RNN achieved a similar performance as Lee et al. [53] in

f-score and showed a better performance in ER.

5.4 Summary

In this chapter, we proposed DSNet, which is a combination of DenseNet and

SENet, for weakly supervised AED. DSNet allows better information and gradi-

ent flow through direct connections between any two layers in dense blocks and

adaptively recalibrates channel-wise feature responses using SE blocks. Moreover,

we proposed a structured prediction framework and adopted it to DSNet. DSNet-
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RNN utilizes contextual information while minimizing the propagation of uncer-

tainty and CRF post-processing helps to refine segment-level predictions. Experi-

ments showed that DSNet with structured prediction achieved state-of-the-art re-

sults in the DCASE 2017 task 4 dataset.
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Chapter 6

Conclusions

In this thesis, some of the approaches for data-efficient and weakly supervised

systems are proposed. Conventional AED models are trained using approaches based

on supervised learning. For supervised learning, strongly labeled data is required.

However, collecting large-scale strongly labeled data of audio events is challenging

due to the diversity of audio event types and labeling difficulties. To overcome this

problem, a data-efficient AED approach and weakly supervised approaches are pro-

posed. The proposed approaches are based on deep learning methods and can be

applied to different theoretical cases for audio event detection.

Firstly, we have proposed a data-efficient DNN-based AED system. In the pro-

posed system, data augmentation is performed to deal with the data sparsity problem

in the small training dataset and generate polyphonic event examples. An exemplar-

based noise reduction algorithm is proposed for feature enhancement. For polyphonic

event detection, a multi-labeled DNN classifier is employed. An adaptive threshold-

ing algorithm is applied as post-processing for robust event detection in noisy condi-

tions. From the experimental results, the proposed algorithm has shown promising
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performance for AED on a low-resource dataset.

Secondly, we have proposed an audio tagging system on weakly supervised data,

which is labeled with only the existence of events. The proposed model is based

on CNNs and consists of a local detector and a global classifier. The local detector

detects local audio words that contain distinct characteristics of events, and the

global classifier summarizes the information to make a decision on the recording.

From the experimental results, we have found that the proposed model outperforms

conventional artificial neural networks.

Finally, we have proposed an AED model based on DenseNet and SENet for

weakly supervised AED. The proposed model allows better information and gradient

flow through direct connections between any two layers in dense blocks and adap-

tively recalibrates channel-wise feature responses using SE blocks. We take advantage

of strengthening feature propagation from DenseNet and modeling channel-wise re-

lationships by SENet. Also, the correlations among segments in audio recordings are

represented by RNN and CRF. Contextual information is utilized by RNN, and CRF

post-processing helps to refine segment-level predictions. We evaluate our proposed

method and compare its performance with a CNN based baseline approach. From

a number of experiments, it has been shown that the proposed method is effective

both on audio tagging and weakly supervised AED.
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요 약

일반적인 음향 이벤트 탐지 시스템은 교사학습을 통해 훈련된다. 교사학습을 위

해서는 강한 레이블 데이터가 요구된다. 하지만 강한 레이블 데이터는 음향 이벤트의

다양성 및 레이블의 난이도로 인해 큰 데이터베이스를 구축하기 어렵다는 문제가 있다.

본 논문에서는 이러한 문제를 해결하기 위해 음향 이벤트 탐지를 위한 데이터 효율적

활용 및 약한 교사학습 기법에 대해 제안한다.

첫 번째 접근법으로서, 데이터 효율적인 음향 이벤트 탐지 시스템을 제안한다. 제

안된 시스템에서는 데이터 증대 기법을 사용해 데이터 희소성 문제에 대응하고 중첩

이벤트데이터를생성하였다.특징벡터향상을위해잡음억제기법이사용되었고중첩

음향 이벤트 탐지를 위해 다중 레이블 심층 인공신경망(DNN) 분류기가 사용되었다.

실험 결과, 제안된 알고리즘은 불충분한 데이터에서도 우수한 음향 이벤트 탐지 성능을

나타내었다.

두 번째 접근법으로서, 컨볼루션 신경망(CNN) 기반 오디오 태깅 시스템을 제안

한다. 제안된 모델은 로컬 검출기와 글로벌 분류기로 구성된다. 로컬 검출기는 고유한

음향 이벤트 특성을 포함하는 로컬 오디오 단어를 감지하고 글로벌 분류기는 탐지된

정보를요약하여오디오이벤트를예측한다.실험결과,제안된모델이기존인공신경망

기법보다 우수한 성능을 나타내었다.

마지막 접근법으로서, 약한 교사학습 음향 이벤트 탐지 모델을 제안한다. 제안된

모델은 DenseNet의 구조를 활용하여 정보의 원활한 흐름을 가능하게 하고 SENet을
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활용해 채널간의 상관관계를 모델링 한다. 또한, 오디오 신호에서 부분 간의 상관관계

정보를 재순환 신경망(RNN) 및 조건부 무작위 필드(CRF)를 사용해 활용하였다. 여러

실험을 통해 제안된 모델이 기존 CNN 기반 기법보다 오디오 태깅 및 음향 이벤트 탐지

모두에서 더 나은 성능을 나타냄을 보였다.

주요어: 음향 이벤트 탐지, 데이터 효율적 기법, 약한 교사학습, 딥 러닝

학 번: 2012-23248
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먼저 사회에 나가 활약하는 세영이, 지환이, 석완이는 사회라는 정글에서 힘든 일도

있겠지만 잘 극복하고 날개를 펼치리라 믿습니다. 많은 경험으로 저에게 조언을 주신

주현이형,회사생활과학업병행이바쁘고힘드시겠지만시간잘활용하셔서좋은성과

내시기 바랍니다. 행복한 신혼 보내는 새신랑 병진이, 묵묵하지만 꾸준한 성환이, 침착

하고 성실한 민현이는 연구실의 든든한 기둥이 될 거라 생각합니다. 연구실 대표 춤꾼

형래는 졸업 준비 잘해서 무사히 졸업하길 바라고 연구실 홍일점으로서 알게 모르게

고생이 많을 지원이, 원익이와 함께 연구실의 NLP를 개척해 나갈 석민이는 씩씩하게

연구실 생활 잘 해나갈 거라 생각합니다. 많은 시간을 함께하진 못했지만, 연구실 뉴페

이스 민찬이, 형주, 범준이, 병찬이는 자신에 맞는 연구주제를 잘 선택해 열심히 대학원

생활 보냈으면 좋겠습니다.

마지막으로 항상 저에게 힘이 되어준 가족들에게 감사를 전합니다. 언제나 저에게

넘치는 사랑과 믿음을 주신 아버지와 어머니, 그리고 항상 나를 물심양면으로 챙겨준

누나에게 다시 한번 진심으로 감사드립니다.
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