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Abstract

Computer memory is a critical component in computer systems that needs to be

protected to ensure the security of computer systems. It contains security sensitive data

that should not be disclosed to adversaries. Also, it contains the important data for op-

erating the system that should not be manipulated by the attackers. Thus, many secu-

rity solutions focus on protecting memory so that sensitive data cannot be leaked out

of the computer system or on preventing illegal access to computer data. In this thesis,

I will present various code transformation techniques for enforcing security policies

for memory protection. First, I will present a code transformation technique to track

implicit data flows so that security sensitive data cannot leak through implicit data

flow channels (i.e., conditional branches). Then I will present a compiler technique to

instrument C/C++ program to mitigate use-after-free errors, which is a type of vul-

nerability that allow illegal access to stale memory location. Finally, I will present a

code transformation technique for low-end embedded devices to enable execute-only

memory, which is a strong security policy to protect secrets and harden the computing

device against code reuse attacks.

주요어: Computer Security, Memory protection, Code transformation

학번: 2013-20813
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Chapter 1

Introduction

Computing devices are ubiquitous in modern human life. We rely on computer systems

to handle various jobs for us. As the computer systems become more involved in our

everyday life and business, more security sensitive data are processed by the computer

systems, which makes it important that these data are protected from unauthorized en-

tity. Also, protecting the integrity of the computer system is important, since attackers

can manipulate the operation of computer systems to do harm to us.

In the field of computer security, one of the most critical component is the com-

puter memory. It is the very component that contains security sensitive data. It also

contains data for the control of the system—Attackers can control the operation of the

system by corrupting computer memory. Therefore, many security solutions focus on

the protection of memory. The security solutions differ depending on the given security

goal. The security goal can be just to protect secret data from unauthorized users (i.e.,

to enforce confidentiality), or to prevent data corruption by unauthorized users (i.e.,

to enforce integrity of the data). There can be different approaches to achieve these

goals. Since memory corruption is usually the result of software vulnerabilities, some

solutions seek to detect or mitigate the errors resulting from the vulnerabilities. Some

solutions manage and enforce access permission for different memory regions so that
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there can be some restriction in accessing the memory even if the vulnerabilities are

exploited.

In this thesis, I present various code transformation techniques to enforce security

policies for memory protection. The advantage of code transformation techniques is

that it can be deployed very easily, since it does not require silicon changes and it

can be directly applied on existing systems. The code transformation is done by the

compiler automatically, so manual intervention is not required. Thus, it is less error-

prone and can be efficiently applied.

In Chapter 3, I will present a code transformation technique for efficient implicit

information flow tracking. Dynamic information flow tracking (DIFT) is a promis-

ing technique for tracking the data inside a computer system. If we mark a security

sensitive data, DIFT system will track propagation of the data through registers and

memory during program runtime. However, the value of the secret can leak through

implicit flows such as conditional branches. If the secret value is used as a condition

for branch statements, the attacker can infer the value via the control flow that is taken

as the result of the conditional statement. I will show how the proposed technique can

help track these kind of implicit flow efficiently.

In Chapter 4, I will present a code transformation technique to efficiently miti-

gate use-after-free errors. Use-after-free errors are one of the common software vul-

nerabilities that allow illegal access to already deallocated heap memory. There have

been many researches that tackle this problem but all of them suffer from high perfor-

mance or memory overhead. In this chapter, I present how our technique can mitigate

use-after-free error efficiently by automatically tracking reference counts for the heap

objects in legacy C/C++ programs.

In Chapter 5, I will present a technique to enforce execute-only memory (XOM)

for ARM Cortex-M processors, which is a popular processor for low-end embedded

devices. XOM is a promising technique to hide sensitive data or software intellectual
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properties. It can also effectively hide randomized code layout from attackers, thus pro-

viding protection against code-reuse attacks. Current high-end processors from both

Intel and ARM support XOM feature in their CPUs. However, low-end embedded

processors currently do not support XOM feature natively. In this chapter, I will show

how we transform the code in ARM Cortex-M processor using special instructions to

effectively enable XOM without causing too much performance/memory overhead.
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Chapter 2

Background

In this chapter, I will introduce typical attack process that starts from memory cor-

ruption vulnerabilities. Then I will explain how researches defend against attacks by

blocking the certain point of attack process. I will also explain the importance of the

role of compiler in defending against these type of attacks.

Figure 2.1 shows how the attacker typically compromise system security starting

from the memory corruption vulnerability. The attacker can modify code pointer such

as return address or function pointer to hijack control flow of the program. The attacker

can alternatively modify data pointer or data variable to manipulate data flow of a

program. For example, there can be a variable denoting the authentication status of a

user. Attacker can modify the variable by exploiting a memory corruption vulnerability

thereby bypassing proper authentication process. Data flow is manipulated in this case,

since originally the authentication variable should be toggled inside the authentication

function, but the attacker modifies the authentication variable in the abnormal position

of the program where the memory corruption occurs. Sometimes the purpose of the

attacker can just be using the memory corruption to read illegitimate memory address

to leak sensitive data as in the case of Heartbleed vulnerability [1].

Many researches focus on breaking particular point of this chain of attack process.
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data

Figure 2.1: Typical attack process starting from a memory vulnerability.

Numerous work have been done to eliminate the source of the memory corruption

problem by finding vulnerabilities in the program or developing ways to detect/pre-

vent memory error once triggered by the attacker at runtime. The memory error can

be roughly divided as spatial error such as buffer overflow and temporal errors such as

use-after-free vulnerabilities. Some work statically analyze the program [39, 112] or

dynamically feeding random inputs into the program and trigger crashes [22, 84, 96]

to find new vulnerabilities. However, these approach cannot find all the vulnerabili-

ties in the program. Therefore, other researches focus on detecting/preventing errors

at runtime. These works typically instrument the program to keep track of data struc-

tures and insert checks or invalidate pointers so that illegitimate memory access can be

captured [31, 57, 103].

Next line of work focus on isolating the security sensitive data or controlling the

access of the attackers to illegitimate memory address so that the attackers cannot

modify code pointers or data variables illegally or read memory region which is not

5



allowed. Code pointer integrity [54] isolates code pointers in a safe region so that

attackers cannot temper with code pointers using memory vulnerabilities. WIT [3]

assigns a color to the object (by coloring the shadow memory area that corresponds

to the object) and assigns the same color to the memory access instructions that can

legitimately access the memory object. Before any memory access, the colors are com-

pared to detect possible attack attempt that exploits memory vulnerabilities to access

arbitrary data.

Another way to break the attack chain is to tackle the next step in the attack pro-

cess. When the attacker uses the memory vulnerability to modify illegal data value,

she needs to know to which value she wants to convert the data in order to complete

her attack. For example, to launch successful code reuse attack, she needs to know

the address of the code gadgets that she wants to use for her attack sequence. Vari-

ous code layout randomization defenses have been developed to prevent the attackers

from learning the address of the code gadgets [12, 29, 33]. Data randomization tech-

niques [13,15,21] have been proposed to randomize data representation in memory so

that attacker cannot know how to change the data value in memory.

Finally, some techniques try to defend against the final goal of the attacker. To

compromise a computing system from user space applications, attackers usually have

to utilize system calls to do anything meaningful such as launching a shell, reading a

file, etc. Therefore, a bunch of work focus on monitoring system calls to detect signs

of attack [35, 105]. For another line of work, the sole purpose of the defense is to

prevent leakage of sensitive data through the output channels such as standard output

and public network/files. Dynamic information flow tracking (DIFT) [97] is a popular

approach for solving this problem. It marks the sensitive data and tracks data flow

through the program.

Implementation wise, most of the above mentioned solutions require some form

of program transformation. Binary level solution is possible and there are plenty of

6



researches that work on binaries [104, 107, 116]. Binary level solutions have an ad-

vantage that the program source code is not required so it can be readily applied to a

given binary. However, they are often limited in implementing more advanced secu-

rity mechanism without involving high performance overhead and they often require

extra information such as symbols and relocation [107]. On the other hand, compilers

can perform more precise analysis using the given source code, enabling sophisticated

security solutions with much lower overhead.

This thesis introduces my work on compiler based security solutions for preventing

attacks on computer memory. Chapter 3 introduces a hardware and compiler technique

to prevent leakage of sensitive data through implicit information flows. The compiler

mainly analyzes program control flow graph and instruments special hardware instruc-

tions at the right place for guiding hardware to maintain the program counter tag for

tracking data propagation through implicit control flows. Chapter 4 presents a compiler

based technique to prevent attacks utilizing use-after-free vulnerabilities. The compiler

mainly analyzes the type information in the program intermediate representation and

inserts runtime library calls into necessary places to maintain reference counts for

controlling memory free operation. Chapter 5 presents a compiler technique to enable

execute-only memory on ARM Cortex-M based microprocessors. In this work, the

main job of the compiler is to transform certain instructions into special hardware in-

structions. It also generates verification code and analyzes and inserts check code to

sandbox the stack pointer.
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Chapter 3

A Hardware-based Technique for Efficient Implicit In-

formation Flow Tracking

3.1 Introduction

In recent years, computer security has been severely threatened by various malicious

attacks that intend to leak sensitive information [72]. The general goal of these attacks

is to transfer the critical data from sensitive sources (e.g., SIM card, password list) to

output channels like network connections so that the attackers can acquire the sensitive

information in the system. To achieve the goal, the malicious program or the victim

program being exploited by attackers first accesses the critical data and then copies

them from the source to the destination at each instruction execution. When they are

finally delivered to the output channel, the attacker can leak the sensitive information

out of the system.

One of the most widely used solutions against this type of attacks is Dynamic in-

formation flow tracking (DIFT) [72]. Generally, DIFT sets up rules to taint internal

data of interest and keeps track of their taintness throughout the system. At runtime,

whenever an instruction is executed, the taintness of sources is propagated to the des-

tinations, to track the information flow associated with the data transfers (data copying

8



and transformations). An alarm will be triggered as soon as any of the tainted data is

involved in potentially illegal activities, such as being included in a data stream on the

output channels. In several previous studies [26, 30, 72, 81, 117], it was demonstrated

that DIFT is an effective way to detect the attacks which attempt to leak the sensitive

information with explicit data transfers.

However, there have been some advanced attacks that can bypass the explicit DIFT

approaches by acquiring certain sensitive information only through the execution con-

trol flow analysis of a victim program without data transfers. In practice, when a data

value affects a conditional branch result, execution flow is altered and it affects other

data. Then the affecting value can often be inferred merely by examining the values

of the affected ones. In this case, we can see that although there is no explicit data

copy or transfer, the affecting data value is in effect transferred to other data values

via the implicit flow along the execution control path. In the previous studies [50, 56],

they presented empirical evidence that the attackers can leak the sensitive information

by exploiting the implicit flow. Thus, in order to deal with such advanced attacks, a

DIFT solution should track the taintness of the sensitive data tags not only through the

explicit information flow associated with data copy and transfer operations, but also

through the implicit flow associated with conditional branch operations.

For the tracking of implicit flow, several software solutions have been proposed [50,

114]. In these works, they analyze the program code and find the control flow that

might be related to the implicit information flow at runtime. Then, they augment the

original application with the additional code to keep track of the implicit flow as well

as the explicit flow. In spite of their effectiveness, the main drawback of these solu-

tions is that they incur too much runtime overhead, since it takes up to 20 instructions

to emulate a single tag propagation operation per instruction.

To reduce the performance overhead for implicit flow tracking, RIFLE [101] re-

sorts to a hardware technique. Although they have shown an impressive improvement
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on the overall DIFT computation, their experiment also reveals that they still suffer

from the non-negligible performance overhead for implicit flow tracking. This is pri-

marily because their hardware has been designed originally for the information track-

ing with explicit data transfers. Therefore, to utilize their hardware for implicit flow

tracking, they had to convert the implicit flow problem to the equivalent explicit one.

For this reason, they instrumented their binary code to transform all implicit infor-

mation flow operations across conditional branches into explicit data copy operations.

According to their experiments, the performance degrades by a factor of two in the

worst case, mainly due to the instrumented instructions.

Motivated by previous work, we have developed a dedicated hardware unit to effi-

ciently tackle the implicit flow tracking problem. In this paper, we introduce our hard-

ware engine for implicit flow tracking, called the implicit flow tracking unit (IFTU),

and the implicit flow tracking scheme designed to work on IFTU. We have built IFTU

as an external hardware module attached to the host processor via the system inter-

connect. To evaluate its effectiveness, we have implemented our solution on an FPGA

board. In our experiments, we show that our proposed approach with IFTU success-

fully tracks the implicit information flow on the system with negligible performance

overhead, while the additional logic required for the implicit flow tracking is also

small.

3.2 Related Work

There has been much prior work that focuses on explicit information flow track-

ing [26, 30, 58, 72, 81, 97, 117]. Software approaches in [72, 81] suggest the use of

a binary instrumentation technique, which mainly inserts additional instructions to the

target code to keep track of the tainted data at runtime. During the program execution,

the taintness of data is propagated according to the data dependency, and any misuse

of data (e.g. information leak) is detected by their proposed solutions. Other works in-
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troduced in [26,30,97] suggest the use of specialized hardware logic for DIFT mainly

to reduce the performance overhead caused by the DIFT computation. In [26, 97], for

instance, they augmented the host processor internals directly, including register files

and caches. In [30,58], they proposed a decoupled DIFT hardware that can be attached

to the outside the host. These previous approaches, implemented either in software or

hardware, show their effectiveness in the tracking of explicit flows. However, a critical

limitation they have is that they do not consider the implicit flows, which can result in

the under-tainting problem where the values that should be tainted are not tainted [50].

To resolve the under-tainting problem, several software solutions for implicit flow

tracking have been proposed. In [36], the authors use dynamic analysis to keep track

of the flow of sensitive information processed by the web browser application. To han-

dle the implicit flows, their taint engine examines all conditional branch instructions

that are encountered during execution. If such an instruction has at least one tainted

operand, the taint engine identifies all instructions whose execution is conditionally

dependent on the direction of the branch and then it taints the results of those instruc-

tions. In [50], another software solution, called DTA++, is proposed. To achieve effi-

ciency in the tracking, instead of examining all conditional branches, DTA++ focuses

only on the implicit flows within certain code patterns (i.e., the information-preserving

transformations), based on the observation that under-tainting usually occurs at just a

few locations. With the proposed tracking strategy, DTA++ can achieve effectiveness

and efficiency in implicit flow tracking. Nevertheless, the main drawback of these soft-

ware approaches is that they still suffer from performance degradation mainly due to

the additional code instrumented with the binary translation. For example, although

DTA++ only applies the tracking technique to certain cases, the performance overhead

is around 1.5X even with the parallel execution of the binary translation.

For this reason, several hardware techniques [100, 101] have been proposed to en-

hance the tracking performance. RIFLE [101] is a hybrid approach that uses compiler-
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assisted binary rewriting to change the program to turn implicit information flows due

to condition flags into explicit tag assignments. However, as discussed, the main prob-

lem of RIFLE is that it relies on the hardware architecture designed for the explicit

flow tracking and thus requires code transformation to convert implicit flows to ex-

plicit ones. Since too many additional instructions are added to the original program

binary to utilize the hardware, the efficiency is severely degraded and the performance

overhead reaches up to 1.5X in the worst case (when the data cache of the system is

duplicated to store the tags). On the other hand, in our approach, we propose a hard-

ware engine specialized for implicit flow tracking and thus can overcome the limitation

of RIFLE. GLIFT [100] and Leases [99] are interesting hardware solutions that track

information flow at the gate level to build a system with strong noninterference prop-

erties which can be used to eliminate all forms of information leak, including those

from timing and storage channels. While this is a potentially promising approach, all

the hardware has to be re-designed from the gates up, requiring unproven new hard-

ware design methodologies and tools. On the other hand, our IFTU can be connected

to the commodity processor with an external interface, not requiring the redesign of

the off-the-shelf processor architecture, since it is designed as an external module.

3.3 Our Approach for Implicit Flow Tracking

We now discuss our approach for efficient implicit flow tracking, inspired by [25]

and improved. After briefly explaining the tracking scheme implemented in our work,

we will describe our code analysis and transformation technique whose purpose is to

enable the scheme to work correctly in real programs.

3.3.1 Implicit Flow Tracking Scheme with Program Counter Tag

The code snippet in Figure 3.1 shows a simple example of implicit information flow in

a program. In this example, the value of x can be changed to either 0 or 1 according
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to the branch result that is affected by the signedness of variable s. Clearly, there is

a flow of information between the two variables since the value of s affects the value

of x; however, it is not the result of direct data transfers, but rather the result of the

branch outcome affected by setting the condition flag through the comparison.

x := 2

if s <= 0 then x := 0 else x := 1

Figure 3.1: An example code with implicit flow

To handle these implicit flows correctly, language-based static techniques [85] use

a tracking scheme that introduces the program counter tag (denoted as tPC), which in-

dicates whether the control flow path is affected by tainted data or not. In this scheme,

for every conditional branch, the taintness of data that is used for the condition check-

ing is propagated to tPC . Then, for the instructions after the branch, the value of tPC

is propagated to the tags of their destinations to indicate that the values are affected

by the branch result. Now, assume that the example described in Figure 3.1 is tracked

with this scheme. In this example, the variable s is used for the condition checking

of the branch. Thus, if the variable s contains the sensitive information and its tag is

tainted, tPC is also set to 1, to indicate that the branch result is affected by the sensitive

information. Then, by propagating the value of tPC to the tag for variable x when it is

set, the implicit flow along the branch can be tracked.

In our approach, to handle the implicit flow as well as the explicit ones, we com-

bine the tracking scheme introduced above with the conventional DIFT technique that

tracks the data flow [72]. To denote tagging, every location for storing data such as

registers and memory is augmented with a tag bit. Then, the tags are propagated dur-

ing the program execution, based on a set of tag propagation rules that are specified

for each basic operation type such as arithmetic, logical, or conditional branch.

Figure 3.2 shows an example code at the assembly level and the associated tag

propagation operations. Basically, the tag propagation rules applied in our approach

are based on the data dependency, as in the previous works [72, 81]. For example,
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when the ldr instruction at line 1 is executed, the tags of sources ( %i0 register

and the memory location pointed by the register value) are propagated to the tag for

register %g2. In addition to the basic rules, we add new rules to track the implicit

flow along the control path. In principle, a conditional branch has its condition code,

such as equal, not equal or less than. When the branch is executed, the

processor checks the condition code register (CCR) which generally consists of several

condition bits (e.g., N,Z,V,C in SPARC machines), and determines the control path

based on the value of CCR. That is, the result of a conditional branch is affected by the

value of CCR. In practice, CCR is configured by an arithmetic instruction like sub,

or a specialized comparison instruction like cmp, as in the code at line 3. For this

reason, in our solution, when CCR is set by these instructions, the tags of their sources

are propagated to tCCR, which is the tag for CCR (see the right column of line 3).

Then, when a conditional branch is executed later, the value of tCCR is propagated

to tPC (see line 4). (If an unconditional branch is executed, such tag propagation is

not performed since the branch is not affected by CCR (see line 6).) Thus, tPC can

indicate whether the control path is affected by tainted data or not. Since the value of

tPC is propagated to the destination tags (marked in boldface at the right column) at

each ordinary instruction execution, we can track the implicit flow along the control

dependency.

Original Code Tag Propagation
1
2
3
4
5
6
7
8

L1:
L2: 

ldr [%i0], %g2
sub %g2, %g3, %g1
cmp %g1, #0
be L1 // branch equal
mov #2, %g2
b L2 // unconditional branch
mov ‘1’, %g2
add %g5, %g2, %g3

tag[%g2] = tag[%i0] or tag[mem[%i0]] or tpc
tag[%g1] = tag[%g2] or tag[%g3] or tpc
tag[%ccr] = tag[%g1] or tpc
tag[%pc] = tccr or tpc
tag[%g2] = tpc
none
tag[%g2] = tpc
tag[%g3] = tag[%g5] or tag[%g2] or tpc

Figure 3.2: Example of tag propagation rules

In spite of its effectiveness, there is a challenge in correctly tracking implicit flow
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with the propagation rules introduced above. In principle, the taintness of tPC set for

a conditional branch should be propagated only to the instructions whose execution

is conditionally dependent on the result of the branch according to the definition of

implicit flow. Otherwise, the taintness of tPC would be propagated to the tag for the

data that is not affected by the branch or the tag that should be tainted would not

be tainted. Thus, it is necessary to analyze the code in order to determine the exact

scope of every conditional branch, which is a set of instructions that are affected by

the branch result. In section 3.3.2, we will discuss a code analysis technique to identify

the scopes of conditional branches and the management scheme for correctly clearing

tPC based on the analysis.

x := 2

if s <= 0 then x := 0

Figure 3.3: An example code with implicit flow through the untaken path

Also, from the tag propagation rules in Figure 3.2, once tPC is tainted, all the

instructions executed after that will be affected, because their execution is decided by

a tagged condition. However, information flow can also exist between the condition

of a branch and the instructions that are not executed. For example, in Figure 3.3,

if the condition for the if statement is true,then x will be tainted according to the

propagation rules. However, if the condition is false, x will not be tainted even though

the value of x can leak the information about the branch condition. This example

shows that only propagating tags according to the executed instructions is not enough,

and there is the necessity for tag compensation of the untaken path. In section 3.3.3,

we will describe the tag compensation scheme.

3.3.2 tPC Management Technique

In principle, the result of a conditional branch determines the control path which in

turn determines the instructions executed by the processor. For example, in the control
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Figure 3.4: tPC setting and clearing example

flow graph (CFG) shown in Figure 3.4(a), the execution of block (2) is determined

depending on the result of the conditional branch in block (1). However, at a certain

point in a program, the control path is no longer affected by the conditional branch.

