
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


Ph.D. DISSERTATION

Privacy and Security in Coded
Computation and Cache-aided

Information Retrieval

분산컴퓨팅과캐시를접목한정보검색에서의
보안및프라이버시

Minchul Kim

Feburary 2020

Department of Electrical and Computer Engineering
College of Engineering

Seoul National University



Ph.D. DISSERTATION

Privacy and Security in Coded
Computation and Cache-aided

Information Retrieval

분산컴퓨팅과캐시를접목한정보검색에서의
보안및프라이버시

Minchul Kim

Feburary 2020

Department of Electrical and Computer Engineering
College of Engineering

Seoul National University



Privacy and Security in Coded
Computation and Cache-aided

Information Retrieval

분산컴퓨팅과캐시를접목한정보검색에서의
보안및프라이버시

지도교수이정우

이논문을공학박사학위논문으로제출함

2019년 11월

서울대학교대학원

전기정보공학부

김민철

김민철의공학박사학위논문을인준함

2019년 12월

위 원 장:
부위원장:
위 원:
위 원:
위 원:



Privacy and Security in Coded
Computation and Cache-aided

Information Retrieval

Advisor: Jungwoo Lee

Presented to the Graduate School of Seoul National University
in Partial Fulfillment of the Requirements for

The Degree of Doctor of Philosophy

November 2019

by

Minchul Kim

Department of Electrical and Computer Engineering
College of Engineering

Seoul National University

This dissertation is approved for

The Degree of Doctor of Philosophy
December 2019

Chair
Vice Chair
Examiner
Examiner
Examiner



Abstract

As a major format of data changes from the text to the videos, the amount of mem-

ory for storing data increases exponentially, as well as the amount of computation for

handling the data. As a result, to alleviate these burdens of storage and computations,

the distributed systems are actively studied. Meanwhile, since low latency is one of

the main objectives in 5G communications, recent techniques such as edge computing

or federated learning in machine learning become important. Since the decentralized

systems are fundamental characteristics of these techniques, the distributed systems

which include the decentralized systems also become important.

In this dissertation, I consider the distributed systems for storage and computa-

tion. For the data storage, large-scale data centers collectively store a library of files

where the size of each file is tremendous. When a user needs a specific file, it can be

downloaded from distributed data centers. In this system, minimizing the amount of

download is a significant concern. The user’s privacy in this system implies that the

user should conceal the index of its desired file against the databases. This kind of

problem is referred to as private information retrieval (PIR) problem. The goal of PIR

problem is to minimize the amount of download from the databases while ensuring the

user’s privacy.

Meanwhile, for a large amount of computation, the user can divide the whole com-

putation into sub-computations and distribute them to external workers who constitute

i



a distributed system. There can be three cases for the computation. Firstly, the user

may own all of the data to be computed and sends both of its data and instructions for

the computation to the workers. Secondly, the workers collectively own all of the data

and the user just sends instructions for the data selection and computation to the work-

ers. Thirdly, the user and the workers have their own data respectively and the user

sends the data and instructions for the data selection and computation to the workers.

Since some of the workers can be slow for various reasons, the user may use a cod-

ing technique, e.g., an erasure code, to avoid the delaying effect caused by the slow

workers. This kind of technique is referred to as coded computation. In these systems,

speeding up the computation process is a significant concern. In this dissertation, I

focus on the third system. In the considered system, the privacy is similar to that of

distributed systems for storage. On the other hand, the security implies that the user

should conceal the content of its own data against the workers so that the workers do

not have any information about the user’s own data.

In this dissertation, I consider the user’s privacy in distributed systems for storage,

and both of the privacy and security in distributed systems for the computation. In

case of the distributed systems for storage, since the user does not have its own data,

the data security on the user’s data cannot be considered. Particularly, I propose some

achievable schemes that ensure the privacy and security in these systems.

To begin with, as a new variation of PIR problem, I consider a user’s cache that has

some pre-stored data of databases’ library. I refer to this problem as cache-aided PIR

ii



problem. By introducing the user’s cache in the PIR problem, the amount of download

from the databases is significantly reduced. The achievable scheme is based on the

optimal scheme for conventional PIR problem. In the achievable scheme, the pre-store

cache was exploited as an side information, which reduces the amount of download,

compared to the PIR problem without cache.

Secondly, I consider the master’s privacy in coded computation. In the system

model, the workers have their own data, as well as the master. The workers’ data con-

stitutes a library of several files. The master should compute a function of its own data

and a specific file in the library. The master’s privacy implies that the workers’ should

not know which file in the library is desired by the user. I refer to this problem as

private coded computation and propose an achievable scheme of private coded com-

putation, namely private polynomial codes. The private polynomial codes are based

on the polynomial codes which were proposed in the conventional coded computa-

tion system. In the achievable scheme, the workers are grouped for the privacy and

asynchronous scheme is considered, which was not considered in the conventional

polynomial codes. Due to the asynchronous scheme, the proposed scheme achieves

the faster computation time, compared to the modified optimal RPIR scheme.

Lastly, I consider the data security in coded computation, as well as the mas-

ter’s privacy. The system model is similar to that of private coded computation. The

data security implies that the master should protect its own data against the workers.

I refer to this problem as private secure coded computation and propose an achiev-

iii



able scheme, namely private secure polynomial codes. The private secure polynomial

codes are based on the polynomial codes which were proposed in the conventional

coded computation system. By modifying the private polynomial codes, the private

secure polynomial codes and private secure polynomial codes are compared in terms

of computation time and communication load. As a result, the private secure polyno-

mial codes achieves faster computation time for the same communication load.

keywords: Distributed Computing, Private Information Retrieval, Information The-

ory, Security

student number: 2014-21647

iv



Contents

Abstract i

Contents v

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Private information retrieval . . . . . . . . . . . . . . . . . . 3

1.1.2 Coded computation . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Contributions and Organization . . . . . . . . . . . . . . . . . . . . . 5

2 Cache-aided Private Information Retrieval 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

v



2.4 Achievable Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Cacheless phase . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.2 Cache-assisted phase . . . . . . . . . . . . . . . . . . . . . . 21

2.4.3 Cache-aided PIR . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Tightness of achievable scheme . . . . . . . . . . . . . . . . . . . . . 29

2.6 Conclusion and follow-up works . . . . . . . . . . . . . . . . . . . . 30

3 Private Coded Computation 32

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Private polynomial codes . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.1 First example . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.2 Second example . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.3 General description . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.4 Privacy proof . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.5 Performance analysis . . . . . . . . . . . . . . . . . . . . . . 59

3.4.6 Special cases . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.1 Computation time . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.2 Communication load . . . . . . . . . . . . . . . . . . . . . . 68

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

vi



4 Private Secure Coded Computation 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Private secure polynomial codes . . . . . . . . . . . . . . . . . . . . 76

4.3.1 Illustrative example . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.2 General description . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.3 Performance analysis . . . . . . . . . . . . . . . . . . . . . . 83

4.3.4 Privacy and security proof . . . . . . . . . . . . . . . . . . . 84

4.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.1 Computation time . . . . . . . . . . . . . . . . . . . . . . . 86

4.4.2 Communication load . . . . . . . . . . . . . . . . . . . . . . 90

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Conclusion 93

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Abstract (In Korean) 105

Acknowledgement 107

vii



List of Tables

3.1 The communication load comparison . . . . . . . . . . . . . . . . . . 69

viii



List of Figures

2.1 The overall process of cache-aided PIR withM messages andN databases. 11

2.2 The performance gap between the proposed scheme and the lower

bound for N = 3 and M = 4 . . . . . . . . . . . . . . . . . . . . . . 14

2.3 The performance gap between the proposed scheme and the lower

bound for N = 3 and M = 50 . . . . . . . . . . . . . . . . . . . . . 15

2.4 The performance gap between the proposed scheme and the lower

bound for N = 10 and M = 4 . . . . . . . . . . . . . . . . . . . . . 16

2.5 The process of cacheless download for N = 2 and M = 3. . . . . . . 18

2.6 The process of cache-assisted phase for N = 3 and M = 3. . . . . . . 23

3.1 Motivating example of private coded computation. . . . . . . . . . . 34

3.2 The overall process of private coded computation. . . . . . . . . . . . 38

3.3 The overall process of the first example. . . . . . . . . . . . . . . . . 43

3.4 The overall process of the second example. . . . . . . . . . . . . . . 49

3.5 The overall process of proposed scheme . . . . . . . . . . . . . . . . 53

ix



3.6 The computation time comparison for N = 12, M = 4, γ = 1, and

varying µ from 10−1 to 10. . . . . . . . . . . . . . . . . . . . . . . . 65

3.7 The computation time comparison for N = 12, M = 8, γ = 0.1, and

varying µ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.8 The computation time comparison for N = 12, M = 4, γ = 1, and

varying µ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1 The overall process of private secure coded computation . . . . . . . 72

4.2 Motivating example of private secure coded computation . . . . . . . 74

4.3 The overall process of the illustrative example . . . . . . . . . . . . . 77

4.4 The overall process of PSPC. . . . . . . . . . . . . . . . . . . . . . . 81

4.5 The computation time comparison for N = 12, M = 4, γ = 0.1, and

varying µ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.6 The computation time comparison for N = 12, M = 8, γ = 0.1, and

varying µ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.7 The computation time comparison for N = 12, M = 4, γ = 0.0001,

and varying µ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

x



Chapter 1

Introduction

As a major format of data changes from the text to the videos, the amount of memory

for storing data increases exponentially, as well as the amount of computation for

handling the data. As a result, to alleviate these burdens of storage and computations,

the distributed systems are actively studied. Meanwhile, since low latency is one of

the main objectives in 5G communications, recent techniques such as edge computing

or federated learning in machine learning become important. Since the decentralized

systems are fundamental characteristics of these techniques, the distributed systems

which include the decentralized systems also become important.

In this dissertation, I consider the distributed systems for storage and computa-

tion. For the data storage, large-scale data centers collectively store a library of files

where the size of each file is tremendous. When a user needs a specific file, it can be

downloaded from distributed data centers. In this system, minimizing the amount of

download is a significant concern. The user’s privacy in this system implies that the

1



user should conceal the index of its desired file against the databases. This kind of

problem is referred to as private information retrieval (PIR) problem. The goal of PIR

problem is to minimize the amount of download from the databases while ensuring the

user’s privacy.

Meanwhile, for a large amount of computation, the user can divide the whole com-

putation into sub-computations and distribute them to external workers who constitute

a distributed system. There can be three cases for the computation. Firstly, the user

may own all of the data to be computed and sends both of its data and instructions for

the computation to the workers. Secondly, the workers collectively own all of the data

and the user just sends instructions for the data selection and computation to the work-

ers. Thirdly, the user and the workers have their own data respectively and the user

sends the data and instructions for the data selection and computation to the workers.

Since some of the workers can be slow for various reasons, the user may use a cod-

ing technique, e.g., an erasure code, to avoid the delaying effect caused by the slow

workers. This kind of technique is referred to as coded computation. In these systems,

speeding up the computation process is a significant concern. In this dissertation, I

focus on the third system. In the considered system, the privacy is similar to that of

distributed systems for storage. On the other hand, the security implies that the user

should conceal the content of its own data against the workers so that the workers do

not have any information about the user’s own data.

In this dissertation, I consider the user’s privacy in distributed systems for storage,

2



and both of the privacy and security in distributed systems for the computation. In

case of the distributed systems for storage, since the user does not have its own data,

the data security on the user’s data cannot be considered. Particularly, I propose some

achievable schemes that ensure the privacy and security in these systems.

1.1 Related work

1.1.1 Private information retrieval

For commercial network services based on cloud storage, where a user downloads files

from a number of databases in wireless, the user’s privacy is important. Accordingly,

diverse approaches for ensuring privacy have been proposed. The private information

retrieval (PIR) is one way of protecting user’s privacy from the content provider. In a

PIR problem, a user desires to privately retrieve one out ofM messages. To retrieve the

message, the user sends queries and then downloads some combinations of the desired

message and the other undesired messages from N databases. After the retrieval, N

databases must not know the index of the desired message. The goal of PIR problem

is to minimize the amount of download while keeping user’s privacy.

Since introduced in [11], the PIR problem has treated 1-bit messages [11]- [13].

In this scenario, since the size of message is small, the amount of queries that a user

sends to the databases should be considered as well as the amount of download. On

the other hand, if the size of message is much larger than that of queries, the amount

of queries can be ignored and only the amount of download cost should be considered.

3



Recently, under the assumption that the message size is much bigger, information-

theoretic capacity of PIR without cache for a replication-based storage system has

been derived [14]. At the information theoretic capacity of PIR without cache, the

downloaded undesired messages are minimized. The capacity-achieving scheme in

[14] is basis for proposed cache-aided PIR scheme.

1.1.2 Coded computation

In a distributed computing system where a master partitions a massive computation

into smaller sub-computations and distributes these sub-computations to several work-

ers in order to reduce the runtime to complete the whole computation, some slow

workers are bottleneck of the process. These slow workers are called stragglers and

mitigating the effect of these stragglers is one of the major issues in distributed comput-

ing. Recently, a coding technique was introduced for straggler mitigation [19]. In [19],

for a matrix-vector multiplication, the matrix is (n, k)-MDS coded and distributed to

n workers so that each encoded matrix is assigned to one worker. Each worker mul-

tiplies the coded submatrix by a vector and returns the multiplication to the master.

After k out of n workers return their multiplications, the master is able to decode the

whole computation. Since the computation of the slowest n− k workers is ignored, at

most n − k stragglers are mitigated. This kind of approach to distributed computing

is referred to as coded computation. Several follow-up studies of coded computation

were proposed [20]- [38].

4



In [39], a coded computation scheme for matrix multiplication was proposed,

where the minimum number of workers for the master to decode the whole com-

putation does not depend on the number of workers. In [40], a coded computation

scheme that sub-blocks a MDS code into small blocks was proposed. In this scheme,

several small blocks are assigned to each worker. Each worker processes its assigned

blocks sequentially, block-by-block, and transmits the partial per-block results to the

master. Since the size of each block is small enough for the stragglers to compute,

all of the workers contribute to the computation, thus reducing the computation time.

However, after processing their assigned blocks, faster workers stop working and must

wait for slower workers to process their blocks. If these faster workers could continue

working throughout the coded computation process, the computation time would be

further reduced. Let us call a coded computation scheme where all of the workers con-

tinue working until the completion of the coded computation process by asynchronous

coded computation.

1.2 Contributions and Organization

In this dissertation, I propose coding techniques for privacy and security in distributed

networks for data storage and data computation.

