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Abstract

Lightweight Offloading System For Edge

Cloud Environments

HyukJin Jeong

Department of Electrical and Computer Engineering

The Graduate School

Seoul National University

Emerging mobile applications, such as mobile cloud gaming [21] or cognitive assis-

tance based on deep neural network (DNN) [26], require not only intense computations

but also strict latency constraints. To meet the latency requirement, researchers have

proposed edge servers [76] (also called fog nodes [7]), computation servers dispersed

at the edges of the network, e.g., computation servers on Wi-Fi APs [77], small cell

networks [56], or a computing cluster made up of mobile devices [54]. IEEE recently

introduced OpenFog Reference Architecture [38], a generic architecture that distributes

computing servers close to data sources (IoT sensors or actuators).

Offloading with edge servers is different from offloading with cloud servers. Edge

servers are geographically widely distributed, and each of them covers a small region.

Mobile clients can easily move across the boundary of edge servers, hence frequently

being disconnected from an edge server and connecting to a new server. To achieve

seamless mobile experience in this edge server environment, it is essential to rapidly

deploy a service to an edge server and migrate the offloaded service from the previous

server to the current server as the client moves.

The purpose of my dissertation is to build lightweight edge computing systems
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which provide seamless offloading services even when users move across multiple edge

servers. I focused on two specific application domains: 1) web applications and 2) DNN

applications.

I propose an edge computing system which offload computations from web-

supported devices to edge servers. The proposed system exploits the portability of

web apps, i.e., distributed as source code and runnable without installation, when

migrating the execution state of web apps. This significantly reduces the complexity

of state migration, allowing a web app to migrate less than a few seconds. Also, the

proposed system supports offloading of webassembly, a standard low-level instruction

format for web apps [28], having achieved up to 8.4x speedup compared to offloading

of pure JavaScript codes.

I also propose incremental offloading of neural network (IONN), which simulta-

neously offloads DNN execution while deploying a DNN model, thus reducing the

overhead of DNN model deployment. Also, I extended IONN to support large-scale

edge server environments by proactively migrating DNN layers to edge servers where

mobile users are predicted to visit. Simulation with open-source mobility dataset showed

that the proposed system could significantly reduce the overhead of deploying a DNN

model.

Keywords: Cloud computing, Edge computing, Fog computing, Web application,

Deep neural network

Student Number: 2014-21720
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Chapter 1. Introduction

1.1 Offloading Web App Computations to Edge Servers

Today, web is one of the most widely used mobile platforms. All modern smartphones

and tablets are equipped with built-in web browsers, and many IoT devices operate

based on web platforms such as Node.js, Tizen, or WebOS. These mobile web platforms

run web apps whose program logics are typically written in JavaScript, a high-level

language with rich language features. However, since JavaScript is not appropriate

for fast execution, developers often use webassembly [28], a globally standardized

low-level instruction format executable on web platforms such as browsers and Node.js,

to implement performance-critical parts of web apps. The aim of this study is to build

an edge computing framework that accelerates mobile web apps by offloading the

execution of JavaScript and webassembly code from mobile device to edge servers.

One of the primary concerns of an edge computing framework is how to migrate

the offloaded service between edge servers (or between edge and cloud) to handle user

mobility. Since edge clouds by nature serve the clients in a close proximity, physical

servers in the edge clouds have limited geographical service areas where mobile clients

can easily move across the border. For seamless computation offloading, the offloaded

service in the previous server has to be quickly migrated to the current server. Previous

studies on edge computing take live migration of VM or container as a general solution

for service migration [77] [25] [27] [57] [59], but their approach entails an intrinsic

overhead to migrate the state of a virtual system (OS or language runtime), thus not

efficient for offloading web app code. FaaS of cloud providers (AWS Lambda, Azure

Functions) supports remote execution of JavaScript code in a serverless manner, but it

has a limitation that it is only effective when executing short-lived, stateless jobs, which

do not preserve data (such as global variables or closure variables) over the lifetime of

each job [72] [10]; to persist any information beyond the execution of a stateless job,
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the job needs to interact with other stateful components such as cloud storage, which

inevitably introduces latency.

To make an edge computing framework for general, stateful web apps, I take an

approach that dynamically migrates the runtime state of a computation thread between

edge servers, and between edge and cloud. The overview of the proposed framework is

depicted in Figure 1. A mobile application is programmed as a regular, self-contained

web app runnable on any web-supported device. When there is an accessible edge server

near the mobile device, the computation thread of the app is dynamically migrated to the

edge server and executed there (Offloading). To migrate the thread at runtime, I capture

the execution state of HTML5 web worker, a standard web API for multi-threading, and

restore the worker with the same execution state at the destination machine; I call the

web worker that can migrate to other devices as a mobile web worker (mobile worker in

short). The migrated mobile worker can again move to other devices while the app is

running, so it can move to an edge server close to the client and seamlessly serve the

client without losing its execution state (Handoff). Even if the connection between the

client and the mobile worker migrated to an edge server is broken (e.g., due to user

mobility), the mobile worker can migrate from the edge to a cloud server and recover

the connection with the client (Fallback).

This is the first in-depth study on offloading computations of stateful web apps

written in JavaScript and webassembly to edge clouds. Previous studies on offloading

web app (or JavaScript) computations [18] [102] [42] [68] [41] did not consider the case

where a mobile client switches its offloading server during app execution, which would

be common in edge cloud environments. Also, they did not deal with the offloading of

webassembly functions, which are typically used to implement computation-intensive

codes in web apps. A major contribution of this paper is the serialization algorithm

that captures the complex state of HTML5 web worker, where JavaScript objects,

webassembly functions, and native built-in objects are intermingled. I save the worker

state as the form of JavaScript code named snapshot, which restores the contents of

2



Figure 1: Overview of Proposed Framework.

JavaScript objects, instantiates webassembly functions, and reconstructs references

between all runtime objects when executed.

I implemented the proposed system on popular web platforms: chromium browser

and Node.js. In experiment with real hardware, our system migrated a web worker

running a simple code within 150 ms. Even in a non-trivial application using a

webassembly-version OpenCV library, a mobile web worker took a few seconds (∼4

sec) for migration between edge servers, and between edge and cloud. Also, offloading

webassembly code achieved up to 8.4x speedup, compared to offloading pure JavaScript

code, reducing the performance gap between offloading with native codes and that with

web app codes.

1.2 Offloading DNN Computations to Edge Servers

In recent years, Deep Neural Network (DNN) has shown remarkable achievements in

the field of computer vision [51], natural language processing [86], speech recognition

[24] and artificial intelligence [81]. Owing to the success of DNN, new applications

using DNN are becoming increasingly popular in mobile devices. However, DNN is

known to be extremely computation-intensive, such that a mobile device with limited
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hardware has difficulties in running the DNN computations by itself. Some mobile

devices may handle DNN computations with specialized hardware (e.g., GPU, ASIC)

[62] [8], but this is not a general option for today’s low-powered, compact mobile

devices (e.g., wearables or IoT devices).

Current wisdom to run DNN applications on such resource-constrained devices

is to offload DNN computations to central cloud servers. For example, mobile clients

can send their machine learning (ML) queries (requests for execution) to the clouds

of commercial ML services [66] [4] [20]. These services often provide servers where

pre-trained DNN models or client’s DNN models are installed in advance, so that

the servers can execute the models on behalf of the client. More recently, there have

been research efforts that install the same DNN models at the client as well as at the

server, and execute the models partly by the client and partly by the server to trade-off

accuracy/resource usage [30] or to improve performance/ energy savings [47]. Both

approaches require the pre-installation of DNN models at the dedicated servers.

Unfortunately, the previous approaches are not appropriate for the generic use of

decentralized cloud infrastructures (e.g., cloudlet [77], fog nodes [7], edge servers

[76]), where the client can send its ML queries to any nearby generic servers located at

the edge of the network (referred to as cyber foraging [75]). In this edge computing

environment, it is not realistic to pre-install DNN models at the servers for use by the

client, since I cannot know which servers will be used at runtime, especially when the

client is on the move. Rather, on-demand installation by uploading the client’s DNN

model to the server would be more practical. A critical issue of the on-demand DNN

installation is that the overhead of uploading the DNN model is non-trivial, making the

client wait for a long time to use the edge server (see Section 2).

To solve this issue, I propose a new offloading approach, Incremental Offloading of

Neural Network (IONN). IONN divides a client’s DNN model into several partitions and

determines the order of uploading them to the server. The client uploads the partitions

to the server one by one, instead of sending the entire DNN model at once. The server
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incrementally builds the DNN model as each DNN partition arrives, allowing the client

to start offloading of DNN execution even before the entire DNN model is uploaded.

That is, when there is a DNN query, the server will execute those partitions uploaded

so far, while the client will execute the rest of the partitions, allowing collaborative

execution. This incremental, partial DNN offloading enables mobile clients to use edge

servers more quickly, improving the query performance.

As far as I know, IONN is the first work on partitioning-based DNN offloading in

the context of cyber foraging. To decide the best DNN partitions and the uploading

order, I introduce a novel heuristic algorithm based on graph data structure, which

expresses the process of collaborative DNN execution. In the proposed graph, IONN

derives the first DNN partition to upload by using a shortest path algorithm, which is

expected to get the best query performance initially. To derive the next DNN partition to

upload, IONN updates the edge weights of the graph and searches for the new shortest

path. By repeating this process, IONN can derive a complete uploading plan for the

DNN partitions, which ensures that the DNN query performance increases as more

partitions are uploaded to the server and eventually converges to the best performance,

expected to achieve with collaborative DNN execution.

I implemented IONN based on caffe DNN framework [44]. Experimental results

show that IONN promptly improves DNN query performance by offloading partial

DNN execution. Also, IONN processes more DNN queries while uploading the DNN

model, making the embedded client consume energy more efficiently, compared to the

simple all-at-once approach (i.e., uploading the entire DNN model at once).