In general, the influence of a conditional branch ends at the immediate post-dominator

of the branch. In our example, block (5) is the immediate post-dominator of block (1)

because all paths from block (1) to the exit must pass block (5). Thus, the value of

tPC set at a conditional branch should be cleared upon the entrance of the immediate

post-dominator (5) of the branch in (1) (Figure 3.4(b)).

However, this scheme does not work if the code has multiply-nested branches. For

instance, we have a doubly-nested branch in block (2). According to the above scheme,

tPC set in block (1) would be cleared in block (4) although it should have remained

set until block (5). In order to remedy this, a new tPC stack is introduced that is used

to save and restore the value of tPC at each nested branch level. Basically, we save the

current tPC value by pushing it onto the stack just before a conditional branch, and

later when we need to clear tPC , we simply overwrite the current value in tPC with

the value popped from the stack (Figure 3.4(c)).

In Algorithm 1, we illustrate our algorithm that finds and marks the places in the

16



Algorithm 1: Algorithm for inserting push/pop and compensation code
Input : Control flow graph of a function
Output: Control flow graph with push/pop operations and compensation tag

set operations inserted for correct implicit flow tracking
1 foreach loop l do
2 Insert push at the end of the preheader of l;
3 Insert pop at the start of the (common) immediate post-dominator of

exiting block(s) of l;
4 end
5 foreach conditional branch block t do
6 Find t’s immediate post-dominator block p;
7 if t is inside a loop and p is outside then continue;
8 if t is inside a loop and p does not dominate blocks with loop back edge

then continue;
9 Insert push before conditional branch in t;

10 Insert pop at the beginning of p;
11 R = set of basic blocks that is reachable from t before reaching p;
12 foreach block b in R ∪ {p} do
13 foreach predecessor block pred of b do
14 if pred is not in R ∪ {t, p} then
15 Insert push between pred and b;
16 end
17 end
18 end
19 foreach live-in register r of p do
20 D = set of basic blocks in R that defines r;
21 RD = set of basic blocks in R that are reachable from basic blocks in

D before reaching p ∪ {p};
22 G = set of basic blocks in R that are guaranteed to pass at least one

basic block in D before reaching p;
23 foreach edge e connecting a block in R - RD - G with a block in RD -

G do
24 Insert tag compensation for r;
25 end
26 end
27 end
28
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code where such push/pop operations should be performed. Basically, as explained

above, a push operation is inserted before a conditional branch and a pop operation

is inserted at the immediate post-dominator of a conditional branch (see lines 9-10).

However, real application codes have some exceptional cases that need a more complex

algorithm such as ours.

(1) push 

if … 

push 
push 

if … 
(2) 

(3) … 

(4) 

(1) push 

if … 

push 

if … 
(2) 

(3) … 

(4) 
pop 

pop 

pop 

pop 

(5) 

(a) (b) 

Figure 3.5: Solving push/pop imbalance

In Figure 3.5(a), we can see one of these exceptional cases that should be handled

in our algorithm. In the figure, push/pop operations are marked according to the naive

algorithm. Now suppose that the control flow takes the path (1)-(3)-(4) at runtime.

If so, a push operation will be performed at block (1) and two pop operations will

be processed at block (4). This obviously causes an error in the stack management

because more entries are popped from the stack than are pushed onto the stack. In

general, this problem arises when there is a path that reaches a pop operation inserted

for some other conditional branch without passing that conditional branch.

To avoid this problem, for a conditional branch block t and its immediate post-

dominator p, we first define a set R consisting of the basic blocks that are reachable

from t before reaching p. Then, among the paths that reach p, let P be a path (p1)-

...-(pr−1)-(pr)-...-(p) that does not pass t, where pr is the first basic block in the path

that is in R. Then, we insert a new basic block that contains a dummy push operation,

between pr−1 and pr. (For the example in Figure 3.5(a), such a new block is inserted

between blocks (1) and (3) as shown in Figure 3.5(b).) In this way, we can make sure
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that the number of push and pop operations are equal along any path. This process

corresponds to lines 12-18 of Algorithm 1.

if … (1) 

… 

push 

if … 

(2) 

(3) 

(a) 

push 

if … 
(1) 

pop 

if … 

… 

(2) 

(3) 

(b) 

pop 

… … (4) 
(4) 

Figure 3.6: Incorrect push/pop insertion for a loop

When the host code includes a loop (e.g., (1), (2), and (3) in Fig 3.6), we must

handle a few other exceptional cases. If the immediate post-dominator of a conditional

branch block is out of the loop, the push operation marked before the conditional

branch is repeatedly executed while the corresponding pop operation is not performed

during the loop iteration. In Figure 3.6(a), the immediate post dominator of the con-

ditional branch block (3) is out of the loop, so the push operation may be performed

many times while the pop operation will only be executed once in (4). Also, even if

the immediate post dominator is in the loop, there can be push/pop imbalances if the

block(s) with the backward edge of the loop is not dominated by the immediate post

dominator. For example, in Figure 3.6(b), the immediate post dominator of the condi-

tional branch block (1) is block (2). However, there is a path from block (1) that leads

to the block with the loop back-edge (block (3)) without crossing block (2). Therefore,

the push operation may be performed more than the corresponding pop operation. To

handle these exceptional cases, we insert a push operation in the preheader for the loop

so that the push is performed only once upon the entrance of the loop, and insert a pop

operation in the (common) immediate post dominator of the loop-exiting block(s) of
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the loop. We rely on this push-pop pair to handle all the conditional branch blocks

that correspond to the above exceptional case. Note that push operations do not affect

the tPC value so moving the push operation in front of the loop does not change the

correctness of the result. This process is described at lines 1-4 and 7-8 in Algorithm 1.

3.3.3 Compensation for the Untaken Path

To compensate for the untaken path, we analyze the code to find out which register tag

needs to be set in which location. There can also be implicit flow through the memory

location, but our implementation does not compensate for the memory locations since

memory addresses could be determined in the runtime which means that we will have

to actually execute the path to determine which memory tag to apply compensation.

This could possibly introduce false negatives, but the chances are relatively low since it

will also be hard for the attacker to reason about the implicit flow through the memory

locations.

Among the registers, we only need to consider the ones that are live-in to the im-

mediate post dominator of the conditional branch block. Registers that are not live at

the entry point of the post dominator are not used after the immediate post dominator

and cannot be used for the propagation of data. The register tag for the live-in register

is set at runtime if there is at least one instruction defining the register on the execu-

tion path between the conditional branch and its immediate post dominator. Thus, an

implicit flow through an untaken branch will occur if there is an instruction defining

the register through some execution path but not all execution paths.

Based on this idea, we find the minimum number of program points where the

tag compensation is needed for each register. We first define three sets of basic blocks

as described in lines 20-22 in Algorithm 1. In Figure 3.7, we show these sets of ba-

sic blocks where block (1) is the conditional branch block currently concerned with.

Blocks which define the register are marked with D. Lightly shaded blocks are the
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Figure 3.7: Example CFG for tag compensation

blocks which pass at least one basic block which defines the register. Darker blocks

are the ones that are reachable from blocks defining the register. After determining

these sets of blocks, we start from the conditional branch block (block (1)) and tra-

verse the CFG in depth-first manner. If we encounter a lightly shaded block, we do not

need to set the register tag since there will be at least one register definition along that

path. If we encounter a dark shaded block, we put the register tag set operation on the

edge between the current block (block (1)) and the dark block (block (5)). In this way,

we can make sure that the register tag is set for all execution path between the condi-

tional branch block and its immediate post dominator. The entire process corresponds

to lines 19-26 in Algorithm 1.

We implemented the code analysis and transformation technique described in Al-

gorithm 1 on the LLVM compiler framework. Our transformation tool inserts the pop

and push operations in the host code, which are implemented as special instructions

whose encodings are not used by the ISA of the host processor architecture. Thus,

at runtime, the host processor regards such marked operations as nop operation. Our

IFTU processes these operations to manage the tPC stack. For the register tag compen-

sation, we used a dummy add instruction that adds 0 to the target register and sets the

register to that value. It does not change the semantic meaning of the original program,

but it can set the register tag if the PC tag is set at that time.
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3.4 Architecture Design of IFTU

In this section, we will discuss the hardware architecture of our solution. After intro-

ducing an architectural overview of our solution, we will discuss the detailed structure

of IFTU.

3.4.1 Overall System

Figure 3.8 shows the overall system design for our solution, which mainly consists of

the host processor and IFTU. In our implementation, as introduced in Section 1, we de-

sign our IFTU as an external hardware module and integrate it with the host processor

through the system bus, instead of embedding the dedicated hardware logic internally

in the host processor [25]. The main advantage achievable from this design strategy

is that our proposed solution can be easily adopted by existing commercial platforms

such as application processor (AP) SoC platforms for smartphones. Generally in these

platforms, the host processors are typically the commodity processors that are quite

difficult to modify the internals without tremendous cost and labor from the vendors.

Thus, our solution would be adoptable in these platforms as it does not require such

modification.

However, such design strategy raises a challenge. As discussed in Section 3, in

order to track the information flow of a program, the taintness of tags should be prop-

agated during the program execution according to the propagation rules. Since the

rules are dependent on the instruction type and operands, it is necessary for IFTU to

know about the instructions executed by the host. For this reason, our IFTU reads the

host program code in main memory and extracts the propagation rules as shown in

Figure 3.8. Nevertheless, the problem is that, from only the host code, IFTU cannot

obtain some essential information required for the correct flow tracking, which is only

resolved during code execution. In particular, such information includes (1) an execu-

tion path of the original program and (2) memory addresses of load/store instructions.
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Figure 3.8: Overall system design

Without this information, our IFTU cannot perform the tag operations correctly, while

following the execution of the host program.

To resolve the problem, in our solution, we utilize the core debug interface (CDI)

in the host processor, as was done in the hardware-based solution introduced in [58].

CDI is an interface placed in recent commodity processors, whose main role is to

provide the external debug modules with the processor’s internal status information

required for debug/trace, without affecting the performance of the host. Based on the

specification of CDI in commercial processors and the prior works that utilize CDI [7,

58,59,109], in our prototype, we assume that CDI provides a set of signals as follows:

instruction address, current context ID (or process ID), data address/value of memory

access instructions, branch type/source address/target address, exception and privilege

mode information. Since the set of signals includes the necessary runtime information

for flow tracking, our IFTU can follow the execution of the host and perform the tag

operations correctly.

As shown in Figure 3.8, IFTU consists of three components: the CDI filter, the trace

FIFO and the tag computing core (TCC). Although the CDI in the host processor pro-
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vides plenty of signals, our IFTU needs only a subset of those signals. The role of

the CDI filter is to filter out unnecessary signals and leave the ones that are necessary

for the tracking: the current process ID (PID), the address of memory data accessed

by a load/store and the target address of a branch. (The current PID is necessary to

recognize the active process running on the host. If the monitored program goes into

sleep mode, the main controller informs the trace FIFO to ignore the traces from the

CDI filter.) IFTU consumes the traces containing such information to obtain necessary

information and store them in the trace FIFO in order at runtime.

3.4.2 Tag Computing Core
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Figure 3.9: Tag computing core architecture design

Figure 3.9 shows the microarchitecture of TCC, whose main role is to manage all

tags and perform the tag operations. The overall operation of IFTU is controlled by

the main controller in TCC. It contains several configuration registers and the host

processor can control the functions of IFTU by setting the registers, such as the tag
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initialization that marks the location of tainted data. To track the flow of information,

we augment the tags to the processor registers and memory locations, as in other pre-

vious approaches [72, 97]. The tags for registers are stored to a special register file in

TCC called the tag register file (TRF). Each entry of TRF represents the 1-bit tag for

the corresponding processor register. We also add two register tags tPC and tCCR to

the basic structure of TRF, which are used only for the implicit flow tracking. For the

memory tags, we reserve a special region called the tag space in the main memory.

Each bit of the tag space represents the tag for a memory word (32-bit). The T-cache

is employed in our TCC design to reduce the access latency of tag fetching.

The branch target addresses transferred from CDI are consumed by TCC in order

to follow the execution path of the host program. However, since the addresses stored

in the trace FIFO are virtual addresses, they cannot be used directly for fetching the

host code from main memory. To resolve this problem, TCC includes the address

lookup table (ALT) where an entry of ALT is comprised of the process ID and the

virtual-to-physical address mapping information [58]. At runtime, the host OS kernel

updates the entries whenever a code page is allocated on the host, and by using the

information the instruction fetcher unit reads the host code from the memory with the

translated physical addresses. To reduce the access latency required for the instruction

fetch, we employ the I-cache in TCC as done in previous work [58].

After the host code is fetched, it is delivered to the instruction decoder which

extracts the propagation rules from the opcode and operands of the instruction. TCC

accesses TRF to fetch the tag values if the rule requires register tags. If the operand

is the memory address for a load/store, TCC firstly accesses the trace FIFO to acquire

the exact address. (Since all load/store instructions generate the CDI signals for the

access addresses and the trace containing such information is stored in the trace FIFO

in order, it is guaranteed that TCC can obtain the address for the memory instruction.)

Then, TCC loads the memory tag corresponding to the address from the T-cache. If
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a miss occurs, the tag fetcher unit accesses the tag space to handle the miss. Finally,

once all the tags are prepared, the tag ALU performs the tag propagation with the tags

and the resulting values are written to TRF or the T-cache.

To support the management scheme for tPC introduced in Section 3, TCC includes

the hardware for the tPC stack as shown in Figure 3.9. As discussed, in the instru-

mented host code, the push/pop operations for the tPC stack are included. When the

instruction decoder encounters such operations, TCC takes the corresponding actions:

for push operations, TCC reads the value of tPC from TRF and pushes it to the stack.

For pop operations, the top entry of the stack is popped and overwrites the tPC . As

our current hardware stack implementation has 32 entries, the stack will overflow if

the nested level of branches exceeds 32. To cope with this case, we reserve a memory

region for the entries to be stored to if the stack is full. Then the tag value for PC is

saved or restored from the memory region.

3.5 Performance and Area Analysis

To evaluate our approach, we have built a full-system prototype on an FPGA board. In

this prototype, we used SPARC V8 processor as the host processor which has separate

4KB instruction/data caches. The AMBA2 AHB compliant bus is used to interconnect

the host processor with our IFTU and Linux 2.6 is used as the host OS kernel. IFTU

is implemented as described in Section 4 and it includes 4KB I-cache/512B T-cache.

Based on the parameters, we synthesized our prototype on to a Xilinx Virtex5 FPGA

board. Table 3.1 presents the design statistics of our implemented hardware. Our ex-

periment shows that our IFTU incurs a hardware resource overhead of 28.18% for

LUTs, and the memory requirement is increased by about 4.5 KB (mainly due to the

caches) when compared to the baseline system that includes the host core. It is note-

worthy that the amount of logic required to perform the implicit flow tracking is very

small. In our approach, the two tag registers (i.e., tPC , tCCR) and the tPC stack are the
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components installed for the implicit flow tracking. In our experiment, the hardware

resources for these components are estimated to be about only 5.7% of the overall

IFTU. This clearly shows that our approach can be implemented with a small amount

of additional logic on top of the DIFT hardware for the explicit flow tracking.

Category Component LUTs
Host Processor Core 4876
Bus components and Memory Controller 844
Peripherals (TIMER, UART, Interrupt Controller and etc.) 963
Total Baseline System 6683
Components for CDI (CDI Filter, Trace FIFO, Address Lookup Table) 826
Main Controller and Bus Interface 330
Instruction Cache 293
Tag Cache 180
Instruction/Tag Fetcher Unit 97
Instruction Decoder 35
Tag ALU 109
tpc Stack 13
Total IFTU 1883
% IFTU over Baseline System 28.18%

0.05789

Baseline
System

IFTU

Table 3.1: Synthesis Result

To measure the performance overhead of our approach, we chose eight applica-

tions from the mibench benchmark suite and executed them on three systems each

with different configurations. The first configuration is Native, which stands for a sys-

tem that performs the original application without information flow tracking. In the

Explicit configuration, our IFTU performs only the explicit flow tracking and there-

fore the host code is not instrumented. Finally, in Explicit+Implicit, IFTU performs

the tracking scheme proposed in this paper.

Figure 3.10 shows the execution times for the three configurations normalized to

that of Native. The results show that the Explicit incurs about 1.6% performance

overhead although the host code is not instrumented in this configuration. The per-

formance loss is mainly due to the resource competition between the host processor

and our IFTU. Since both modules are connected to the same system bus and share
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Figure 3.10: Performance Comparison

the same main memory, the bus transactions of IFTU for accessing the main mem-

ory slightly degrades the host performance. Explicit+Implicit, which stands for our

proposed approach, shows an average performance overhead of about 3%. This shows

that the overhead caused by our code instrumentation is negligible. Overall, the perfor-

mance of our approach is much greater than that of the previous hardware approach,

RIFLE [101].

We also measured the code size increase due to the code instrumentation. For the

given benchmarks, the code size is increased by 0.3% on average. This shows that the

code size overhead of our approach is also negligible.

3.6 Security Analysis

To evaluate the accuracy of our taint propagation methods, we used a program that has

explicit and implicit information flow. We chose a π computing program that calculates

the digits of π and uses the sprintf library function to put the ASCII representation

of π in the specified buffer. While not strictly a security-related program, we found

it adequate for evaluating our implicit flow tracking methods. The program is shown

in Listing 1. The program calculates the 1002 digits of π, refining the value at each

iteration. The final value will be transformed into the ASCII form by the sprintf

call. To transform the sprintf library function to track implicit flow, we have copied

the corresponding functions from dietlibc. We have slightly modified the core of the
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long a[337],p,q,k=4000,t=1000;
char buffer[5000];
int j,n=0;
for(;a[j=q=0]+=2,--k;)

for(p=1+2*k; j<337; q=a[j]*k+q%p*t,a[j++]=q/p)
k!=j>2?:(n+=sprintf(&buffer[n],

"%.3d",a[j-2]%t+q/p/t));

Listing 1: π computing program

sprintf function so that it involves implicit flow when translating decimal digits to

the ASCII form.

In the program, if the memory location for the array a is tagged at the start, the

correct explicit and implicit information flow tracking scheme should tag the part of

the buffer array where the ASCII characters are written. We ran our information

tracking hardware after tagging array a, and examined the tagged memory locations

after the program is finished. A total of 593 words were tagged, of which 337 were for

array a and 250 for buffer. 6 other locations were additionally tagged. We have an-

alyzed the execution trace to find out why those 6 locations were tagged and why there

is one missing tag for the buffer array. Since there are 1002 digits of π, 251 words

should have been tagged in the buffer array. We found out that all 6 additionally

tagged locations are for temporary data in the stack frame that is destroyed when the

sprintf function is returned. Those temporary data contained the π digit, its ASCII

representation, or the length of the character written for the π digit. Thus, we do not

need to regard them as false positives. For the buffer array, we found that the tag

corresponding to the last word of the character string has been reset at the end because

the sprintf function has put a null value at the end of the character string. Since

there is a 1-bit tag for each 4-byte word, the tag corresponding to the last word was

reset even though there were two tainted bytes.

The analysis of the results shows that our implicit information flow tracking scheme

effectively catches the implicit information flow without significant false positive rates.
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Although the sprintf function is quite complicated, our tPC stack maintenance

technique clears the tPC at the right time so that the tainted tags do not spread through-

out memory locations. Although there can also be false positives and false negatives

introduced by the granularity of the memory tag, we can expect its impact to be small

since character data is usually grouped together.

3.7 Summary

This paper presented IFTU, our external hardware engine for implicit (and explicit)

flow tracking. To keep track of the implicit flows in a program, we employed a tracking

scheme which utilizes a tPC register and stack together with the code analysis and

instrumentation technique that help us correctly manage the value of tPC . To perform

this task efficiently, we have installed within IFTU hardware logic specialized for the

task, such as the tPC stack. We have connected IFTU with the host processor via

CDI to acquire the runtime information necessary for tracking, while minimizing the

host performance degradation. Our experiments on an FPGA prototype showed that

our IFTU can perform both the explicit and implicit flow tracking with only about 3%

performance loss. In addition, the synthesis result revealed that the hardware resources

required for efficient implicit flow tracking are only about 5.7% of the overall resources

for IFTU.
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Chapter 4

CRCount: Pointer Invalidation with Reference Count-

ing to Mitigate Use-after-free in Legacy C/C++

4.1 Introduction

Use-after-free (UAF) errors refer to unlawful dereferences of dangling pointers, which

are the pointers that still point to a freed and thus stale object. UAF errors constitute

a serious threat to software security because they are considered significantly diffi-

cult to identify by compilers and manual analyses. This difficulty is attributed to the

fact that the temporal distances between arbitrary pointer operations, such as setting a

pointer to the address of the object, freeing the object, and dereferencing the pointer,

can be very long and hence very difficult to analyze accurately in reality. This diffi-

culty has led attackers to leverage UAF errors as a primary source for exploitation in

their attempts [65,110,115] to access or corrupt arbitrary memory locations in a victim

process.

In the past decade, mitigation against UAF errors has been approached by many

researchers from various directions. In one group of studies [66, 67, 69, 87, 89], re-

searchers attempted to detect the UAF error when a pointer is dereferenced to access

its referred object (or referent). Their goal is to validate the access to the object by
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carrying out a sequence of operations to check whether the referent is stale. To sup-

port this access validation mechanism, each time an object is allocated, they label the

object with a unique attribute that identifies the allocation. Later, when a pointer is

dereferenced, they examine the attribute of its referent to check whether or not the

access is made by a dangling pointer whose referent no longer holds the original valid

allocation in memory.

Although mitigation techniques based on access validation are claimed to be ex-

tensive and complete, they tend to incur an excessively high performance overhead.