In Chapter 2, I consider the PIR problem in which a user has pre-stored data in

its cache, for a non-colluding replication-based storage system. Since databases do not

collude each other, each database cannot know what has been downloaded in other

5



databases. Caching is a technique that reduces the peak traffic during peak-traffic pe-

riods, by pre-storing some portion of files during the off-peak periods. In particular,

when there are several users that request files from the same database, caching with

coding schemes, which is called coded caching, reduces the peak traffic compared

to uncoded caching more efficiently [1]- [10]. The caching technique becomes more

significant as each file size in the database becomes larger so that the congestion at

peak traffic time deteriorates. This situation matches our assumption in PIR problems,

where the message size is large. Moreover, many coding techniques in coded caching

are similar to the mechanism of the optimal scheme in [14] for the PIR problem. This

implies that these two techniques can be combined to achieve synergetic gain on PIR

capacity. To apply caching in PIR problem, I assume that the databases cannot iden-

tify the cached parts of messages. This assumption is reasonable when the caching

takes place much earlier than the actual retrieval and databases do not have long term

memory.

In Chapter 3, I consider the master’s privacy in coded computation. In the sys-

tem model, the workers have their own data, as well as the master. The workers’ data

constitutes a library of several files. The master should compute a function of its own

data and a specific file in the library. The master’s privacy implies that the workers’

should not know which file in the library is desired by the user. I refer to this prob-

lem as private coded computation and propose an achievable scheme of private coded

computation, namely private polynomial codes.

6



In Chapter 4, I consider the data security in coded computation, as well as the

master’s privacy. The system model is similar to that of private coded computation. The

data security implies that the master should protect its own data against the workers. I

refer to this problem as private secure coded computation and propose an achievable

scheme, namely private secure polynomial codes.

In Chapter 5, I summarize my works and indicate the future directions of my

works.

7



Chapter 2

Cache-aided Private Information Retrieval

2.1 Introduction

In this chapter, I consider the private information retrieval (PIR) problem in which

a user has pre-stored data in its cache, for a non-colluding replication-based storage

system. Since databases do not collude each other, each database cannot know what

has been downloaded in other databases. To apply caching in PIR problem, I assume

that the databases cannot identify the cached parts of messages. This assumption is

reasonable when the caching takes place much earlier than the actual retrieval and

databases do not have long term memory. I call this new PIR problem as cache-aided

PIR. The motivation of caching in the PIR problem comes from the exploitation of

cached parts of undesired messages as side information. This exploitation is available

only when the databases do not know what has been cached, as I assumed.

8



2.2 System model

Consider a non-colluding replication-based storage system withN databases {DBi}Ni=1.

A user desires one of M messages {Bi}Mi=1, which are replicated in each database.

These M messages constitute a library B. That is, B = {Bi}Mi=1. The user sends

queries to each database to retrieve the desired message. To ensure the user’s privacy,

the query to each database should be independent of the desired message index D,

when the user wants BD.

I assume that all messages have equal size of F bits, i.e.,

H(Bi) = F,∀i ∈ [M ].

Let F be much larger than the query size so that the amount of query can be ignored.

Each message is divided into L fragments. The size of each fragment is F/L bits. I de-

note the lth fragment of ith message by Bi,l, l ∈ [L]. The user has cache to store some

parts of messages in advance. I denote the cached part of each message by Xi, i ∈ [M ]

and overall cache by X = {X1,X2, . . . ,XM}. Since the future demand of the user

is unknown, I assume that the sizes of the cached part of the messages are the same,

which means that

H(Xi) = H(X)/M,∀i ∈ [M ].

I denote the size of cache for each message by

γ = H(X)/H(B), 0 ≤ γ ≤ 1.

9



The query that the user sends to each database DBi is denoted by Qi, where i ∈ [N ].

Each query Qi can be expressed by

Qi = [h1,1, h1,2, . . . , h1,l, h2,1, . . . , hM,L],

where hi,j ∈ F2. Note that the coefficient hi,j implies whether the jth fragment

of ith message, or Bi,j , is requested by the user. I denote these queries by Q =

{Q1, Q2, . . . , QN}. Each databases transmits its response to the user according to the

queries. This received data from DBi is denoted by Yi, where i ∈ [N ]. The answer of

each database can be expressed as

Yi =
∑

i∈[M ],j∈[L]

hi,jBi,j , (2.1)

where hi,j , i ∈ [M ], j ∈ [L] are the elements ofQi. I denote them by Y = {Y1, Y2, . . . , YN}.

The retrieval of the desired message BD can be information-theoretically expressed

as

H(BD|Q,Y,X) = 0. (correctness)

The privacy constraint can be expressed as

I(Qi;D) = 0, ∀i ∈ [N ]. (privacy)

I choose the amount of download for the retrieval as performance measure. I denote

the amount of download for fixed cache size γ byR(γ). The goal of cache-aided PIR is

to minimize R(γ), where the minimum amount of the download is denoted by R∗(γ).

The overall process of cache-aided PIR is described in Fig. 2.1.

10



Figure 2.1: The overall process of cache-aided PIR withM messages andN databases.

11



2.3 Main results

In this section, I state main results and its implications. First, I define several notations

to easily show results. I denote the minimum amount of download for a replication-

based storage system with M messages and N databases without cache by

R0 = R∗(0) = 1 +
1

N
+

1

N2
+ · · ·+ 1

NM−1
,

which is achieved in [14]. Note that the size of a message is normalized as 1. In addi-

tion, I define ∆(m, s) to briefly show main results and explain the proposed achievable

scheme.

∆(m, s) =
Nm −

∑s
n=0

(
m
n

)
(N − 1)n

(N − 1)s+1
N. (2.2)

Theorem 1 (achievable scheme). For a replication-based storage system withM mes-

sages and N databases, where a user has cache which stores γ of each message, the

achievable amount of download for the retrieval is

R∗(γ) ≤
γ

(M−2
s−1 )
{∆(M, s) + ∆(M − 1, s− 1)R0}+ (1− γ)R0, Θ(s) ≤ γ < Λ(s),

(1− γ) ∆(M,s)
∆(M−1,s−1) , Λ(s) ≤ γ < Θ(s+ 1).

where s ∈ [M − 1] and

Θ(s) =

∆(M,s−1)
∆(M−1,s−2) −R0

∆(M,s−1)
∆(M−1,s−2) + ∆(M,s)

(M−2
s−1 )

−R0

(
1 +

(
M−2
s−1

)−1
) ,

Λ(s) =
1

1 + ∆(M−1,s−1)

(M−2
s−1 )

,

and I set Θ(1) = 0 and Θ(M) =∞.

12



Proof. The proof of Theorem 1 will be given in Section 2.4.

Theorem 2 (lower bound). For a replication-based storage system with M messages

and N databases, where a user has cache which stores γ of each message, the mini-

mum amount of download for the retrieval is lower bounded by

R∗(γ) ≥ 1− γ. (2.3)

Proof. Since the bound is obvious considering the existence of cache, I omit the proof,

which is also trivial.

Remark 1. From Theorem 1 and 2, it is observed that the proposed scheme is optimal,

i.e., the performance gap between the achievable scheme and the lower bound is zero,

when γ ≥ Λ(M − 1). This is because ∆(M, s) equals to ∆(M − 1, s − 1) when

s = M − 1, thus (1− γ) ∆(M,s)
∆(M−1,s−1) becomes to 1− γ.

Remark 2. The gaps between the proposed scheme and the lower bound for (N,M) =

(3, 4), (3, 50), (10, 4) are depicted in Fig. 2.2, 2.3, and 2.4, respectively. As can be seen

in Remark 1, the proposed scheme is optimal for large enough γ. Moreover, as seen in

the figures, as N and M becomes larger, the gap is reduced.

Theorem 3 (tightness of achievable scheme). The achievable bound of cache-aided

PIR given in Theorem 1 is within a multiplicative factor of 2 of lower bound of cache-

aided PIR given in Theorem 2, i.e.,

Rac
Rlb
≤ 2, (2.4)

13



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

A
m

o
u
n
t 
o
f 
D

o
w

n
lo

a
d

proposed

lower bound

Figure 2.2: The performance gap between the proposed scheme and the lower bound

for N = 3 and M = 4

14



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

A
m

o
u
n
t 
o
f 
D

o
w

n
lo

a
d

proposed

lower bound

Figure 2.3: The performance gap between the proposed scheme and the lower bound

for N = 3 and M = 50

15



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

A
m

o
u
n
t 
o
f 
D

o
w

n
lo

a
d

proposed

lower bound

Figure 2.4: The performance gap between the proposed scheme and the lower bound

for N = 10 and M = 4

16



where Rlb is an lower bound of the amount download in cache-aided PIR given in

Theorem 2 and Rac is an achievable bound of the amount of download in cache-aided

PIR given in Theorem 1.

Proof. The bound is given in Section 2.5

2.4 Achievable Scheme

In this section, I propose an achievable scheme of cache-aided PIR. As in [14], the

proposed scheme is based on three idea :

• database symmetry

• message symmetry

• exploiting the undesired messages as side information

The proposed scheme consists of two phases. The first phase is cache-assisted phase.

The purpose of this phase is to exploit the cached parts of undesired messages as side

information. The second phase is cacheless phase. At the second phase, without cache,

the user downloads the remaining parts of desired message using the scheme in [14].

2.4.1 Cacheless phase

First, let me explain the second phase, which is just same as the scheme in [14]. As

in [14], I set L = NM . For example, I consider a storage system with 2 databases DB1

and DB2, and 3 messages B1, B2 and B3, and L should be 8. Let B1 be the desired

17



Figure 2.5: The process of cacheless download for N = 2 and M = 3.

18



message. At first, the user sendsQ1 = e1 to the first database, where ei denotes the ith

unit vector, ei ∈ FML×1
2 . After that, from (2.1), DB1 transmits its answer Y1 = B1,1.

By the database symmetry, DB2 also transmits a fragment of the desired message,

Y2 = B1,2 where Q2 = e2. Next, by the message symmetry, the undesired messages

B2 and B3 should also be downloaded. Therefore, DB1 transmits

Y1 = B2,1 (Q1 = eL+1),

Y1 = B3,1 (Q1 = e2L+1),

and DB2 transmits B2,2 and B3,2, respectively.

After that, since the undesired fragments were downloaded, the user exploits these

undesired fragments B2,1, B2,2, B3,1, and B3,2 as side information. Therefore, DB1

transmits

Y1 = B1,3 + B2,2 (Q1 = e3 + eL+2),

Y1 = B1,5 + B3,2 (Q1 = e5 + e2L+2)

Symmetrically, DB2 transmits B1,4 + B2,1 and B1,6 + B3,1. Note that B2,1 and B3,1

are not exploited in DB1. Since B2,1 and B3,1 were downloaded, re-download of B2,1

and B3,1 as side information enables DB1 to identify that they are not desired by the

user.

At the next step, the message symmetry is reconsidered because of the message

asymmetry caused by the previous exploitation. Therefore, equations that are com-

prised of only undesired fragments should be downloaded. Specifically, DB1 transmits

19



the equation

Y1 = B2,3 + B3,3 (Q1 = eL+3 + e2L+3),

and DB2 transmits

Y2 = B2,4 + B3,4 (Q2 = eL+4 + e2L+4).

The additional equations consisting of only undesired fragments due to message

symmetrization are exploited as side information. Therefore, DB1 transmits

Y1 = B1,7 + B2,4 + B3,4 (Q1 = e7 + eL+4 + e2L+4),

and DB2 transmits

Y2 = B1,8 + B2,3 + B3,3 (Q2 = e8 + eL+3 + e2L+3).

Since all of the 3 messages are summed into same equations, no more message asym-

metry occurs. Therefore, the messages were downloaded symmetrically and the user’s

privacy is protected. Since all of L = 8 fragments of the desired messages were down-

loaded, the retrieval is completed without further download. The overall process is

depicted in Fig. 2.5.

The general algorithm of cacheless phase is described in Algorithm 1 for each

database. The overall process across databases is done by applying this algorithm to

each database.

In summary, after the first download, the cacheless phase continues iteratively be-

tween the message symmetry and the exploitation. This iteration ends at the exploita-

tion step where all the other M − 1 undesired messages are added to the new desired

20



Algorithm 1 General algorithm of cacheless phase
for i = 0 to M − 1 do

if i = 0 then

Step 1. Download one desired fragment

else

Step 2. Symmetrize the messages

Step 3. Exploit the undesired fragments downloaded from the other N − 1

databases in previous symmetrization as side information

end if

end for

message fragments. In this step, since all of theM message fragments are summed into

one equation, no more message asymmetry occurs. Since I set L as NM , the retrieval

is completed.

2.4.2 Cache-assisted phase

In cache-assisted phase, the cached parts of undesired messages can be exploited as

side information at the beginning of the phase. That is, the cache-assisted phase starts

with Step 3 in a general algorithm of cacheless phase and continues iteratively. Note

that after the iteration is over, the cache-assisted phase ends without repetition since

there remains no more cached parts of undesired messages to be exploited.

In the initial exploitation, the number of undesired fragments added to the new

desired fragment should be considered. I denote this number by s, whose range is from

21



1 to M − 1. Recall that the exploitation step in cacheless phase starts with s = 0, and

ends with s = M−1. Therefore, s implicitly means the starting position of iteration. In

other words, the cache-assisted phase skips the first s iterations out of K−1 iterations

compared to the cacheless phase. As a result, the number of iteration in cache-assisted

phase isM−1−s. I denote the amount of download of the proposed scheme for given

γ and s by R(γ, s).

The example of cache-assisted phase is given in Fig. 2.6, where N = M = 3 and

s = 1. I also consider that γ = 2/L. That is, in the user’s cache, 2 fragments of each

message are stored. I set L as 53, which is matched to the cache-assisted algorithm

and the cacheless algorithm afterward. The desired message is assumed to be B1. At

first, the cached undesired fragments B2,1, B2,2, B3,1, and B3,2 are exploited as side

information in all databases. Since s = 1, each fragment is added to the new desired

fragment, respectively. Thus DB1 transmits

B1,3 + B2,1 (Q1 = eL+1),

B1,6 + B2,2 (Q1 = eL+2),

B1,9 + B3,1 (Q1 = e2L+1),

B1,12 + B3,2 (Q1 = e2L+2).

The databases DB2 and DB3 transmit symmetrically. The next step is exploitation

of previous equations. As explained in the cacheless phase, previous equations of DB1

cannot be exploited for itself, which are the same for DB2 and DB3. After the exploita-

tion, since all of the 3 messages are summed into each equation, no more message

22



Figure 2.6: The process of cache-assisted phase for N = 3 and M = 3.