Furthermore, I propose PerDNN, a system that manages the offloading of DNN

execution between mobile users and a number of inter-connected edge servers. PerDNN

selects the best edge server to offload DNN execution using a partitioning algorithm

based on runtime states, such as GPU statistics of edge servers and network conditions,

as well as hyperparameters of DNN models. After edge server selection, PerDNN

dynamically deploys the user’s DNN layers to the edge server and executes the DNN
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model collaboratively (partially at the client and partially at the server), to minimize

the DNN execution time. To avoid the cold start that occurs when a user moves to

a different edge server, PerDNN periodically predicts the next edge server to visit

based on the user’s recent trajectory, calculates a speculative partitioning plan between

the client and the predicted server, and proactively migrates the server-side DNN

layers of the plan to the next edge server. This allows the user to immediately start

offloading DNN execution when visiting the predicted edge server. To reduce the

network traffic, I select and migrate only a fraction among the server-side layers for the

hot edge servers, which sharply cuts the network traffic with negligible performance

degradation. To our knowledge, PerDNN is the first study to 1) exploit GPU information

for DNN partitioning and 2) perform real-time proactive caching in the context of edge

computing.

To evaluate PerDNN, I simulated edge computing scenarios where more than a

hundred of users offload DNN computations to edge servers dispersed in a smart city

while they are on the move. For simulation, I used two open source mobility datasets

collected from Beijing [104] and KAIST [71], and execution profiles of real embedded

boards and desktop servers. Using a linear SVR model, which showed the best accuracy

among various trajectory prediction algorithms, PerDNN predicted the next move of

the clients and proactively transmitted their DNN layers to the edge servers around the

predicted location. It removed 70∼90% of cold starts and achieved 58∼97% higher

DNN query throughput when mobile users change their offloading servers, compared

to a baseline with no proactive transmission. Also, I could reduce 43∼67% of the peak

backhaul traffics needed for proactive migration by migrating a fraction of a DNN

model for crowded servers, with 1∼2% of performance loss.
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Chapter 2. Seamless Offloading of Web App

Computations

2.1 Motivation: Computation-Intensive Web Apps

Nowadays, web apps are facing new demands for complex, feature-rich applications.

For example, there exist many projects [17] to implement a game engine based on

HTML5/JavaScript to run 3D games in web apps. A game engine repetitively calculates

the physics of the virtual world, such as collision, fluttering of objects, and gravity, and

renders the game objects in every frame, hence requiring a high computation power.

There are also attempts to execute deep neural network, which is actively used in

various fields but requires intense computations, on web platforms (e.g., Tensorflow.js).

Those frameworks rely on advanced web features, such as WebGL for GPU support,

web workers for multi-threading, or webassembly for efficient execution of low-level

instructions, to deal with the heavy computations.

Despite the use of advanced web features, it is still difficult to run such compute-

intensive web apps on resource-constrained mobile device. I conducted a quick exper-

iment to observe the performance of a web app in a mobile device and a server. The

mobile device was ODROID XU4 [74], a popular embedded board equipped with a

quad-core ARM big.LITTLE CPU (2.0 GHz/1.5 GHz), Mali-T628 mobile GPU, and

2 GB of memory. The server was a desktop PC with intel i7 CPU (3.6 GHz), GTX

1050 GPU, and 16 GB of memory. Using ammo.js [50], a physics engine library, I

implemented a web app that simulates the movements of 3D cubes falling from the air.

The app was implemented in two different ways: one whose calculation code is written

in JavaScript (js) and another that runs the code in webassembly (wasm). I measured

the frames per second (fps) of the app while varying the number of cubes to change the

computation loads.

Figure 2 shows the result. When the number of cubes is 50, all configurations
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showed 60 fps, which is the maximum fps of the app. As the number of cubes increases,

i.e., the amount of computations increases, the client’s fps quickly dropped in both js

and wasm, compared to the server’s fps. Assuming that the engine is used to implement

a 3D game, the client will fail to produce 30∼60 fps, a typical fps supported by modern

games, even with the webassembly code when the number of cubes (≈game objects) is

larger than 500. On the other hand, the server produced 30∼40 fps with 1,000 cubes.

The result shows a compelling reason to offload computations to a remote server when

running such a complex web app in resource-constrained mobile devices.

Another important observation in Figure 2 is that the performance of webassembly

is remarkably better than JavaScript, such that ∼10 higher fps is achievable by using

webassembly instead of JavaScript when the server simulates 1,000 cubes. The fast

execution performance of webassembly results from its low-level assembly-like format,

which can take advantage of modern hardware capabilities [28]. A recent report [32]

has also demonstrated that webassembly has better performance than JavaScript in

computation-intensive benchmarks. These results imply that webassembly is better

than JavaScript when implementing compute-intensive codes, and therefore offloading

webassembly codes must be supported for better performance when offloading web app

computations.

A simple way to execute JavaScript/webassembly code in a remote server is to use

a typical cloud solution, which encapsulates the code and its dependencies with a VM

and deploys the VM to edge servers. Existing studies on offloading JavaScript code

[68] [96] [22] can perhaps adopt the cloud solution by encapsulating their server-side

components with the VM. However, the VM-based approach has a large migration

overhead, thus not appropriate for the edge cloud environment where mobile users

can frequently change a connected server; the overhead of VM migration is further

discussed in Section 2.4.2.

Another cloud solution for offloading web app computations is FaaS services such

as AWS Lambda or Azure Functions. They save a deployment package, which contains
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Physics simulation web app

Figure 2: Frames per second (FPS) of physics simulation web app.

the code of JavaScript functions and its dependencies, in the cloud and deploys the

container to an edge server using the package. When a client connects to a different

edge server, a new container is created based on the deployment package saved in

the cloud, so the runtime state of the container running on the previous server is not

preserved. For example, the physics simulation app in Figure 2 needs to maintain the

current locations of cubes in order to compute their next locations, but these location

data will be lost whenever a new container is created as the physical server is changed.

To preserve the runtime state beyond the lifetime of the container, the state has to be

saved in the external stateful component such as cloud storage, which leads to additional

latency and programming complexity [72]. A developer might be able to obviate the

use of stateful components by implementing the app backend in a stateless manner, by

transmitting the whole cube locations along with each request to the server (i.e., the

server does not maintain any state), but it will cause substantial data transmissions if

there are many state variables.

In this dissertation, I tackle all issues mentioned above by using a concept of mobile

web worker, which is the extension of HTML5 web worker to support migration across

remote devices. The runtime state of the mobile web worker is automatically captured
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and restored at another server when the offloading server is changed, so stateful codes,

written in either JavaScript or webassembly (or both), can be offloaded without external

stateful components while the client is on the move. Also, the migration of a mobile

web worker is much more lightweight than VM migration, because it only migrates the

web app state, not the whole virtual system state.

2.2 Mobile Web Worker System

In this section, I briefly review HTML5 web worker first and then explain the mobile

web worker system.

2.2.1 Review of HTML5 Web Worker

HTML5 web worker (web worker) is a standard web API to execute JS or webassembly

code in the background of web app [96]. App developers can create a web worker in

JS code by calling a constructor named Worker with an argument of JS code which

initializes the worker, e.g., loading libraries, creating user-defined objects, and regis-

tering event handlers. When Worker is called, a new thread (worker thread) is created

and executes the initialization code in its own global scope. After the web worker is

initialized, it communicates with the main thread of the app based on message passing

interfaces. The worker and the main thread can send a message to each other by calling

postMessage function, and in response to the message, they invoke callback functions

saved in the onmessage variable. After a worker finishes its job, the main thread can

remove the worker by calling a function named terminate.

Computation-intensive codes are typically executed on web workers, because the

main thread, which is responsible for user interaction, should not be blocked by exe-

cuting long-running codes. For example, for the physics simulation app in Figure ??, I

made a web worker perform complex physics calculations, while the main thread just

renders the results on the screen. So, the main thread could spend more time on waiting
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Figure 3: Mobile Web Worker System Architecture.

user inputs, making the app more responsive. Since interactivity is important for many

mobile apps, computations are commonly run in web workers. As such, web workers

are a natural target to offload to a more powerful server.

2.2.2 Mobile Web Worker System

Figure 3 depicts the architecture of mobile web worker system in the edge cloud

environment with three components: a mobile client, an edge server, and a cloud server.

The system introduces a mobile web worker (MWW) manager, which is installed in all

devices to handle the creation, the migration, and the termination of web workers.

In the system, a mobile client runs a regular, unmodified web app whose computation-

intensive codes are executed in a web worker. When the client detects accessible edge

servers, MWW manager finds the best server to execute the worker, which minimizes

the latency between when the main thread sends a request to the worker and when it

receives the result from the worker. In typical web worker applications, the latency can

be defined as follows:

Execution latency = input transmission time + processing time + output transmis-

sion time
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where input transmission time indicates the time to send the input data from the

main thread to the worker. Processing time is the time to execute callback functions

saved in the worker. Output transmission time is the time to send the output from the

worker to the main thread. Input/output transsmission time can be easily obtained by

dividing the size of input/output data by the network speed, which can be measured at

runtime. The size of the output data depends on applications, so I assumed the function

of output size is given by developers, e.g., for the physics simulation app in Figure

??, the output size is the multiplication of the number of cubes and the data size to

represent the location/rotation of each cube.

The processing time depends on numerous factors such as hardware specification,

device workloads, and application logics, so estimating the processing time of general

applications is extremely difficult, which is beyond the scope of this dissertation. Instead,

I made an application-specific model based on the input size of the task. For the physics

simulation app in Figure ??, the input size was defined as the number of cubes. In

the offline phase, I created the dataset of processing time by running a web worker in

each edge server with different input sizes, and then performed linear regression on

the dataset. The regression model of each device is saved in the corresponding MWW

manager, so MWW managers can estimate the processing time on line. Note that

processing time estimation has been extensively studied, e.g., using program features

[53], device workloads [10], or executed algorithms [47], so it would be possible to

apply the previous studies according to situation.

To determine the best server with the minimum expected latency, a client sends

a query along with the input size of its worker to nearby edge servers. The MWW

manager of each server estimates the processing time based on its regression model

and sends it back to the client. The client calculates the execution latency by adding

input/output transmission time to the estimated processing time, and migrates the worker

to the server with the minimum execution latency (Offload in Figure 3). If the estimated

execution latency of all servers is longer than local execution time (e.g., due to bad
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network conditions), the worker will be executed in the client device, i.e., a client

offloads only those workers that can achieve positive offloading performance gains.