This high overhead is attributed to the fact that the attribute checks must be executed

exhaustively for every memory access, thereby considerably increasing the total ex-

ecution time. More recently in a different group of studies, as a new direction of

UAF defense research to reduce this performance overhead, some researchers have

proposed an approach based on pointer invalidation [57, 103, 115]. Their mitigation

approach against UAF errors is to deter the violations preemptively by getting rid of

the dangling pointers at the outset. As a pointer becomes dangling when its referents

get freed, this approach in principle can succeed by invalidating all the related pointers

when an object is freed such that an exception is triggered when one of the invali-

dated pointers is dereferenced afterwards. However in practice, for this approach to be

successful, we need to address the problem of accurately tracking down every change,

such as the creation, copy, or destruction of pointers, and hence, of identifying pointers

and their referents located anywhere on the execution path. Unfortunately, this pointer

tracking problem in general is prohibitively difficult and expensive to solve with high

accuracy because the pointers may be copied into a number of different data structures

during program execution.

For precise pointer tracking, DANGNULL [57] uses dynamic range analysis to

monitor the pointer arithmetic operations that alter the reference relationships between

the pointers and the memory objects. Unfortunately, DANGNULL suffers from a high

32



performance overhead. A majority of this overhead is attributed to the design element

that requires the system to immediately update the metadata for the objects when there

is a change in the reference relationships. To alleviate this performance overhead, Dan-

gSan [103] takes a different approach wherein the total cost for updating the reference

relationships is reduced by discarding the transitional changes intermittently produced

in a sequence of pointer arithmetic operations. More specifically, in this approach,

when any of the existing reference relationships is changed by pointer arithmetic, this

change is not reflected immediately in the relationships (thus saving CPU cycles); in-

stead, the change is merely stored in a history table as a record for future reference. The

actual reference relationships are checked later when the object is freed. Experiments

on DangSan have proven the effectiveness of this approach by showing that it achieved

a considerably lower performance overhead than DANGNULL. However, the experi-

ments also show that the history table can become unbearably large when benchmark

programs use pointers intensively. For example, the memory overhead of omnetpp

benchmark was more than a hundred times the original memory consumption. As UAF

errors are more likely to be prevalent in programs with a heavy use of pointers, such

an immense memory overhead might be a significant obstacle for a broad application

of this approach.

From the observations on previous work, we found that such a high overhead,

either performance-wise or space-wise, of the existing pointer invalidation techniques

is basically caused by the approach that when an object is freed, these techniques

promptly locate and explicitly invalidate all the pointers referring to the object. This

explicit pointer invalidation approach seems to be intuitive as it mitigates UAF errors

by eradicating the root cause (i.e. dangling pointers), but it is usually very costly as it

demands expensive algorithms or a large amount of space to maintain the up-to-date

list of pointer locations linking to each object at all times during program execution.

DANGNULL spends many CPU cycles to manage binary trees as the data structures
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to store pointer locations. Every time there is a change in one of the locations, the

trees are traversed and modified accordingly, consuming a considerable amount of the

execution time. Even worse, the total performance overhead increases in proportion to

the numbers of pointers and referents, which can increase considerably for programs,

such as omnetpp, that perform frequent arithmetic operations on a myriad of pointers.

Our findings motivated us to take an alternative approach, which we have named

implicit pointer invalidation to contrast with the existing explicit approach. The goal

of our approach is to prevent dangling pointers by enforcing a basic principle that

permits an object to be freed only if there is no pointer currently referring to it. Of

course in C/C++, users may deallocate an object at their disposal by invoking the

free (or delete) function irrespective of the existence of pointers linking with the

object. Therefore, to enforce the principle in the legacy C/C++ code, we augment each

memory object with a single integer, known as the reference counter, that records the

number of pointers referring to the designated object. When the user intends to free

an object in the original code, we ignore the function by doing nothing explicit if the

corresponding reference counter has a non-zero value. The object is disposed of with-

out explicit effort for invalidation once the counter comes to zero. Indeed, in most

real code, reference counters eventually decrease to zero in a sequence of repeated

pointer operations, such as assignment, nullification, and deallocation of pointer vari-

ables. This implies that even without explicit invalidation time and effort, the proposed

scheme can prevent dangling pointers by holding an object remain undeleted until all

the links between the object and its referring pointers vanish by themselves, which is

tantamount to the implicit invalidation of the referring pointers.

This implicit invalidation scheme sounds plain and naive at the first glance, but

its practical application to the existing C/C++ code is very challenging from several

aspects. The first aspect of concern is the increase in the memory overhead. In C/C++,

free/delete is purposed to instantly release the memory space occupied by objects
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and reclaim the space for reuse. However, such reclamation of memory will be hin-

dered by our implicit scheme that delays the release of a “to-be-free” object, which

thus remains undeleted until its reference count reduces to zero. Consequently, our

scheme could suffer from a memory overhead due to undeleted (and thus unreclaimed)

objects, particularly if their number becomes large. Luckily, as will be empirically

demonstrated, the overhead was manageably small for most real cases as far as we

could accurately compute the reference counts and timely delete the undeleted objects.

In fact, this very problem of reference count computing is another important aspect to

be considered for the practical application of our scheme to legacy code because the

notorious C/C++ programming practices heedlessly violating type safety tend to ex-

tremely complicate this problem. For example, common practices, such as unrestricted

pointer arithmetic and abusive uses of type casts or unions in C/C++, make it difficult

to pinpoint exactly when pointers are generated and deleted at runtime, which in turn

results in imprecise and incorrect reference counting.

Because the legacy C/C++ code is such full of type unsafe operations, previous

attempts based on reference counting could not effectively tackle the UAF problem in

the legacy code [4, 38]. In this paper, we propose CRCount, an effective and efficient

solution developed to mitigate UAF errors on the basis of implicit invalidation. As

reasoned above, the key to the success of our solution depends on the accuracy of ref-

erence counting. To compute reference counts with high precision, CRCount adopts a

technique called pointer footprinting, which tracks down the memory locations of live

heap pointers along the execution flow. Our pointer footprinting technique is centered

around a special data structure, called the pointer bitmap, that represents the up-to-

date memory locations where the heap pointers are stored. The bitmap is updated by

means of program instrumentation coupled with the runtime library. The empirical

results show that, assisted by the footprinting technique, CRCount could track C/C++

pointers with a relatively low overhead and compute the reference counts with high ac-
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curacy. CRCount is implemented as a compiler pass in LLVM. Therefore, any C/C++

program can be fortified against attacks exploiting UAF errors merely by compiling its

source code with CRCount enabled.

4.2 Related Work

In this section, we will continue the discussion on CRCount by relating it to previous

solutions that also aimed to thwart UAF errors in C/C++ code.

Explicit Pointer Invalidation. We divide the explicit pointer invalidation techniques

into two folds depending on the manner in which updates on the reference relation-

ships between pointers and objects are reflected. We deem that DANGNULL [57] and

FreeSentry [115] update the reference relationships in an eager manner because they

always update their metadata for pointers and objects right after the pointer arithmetic

operations affecting the relationships. In contrast, we deem that DangSan [103] opt

for the lazy manner in updating these relationships. This enables DangSan to achieve

much better performance, but DangSan’s memory overhead is often too large, as the

size of the history table grows extremely large for programs with heavy uses of point-

ers. In principle, CRCount embraces the same eager update strategy as DANGNULL in

such a way that when an object is linked/delinked with a pointer by pointer arithmetic,

the reference relationships are updated instantly by modifying the object’s reference

count accordingly. However, CRCount does not suffer from the performance issue as

it manages much lighter metadata. Moreover, our implicit pointer invalidation scheme

does not suffer from the performance overhead that was mandated by DANGNULL to

explicitly invalidate all the pointers referring to an object when the object is freed.

Implicit Pointer Invalidation. Thus far, several studies have come close to CRCount

in the sense that they benefit from the implicit pointer invalidation even if this fact

is not expressed clearly in the literature [14, 75, 88, 111]. To be more specific, their

solutions are exempt from additional force required to explicitly invalidate dangling
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pointers by delaying the reuse of the recently freed objects in the hope that the number

of pointers referring to freed objects would gradually decrease to zero during pro-

gram execution. However, these approaches differ from CRCount in one important as-

pect. They do not have notions, such as reference counting, to measure the number of

pointer references at runtime. Therefore, they cannot determine exactly how long they

should hold the freed objects back from being reused by the memory allocator, and

their common schemes are to release the objects simply when specific conditions are

met, such as after a random amount of time or when the total size of objects being held

reaches a certain limit. Unfortunately, such naive schemes can be easily circumvented

by calculated attacks such as heap spraying [32,57] or heap fengshui [94]. In contrast,

CRCount, by maintaining precise reference counters for every object, can guarantee

the safe release of freed objects for reuse with no presence of dangling pointers.

Object Access Validation. Many security solutions [69,89] have attempted to prevent

UAF errors by exhaustively validating every object access via pointers. To this end,

they use a lock-and-key mechanism that can check the validity by (1) assigning a

unique lock to each object at the creation time, and (2) monitoring whether the object

accesses are made by the pointers having the correct key matching the target object’s

lock. This mechanism realizes a thorough defense against UAF errors. However, they

are at a disadvantage as compared to CRCount it terms of accuracy and performance:

they generate a number of false positive alarms because of their strictness that goes

beyond the common programming practices, and incur a huge performance overhead

necessary to intervene in every object access.

Secure Layout of Object. Some systems prevent the exploitation of UAF errors by

using prudent layouts of objects. Cling [2] forces new objects to be created only in a

memory block that has either never been allocated or has been allocated to objects of

the same type. In brief, Cling mitigates UAF errors by ensuring the type safety of the

allocated objects. Although efficient, it still allows UAF errors between objects of the
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same type. Oscar [31] defeats UAF errors through a careful arrangement of objects. For

this, Oscar never reuses the (virtual) memory, such that all the objects are created in a

unique memory space, thereby completely blocking the UAF bugs. Oscar facilitates an

effective measure against UAF errors. The downside, however, is that it suffers from

a higher performance and memory overhead than CRCount because it abandons the

efficiency that could otherwise be gained through the maximal reuse of the memory

space.

Garbage Collection. Garbage collection makes a program robust against UAF errors

through an automatic mechanism that frees an object after confirming that there is no

reference to the object. Unlike the case of JAVA and C# in which garbage collection is

built into, no hint to distinguish pointers from ordinary objects is provided by compil-

ers in C/C++. Therefore, Boehm-Demers-Weiser garbage collector (BDW GC) [17], a

representative garbage collector for C/C++, uses a conservative approach that regards

any pointer-size word as a potential pointer value. Such a conservative approach may

result in memory leaks in the case of an erroneous recognition of pointer values, al-

though it has been reported that the problem rarely occurs in 64-bit architectures [46].

Garbage collection is also known to cause a non-negligible memory overhead as it

trades space for performance [45]. BDW GC works based on dedicated APIs. Al-

though it provides a way to automatically redirect traditional C memory allocation

routines to the corresponding APIs, some porting efforts may be required for large

real-world programs, especially for C++ programs.

Smart Pointer. To enforce safe and automatic memory management in C++, an ex-

tended data type is provided, called the smart pointer [4], which encapsulates a raw

pointer with a reference counter. Conceptually, a smart pointer owns one raw pointer,

meaning that it is responsible for deleting the object referred to by its raw pointer.

During program execution, it keeps track of the reference counter through the lan-

guage’s scoping rules and deletes the referred object from the heap when the reference
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counter becomes zero. The smart pointer is similar to CRCount in that it is based

on the reference counting mechanism. However, there is a critical downside of using

smart pointers to enhance memory safety: programmers must take full responsibility

of smart pointers. In order for a legacy C++ program to be free from UAF issues, all

the raw pointers in the program must be converted manually to smart pointers. Unfor-

tunately, such a complete conversion of every raw pointer is a very time-consuming

task to achieve. In fact, this is almost impossible for legacy code unless the entire code

is completely re-written by hand from scratch. Furthermore, a smart pointer is basi-

cally an extended data type consisting of a raw pointer and the inline metadata, i.e.,

a reference counter. Unlike other work using extended data types with disjoint meta-

data [68], a UAF defense solution based on smart pointers cannot maintain the data

structure layout compatibility with the existing legacy code.

Taint Tracking. Undangle [20] utilizes taint tracking [73] to detect dangling pointers.

It assigns labels to the heap pointers created from memory allocation routines and

keeps track of how the pointer is copied through the registers and memory by taint

tracking. Later, at memory deallocation time, it checks the labels for the pointers in

the program and determine whether the pointer is unsafe based on how much time

has passed since the pointer is created. Since it is based on dynamic taint tracking, it

can be more precise in determining pointer locations, compared to CRCount, which

relies on static type information. However, dynamic taint tracking causes significant

performance overhead. It also determines unsafe dangling pointers based on the ad-hoc

definition of a lifetime, which can result in an undetected UAF vulnerability.

Hardware-based Approaches. There have been several attempts to extend hardware

architectures to handle UAFs efficiently. Watchdog [66] keeps disjoint metadata asso-

ciated with every pointer, propagates them through the pointer operations, and checks

the validity of the pointer upon every access. WatchdogLite [67] provides a fixed set of

additional instructions coupled with compiler support to catch UAFs without signifi-
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cant hardware modifications. CHERI architecture [62] models pointers as capabilities

that include information such as base and bound of the accessible memory region and

distinguishes them at the hardware level so that there is no need to separately track

pointers in memory as CRCount does by the means of pointer footprinting. CHERI it-

self does not have native support for preventing UAFs, but it does provide a foundation

for accurate garbage collection.

4.3 Threat Model

We assume that the target C/C++ programs have UAF errors. The attacker can trigger

a UAF exploit by letting a dangling pointer read/write a value from/to an object that

is allocated into the same region that the previous object referred to by the dangling

pointer was once allocated to. We do not consider other types of memory errors such as

buffer overflow and type confusion. We assume that the integrity of the data structure

and algorithm of CRCount is enforced through the security techniques that are orthog-

onal to CRCount [53, 55]. This assumption is consistent with previous UAF defenses

relying on additional metadata [57, 69, 103, 115].

4.4 Implicit Pointer Invalidation

As stated in §4.1, the implicit pointer invalidation scheme enables a safe, efficient de-

fense against UAF errors, but the complications involved in reference counting hinder

a wide adoption of this scheme in legacy C/C++. In this section, first, we will pro-

vide an overview of how the implicit scheme works with reference counting and then

present the challenging problems to be addressed for a successful application of the

scheme to real C/C++ code.

4.4.1 Invalidation with Reference Counting
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1 struct node { struct node *next; int data; };
2 struct node *ptrA, *ptrB;
3

4 ptrA = malloc(sizeof(struct node)); // objA
5 ptrB = malloc(sizeof(struct node)); // objB
6

7 ptrB->next = ptrA;
8

9 /* code execution */
10

11 free(ptrA);
12

13 /* code execution */
14

15 ptrA = malloc(sizeof(struct node));
16 free(ptrB);

Listing 2: Code example showing the defense against UAF errors via reference counting

In Listing 2, we present an example code to explain how UAF errors are tackled

by the implicit pointer invalidation scheme coupled with the reference counters. Here,

RCobj denotes the reference count of a memory object obj. In lines 4 and 5, two heap

objects, objA and objB, are created and pointed to by two pointer variables, ptrA

and ptrB, respectively. At this moment, the reference count of each heap object is set

to one. Next, ptrA is assigned to ptrB->next, and RCobjA is increased from one to

two. Then, in line 11, the free function is invoked to deallocate objA. Now, note that

RCobjA > 0 as it is still referred to by ptrA and ptrB->next. In the explicit inval-

idation scheme [57, 103, 115], both the pointers are delinked with objA by explicitly

invalidating them right after the object is deleted. However, in the implicit invalidation

scheme, the further actions inside the free function are interrupted to leave objA

undeleted, and the pointers remain intact, linking with the object. In line 15, ptrA

is reassigned to point to a newly allocated object. In this case, without any explicit

effort, ptrA is in effect invalidated with respect to objA because of the delinking of

their reference relationship. To reflect this change, RCobjA is decreased from two to

one. Finally, in line 16 where objB is freed, ptrB->next can also be considered
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to be implicitly invalidated because it is no longer legitimately accessible,1 thus being

effectively delinked with objA. Now, RCobjA = 0, and thus, the object is released and

can be reused safely by the memory allocator.

4.4.2 Reference Counting in C/C++

In the above example, we demonstrated how the implicit invalidation scheme with ref-

erence counting can preemptively prevent UAF errors by delaying object deletions un-

til the reference counts are decreased to zero. Clearly, the prerequisite for this scheme

is flawless reference counting, for which we developed a special mechanism to keep an

accurate track of the reference relationships between the pointers and the objects along

the execution flow. The reference relationship relevant to an object is expressed by the

object’s reference count which is dynamically increased or decreased as a pointer is

linked or delinked with the object, respectively. Therefore, to accurately monitor such

incessant changes in the reference count of an object, we need to pinpoint the mo-

ments at runtime when the object is linked or delinked with the pointers. We say that

the referring pointers are generated or killed if the pointers are linked or delinked with

their referred objects, respectively. In the code, a referring pointer is generated when

its value is stored in the memory, and the pointer is killed when another value over-

writes the pointer (see line 15 of Listing 2) or the pointer goes out of scope (see line 16

of Listing 2). In reality, however, perfect reference counting in C/C++ is quite prob-

lematic mainly because these languages have weak typing that places no restrictions

on the type conversion of objects. For instance, with weak typing, a subfield of an ob-

ject can be interpreted as either a pointer or a non-pointer alternatively at the time of

execution, which makes it extremely challenging to accurately capture all the genera-

tions and kills of the pointers, and accordingly update the reference counter of every

corresponding referred object.
1The pointers enclosed inside a freed object can still be accessed through a UAF vulnerability. For

full security protection, these pointers must be nullified upon freeing their enclosing object.
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1 struct node { struct node *next; int data; };
2 union unode { struct node *next; int data; };
3

4 char *chunk = malloc(CHUNK_SIZE);
5 struct node *ptrA=malloc(sizeof(struct node)); //objA
6 struct node *ptrB=
7 (struct node *)&chunk[n*sizeof(struct node)]; //objB
8 union unode *ptrC=malloc(sizeof(union unode)); //objC
9

10 ptrB->next = ptrC->next = ptrA;
11

12 /* code execution */
13

14 free(ptrA);
15 ptrA = NULL;
16

17 /* code execution */
18

19 free(chunk);
20 ptrC->data = 1;

Listing 3: Code example showing the challenges in reference counting in a legacy C/C++
program

Listing 3 shows the practical hurdles in precise reference counting. For simplic-

ity, we only consider RCobjA in the code. There are several heap objects created in

the code: objA and objC are newly allocated by malloc while objB is created by

a type conversion of a subregion in the existing array chunk. In line 5, by linking

the pointer ptrA with objA, RCobjA is set to one. The pointers ptrB and ptrC

are initialized to refer to objB and objC, respectively. In line 10, ptrA is assigned

to ptrB->next and ptrC->next, which results in RCobjA = 3. In line 14, the

programmer wants to delete objA when RCobjA > 0, but as mentioned earlier, this

deletion will be denied. In the next line, where ptrA is assigned NULL, RCobjA is

decremented by one. The last two lines of the code exhibit two challenging problems

pertaining to reference counting. Firstly, when the array chunk is deleted, RCobjA has

to be decreased as objA is referred to by a pointer, ptrB->next, which is inside the

deleted object. Unfortunately, as chunk is declared as an ordinary array, the com-

piler cannot provide any information with regard to the existence of a pointer inside at
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runtime. Therefore, for correct reference counting, we need some mechanism to sep-

arately track the location of the pointers inside chunk. The code in line 20 presents

another practical problem. Here, when ptrC->data is set to 1, the previously stored

pointer, ptrC->next, is simultaneously overwritten by the same value. Therefore,

according to the implicit invalidation scheme, RCobjA should be reduced as the pointer

referring to the object has been technically killed. Here, for correct reference counting,

we need to analyze the code and mark the point so that we can decrease the reference

count at runtime, and we also need to track whether the pointer is currently stored at

the location of ptrC->data at that moment.

From all these examples, we can conclude that without a detailed tracking down

of all the operations affecting the generations and the kills of the referring pointers,

the accuracy of reference counting would be severely limited. This would in turn dam-

age the overall feasibility of the implicit invalidation scheme for mitigation against

UAF errors. To summarize, as hinted by the examples, the identification of all the

pointer generations and kills in the legacy code is prohibitively complex. The failure

to find some pointer generations will result in underestimated reference counts, induc-

ing loopholes in the mitigation of UAF errors. The opposite (i.e., failure to find the

kills) will lead to overestimated counts, which, in turn, will result in memory leaks. In

the subsequent sections, we will show how CRCount addresses this challenge.

4.5 Design

In this section, we elaborate on the design of CRCount, our UAF error prevention

system based on implicit pointer invalidation. First, we present a brief overview of the

entire system, and then we provide a more detailed explanation of each component.
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Figure 4.1: Overview of CRCount

4.5.1 Overview

Figure 4.1 shows an overview of CRCount. At the core, CRCount uses a technique

called pointer footprinting (§4.5.2) to overcome the challenge described in §4.4. The

pointer footprinting technique tracks exactly when and where in memory the pointers

to heap objects are generated and killed. This technique is centered around a special

data structure, the pointer bitmap, that represents the exact locations of the heap point-

ers scattered throughout the program memory. The bitmap is managed by the runtime

library, which keeps track of the generations and the kills of the pointers at runtime,

and reflects the changes into the bitmap by setting or clearing the corresponding bits,

respectively. Invocations to the runtime library are instrumented into the target pro-

gram by CRCount’s LLVM plugin, which utilizes a static analysis to minimize the

number of instrumentation points while preserving the precision in tracking pointers.