23



asymmetry occurs. Therefore, the messages were downloaded symmetrically. Thus,

the user’s privacy is protected as in the cacheless phase. Since all of the cached unde-

sired fragments are exploited, the whole process of cache-assisted phase is over, and

the remaining parts of B1 are downloaded in the cacheless phase. Since the number of

downloaded fragments of desired message in cacheless phase is NM , which is 27 in

the above example, the value of L is adjusted to 26 + 27 = 53.

The general algorithm of cache-assisted phase is described in Algorithm 2 for each

database, as in the cacheless phase. Due to the database symmetry, the overall process

across databases is done by applying this algorithm to each database. Note that the

message symmetry step and exploitation step is basically same as cacheless phase,

which is same as [14]. Since the user’s privacy is protected for the algorithm in [14],

it’s obvious that the privacy is protected for proposed algorithm as well.

2.4.3 Cache-aided PIR

Until now, I have assumed the retrieval continues to the cacheless phase. However, if γ

is large enough, the retrieval can be done without the cacheless phase. In this case, not

all of the cached parts of undesired messages are exploited as side information. The

threshold value of γ depends on the value of s, and I denote this threshold by Λ(s). If

γ < Λ(s), the cacheless phase follows the cache-assisted phase. On the other hand, if

γ ≥ Λ(s), the retrieval is done with cache-assisted phase only. Therefore, for given s,

there are two different functions for R(γ, s). One is for γ < Λ(s) and the other is for

24



Algorithm 2 General algorithm of cache-assisted phase
for i = s to M − 1 do

if i = s then

Step 1. Exploit the cached undesired fragments as side information by adding

s undesired fragments to the new desired fragment.

else

Step 2. Symmetrize the messages

Step 3. Exploit the undesired fragments downloaded from the other N − 1

databases in previous symmetrization as side information

end if

end for

γ ≥ Λ(s).

Now, I derive R(γ, s). For fixed s, there are
(
M−1
s

)
kinds of combination of unde-

sired messages to be exploited as side information. For a specific undesired message,

which is cached as much as γ, the number of kinds of combination is
(
M−2
s−1

)
. If I as-

sume that each combination is exploited only once, the size of each fragment should

be γ/
(
M−2
s−1

)
and therefore L should be F

(
M−2
s−1

)
/γ, which is dependent on γ. Conse-

quently, the amount of downloaded fragments of desired message in initial exploitation

of cache-assisted phase is γ
(
M−1
s

)
/
(
M−2
s−1

)
.

The message symmetry process should be followed with
(
M−1
s+1

)
combinations of

undesired messages, whose amount is γ
(
M−1
s+1

)
/
(
M−2
s−1

)
so that the amount of com-

25



binations consisting of s + 1 elements is γ
(
M
s+1

)
/
(
M−2
s−1

)
. Note that in the message

symmetry process, only undesired messages are downloaded. Later process is iterated

just as same as the PIR without cache. For computing the amount of download, note

that the number of elements in each combination is incremented by 1 and the number

of downloaded fragments are multiplied by N −1 at every exploitation step except the

initial exploitation. Therefore, if I denote V (s) as the amount of fragments from all

of N databases including the desired message in cache-assisted phase for given s, and

T (s) as the total amount of fragments from N databases in cache-assisted phase for

given s, I get

V (s) =
γN(
M−2
s−1

) M−1−s∑
n=0

(N − 1)n
(
M − 1

s+ n

)
(2.5)

=
γ(

M−2
s−1

)∆(M − 1, s− 1),

T (s) =
γN(
M−2
s−1

) M−1−s∑
n=0

(N − 1)n
(

M

s+ 1 + n

)
(2.6)

=
γ(

M−2
s−1

)∆(M, s).

Since the remaining parts of the desired message after the cache-assisted phase is

1−γ−V (s), the threshold value Λ(s) should satisfy the equation, 1−Λ(s)−V (s) = 0.

1The size of a fragment should be adjusted so that the retrieval can be done after M − 1 iterations in

cacheless phase regardless of the number of repetitions. If the retrieval ends in the middle of the iterations,

the user’s privacy cannot be protected.

26



Algorithm 3 General algorithm of cache-aided PIR
for i = 1 to M − 1 do

if Θ(i) ≤ γ < Λ(i) then

Step 1. Cache-assisted phase for given s = i

Step 2. Cacheless phase for remainder1

else if Λ(i) ≤ m < Θ(i+ 1) then

Step 1. Cache-assisted phase for given s = i

end if

end for

For γ < Λ(s), the amount of download from the cache-assisted phase is T (s) and that

of the cacheless phase is R0(1 − γ − V (s)). Therefore the total amount of download

is T (s) +R0(1− γ − V (s)). Since γ is normalized size of cached BD, 1 denotes the

size of BD. For γ ≥ Λ(s), the amount of download from the cache-assisted phase is

given by

1− γ
V (s)/T (s)

.

Therefore, R(γ, s) is given as

R(γ, s) =


T (s) +R0(1− γ − V (s)), γ < Λ(s),

(1− γ) T (s)
V (s) , γ ≥ Λ(s).

(2.7)

Now, I can compute R(γ, s) for every s and γ. If I denote the amount of down-

load of the proposed scheme for given γ by Rac(γ), Rac(γ) is the minimum among

27



R(γ, 1), R(γ, 2), · · · , R(γ,M − 1). That is,

Rac(γ) = min(R(γ, 1), R(γ, 2), · · · , R(γ,M − 1)).

The value of s that minimizesR(γ, s) grows gradually as γ increases. Specifically,

for 0 ≤ γ < Λ(1),R(γ, s) is minimized when s = 1 and s increments by 1 as γ grows.

When γ becomes greater than γM−1, the value of s is kept at M − 1. In addition,

there is a point where R(γ, s − 1) becomes larger than R(γ, s) for every section in

Λ(s − 1) ≤ γ < Λ(s). If I denote this point by Θ(s), then for Λ(s) ≤ γ < Θ(s),

s − 1 is the argument of minimum. However, for Θ(s) ≤ γ < Λ(s), s becomes the

argument of minimum. This Θ(s) can be derived from

(1−Θ(s))
T (s− 1)

V (s− 1)
= T (s) + 1−Θ(s)− V (s)R0.

Since the above equation holds when γ = Θ(s), the following holds.

V (s) =
Θ(s)(
M−2
s−1

)∆(M − 1, s− 1),

T (s) =
Θ(s)(
M−2
s−1

)∆(M, s),

V (s− 1) =
Θ(s)(
M−2
s−2

)∆(M − 1, s− 2),

T (s− 1) =
Θ(s)(
M−2
s−2

)∆(M, s− 1).

As a result, the above equation becomes

(1−Θ(s))
∆(M − 1, s− 1)

∆(M − 1, s− 2)

=
Θ(s)(
M−2
s−1

)∆(M, s) + 1−Θ(s)−R0
Θ(s)(
M−2
s−1

)∆(M − 1, s− 1).

28



The above equation is equivalent to

∆(M − 1, s− 1)

∆(M − 1, s− 2)
− 1

= Θ(s){∆(M − 1, s− 1)

∆(M − 1, s− 2)
+

∆(M, s)(
M−2
s−1

) − 1−R0
∆(M − 1, s− 1)(

M−2
s−1

) }.

Therefore, the parameter Θ(s) is given as follows.

Θ(s) =

∆(M,s−1)
∆(M−1,s−2) −R0

∆(M,s−1)
∆(M−1,s−2) + ∆(M,s)

(M−2
s−1 )

−R0

(
1 +

(
M−2
s−1

)−1
) .

Consequently, the amount of download of the scheme can be summarized as in

Theorem 1 and the general algorithm of cache-aided PIR is summarized in Algorithm

3.

2.5 Tightness of achievable scheme

In this section, I show that the performance of achievable scheme is within a constant

multiplicative factor of 2 of lower bound of the amount of download in cache-aided

PIR, which is given in Theorem 2. Specifically, I prove that the amount of download of

achievable scheme for any s, which is given in (2.7), is within a constant multiplicative

factor of 2 of lower bound of the amount of download in cache-aided PIR given in

(2.3). For γ > Λ(s), the ratio of lower bound to the achievable scheme is given by

T (s)

V (s)
=
V (s) + T (s)− V (s)

V (s)
.

Note that T (s)− V (s) implies the amount of downloaded undesired messages, which

is strictly smaller than V (s). Considering cache-aided PIR algorithm explained in Sec-

29



tion 2.4.2, the undesired messages are downloaded when message symmetry is needed.

Since all of these downloaded undesired messages are exploited as side information in

each database, the amount of downloaded desired messages is strictly larger. There-

fore, the following holds.

V (s) + T (s)− V (s)

V (s)
≤ 2.

For γ ≤ Λ(s), the ratio of lower bound to the achievable scheme is given by

R0 +
γ

1− γ
(
T (s)

γ
+
R0V (s)

γ
).

Note that the term T (s)
γ + R0Vs

γ is independent to γ, considering (2.5) and (2.6). For

T (s)
γ + R0Vs

γ < 0, the ratio is maximum at γ = 0, which equals to

R0 = 1 + 1/N + · · ·+ 1/NM−1.

For fixed N , R0 is maximum at M = ∞, which equals to (1 − 1/N)−1. Therefore,

maximum of R0 is 2 when N = 2 and M =∞

For T (s)
γ + R0Vs

γ > 0, the ratio is maximum at γ = Λ(s), which equals to

T (s)/V (s). This results from 1−Λ(s)−V (s) = 0. As shown before, T (s)/V (s) < 2.

Consequently, the amount of download of achievable scheme is within a constant mul-

tiplicative factor of 2 of lower bound of the amount of download cache-aided PIR.

2.6 Conclusion and follow-up works

In this chapter, I analyzed a cache-aided PIR problem with replication-based storage

systems so that more efficient retrieval is possible. Specifically, I proposed an achiev-

30



able scheme for cache-aided PIR which is proven to be optimal for a large enough

cache size. However, the gap between the achievable scheme and the lower bound ex-

ists for a small cache size, thus future work could be to propose an optimal scheme of

the cache-aided PIR problem for an arbitrary cache size.

After my work, some follow-up works were proposed. First, there are works di-

rectly related to the cache-aided PIR. In [15], unlike my assumption, the databases

are assumed to know what has been cached by the user. In this work, it was proven

that the performance of cache-aided PIR in this case is as same as the PIR without

cache, except the reduced amount of download due to the cached desired message it-

self. In [16], improved achievable scheme and lower bound of cache-aided PIR were

proposed, whose scheme is based on mine and uses memory-sharing. Second, there

are works related to the heterogeneous caching. In [17]- [18], the user caches whole

M messages out of M − 1 undesired messages, excluding the others.

31



Chapter 3

Private Coded Computation

3.1 Introduction

In this chapter, for a matrix multiplication, a new variation of coded computation that

ensures the master’s privacy from the workers, which is referred to as private coded

computation, is proposed. In this problem, the master should multiply two matrices

A and BD where the matrix BD is an element in a library B that consists of M

matrices {Bk}Mk=1. This library B is exclusively shared by external workers whereas

the matrix A is exclusively owned by the master. The master encodes its matrix A with

an encoding function g and sends encoded data to the workers. The master also sends

queries that request each worker to encode the library B with its encoding function h

and to multiply g(A) and h(B). After the master recovers the matrix multiplication

ABD from the returned multiplications, the workers must not be able to identify that

BD is desired by the master, which would imply that the master’s privacy on BD

32



is ensured. I propose an achievable scheme of private coded computation, which is

referred to as private polynomial codes (PPC).

As a motivating example of the private coded computation, I may consider a user

who employs an artificial intelligence (AI) assistant, e.g. Google Assistant or Siri, with

its mobile phone/device. I assume that the user requests a recommendation from an AI

assistant of an item which is included in one of several categories, e.g. movies, games,

restaurants, and so on. The user stores its preference data and wants a recommendation

of an item in a specific category. When requested, the assistant encodes the user’s

preference data and sends encoded data to distributed workers for computing a function

of preference data and that of desired category, from which the item is recommended.

I assume that the user deletes the recommendation service usage record right after the

recommendation so that the AI assistant does not identify the user’s recommendation

service usage pattern.

Generally, the user will use this recommendation service according to its life style.

Therefore, if the workers obtain the user’s recommendation service usage records and

identify the desired category every time, the user’s privacy on its life style is infringed

by the workers. I remark that this privacy infringement is related to the categories, not

the user’s preference data. That is, encrypting the user’s preference data cannot ensure

the user’s privacy on the life style. In order to ensure the user’s privacy, the workers

should not know that a particular category is desired by a user, which motivates the

private coded computation. This motivating example is depicted in Fig. 3.1.

33



Figure 3.1: Motivating example of private coded computation.

34



Related works : The private coded computation which is dealt with in this chapter

only considers the master’s privacy, but not the data security on A. On the other hand,

secure coded computation [41] - [45] only considers the data security, but not the

master’s privacy. Generally, in the secure coded computation for matrix multiplication,

the master has two matrices A and B, and wants to compute AB without revealing

any information about both A and B to the workers. Secure coded computation was

studied mainly in computer science and machine learning fields [41] - [45]. Since

the workers do not share a library unlike the private coded computation, the master’s

privacy on a specific element in the library cannot be considered in the secure coded

computation. Note that, in Lagrange coded computing [44], the master’s privacy was

considered for protecting the content of master’s data against colluding workers. That

is, the master’s privacy of [44] is different from that of private coded computation,

where the master does not need to protect its data A. In the secure coded computation

for matrix multiplication, gap additive secure polynomial (GASP) codes [45] achieved

improved download rate compared to the previous work.

The master’s privacy on desired data BD in the library B was previously con-

sidered in private information retrieval (PIR) problem [46]. In the conventional PIR

problem, the master should privately download a specific element in the data library.

Recently, an optimal PIR scheme that minimizes the amount of download was pro-

posed [47]. After this work, several follow-up works that considered variations of PIR

problem were proposed [48] - [54]. In particular, robust PIR (RPIR) was proposed

35



where some of the databases may not respond to the master [53]. In [53], an optimal

RPIR scheme that minimizes the amount of download was proposed. I compare my

proposed scheme with this optimal RPIR scheme in terms of computation time and

communication load which will be defined in Section 3.2.

In [54], X-secure T-private information retrieval (XSTPIR) was also studied. In

XSTPIR, the data library is encoded and stored in databases. To obtain information

about the stored data, up to X databases may collude. However, for data security, the

colluding databases should not obtain any information about the stored data. Further-

more, the master should conceal the index D of desired data BD against T colluding

workers. In [54], the asymptotic capacity of XSTPIR was characterized, and an achiev-

able scheme based on cross subspace alignment was proposed.