To migrate the web worker at runtime, MWW manager captures the worker’s

runtime state and transmits it to the server. The server restores the worker state on a new

worker thread, which was pre-allocated and waiting in the thread pool named MWW

Pool (the detailed process of web worker migration will be further explained in Section

2.3). After the worker state is restored, the MWW manager in the server reconstructs the

message channel between the worker and the main thread by establishing a web socket

connection with the client (depicted as double lines in Figure 3); for this, the mobile

worker carries the IP address and the port number of the client-side MWW manager.

The main thread and the offloaded worker can communicate with each other using the

standard web worker interfaces (postMessage, onmessage), because I modified those

interfaces to send and receive messages through the web socket connection when the

worker is not in the client device. After being restored at the server, the web worker

sends an acknowledgement message to the client to wipe out the worker in the client.

The migrated web worker can move again to other devices for better performance or

to handle unstable connectivity. MWW manager periodically determines the execution

location of the worker, so that the worker can migrate to a better server with less latency,

if any. When the client is disconnected from the edge server, the worker migrates

to a predetermined fallback server with stable connectivity, e.g., a cloud server, and

re-establishes the connection with the client, which recovers the offloading status from

abrupt disconnection (Fallback in Figure 3). If the worker cannot access any fallback

server, e.g., due to internet failure, its state will be lost, so the worker will need to be

restarted. To reduce such a case, I can use a more aggressive method, for example, if

the client is predicted to visit a place with no internet connectivity (such as airplane

or basement) based on mobility prediction algorithms [16] [98], the worker can come

back to the client in advance to avoid being terminated. In this way, mobile web worker

system can handle various mobile scenarios by migrating a worker between the client,
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Figure 4: Overview of web worker migration.

the edge, and the cloud.

2.3 Migrating Web Worker

This section explains the detailed process of migrating a web worker. Figure 15 depicts

a high level overview of web worker migration, where a web worker is migrated from a

source to a destination; the source and destination can be any two devices (client, edge,

or cloud server). MWW manager in the source initiates the migration of a web worker

by raising a ‘migration’ event (step 1). In response to the event, the worker captures

its runtime state as the form of JavaScript code named snapshot, which restores the

saved worker state when executed (step 2). MWW manager in the destination restores

the worker state by executing the snapshot on a new worker thread, which is the same

way to create a standard web worker (step 3). Lastly, MWW manager in the destination

restores the message channel between the newly created worker and the main thread in

the client (step 4).

A major problem of web worker migration is how to generate a snapshot code that

restores the worker state of a saved point. There exist a substantial amount of work on

the code-format snapshot in the field of web app (or JavaScript app) migration [55] [64]

[52] [18], but most of them have only focused on how to handle the complex language

features of JavaScript (such as closure) when migrating the app state. When it comes to

the migration of native data such as webassembly functions or built-in objects, little

attention has been paid so far. In this section, I describe a comprehensive algorithm
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for generating a snapshot to restore the web worker state, which consists of native data

(webassembly functions and built-in objects) as well as JavaScript objects.

2.3.1 Runtime State of Web Worker

To capture the snapshot of a web worker, I need to first understand the runtime state of

a web worker. Figure 20 illustrates the web worker state of the physics simulation app

in Figure ?? right after the worker is initialized, i.e., after a worker thread is created

and the user code given as the argument of Worker constructor is executed. A web

worker has its own scope, named worker global scope, where built-in objects and

user-defined data are saved. Built-in objects include standard JavaScript built-in objects

(Array, String, etc) and web worker interfaces (such as onmessage and postMessage),

which are automatically generated when the worker thread is created. User-defined data

indicates any object (either JavaScript or webassembly) created when executing the user

code. In the test app, the user code defines global variables ‘Ammo’ and ‘MainLoop’.

‘Ammo’ is a JavaScript object created by ammo.js physics engine library, which provides

webassembly functions for physics calculation. ‘MainLoop’ is a JavaScript function that

calculates the location of cubes in each frame using the webassembly functions. The

user code also specifies event information, the bindings between events and function

objects, so that the corresponding function (event handler) is invoked when the target

event is raised. ‘MainLoop’ function is the event handler registered for a ’timer’ event,

so it is repeatedly called after a certain time period.

Webassembly (wasm) functions have a unique structure different from normal

JavaScript objects. Wasm functions are loaded from a wasm file, typically generated

from other high level languages. Developers compile function codes written in a high

level language (C, C++, Rust, .Net) using a wasm compiler such as emscripten [101].

The wasm compiler generates platform-independent wasm code and saves it as a wasm

file (.wasm), which is deployed together with a web app. To use wasm functions

in web apps, the wasm file has to be compiled and instantiated with a JavaScript
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Figure 5: Runtime state of the web worker in the test app.

interface such as instantiate1. When instantiate is called, importObject is given as

an argument, which specifies linear memory and JavaScript functions used by wasm

functions. Linear memory is a contiguous memory space which can be used by wasm

functions. In the test app, the whole state of the virtual world (cubes, gravity, collision

model, etc) for simulation is stored in the linear memory, so the linear memory has

to be migrated together with the mobile worker. The imported JavaScript functions

also have to be restored after migration so that wasm functions can call them on the

destination machine.

2.3.2 Snapshot of Mobile Web Worker

Snapshot must capture the aforementioned states of a web worker (user-defined data,

built-in objects, and event information) at the source device and restore them at the

destination when executed. In this section, I explain how I generate the snapshot code

for each data.
1There are other interfaces for wasm compilation, such as compile or instantiateStreaming, but they all

work similarly, so I do not explain all of them in this dissertation.
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Saving User-defined Data

To capture user-defined data, I recursively traverse user-defined global variables in

the worker global scope and generate a JavaScript code to restore the variables and

their values. For example, if a worker has a global variable ‘foo’ which references a

JavaScript object that has a property ‘a’ with the value of 1, the restoration code will be

like “var foo = {‘a’:1};". In fact, there exist many complex issues when generating the

snapshot code to handle the language features of JavaScript, such as closure, but those

issues have been tackled by a plenty of previous works [55] [64] [52] [18], so I adopted

their ideas to generate a snapshot code for JavaScript objects. More specifically, from

[64] and [52], I adopted an object reference array to restore aliased references and a

scope tree to restore nested closure.

Wasm functions contain native codes compiled at runtime, so they should not be

directly migrated as normal JavaScript objects. For example, if I send wasm functions

compiled at an ARM client to an x86 server, the wasm functions will not run properly.

To support migration across different platforms, MWW manager sends the wasm file

to the destination along with the snapshot and makes the snapshot compile the wasm

file when executed. To generate such a snapshot code, MWW manager intercepts the

arguments of wasm interface (instantiate), a JavaScript function used to compile a

wasm file. The arguments are restored at the destination and passed to instantiate, so

that the wasm functions can be instantiated at the destination machine. For this, MWW

manager generates a snapshot code which restores the saved arguments, fetches the

wasm file, and calls instantiate with the arguments to compile the wasm file.

A minor issue when compiling wasm functions is that instantiate needs to be called

with a linear memory as the argument. Since the size of a linear memory is quite large

(16∼128 MB in the test apps), the compilation of wasm functions will be delayed

considerably if I start compilation after the whole linear memory is transmitted. To

quickly restore wasm functions, I call instantiate with a dummy linear memory, which

has the same size as the transmitted linear memory but is filled with zeros, and copy the
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real data onto the dummy memory when the linear memory arrives.

After compiling wasm functions, the snapshot has to restore the references between

JavaScript objects and wasm functions. For the example in Figure 20, I need to create

a reference from the ‘setGravity’ property of the ‘Ammo’ object to the correspond-

ing wasm function, so that the wasm function can be called in JavaScript code, e.g.,

“Ammo.setGravity(...);”. To do so, I traverse user-defined global variables and save a

list of all variables and object properties that reference wasm functions. Also, I save

the names (identifiers) of wasm functions referenced by those variables (or proper-

ties). Using these information, I generate a code that assigns wasm functions to the

corresponding variables and properties.

Figure 6 shows a simplified snapshot code generated by MWW mananger. The code

restores the user-defined data of the web worker state in Figure 20 when executed. The

snapshot first restores JavaScript objects and global variables (line 2∼10); references

of all JavaScript objects are saved in an array named obj_ref (abbreviation for object

reference array) to solve the aliasing problem [64]. Next, the snapshot creates an

argument object for instantiate (wasm_args), including a dummy linear memory (line

14∼17). The wasm file (ammo.wasm) is fetched and compiled with the created argument

object (line 20∼23). After the wasm file is compiled, references from JavaScript objects

to wasm functions are restored (26∼28); obj_ref[0] indicates the ‘Ammo’ object. When

the linear memory, which was asynchronously sent with the snapshot code, arrives, the

contents of the linear memory is copied to the dummy linear memory.

Saving Built-in Data

Built-in objects are automatically created when a worker global scope is initialized

both in the source and destination device, so I do not generate a code to restore them

from scratch. Instead, I check if the built-in objects were modified after they had been

created and generate an update code for the modified parts. To identify the modified

built-in objects, I save the initial state of built-in objects. I recursively traverse built-in

18



Figure 6: Snapshot code generated by MWW manager. The code restores the web
worker state depicted in Figure 20.
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Figure 7: Example of the modified built-in Array object.

objects and save the paths and values of them as soon as the worker thread is created.

When capturing a snapshot, I again traverse the global variables of built-in objects and

compare the current value of each property with the value saved in the corresponding

path. If a property was changed (added, removed, or modified), I generate a snapshot

code that restores the modified parts when executed.