The idea of using the bitmap to indicate pointer locations has been proposed in pre-

vious work on garbage collection [74, 91]. However, unlike previous work, with the

help of the compiler instrumentation and the runtime library, we automatically and ac-

curately track down the heap pointers in the entire memory space to enable successful

mitigation of UAF errors.

CRCount depends heavily on the pointer footprinting technique for precise refer-

ence counting. It associates each heap object with per-object metadata (§4.5.3) that
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include the reference counter for the object. Every generation or kill of a pointer is

detected and handled by the runtime library. CRCount takes the stored/killed pointer

value and consults with the pointer-to-object metadata map to find and increase/de-

crease the reference count of the object referred to by the pointers (§4.5.3). When

the free function is called to deallocate an object, CRCount first checks the object’s

reference counter. If the count is zero, then CRCount lets the function deallocate the

object. Otherwise, it halts the function and leaves the object intact. Later, when there is

a change (either increment or decrement) in the reference count, CRCount kicks in and

checks whether the count is zero. Finally, when the count decreases to zero, implying

that the pointers having referred to the object are all implicitly invalidated, CRCount

hands the object over to the memory allocator, which will free and reuse the object.

4.5.2 Pointer Footprinting

To enable the precise tracking of heap pointers, CRCount uses the pointer footprint-

ing technique, which is centered around the pointer bitmap data structure that enables

us to efficiently locate all the pointers in the memory that refers to the heap objects.

The pointer bitmap is basically a shadow memory for the entire virtual memory space,

which marks the locations where the heap pointers are stored. We assume that pointers

are aligned to an 8-byte boundary, which would be true in most cases as pointer-type

variables are typically arranged in an 8-byte alignment by the compiler in a 64-bit sys-

tem.2 Note here that the current prototype of CRCount only supports a 64-bit system.

Based on this assumption, each bit of the pointer bitmap corresponds one-to-one to

all the 8-byte-aligned addresses in the virtual memory space; thus, we can identify the

exact pointer locations through the pointer bitmap. Owing to the structural simplicity

and compactness of our bitmap, the runtime library can efficiently manipulate it with

a combination of simple bit operations such as shifting and masking. The bitmap oc-
2We have encountered a few cases where this assumption does not hold true. We will explain these

cases in §4.9.
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Runtime library
function Invoked at Description

crc alloc Heap allocation
Add a mapping for the new heap object
to the pointer-to-object metadata map

crc store
Candidate store
Instruction

Handle a pointer generation and/or kill
due to memory store

crc memset Memset
Handle pointer kills due to memset’ing
a region with identical bytes

crc memcpy Memcpy
Handle pointer generations and/or kills
due to copying of a memory region

crc free Heap deallocation
Handle pointer kills by heap object
deallocation

crc return Function return
Handle pointer kills by stack frame
deallocation

Table 4.1: The list of runtime library functions of CRCount

cupies 1/64-th of the virtual memory space and is reserved at the start of the process

through the mmap system call. This might seem like a large amount of memory, but

fortunately, because of the demand paging mechanism of OSs that delays the alloca-

tion of a physical memory block (i.e., frame) until there is an actual access, the bitmap

does not occupy much physical memory at runtime. Furthermore, as the access to the

pointer bitmap follows the original locality of the memory accesses, in practice, the

physical memory overhead for the bitmap is negligible.

The pointer bitmap is managed by the runtime library. Table 4.1 shows a list of

the runtime library functions, along with the program points where they are invoked

and their tasks at these points. The function crc alloc does not update the pointer

bitmap, but when a new heap object is allocated, it adds a new mapping for the object

to the pointer-to-object metadata map to be used in the reference count management

(refer to §4.5.3 for details). Moreover, as we are only interested in the pointers to

the heap objects, the runtime library functions look up the pointer-to-object metadata

map before setting the bits in the pointer bitmap. The function crc store sets or

clears, respectively, the corresponding bit in the bitmap when a new heap pointer is
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Figure 4.2: Layout of per-object metadata. rsv. field is reserved for C++ support (§4.6) and
garbage collection (§4.7).

stored (generated) or the previously stored pointer is overwritten (killed) by a store

instruction. The functions crc memset and crc memcpy set and clear the bits in

the pointer bitmap corresponding to the pointers that are killed and/or duplicated by

memset or memcpy. The functions crc free and crc return clear the bits in

the pointer bitmap corresponding to the pointers invalidated by the heap object deallo-

cation and the stack frame deallocation, respectively.

At the time of compilation, the calls that invoke the runtime library functions are

instrumented into the program so that the runtime library can reflect the generations

and the kills of the pointers into the pointer bitmap. The instrumentation is done by

the CRCount’s LLVM plugin that provides an additional pass over the intermediate

representation (IR) during the compilation phase. All the runtime library calls except

crc store are instrumented in a straightforward manner at every corresponding pro-

gram point. In the case of crc store, instrumenting all the store instructions will

cause the excessive performance overhead. It will be overkill if we consider that only

a part of these instructions are actually related to pointer generations and kills. How-

ever, as the store of a non-pointer-type value can kill a pointer, as discussed in §4.4.2,

a simple examination of the type of stored value in LLVM IR is not sufficient to iden-

tify all the instructions that need to be instrumented. To solve this, our LLVM plugin

performs a static analysis of the program code to identify the minimum set of instru-

mentation points required to enable an efficient yet precise tracking of pointers.

Listing 4 shows the pseudo-code of CRCount’s LLVM plugin for instrumenting

memory store instructions. In the LLVM IR, store instructions assign a source value

val to a destination address dest. We should definitely insert a crc store call
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1 for storeInst in program:
2 dest = storeInst.dest
3 val = storeInst.val
4

5 if !isPointerType(val) && !isCastFromPtr(val):
6 if !shouldInstrument(storeInst.dest):
7 continue
8

9 if isLoadStoreSame(dest, val):
10 continue
11

12 callInst = createCallInst(crc_store, dest, val)
13 storeInst.insertBefore(callInst)

Listing 4: Pseudo code for instrumenting the store instructions.

when a pointer value is written; therefore, the plugin first examines val to check

whether it is a pointer. It is obviously a pointer if it has a pointer type (isPointerType),

but sometimes, it can be a pointer even if it does not have a pointer type. For example,

the programmer could have cast a pointer into an integer type. In this case, in the IR

code, there will be a bitcast instruction that casts the type of val somewhere be-

fore the store instruction. In this context, our LLVM plugin conducts a backward data

flow analysis to check whether val has been cast from a pointer type prior to the store

instruction (isCastFromPtr). If it has, then the store instruction is instrumented.

Even if val is not a pointer type value, store instructions might implicitly inval-

idate an existing pointer by overwriting it with a non-pointer value. Thus, the LLVM

plugin performs a backward data flow analysis on dest to check whether the store

instruction can potentially kill a pointer and thus should be instrumented with a call

to crc store (shouldInstrument). There are two main cases where the instru-

mentation is necessary. First, the plugin instruments the store instruction if dest has

been cast from a double pointer type, because in this case, the memory pointed to by

dest can hold a pointer value. Another case that the plugin mainly looks for in the

data flow analysis is a case wherein dest is a field of the union type that can hold both

a pointer value and a non-pointer value (as shown in Listing 3). However, the determi-
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nation of whether or not a specific field of the union can be a pointer type in LLVM

IR is non-trivial because the IR code generation phase collapses the type information

for the union type, and thus, union types in LLVM only has the type information for

a single member field whose in-memory representation is the largest in size among all

the fields in the union. For example, if a union type has a pointer type member and a

struct type member with the size bigger than that of a pointer, only the struct type is

shown as the member of the union type in IR. Nevertheless, with the backward data

flow analysis, we can at least determine whether the field pointed to by dest is a part

of a union type. Consequently, we conservatively instrument the store instruction if the

underlying type of the memory object is a union type even if it does not have a pointer

type member field at the specific offset.

The LLVM plugin also performs a similar optimization done in DangSan that skips

the instrumentation if it can be statically determined that val points to the same ob-

ject that the pointer stored in dest points to (isLoadStoreSame). In this case,

crc store will increment and decrement the same reference counter, so there is no

need for the runtime library call to be instrumented. This mainly deals with the case

where a pointer is simply incremented or decremented and thus the reference counter

of the target object does not change.

4.5.3 Delayed Object Free

To achieve its objective, CRCount enforces the delayed object free policy that de-

lays the freeing action as briefed in §4.5.1. CRCount manages the reference counters

of objects by using the pointer footprinting technique. When a programmer invokes

the function free/delete to free an object, CRCount checks the object’s reference

count and stops the function from freeing the object if this count is non-zero. To im-

plement this, we modified the free function so that the function cannot automatically

free objects. In CRCount, the decision on when to free an object is exclusively made
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by our runtime library. Therefore, any manual attempt of a programmer to delete an

object is intercepted by the library which will eventually permit the memory allocator

to free the object for reuse when the object’s count becomes zero.

Per-object Metadata

To realize the delayed object free policy, we must maintain a reference counter for

each heap object. To do this, CRCount uses METAlloc [43] to augment the heap ob-

jects with the per-object metadata. METAlloc internally maintains a trie-based pointer-

to-object metadata map [71]. Given a pointer value, METAlloc retrieves the map and

returns a pointer to the object metadata allocated separately when the heap object is

allocated. The per-object metadata (Figure 4.2) include not only the reference counter

but also two additional pieces of information: the base address and a 1-bit freeable

flag. The base address is required for the memory allocator to free the object when the

reference count becomes zero. Note that the free function needs the base address of

the target object as its unique argument. However, when the last pointer that points to

the object is killed, and the reference count is set to zero, there is no guarantee that this

pointer will hold the base address of the object. Therefore, CRCount separately keeps

the base address of each object to invoke the free function correctly. The freeable flag

is required for CRCount to mark some objects as freeable. When the free function is

called for an object and its reference count is non-zero, CRCount just halts the function

and sets the freeable flag of the object. Thereafter, when the reference counts of objects

become zero, CRCount allows only the freeable objects for which the free function

has been called, to be actually freed by the memory allocator. This is important for

CRCount because there are some exceptional cases (discussed in detail in §4.9) that

may hinder the correct maintenance of the reference counter. These exceptional cases

would decrease even the reference counters of non-freeable objects to zero, and if CR-

Count mistakenly decides to free these non-freeable objects, the program may crash.

51



Even though such cases are known to be unusual in the normal programming practices

of C/C++ [83], we adopt this freeable flag-based approach for maximum compatibility

with the legacy C/C++ applications.

Reference Counter Management

The runtime library includes the code for reference counter management that can up-

date the reference counter according to the pointer generations and kills. When a heap

object is allocated, the associated per-object metadata are also allocated. Here, the

reference count is initialized to zero, and the base pointer is set to the base address

of the allocated memory region. Every time a pointer is stored by a store instruction,

CRCount reads the corresponding per-object metadata by using the pointer-to-object

metadata map and increases the reference count. For memcpy, CRCount first exam-

ines the pointer bitmap mapped to the source memory region to find the pointers that

are to be duplicated and increases the reference counts corresponding to the objects

referred to by these pointers. Every time a pointer is invalidated, either by a store in-

struction or by any of the memset/memcpy/free/return function/instruction, CR-

Count checks the pointer bitmap to identify the pointers from the destination memory

region and decreases the reference counts of the objects referred to by these pointers.

For free and return, CRCount also nullifies all the pointers inside an object or a

stack frame to completely block wrongful uses of them. Finally, when CRCount finds

that the reference count for an object has become zero and the object’s freeable flag is

set, it gives the object to the memory allocator that will free the object.

It is noteworthy that CRCount handles memset/memcpy as well. Not only are

they very commonly used in C/C++ programs, but they are also often introduced by

compiler optimizations when a contiguous range of memory is set or copied. The pre-

vious work on pointer invalidation, such as FreeSentry or DangSan, does not handle

these functions for performance reasons, leaving the system exposed to UAF errors.
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Note that CRCount is immune to the so-called reference cycle problem [108]. Au-

tomatic memory management systems (i.e., garbage collector) relying on reference

counting suffer from the problem wherein the reference counters of a group of objects

are never decreased to zero when the objects are cross-referenced. Since the purpose

of automatic memory management systems is to deallocate memory objects automati-

cally without relying on explicit free requests, the reference counts of objects pointing

each other will never decrease to zero. To avoid this problem, many systems introduce

the notion of weak references, which the programmers must wisely use to prevent ref-

erence cycles [60, 77]. CRCount does not suffer from reference cycles as it operates

based on the free functions that already exist in the legacy code. When the free

function is called for one of the objects involved in the reference cycle, CRCount

forcibly kills the pointers enclosed in the freed object and decrements the reference

counter of the other object, thereby breaking any reference cycles.

4.6 Implementation

We have implemented the CRCount LLVM plugin as an LTO (Link Time Optimiza-

tion) module based on LLVM 3.8. The runtime library is written in C and is statically

linked into the program binary. The LLVM plugin and the runtime library each consists

of approximately 1k lines of code.

Allocation of the per-object metadata. METAlloc provides an efficient mapping be-

tween a given pointer and the associated per-object metadata, but it does not provide

any way to allocate the metadata itself. We sought for a way to avoid the additional

overhead that comes from metadata allocations, since whenever heap object is allo-

cated, the corresponding per-object metadata also needs to be allocated. If we use

malloc for this purpose, an overhead incurred by malloc would be doubled, which

could be non-negligible as more memory objects are allocated [40]. Fortunately, each

of our per-object metadata mapped to the objects has a fixed size. Thus we can miti-
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gate the metadata allocation overhead by using the concept of an object pool. We first

reserve an object pool using mmap and provided a custom allocator for the per-object

metadata, eliminating the costs involved with malloc. The current implementation

of CRCount performs a linear search over this memory pool to find an empty slot for

the allocation of the metadata.

Handling realloc. realloc can migrate an object from its original memory region

to another memory region. Such behavior of realloc necessitates an exceptional

handling by CRCount. First, when the contents of the target object are copied to an-

other region, the pointers belonging to the object are copied as well. Therefore, to keep

track of the copied pointers correctly, the corresponding bits of the pointer bitmap also

have to be copied. Next, after the migration, realloc frees the original memory re-

gion. In CRCount, however, the free action only has to be allowed when the reference

count becomes zero. To enforce this rule, we modified realloc to let the runtime

library decide when to free the original region, as was done in the free function.

The runtime library (1) allows the memory allocator to perform the free action if the

reference counter is zero or (2) just sets the freeable flag otherwise.

Multithreading support. Multithreading support can be enabled in CRCount by

defining ENABLE MULTITHREAD macro variable when building the runtime library.

Two major data structures—the reference counters and the pointer bitmap—have to

be updated atomically to support multithreading. The reference counters need atomic

operations because multiple threads can store or kill the pointers to the same heap ob-

ject at the same time. As a reference counter is just a single word, we simply used

the atomic operations defined in the c11 standard library. We assume that the threads

in the target program do not write to the same pointer concurrently without a proper

synchronization. We believe that this is a reasonable assumption as it indicates a race

condition in the original program. The pointer bitmap also must be maintained in an

atomic fashion. Even if we have the above assumption, multiple threads could write
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pointers to the nearby memory locations which could end up in the same word in the

pointer bitmap. Thus, we also use the atomic operations whenever the bitmap is up-

dated. Besides the reference counters and the pointer bitmap, we made a small change

in the per-object metadata allocation/deallocation routine to ensure thread safety.

Note that all of the data structure updates in CRCount only require touching just

one word which makes multithreading support very simple and also very efficient in

most cases. However, we have encountered a worst case in one of the benchmarks that

we tested, where only a small number of objects are allocated and their reference coun-

ters are frequently updated by multiple threads. In this case, there will be many lock

contentions for the reference counters, which results in a considerable performance

overhead. We will give more detail in §4.7.

Double free and invalid free. We can simply implement the prevention capability

for double frees on CRCount. As a freeable flag of per-object metadata indicates that

free has been called for an object, we can easily detect if free is called multiple

times for the object. CRCount can also be extended to prevent invalid frees. If free

is called for an invalid pointer, CRCount can easily detect it because there either will

be no valid mapping for the pointer in the pointer-to-object map, or the base address

of the object metadata will not match the pointer value.

C++ support. For the most part, CRCount can naturally support C++ because CR-

Count instrumentation operates on LLVM IR, which is language independent and thus

does not distinguish between C and C++. C++ concepts like templates, dynamic bind-

ing, etc. are lowered to basic functions and LLVM instructions and do not require sep-

arate handling by our LLVM plugin. However, C++ new and delete require some

special care. Recall that CRCount delays freeing of the object until its reference count

becomes zero. For C++, CRCount must invoke the correct deallocation function ac-

cording to the function that was used to allocate the object. malloc, new, and new

[] are three possible choices for the allocation of the object, and the corresponding
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deallocation function must be used to deallocate the object. To achieve this, CRCount

uses the additional bits next to the freeable flag in the per-object metadata to record

and call the right function for the deallocation of the object.

4.7 Evaluation

In this section, we evaluate CRCount by measuring the performance overhead and the

memory overhead imposed by CRCount in well-known benchmarks and web server

applications. All the experiments have been conducted on Intel Xeon(R) CPU E5-

2630 v4 platform with 10 cores at 2.20 GHz and 64 GB of memory, running Ubuntu

64-bit 16.04 version. We applied minor patches to a few of the benchmarks to assist

our reference counter management. In §4.9, we will explain these cases in detail.

4.7.1 Statistics

The performance and memory overhead of CRCount can vary depending on the char-

acteristics of the target program. In particular, the number of pointer store operations

and the memory usage of CRCount can be a crucial indicator for analyzing the experi-

mental results. Thus, we gathered some of the statistics for the SPEC benchmarks [44]

which we will refer to when analyzing the performance and memory overheads in this

section. Table 4.2 shows the results for the SPEC CPU2006 benchmarks.

Here, we first compare the number of pointer stores tracked down by CRCount

with that by DangSan. We will explain other metrics later in this section. As shown in

the # ptr stores by inst. column and the # ptrs column, in many bench-

marks, we can see that the number of pointer stores by the store instruction measured

in CRCount is larger than the one in DangSan. The differences are mainly due to a

small patch we applied to LLVM in order to ease our static analysis. Specifically, we

disabled a part of the bitcast folding optimization, which complicates our backward

data flow analysis in tracing the casting operations. We expect the numbers to be de-
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creased if we elaborate on our static analysis to support the optimization, which would

also give a small performance improvement for CRCount.

In the case of dealII and xalancbmk, CRCount kept track of a fewer number

of pointer stores than that of DangSan. This is due to a minor hack in our LLVM plugin

that is applied to avoid the problem of incorrect reference counter management in the

programs that use the C++ templates from the C++ standard library. Specifically, the

problem occurred because only the part of the library code for the template functions

defined in the header file was instrumented by our plugin while the rest was not instru-

mented. In order to solve this problem, we compiled the program with the -g option to

include the debug symbols and excluded the instructions originating from the library

during the instrumentation. Another way to solve this problem would be to compile

and instrument the entire standard library with CRCount.

4.7.2 Performance Overhead

To measure the performance overhead of CRCount, we ran and recorded the execution

times for several benchmarks and server programs. We compare the performance over-

head of CRCount with DangSan and Oscar, which are the latest work in this field. We

used the open-sourced version of DangSan for our evaluation while using the numbers

reported in the paper for Oscar. We also report the performance overheads for BDW

GC. To use BDW GC, programs must use special APIs for memory allocation routines

(e.g., GC malloc instead of malloc) to let the GC track and automatically release the

object when there are no references to it. BDW GC provides an option to automati-

cally redirect all of the C memory management functions to use the APIs. We used

this option and another option that makes GC to ignore the free function. As we later

specify, we were not able to compile or correctly run some C application, which in-

dicates that some porting efforts are required to use BDW GC for UAF mitigation.

Also, simple API redirection does not work for C++ applications. Instead, all the class

58



needs to inherit from special gc class which provides a new definition of operator

new. Classes that already have a custom operator new function will have to be

changed. Because of these reasons, we only show the results for the subset of the C

benchmarks which we were able to compile and run correctly.

First, to measure the performance impact on the single-threaded applications, we

ran the SPEC CPU2006 benchmark suite 3. Figure 4.3 shows the results. For CR-

Count, the geometric mean of all benchmarks is 22.0%, which is approximately the

half that for DangSan and Oscar, which respectively are 44.4% and 41%. The per-

formance efficiency of CRCount is even more evident in the pointer intensive bench-

marks (omnetpp, perlbench, and xalancbmk). For these benchmarks, CRCount

only incurs an average overhead of 92.0%, while both DangSan and Oscar show over

300%. For povray, CRCount incurs a higher performance overhead than Oscar and

DangSan. For the case of Oscar, note that Oscar does not instrument any memory ac-

cess. This gives Oscar performance advantages for some benchmarks like povray

which have relatively a large number of pointer stores (see Table 4.2). For the case of

DangSan, let us note that DangSan does not track down any pointers copied through

memcpy. In contrast, CRCount does track down such pointers for higher accuracy

(thus also security), which explains the larger performance overhead of CRCount. For

dealII and xalancbmk, we should consider the advantage that CRCount might

obtain by not instrumenting the template-based standard library functions. However,

considering the difference between the number of tracked pointers described in Ta-

ble 4.2, we still expect that the performance overhead of CRCount would be lower

than those of DangSan and Oscar. For BDW GC, we could not run gcc benchmark.

The geometric mean of the performance overhead for the rest of the C benchmark

is 0.7% for BDW GC and 13.9% for CRCount, which shows that the current highly

optimized and multi-threaded BDW GC can be very efficient for single-threaded work-
3linked with the single-threaded version of CRCount runtime library
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Figure 4.3: Performance overhead on SPEC CPU2006. We use the reported numbers in the
original papers for perlbench of DangSan, which fails to run, and all the benchmarks of

Oscar. For Boehm GC, we were able to run only C benchmarks excluding gcc.
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Figure 4.4: Memory overhead on SPEC CPU2006. Some numbers are those that have been
reported in the original paper as in Figure 4.3.

loads compared to CRCount which suffers from instrumentation overheads.