As a variation of PIR, private computation (PC) was proposed. In PC, the master

wants to privately compute a function of the library B. For example, the function could

be the linear combinations of the elements in the library [56] - [59]. In these works,

the coefficients of linear combinations should be concealed. As a nonlinear function

for PC, polynomial computation was considered in [60].

If the function in PC is a linear combination of elements in B whose coefficients

are all zero except one, the PC problem reduces to an ordinary PIR problem. That is,

the PIR problem is a special case of PC problem. Moreover, since a matrix multiplica-

tion is a collection of linear combinations, PC schemes for linear combination can be

applied to private coded computation. That is, by consecutively applying PC schemes

36



and assigning each element of A as a coefficient of the desired matrix BD for each

iteration, the master can privately recover ABD. Moreover, the master’s privacy con-

sidered in PC problem is stronger than that of private coded computation. That is, for

a linear combination of elements in B, in PC problem, all of the coefficients of linear

combination should be concealed, whereas the coefficient for the desired matrix should

be concealed in private coded computation. As a result, private coded computation is

another special case of PC problem. Therefore, I compare my proposed scheme with

some PC schemes in terms of computation time and communication load. Specifically,

I choose the PC schemes in [54] and [60]. Note that the scheme in [54] can be extended

to PC problem.

3.2 System model

In this section, I describe a system model of private coded computation. There is a

master which has its own matrix A in a vector space V1 over a field F. There are also

N external workers {Wi}Ni=1 which share a library B which consists of M different

matrices {Bk}Mk=1. Each matrix Bk is an element in a vector space V2 over the same

field F. The master would like to compute ABD, where D ∈ [M ]. I assume that

the workers are identical and do not collude with each other. That is, their computa-

tion and communication capabilities are identical, and each worker does not know the

information exchanged between the master and the other workers.

The overall process is depicted in Fig. 3.2. First, the master encodes its own matrix

37



Figure 3.2: The overall process of private coded computation.

38



A and sends encoded A to each worker with queries for the workers to encode the

library B. That is, A is encoded at the master for each worker whereas B is encoded

at each worker. The workers encode B according to the queries and multiply the en-

coded A and B. If several multiplications are assigned to each worker, the workers

sequentially compute the multiplications and return each multiplication upon finishing

it. When a sufficient number of multiplications are returned, the master obtains ABD

by decoding.

The encoding improves resiliency to stragglers. That is, by encoding, the whole

multiplication ABD is divided into smaller multiplications, and the master assigns

one or more multiplications to each worker. I assume that the same number of multi-

plications is assigned to each worker and denote this number by L. I also denote the

encoding function at the master for the worker Wi by gWi , where gWi : V1 → Uδ11

for a vector space U1 over the same field F. The queries that the master sends to the

worker Wi are denoted by Qi. Similar to gWi , let hWi denote the encoding function of

the worker Wi, where hWi : VM2 → Uδ22 for a vector space U2 over the same field F.

Note that δ1δ2 equals to L. Let me denote the multiplications returned from the worker

Wi by Yi, with which the master is able to recover the whole multiplication ABD.

Accordingly, if I denote the decoding function by d, it should satisfy the following

condition which is given by

d(Y1, Y2, · · · , YN ) = ABD.

The master’s privacy is ensured when none of the workers identifies the index D

39



of the desired matrix BD after the master recovers the whole multiplication. Since

the privacy I consider is information-theoretic privacy, the privacy constraint for each

worker Wi is given by

I(D;Qi, Ci,B) = 0, (3.1)

where Ci = gWi(A).

I consider two performance metrics in private coded computation: computation

time and communication load. I define these terms as follows.

Definition 1. In private coded computation, communication load U is defined by the

amount of communication from the master to all of the workers.

That is, the communication load equals to the amount of encoded A transmitted to all

of the workers.

For the computation time, I assume that the workers simultaneously start working.

Definition 2. In private coded computation, computation time T is defined by the time

taken for the workers to return the sufficient number of multiplications to the master

so that the master is able to recover the whole multiplication ABD.

In Definition 1, the communication from the workers to the master is excluded.

This is because the time taken for the workers to return the multiplications to the

master is included in computation time as defined in Definition 2.

40



3.3 Main results

In this section, I state main results, which are achievable scheme and privacy proof.

Theorem 1 (achievable scheme). In an achievable scheme for a private coded compu-

tation system with a library B of M matrices {B}Mi=1 and N workers {W}Ni=1, where

a master has its own matrix A, the master’s encoding of A for Wi is given by

{
Ã(xp)

}L
p=1

=

{
m−1∑
l=0

Alx
l
p

}L
p=1

,

the encoding of B by the worker Wi in a group Gt is given by

B̃(yt) = B̃D(yt) +
∑

k∈[M ]\D

B̃k(yjk) =
n−1∑
l=1

BD,ly
l
t +

∑
k∈[M ]\D

n−1∑
l=1

Bk,ly
l
jk
,

and the computations returned from the worker Wi in the group Gt are given by

{
Ã(xp)B̃(yt)

}L
p=1

,

where

A =



A0

A1

...

Am−1


,

Bk =

[
Bk,1 · · · Bk,n−1

]
, k ∈ [M ].

Theorem 2 (privacy proof). For the achievable scheme given in Theorem 1, the fol-

lowing privacy constraint for each worker Wi is satisfied.

I(D;Qi, Ci,B) = 0, ∀i ∈ [N ],

41



where D, Qi, and Ci denote the desired index, the queries for Wi, and encoded A sent

to Wi, respectively.

3.4 Private polynomial codes

In this section, I propose an achievable scheme for private coded computation, namely

private polynomial codes. I provide two illustrative examples and describe the general

method. I also show that the master’s privacy is ensured. Next, I explain two special

cases of my proposed scheme, which are referred to as private one-shot polynomial

codes (POPC) and private asynchronous polynomial codes (PAPC). Note that the term

‘private asynchronous polynomial codes’ stems from the asynchronous coded compu-

tation which was explained in Section 3.1. Finally, I characterize the computation time

and communication load of my proposed scheme.

3.4.1 First example

The master has a matrix A ∈ Fr×sq for sufficiently large finite field Fq. Specifically,

the field size should be at least F23 , which will be explained later. There are 12 non-

colluding workers {Wn}12
n=1 who share a library B of two matrices B1,B2 ∈ Fs×tq .

The master wants to compute AB1 using {Wn}12
n=1 while hiding the fact that the

master desires B1 from the workers.

The overall process of the first example is depicted in Fig. 3.3. The matrix A

is partitioned into two submatrices A0,A1 ∈ Fr/2×sq and each of B1,B2 are also

42



Figure 3.3: The overall process of the first example.

43



partitioned into two submatrices Bk,1,Bk,2 ∈ Fs×t/2q , k ∈ [2], so that

A =

A0

A1

 ,
Bk =

[
Bk,1 Bk,2

]
,

AB1 =

A0B1,1 A0B1,2

A1B1,1 A1B1,2

 .
The encoding for each A, B1 and B2 is as follows.

Ã(x) = A0 + A1x,

B̃k(y) = Bk,1y + Bk,2y
2,

where k ∈ [2] and x, y ∈ Fq denote the variables of polynomials Ã(x) and B̃k(y),

respectively. Note that the master’s own matrix A and the library B are encoded sep-

arately.

The master randomly chooses 4 distinct points {xp}4p=1 and another 4 distinct

points {yp}4p=1. Since the master should choose 8 distinct points altogether, the field

size should be at least F23 . After that, the master divides 12 workers into three equal-

sized groups, which are denoted by G1, G2, and G3. Without loss of generality, I

assume that the workers {Wi}4i=1, {Wi}8i=5, and {Wi}12
i=9 are grouped into G1, G2,

and G3, respectively.

After that, the master computes 4 evaluations {Ã(xp)}4p=1 and sends Ã(xi) to

3 workers Wi, Wi+4, and Wi+8. Note that these workers belong to distinct groups.

44



The master also sends queries for the worker in the group Gt to compute the encoded

library which is given by

B̃1(yt) + B̃2(y4)

= B1,1yt + B1,2y
2
t + B2,1y4 + B2,2y

2
4.

That is, each group Gt evaluates B̃1(y) at distinct point yt. Consider a polynomial

B̃1(y) + B̃2(y4) in y, whose degree is 2. Since the point y4 is identical across the

groups, the term B2,1y4 +B2,2y
2
4 is a constant term and there are 3 evaluations of this

polynomial across the groups.

Nevertheless, the workers cannot notice this asymmetry that B̃1(y) is evaluated at

three points whereas B̃2(y) is evaluated at only one point. That is, each worker in the

group Gt sees the points yt and y4 as two identical random points queried by the mas-

ter. This is because I assumed that the workers do not communicate with each other.

Therefore, the workers cannot know that B1 is the desired matrix and the master’s

privacy on B1 is ensured.

After encoding the library, the worker Wi, Wi+4 or Wi+8 in Gt computes a multi-

plication

Ã(xi)(B̃1(yt) + B̃2(y4)).

Since there are 4 workers in each Gt, up to 4 multiplications are returned from Gt to

the master.

The decoding is two-fold : 3 interpolations of polynomials in x which are followed

45



by two interpolations of polynomials in y. The first 3 interpolations in x are done

group-wise. That is, when the master receives two multiplications from the fastest two

workers in Gt, the master interpolates the polynomial in x which is given by

Ã(x)(B̃1(yt) + B̃2(y4)),

where the degree is 1 and the term B̃1(yt) + B̃2(y4) is constant within the group Gt.

As a result, from each group Gt, the master obtains two coefficients

A0(B̃1(yt) + B̃2(y4))

= A0(B1,1yt + B1,2y
2
t + B2,1y4 + B2,2y

2
4),

A1(B̃1(yt) + B̃2(y4))

= A1(B1,1yt + B1,2y
2
t + B2,1y4 + B2,2y

2
4).

Consider two polynomials in y which are given by

A0B1,1y + A0B1,2y
2 + A0(B2,1y4 + B2,2y

2
4),

A1B1,1y + A1B1,2y
2 + A1(B2,1y4 + B2,2y

2
4),

where the degree of each polynomial is 2.

Since the 6 coefficients obtained from G1, G2 and G3 are 3 evaluations of each of

two polynomials in y, the master is able to interpolate these two polynomials in y. As

a result, the master obtains AB1 from the coefficients A0B1,1, A0B1,2, A1B1,1, and

A1B1,2.

46



Remark 1. In the first example, the stragglers are mitigated within the group, not

across the groups. That is, in each group where there are 4 workers, the computation

of the two slowest workers are ignored.

Remark 2. As explained, the interpolations of polynomials in x are done group-wise,

and the workers are assumed not to communicate with each other. Therefore, the iden-

tical set of evaluations {Ã(xp)}4p=1 is allowed to be transmitted to every group.

Remark 3. Let me assume that the master desires B2 instead of B1. Still, the mas-

ter randomly chooses four distinct points {yp}4p=1 and divides the workers into three

equal-sized groups. However, at this time, the master sends queries to groupGt for the

workers in Gt to compute

B̃2(yt) + B̃1(y4)

= B2,1yt + B2,2y
2
t + B1,1y4 + B1,2y

2
4.

That is, B̃2(y) is evaluated at three points y1, y2, and y3, whereas B̃1(y) is evaluated

at only one point y4. Since the four distinct points are randomly chosen and the workers

do not communicate with each other, they still see yt and y4 as identical random points,

which indicates that the master’s privacy on B2 in ensured.

Remark 4. In PPC, the workers are always grouped according to the point with which

they evaluate the desired matrix. That is, for a given set of evaluating points for un-

desired matrices, each worker evaluates the desired matrix with only one point. If not,

the master’s privacy on the desired matrix cannot be ensured.

47



For example, in the first example, let me assume that there is a worker who com-

putes two evaluations

B̃1(ya) + B̃2(y4),

B̃1(yb) + B̃2(y4).

As a result, this worker immediately recognizes that B1 is more evaluated than B2,

thus implying that the master’s privacy on B1 is infringed.

Of course, for privacy, the master may request this worker to compute two more

evaluations

B̃1(ya) + B̃2(y5),

B̃1(yb) + B̃2(y5).

However, the polynomials B̃1(y) + B̃2(y4) and B̃1(y) + B̃2(y5) are distinct since y4

and y5 are distinct. Therefore, this worker evaluated B̃1(y) at only one point for each

polynomial.

3.4.2 Second example

I now explain the second example where there are 12 workers. The overall process is

depicted in Fig. 3.4. This time, there are three matrices B1, B2 and B3 in the library B.

The matrix A has three submatrices so that A =

[
A0

T A1
T AT

2

]T
, whereas each

Bk is not partitioned into submatrices. I assume the master wants B2. The encoded

48



Figure 3.4: The overall process of the second example.

49



matrices Ã(x) and B̃k(y) are given as follows.

Ã(x) = A0 + A1x+ A1x
2,

B̃k(y) = Bky.

The master randomly chooses 12 distinct points {xl}12
l=1 and 4 distinct points

{yp}4p=1. Since total 16 points are necessary for encoding, the field size should be

at least F24 . The master divides the workers into 2 groups and without loss of gen-

erality, I assume that the workers {W1,W2, · · · ,W6} are G1 and the others are G2.

After that, the master computes 12 evaluations {Ã(xl)}12
l=1 and sends two evaluations

Ã(x2i−1) and Ã(x2i) to each of two workers Wi and Wi+6. Note that the workers Wi

and Wi+6 belong to different groups. The master also sends queries for the workers in

Gt to compute

B̃2(yt) + B̃1(y3) + B̃3(y4)

= B2yt + B1y3 + B3y4.

Consider a polynomial B̃2(y)+B̃1(y3)+B̃3(y4) in y, whose degree is 1. Since B1

and B3 are undesired matrices, the points y3 and y4 are identical across the groups,

which makes the term B1y3 + B3y4 as constant term in the polynomial. Still, the

workers see the points yt, y3, and y4 as identically random points because they do not

communicate with each other. Therefore, the master’s privacy on B2 is ensured.

After encoding the library, the worker Wi or Wi+6 in Gt sequentially computes

50



two multiplications

Ã(x2i−1)(B̃2(yt) + B̃1(y3) + B̃3(y4)),

Ã(x2i)(B̃2(yt) + B̃1(y3) + B̃3(y4)).

That is, the workers return each multiplication to the master upon finishing it. Since

there are 6 workers in Gt, up to 12 multiplications are sequentially returned from Gt.

The decoding is two-fold : two interpolations of polynomials in x which are fol-

lowed by 3 interpolations of polynomials in y. The first two interpolations in x are

done group-wise. That is, when the master receives 3 multiplications from Gt, the

master interpolates the polynomial in x which is given by

Ã(x)(B̃2(yt) + B̃1(y3) + B̃3(y4)),

whose degree is 2 and the encoded library is identical within the group Gt.