Figure 22 illustrates how to detect modifications on the built-in Array object. As

soon as the Array object is created, I save the path and value of each property of the

Array object, as shown in the left. The mobile worker uses a library named Sugar.js

[46], which provides syntactic sugar by adding a new method “construct" to the Array

object. When capturing a snapshot, I traverse the properties of the Array object and

compare the value of each property with the saved value. ‘Array.construct’ is not found

on the saved state (since it is newly added), so I generate a code that adds the method to

the Array object, e.g., “Array.construct = obj_ref[∼];", and insert the code into the point

of the snapshot where global variables are restored (line 11 in Figure 6). If a property of

a built-in object was deleted, I generate a code that removes the property using delete

operator.

Saving the initial state of built-in objects incurs an additional overhead when a

mobile worker is created. The time to traverse all built-in objects is not negligible

(∼92 ms in the client board, ODROID XU4), so I save the initial state of the built-in
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objects as a file and load the file when a mobile worker is created, rather than repeatedly

traversing built-in objects. The file is implemented as a JavaScript code that restores the

paths and values of all built-in objects. For instance, Array object and Array.isArray

method are saved as “builtin.path = [‘Array’, ‘Array.isArray’]; builtin.value = [Array,

Array.isArray];". The file will automatically restore the paths and values of built-in

objects when loaded in web apps.

It is worth noting that previous works on web app migration did not concern the

modification of built-in objects at all [64] or partially tracked the modification on

the prototype of built-in objects using an obsolete function (Object.observe) [52]. My

approach can detect modifications in any property other than prototype and does not

use obsolete functions, thus compatible with any library and browser.

Saving Event Information

Event information is maintained by the web platform, so I can collect it by accessing

the web platform, as [64] did. MWW manager generates a code to restore the event

information using a JS function, addEventListener, and attaches the code at the bottom

of the snapshot. For a timer event, I calculate the time remaining until the timer is

triggered, and create a timer event that will be triggered after that time.

2.3.3 End-to-End Migration Process

Figure 23 illustrates the entire process of web worker migration in the proposed system.

The migrated web worker is assumed to be created with a JavaScript file named

‘worker.js’. The worker creates built-in objects, saves their initial state, and executes

the ‘worker.js’. After initialization, the worker performs its job while communicating

with the main thread. In the destination, a worker is created with ‘base.js’, which is a

JavaScript file that only has an event handler that executes the snapshot code when the

code is delivered to the worker; I call this worker as a pre-built worker. The pre-built

worker stands by in the MWW pool until a snapshot code is delivered.
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Figure 8: End-to-end web worker migration.

In the migration phase, MWW manager checks if built-in objects were modified and

captures user-defined data and event information. MWW manager generates a snapshot

code and sends it to the destination along with the wasm file. The linear memory is also

transmitted asynchronously. The snapshot is delivered to one of the pre-built workers in

the MWW pool. The pre-built worker executes the snapshot to restore the web worker

state, and copies the linear memory to the dummy linear memory when the linear

memory arrives. If the linear memory arrives faster than the snapshot, MWW manager

in the destination waits for the arrival of the snapshot to keep the restoration order.

2.4 Evaluation

2.4.1 Experimental Environment

I implemented the proposed mobile worker system in chromium browser (for a client)

and Node.js (for edge and cloud). I slightly modified the browser and Node.js to collect

the runtime data maintained internally by the web platform, such as closure and event

information, when capturing a snapshot. The number of lines modified in each web
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platform was ∼200, and the rest of the system was implemented in JavaScript, which

implies that it is not very burdensome to implement the proposed system on existing web

platforms. There is a method that can collect the runtime state without modifying the

web platform by instrumenting the app code [55] [18], but I did not take the approach

because the instrumented code is significantly slower than the original app code [18].

Another minor implementation issue was that HTML5 web worker is not officially

supported in Node.js. To implement a mobile worker in Node.js, I made a pseudo-web

worker using the Node.js subprocess module. I implemented the interfaces and the

built-in objects of a web worker as a Node.js package, making the Node.js process

mimic the behavior of the standard web worker.

The client board (Odroid-XU4) has a quad-core ARM big.LITTLE CPU (2.0GHz/

1.5GHz) with 2GB memory. I have two edge servers: source and destination. The

source server is equipped with quad-core CPU (3.6 GHz, i7-7700) and 16 GB memory,

and the destination server is equipped with quad-core CPU (3.0 Ghz, 17-5960x) and

32 GB memory. Cloud server has 8 vCPU (2.0GHz, Xeon) with 32 GB of memory,

leased from Google Cloud. Upload and download speed between two edge servers

were set to 42 Mbps and 118 Mbps, respectively (average fixed broadband speed of

United States in April 2019 [39]), using a Linux traffic controller (tc-netem). Upload

and download speed between the client and edge servers was set to 10 Mbps and 36

Mbps (average mobile network speed of United States in April 2019 [39]). Network

bandwidth between the edge and cloud was ∼250 Mbps.

I conducted experiments with three web apps, all of which perform intense compu-

tations in the web worker while the main thread interacts with a user. Table 7 shows

the description of each app. physics is the test app used in Figure ??, which renders 3D

cubes on the screen based on Ammo physics engine. opencv performs face detection

using Haar cascade in opencv.js, which is a web version of OpenCV library [65]. filter

applies a Gaussian blur filter on the image using a library named web-dsp [14]. All

wasm files used in the test apps were compiled from C++ code by using emscripten
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App App description Library
Physics

Simulation
(physics)

Main thread renders 3D cubes on the screen
using the locations and rotations of cubes cal-
culated by the web worker.

Ammo.js

OpenCV
Face

Detection
(opencv)

Main thread sends an image (258x196) to the
worker. The worker performs face detection
algorithm and returns the locations of faces to
the main thread.

opencv.js

Image
Filtering

(filter)

Main thread sends an image (640x480) to the
worker. The worker applies Gaussian blur filter
to the image and sends the blurred image to
the main thread.

web-dsp

Table 1: Test web applications

[101], a popular wasm compiler.

2.4.2 Migration Performance

This section evaluates the migration time of a web worker, which directly affects the

performance of handoff and fallback in edge clouds. I measured the migration time

as the time between when the source device triggers a “migration" event and receives

a message from the migrated worker; the worker sends the message as soon as the

linear memory is restored (the linear memory data is copied to the dummy memory). I

measured the migration time in three different migration patterns explained in section

2.2.2: offload from mobile device to an edge server, handoff from an edge server to

another edge server, and fallback from an edge server to a cloud server.

Figure 18 shows the migration time composed of three components: capture, restore,

and others. Capture indicates the time to capture a snapshot at the source device. Restore

is the time between when the destination starts to execute the snapshot and finishes

copying the linear memory to the dummy memory; this includes the time to execute

a snapshot, wait for the arrival of linear memory asynchronously transmitted through

network, and copy the linear memory to the dummy memory. Others is the rest of
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Figure 9: Migration time of a mobile worker. Capture and restore indicate the time
to capture and restore the worker state, respectively. Others includes the time to send
data through network and inter-process (or inter-thread) communication time between
worker and MWW manager.

the migration time, which includes the time to send the snapshot and the wasm file

through the network and the time spent for inter-process (or inter-thread) communication

between a worker and a MWW manager. Table 8 shows the size of the snapshot, the

linear memory, and the wasm file of each app. Those data are automatically compressed

by web platforms before transmitted through a web socket.

The migration time of a web worker heavily depends on libraries used in the worker.

Opencv showed a long migration time (3.8∼11.9 sec), because it uses a huge library

(opencv.js) containing many wasm functions that implement OpenCV interfaces, thus

spends a long time to transmit and instantiate the wasm file. Table 8 shows that opencv

uses a much larger wasm file (5.9 MB) than other apps (892 KB for physics and 34 KB

for filter). Also, opencv.js maintains a large linear memory (128 MB), so the restore

time of opencv was quite long (1.3∼3.2 sec) due to the transmission time of the linear

memory (even though the linear memory was compressed before transmitted). Physics

uses a relatively small library and compact linear memory (16 MB), so it showed

shorter migration time (1.0∼3.1 sec) than opencv. Filter uses a tiny library for image

processing, so the migration time was much shorter (146∼390 ms).

In all apps, the migration time of mobile-to-edge was longer than that of edge-to-

edge and edge-to-cloud. This is because the mobile device takes a longer capture time

than servers. The capture time can be reduced by keeping the state of the worker as
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App Data Size

physics
snapshot 2.7 MB

linear memory 16 MB
wasm file 892 KB

opencv
snapshot 4.6 MB

linear memory 128 MB
wasm file 5.9 MB

filter
snapshot 77 KB

linear memory 16 MB
wasm file 34 KB

Table 2: The size of snapshot, linear memory, and wasm files of test apps.

little as possible. For example, the libraries used in physics and opencv include many

unused wasm functions, which significantly increase the number of JavaScript objects

to wrap those functions. Trimming those unnecessary wasm functions will reduce the

capture time. Another reason for the long migration time of mobile-to-edge is the low

network speed between the mobile device and edge server. I anticipate the low network

speed can be resolved in the near future, as new 5G internet infrastructure becomes

popular.

An interesting observation in Figure 18 is the pattern of restore time in each app. In

physics app, restore time was almost the same in all configurations (377∼393 ms), and

I found that it was mostly the time to instantiate wasm functions. In opencv app, restore

time of mobile-to-edge (3.2 sec) was much longer than that of edge-to-edge (1.3 sec)

and edge-to-cloud (1.4 sec). This is because mobile-to-edge network is relatively slow,

so the time to transmit the linear memory determined the restore time. Network speed

was much faster in edge-to-edge and edge-to-cloud, so wasm instantiation dominated

the restore time in those configurations. In filter app, the wasm file was very small

(34 KB), i.e., the wasm functions were quickly instantiated, so the restore time was

determined by linear memory transmission time in all configurations. These results

indicate that no matter how fast the worker state (JavaScript objects, wasm functions,

built-in objects) is restored, the web worker migration is finished after the linear memory
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Data VM Synthesis
Migration time (mobile to edge) 18.2 sec
Migration time (edge to edge) 7.9 sec
Migration time (edge to cloud) 7.7 sec

VM overlay size 23 MB

Table 3: Overhead of base system migration in VM synthesis

is restored. Linear memory can grow dynamically according to application logics, so it

is important to keep the linear memory footprint low for fast web worker migration.