We also conducted a set of experiments with the PARSEC [16] benchmarks to

evaluate the scalability of CRCount in multithreaded programs. Figure 4.5 shows

the results in comparison to the baseline and DangSan. The geometric mean of the
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Figure 4.5: Comparison of the execution time on PARSEC. We could not get the correct
result for freqmine for DangSan because we could not enable OpenMP with DangSan,

which is required to run freqmine in the multithreaded mode. The results for Boehm GC is
only included for the subset of the C benchmarks that we could run.

overheads (excluding freqmine) ranges from 6.1% to 22.4% in CRCount and from

6.3% to 17.0% in DangSan, as more threads run concurrently. Overall, CRCount and

DangSan show comparable performance overhead in most of the benchmarks. Even

though CRCount uses atomic operations to maintain its data structures, it does not

introduce critical sections because only a single word needs to be updated at a time.

Also, simultaneous accesses to the same reference counter or the same word in the

pointer bitmap are rare. Thus, CRCount can be scaled to multiple threads in most cases.

barnes shows an interesting behavior as it is run with more threads. In barnes,

only a few large objects are allocated with around 6 billion pointer stores. As the total

number of objects is so small, we expect that frequent lock contentions occur when

updating the reference counts, which explains such an irregular result. For the subset

of the benchmarks we could test with BDW GC, the geometric mean of the overheads

ranges from 5.3% to 28.9% in BDW GC and 4.9% to 28.6% in CRCount. CRCount

performs comparable to BDW GC for multithreaded workloads.

We conducted additional experiments for evaluating the performance of CRCount

on web server applications, including Apache 2.4.33 (with worker MPM), Nginx
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Figure 4.6: Memory overhead on PARSEC.

1.14.0, and Cherokee. We tested each web server with the default configuration files

through Apachebench (with 128 concurrent connections and 1,000,000 requests), and

measured the throughput in terms of requests per second (RPS). For Apache, the

throughput of the baseline is 24024 RPS, while it is decreased to 23051 RPS (slow-

down of 4.1%) in CRCount and 22774 RPS (slowdown of 5.2%) in DangSan. The

results for other web servers are similar. For Nginx, the throughput of the baseline

was 29514 RPS, but it is 20553 RPS (slowdown of 30.4%) in CRCount and 20144

RPS (slowdown of 31.7%) in DangSan. Lastly, for Cherokee, the baseline through-

put of 25993 RPS is decreased to 25615 RPS (slowdown of 1.5%) and 24756 RPS

(slowdown of 4.8%) in CRCount and DangSan, respectively.

4.7.3 Memory Overhead

In CRCount, let alone its data structures, undeleted objects may be one major factor

that potentially consumes substantial memory. To evaluate the overall memory over-

head of CRCount, we have recorded the maximum resident set size (RSS) while run-

ning the same benchmarks as in §4.7.2.

Figure 4.4 shows the memory overhead of our CRCount, DangSan, Oscar, and
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BDW GC for SPEC CPU 2006 benchmarks. Our geometric mean of all benchmarks

is 18.0%, which is significantly lower than 126.4% of DangSan and 61.5% of Oscar.

BDW GC shows a memory overhead of 125.7% for the tested benchmarks while that

of CRCount is 9.7%. Figure 4.6 shows the maximum RSS values for PARSEC bench-

marks for baseline, CRCount, DangSan, and BDW GC. The geometric mean (without

freqmine) of the overhead is from 9.2% to 11.6% in CRCount and from 45.0% to

52.7% in DangSan as the number of threads increases from 1 to 64. The geometric

mean of the memory overhead for the benchmarks tested with BDW GC ranges from

56.6% to 70.9% for BDW GC and 5.4% to 6.0% for CRCount.

Finally, we measured the memory overhead for three web server applications used

in §4.7.2. The maximum RSS of Apache is 7.8MB in the baseline, 9.9MB in CRCount

(26% overhead), and 106.8MB in DangSan (1263% overhead). For Nginx, the maxi-

mum RSS is 6.0MB in the baseline, 6.5MB in CRCount (8.2% overhead) and 10.4MB

in DangSan (73.3% overhead). For Cherokee, the recorded maximum RSS is 32.1MB,

41.2MB (28.5% overhead) and 62.9MB (95.9% overhead), in the baseline, CRCount

and DangSan, respectively.

All those experimental results, we believe, consistently testify the efficiency of CR-

Count in terms of memory usage. Such memory efficiency of CRCount would be at-

tributed to its compact data structures, but more importantly, to the relatively low mem-

ory usage by undeleted objects that remains persistently small in practice. To investi-

gate the relative overhead of undeleted objects further, see Table 4.2 where the max

mem. and max undeleted columns respectively show the maximum total memory

for the heap-allocated objects and the undeleted objects. In the max undel./max

mem. column, we compute the relative overhead of undeleted objects in memory,

which is clearly shown to be very small for most benchmarks. On top of that, we have

discovered that the majority of these undeleted objects tend to be eventually deleted

and handed over by CRCount to the allocator for safe reuse during program execution.
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We credit such favorable outcomes mainly to the capability of CRCount that is able to

correctly decrease the reference counts whenever generated pointers are killed.

There are still the cases where CRCount fails to accurately keep up the reference

counts, thereby being unable to delete undeleted objects even when no more pointers

refer to them (see §4.9). The leaks column in Table 4.2 denotes the total amount of

memory occupied by such undeleted objects. To calculate the numbers in the column,

right after program termination, we scanned the entire pointer bitmap to decrease the

reference counters corresponding to the pointers still residing in the global variables

or the heap objects for which the free function has not been called during the execu-

tion. The existence of the undeleted objects that still have a non-zero reference count

after this process signifies that some pointer kills were not tracked properly, failing to

decrease the reference count of these objects. Note that once CRCount fails to track

a pointer kill, it is no longer able to delete the corresponding object as the reference

count of the object will never decrease to zero. Obviously, these objects are the source

of the memory leak induced by CRCount. Luckily, we can see that the numbers on the

leaks column are negligibly small (or even zero) for almost all benchmarks, indicat-

ing that CRCount in fact quite accurately perform reference counting in legacy C/C++

code.

The numbers in Table 4.2 only inform us of the maximum memory space that

has once been occupied by heap and undeleted objects during program execution, but

it does not give us any clue how much space has been dynamically consumed by

these objects at runtime. To obtain this, we have regularly measured the changes in

the amount of the memory taken up by undeleted objects and memory leaks over the

entire period of each benchmark executions. As can be expected from 4.2, in most

benchmarks, the total memory overhead due to the undeleted objects steadily remains

low throughout the execution. However in some benchmarks like gcc with 200.i

input file (see Figure 4.7), the overhead can sometimes become noticeably high at
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Figure 4.7: Changes in memory usage during the execution of gcc with 200.i input file.
all objects denotes the total amount of memory allocated for heap-allocated objects and
the undeleted objects. undeleted objects and memory leaks indicate the amount of

the memory occupied by undeleted objects and memory leaks, respectively.

some point during program execution although it remains low for most of the execution

times. Figure 4.7 displays two peaks in the memory consumption when a large amount

of memory is consumed by undeleted objects, but most of it is soon freed as the result

of program’s normal execution. Figure 4.7 also displays the amount of leaked memory.

Note that once a memory leak occurs at some point in the execution, it will never

disappear afterward. For instance in Figure 4.7, we have a memory leak of 288 KB

in the middle of execution which exists until the end of execution. Fortunately, the

amount of wasted memory due to memory leaks is negligible in comparison with the

total program memory space, for all the benchmarks we tested.

Although memory leaks are not the major cause of memory overhead in our exper-

iments, they may be a serious problem with long-running programs like server appli-

cations where leaks can stack up indefinitely over a long period of program execution.

One promising way to cope with the problem is to integrate to CRCount a garbage

collection mechanism for reclaiming the leaked memory. Whenever the amount of

memory occupied by the undeleted objects exceeds certain limit, we can scan the en-

66



tire memory of a program and mark all the objects that are referred to by pointers.

At this time, all the undeleted objects that have not been marked while scanning the

memory obviously correspond to the memory leaks. Now we can reclaim the mem-

ory occupied by the identified memory leaks by releasing forcibly. Since CRCount

already has a bitmap that pinpoints the pointers from the vast program memory, the

garbage collection can be performed more efficiently and accurately than conservative

garbage collectors. We have implemented a simple garbage collector to measure how

much performance overhead it incurs. The garbage collection starts from the pointers

in the stack, the global variables, and the registers, and follows the pointers recursively

to scan the pointers in the heap region. All the objects referred to by the pointers are

marked (using the reserved field in the per-object metadata) and all the memory leaks

are released at the end. We ran gcc with the garbage collector enabled because it

shows the largest amount of memory occupied by the undeleted objects and thus is

expected to give us the worst case performance overhead among the benchmarks. We

used three different threshold values (64MB, 128MB, and 256MB) and let the garbage

collector run whenever the amount of memory occupied by the undeleted objects ex-

ceeded these values. Compared to the version without the garbage collector, it showed

an overhead of 2.3%, 1.1%, 0.4%, respectively. We believe that this overhead is ac-

ceptable to be integrated into CRCount.

4.8 Security Analysis

In this section, we perform the security evaluation by running CRCount-enabled pro-

grams with real vulnerability exploits. We also discuss some of the security consider-

ations for CRCount.
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4.8.1 Attack Prevention

To evaluate the effectiveness of CRCount in mitigating UAF errors, we ran several

applications with publicly available vulnerability exploits. Table 4.3 shows the list of

vulnerabilities tested with CRCount. CRCount successfully detected the double free

and invalid free vulnerabilities. We explain the test results with the UAF exploits be-

low.

All the UAF exploits we used accessed the freed region only before it is reallo-

cated. Thus, the UAF accesses in the exploits did not affect the original build of the

target program. Note that CRCount is purposed to prevent the attackers from reallo-

cating an object in the memory region still pointed to by the dangling pointers; thus,

it did not affect the tested exploits. However, in order for these exploits to eventually

be developed into serious attacks, the freed region should be reallocated so that the

UAF access can read from/write to the allocated victim object. If CRCount correctly

keeps track of the reference counts in the tested programs, it will properly mitigate

these advanced exploits. We will show that it is indeed the case in a moment.

For CVE 2016-6290, CRCount detected a double free vulnerability while the orig-

inal build of the program did not. We found that the double free was triggered by a

pointer that still referred to a freed object. The original build of the program did not

detect it because another object was allocated at the same address before the free func-

tion is called with the dangling pointer. This shows that CRCount successfully delayed

the freeing of the object with pointers still referring to it.

To verify that CRCount properly delays the reuse of problematic memory region

in the exploits, we have also implemented an extended version of CRCount with a

UAF detection capability, called CRCount-det. CRCount-det performs checks on ev-

ery memory access to see if the accessed heap object is marked as freeable. While

extra checks on memory accesses cause non-trivial performance overhead, we would

immediately know if a pointer is used to access an undeleted object. In our experi-
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ments, CRCount-det could detect all the UAF attempts we tested, which also implies

that CRCount would properly delay freeing of the object to prevent malicious attempts

utilizing the tested vulnerabilities.

4.8.2 Security considerations

One of the concerns about the security guarantee of CRCount is how effective a

delayed-memory-reuse based mitigation is against UAF exploits. Recall that one key

condition in exploiting an UAF exploit is to locate an attacker-controlled object into

the freed memory region pointed to by dangling pointers in order to arbitrarily control

the results caused by dangling pointer dereferences. However, in a victim process that

CRCount is applied, when an object is freed, no objects are allocated until the refer-

ence count becomes zero. At this point, the objects can be accessed only through the

existing links (pointers), maintaining their original semantics. Namely, the attacker can

no more implant any controllable object into the freed memory region where dangling

pointers still point to. As a result, the attackers’ capabilities are limited to perform-

ing the actions that are originally allowed for the object in the program, unless the

attackers use another kind of vulnerability. This makes it impossible, or makes it sig-

nificantly complicated at least, for the attackers to achieve their goal. It is noteworthy

that CRCount nullifies any heap pointers inside the object when the object is freed, so

the attackers are further restricted from reusing the heap pointer inside the object.

4.9 Limitations

Custom Memory Allocator. While applying CRCount to the benchmark programs,

we encountered some cases (i.e., gcc in SPEC CPU2006 and freqmine in PAR-

SEC) where the program had to be patched in order for our technique to work cor-

rectly. Specifically, the problem occurred mainly due to the use of a custom memory

allocator that internally allocates objects from a reserved chunk of memory without
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going through the expensive heap management functions. If different types of objects

are allocated to the same memory region, the pointers that were stored in the previous

object can be overwritten by a non-pointer-type value in the newly allocated object.

Had CRCount been able to identify the custom deallocator paired with the custom al-

locator, it would insert a runtime library call to handle the pointers enclosed in a freed

region. Since it was not, we needed to manually identify these custom memory deal-

locators and explicitly insert the CRCount’s runtime library calls to update the pointer

bitmap and the reference counts. Specifically, we added 2 lines to gcc and 1 line to

freqmine to call crc free upon custom memory deallocation.

Unaligned Pointer. Another problem we met in the experiments is that some of the

programs stored pointers in 4-byte aligned addresses, which is finer than the assumed

alignment (i.e. 8-byte) in the pointer bitmap. Specifically, PARSEC’s freqmine

benchmark used a custom allocator that aligns objects at a 4-byte boundary. We ad-

dressed this by modifying the custom memory allocator to align objects at a 8-byte

boundary. Also, Apache web server used epoll event struct defined with

attribute ((packed)), which made the pointer inside the struct to be located

at a 4-byte boundary. We addressed this by wrapping the struct so that the pointer is

located with an 8-byte alignment. Note that CRCount could just ignore the unaligned

pointer store by not increasing the reference count for the stored pointer. We chose to

patch the code for more complete protection. 12 lines were modified in freqmine

and 10 lines in apache to ensure pointers are stored at aligned addresses.

Vectorization Support. Our prototype CRCount implementation currently does not

support vectorization in LLVM IR. DangSan also does not support vectorization—it

simply ignores the stores of vector types. Even though vector operations rarely have

to do with pointer values, as ignoring the vector types could adversely affect reference

counter management, we instead turned off vectorization in all the experiments. It is

our future work to correctly deal with the vector types in our analysis and instrumen-
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tations.

Limitations of Pointer Footprinting. There are cases where our static analysis fails

to determine whether a particular store instruction should be instrumented or not. We

perform only intra-procedural backward data flow analysis. Thus, if a pointer is cast

before being passed to a function, we cannot analyze how the pointer is cast, and

thus we may fail to correctly decide whether to instrument the store instruction or

not. However, since we used LLVM link-time optimization (LTO), many functions are

inlined to their caller, which enabled us to get much information from the backward

data flow analysis. Another problem regarding static analysis is that we cannot track

type unsafe pointer propagation through memory. For example, a pointer could be cast

to an integer, stored in some integer field of a struct type variable, and passed around

the program through memory as an integer. The pointers stored as an integer data in this

process will not increase the reference counts of their corresponding objects. This is a

common limitation faced by every approach based on pointer tracking [57,68,69,103,

115]. Like all the approaches based on source code, we cannot instrument the libraries

distributed as a binary file. This can cause errors in reference counter management if

a pointer stored in the instrumented program is killed in such uninstrumented binary

libraries.

4.10 Summary

CRCount is our novel solution to cope with UAF errors in legacy C/C++. For effi-

ciency, CRCount employs the implicit pointer invalidation scheme that avoids the run-

time overhead for explicit invalidation of dangling pointers by delaying the freeing of

an object until its reference count naturally reduces to zero during program execution.

The accuracy of reference counting greatly influences the effectiveness of CRCount.

Therefore in our work, we have developed the pointer footprinting technique that helps

CRCount to precisely track down the location of every heap pointer along the exe-
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cution paths in the legacy C/C++ code with abusive uses of type unsafe operations.

CRCount is effective and efficient in handling UAF errors in legacy C/C++. It incurs

22% performance overhead and 18% memory overhead on SPEC CPU2006 while at-

taining virtually the same security guarantee as other pointer invalidation solutions. In

particular, CRCount has been more effective for programs heavily using pointers than

other solutions. We claim that this is an important merit because UAF vulnerabilities

are more likely prevalent in those programs.
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Chapter 5

uXOM: Efficient eXecute-Only Memory on ARM Cortex-

M

5.1 Introduction

When it comes to the security of a computing system, the protection of the code run-

ning on the system should be of top priority because the code defines security critical

behaviors of the system. For instance, if attackers are able to modify existing code or

inject new code, they may place the victim system under their control. Fortunately,

code injection attacks nowadays can be mitigated by simply enforcing the well-known

security policy, W⊕X. Since virtually all processors today are equipped with at least

five basic memory permissions: read-write-execute (RWX), read-write (RW), read-

execute (RX), read-only (RO) and no-access (NA), W⊕X can be efficiently enforced

in hardware for a memory region solely by disabling RWX.

However, even if attackers are not able to modify the system’s code, the system can

still be threatened by disclosure attacks that attempt to read part of or possibly the en-

tire code. Because code often contains intellectual properties (IPs) including core algo-

rithms and sensitive data like cryptographic keys, disclosure attacks severely damage

the security of victim systems by exposing critical information to unauthorized users.
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Even worse, disclosure attacks can be abused by attackers to launch code reuse attacks

(CRAs), which allow the attacker to perform adversarial behaviors without modifying

its code contents. It has been shown that attackers who can see the instructions in the

code may launch a CRA wherein they craft a malicious code sequence by chaining the

existing code snippets scattered around the program binary [90].

In order to prevent disclosure attacks, eXecute-Only-Memory (XOM) has been a

core security mechanism of various countermeasure techniques [11, 18, 19, 29, 41, 42,

80,95]. XOM is a strong memory protection mechanism that defines a special memory

region where only instruction executions are allowed, and any attempts for instruc-

tion reads or writes are prohibited. Thus, as long as sensitive information such as IPs

and the code contents are stored inside the region protected by XOM, developers are

in principle able to prevent direct exposure of the code content as well as the code

layout. This simple but tangible security benefit of XOM has led several researchers

to propose hardware-assisted XOM on various architectures. For example, some have

proposed an architecture that implements XOM by encrypting executable memory and

decrypting instructions only when they are loaded [61]. However, since their approach

mostly imposes significant changes and overhead on the underlying hardware, it can-

not be adopted readily by the processor vendors for their existing products. Instead,

many vendors opt for a less drastic approach that simply augments the basic memory

permissions with the new execute-only (XO) permission [19, 24].

As of today, many high-end processors provide XOM capabilities by support-

ing augmented memory permissions. Consequently, by taking benefits from the hard-

ware support for XOM, low-cost security solutions have been built to mitigate real

attacks [19,24,29,41]. However, these security benefits are confined to computing sys-

tems for general applications since the XO permission is only available in relatively

high-end processors targeting general-purpose machines such as servers, desktops and

smartphones. More specifically, applications running on tiny embedded devices cannot
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enjoy such benefits because only the basic memory permissions (not XOM) are sup-

ported in their target processors, which are primarily intended for use in low-cost, low-

power computations. As one example of such processors that hardware-level XOM is

not built into, we have the ARM Cortex-M series, which are prominent processors

adopted by numerous low-cost computing devices today [98].

Fortunately, researchers have demonstrated that software fault isolation (SFI) tech-

niques can be used to thwart these prevalent attacks without hardware-level XOM [18,

80]. They are purely software techniques, and thus are able to cope with any types of

processors regardless of the underlying architectures. However, the drawback we ob-

served is that SFI-based XOM techniques perform less optimally on certain types of

processors, including Cortex-M in particular. More importantly, such techniques can

even be circumvented, leading to critical security issues (refer to §5.6.4). Motivated by

this observation, this paper proposes a novel technique, called uXOM, to realize XOM

in a way that is secure and highly optimized to work on Cortex-M processors. Since

performance is a pivotal concern of tiny embedded devices such as Cortex-M, effi-

ciency must be the most important objective of any technique targeting these low-end

processors. To achieve this objective, uXOM leverages a special type of instructions,

called unprivileged loads/stores, provided by the instruction set architecture for ARM

Cortex-M. In an ARM-based system, memory can be divided into two classes of re-

gions according to privilege levels: non-privileged and privileged memory regions.

Unprivileged loads/stores can only access non-privileged memory regions, irrespec-

tive to the processor’s current privilege level (either in a privileged or non-privileged).

On the contrary, ordinary loads/stores are permitted to access privileged regions as

long as they are executed under the privileged level. This striking difference between

unprivileged and ordinary load/store instructions is the key enabler of our technique.

By capitalizing on this difference, we also need to exploit a unique style of run-

ning embedded software on the processors to achieve this ultimate goal of uXOM.
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In computing systems, software entities are typically assigned certain privileges dur-

ing execution. For instance, user applications run as unprivileged, and the OS kernel

as privileged. In practice, however, applications and the kernel in tiny embedded de-

vices are designed to operate with the same privilege level [28, 51]. This is because

these embedded systems are typically given real-time constraints, and the privilege

mode switching involved in user-kernel privilege isolation is considered very expen-

sive [51]. For the goal of uXOM stated above, we utilize these unique architectural

characteristics of Cortex-M processors. More specifically, uXOM converts all mem-

ory instructions into unprivileged ones and sets the code region as privileged. As a

result, converted instructions cannot access code regions, thereby effectively enforc-

ing the XO permission onto the code regions. Since the processor is running with

privileged level, code execution is still allowed without any permission error.

However, in order to actually realize uXOM, we need to tackle the problem that

some memory instructions cannot be changed into unprivileged memory instructions.