After each interpolation of polynomial in x, the master obtains 3 coefficients

A0(B̃2(yt) + B̃1(y3) + B̃3(y4))

= A0(B2yt + B1y3 + B3y4),

A1(B̃2(yt) + B̃1(y3) + B̃3(y4))

= A1(B2yt + B1y3 + B3y4),

A2(B̃2(yt) + B̃1(y3) + B̃3(y4))

= A2(B2yt + B1y3 + B3y4).

51



Consider 3 polynomials in y which are given by

A0B2y + (A0B1y3 + A0B3y4),

A1B2y + (A1B1y3 + A1B3y4),

A2B2y + (A2B1y3 + A2B3y4),

each of whose degree is 1.

Since the 6 coefficients obtained from G1 and G2 are two evaluations of each of 3

polynomials in y, the master is able to interpolate these 3 polynomials in y. As a result,

the master obtains AB2 from the coefficients A0B2, A1B2, and A2B2.

Remark 5. In the first example, each worker computes only one multiplications, which

implies that L = 1. On the other hand, L equals to 2 in the second example. If I set

L = 1 in the second example, the results of the slowest 3 workers among 6 workers

within a group would always be ignored. However, since L = 2, there is a chance that

the fastest worker returns two multiplications while the second fastest worker returns

a multiplication. In this case, the effects of the slowest 4 workers are mitigated within

a group.

3.4.3 General description

In this section, I describe the general process of PPC. The overall process is depicted

in Fig. 4.3.2. There are N non-colluding workers {Wn}Nn=1 and each worker has a

library B of M matrices {Bk}Mk=1 where each Bk ∈ Fs×tq for sufficiently large finite

52



Figure 3.5: The overall process of proposed scheme

53



field Fq. The master has a matrix A ∈ Fr×sq and desires to multiply A by a matrix

BD in the library B while concealing the index D from all of the workers. Matrices

A and each Bk are partitioned into m submatrices {Ak}m−1
k=0 ∈ Fr/m×sq and n − 1

submatrices {Bk,l}n−1
l=1 ∈ Fs×t/(n−1)

q , respectively, so that

A =



A0

A1

...

Am−1


,

Bk =

[
Bk,1 · · · Bk,n−1

]
,

ABD =



A0BD,1 A0BD,2 · · · A0BD,n−1

A1BD,1 A1BD,2 · · · A1BD,n−1

...
... · · ·

...

Am−1BD,1 Am−1BD,2 · · · Am−1BD,n−1


.

The encoding for each A and {Bk}Mk=1 is given as follows.

Ã(x) =
m−1∑
l=0

Alx
l, (3.2)

B̃k(y) =

n−1∑
l=1

Bk,ly
l, (3.3)

where k ∈ [M ] and x, y ∈ Fq for sufficiently large finite field Fq.

As explained in Section 3.2, the parameter L denotes the number of evaluations of

Ã(x) that the master sends to each worker. Accordingly, the master randomly chooses

LN/n distinct points {xp}LN/np=1 , n distinct points {yp}np=1, and M − 1 distinct points

54



{yjk |k ∈ [M ]\D}. After that, the master divides the workers into n equal-sized groups

{Gt}nt=1. Without loss of generality, I assume that the group Gt has N/n workers

{Wi}tN/ni=(t−1)N/n+1.

The master computes LN/n evaluations {Ã(xp)}LN/np=1 and sends L evaluations

{Ã(xp)}Lip=L(i−1)+1 to each of nworkers {Wi,Wi+N/n,Wi+2N/n, · · · ,Wi+(n−1)N/n}

where i ∈ [N/n]. Note that the worker Wi+(t−1)N/n belongs to Gt. The master also

sends queries to the workers in Gt so that they compute encoded library as follows.

B̃D(yt) +
∑

k∈[M ]\D

B̃k(yjk).

Note that the term
∑

k∈[M ]\D B̃k(yjk) is constant across the groups.

After computing the encoded library, each worker Wi+(t−1)N/n sequentially com-

putes L multiplicationsÃ(xp)(B̃D(yt) +
∑

k∈[M ]\D

B̃k(yjk))


Li

p=L(i−1)+1

.

The worker returns each multiplication to the master upon finishing it.

The decoding is two-fold : n interpolations of polynomials in x which are fol-

lowed by m interpolations of polynomials in y. The first n interpolations in x are done

group-wise. That is, when the master receives m multiplications from Gt, the master

interpolates the polynomial in x which is given by

Ã(x)(B̃D(yt) +
∑

k∈[M ]\D

B̃k(yjk)),

whose degree is m− 1.

55



Note that the encoded library is identical within the group Gt. Recalling the poly-

nomial Ã(x) which was given in (3.3), the master obtains m coefficientsAl(B̃D(yt) +
∑

k∈[M ]\D

B̃k(yjk))


m−1

l=0

.

Consider m polynomials in y which are given byAlB̃D(y) + (
∑

k∈[M ]\D

AlB̃k(yjk))


m−1

l=0

,

each of whose degree is n− 1.

Since the mn coefficients obtained from {Gt}nt=1 are n evaluations of each of m

polynomials in y, the master is able to interpolate these m polynomials in y. As a

result, recalling the polynomial B̃D(y) which was given in (3.3), the master obtains

ABD from the coefficients

{AlBD,r}(m,n−1)
(l,r)=(0,1).

Remark 6. Recalling that each group Gt receives LN/n evaluations from the master,

LN/n should be larger than m so that the master interpolates the polynomial in x

from m multiplications returned from Gt. That is,

L
N

n
≥ m. (3.4)

3.4.4 Privacy proof

In this section, I show that the master’s privacy is ensured in PPC. In particular, I show

that the privacy constraint for each worker Wi in groupGt is satisfied, which was given

56



by (3.1). By a chain rule, I write the privacy constraint as follows.

I(D;Qi, Ci,B) = I(D;Qi) + I(D;B|Qi) + I(D;Ci|Qi,B)

Recall that Qi and Ci denote the queries for worker Wi and the evaluations of Ã(x)

sent to Wi, respectively. Therefore, it is sufficient to show that the index D is indepen-

dent of queries, library, and evaluations of Ã(x).

First, I show that the evaluations of Ã(x) are independent of D. The matrices A

and those in the library B are independent. Moreover, they are encoded separately as

polynomials in x and y, respectively. Therefore, the evaluations of Ã(x) are indepen-

dent of D, thus implying that

I(D;Ci|Qi,B) = 0.

Next, I show that the library B is independent of D. The library B is exclusively

shared by the workers and the master does not have it. That is, the master determines

D without knowing any information about B. Therefore, the library B is independent

of D, thus implying that

I(D;B|Qi) = 0.

Finally, I show that the queries are independent of D. The queries Qi are fourfold:

1. Qi,p : for partitioning each matrix in the library into submatrices

2. Qi,e : for evaluating each B̃k(y)

3. Qi,s : for summing the evaluations

57



4. Qi,c : for multiplying the encoded library and Ci

All of submatrices {Bk,l}
(M,n−1)
(k,l)=(1,1) are elements in Fs×t/(n−1)

q . That is, they are of

equal size. Therefore, Qi,p are independent of D, thus implying that

I(D;Qi,p) = 0.

Recall that the points yt and {yjk |k ∈ [M ] \D} are distinct and randomly chosen.

Therefore, Qi,e are independent of D, thus implying that

I(D;Qi,e) = 0.

All of the evaluations of {B̃k(y)}Mk=1 are symmetrically summed into one equation

B̃D(yt) +
∑

k∈[M ]\D

B̃k(yjk).

Therefore, Qi,s are independent of D, thus implying that

I(D;Qi,s) = 0.

As explained, Ci and the term

B̃D(yt) +
∑

k∈[M ]\D

B̃k(yjk)

are independent of D. Therefore, Qi,c are also independent of D, thus implying that

I(D;Qi,c) = 0.

That is, the queries are also independent of D, thus implying that

I(D;Qi) = 0.

As a result, the privacy constraint is satisfied for the worker Wi. Since the privacy

constraint is satisfied for every worker, the master’s privacy is ensured in PPC. �

58



3.4.5 Performance analysis

In this section, I characterize the computation time and communication load of PPC.

As defined in Section 3.2, the computation time in private coded computation is the

time taken for the workers to return enough number of multiplications so that the mas-

ter is able to recover the whole computation ABD. Recalling that the master should

receive m multiplications from each group, the computation time of PPC equals the

time taken for the slowest group to return m multiplications.

I assume that the straggling model of each worker follows a shifted exponential

distribution as in [19] and [61]. In [61], the probability Ps(t) for each worker to return

exactly s multiplications by time t was given by

Ps(t) =



0, t < sγ,

1− e−µ( t
s
−γ), sγ ≤ t < (s+ 1)γ,

e−µ( t
s+1
−γ) − e−µ( t

s
−γ), (s+ 1)γ ≤ t,

where γ and µ denote the shift and straggling parameter, respectively.

According to the analysis in [61], I now derive the expected time consumed for

a group Ga to return m multiplications to the master. I denote this time by a random

variable Ta. Since each worker in Ga returns up to L multiplications, there are L + 1

groups of workers inGa according to the number of returned multiplications by time t.

I denote the number of workers in Ga who return s multiplications by time t by Ns(t),

where
∑L

s=0Ns(t) = N/n. Accordingly, if I denote the number of multiplications

59



returned from Ga by time t by M(t),

M(t) =

L∑
s=1

sNs(t).

For a vector N(t) = {N0(t), · · · , NL(t)}, the probability of particular N(t) is

given by

Pr(N(t)) =

L∏
s=0

Ps(t)
Ns

(
N/n−

∑
j<sNj

Ns

)
.

As a result, the probability Pr(Ta ≤ t) is given by

Pr(Ta ≤ t) =
∑

N(t):M(t)≥m

Pr(N(t)),

and the expected time E[Ta] is given as follows.

E[Ta] =

∫ ∞
0

Pr(Ta > t)dt

=

∫ ∞
0

1−
∑

N(t):M(t)≥m

Pr(N(t))

dt.
Consequently, the expected computation time E[T ] of PPC is given as follows.

E[T ] = max(E[T1], · · · , E[Tn]). (3.5)

I now characterize the communication load of PPC. Let |A| denote the amount of

communication load for the master to transmit a matrix A to a worker. As shown in

(3.3), the size of Ã(x) equals 1/m of A, which implies that the communication load

for each evaluation of Ã(x) equals |A|m . Since the master sends L evaluations of Ã(x)

to each of N workers, the communication load of PPC equals LN
m |A|.

60



3.4.6 Special cases

In this section, I propose special cases of POPC and PAPC.

In POPC, the master sends only one evaluation of Ã(x) to each worker. That is,

L = 1. The first example in Section 3.4.1 corresponds to POPC.

In PAPC, the master divides its own matrix A into much smaller partitions, which

implies that m becomes much larger in turn. If m is sufficiently large, even the slow

workers are able to contribute to the master, rather than ignored. Asm becomes larger,

the lower bound of L also becomes larger, since L ≥ mn
N from (3.4). As L becomes

larger, faster workers are able to compute and return more multiplications to the mas-

ter. That is, faster workers are exploited more efficiently in PAPC as compared to

POPC where the faster workers are not exploited after returning only one multipli-

cation. Therefore, by properly designing the parameters m and L, all of the workers

in each group are able to continue working until they return m multiplications to the

master.

As a result, the computation time of PAPC is faster than that of POPC. On the

other hand, as L becomes larger, the communication load of PAPC is larger than that

of POPC. In fact, since L = 1 in POPC, the communication load is minimized at

POPC. I will show these results by simulation in the next section.

61



3.5 Simulation results

In this section, in terms of the computation time and communication load defined in

Section 3.2, I compare POPC and PAPC with the optimal RPIR scheme in [53], and

PC schemes in [54] and [60]. For a fair comparison, I assume that the workers do not

collude with each other in RPIR scheme, and PC schemes in [54] and [60], which is

the same as in POPC and PAPC.

The optimal RPIR scheme in [53] is directly applicable to private coded computa-

tion. The master encodes the library B = {Bk}Mk=1 into {B̃k}Mk=1 with MDS code and

each B̃k is multiplied by A. That is, the master should transmit all of the matrix A to

each worker. Encoding A does not affect the computation time and the communication

load since every encoded matrix Ã should be multiplied across the workers to exploit

the encoded undesired matrices {B̃k|k ∈ [M ] \D} as side information.

For the scheme in [54], I consider the PC version of the scheme, which was ex-

plained in [54]. For the scheme in [60], I assume the desired function is a linear com-

bination. I consecutively apply these schemes so that the coefficient of desired matrix

BD corresponds to an element in A for each iteration.

3.5.1 Computation time

As assumed in Section 4.3.3, time distribution of each worker follows shifted expo-

nential distribution. When computing ABD without considering the master’s privacy

as in [19], the computation time equals the time taken for the Kth fastest worker to

62



compute and return 1/K of whole computation, where the slowest N − K strag-

glers are mitigated and K ∈ [N ]. Therefore, the computation time is the Kth statistic

of N independent exponential random variables. If I denote a sum
∑N

n=1
1
n by HN ,

HN ' logN for large N . Since the expected value of the Kth statistic of N indepen-

dent exponential random variable is given by HN−HN−K

µ , the expected computation

time of the conventional coded computation is given by

E[Tconv] =
1

K
(γ +

1

µ
log

N

N −K
),

where γ and µ are the shift and the straggling parameters, respectively, as denoted in

Section 4.3.3.

Similar to the conventional coded computation, in the RPIR scheme, when the

effects of at most N −K stragglers are mitigated, the computation time is determined

by the Kth fastest worker. In order to recover ABD under the privacy constraint, the

RPIR scheme requires 1+ 1
K + · · ·+ 1

KM−1 times more computation than that required

by directly computing ABD without considering the master’s privacy. Therefore, the

expected computation time of RPIR scheme which is denoted by E[TRPIR] takes (1+

1
K + · · ·+ 1

KM−1 ) times longer than E[Tconv], which is given by

E[TRPIR] = (1 +
1

K
+ · · ·+ 1

KM−1
)

1

K
(γ +

1

µ
log

N

N −K
)

= (
1

K
+ · · ·+ 1

KM
)(γ +

1

µ
log

N

N −K
).

Similarly, the expected computation times of schemes in [54] and [60] are given

63



by

E[TPC1] =
1− 1

(2K−1)M(K−1)

K − 1
(γ +

1

µ
logK),

E[TPC2] =
1

1− M+K
N

1

K
(γ +

1

µ
log

N

N −K
),

where E[TPC1] and E[TPC2] correspond to the expected computation time of the

scheme in [54] and [60], respectively.