If I migrated the web worker code and its dependency encapsulated within a VM,

I would have to migrate the base system (e.g., Node.js) as well as the web worker

state. To observe the overhead of base system migration, I conducted an experiment

that measures the migration time of a VM encapsulating Node.js and a very simple

JavaScript program that just increments a number for every second; the migration of

app state would be negligible, so the migration time can be seen as the time to migrate

the base system (Node.js). I experimented with an open source project that implements

VM synthesis [25] where a client transmits VM overlay, which encapsulates Node.js and

the program, to the server where an Ubuntu base VM image was pre-installed, so that

the server can synthesize a VM instance. Table 9 summarizes the migration time and the

size of VM overlay. The VM migration took a significant migration time (7.7∼18.2 sec)

even when migrating a very simple JavaScript code, which indicates that VM migration

is much heavier than web worker migration, thus inefficient for offloading web app

computations.

2.4.3 Application Execution Performance

In this section I investigate the performance impact of offloading web workers on app

execution. I implemented each test app in two different versions: one that executes

compute-intensive jobs using JavaScript, and another using wasm. I migrated a worker

from the client to the edge server and measured the execution performance of each app
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Figure 10: Execution performance of test apps. For physics app, I measured fps (higher
is better). For opencv and filter apps, I measured execution time, the time between when
the main thread sends a request to the worker and receives the result (lower is better).

(offload); I measured fps for physics, and execution time for opencv and filter. I also

measured the execution performance when the app is executed solely on the mobile

device (local) and on the server (server).

Figure 26 shows the result. In physics app, offload showed 1.6 times more fps in

the JavaScript-version app and 1.9 times more fps in the wasm-version app, compared

to local execution. Especially, the wasm-version app achieved 37 fps, which exceeds

30 fps, the minimum fps required for smooth motion. However, despite the significant

improvement from offload, there is still a large performance gap between offload and

server. This is not the problem of the proposed system but of the offloading logics of

the app. I only offloaded the execution of physics calculation, so the computations for

rendering objects were still performed at the client with mobile GPU. This is due to the

limitation of the current web standard, which supports GPU-assisted rendering (based

on WebGL) only at the main thread. If WebGL is supported in the worker thread in the

future, e.g., using off-screen canvas, it will be possible to offload GPU rendering as

well, and as such the offloading performance will be improved.

In face app, the execution time was dramatically reduced by using wasm instead of

JavaScript. The speedup from offloading was only 1.1x in the JavaScript-version app,

because the JavaScript execution of the offloaded computation (Haar cascade classifier)

was very slow even in the server. Wasm code is executed much faster in the server, so
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the wasm-version app showed much higher speedup (2.6x). I also measured the time

to perform the same computation (Haar cascade classifier) using the native version

of OpenCV, to compare the performance of wasm with that of native codes. The best

execution time of native code was 10 ms, which was executed by code compiled with a

third party parallel library (pthread) to automatically parallelize loop execution. When

I compiled opencv without the parallelization library, the execution time was 35 ms.

Wasm’s execution time was 51 ms, still slower than both versions of native codes,

but reaching the same order of magnitude as native execution time. Wasm is actively

developed by major browser vendors, so I anticipate the performance gap will soon be

reduced, especially by more parallelization (multi-threading or SIMD).

In filter app, the JavaScript-version app achieved a significant speedup (2.4x) by

offloading, but the execution time of offload (493 ms) was even longer than the local

execution time of the wasm-version app (212 ms), which presents the performance

benefit of wasm. The speedup of the wasm-version app (1.4x) was not so high, because

the performance improvement from offloading was limited due to the long transmission

time to send input/output images. The wasm execution time in the server was very short

(26 ms), which means that the execution performance of wasm was not the bottleneck

when offloading computations of the filter app, thus showing the feasibility of replacing

native codes with wasm.
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Chapter 3. IONN: Incremental Offloading of Neural

Network Computations

3.1 Motivation: Overhead of Deploying DNN Model

In this section, I describe a motivating example where the overhead of uploading a DNN

model obstructs the use of decentralized cloud servers (throughout this dissertation, I

will refer to the decentralized cloud servers as edge servers).

Scenario: A man with poor eyesight wears smart glasses (without powerful GPU)

and rides the subway. In the crowded subway station, he can get help from his smart

glasses to identify objects around him. Fortunately, edge servers are deployed over the

station (like Wi-Fi Hotspots), so the smart glasses can use them to accelerate the object

recognition service by offloading complex DNN computations to a nearby server.

The above scenario is a typical case of mobile cognitive assistance [26]. The

cognitive assistance on the smart glasses can help the user by whispering the name

of objects seen on the camera. For this, it will perform image recognition on the

video frames by using DNNs [51] [70]. I performed a quick experiment to check the

feasibility of using edge servers for this scenario, based on realistic hardware and

network conditions.

The client device is an embedded board Odroid XU4 [74] with an ARM big.LITTLE

CPU (2.0GHz/1.5GHz 4 cores) and 2GB memory. The edge server has an x86 CPU

(3.6GHz 4 cores), GTX 1080 Ti GPU, and 32GB memory. I assumed that the client is

connected to Wi-Fi with a strong signal, whose bandwidth is measured to be about 80

Mbps. I experimented with AlexNet [51], a representative DNN for image recognition.

Figure 11 shows the result. Local execution on the smart glasses takes 1.3 seconds

to handle one DNN query to recognize an image. Although the CPU on the client board

is competitive (the same one used in Samsung Galaxy S5 smartphone), 1.3 seconds

per query seems to be barely usable, especially when the smart glasses must recognize
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Client

Cloud Server1.3 sec/query

(ARM CPU)

Edge Server

0.001 sec/query

(NVIDIA GPU)

0.001 sec/query

(NVIDIA GPU)

Uploading AlexNet takes

~24 seconds in

80 Mbps Wireless network

Subway station

Figure 11: Example scenario of using remote servers to offload DNN computation for
image recognition.

several images per second.

If I employ the edge server for offloading DNN queries, one query will take about

∼1 ms for execution, which would make a real-time service. However, the DNN model

should be available at the edge server in advance to make the edge server ready to

execute the queries.

A popular technique to use a random edge server is VM (virtual machine)-based

provisioning, where a mobile client uploads a service program and its execution envi-

ronment, encapsulated with VM, to the edge server (or the edge server can download

them from the cloud), so that the server can run the service program [76]; some recent

studies have proposed using a lightweight container technology instead of VM [58]

[67]. If I use these techniques for the purpose of DNN offloading, I would need to

upload a VM (or a container) image that includes a DNN model, a DNN framework, and

other libraries from the client to the edge server. However, today’s commercial DNN

framework, such as caffe [44], tensorflow [15], or pytorch [69], requires a substantial

space (more than 3 GB)1, so it is not realistic to upload such an image on demand at

runtime. Rather, it is more reasonable for a VM (or a container) image for the DNN

framework to be pre-installed at the edge server in advance, so the client uploads only
1I measured the size of a docker image for each DNN framework (GPU-version) from dockerhub,

which contains all libraries to run the framework as well as the framework itself.
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the client’s DNN model to the edge server on demand.

To check the overhead of uploading a DNN model, I measured the time to transmit

the DNN model through wireless network. It takes about 24 seconds to upload the

AlexNet model, meaning that the smart glasses should execute the queries locally for

24 seconds before using the edge server, thus no improvement in the meantime. Of

course, worse network conditions would further increase the uploading time.

If I used a central cloud server with the same hardware where the user’s DNN

model is installed in advance, I would have obtained the same DNN execution time,

yet with a longer network latency. For example, if I access a cloud server in the local

region (East Asia) [20], the network latency would be about 60 ms, compared to 1

ms of the edge server due to multi-hop transmission. Also, it is known that the multi-

hop transmission to distant cloud datacenters causes high jitters, which may hurt the

real-time user experience [76].

Although edge servers are attractive alternatives for running DNN queries, the

experimental result indicates that users should wait quite a while to use an edge server

due to the time to upload a DNN model. Especially, a highly-mobile user, who can

leave the service area of an edge server shortly, will suffer heavily from the problem; if

the client moves to another location before it completes uploading its DNN, the client

will waste its battery for network transmission but never use the edge server. To solve

this issue, I propose IONN, which allows the client to offload partial DNN execution to

the server while the DNN model is being uploaded.

3.2 Background

Before explaining IONN, I briefly review a DNN and its variant, Convolutional Neural

Network (CNN), typically used for image processing. I also describe some previous

approaches to offloading DNN computations to remote servers.
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3.2.1 Deep Neural Network

Deep neural network (DNN) can be viewed as a directed graph whose nodes are layers.

Each layer in DNN performs its operation on the input matrices and passes the output

matrices to the next layer (in other words, each layer is executed). Some layers just

perform the same operations with fixed parameters, but the others contain trainable

parameters. The trainable parameters are iteratively updated according to learning

algorithms using training data (training). After trained, the DNN model can be deployed

as a file and used to infer outputs for new input data (inference). DNN frameworks, such

as caffe [44], can load a pre-trained DNN from the model file and perform inference for

new data by executing the DNN. In this dissertation, I focus on offloading computations

for inference, because training requires much more resources than inference, hence

typically performed on powerful cloud datacenters.

A CNN is a DNN that includes convolution layers, widely used to classify an image

into one of pre-determined classes. The image classification in the CNN commonly

proceeds as follows. When an image is given to the CNN, the CNN extracts features

from the image using convolution (conv) layers and pooling (pool) layers. The conv/pool

layers can be placed in series [51] or in parallel [88] [31]. Using the features, a fully-

connected (fc) layer calculates the scores of each output class, and a softmax layer

normalizes the scores. The normalized scores are interpreted as the possibilities of each

output class where the input image belongs. There are many other types of layers (e.g.,

about 50 types of layers are currently implemented in caffe [44]), but explaining all of

them is beyond the scope of this dissertation.

3.2.2 Offloading of DNN Computations

Many cloud providers are offering machine learning (ML) services [66] [4] [20], which

perform computation-intensive ML algorithms (including DNN) on behalf of clients.