For example, memory instructions accessing critical system resources, such as an in-

terrupt controller, a system timer and a Memory Protection Unit (MPU), should not

be converted. Accesses to these resources always require privilege, so the program

will crash if instructions accessing these resources are converted to unprivileged ones.

In addition, load/store exclusive instructions, which are the special memory instruc-

tions for exclusive memory access, do not have unprivileged counterparts. For these

instructions, there is no way to implement the intended functionality with unprivileged

memory instructions. Therefore, we should analyze the code thoroughly to find these

instructions and leave them as the original instructions.

Unfortunately, these unconverted memory instructions can be exploited by attack-

ers to subvert uXOM. For example, if the attackers manage to execute these instruc-

tions by altering the control flow, they may bypass uXOM by (1) turning off the MPU

protection or (2) reading the code directly. To prevent such attacks, the unconverted
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memory instructions need to be instrumented with verification routines to ensure that

each memory access using these instructions does not break uXOM ’s protection.

However, the attackers can still bypass the verification routines and directly execute

the problematic memory instructions. To handle this challenge, we have devised the

atomic verification technique that virtually enables memory instructions to be exe-

cuted atomically with the verification routine, thereby preventing potential attackers

from executing the memory instructions without passing the verification.

Another important problem uXOM needs to handle is that the attackers can alter

control flow to execute unintended instructions, which may result from unaligned exe-

cution of 32-bit Thumb instructions or execution of the data embedded inside the code

region [9]. Among the unintended instructions, attackers may find useful instructions

for bypassing uXOM, such as ordinary memory instructions. To mitigate this attack

vector, uXOM analyzes the code to find all potentially harmful unintended instruc-

tions and replaces them with alternative instruction sequences that have an equivalent

function but do not contain any exploitable unintended instructions.

Built upon LLVM compiler and Radare2 binary analysis framework [82], uXOM

automatically transforms every software component (i.e., real-time operating systems

(RTOSs), the C standard library, and the user application) into a uXOM-enabled bi-

nary. Currently, uXOM supports processors based on ARMv7-M architecture, includ-

ing Cortex-M3/4/7 processors. To evaluate uXOM, we experimented on an Arduino

Due board, which ships with a Cortex-M3 processor. Our experiment confirms that

uXOM works efficiently, empowered with the optimized use of the underlying hard-

ware features. In particular, uXOM incurs only 15.7%, 7.3% and 7.5% overhead

for code size, execution time and energy, while SFI-based XOM incurs overhead of

50.8%, 22.7%, and 22.3%, respectively. To demonstrate the compatibility of uXOM

with other XOM-based security solutions, we discuss two use cases of uXOM: secret

key protection and CRA defense. We implemented and evaluated the second use case,
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Figure 5.1: System address map for ARMv7-M [47]

the CRA defense. Even when the CRA defense is applied on top of uXOM, it shows

only moderate performance overhead, which is 19.3%, 8.6% and 9.7% for code size,

execution time and energy, respectively.

The remainder of this paper is organized as follows. §5.2 provides the background

information. §5.3 explains the threat model and assumptions. §5.4 and §5.5 describe

the approach and design of uXOM, respectively. §5.6 provides experimental results

for uXOM and its use cases. §5.7 presents several discussions regarding uXOM, and

§5.8 explains related works. §5.9 concludes the paper.

5.2 Background

Cortex-M(3/4/7) processors targeted in this paper implement the ARMv7-M archi-

tecture, the microcontroller (‘M’) profile of the ARMv7 architecture, which features

low-latency and highly deterministic operation for embedded systems. In this section,

we give background information on the key architectural features of ARMv7-M that

are required to understand the design and implementation of uXOM.

5.2.1 ARMv7-M Address Map and the Private Peripheral Bus (PPB)

ARMv7-M does not support memory virtualization and the regions for code, data,

and other resources are fixed at specific address ranges. Figure 5.1 shows the system

address map for ARMv7-M architecture. The first 0.5 GB (0x0-0x20000000) is the

region where the flash ROM is typically mapped. Code and read-only data are placed
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here. The memory range 0x20000000-0x40000000 is the SRAM region where read-

write data (globals, stack, and heap) are placed. Devices only use a small subset of

each region; our test platform (SAM3X8E) has 512KB of flash and 96KB of SRAM.

The memory range 0x40000000-0x60000000 is where device peripherals, such as

GPIO and UART, are mapped. The 1 MB memory region ranging from 0xE0000000

to 0xE00FFFFF is the PPB region. Various system registers for controlling system

configuration and monitoring system status, such as the system timer, the interrupt

controller and the MPU, are mapped in this region. The PPB differs from the other

memory regions of the system in that only privileged memory instructions are allowed

to read from or write to the region. Generally, access permissions for memory regions

can be configured through the MPU which we describe in detail below. However, the

access permission for the PPB is fixed and even the MPU cannot override the default

configuration.

5.2.2 Memory Protection Unit (MPU)

The MPU provides a memory access control functionality for Cortex-M processors.

The biggest difference between the MPU and the Memory Management Unit (MMU)

equipped in high-end processors is that the MPU does not provide memory virtualiza-

tion and thus the access control rules are applied on the physical address space. De-

pending on the setting of the MPU’s memory-mapped registers between 0xE000ED90

and 0xE000EDEC, a limited number (typically 8 or 16) of possibly overlapping re-

gions can be set up, each of which is defined by the base address and the region size.

Each region defines separate access permissions for privileged and non-privileged ac-

cess through the combination of eXecute-Never (XN)-bit and Access Permission (AP)-

bits. The available permission settings are RWX, RW, RX, RO, and NA, but in any

case, unprivileged access is granted the same or more restrictive permission than priv-

ileged accesses. For example, when RO permission is given to a privileged access,
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unprivileged access can only have NA or RO permissions. If two or more regions have

overlapping ranges, the access permission for the higher-numbered region takes effect.

For access to memory ranges not covered by any region, it can be configured to always

generate a fault or to follow the default access permission, which depends on the spe-

cific processor implementation. It is important to note that the read permission should

be included in order for the memory region to be executable. This is the reason that

XOM cannot be implemented simply by configuring the MPU in Cortex-M processors.

5.2.3 Unprivileged Loads/Stores

The ARMv7-M architecture only supports a thumb instruction set, which is a variable-

length instruction set including a mix of traditional 16-bit thumb instructions and 32-

bit instructions introduced in Thumb-2 technology. The unprivileged loads/stores are

special types of memory access instructions provided in the instruction set architec-

ture [47]. The main distinction of these instructions is that they always perform mem-

ory accesses as if they are executed as unprivileged regardless of the current privilege

mode. Thus, memory accesses using these instructions are regulated by the MPU’s

permission setting for unprivileged accesses. Unprivileged loads/stores are only avail-

able in 32-bit encoding and only have immediate-offset addressing mode. They do not

support exclusive memory access. They are distinguished by the common suffix ‘T’

(e.g., LDRT and STRT).

5.2.4 Exception Entry and Return

An exception is a special event indicating that the system has encountered a specific

condition that requires attention. It typically results in a forced transfer of control to

a special software routine called an exception handler. On ARMv7-M, the location

of the exception handlers corresponding to each exception are specified in the vec-

tor table pointed to by the Vector Table Offset Register (VTOR). Note that unlike the
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other ARMv7 profiles, the ARMv7-M has introduced a hardware mechanism that au-

tomatically stores and restores core context data (in particular, Program Status Register

(xPSR), return address1, lr, r12, r3, r2, r1 and r0) on the stack upon exception

entry and return. The ARMv7-M profile also exhibits an interesting feature where an

exception return occurs when a unique value of EXC RETURN (e.g., 0xFFFFFFF1)

is loaded into the pc via memory load instructions, such as POP, LDM and LDR, or

indirect branch instructions, such as BX. Another thing to note about the exception

handling in ARMv7-M is that different stack pointer (sp) can be used before and af-

ter the exception. ARMv7-M provides two types of sp, called main sp and process

sp. The exception handler can only use main sp but the non-handler code can choose

which of the two sps to use. The type of stack pointer being currently used is internally

managed through CONTROL register, so that stack pointers are always represented as

sp in the binary regardless of its actual type.

5.3 Threat Model and Assumptions

Several conditions must be met to realize uXOM. First, the target processor must

support the MPU and the unprivileged load/store instructions. We also assume that

the target devices run standard bare-metal software in which all included software

components, such as applications, libraries, and an OS, share a single address space.

Notably, we assume that the entire software executes at a privileged level as mentioned

in §5.1.

Next, we define the capabilities of an attacker. We assume that attackers are only

capable of launching software attacks at runtime. We do not consider offline attacks

on firmware images, such as disassembling, manipulating, or replacing the firmware,

because we believe that these attacks can be thwarted by orthogonal techniques such as

code encryption or signing. We also leave hardware attacks, such as bus probing [23]
1the value of the program counter (pc) at the moment of the exception
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and memory tampering [52] out of consideration. However, we believe that our at-

tackers are still strong enough to jeopardize the security of the target devices. The

bare-metal software installed in the device is considered benign but internally holds

software vulnerabilities, so that the attackers may exploit the vulnerabilities and ul-

timately have arbitrary memory read and write capability. With such a strong mem-

ory access capability, attackers can access any memory region including code, stack,

heap and even the PPB region for system controls. They can also subvert control flow

by manipulating function pointers or return addresses. We do not trust any software

components, including the exception handlers. Event-driven nature of tiny embedded

systems signifies that exception handlers can take a large portion of embedded soft-

ware components [34], so we cannot just assume the security of these handlers. Thus,

we assume that attackers can trigger a vulnerability inside the exception handler and

manipulate any data including the cpu context saved on exception entry.

5.4 Approach and Challenges

uXOM aims to provide XO permission, which enables effective protection against dis-

closure attacks for code contents, for commodity bare-metal embedded systems based

on the Cortex-M processor. uXOM tries to minimize the performance penalty by uti-

lizing hardware features, such as unprivileged memory instructions and the MPU pro-

vided by Cortex-M processors. Ideally, uXOM converts all memory instructions into

unprivileged ones. It then configures the MPU upon system boot to set code regions to

RX for privileged access and NA for unprivileged access. It also sets the other memory

regions (i.e., data regions) to non-executable for both privileged and unprivileged ac-

cesses. After the configuration, uXOM executes code as privileged. All the converted

memory instructions (i.e., unprivileged memory instructions) are allowed to access the

data regions in the same way as before. However, these instructions are prohibited from

accessing the code region and the PPB region in which the MPU and VTOR are located
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Figure 5.2: uXOM approach

that are essential for the security of uXOM (see the blue arrows in Figure 5.2). This is

because these regions are set to the NA memory permission for unprivileged accesses.

As all of the memory instructions have been converted to unprivileged ones, code dis-

closure attacks are effectively thwarted. In addition, uXOM by default enforces W⊕X

policy that prevents code execution from writable regions. Therefore, any attempt to

inject ordinary memory instructions for code disclosure is blocked as well.

Challenges. The basic principle of uXOM is simple and intuitive as described above.

To realize uXOM in practice, however, we have to overcome some challenges to build

a system that works for real programs and cannot be bypassed by any means. We

summarize the challenges of realizing uXOM as follows.

• C1. Unconvertible memory instructions: To implement uXOM, we initially tried

to convert all memory instructions into unprivileged ones. However, this naı̈ve at-

tempt will be unsuccessful because unprivileged memory instructions do not support
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the exclusive memory access that is mainly utilized to implement lock mechanisms,

and they cannot access the PPB region to which accesses must be privileged re-

gardless of the MPU configuration. Therefore, we need to thoroughly analyze the

entire code, find all these unconvertible instructions, and leave those instructions as

the original types. However, these unconverted loads/stores in the program binary

resulted in the other challenges, C2, C3 and C4.

• C2. Malicious indirect branches: In §5.3, we assumed that attackers are capable

of altering the control flow at runtime by manipulating function pointers or return

addresses. Therefore, attackers can deliberately jump to the unconverted loads/stores

and exploit them. Unlike unprivileged loads, the unconverted ones can access the

code region. Thus, the attackers are now able to read the code without a permission

fault. Furthermore, the attackers can also use the unconverted stores to manipulate

memory-mapped system registers in the PPB. For example, they can configure the

MPU to enable unprivileged access to the code region, completely neutralizing the

protection offered by uXOM.

• C3. Malicious exception returns: This challenge is similar to C2 in that attackers

can hijack control flow and eventually exploit the unconverted loads/stores to thwart

uXOM. As explained in §5.2.4, Cortex-M employs a hardware-based context save

and restore mechanism for fast exception entry and return. The problem is that as the

context is stored in the stack, attackers can exploit a vulnerability while in the ex-

ception handling mode to corrupt any context on the stack. In particular, the context

includes a return address that represents the program point at the moment the excep-

tion is taken. If the attackers corrupt the return address and then trigger an exception

return by assigning EXC RETURN value to the pc, they will be able to execute any

instruction in the program including the unconverted loads/stores.

• C4. Malicious data manipulation: As stated in §5.3, the attackers can perform

arbitrary memory read/write, and as a result, they have full control over all kind of
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program data, such as globals, heap objects, and local variables on the stack. With

such control, they can exploit the unconverted loads/stores even while following a le-

gitimate control flow. For example, they can call a MPU configuration function with

a crafted argument to neutralize uXOM by compromising the necessary memory

access permissions.

• C5. Unintended instructions: An attacker capable of manipulating control flow

may be able to compromise uXOM by executing unintended instructions that are

not found at compile-time. Concretely, Cortex-M processors targeted in this work

support Thumb-2 instruction set architecture [47] that intermixes 16-bit and 32-bit

width instructions with 16-bit alignment. Therefore, the attackers can execute unin-

tended instructions by jumping into the middle of a 32-bit instruction. The attackers

can also execute unintended instructions through immediate values embedded in

code, whose bit-patterns can coincidentally be interpreted as a valid instruction.

5.5 uXOM

In this section, we describe the comprehensive details of uXOM. We first explain the

basic design of uXOM for realizing the XO permission (§5.5.1). We then discuss our

techniques for overcoming the challenges C1-C5 (§5.5.2). Next, we present the opti-

mizations applied to reduce performance penalty imposed by uXOM (§5.5.3). Lastly,

we perform a security analysis to demonstrate that uXOM contains no security hazard

(§5.5.4).

5.5.1 Basic Design

Before digging into the design details, we briefly describe how uXOM works on the

system. As illustrated in Figure 5.2, uXOM is implemented as a compiler pass in

the LLVM framework and a binary verifier. During compilation, uXOM performs

static analyses and code instrumentation to generate a uXOM-enabled binary (i.e.,
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Case Original Instruction Converted Instructions

1 LDR rt, [rn, #imm5] LDRT rt, [rn, #imm8]

2 LDR rt, [rn, #imm12] (ADD rx, rn, #imm12)

LDRT rt, [rx, (#imm8)]

3 LDR rt, [rn, #-imm8] SUB rx, rn #imm8

LDRT rt, [rx]

4 LDR rt, [rn, #+/-imm8]! 

(pre-indexed)

ADD/SUB rx, rn, #imm12

LDRT rt, [rx]

5 LDR rt, [rn], #+/-imm8 

(post-indexed)

LDRT rt, [rn]

ADD/SUB rx, rn, #imm12

6 LDR rt, [rn, rm] ADD rx, rn, rm

LDRT rt, [rx]

7 LDRD rt, rt2, [rn, #+/-imm8] (ADD/SUB rx, rn, #imm8)

LDRT rt, [rx, (#imm8)]

LDRT rt2, [rx, (#imm8)+4]

Table 5.1: Basic instruction conversion (only shown for load word instruction)

firmware). Now, when the binary is flashed on to the board and the system boots,

uXOM automatically enforces the XO permission on the running code.

Instruction Conversion

As RWX or RX is a mandatory permission for code execution on ARMv7-M, exe-

cutable code regions are always readable and, as a result, are subject to disclosure at-

tacks. Unfortunately, we cannot omit the read permission to implement XOM because

the read permission is required for the processor to fetch instructions from memory.

Therefore, our strategy for XOM is to deprive all memory instructions of the access

capability for code regions. Briefly put, we convert the memory instructions into un-

privileged ones and set the code regions to be accessible only with a privileged manner.

Converting the type of the memory instruction may seem to be a trivial task, but

not all memory instructions can be readily converted as unprivileged. The unprivileged

loads/stores only support one addressing mode with a base register and an immediate
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offset which must be positive and fit within 8 bits. On the other hand, the original

memory instructions vary in addressing modes, such as register-offset addressing and

pre/post-indexed addressing, which updates the base register. Also, there are unprivi-

leged counterparts to the load/store byte and load/store halfword instructions, but there

are no corresponding unprivileged instructions for load/store dual (LDRD/STRD) and

load/store multiple (LDM/STM), which respectively load/store two or multiple regis-

ters. To correctly convert all the memory instructions while preserving the program

semantics, we sometimes need extra instructions.

Table 5.1 summarizes the conversions we apply to different types of load instruc-

tions. Cases 3-6 always need an extra ADD or SUB instruction for calculating the mem-

ory address. We omit an extra instruction for other cases if we can fit the immediate

in the unprivileged instruction. Note that we may need an extra register for storing

the calculated address if rn is used again in other instructions. We implement our

conversion before the register allocation phase so that we do not have to worry about

the physical registers and let the compiler choose the best register for the temporary

results. LDM/STM instructions are not shown in the table because they only appear

during an optimization pass after register allocation. Therefore, when the optimization

pass tries to create LDM/STM instructions, we disable the optimization to prevent the

generation of those instructions.

Permission Control

In order for the XO permission based on the unprivileged load/store instructions to take

effect, uXOM has to configure the MPU to enforce certain memory access permis-

sions. Figure 5.3 shows the default MPU configuration for uXOM. Recall that when

multiple regions overlap, the permission setting for the higher-numbered region is ap-

plied. We create Region 0 covering the entire address space with RW permission for

both privileged and unprivileged modes. This is needed to allow unprivileged instruc-
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Code

Read-only data

Read-write data

Peripheral

PPB (P:RW, U:NA)

P:RX

U:NA P:RO

U:RO

Region 0 Region 6

Region 7

MPU configurationAddress map

Stack (main, process)

P:RW

U:RW

P : privileged access

U : unprivileged access

Figure 5.3: uXOM-specific memory permission. Unlabeled regions (white-colored regions)
in the address map indicate the unused regions where the memory access generates data abort.

The PPB region has a default memory permission (P:RW, U:NA) regardless of the MPU
configuration.

tions to access the SRAM and the peripheral region. Otherwise, unprivileged access

to those regions is not permitted due to the processor’s default permission setting. We

assign several higher-numbered regions to uXOM protection. (Here, we assumed that

the number of MPU regions is 8.) Region 6 covers the entire flash region and assigns

RX for privileged accesses and NA for unprivileged accesses. Since flash also contains

read-only data, we configure Region 7 to let the unprivileged load instruction access

the read-only data. To determine the base and size of this region, we need to know

the size of the read-only data. To do this, we first compile, find out the read-only data

size and generate an include file that is fed back into the MPU configuration code. The

linker script is also modified to take this information and place the read-only data ap-

propriately. The configurations are done in the early stage of the reset handler, which

is called upon processor reset. In this way, the uXOM-specific permission is activated

at the early stage of the system boot before attackers can seize control of the system.
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5.5.2 Solving the Challenges

So far we have explained the basic design of uXOM for activating the XO permission.

In the following, we describe how uXOM addresses the challenges presented in §5.4.

Finding Unconvertible Memory Instructions

Unprivileged memory instructions do not provide exclusive memory accesses and they

cannot access the PPB region. As stated in C1, therefore, we need to identify the mem-

ory instructions that must not be converted to unprivileged ones and leave them as they

are. We simply exclude exclusive memory loads/stores (e.g., LDREX and STREX) from

the conversion candidate. We perform compiler analysis to find loads/stores accessing

the PPB. Our analysis of the code base reveals that accesses to the PPB involve cal-

culating the base address from a hard coded address pointing to the PPB region. This

is consistent with the claims made in previous work [28]. We conduct a similar back-

ward slicing technique to track how the base address of each memory instruction is

calculated. If its address is a constant with the value corresponding to the PPB region,

or if it is calculated by adding some offset to that constant value, we identify it as an

access to the PPB region and leave it as an original form. For our test platform, intra-

procedural analysis suffices to identify all PPB accesses. If a PPB address is passed

through a function argument and used in a memory access, we can manually identify

those particular cases and add annotations to prevent the compiler from converting the

memory instructions as done in previous work [28]. Fortunately, most PPB accesses

tend to be performed by the hardware abstraction layer (HAL) provided by the device

manufacturer, so no significant amount of annotations are required to complement the

static analysis.
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Instruction Type Verification Details

Ordinary stores 
(STR)

if Targetaddress points to MPU, 
Targetvalue must not violate uXOM-specific memory permissions.

else if Targetaddress points to VTOR, 
Targetvalue must have one of the valid VTOR values.

else,
Targetaddress must point to the PPB region excluding MPU region 
and VTOR region 

Exclusive stores 
(STREX) Targetaddress must not point to the PPB region.

Ordinary loads 
(LDR)

Exclusive loads 
(LDREX)

Targetaddress must not point to the code region.

Table 5.2: Verification details by the type of unconverted memory instructions.
Targetaddress denotes the memory address accessed by load/store instructions and

Targetvalue denotes the value to be written by the store instructions.

Atomic Verification Technique

Our solution to deal with C1 is necessary but may endanger the system. The problem

is that, as stated in C2, C3 and C4, the strong attackers assumed in §5.3 can easily

exploit the unconverted instructions to neutralize uXOM. To address this problem,

we devise a atomic verification technique inspired by the concept of the reference

monitor [37, 92]. The key of our technique is to verify memory accesses by the un-

converted loads/stores. More specifically, it inserts a routine that performs verification

as described in Table 5.2 before every unconverted load/store so that we can confirm

whether or not the instruction tries to access code regions or manipulate system config-

uration necessary for uXOM, such as uXOM-specific memory permission (solve C4).