I compare the computation time between three schemes for three sets of parameters

(N,M, γ) = (12, 4, 0.1), (12, 8, 0.1), (12, 4, 1). I vary µ from 10−1 to 10 for each set

of parameters. I assume the number of groups in both of POPC and the PAPC is two,

thus implying that n = 2. For POPC, mn should be less than N from (3.4). Therefore,

for n = 2, m ∈ [6] in POPC. I choose the best m that minimizes the computation

time of POPC. For PAPC, I set L = m = 100 so that every worker in each group Gt

continues working until m multiplication are returned from Gt. For the optimal RPIR

scheme and PC schemes in [54] and [60], similar to POPC, I choose the best K that

minimizes the computation time, where K ∈ [N ].

I employ the Monte-Carlo method and the comparison results are given in Fig. 3.6,

3.7, and 3.8. As shown in the figures, PAPC outperforms the other schemes when γ

is relatively small. As explained, this is because the workers are exploited more ef-

ficiently in PAPC compared to the other schemes when γ is relatively small. On the

other hand, the gap between the five schemes decreases as µ increases. This is reason-

able because the delaying effect by slow workers becomes negligible as µ increases.

Although POPC achieves the worst computation time for small µ, it outperforms the

64



10
-1

10
0

10
1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

c
o

m
p

u
ta

ti
o

n
 t

im
e

PC1

RPIR

POPC

PAPC

PC2

Figure 3.6: The computation time comparison forN = 12,M = 4, γ = 1, and varying

µ from 10−1 to 10.

65



10
-1

10
0

10
1

0

1

2

3

4

5

6

7

8

9

c
o

m
p

u
ta

ti
o

n
 t

im
e

PC1

RPIR

POPC

PAPC

PC2

Figure 3.7: The computation time comparison for N = 12, M = 8, γ = 0.1, and

varying µ.

66



10
-1

10
0

10
1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

c
o

m
p

u
ta

ti
o

n
 t

im
e

PC1

RPIR

POPC

PAPC

PC2

Figure 3.8: The computation time comparison forN = 12,M = 4, γ = 1, and varying

µ.

67



PC scheme in [60] as µ becomes larger.

For the PC schemes in [54] and [60], their computation times are worse than the

optimal RPIR scheme and PAPC when γ is relatively small. This is because the mas-

ter’s privacy in [54] and [60] is stronger than private coded computation problem, as

explained in Section 3.1.

3.5.2 Communication load

For the communication load, I generally characterize the communication load of each

scheme and compare them. The communication loads of the five schemes are summa-

rized in Table. 3.1. As characterized in Section 4.3.3, the communication load of PPC

equals LN
m |A|. Although L is fixed to 1 in POPC, it should be designed in PAPC so

that every worker in a group continues working until m multiplications are returned

to the master. Considering the extreme case where the fastest worker in each group

solely returns m multiplications before other workers in the same group return a mul-

tiplication, L is at most m in PAPC. As a result, the communication load in PAPC is

upper bounded by N |A| which is m times larger than that of POPC. Note that m is

the parameter in POPC and upper bounded by N/n from (3.4).

Let me characterize the communication load of the optimal RPIR scheme and PC

schemes in [54] and [60]. As explained, in the optimal RPIR scheme, the whole content

of A should be transmitted to each worker regardless of whether the master encodes A

or not. Therefore, the communication load of the optimal RPIR scheme equals N |A|

68



Table 3.1: The communication load comparison

Communication load

URPIR N |A|

UPC1 N |A|

UPC2 N |A|

UPOPC
N
m |A|

UPAPC
LN
m |A|

which is the same as the upper bound of PAPC. For the PC schemes in [54] and [60],

since the encoding A at the master side is not considered, the whole content of A

should be transmitted to each worker, same as the optimal RPIR scheme. As a result,

if I denote the communication load of each scheme by URPIR, UPC1, UPC2, UPOPC ,

UPAPC , respectively, the following holds in general:

URPIR = UPC1 = UPC2 ≥ UPAPC > UPOPC .

3.6 Conclusion

In this chapter, I considered private coded computation as a variation of coded com-

putation that ensures the master’s privacy. As an achievable scheme for private coded

computation, I proposed PPC based on the scheme in [39]. As special cases of PPC, I

characterized POPC and PAPC. While PAPC achieved faster computation time, POPC

69



achieved smaller communication load. I compared POPC and PAPC with the opti-

mal RPIR scheme and PC schemes in [54] and [60], and verified that the proposed

schemes outperform the conventional schemes either in terms of computation time or

communication load. In future work, I may use different codes in order to improve the

performance. For example, a scheme in [62] which is a generalized version of scheme

in [39], can be applied to PPC.

70



Chapter 4

Private Secure Coded Computation

4.1 Introduction

In this chapter, I present private secure coded computation that ensures both the mas-

ter’s privacy and data security against the workers, as a new variation of coded compu-

tation. I consider the security in secure coded computation and the master’s privacy in

private coded computation. Specifically, I consider a coded computation. The overall

process of private secure coded computation is depicted in Fig. 4.1. There are N non-

colluding workers {Wi}Ni=1 who share a library B of M matrices B1, · · · ,BM . The

master must compute ABD. Let gWi and hWi denote encoding functions of the master

for and the worker Wi itself, respectively. The master encodes its private matrix A into

gWi(A) = Ci, and sends to Wi. The master also sends the queries Qi, and the worker

Wi encodes B into hWi(B) and computes gWi(A)hWi(B) = Yi according to Qi. The

master recovers ABD from Y1, · · · , YN with a decoding function d. After the master

71



Figure 4.1: The overall process of private secure coded computation

72



recovers ABD, the workers must not identify the index D of desired matrix BD, as

well as they should not obtain any information about A. These privacy and security

constraints are expressed as

I(D;Qi, Ci,B) = 0, (privacy) (4.1)

I(A;Qi, Ci,B) = 0. (security) (4.2)

I present a motivating example of the private secure coded computation. Similar to

the motivating example for private coded computation, there is a mobile user who uses

artificial intelligence (AI) assistant. The assistant provides a recommendation service

and there are M categories that the user can choose, e.g. movies, games, restaurants,

and so on. The data matrices for M categories are denoted by {Bk}Mk=1 and they

comprise the library B. I assume that the library is not owned by the user but the

external workers which are controlled by the assistant. With its preference parameter

matrix A, the user orders the assistant to recommend an item in a specific category

BD where D ∈ [M ]. Note that the user encrypts A so that the assistant acquires

no information of A, thus implying that the data security on A is ensured. When

ordered, the assistant instructs the external workers to compute a multiplication ABD

and decides its recommendation based on ABD. For the user’s privacy, the assistant

does not reveal the index of the aimed matrix D to the workers and the workers also

should not identify D from the assistant’s instructions.

As explained before, the user usually uses the recommendation service according

to its life style. Therefore, if the workers can identify D and record the timeline, they

73



Figure 4.2: Motivating example of private secure coded computation

74



acquire the information about the user’s life style and invade the user’s privacy on its

life style. This motivating example is depicted in Fig. 4.2.

As an achievable scheme, I propose private secure polynomial codes (PSPC),

based on polynomial codes [39]. I compare the proposed scheme with uncoded scheme,

private polynomial codes (PPC) in [55], and the optimal scheme of robust private in-

formation retrieval (RPIR) [53], with respect to computation time and communication

load which are defined in previous chapter.

4.2 Main results

In this section, I state main results, which are achievable scheme and proofs for privacy

and security.

Theorem 1 (achievable scheme). In an achievable scheme for a private secure coded

computation system with a library B of M matrices {B}Mi=1 and N workers {W}Ni=1,

where a master has its own matrix A and a random matrix R, the master’s encoding

of A for Wi is given by

Ã(xi) =
m−1∑
l=0

Alx
l
i + Rxmi ,

the encoding of B by the worker Wi is given by

B̃(xi) = B̃D(xi) +
∑

k∈[M ]\D

B̃k(xjk) =
n−1∑
l=1

BD,lx
l
i +

∑
k∈[M ]\D

n−1∑
l=1

Bk,lx
l
jk
,

and the computation returned from the worker Wi is given by

Ã(xi)B̃(xi),

75



where

A =



A0

A1

...

Am−1


,

Bk =

[
Bk,1 · · · Bk,n−1

]
, k ∈ [M ].

Theorem 2 (privacy and security proof). For the achievable scheme given in Theorem

1, the following privacy and security constraints for each worker Wi are satisfied.

I(D;Qi, Ci,B) = 0,∀i ∈ [N ],

I(A;Qi, Ci,B) = 0,∀i ∈ [N ],

where D, Qi, and Ci denote the desired index, the queries for Wi, and encoded A sent

to Wi, respectively.

4.3 Private secure polynomial codes

4.3.1 Illustrative example

The overall process is depicted in Fig. 4.3. A master’s private matrix is denoted by

A ∈ Fr×sq for sufficiently large finite field Fq. There are 12 non-colluding workers

{Wi}12
i=1 who do not communicate with each other and share a library B of two ma-

trices B1,B2 ∈ Fs×tq . The master needs to compute AB1. For the matrices A0,A1 ∈

76



Figure 4.3: The overall process of the illustrative example

77



Fr/2×sq and Bk,1,Bk,2 ∈ Fs×t/2q , k ∈ [2], I can express

A =

A0

A1

 ,
Bk =

[
Bk,1 Bk,2

]
.

At first, the master randomly chooses 13 distinct points {xi}13
i=1 in Fq. For each

worker Wi, the master computes and transmits Ã(xi) which is given by

Ã(xi) = A0 + A1xi + Rx2
i ,

where R ∈ Fr/2×sq is a random matrix for ensuring data security on A.

With Ã(xi), the master also transmits queries Qi that order Wi to encode the

library B into

B̃(xi) = B̃1(xi) + B̃2(x13),

where B̃k(x) is given by

B̃k(x) = Bk,1x
3 + Bk,2x

6, ∀k ∈ [2].

Each worker Wi computes and returns a multiplication which is given by

Ã(xi)B̃(xi)

= (A0 + A1xi + Rx2
i )×

(B1,1x
3
i + B1,2x

6
i + B2,1x

3
13 + B2,2x

6
13)

=

8∑
l=0

Zlx
l
i,

78



where {Zl}8l=0 are given by

Z0 = A0(B2,1x
3
13 + B2,2x

6
13),

Z1 = A1(B2,1x
3
13 + B2,2x

6
13),

Z2 = R(B2,1x
3
13 + B2,2x

6
13),

Z3 = A0B1,1,

Z4 = A1B1,1,

Z5 = RB1,1,

Z6 = A0B1,2,

Z7 = A1B1,2,

Z8 = RB1,2.

Since the degree of polynomial Ã(x)B̃(x) is 8 and 13 points {xi}13
i=1 are distinct

from each other, the master can interpolate the polynomial after the 9 fastest workers

return their results and the multiplication AB1 can be recovered from the coefficients

Z3, Z4, Z6, and Z7.

Remark 1. In PSPC, I may consider some adversarial workers who return erroneous

results, as well as the stragglers. For example, in the above example, I assume that

up to one worker is an adversarial. In this case, the master needs to employ Reed-

Solomon decoding instead of polynomial interpolation. Moreover, the master needs

two more multiplications for decoding, which delays the process. In general, if there

are E adversarial workers, the master has to receive 2E more multiplications from the

79



workers.

4.3.2 General description

The overall process of PSPC is depicted in Fig. 4.4. There are N non-colluding work-

ers {Wi}Ni=1 who do not communicate with each other and share a library B of M

matrices {Bk}Mk=1 where each Bk ∈ Fs×tq for sufficiently large finite field Fq. For its

private matrix A ∈ Fr×sq , the master needs to compute ABD, where D ∈ [M ]. For

the matrices {Al}m−1
l=0 ∈ Fr/m×sq and {Bk,l}nl=1 ∈ Fs×t/nq , k ∈ [M ], I can express

A =



A0

A1

...

Am−1


,

Bk =

[
Bk,1 · · ·Bk,n

]
.

The master randomly chooses N + M − 1 distinct points {xi}Ni=1 and {xjk |k ∈

[M ] \D} in Fq. For each worker Wi, the master computes and transmits Ã(xi) which

is given by

Ã(xi) =

m−1∑
l=0

Alx
l
i + Rxmi , (4.3)

where R ∈ Fr/m×sq is a random matrix for ensuring data security on A.

With Ã(xi), the master also transmits queries Qi that order Wi to encode the

80



Figure 4.4: The overall process of PSPC.

81



library B into

B̃(xi) = B̃D(xi) +
∑

k∈[M ]\D

B̃k(xjk), (4.4)

where B̃k(x) is given by

B̃k(x) =
n∑
l=1

Bk,lx
l(m+1), ∀k ∈ [M ]. (4.5)

Each worker Wi computes and returns a multiplication which is given by

Ã(xi)B̃(xi)

= Ã(xi)B̃D(xi) + Ã(xi)
∑

k∈[M ]\D

B̃k(xjk)

=
m−1∑
l=0

n∑
p=1

AlBD,px
l+p(m+1) +

n∑
p=1

RBD,px
pm+m+p

+
m−1∑
l=0

∑
k∈[M ]\D

AlB̃k(xjk)xl +
∑

k∈[M ]\D

RB̃k(xjk)xm

=
mn+m+n∑

l=0

Zlx
l,

where {Zl}mn+m+n
l=0 are given by

Zl =
∑

k∈[M ]\D

AlB̃k(xjk) ∀l ∈ [0 : m− 1],

Zl =
∑

k∈[M ]\D

RB̃k(xjk) ∀l = m,

Zl = RBD,l ∀l = m+ p(m+ 1), p ∈ [n],

Zl = Al−p(m+1)BD,p ∀l ∈ [p(m+ 1) : p(m+ 1) +m− 1],

p ∈ [n].

82



Since the degree of polynomial Ã(x)B̃(x) is mn+m+ n and the points {xi}Ni=1

are distinct from each other, the master can interpolate the polynomial after the (m +

1)(n + 1) fastest workers return their results and the multiplication ABD can be re-

covered from the coefficients {Zl|l ∈ [p(m+ 1) : p(m+ 1) +m− 1], p ∈ [n]}.

Remark 2. While the conventional polynomial codes in [39] uses the term

B̃k(x) =

n−1∑
l=0

Bk,lx
l(m+1),

there is no Bk,0x
0 term in PSPC as seen in (4.5). This is because the coefficient of x0

in polynomial B̃(x) should be the undesired term
∑

k∈[M ]\D B̃k(xjk) in (4.4). If there

is Bk,0x
0 for each Bk, the desired submatrix BD,0 cannot be obtained by decoding

since the undesired term
∑

k∈[M ]\D B̃k(xjk) is combined with BD,0. That is, in PSPC,

I sacrifice the term BD,0 for the master’s privacy, which can be seen as privacy cost.