They often provide an application programming interface (API) to app developers so

that the developers can implement ML applications using the API. Typically, the API

33



allows a user to make a request (query) for DNN computation by simply sending an

input matrix to the service provider’s clouds where DNN models are pre-installed.

The server in the clouds executes the corresponding DNN model in response to the

query and sends the result back to the client. Unfortunately, this centralized, cloud-only

approach is not appropriate for the scenario of the generic use of edge servers since

pre-installing DNN models at the edge servers is not straightforward.

Recent studies have proposed to execute DNN using both the client and the server

[47] [30]. NeuroSurgeon is the latest work on the collaborative DNN execution using

a DNN partitioning scheme [47]. NeuroSurgeon creates a prediction model for DNN,

which estimates the execution time and the energy consumption for each layer, by

performing regression analysis using the DNN execution profiles. Using the prediction

model and the runtime information, NeuroSurgeon dynamically partitions a DNN

into the front part and the rear part. The client executes the front part and sends

its output matrices to the server. The server runs the rear part with the delivered

matrices and sends the new output matrices back to the client. To decide the partitioning

point, NeuroSurgeon estimates the expected query execution time for every possible

partitioning point and finds the best one. Their experiments show that collaborative

DNN execution between the client and the server improves the performance, compared

to the server-only approach.

Although collaborative DNN execution in NeuroSurgeon was effective, it is still

based on the cloud servers where the DNN model is pre-installed, thus not well suited

for the edge computing scenario; it does not upload the DNN model nor its partitioning

algorithm considers the uploading overhead. However, collaborative execution gives a

useful insight for the DNN edge computing. That is, I can partition the DNN model

and upload each partition incrementally, so that the client and the server can execute

the partitions collaboratively, even before the whole model is uploaded. Starting from

this insight, I designed the incremental offloading of DNN execution with a new, more

elaborate and flexible partitioning algorithm.
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Figure 12: Overall architecture of IONN.

3.3 IONN For DNN Edge Computing

In this section, I introduce IONN, an offloading system using edge servers for DNN

computations. Figure 19 illustrates the overall architecture of IONN, working in two

phases. In the install phase, IONN collects the execution profiles of DNN layers. In the

runtime phase, IONN creates an uploading plan that determines the DNN partitions and

their uploading order, using the profile information collected in the install phase and

the dynamic network status. According to the uploading plan, the client asynchronously

uploads the DNN partitions to the server using a background thread. When a new DNN

query is raised, IONN will execute it collaboratively by the client and by the server,

even before the uploading of the partitions completes. I explain both phases more in

detail below.

Install Phase (Client) - Whenever a DNN application is installed on the mobile

device, IONN Client runs the DNN models used in the application and records the

execution time of each DNN layer in a file called DNN execution profile (lower left

of Figure 19). The DNN execution profile will be used by the partitioning engine at

runtime to create an uploading plan.

Install Phase (Server) - An edge server cannot know which DNN models to

execute in the future, so it is infeasible for the server to collect the DNN execution
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profiles as the client does. Instead, when installing IONN Server on the edge server, I

create prediction functions for DNN layers, which can estimate the time for the server

to execute a DNN layer according to the type and the parameters of the layer. The

prediction functions will be shipped to the client at runtime when the client enters

its service area and used for the client to partition a DNN. To create the prediction

functions, IONN Server performs linear regression on the execution data of DNN layers

gathered by running diverse DNN models with different layer parameters (lower right

of Figure 19), as NeuroSurgeon does [47]. I used regression functions listed in [47]

to estimate the prediction functions. For the layers not mentioned in [47], I performed

linear regression using the input size as the model variable.

Runtime phase - Runtime phase starts when a mobile client enters the service

area of an edge server. When a client establishes a connection with an edge server,

the edge server transmits its prediction functions to the client. Since the size of the

prediction functions is small (hundreds of bytes for 11 types of layers in the prototype),

the network overhead for sending them is negligible. After the client receives the

prediction functions, the partitioning engine in the client creates an uploading plan

using the graph-based partitioning algorithm (explained in the next section). DNN

execution Runtime uploads the DNN partitions to the server according to the plan and

performs collaborative DNN execution in response to DNN queries. Figure 20 depicts

how DNN Execution Runtime works in more detail. Since DNN Execution Runtime

uploads DNN partitions and executes DNN queries concurrently, I need two threads:

one for uploading and the other for execution.

The uploading thread in the client starts to run as soon as the partitioning engine

creates an uploading plan, which is a list of DNN partitions, each of which is composed

of DNN layers. First, the uploading thread sends the first DNN partition in the list

to the server. The server builds a DNN model with the delivered DNN partition and

sends an acknowledgement message (ACK) for the partition back to the client. Then,

the uploading thread in the client sends the next partition to the server. This uploading
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Figure 13: Asynchronous DNN uploading and collaborative DNN execution in DNN
Execution Runtime.

process repeats until the last DNN partition is uploaded to the server.

The execution thread executes a DNN query in accordance with the current status

of DNN partitions uploaded so far. The client is aware of which partitions have been

uploaded to the server by checking if the ACK of each DNN partition arrived. I refer to

the partitions currently uploaded to the server as uploaded partitions, as opposed to the

local partitions. When a DNN query is raised, the execution thread executes the local

partitions until just before the uploaded partitions and sends the result (i.e., the input

matrices of the uploaded partitions) to the server, along with the indices of the DNN

layers in the uploaded partitions. The server executes DNN layers whose indices are

the ones delivered from the client and sends the result (i.e., the output matrices of the

uploaded partitions) back to the client. The client and the server continue to execute the

DNN partitions in this way, until the execution reaches the output layer.

3.4 DNN Partitioning

In this section, I explain how the partitioning engine creates an uploading plan. The

partitioning algorithm tries to upload those DNN layers, needed to be at the server

to achieve the best expected query performance, as early as possible. However, I do

not upload those layers all at once, but one partition at a time, so that if a query is

raised during uploading, the uploaded layers so far will be executed at the server for

collaborative execution. For this, the algorithm partitions the DNN layers considering
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both the performance benefit and the uploading overhead of each layer, so that the

computation-intensive layers will be uploaded earlier. To derive such an uploading plan,

I build a graph-based DNN execution model, named NN execution graph, and create

DNN partitions by iteratively finding the fastest execution path on the graph.

3.4.1 Neural Network (NN) Execution Graph

NN execution graph expresses the collaborative execution paths by the client and the

server for a DNN query at the layer level. Figure 21 illustrates an NN execution graph

created from a DNN composed of three layers. Each layer is converted into three nodes

(layer A: 1, 2, 3, layer B: 4, 5, 6, layer C: 7, 8, 9). Nodes in the left side (0, 1, 4, 7, 10)

belong to the client, and nodes in the right side (2, 3, 5, 6, 8, 9) belong to the server.

Edges between the client nodes (e.g., 1→4) indicate local execution, and edges between

the server nodes in the same layer (e.g., 2→3) indicate server-side execution plus the

uploading of the layer. Edges between a client node and a server node (e.g., 1→2 or

3→4) represent the transmissions of input or output matrices over the network. Each

edge is added with a weight to depict the corresponding overhead. Some edges have

zero weight (e.g., 0→1 or 3→5) since no computation or transmission overhead is

involved. The client sets up the edge weights as follows. The client can get its local

layer execution time from the DNN execution profile and estimate the server’s layer

execution time using prediction functions. Also, the data and layer transmission time

can be calculated by dividing the size of transmitted data by the current network speed.

I can express the execution path of a DNN query as the path on the graph. Let us

assume a DNN query is raised with an input data (node 0→1). If layer A is executed

at the client, execution flow will directly go to layer B (node 1→4). Or if the client

offloads the execution of the layer A to the server, then execution flow will go to node 2,

and then 3. If the next layer (layer B) is also executed at the server, execution flow will

go from node 3 to node 5. Or, if the layer B is executed at the client, execution flow will

go to node 4. In this way, I can express the execution path of a DNN query in the graph,
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Figure 14: Example of NN execution graph whose edge weights indicate the execution
time of each execution step.
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and a path from an input (node 0) to an output (node 10) indicates the execution path to

run the whole DNN layers. For example, a path 0-1-4-5-6-7-10 in Figure 21 means the

client executes the layer A, offloads the layer B, and continues to execute the layer C.

The sum of edge weights on a path from the input to the output indicates the

estimated query execution time of the execution path plus the time to upload the DNN

layers executed at the server. For instance, the sum of edge weights on the path 0-1-4-5-

6-7-10 in Figure 21 is the sum of the time to execute layer A and C at the client, the

time to execute layer B at the server, the time to transmit the feature data, and the time

to upload the layer B. So, if I compute the shortest path on the NN execution graph, the

path will tell which layers should be initially uploaded to the server to minimize query

execution time.

3.4.2 Partitioning Algorithm

The DNN partitioning problem is to decide which layers to include in the uploading

partitions, and in what order to upload them, to minimize the query execution time.

Unfortunately, it is impossible to find an optimal solution unless I fully know the future

occurrence of queries; I need to know how soon the next query will occur to decide an

optimal amount of DNN partitions to upload now (e.g., if the next query comes late, I

would better upload a large partition, but if it comes soon, I would better upload a small

partition quickly). Since it is hard to predict the client’s future query pattern, I propose

a heuristic algorithm that can work irrespective of the pattern, based on two rules. First,

I prefer uploading DNN layers whose performance benefit is high and whose uploading

overhead is low. This will make the server quickly build a partial DNN with high

expected speedup, thus improving the query performance rather early. Second, I do not

send unnecessary DNN layers, those that do not result in any performance increase, to

reduce the cost associated in offloading them.

The proposed algorithm is based on the shortest path in the NN execution graph.

As mentioned above, the shortest path on the NN execution graph represents the fastest
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execution path for a DNN query in the initial state (i.e., no DNN layers are uploaded).