At this point, however, the inserted verification may be bypassed by the attackers who

can divert control flow. To prevent this, therefore, the technique enforces the atomic

execution of the instruction sequence composed of the verification routine and the fol-

lowing untrusted load/store instruction, ensuring that the attackers cannot execute the

unconverted loads/stores without a proper verification (solve C2 and C3). Our basic

strategy for atomic verification is to (1) allocate a dedicated register as a base regis-
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ter of every unconverted load/store, and then (2) enforce the following two invariant

properties regarding the dedicated register.

• Invariant 1: The dedicated register must be set to a target address of each un-

converted load/store immediately before the associated verification routine. The set

value will be maintained only during the execution of the atomic instruction se-

quence due to Invariant 2.

• Invariant 2: The dedicated register must hold a non-harmful address (i.e., not a code

or the PPB address) when the atomic instruction sequence is not executed.

Now, the accessible memory of the unconverted loads/stores is limited by the value

of the dedicated register, which is used as their base register. Invariant 1 allows the

unconverted loads/stores to be executed for their original purpose (e.g., access to the

PPB) only through the atomic instruction sequence with a verification. Also, Invariant

2 prevents any attempt to execute the unconverted loads/stores to access code or the

PPB without going through the atomic instruction sequence. As a result, the atomic

verification is achieved and the challenges, C2, C3 and C4, are addressed successfully.

Unfortunately, this implementation strategy decreases the number of available registers

by exclusively allocating one register for the PPB access, which may incur additional

register spills and occasionally cause a performance drop in some code with a high

register pressure.

Therefore, we employ an alternative strategy that is similar to the basic strategy but

differs in that it uses the sp as a base register of every ordinary load/store rather than

using the dedicated register. Now, we can achieve the atomic verification if we are able

to enforce on the sp the same invariant properties as the dedicated register. Enforcing

Invariant 1 is straightforward, but enforcing Invariant 2 is challenging because it can

cause side effects on the program as the sp is used throughout the program, unlike the

dedicated register, which is exclusively used only in the atomic instruction sequence.

Fortunately, recall that the sp is a special purpose register that should always point to
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update_register:

cpsid i

mov r10, sp

mov sp, r0

[verification routine]

str r1, [sp]

mov sp, r10

[check sp]

cpsie i

exception_handler:

[check main sp and process sp]

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:

update_register:

str r1, [r0]

exception_handler:

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:

(a) Before (b) After

// disable interrupt

// backup the value of sp

// set sp to a target address (IP1)

// verify the subsequent unconverted inst.

// perform an unconverted inst.

// restore the value of sp

// check the value of sp (IP2)

// enable interrupt

// check the value of sp (IP2)

Figure 5.4: An unconverted store before and after applying the atomic verification technique.
In the update register functions r0 and r1 are used to pass arguments that will be used as

unconverted store’s base register and source register, respectively.

the stack, so Invariant 2 can be safely enforced without worrying about side effects.

Enforcing Invariant 2 on sp. We achieve this by adopting the idea suggested by

the previous work on SFI [18, 86, 106]—we check the value of the sp whenever the

attackers could have modified it to point to the outside of the valid region (i.e., the

stack region). There are three kinds of program points where we need to insert the sp

check routines: (1) when the sp is modified by a non-constant (i.e., register), (2) when

the sp is increased or decreased by a constant, and (3) at the entry of an exception

handler.

We can usually find the first case when the alloca function is called, the variable

size array is used, or a stack environment stored by the setjmp function is restored

by the longjmp function, which involves an assignment from a general register to the

sp. As these cases are rare, we insert the sp check routines at all the corresponding

points. 2

The second case is very frequently found in the prolog and epilog of a function

when the sp is adjusted according to the frame size of the function. The attackers

could, although not easily, find a suitable gadget consisting of such an instruction and
2Currently, uXOM can handle only C code, so we manually insert the sp check routine for the

longjmp function written in assembly language.
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repeatedly execute the gadget until the sp is set to a certain value. As pointed out in the

previous SFI work [106], if there is a memory instruction based on the sp following

the sp modification, the sp can be regulated by placing redzones (i.e., non-accessible

memory regions) around the valid stack region. If the redzones are larger than the

changes in the value of the sp, the following sp-based memory instruction ensures

that any attempt to use the gadget to jump over the redzones will be detected. Fortu-

nately, the address map illustrated in Figure 5.3 shows that there already exist large

unused regions that can do the role of redzones. This is because in most cases, the

stack, code and PPB reside in a separate memory space, such as SRAM, flash mem-

ory and system bus, respectively. Therefore, we create redzones only when the stack

is created adjacent to the code and PPB without unused regions in between. Note that

redzones can detect the corruption of the sp only if there is an actual memory access

using sp. It implies that if, after the sp is corrupted, an indirect branch is executed

prior to a sp-based memory instruction, attackers may be able to evade the execu-

tion of the memory instruction by manipulating control flow. Therefore, to ensure the

success of this method, we implement an analysis that explores all path from each

constant sp modification. The analysis checks if there are any sp-based memory in-

structions before a potentially exploitable indirect branch is encountered. According

to our experiments, there are some sp-based memory instructions preceding indirect

branches most of the time. However, we sometimes fail to find any sp-based memory

instructions or encounter a function call that disables further analysis, and in this case,

we insert sp check routines because we can no more guarantee the sp corruption can

be detected by the redzones.

Lastly, the attackers can try to avoid all the checks for sp mentioned above by trig-

gering an interrupt right after they corrupt the sp. To neutralize this attempt, we have

to validate the sp by inserting another sp check routine at the entry of the exception

handlers. Note that as explained in §5.2.4, there are two sps in Cortex-M, and differ-
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Instr. #1 Instr. #2

(1)

Unintended Instr. 

16-bit32-bit

Instr. #2

Unintended Instr. 

32-bit

Unintended Instr. 

(2) (3)

Instr. #1

32-bit

Instr. #1

32-bit

Figure 5.5: The generation of an unintended instruction by an unaligned execution of a 32-bit
instruction.

ent sp may be activated before and after the exception, so the sp check routine at the

entry of the exception handler checks the validity of both sps as shown in Figure 5.4.

The attackers may try to avoid the sp check routine by modifying VTOR to alter the

exception handlers. To avert this attempt, we identify at compile-time the valid values

of VTOR, and regulate VTOR at run-time so that it does not deviate from the identified

values, as described in Table 5.2.

Fulfillment of the Atomic Verification Technique. Now, as both Invariant 1 and

Invariant 2 can be enforced on the sp, we can implement the atomic verification

technique using the sp without allocating a dedicated register. Figure 5.4 shows an

example code on how the atomic verification technique is applied to harden an un-

converted store. The original value of the sp is backed up while it is used in the

unconverted store instruction (Line 3 and 9). The sp is assigned a target address (Line

5) and the verification routine verifies the subsequent unconverted store by checking

the validity of its target address and target value (Line 6). If the verification is passed,

the unconverted store performs memory access (Line 7). Note that because Invariant

2 is enforced by instrumenting sp-update instructions and exception handlers (Line

10 and 14), the sp always is forced to point to the stack region except when it is used

for the unconverted loads/stores. Therefore, to execute the unconverted store for its

original purpose (i.e., accessing the PPB), storing the target address (i.e., the address

of the PPB) to the sp must be preceded (Line 5), which in turn ensures that the verifi-

cation routine will be performed (Line 6). At the same time, as the sp is used for the

unconverted loads/stores and may point to out of the stack region, we temporarily dis-
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able interrupts (Line 2 and 11), thereby preventing the register from being erroneously

checked at the exception handler.

Handling Unintended Instructions

As stated in C5, our strong attackers capable of manipulating the control flow of the

program can execute unintended instructions to bypass the security of uXOM. The un-

intended instructions are mainly caused by the unique property of Thumb-2 instruction

set architecture that intermingle 16-bit and 32-bit instructions. Specifically, as shown

in Figure 5.5, when the attackers deliberately jump into the middle of a 32-bit instruc-

tion, unintended 16-bit or 32-bit instructions can be decoded and executed. Unintended

instructions can also appear in the immediate values in code memory that match the bit

patterns of some valid instructions, as illustrated in Figure 5.6.(b). As such, a number

of unintended instructions are lurking in code. Fortunately, however, only a minor-

ity of them that can be interpreted as ordinary memory instructions or sp-modifying

instructions can actually be exploited to compromise uXOM.

Against this problem, we have implemented the code instrumentation technique

based on the idea in the previous work [9] that replaces each exploitable unintended

instruction into safe instruction sequences that serve the same function as the original

instruction. There was one complication in solving the problem that not all exploitable

unintended instructions can be identified at compile time. Many of the exploitable un-

intended instructions result from immediate values (i.e., symbol addresses) in instruc-

tions which are not resolved until all the object files are linked by the linker. Simply

transforming all those instructions that use unresolved symbol addresses will result

in unacceptable overhead in both performance and code size. Thus, it is preferable to

implement the transformation inside the linker or use the static binary transformation

tool. However, adding extra instructions at this stage is almost impossible because it

will require us to adjust all the pc-relative offsets that are used in many ARM instruc-
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LDR r2, [PC, #0x20]
...

.word 0xf0006008
//0x6008 : STR r0, [r1]

0xFFC:
0x1000:

0x1020:

MOVT r2, #0xf000
MOVW r2, #0x6008
...

0xFFC:
0x1000:

MOVW r0, #0x2d18 
// HEX encoding : 0xf6425018 
// 0x5018 : STR r0, [r3, r0]

0x1000: MOVW r0, #0x2918
ADDW r0, r0, #0x400

0x1000:
0x1004:

(a) Unintended instruction originating from a 32-bit MOVW instruction

(c) Unintended instruction originating from an immediate value in the code region

LDR r8, [sp], 4
// HEX encoding : 0xf85d8b04 
// 0x8b04 : LDRH r4, [r0, 0x18]

0x1000: LDR  r9, [sp], 4
MOV  r8, r9

0x1000:
0x1004:

(b) Unintended instruction originating from a 32-bit LDR instruction

TBB [PC, r5]
.word 0x50274b39
//0x6027 : STR r7, [r4]
...
...

0xFFC:
0x1000:

0x10A0:

TBB [PC, r5]
.word 0x02284c3a
B 0x10A2
...
...

0xFFC:
0x1000:
0x1004:

0x10A2:

(d) Unintended instruction originating from a jump table

Figure 5.6: Examples of unintended instructions and code transformations to remove them.

tions. Adding this capability to current ARM GNU linker implementation will require

significant engineering effort.3 As a work around, we implemented a binary verifier

that scans the binary executable for exploitable unintended instructions and records

the position of each instruction inside the function. With that information, the program

is then recompiled and the exploitable unintended instructions are replaced into alter-

native instruction sequences. Sometimes, new exploitable unintended instructions are

revealed after this process, as code and object layouts are changed and offsets and ad-

dresses embedded in the code are changed accordingly. Thus, the interaction between

the compiler and the verifier is repeated until there are no exploitable unintended in-

structions in the binary.
3This capability is available in the linker for some architectures like RISC-V which implements ag-

gressive linker relaxation. For those architectures, the pc-relative offset resolution is deferred until the
linking time to enable linker optimizations that reduce instructions and thus may change the pc-relative
offsets in the code.
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Figure 5.6 demonstrates a few examples showing how the transformation is applied

to remove exploitable unintended instructions. Figure 5.6.(a) shows the case where an

exploitable unintended instruction (STR) is generated from the immediate value of 32-

bit instruction (MOVW). To remove the exploitable instruction, we divide the original

immediate value into two numbers A and B. Then we replace the original 32-bit in-

struction to use A and add an extra instruction (e.g., ADDW) to add B to the register

written by the original instruction. Note that for 32-bit instructions whose immediate

value is only determined at link time, we only add the extra instruction at compile time

and make sure that the linker puts value A and B instead of the original immediate

value. Figure 5.6.(b) shows another example that the destination register of the 32-bit

instruction (LDR) generates the exploitable unintended instruction (LDRH). We solve

this case by putting the value loaded from memory into the other register and then use

an extra MOV instruction to copy the value into the original destination register. We

have also implemented an optimization in the register allocation pass to prefer invul-

nerable registers over the others for the destination of these 32-bit instructions so that

exploitable unintended instructions can be avoided as much as possible. This saves the

use of extra instructions and reduces the performance and code size overhead. Fig-

ure 5.6.(c) shows an unintended instruction that exists in a constant embedded in a

code region to be loaded by a pc-relative load. To sanitize it, we remove the constant

value and replace the associated pc-relative load with two move instructions. If the re-

sulting MOVT or MOVW instruction creates new exploitable unintended instructions, it

is further transformed similarly to the example in Figure 5.6.(a). Finally, Figure 5.6.(d)

shows the case where the offsets in a jump table embedded in the code create an ex-

ploitable unintended instruction. In the example, the value 0xA0 (0x50 * 2) is added

to pc and the control is transferred to 0x10A0. To remove the unintended instruction

in this case, we add a trampoline code right after the jump table for the targets with the

problematic offsets.
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5.5.3 Optimizations

According to our experiments (see §5.6.1), unprivileged memory instructions con-

sume the same CPU cycles as ordinary memory instructions. However, unprivileged

instructions are 32-bits in size while many ordinary memory instructions have a 16-bit

form. Also, extra instructions that are added as described in §5.5.1 can increase both

the code size and the performance overhead. Since code size is another critical factor

in an embedded application due to its scarce memory, it can be beneficial to leave the

memory instructions in their original form if we can ensure that this does not harm the

security guarantees of uXOM. In fact, a large number of the instructions do not need

to be converted either because they are safe by nature or because they can be made

safe through some additional effort. For example, ARM supports pc-relative memory

instructions which access a memory location that is a fixed distance away from the

current pc—i.e., the address of the current instruction. As these instructions can only

access certain data embedded in the code region, attackers cannot exploit them to ac-

cess other memory locations. Therefore, we do not need to convert these instructions,

so we leave them as long as it is not exploitable as unintended instructions (§5.5.2). We

also do not convert stack-based ordinary memory instructions. Numerous instructions

use the sp as the base address. Almost all of them are 16-bits in size since Cortex-M

provides special 16-bit encoding for stack-based memory instructions. Converting all

of these as the unprivileged will significantly add to the code size of the final binary.

Most of the LDM/STM instructions, including all the PUSH/POP instructions, are also

based on sp. Converting them would require multiple unprivileged instructions which

would further increase the code size and even the performance overhead. Luckily, re-

call that uXOM already enforces the invariant properties noted in §5.5.2 on the sp.

Therefore, attackers cannot exploit the ordinary memory instructions based on sp, and

we can safely leave sp based memory instructions in their original forms.
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5.5.4 Security Analysis

uXOM builds on the premise that there remains no abusable instructions in a firmware

binary. uXOM satisfies this through its compiler-based static analysis (§5.5.1 and

§5.5.2) that (1) identifies all abusable instructions, such as ordinary memory instruc-

tions and unintended instructions, and (2) converts them into safe alternative instruc-

tions. This conservative analysis does not make false negative conversions, so uXOM

is fail-safe in terms of security. In the following, we show that attackers we assumed

in the threat model (§5.3) will not be able to compromise uXOM.

At Boot-up

As noted in §5.3, we trust the integrity and confidentiality of the firmware image. The

firmware image will be distributed and installed with the uXOM-related code instru-

mentation applied. As soon as the system is powered up, the reset exception handler

starts to run and the code snippet that uXOM inserted at the start of the handler is ex-

ecuted to enforce uXOM-specific memory access permissions. Note that the firmware

has started its execution from a known good state and the attackers have not yet in-

jected any malicious payloads. Therefore, we can guarantee that uXOM will safely

enable XOM without being disturbed by the attackers.

At Runtime

Once uXOM enables XOM, the attackers are completely prevented from accessing

the code. They cannot use unprivileged loads/stores to bypass uXOM, so they have to

resort to the unconverted loads/stores. Through the instruction conversions and opti-

mizations of uXOM, only three types of unconverted loads/stores remain in the binary:

stack-based loads/stores, exclusive loads/stores and ordinary loads/stores for the PPB

access.

Stack-based loads/stores. uXOM ’s optimization excludes sp based loads/stores
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from the conversion candidates. The attackers may be able to execute these loads/s-

tores, but they cannot access the PPB region or code regions. This is because the sp is

forced to point to the stack regions due to the invariant property (Invariant 2 in §5.5.2)

enforced on the sp.

Exclusive loads/stores and ordinary loads/stores for the PPB access. These un-

converted loads/stores are protected by the atomic verification technique. Verification

routines are inserted just before each unconverted load/store and the atomic execution

of the inserted routine and the corresponding unconverted load/store is guaranteed. Of

course, the attacker may jump into the middle of the atomic instruction sequence to

directly execute the unconverted load/store without a proper verification. However, as

the unconverted loads/stores use the sp as their base register, the attackers still cannot

access the code and the PPB regions.

5.6 Evaluation

uXOM transformations are implemented in LLVM 5.0, and uXOM ’s binary verifier

is implemented using the Radare2 binary analysis framework [82]. We used the RIOT-

OS [10] version 2018.10 as the embedded operating system. As the whole binary,

including the OS, runs in a single physical address space at the same privilege level,

uXOM compiler transformations are applied to the OS code as well as the application

code to enable complete protection. We also applied our transformations to the C li-

brary (newlib) included in arm-none-eabi toolchain, which had to be patched in a few

places to compile and run correctly with LLVM.

To better show the merits of our approach, we also implemented and evaluated SFI-

based XOM to compare against uXOM. Originally, SFI is developed to sandbox an

untrusted module in the same address space. It restricts the store and indirect branch

instructions (i.e., by masking or checking the store/branch address) in the untrusted

module so that the untrusted module cannot corrupt or jump into the trusted mod-
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Figure 5.7: Execution time of bitcount according to the different alignments of the code
region.

ule. It also bundles the checks with the store/branch instructions and prevents jumps

into the bundle so that the restrictions applied to the store or branch address cannot

be skipped. Capitalizing on the SFI’s access control scheme, some studies [18, 80]

have implemented the SFI-based XOM that instruments every load instructions with

masking instructions to prevent them from reading the code region. However, as these

studies focus on high-end devices like smartphones and desktop PCs, we adapted the

SFI-based XOM to work on Cortex-M based devices. As our target device do not use

virtual memory, code and data must reside in a specific memory region. This prevents

us from using simple masking to restrict load addresses and forces us to use a compare

instruction to validate the address. Furthermore, the instruction set of Cortex-M re-

quires us to insert additional IT (If-Then) instruction to make load instruction execute

conditionally on the comparison result. Next, we place the compare and load inside

a 16-byte aligned bundle and make sure that they do not cross the bundle boundary.

We insert NOPs in the resulting gaps. Lower bits of indirect branch targets are masked

(cleared) to prevent control flows into the bundle. We also make sure that all possible

targets of an indirect branch (i.e., functions and call-sites) are aligned. POP instructions

used for function returns are converted to masking and return sequence as described

in the previous work on SFI [86]. Following the optimization done in the paper [106],

the memory load instructions based on the sp are not checked and the sp is regulated

in the same way as in uXOM.
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Figure 5.8: Runtime overhead on BEEBs benchmark suite.

To evaluate uXOM and the SFI-based XOM, we used the publicly available BEEBs

benchmark suite (version 2.1) [78]. We selected 33 benchmarks that are claimed to

have relatively long execution time [28]4. We ran each benchmark on an Arduino

Due [5] board which ships with an Atmel SAM3X8E microcontroller based on the

Cortex-M3 processor. During the experiment, we found that the program runs give

very inconsistent timing results depending on how the code is aligned, even though

there are no caches in the processor. After some investigation, we found that the rea-

son is due to the flash memory. The Arduino Due core runs at 84MHz in the default

setting, which makes it necessary to wait for 4 cycles (called flash wait state) to get

stable results from the flash memory. SAM3X3E chips are equipped with a flash read

buffer to accelerate sequential reads [8], which gave us variable results depending on

where the branches are located. As a preliminary experiment, we measured the execu-

tion time while changing the displacement of the entire code region for bitcount

benchmark. As shown in Figure 5.7, the changes in execution time show a pattern

that is repeated every 16-byte, which corresponds to the size of the flash read buffer.

Because of this result, to get a consistent result, we decreased the core frequency to

18.5MHz in all our experiments.
4Some of the benchmarks have been dropped in the newest version due to the license problem.
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5.6.1 Runtime Overhead

Figure 5.8 shows the runtime overhead of uXOM and SFI-based XOM. The geomean

overhead of all benchmarks is 7.3% for uXOM and 22.7% for SFI-based XOM. The

worst case overhead for uXOM is 22.3% for huffbench benchmark and that for

SFI-based XOM is 75.1% for edn benchmark. Note that the performance overhead of

SFI reported in the previous work [86] for a high-end ARM device (Cortex-A9) is 5%.

In the paper, they mention that overhead induced by additional instructions for SFI can

be hidden by cache misses and out-of-order execution. Based on this, we presume that

the large overhead of SFI-based XOM for Cortex-M3 observed in our experiment is

due to the low-power and cache-less processor implementation. This strongly shows

the need for an efficient low-end device oriented XOM implementation like uXOM.