4.3.3 Performance analysis

In this section, I derive the computation time and the communication load of PSPC

according to Definition 1 and 2. I assume that the computation time distribution of each

worker is independent of each other, and follows the shifted-exponential distribution

as in [19]. The computation time TPSPC is given by

TPSPC =
1

(m+ 1)n
(γ +

1

µ
log

N

N − (m+ 1)(n+ 1)
), (4.6)

where µ and γ denote the straggling parameter and the shift parameter, respectively.

83



For the communication load UPSPC , let |A| denote the communication load for

transmitting A. Since the amount of encoded A for each worker Wi is given by (4.3),

I have

UPSPC = N |A|/m. (4.7)

Remark 3. Recalling that the master needs (m + 1)(n + 1) multiplications from N

workers, (m+ 1)(n+ 1) ≤ N . Therefore, for reducing UPSPC , the master maximizes

m under m ≤ N/(n + 1) − 1. On the other hand, since the parameters µ and γ also

affect TPSPC , it is difficult to generally characterize the effects ofm and n on TPSPC .

4.3.4 Privacy and security proof

I prove that (3.1) and (3.2) are satisfied for every worker. By the chain rule, I can write

(3.1) as follows.

I(D;Qi, Ci,B) = I(D;Qi) + I(D;B|Qi) + I(D;Ci|Qi,B)

First, let me consider Ci. If the worker Wi recognizes that Ã(x) is evaluated at xi,

it will identify the desired index D since Ã(x) and B̃D(x) is evaluated at the same

point. However, recalling that Ci is encrypted by the random matrix R, the worker Wi

cannot infer xi from Ci, thus implying that I(D;Ci|Qi,B) = 0. Next, I consider B.

Recalling that the master determines D without obtaining any information of B, B is

independent of D, thus implying that I(D;B|QDi ) = 0.

Finally, I consider Qi. The queries Qi are fourfold: partitioning each Bk into n

84



submatrices, evaluating each B̃k(x), summing them into one equation (4.4), and mul-

tiplying the equation (4.4) by Ci. Since the others are fixed operations and do not carry

any information, I only consider the evaluation operation. As assumed, the master ran-

domly chooses M distinct points xi and {xjk |k ∈ [M ] \ D} for the worker Wi who

does not communicate with other workers. As a result, the worker Wi observes the

points xi and {xjk |k ∈ [M ] \ D} as indistinguishable random points, thus implying

that I(D;Qi) = 0.

I now prove (2). I can write (2) as follows.

I(A;Qi, Ci,B) = I(A;Qi) + I(A;B|Qi) + I(A;Ci|Qi,B)

Since Ci is encrypted, H(A|Ci) = H(A), which implies that I(A;Ci|Qi,B) =

0. Recalling that A and B are independent, I(A;B|Qi) = 0. The queries Qi for

encoding B are independent of A, which implies that I(A;Qi) = 0.�

4.4 Simulation results

I compare PSPC, uncoded scheme, private polynomial codes (PPC), and optimal RPIR

scheme in [53] with respect to the computation time and communication load. In

the uncoded scheme, the master orders each worker to compute M multiplications

{(A + R)Bk}Mk=1, where R is a random matrix. After the fastest worker returns M

multiplications, the master obtains ABD.

For PPC, I choose two special cases-private one-shot polynomial codes (POPC)

and private asynchronous polynomial codes (PAPC). In POPC, each worker returns

85



only one matrix multiplication results, same as PSPC. On the other hand, in PAPC,

several smaller multiplication tasks are assigned to each worker, and by assigning a

sufficient number of multiplications to each worker, every worker continues working

throughout the process. For ensuring the data security in POPC and PAPC, the random

matrix R is added when encoding A, similar to PSPC.

The optimal RPIR scheme in [53] minimizes the amount of download when the

master does not have A, and merely downloads BD while concealing the index D

against the workers. I modifies the optimal RPIR scheme for coded computation by

considering A at the master side. Similar to PSPC, for the data security, the master

sends A + R in the modified optimal RPIR scheme.

4.4.1 Computation time

As in Section 4.3.3, I assume that the computation time distribution of each worker is

independent of each other, and follows the shifted-exponential distribution as in [19].

For uncoded scheme, the computation time is given by

Tuncoded = M(γ +
1

µ
log

N

N − 1
).

I compare the computation time for givenN,M, γ and varying µ. That is, there are

three sets of parameters (N,M, γ) = (12, 4, 0.1), (12, 8, 0.1), (12, 4, 0.0001), and µ

is varied from 10−1 to 10 for each set of parameters. Since µ is a straggling parameter,

larger µ implies that the effect of stragglers becomes negligible. Let K denote the

minimum number of returned multiplications to recover ABD. For fair comparison,

86



10
-1

10
0

10
1

0

1

2

3

4

5

6

c
o

m
p

u
ta

ti
o

n
 t

im
e

RPIR

uncoded

PAPC

PSPC

POPC

Figure 4.5: The computation time comparison for N = 12, M = 4, γ = 0.1, and

varying µ.

87



10
-1

10
0

10
1

0

2

4

6

8

10

12

14

c
o

m
p

u
ta

ti
o

n
 t

im
e

RPIR

uncoded

PAPC

PSPC

POPC

Figure 4.6: The computation time comparison for N = 12, M = 8, γ = 0.1, and

varying µ.

88



10
-1

10
0

10
1

0

1

2

3

4

5

6

c
o

m
p

u
ta

ti
o

n
 t

im
e

RPIR

uncoded

PAPC

PSPC

POPC

Figure 4.7: The computation time comparison for N = 12, M = 4, γ = 0.0001, and

varying µ.

89



I optimize K for each scheme so that each scheme achieves the fastest computation

time for given N,M, γ and µ.

As seen in the figures, the uncoded scheme is the worst and PSPC outperforms

POPC. This counter-intuitive result is explained in Remark 4. The modified optimal

RPIR scheme is the second best. This is because the original optimal RPIR scheme

achieves the minimum amount of download when the master privately downloads BD

without considering A. However, in my problem setting, the master should jointly

consider both A and B. Furthermore, since the modified optimal RPIR scheme is a

synchronous scheme, PAPC achieves the fastest computation time where the workers

are exploited more efficiently due to its asynchronous manner.

4.4.2 Communication load

Let Uuncoded, URPIR, UPOPC , and UPAPC denote the communication load of un-

coded scheme, optimal RPIR scheme, POPC, and PAPC, respectively. It is obvious

that Uuncoded = N |A|. According to the analysis given in Section 3.4.5 and 3.5.2,

I have URPIR = N |A|, UPOPC = N |A|/m, and UPAPC = LN |A|/m, where L

denotes the number of multiplications assigned to each worker in PAPC. Therefore,

from (4.7), the following holds generally.

Uuncoded = URPIR ≥ UPAPC > UPOPC = UPSPC .

Consequently, PSPC achieves the smallest communication load and strictly faster com-

putation time than POPC.

90



Remark 4. Unlike PSPC, the workers should be grouped in POPC, which delays the

computation time. I explain the cause of grouping in PPC which inlcude POPC. Since

A is not encrypted in the original PPC, the worker Wi may infer xi from Ã(xi).

Therefore, if BD is encoded with the same point xi, the worker Wi identifies D. As a

result, in PPC, A and B are separately encoded into Ã(x) and B̃(y), respectively, and

the master should decode Ã(x)B̃(y). Accordingly, the decoding is two-step process:

the interpolation of polynomials in x followed by that in y. For decoding Ã(x) whose

degree is m, there should be at least m + 1 distinct evaluations {Ã(xi)B̃(yt)}m+1
i=1

for given yt. As a result, in PPC, the workers are divided into groups according to

the evaluating point of B̃(y), and the computation time is determined by the slowest

group, which implies that POPC is slower than PSPC.

4.5 Conclusion

In this chapter, I introduced private secure coded computation as a variation of coded

computation that protects the data security and the master’s privacy at the same time.

As an achievable scheme for private secure coded computation, I proposed private se-

cure polynomial codes based on private polynomial codes in private coded computa-

tion. By simulation, I compared the private secure polynomial codes and private poly-

nomial codes in terms of computation time, and shown that the proposed scheme out-

performs the previous work. In future work, I will further analyze the performance of

private secure polynomial codes and compare the performance with actual distributed

91



machines, e.g., AWS or Google Cloud.

92



Chapter 5

Conclusion

5.1 Summary

In this dissertation, I proposed cache-aided PIR problem, private coded computation,

and private secure coded computation. In addition, I proposed an achievable scheme

for each system model.

In Chapter 2, cache-aided PIR problem was proposed, as a new variation of PIR

problem. By introducing the user’s cache in the PIR problem, the download rate was

significantly improved. The achievable scheme was based on the optimal scheme for

conventional PIR problem. In the achievable scheme, the pre-store cache was exploited

as an side information, which improved the download rate, compared to the PIR prob-

lem without cache.

In Chapter 3, private coded computation was proposed, as a new variation of coded

computation. In the private coded computation, the user should conceal which file the

93



worker’s library is desired by the user. This kind of privacy is similar to that of PIR

problem. The achievable scheme, namely private polynomial codes, were based on the

polynomial codes which was proposed in the conventional coded computation system.

In the achievable scheme, the workers are grouped for the privacy and asynchronous

scheme was considered, which was not considered in the conventional polynomial

codes. Due to the asynchronous scheme, the proposed scheme achieved the faster com-

putation time, compared to the modified optimal RPIR scheme.

In Chapter 4, private secure coded computation was proposed, as a new varia-

tion of coded computation. In the private secure coded computation, the user should

conceal which file the worker’s library is desired by the user. Furthermore, in the pri-

vate secure coded computation, the user has its own data and should secure its data

against the workers. The achievable scheme, namely private secure polynomial codes,

were based on the polynomial codes which was proposed in the conventional coded

computation system. By modifying the private polynomial codes, the private secure

polynomial codes and private secure polynomial codes were compared in terms of

computation time and communication load. As a result, the private secure polynomial

codes achieved faster computation time for the same communication load.

5.2 Future directions

For the cache-aided PIR problem, the improved achievable scheme was proposed af-

ter my work, which is partially optimal. The remaining issue in the cache-aided PIR

94



problem is to find the optimal PIR scheme for entire cache size region. For the private

coded computation and private secure coded computation, the improved scheme that

achieves the faster computation time or smaller communication load can be proposed.

On the other hand, there can be more general achievable scheme for private coded

computation and private secure coded computation. For example, by considering the

entangled polynomial codes, which are more general than the polynomial codes, there

can be more general achievable scheme for private coded computation and private se-

cure coded computation.

95



Bibliography

[1] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” in IEEE

Transactions on Information Theory, vol. 60, no. 5, pp. 2856-2867, Aug. 2014.

[2] M. A. Maddah-Ali and U. Niesen, “Decentralized coded caching attains order-

optimal memory-rate tradeoff,” in IEEE/ACM Transactions on Networking

(TON), vol. 23, no. 4, pp. 1029-1040, 2015.

[3] N. Golrezaei, K. Shanmugam, A. G. Dimakis, A. F. Molisch, and G. Caire, “Fem-

tocaching: Wireless video content delivery through distributed caching helpers,”

in Proc. IEEE INFOCOM, pp. 1107–1115, Mar. 2011.

[4] R. Pedarsani, M. A. Maddah-Ali, and U. Niesen, “Online Coded Caching,” in

IEEE/ACM Trans. Netw., vol. 24, no. 2, pp. 836–845, Apr. 2016.

[5] N. Karamchandani, U. Niesen, M. A. Maddah-Ali, and S. N. Diggavi, “Hierar-

chical coded caching,” in IEEE Trans. Inf. Theory, vol. 62, no. 6, pp. 3212–3229,

Jun. 2016.

96



[6] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-memory trade-

off for caching with uncoded prefetching,” in IEEE Trans. Inf. Theory, vol. 64,

no. 2, pp. 1281–1296, 2018.

[7] U. Niesen and M. A. Maddah-Ali, “Coded caching with nonuniform demands,”

in IEEE Trans. Inf. Theory, vol. 63, no. 2, pp. 1146–1158, 2017.

[8] S. P. Shariatpanahi, S. A. Motahari, and B. H. Khalaj, “Multi-server Coded

Caching,” in IEEE Trans. on Inf. Theory, vol. 62, no. 12, pp. 7253–7271, 2016.

[9] J. Hachem, N. Karamchandani, and S. Diggavi, “Multi-level coded caching,” in

Proc. IEEE Int. Symp. Inf. Theory (ISIT), pp. 56–60, Jun./Jul. 2016.

[10] H. Ghasemi and A. Ramamoorthy, “Improved lower bounds for coded caching,”

in IEEE Trans. Inf. Theory, vol. 63, no. 7, pp. 4388–4413, Jul. 2017.

[11] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private information re-

trieval,” in Proc. the 36th Annual Symposium on Foundations of Computer Sci-

ence, Wisconsin, USA, pp. 41-50, Oct. 1995.

[12] A. Beimel, Y. Ishai, and E. Kushilevitz, “General constructions for information-

theoretic private information retrieval,” Journal of Computer and Systems Sci-

ences, vol. 71, no. 2, pp. 213-247, Aug. 2005.

[13] S. Yekhanin, “Locally decodable codes and private information retrieval

schemes,” Ph.D. dissertation, Massachusetts Institute of Technology, 2007.

97



[14] H. Sun and S. A. Jafar, “The capacity of private information retrieval,” arXiv

preprint arXiv:1602.09134, 2016.

[15] R. Tandon, ”The capacity of cache-aided private information retrieval,” arXiv

preprint arXiv:1602.091341706.07035, 2017.

[16] Y. Wei, K. Banawan, and S. Ulukus, ”Fundamental limits of cache-aided private

information retrieval with unknown and uncoded prefetching,” arXiv preprint

arXiv:1709.01056, 2017.

[17] S. Kadhe, B. Garcia, A. Heidarzadeh, S. El Rouayheb, and A. Sprintson, ”Private

information retrieval with side information,” arXiv preprint arXiv:1709.00112,

2017.

[18] Z. Chen, Z. Wang, and S. Jafar, ”The Capacity of Private Information Retrieval

with Private Side Information,” arXiv preprint arXiv:1709.03022, 2017.

[19] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Speed-

ing up distributed machine learning using codes,” in IEEE Transactions on Infor-

mation Theory, vol. 64, no. 3, pp. 1514-1529, Mar. 2018.