On the other hand, if I set the layer upload time of all DNN layers in the graph to

zero, the graph will represent the situation where the whole DNN model is uploaded

to the server, which is the optimal state for offloading DNN execution. If I compute

the shortest path of such a graph, it will be the execution path with the best query

performance I can achieve with collaborative execution; it is not necessarily a path that

executes all layers at the server (i.e., offloading the entire DNN) since some layers might

better be executed at the client due to the high data transmission overhead. To eventually

reach the best performance, I create an uploading plan by iteratively computing the

shortest path in the NN execution graph, while changing the edge weights of the graph

from the initial state to the optimal state.

Algorithm 1 DNN Partitioning Algorithm
Input: DNN model description, DNN execution profile, prediction functions,

network speed, K (positive number less than 1)
Output: Uploading plan (a list of DNN partitions)

1: procedure PARTITIONING

2: partitions← [ ] ;
3: n← 0;
4: Create NN execution graph using input parameters;
5: while Kn ≥ 0.01 do . Until layer upload time becomes ≈ 0
6: Search for the shortest path in the NN execution graph;
7: Create a DNN partition and add it to partitions;
8: Update the edge weights of the NN execution graph by multiplying K

to layer upload time;
9: n← n + 1;

10: return partitions

Algorithm 1 describes the DNN partitioning algorithm that computes an uploading

plan, a list of DNN partitions named partitions, which is an empty list initially (line

2). I first build an NN execution graph using the DNN model description, the DNN

execution profile, the prediction functions, and the current network speed (line 4). Next,

I search for the shortest path from the input to the output in the NN execution graph

(line 6). I identify those layers whose server-side nodes are included in the shortest
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Figure 15: Illustration of the DNN partitioning algorithm.

path, create a DNN partition composed of those layers, and add it to partitions (line 7).

Since the shortest path is computed based on the edge weights including both the layer

execution time and the layer upload time, the DNN partition would include DNN layers

with high expected speedup but short upload time, satisfying the first rule. I can use a

shortest path algorithm for DAG using topological sorting, whose time complexity is

O(n) (n : the number of layers) [19]. Next, I reduce the layer upload time by multiplying

K (positive number less than 1) (line 8) and search for the new shortest path in the

updated graph (line 6). The new shortest path is likely to include more server-side nodes

than the previous one due to the reduction of the server-side edge weights. I create the

next DNN partition with the layers whose server-side nodes are newly included in the

new shortest path. I repeat this process until the edge weights for the layer upload time

become almost zero (line 5), which is nearly the optimal state for offloading. Hence, the

query performance becomes the best performance after the last partition is uploaded,

satisfying the second rule. The output of the algorithm is a list of DNN partitions, and

the client will upload the partitions in the list from the first to the last.

Figure 15 illustrates the partitioning algorithm with an example DNN composed of

four layers (A∼D). I first build an NN execution graph for the initial state as explained

in section 3.4.1. In the first iteration, I search for the shortest path from an input to an

output in the graph (depicted in red arrows) and create a DNN partition [B] since only

the layer B is in the server-side. Next, I multiply K (0.5 in this example) to the layer
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upload time and search for the new shortest path in the next iteration. I create the second

DNN partition [A,C], since the server-side nodes of A and C are newly included in the

shortest path. In the third iteration, the shortest path is the same as before although the

layer upload time is reduced by half, thus no DNN partition is newly created. In fact,

layer D will never be uploaded, because the shortest path will not include the server-side

nodes of the layer D even when the layer upload time reaches zero. This means the

layer D would better be executed at the client for the best query performance. So, the

algorithm generates an uploading plan, partitions=[[B], [A,C]]. The uploading thread

will upload the layer B first, then the layers A and C. In this way, I can quickly upload

a computation-intensive layer (B) and ultimately achieve the best query performance

by uploading three layers (A, B, C) as needed. I could also save the client’s energy

consumption by not uploading the layer D.

I can adjust the granularity of DNN partitions by changing the value of K. If the

value of K is small, the weight for the layer upload time will decrease sharply in

each iteration. This will let the partitioning algorithm finish within a small number of

iterations, therefore making a few, large DNN partitions. On the other hand, a large

K will lead to many iterations and create many, small DNN partitions. I evaluate the

impact of K values in Section 3.5.

Note that the algorithm assumes that edge servers have plenty of network/computing

resources, so contention for shared edge server resources between multiple clients is

negligible. The partitioning algorithm with multiple clients under limited edge server

resources is left for future work.

3.4.3 Handling DNNs with Multiple Paths

There is an issue in the partitioning algorithm to handle DNNs with multiple paths.

Figure 22 (a) illustrates the problematic situation where the algorithm does not work.

The example NN has a layer whose output is delivered to three layers, and the outputs

of the three layers are concatenated and given as the input of the next layer (left in
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Figure 16: (a): Conversion of a DNN with multiple paths. (b): Building NN execution
graph as if the DNN does not have multiple paths.

Figure 22 (a)). If I convert the layers one by one as I did in Figure 21, then the NN

execution graph will be created as the right of Figure 22 (a). In this graph, the shortest

path from an input to an output will include just one layer among the three layers in the

middle, missing the execution of the rest two layers. This will derive a wrong uploading

plan based on incomplete execution path.

To solve this problem, I build NN execution graph as if the original NN does not

have multiple paths, as shown in Figure 22 (b). First, I find dominators of the output

layer, which are layers that must be included in the path from the input to the output [1].

Next, I build NN execution graph as if layers in between two neighboring dominators

(layers between A and B) and the latter dominator (B) are just one layer. The edge

weights of the combined layers are shown in the right side of Figure 22 (b). Since there

are no paths bypassing the dominators (due to the definition of dominators), the path

from the input to the output will not miss any layer execution.
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Name Size
(MB)

Number
of layers Reference

AlexNet 233 24 [51]
Inception 129 312 [89]
ResNet 98 245 [31]

GoogleNet 27 152 [88]
MobileNet 16 110 [34]

Table 4: DNNs For Evaluation

3.5 Evaluation

In this section, I evaluate IONN in terms of the query performance and the mobile

device’s energy consumption.

3.5.1 Experimental Environment

I implemented IONN on caffe DNN framework [44] using a network library boost.asio.

I used the same client device and the edge server as those used in the experiment in

Section 3.1. The client was connected to lab Wi-Fi which has a bandwidth of about

80 Mbps. The server was connected to the internet with Ethernet. I made a cognitive

assistance scenario similar to the example in Section 3.1. I assumed the client repeatedly

raises a DNN query for image classification after pre-processing an incoming video

frame for 0.5 second, i.e., pre-processing (0.5 sec)→ DNN execution→ pre-processing

(0.5 sec)→ DNN execution→... I experimented with five CNNs ranging from a small

DNN (MobileNet) used in mobile devices to larger DNNs. Table 7 shows the size of

DNN models and the number of layers after each DNN model is loaded on the caffe

framework. I compared IONN with the local execution, and the all-at-once execution

where the client uploads the entire DNN model and then offloads DNN queries to the

server; DNN queries raised during uploading are executed at the client.
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Figure 17: Execution time of DNN queries and the size of each DNN partition in the
benchmark DNNs.

3.5.2 DNN Query Performance

Figure 23 shows the execution time of DNN queries in three cases: IONN (K=0.1),

IONN (K=0.5), all_at_once, compared to local. The X value of each data point is the

time when a DNN query is raised. Y value is the time spent to execute the DNN query.

It should be noted that the number of executed queries (the number of data points)

differs for each case; more queries are executed if the query execution time is shorter.

All_at_once starts to offload the DNN execution only after the whole DNN is uploaded,

so its query performance is low (same as local) until the uploading is over. On the

other hand, IONN (both K=0.5 and K=0.1) offloads partial DNN execution before the

uploading is over, so the query performance is much better while uploading the DNN

model. Also, I observed the query execution time of both IONNs rapidly decreases after

a few queries and eventually reaches the minimal, which is the same execution time of

all_at_once when the uploading is over. This implies that IONN can quickly offload

46



Name All_at_once IONN
(K=0.1)

IONN
(K=0.5)

AlexNet 28.7 30.3 30.7
Inception 16.4 16.7 16.8
ResNet 12.1 12.6 13.0

GoogleNet 3.9 3.9 4.4
MobileNet 2.3 2.5 2.8

Table 5: Uploading Completion Time (second)

computation-intensive layers and eventually achieve the best performance.

Figure 23 also shows the impact of the K value on the granularity of DNN partitions

(i.e., number/size of DNN partitions) and the query performance. As expected, IONN

(K=0.5) created more partitions than IONN (K=0.1) (except for AlexNet), so its average

size of the partition was smaller. Since smaller DNN partitions can be uploaded to the

server more quickly, the query performance of IONN (K=0.5) will improve earlier than

IONN (K=0.1). This is the reason why K=0.5 performed better than K=0.1 in the 3rd

and 4th queries of ResNet; the large second partition of K=0.1 was still being uploaded,

while the small second partition of K=0.5 had been already uploaded. A similar result

can be observed in the 2nd query of Inception, GoogleNet, and MobileNet.

Another expected impact of K value is network overhead to handle multiple DNN

partitions. The larger K value will create more, smaller partitions, and the total time to

upload a DNN model will increase due to the handling of more ACK messages. Table 8

shows the impact of the network overhead on the time to upload the whole DNN layers.

As expected, the uploading completion time of each DNN model is longer when the

number of DNN partitions is larger (All_at_once < IONN (K=0.1) ≤ IONN (K=0.5)).

But the difference of the uploading completion time is small, meaning that the overhead

of uploading multiple partitions is insignificant.

I observed that the query execution time in IONN sometimes increases during the

uploading of the DNN layers, as at 10∼30 second in AlexNet and 8∼16 second in

Inception. This phenomenon appears to be due to the transmission of the last DNN
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partition, which is much larger than other partitions, interfering severely with the

transmission of feature data. Nonetheless, the performance benefit of offloading is even

higher than the interference overhead, so the overall query execution time of IONN is

much shorter than that of all_at_once.

3.5.3 Accuracy of Prediction Functions

The uploading plan is created using prediction functions for the server’s layer execution

time, so the accuracy of the prediction functions will affect the preciseness of the

edge weights in the NN execution graph, thus the final uploading plan. I evaluated

the accuracy of the prediction functions as follows. I compared the uploading plan

generated from the predicted layer execution time, with the uploading plan generated

from the real layer execution time gathered by recording the time on the server. The

uploading plans from both configurations were the same; the number of partitions and

the layers included in each partition were the same. This means that the prediction

functions are good enough for IONN to generate an accurate uploading plan under real

hardware and network conditions.