To inspect the sources of overhead, we built and ran multiple partially instrumented

versions of binaries with different kinds of transformations applied. First, to exam-

ine the performance impact of removing exploitable unintended instructions, we mea-

sured the runtime overhead for uXOM-UI—a variation of uXOM that does not han-

dle unintended instructions. As a result, we measured that the geomean overhead for

uXOM-UI is 5.2%, which shows that removing unintended instructions incurs 2.1%

of overhead in uXOM. We then gathered the statistics on the number of conversions

and check codes inserted in uXOM-UI (Table 5.3). We also measured the overhead

ratio in terms of code size and execution time according to the type of conversions

and checks (Figure 5.9). In Table 5.3 and Figure 5.9, no extra instr. denotes

the case where a memory instruction is converted to an unprivileged one without an

additional instruction. imm. offset denotes the case where an additional instruc-

tion is required because the immediate offset is too large or is negative. pre/post

idx. represents the pre/post-indexed addressing mode and reg. offset repre-

sents the register-register addressing mode. double/multiple mem. ops. rep-

resents LDRD/STRD/LDM/STM instructions. For the sp check part, non-const
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Cases Count (ratio %)

Instruction conversion
no extra instr. 25932 (77.0)
imm. offset 2547 ( 7.6)
pre/post idx. 1671 ( 4.9)
reg. offset 2891 ( 8.6)
double/multiple mem. ops. 641 ( 1.9)

sp check
non-const sp mod. 18 ( 0.7)
const sp mod. (checked) 769 (28.8)
const sp mod. (no check) 1881 (70.5)

Table 5.3: Statistics for instruction conversion and sp check instrumentation.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Code

Time

no extra instr imm offset reg offset

pre/post idx double/multiple mem ops LDR/STR checks

sp checks

Figure 5.9: Performance overhead breakdown for the different components of uXOM-UI
transformation.

sp mod. is the case where the sp is modified by the non-constant (and the check

is required). const sp mod. (checked) is the case where the sp is modified

by the constant and requires checking since no load/store based on the sp is found

afterwards. const sp mod. (no check) is the case where the sp is modified

by the constant but does not need to be checked. Finally, LDR/STR checks denotes

the instructions inserted for the atomic verification technique.

The statistics shown in Table 5.3 are gathered while compiling the C standard li-

brary, RIOT-OS, and each of the benchmarks. Note that although the numbers do not

represent those executed at runtime, we can expect some correlation between them.

Among the converted memory instructions, the majority of the cases is the one where

a memory instruction is directly converted to a single unprivileged memory instruction

without any extra instruction (no extra instr. accounts for 77% of all conver-
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Figure 5.10: Code size overhead on BEEBs benchmark suite.
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Figure 5.11: Energy overhead on BEEBs benchmark suite.

sions). This tells us that most of the load/store instructions are using an immediate-

offset addressing mode and the offset is usually small so that it fits in the immediate

field of the unprivileged instructions. As we can see, instructions converted in this way

do not contribute to the runtime overhead albeit being the majority. Even though the

unprivileged instructions are 32-bits long, they do not increase the overhead unless ad-

ditional instructions are inserted. This is a big advantage for uXOM, and it is the main

reason why uXOM can be much more efficient than SFI-based XOM.

As illustrated in Figure 5.9, the type of instruction conversions that contributes

the most of the overhead is the one for the register-register addressing mode (reg.

offset). Even though they represent only 8.6% of all conversions, they cause 54%

of the total overhead for uXOM-UI. The reason would be that they are frequently used

in time-consuming loops, for example, to index array variables. imm. offset and

pre/post idx. take up the other half of the overhead. Memory instructions that

load/store multiple registers (double/multiple mem. ops.) cause a negligible

runtime overhead; they are rare in number and also, although they are converted into
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multiple unprivileged instructions, the original instruction also takes up extra cycles

to load/store multiple registers. The sp checks that are inserted for stack modification

have an only negligible impact on performance as our analysis finds that the sp checks

are only needed for less than 30% of sp-based memory instructions.

5.6.2 Code Size Overhead

To see the impact of instruction insertion by uXOM, we measured the size of the

code in the final binary, excluding the data size. Figure 5.10 shows the result for both

uXOM and SFI-based XOM. For uXOM, code size is increased by 15.7%, and for

SFI-based XOM, it is increased by 50.8%. It shows that uXOM can implement XOM

with much less code size overhead compared to SFI-based XOM. In addition, we mea-

sured that the geomean overhead of uXOM-UI is 11.6%, which indicates the amount

of increased code for removing unintended instructions is 4.1%. Figure 5.9 shows the

source of the overhead that is caused by instruction conversions and checks. First, no

extra inst. accounts for 54.5% of the code size overhead for uXOM-UI, dif-

ferently from the impact that it had on the runtime performance. This is because the

original 16-bit load/store instructions are converted to 32-bit unprivileged instruction,

and they are large in number, too. Other types of instructions that need additional in-

structions also increases the code size to some degree. The instructions added for the

atomic verification technique (ldr/str check) accounts for 17.4% of the code size

overhead for uXOM-UI. Although there are not many instructions accessing the PPB

region, around ten instructions are inserted for each of those points, which adds some

overhead to the code size especially since the benchmark code size are only around

30KB. We expect the overhead from the atomic verification to be a smaller percentage

in the real program with a larger code base.
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5.6.3 Energy Overhead

Since many embedded devices running on Cortex-M processors often operate based

on constrained battery, energy efficiency is one of the important performance fac-

tors for these devices. To measure the impact of uXOM on energy consumption,

we recorded the power while running the individual benchmarks using the ODROID

Smart Power [76]. For the convenience of measurement, the benchmarks were repeat-

edly executed to run for at least 30 seconds. Figure 5.11 shows the results. For uXOM,

the geometric mean of all benchmarks is 7.5%, which is slightly larger than 5.8% of

uXOM-UI but much lower than 22.3% of SFI-based XOM. The results share a similar

trend with the execution time since the energy is also affected by the execution time.

5.6.4 Security and Usability

Other than its excellence for performance, we also need to mention the security and

flexibility benefits of uXOM over SFI-based XOM. uXOM provides a better security

guarantee against privileged attackers than SFI-based XOM. SFI-based XOM, includ-

ing the existing studies, focus only on the code disclosure through memory read in-

structions, because they assume that W⊕X policy is assured by a Trusted Computing

Base (TCB) such as the OS kernel. However, as described in §5.3, uXOM cannot as-

sume any TCB in the bare-metal environment in which all software components are

running with privileges in a single address space. The privileged attacker could neutral-

ize W⊕X by manipulating the MPU configuration register using memory vulnerabili-

ties in the code. To prevent such an attack, SFI-based XOM for Cortex-M would also

have to regulate memory write instructions to protect memory-mapped registers for the

MPU. However, this would undoubtedly lead to more severe performance overheads,

and even worse, SFI-style masking of write instructions would still leave the system

vulnerable against attacks through the exception handler (C3 of §5.4). In addition, the

current implementation of SFI-based XOM is vulnerable to unintended instructions. To
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defend this, it should eliminate all exploitable unintended instructions either by using

the instruction replacement technique similar to uXOM or selectively aligning 32-bit

instructions so that jump into the middle of those instructions can be prevented by the

masking of indirect jump addresses. Either way, additional performance overhead will

be unavoidable.

uXOM is also more flexible in placing the code and data. For uXOM, the XOM

region can be placed anywhere in the address space. For example, uXOM can be

applied for the code placed in SRAM for performance or firmware updates [49]. Also,

uXOM can set multiple XOM regions as long as the number of MPU regions supports

it. However, SFI-based XOM must place the code at one end and the data on the

other to simplify code instrumentation. Moreover, SFI-based XOM needs a guardzone

between the code and the data region [106] which further restricts the code and data

placement and also causes the memory to be wasted for the guardzone.

5.6.5 Use Cases

uXOM can be used to hide sensitive information in the code region, such as secret keys

and code layout. We describe two use cases to illustrate how uXOM can be applied to

a security solution.

Secret key protection. In tiny devices, secret keys are frequently used for various pur-

poses, such as device authentication and communication channel protection. uXOM

can protect these keys against arbitrary memory read vulnerabilities by embedding

them inside the code. For example, consider the following code that defines the con-

stant global key.

const unsigned char key[32] =

{0xcb, 0x21, 0xad, 0x38, ...};

The code that reads the first 4-byte of this value is compiled to the assembly code

composed of MOVW and MOVT as follows:
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MOVW r0, #0x21cb

MOVT r0, #0x38ad

Now, if we use uXOM to apply the XO permission to this code, attackers cannot

access the key value by arbitrary memory reads. As an example, we applied uXOM

to rijndael benchmark, which uses a symmetric key for encryption. By declaring

the key as a global constant, we could confirm that the key is embedded in the code

protected by uXOM. Such a protection offered by uXOM can further be combined

with in-register computation techniques [64] for a secure computation robust against

memory vulnerabilities.

CRA defense. To date, many researchers have proposed code diversification-based

CRA defense techniques [18,28,29,79]. They randomize code layout to prevent attack-

ers from using the existing gadgets for CRA. As the code disclosure attack emerged

as a serious threat to randomization-based defenses, XOM has been proposed as an

effective solution to fortify these defenses.

As another use case of uXOM, we implemented a CRA defense solution based on

Readactor [29], which is a representative code diversification based CRA defense with

resistance to code disclosure attacks. Readactor aims to defend against two classes of

code disclosure attacks: direct disclosure where the attackers disclose code layout by

directly reading the code and indirect disclosure where attackers indirectly infer the

code layout through the value of the code pointers. Readactor first places all code in

XOM to prevent the direct disclosure attacks. It then replaces all code pointers with

pointers to trampolines so that all indirect control transfers must go through the tram-

poline. In this way, code pointers containing the original code location are never stored

in a register or memory, thereby preventing the indirect disclosure attacks. To demon-

strate this use case, we implemented function reordering and the trampoline mecha-

nism. Every function call is replaced with a direct branch to the trampoline followed

by the call to the original function. When the original function returns, another direct
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branch takes the control flow back to the original callsite. Also, every function pointer

is replaced with a pointer to the corresponding function trampoline. We implemented

this use case on top of uXOM-UI because the code diversification based CRA defense

mitigates control flow hijacking, and consequently hinders an attacker from exploiting

unintended instructions. The experimental results of our CRA defense are presented

together with the results for uXOM, uXOM-UI and SFI-based XOM. It imposes av-

erage runtime overhead of 8.6%, the code size overhead of 19.3%, and the energy

overhead of 9.7%. The runtime overhead is only slightly larger than that for original

Readactor implementation (6.4%) which shows the applicability of uXOM technique

in low-end embedded devices.

5.7 Discussion

Cortex-M Processors based on ARMv8-M Architecture. ARMv8-M [48] is a re-

cently introduced instruction set architecture for the microcontroller profile. Basically,

ARMv8-M provides backward compatibility with ARMv7-M, so uXOM is also ap-

plicable to ARMv8-M based Cortex-M(23/33/35) processors. Here, we list several

possible changes in uXOM implementation due to the newly added hardware feature

in ARMv8-M. First of all, ARMv8-M includes the stack pointer limit register (SPLR)

that defines a lower limit for the stack pointer and prevents the stack pointer from

pointing below the limit. When enabling SPLR, therefore, uXOM only needs to en-

sure that the stack pointer does not point to the PPB region. Secondly, load-acquire and

store-release memory instructions are newly added in ARMv8-M. Since these instruc-

tions do not have unprivileged counterparts, they should be protected by the atomic

verification technique.

False Positive Conversion. When it comes to the instruction conversion of uXOM,

false positive cases could happen where unconvertible instructions are converted to

unprivileged ones. The false positive conversion does not harm the security aspect
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of uXOM but may cause an unexpected system fault. For instance, if PPB-accessing

memory instructions are converted to unprivileged ones, it would not expose the PPB

to attackers but raise a memory access fault when executed. To avoid an unexpected

system halt due to the fault, uXOM can install a custom fault handler, which in turn

may invoke the fail-safe handler already implemented in the existing system (e.g.,

emergency landing in drones).

Dynamic Data Protection. Although the current uXOM implementation aims to

defeat the code disclosure attacks, it may be extended to provide protection for the

dynamic data as well. To be concrete, uXOM can be expanded to implement a data

isolation scheme [54,92,93] that minimizes the possibility of exposures of critical data

by only allowing access through authorized instructions. More specifically, we may

allow only authorized instructions (i.e., ordinary loads/stores that are not converted

into unprivileged types) to access critical data (e.g., return addresses/session keys) by

placing the data on a certain memory region marked as “privileged”. To implement

such an extension, some modifications to uXOM are required. First of all, authorized

instructions should be predetermined through the help of programmers or compilers

and prevented from being converted to unprivileged ones. Since attackers can exploit

these data-accessing instructions to compromise uXOM, usage of these instructions

should be regulated in a way similar to PPB-accessing instructions through the atomic

verification technique with a new verification routine that confines memory access

target to the memory region of the critical data.

5.8 Related Work

Hardware-assisted Execute Only Memory. Due to the compelling security guaran-

tee provided by XOM, today’s high-end processor architectures (e.g., x64 and AArch64)

provide the XO permission setting in the MMU [19,24]. Apart from that, various works

have attempted to implement XOM in the system with the help of the hardware. David
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et al. [61] implemented XOM by encrypting the code in memory and decrypting it only

when it is executed. However, since it requires significant processor redesign, it is not

suitable for wide adoption. In subsequent works, XOM has been implemented by cap-

italizing on the built-in hardware features. Shadow Walker [95] and HideM [42] pre-

sented an implementation of XOM using the split translation lookaside buffer (TLB)

architecture, which separates the TLB for instruction fetches and data accesses. They

configure the two TLBs so that the same virtual address is translated into different

physical addresses for data access and instruction fetch, preventing the data accesses

to the code region. XOM-switch [63] implemented XOM using Intel Memory Pro-

tection Keys (MPK), which can be used to set memory pages execute-only. Shadow

Walker, HideM and XOM-switch are not applicable to Cortex-M based devices be-

cause they rely on specific hardware features (i.e., split-TLB or Intel MPK) that do not

exist in the Cortex-M processor.

Software-based Execute Only Memory. On the other hand, there have been attempts

to emulate XOM in software for processors that do not have the above hardware sup-

ports. XnR [11] sets all code pages as non-accessible except for the currently executed

code pages called sliding window and detects illegal memory reads and writes for non-

accessible pages by augmenting the MMU page fault handler. For Cortex-M/R proces-

sors, since MPU also provides non-accessible permission setting for memory regions,

XOM can be implemented in a similar way. However, this approach cannot detect

memory reads for code pages in the sliding window, and also, the performance over-

head becomes larger as the sliding window size is reduced. LR2 [18] and kRˆX [80]

realize XOM by SFI-inspired techniques [106,113]. They prevent code reads by mask-

ing load instructions, instead of stores as done in the SFI technique. As shown in our

evaluation, however, such SFI-based XOM implementation can be bypassed and is

inefficient in low-end devices.

Security Solutions using XOM. Many researchers have proposed various security
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solutions based on XOM. Early works [70] proposed XOM for the purpose of pro-

tecting intellectual properties and preventing tampering or leakage of sensitive infor-

mation stored in the code. Since the advent of code disclosure attacks (i.e., JIT-ROP),

a number of works [18, 29, 41, 80] have utilized XOM to prevent the attackers from

reading code to learn code layout and launch CRAs. In §5.6.5, we have shown that

these solutions can be implemented with uXOM.

Security for Tiny Embedded Devices. Recently, much research has been done on

enhancing the security of tiny embedded devices. Mbed uvisor [6], MINION [51],

uSFI [9] and ACES [27] proposed memory isolation techniques for software modules

based on MPU. At compile time, they define memory views (stack, heap, and peripher-

als) for each of the software modules, and at runtime, MPU enforces one of the mem-

ory views according to the active software module. Epoxy [28] and AVRAND [79]

developed diversification based security solutions for tiny embedded devices. As with

these solutions, uXOM also seeks to enhance the security of tiny devices. uXOM is

the first to implement efficient execute-only memory in Cortex-M processors.

5.9 Summary

XOM is a prominent protection mechanism that can be used in various security pur-

poses such as intellectual property protection and CRA defense. However, for a low-

end embedded processor such as Cortex-M, there has been no efficient way to imple-

ment XOM. In this paper, we present uXOM, a novel technique to realize XOM in

a way that is secure and highly optimized to work on Cortex-M processors. uXOM

achieves this by leveraging hardware features (i.e., unprivileged load/store instruc-

tions and MPU) in Cortex-M processors. Our evaluation shows that not only uXOM

is more efficient than SFI-based XOM in terms of execution time, code size and en-

ergy consumption, and that uXOM is compatible with existing XOM-based security

solutions.
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Chapter 6

Conclusion and Future Work

In this thesis, I have introduced three code transformation techniques for achieving dif-

ferent security goals for the protection of computer memory. First, I proposed a com-

piler technique to insert special push/pop instructions that manage tPC stack to track

implicit information flows through conditional branches. By using special hardware in-

structions, our technique can efficiently keep track of implicit flows, which could only

be done with significant performance overhead with previous software approaches.

With careful analysis of the control flow graph, our technique can correctly handle

complicated cases involving nested conditional branches and loops. Second, I pro-

posed CRCount, which is a compiler based technique to mitigate use-after-free errors

in legacy C/C++ programs by automatically keeping track of reference counts for the

heap objects. In order to accurately keep track of generation and deletion of pointers,

which is essential for reference counting mechanism, CRCount uses pointer footprint-

ing to track the location of pointers. To minimize performance overhead, CRCount

carefully analyzes the program to instrument reference count managing code only in

the places where it is required. CRCount shows reasonable performance/memory over-

head across single and multi-threaded benchmarks, compared to previous works which

show significant overhead in either performance or memory. The increased memory
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consumption due to delayed free is negligible for the most benchmarks. Finally, I

proposed uXOM, a code transformation technique to enable execute-only memory in

ARM Cortex-M processors. uXOM converts all load/store instructions to special un-

privileged load/store instructions and runs the code in privileged mode so that code re-

gion can be executed but cannot be read. By using compiler analysis, uXOM identifies

the load/store instructions which should not be converted. To prevent the unconverted

instructions from exploited by the attackers, uXOM adds verification code in front of

these instructions and transforms the code to use specific registers so that the verifica-

tion code cannot be bypassed. uXOM efficiently implements XOM for ARM Cortex-

M processors utilizing unprivileged load/store instructions, compared to the existing

software fault isolation based technique. Overall, the code transformation techniques

presented in this thesis improves the existing art for achieving each of the security

objects.

6.1 Future Work

In this section I will discuss some possible future research directions. One of the prob-

lems of current implicit information flow tracking technique is when implicit informa-

tion flow causes to many data to be tagged. Although the case shown in the security

evaluation shows that only the memory locations with sensitive data are tagged, there

is a chance that too many data that is control dependent on the sensitive value is tagged

and propagated to large region of memory. Although, strictly speaking, we can say that

there is an implicit flow, it is worth examining how much of a help the data leaked that

way is for the attacker. In other approach, a debugging tool can be developed that noti-

fies the developers of possible implicit flows in the program and help rewrite the code

to get rid of them. Another interesting research direction is how to handle other kinds

of implicit information flows such as those generated from side channels. One example

of the existing research in that direction is constant time code generation approaches
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to prevent leakage through timing channels [102].

For the use-after-free prevention, one of the remaining issues is how to deal with

custom memory allocators. Many programs use their own memory allocator which

allocates a large chunk of memory using the standard allocator and separately manages

the given memory area using the special allocator. CRCount and most other use-after-

free mitigations cannot deal with these custom allocators. It is worth exploring the

potential threat of custom memory allocator-based use-after-free vulnerabilities and

how to detect and handle custom memory allocators automatically. Second, research

is needed to find a way to boost the performance even further, for example by reducing

the precision of reference counting and use garbage collection to make up for the lost

precision or by introducing some optimization for pointers stored in stack. Third, it is

worthwhile to develop a tool to guide developers about the locations where they can

nullify the pointers in order to avoid possibility of use-after-free errors or to reduce

memory consumption due to delayed frees in CRCount. Lastly, CRCount could be

combined with Intel MPX to provide protection against out-of-bounds memory access

in addition to the use-after-free errors. Intel MPX uses a bounds table which can be

used to figure out the locations of pointers. It will be interesting to see if CRCount can

utilize the table as an optimization.

For uXOM, one of the issue is that we need to compile and run binary analysis

several times to get rid of exploitable unintended instructions. Since inserting code at

the binary level messes up the relative offsets for branches and calls, we need a binary

instrumentation tool that can completely understand the relative offsets and fix them

correctly. Second, uXOM is only interested in protecting secrets stored in the code

region. Research is needed to protect against data-only attacks targeted for the low-

end embedded devices efficiently. Randomization based and memory access control

based approaches [28, 51] have been proposed but research is still needed to improve

security and performance.
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초록

컴퓨터메모리는컴퓨터시스템의보안을위해보호되어야하는중요한컴포넌

트이다.컴퓨터메모리는보안상중요한데이터를담고있을뿐만아니라,시스템의

올바른 동작을 위해 공격자에 의해 조작되어서는 안되는 중요한 데이터 값들을 저

장한다. 따라서 많은 보안 솔루션은 메모리를 보호하여 컴퓨터 시스템에서 중요한

데이터가유출되거나컴퓨터데이터에대한불법적인접근을방지하는데중점을둔

다.본논문에서는메모리보호를위한보안정책을시행하기위한다양한코드변환

기술을제시한다.먼저,프로그램에서분기문을통해보안에민감한데이터가유출

되지않도록암시적데이터흐름을추적하는코드변환기술을제시한다.그다음으

로 C / C ++ 프로그램을 변환하여 use-after-free 오류를 완화하는 컴파일러 기술을

제시한다. 마지막으로, 중요 데이터를 보호하고 코드 재사용 공격으로부터 디바이

스를강화할수있는강력한보안정책인실행전용메모리(execute-only memory)를

저사양임베디드디바이스에구현하기위한코드변환기술을제시한다.

주요어:컴퓨터보안,메모리보호,코드변환

학번: 2013-20813
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