[20] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental trade-

off between computation and communication in distributed computing,” in IEEE

Transactions on Information Theory, vol. 64, no. 1, pp. 109-128, Jan. 2018.

98



[21] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient coding:

Avoiding stragglers in distributed learning,” in International Conference on Ma-

chine Learn (ICML), 2017, pp. 3368-3376.

[22] S. Dutta, V. Cadambe, and P. Grover, “Coded convolution for parallel and dis-

tributed computing within a deadline,” in Proc. International Symposium on In-

formation Theory (ISIT), June 2017, pp. 2403-2407.

[23] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: computing large linear trans-

forms distributedly using coded short dot product,” in Proc. 31th Annual Confer-

ence on Neural Information Processing Systems (NIPS), Dec. 2017.

[24] R. Bitar, P. Parag, and S. E. Rouayheb, “Minimizing latency for secure distributed

computing,” in Proc. International Symposium on Information Theory (ISIT),

Jun. 2017.

[25] W. Halbawi, N. Azizan-Ruhi, F. Salehi, and B. Hassibi, “Improving dis-

tributed gradient descent using Reed-Solomon codes,” in arXiv preprint

arXiv:1706.05436, 2017.

[26] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding framework for

distributed computing with straggling servers,” in Proc. Global Communications

Conference (GLOBECOM) Workshops, Dec. 2017.

99



[27] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix multi-

plication,” in Proc. International Symposium on Information Theory (ISIT), Jun.

2017.

[28] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler Mitigation in Distributed

Optimization through Data Encoding,” in Advances in Neural Information Pro-

cessing Systems (NIPS), pp. 5440–5448. 2017.

[29] C. Karakus, Y. Sun, and S. Diggavi, “Encoded distributed optimization,” in IEEE

International Symposium on Information Theory (ISIT), pp. 2890–2894. 2017.

[30] Z. Charles, D. Papailiopoulos, and J. Ellenberg, “Approximate gradient coding

via sparse random graphs,” in arXiv preprint arXiv:1711.06771, 2017.

[31] R. K. Maity, A. S. Rawat, and A. Mazumdar, “Robust gradient descent via mo-

ment encoding with ldpc codes,” in arXiv preprint arXiv:1805.08327, 2018.

[32] Y. Yang, P. Grover, and S. Kar, “Coded Distributed Computing for Inverse

Problems,” in Advances in Neural Information Processing Systems (NIPS), pp.

709–719. 2017.

[33] S. Li, S. M. M. Kalan, Q. Yu, M. Soltanolkotabi, and A. S. Avestimehr, “Poly-

nomially coded regression: Optimal straggler mitigation via data encoding,” in

arXiv preprint arXiv:1805.09934, 2018.

100



[34] Y. Yang, P. Grover, and S. Kar, “Coding for a single sparse inverse problem,” in

IEEE International Symposium on Information Theory (ISIT), pp. 1575–1579.

2018.

[35] Y. Yang, M. Chaudhari, P. Grover, and S. Kar, “Coded iterative computing using

substitute decoding,” in arXiv preprint arXiv:1805.06046, 2018.

[36] F. Haddadpour, Y. Yang, M. Chaudhari, V. R. Cadambe, and P. Grover,

“Straggler-resilient and communication-efficient distributed iterative linear

solver,” in arXiv preprint arXiv:1806.06140, 2018.

[37] F. Haddadpour and V. R. Cadambe, “Codes for distributed finite alphabet matrix-

vector multiplication,” in Proc. International Symposium on Information Theory

(ISIT), pp. 1625– 1629. 2018.

[38] H. Park, K. Lee, J.-y. Sohn, C. Suh, and J. Moon, “Hierarchical coding for dis-

tributed computing,” in arXiv preprint arXiv:1801.04686, 2018.

[39] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: An optimal de-

sign for high-dimensional coded matrix multiplication,” in Proc. 31th Annual

Conference on Neural Information Processing Systems (NIPS), Dec. 2017, pp.

4406-4416.

[40] S. Kiani, N. Ferdinand and S. C. Draper, “Exploitation of Stragglers in Coded

Computation,” in arXiv preprint arXiv:1806.10253, 2018.

101



[41] H. Yang and J. Lee, “Secure Distributed Computing With Straggling Servers Us-

ing Polynomial Codes,” in IEEE Transactions on Information Forensics and Se-

curity , vol. 14, no. 1, pp. 141-150, 2019.

[42] W. Chang and R. Tandon, “On the Capacity of Secure Distributed Matrix Multi-

plication,” in arXiv preprint arXiv:1806.00469 , 2018.

[43] J. Kakar, S. Ebadifar, and A. Sezgin, “Rate-Efficiency and Straggler-Robustness

through Partition in Distributed Two-Sided Secure Matrix Computation,” in

arXiv preprint arXiv:1810.13006 , 2018.

[44] Q. Yu, N. Raviv, J. So, and S. Avestimehr, “Lagrange Coded Computing: Optimal

Design for Resiliency, Security and Privacy,” in arXiv preprint arXiv:1806.00939

, 2018.

[45] R. G. D′Oliveira, S. E. Rouayheb, and D. Karpuk, “GASP codes for secure dis-

tributed matrix multiplication,” in arXiv preprint arXiv:1812.09962 , 2018.

[46] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private information re-

trieval,” in Journal of the ACM, 45(6):965-981, 1998.

[47] H. Sun and S. A. Jafar, “The Capacity of Private Information Retrieval,” in IEEE

Transactions on Information Theory, vol. 63, no. 7, pp. 4075-4088, Jul. 2017.

102



[48] H. Sun and S. A. Jafar, “The Capacity of Private Information Retrieval with Col-

luding Databases,” in Proc. IEEE Global Conf. Signal Inf. Process, pp. 941-946,

Dec. 2016.

[49] K. Banawan and S. Ulukus, “The Capacity of Private Information Retrieval From

Coded Databases,” in IEEE Transactions on Information Theory, vol. 64, no. 3,

pp. 1945-1956, 2018.

[50] K. Banawan and S. Ulukus, “The Capacity of Private Information Retrieval from

Byzantine and Colluding Databases,” in arXiv preprint arXiv:1706.01142, 2017.

[51] M. Kim, H. Yang and J. Lee, “Cache-aided Private Information Retrieval,” in

IEEE Asilomar, Oct. 2017.

[52] Y.-P. Wei, K. Banawan, and S. Ulukus, “Cache-aided private information retrieval

with partially known uncoded prefetching: Fundamental limits,” in IEEE Jour. on

Selected Areas in Communications, vol. 36, no. 6, pp. 1126-1139, Jun. 2018.

[53] H. Sun and S. A. Jafar, ”The Capacity of Robust Private Information Retrieval

with Colluding Databases,” in arXiv preprint arXiv:1606.08828, 2016.

[54] Z. Jin, H. Sun and S. A. Jafar, ”Cross Subspace Alignment and the Asymp-

totic Capacity of X-secure T-private Information Retrieval,” in arXiv preprint

arXiv:1808.07457, 2018.

103



[55] M. Kim, H. Yang and J. Lee, “Private Coded Matrix Multiplication,” IEEE

Transactions on Information Forensics and Security, Early Access, 2019.

[56] M. Mirmohseni and M. A. Maddah-Ali, ”Private Function Retrieval,” in arXiv

preprint arXiv:1711.04677, 2017.

[57] S. A. Obead and J. Kliewer, ”Achievable Rate of Private Function Retrieval from

MDS Coded Databases,” in IEEE International Symposium on Information The-

ory (ISIT), pp. 2117-2121, 2018.

[58] S. A. Obead, H.-Y. Lin, E. Rosnes, J. Kliewer, ”Capacity of Private Linear Com-

putation for Coded Databases,” in arXiv preprint arXiv:1810.04230, 2018.

[59] H. Sun and S. A. Jafar, ”The capacity of private computation,” in arXiv preprint

arXiv:1710.11098, 2017.

[60] N. Raviv and D. A. Karpuk, ”Private Polynomial Computation from Lagrange

Encoding,” in arXiv preprint arXiv:1812.04142, 2018.

[61] E. Ozafatura, D. Gunduz and S. Ulukus, ”Speeding Up Distributed Gra-

dient Descent by Utilizing Non-persistent Stragglers,” in arXiv preprint

arXiv:1808.02240, 2018.

[62] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation in dis-

tributed matrix multiplication: Fundamental limits and optimal coding,” in arXiv

preprint arXiv:1801.07487., 2018.

104



초록

많은양의데이터저장이나데이터계산을위해서는분산시스템이필수적이다.

이러한분산시스템의데이터저장과계산의효율의높이는반면,데이터의보안과

프라이버시에대한위험도증가시킨다.본논문에서는데이터저장과데이터계산을

위한분산시스템에서데이터에대한보안과프라이버시를고려한다.특히,이러한

시스템에대하여보안과프라이버시를보장하는부호화기법을제안한다.

우선,유저가사전에캐시에일정량의데이터를저장하고있는 cache-aided PIR

을제안한다.제안하는기법은기존 PIR문제의최적기법을기반으로한다.제안하

는 기법에서, 캐시에 저장된 데이터는 부가정보로 이용되며, 이는 캐시가 없을 때

대비다운로드양의감소로이어진다.

두번째로,부호화된분산컴퓨팅시스템에서마스터의프라이버시를고려한다.

이 시스템에서 워커들과 마스터는 각각 고유한 데이터를 가지며, 워커들의 데이터

는 라이브러리 형태로 이루어진다. 마스터는 자신의 데이터와 데이터 라이브러리

내특정데이터의함수를계산해야한다.이때마스터의프라이버시는워커들이마

스터가라이브러리안의어떤데이터를원하는지모르는것을뜻한다.

105



이러한시스템을 private coded computation이라하며,제안하는기법을 private poly-

nomial codes라한다.제안하는기법에서는기존의 polynomial codes에서는고려되

지않았던비동기적기법이도입된다.이로인하여제안하는기법은변형된최적의

RPIR기법대비더빠른계산시간을달성한다.

끝으로,부호화된분산컴퓨팅시스템에서마스터의프라이버시와데이터보안

을 동시에 고려한다. 데이터 보안은 마스터의 고유한 데이터를 워커들로부터 보호

하는 것을 의미한다. 이러한 시스템을 private secure coded computation이라 하며,

제안하는 기법을 private secure polynomial codes라 한다. Private polynomial codes

를변형하여 private secure polynomial codes와 private polynomial codes를계산시간

과 통신량 측면에서 비교한다. 그 결과, 같은 양의 통신량에 대하여, private secure

polynomial codes가더빠른계산시간을달성한다.

주요어:분산컴퓨팅, Private Information Retrieval,정보이론,보안

학번: 2014-21647

106



ACKNOWLEDGEMENT

Part of this work was presented at 2017 51st Asilomar Conference on Signals,

Systems, and Computers, 2019 IEEE International Symposium on Information The-

ory, published at IEEE Transactions on Information Forensics and Security, IEEE

Communications Letters, and is covered by the following copyrights : ©2017 IEEE.

Reprinted, with permission, from Minchul Kim, “Cache-Aided Private Information

Retrieval”, 51st Asilomar Conference on Signals, Systems, and Computers, 2017,

©2019 IEEE. Reprinted, with permission, from Minchul Kim, “Private Secure Coded

Computation”, IEEE International Symposium on Information Theory, 2019, ©2019

IEEE. Reprinted, with permission, from Minchul Kim, “Private Secure Coded Com-

putation”, IEEE Communications Letters, ©2019 IEEE. Reprinted, with permission,

from Minchul Kim, “Private Coded Matrix Multiplication”, IEEE Transactions on In-

formation Forensics and Security.

107


	1. Introduction 
	1.1 Related work 
	1.1.1 Private information retrieval 
	1.1.2 Coded computation  

	1.2 Contributions and Organization  

	2. Cache-aided Private Information Retrieval 
	2.1 Introduction 
	2.2 System model 
	2.3 Main results :
	2.4 Achievable scheme 
	2.4.1 Cacheless phase 
	2.4.2 Cache-assisted phase 
	2.4.3 Cache-aided PIR 

	2.5 Tightness of achievable scheme
	2.6 Conclusions and follow-up works

	3. Private Coded Computation 
	3.1 Introduction 
	3.2 System model 
	3.3 Main results 
	3.4 Private polynomial codes 
	3.4.1 First example 
	3.4.2 Second example 
	3.4.3 General description 
	3.4.4 Privacy proof
	3.4.5 Performance analysis
	3.4.6 Special cases

	3.5 Simulation results 
	3.5.1 Computation time 
	3.5.2 Communication load 

	3.6 Conclusion 

	4. Private Secure Coded Computation
	4.1 Introduction 
	4.2 Main results 
	4.3 Private secure polynomial codes 
	4.3.1 Illustrative example 
	4.3.2 General description 
	4.3.3 Performance analysis 
	4.3.4 Privacy and security proof 

	4.4 Simulation results 
	4.4.1 Computation time 
	4.4.2 Communication load 

	4.5 Conclusion 

	5 Conclusion 
	5.1 Summary 
	5.2 Future directions 

	국문초록 
	Acknowledgement 


<startpage>16
1. Introduction  1
 1.1 Related work  3
  1.1.1 Private information retrieval  3
  1.1.2 Coded computation   4
 1.2 Contributions and Organization   5
2. Cache-aided Private Information Retrieval  8
 2.1 Introduction  8
 2.2 System model  9
 2.3 Main results : 12
 2.4 Achievable scheme  17
  2.4.1 Cacheless phase  17
  2.4.2 Cache-assisted phase  21
  2.4.3 Cache-aided PIR  24
 2.5 Tightness of achievable scheme 29
 2.6 Conclusions and follow-up works 30
3. Private Coded Computation  32
 3.1 Introduction  32
 3.2 System model  37
 3.3 Main results  41
 3.4 Private polynomial codes  42
  3.4.1 First example  42
  3.4.2 Second example  48
  3.4.3 General description  52
  3.4.4 Privacy proof 56
  3.4.5 Performance analysis 59
  3.4.6 Special cases 61
 3.5 Simulation results  62
  3.5.1 Computation time  62
  3.5.2 Communication load  68
 3.6 Conclusion  69
4. Private Secure Coded Computation 71
 4.1 Introduction  71
 4.2 Main results  75
 4.3 Private secure polynomial codes  76
  4.3.1 Illustrative example  76
  4.3.2 General description  80
  4.3.3 Performance analysis  83
  4.3.4 Privacy and security proof  84
 4.4 Simulation results  85
  4.4.1 Computation time  86
  4.4.2 Communication load  90
 4.5 Conclusion  91
5 Conclusion  93
 5.1 Summary  93
 5.2 Future directions  94
국문초록  105
Acknowledgement  107
</body>