For a statistical analysis, I calculated the coefficient of determination (R2)2 and the

root mean square error (RMSE) of the prediction functions after the regression. Table

9 shows the result. The R2 values of all layers, except the conv layer, are close to 1,

which means that the prediction functions are suitable for estimating the layer execution

time. Although the prediction function for the conv layer has low R2 value (0.428), the

final uploading plan generated by using the prediction function was the same as the one

using the real data. This is because the server’s execution time is much smaller than the

client’s execution time, so the error of the predicted server’s execution time has little

effect on the final uploading plan. The RMSE in Table 9 backs up the statement. The

RMSE of the conv layer is 0.025 ms, which is negligible compared to the client’s conv
2The coefficient of determination is the proportion of variation in the dependent variable which is

explained by the independent variables. This value can be used to measure the accuracy of a prediction
model. R2 can take 0 as minimum (bad model), and 1 as maximum (good model).
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Layer
Type R2 RMSE

(ms)
Layer
Type R2 RMSE

(ms)
Conv 0.428 0.025 FC 0.997 1.291
ReLU 0.999 0.001 Softmax 1.000 0.256

Pooling 0.853 0.002 BatchNorm 0.953 0.004
LRN 1.000 0.009 Scale 0.953 0.002

Concat 1.000 0.018 Eltwise 0.991 0.002

Table 6: R2 and RMSE of Prediction Functions

Figure 18: Execution time of DNN queries and the size of each DNN partition in the
benchmark DNNs.

layer execution time (about tens of milliseconds), so the final uploading plan would be

hardly affected by the error of the predicted server’s execution time.

3.5.4 Energy Consumption

I measured the energy consumption of the client board using SmartPower2 [74] until the

client finishes uploading its DNN model to the server (e.g., 0∼30.5 seconds for IONN

in AlexNet in Figure 23). Figure 18 shows the result. In all benchmarks, IONN and

all_at_once consumed a similar amount of energy (overall, IONN consumed slightly

less energy than all_at_once, but the difference is insignificant). This implies the

overhead of incremental offloading (e.g., ACK messages, a longer uploading time)

is not burdensome for mobile devices. Figure 18 also shows the number of queries

executed during the uploading. IONN executed more queries than all_at_once in all
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benchmarks except MobileNet, showing higher throughput. These results imply that

IONN improves query performance without increasing energy consumption compared

to all_at_once.
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Chapter 4. PerDNN: Offloading DNN Computations

to Pervasive Edge Servers

4.1 Motivation: Cold Start Issue

To offload DNN execution from a client to a remote server, the client’s DNN model

has to be present in the server. Commercial edge computing solutions of major cloud

providers (Amazon GreenGrass, Microsoft Azure IoT Edge, Google Cloud IoT Edge) let

users save their DNN models in the cloud and make an edge server download the model

before executing it. However, since modern DNN models for complex tasks typically

consist of numerous weights, users should wait for a quite long time to download

full DNN models. For example, Inception 21k [90], a popular DNN model for image

classification with size of 128 MB, is completely downloaded in ∼18 seconds under

the global average download speed (∼57.91 Mbps [85]), which is hardly tolerable for

today’s mobile users. The high overhead of model deployment makes it difficult to

offload DNN execution to public edge servers on demand, especially when the user

moves frequently.

IONN [43] mitigates the waiting time for deploying a DNN model by partitioning

a DNN model between a client and a server and by incrementally uploading the server-

side layers from the client to the server (IONN works for an environment where a

model is saved in the client and uploaded to the edge server for offloading [43]). IONN

partially offloads the execution of uploaded layers before the full model is transmitted,

so DNN execution performance is gradually improved as more layers are uploaded

to the server. This deployment strategy improves DNN execution performance during

uploading of DNN layers, but initial performance remains low when a client just starts

uploading DNN layers, as the client has to execute most of DNN layers by itself.

Fig. 19 demonstrates the performance drop when a client starts offloading DNN

computations to a new edge server. I measured the execution times of 40 consecutively
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Figure 19: DNN execution time while a user moves from one edge server to another.

generated DNN queries on Inception21k [90]. Each query was raised 0.5 second after

the previous query is executed. The client device was an embedded board (ODROID

XU-4 [74]), and the server was a desktop PC equipped with a high-end GPU (Titan Xp).

For the first query, the client executed all DNN layers at the local device as no layers

had been uploaded to the edge server yet, so the execution time was quite high. DNN

execution time decreased as more layers were uploaded, but soared at the 21st query,

where the client changed its offloading server. Although DNN execution time decreased

again rapidly due to incremental offloading, the spike of execution time at the start of

offloading would harm users’ mobile experience, e.g., frame drops in video analytics

whenever a user moves from one edge server to another. Mobile users who frequently

change their target edge servers would be especially vulnerable to the fluctuation.

4.2 Proposed Offloading System: PerDNN

In this section, I present the design and implementation of PerDNN, which reduces

cold starts by predicting the movement of mobile users and proactively migrating DNN

layers to the next edge server to visit. I first describe our edge server environment and

the overall architecture of PerDNN. Next, I delve into how I partition a DNN model

and how I predict the next edge server.
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Figure 20: Edge server environment based on Wi-Fi APs.

4.2.1 Edge Server Environment

Fig. 20 illustrates the edge server environment. I considered a general wireless local area

network (WLAN) where mobile users connect to nearby Wi-Fi APs in public places,

e.g., cafe, street, or office. Next, I envisioned edge server infrastructure integrated with

WLAN, where computing nodes, equipped with accelerators such as GPUs, are located

near the hotspots. The edge server of each hotspot routes data between the users and

the nearby computing node, so hotspot users can access the computing node with low

latency. Edge servers are inter-connected through backhaul network, which has been

used for file caching [5] [79] or service migration [57]. In this dissertation, the backhaul

network is used to transmit DNN layers between edge servers.

A hot spot client (smart glasses in Fig. 20) can offload DNN execution to the

computing node after deploying its DNN model to the node. I assumed the model

is uploaded from the client to the node (like IONN [43]), but it is also possible to

make the node download the model from the cloud. When the client moves to another

hotspot, it can either (1) offload DNN execution to the new computing node in the

current hotspot, as previously or (2) keep connection with the previous server and route

input/output data through backhaul networks. In this dissertation, I focus on the first

case, because routing leads to the sub-optimal offloading with increased latency and

53



Figure 21: Overall architecture of proposed system.

constantly consumes backhaul traffics while the client offloads computations. It should

be noted that despite these drawbacks, routing can be useful in some senses (e.g., load

balancing [11]), but I leave the possibilities as the future work.

4.2.2 Overall Architecture

Fig. 21 shows the overall architecture of PerDNN. When a mobile client first connects

to an edge server, it sends its DNN profile and current trajectory to the master server.

DNN profile includes the types and hyperparameters of DNN layers, which are used to

partition a DNN model. DNN profile does not contain the weights of layers (the heaviest

part of a DNN model), so it can be quickly uploaded to the master server. Current

trajectory is the recent locations of the client during a certain time period, gathered

from GPS or Wi-Fi positioning system. The client periodically transmits its current

trajectory to the master server, so the master server can keep track of the latest trajectory

of the client.

Using the DNN profile and the current trajectory of the client, the master server con-

trols the following actions: 1) collaborative DNN execution and 2) proactive migration

of DNN layers to the next visited edge server.
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Collaborative DNN execution

DNN partitioner in the master server creates a partitioning plan for a client, which

specifies the execution location of each DNN layer and how to upload DNN layers.

DNN partitioning is further explained in Section 3.C. The partitioning plan is delivered

to the client, and the client incrementally uploads DNN layers to the edge server

according to the plan. When a DNN query is raised, the client executes layers one by

one until reaching the uploaded layer, and sends the input of the uploaded layer to the

edge server. The edge server executes the uploaded layers and returns the result to the

client. The client continues to execute the rest of the layers, if any. Since the partitioning

plan is used for this current DNN execution, I call the plan current partitioning plan.

Proactive DNN migration

While the client and the edge server collaboratively execute a DNN model, the master

server predicts the next location of the client using the client’s current trajectory. Then,

it finds edge servers around the predicted location by finding nearby hotspots in the

Wi-Fi database such as WiGLE [94] under the assumption that the master server has

the mapping between edge servers and Wi-Fi hotspots. The master server then creates

partitioning plans for the edge servers near the predicted location; these plans are

derived for future execution, so I call them future partitioning plans. The server-side

layers of the future partitioning plans are transmitted from the current edge server

to the corresponding edge servers. If the current edge server does not have all of the

server-side layers, it sends layers as many as possible, so the client can upload only the

rest of the layers when it visits the predicted server. After receiving DNN layers, edge

servers keep the layers for a certain duration (TTL: Time To Live) and discard them after

TTL. TTL is reset when another server attempts to send the DNN layers of the same

client to the server, so the layers already existing at the server are not sent again, thus

avoiding duplicate transmissions.

PerDNN periodically repeats the above processes to maintain the best execution
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performance and to reduce the overhead of deploying DNN layers. When a client visits

an edge server, PerDNN creates the current partitioning plan, as mentioned in Section

4.2.2; it should be noted that the plan is based on the current runtime states (server

workloads and network conditions), so it might be different from the future partitioning

plan made previously for proactive migration to this server. If the server already received

all (or parts) of the server-side layers from other servers, the client can immediately start

offloading the execution of those layers. If there are some missing server-side layers,

the client will upload the remaining layers to complete the current partitioning plan. If

the server does not have any server-side layer of the current partitioning plan, the client

incrementally uploads the server-side layers from scratch. Interestingly, I found that

migrating only a tiny fraction of the server-side layers can improve the performance

substantially, which I can exploit to reduce the network traffic (see Section 4.3.1).

4.2.3 GPU-aware DNN Partitioning

The objective of DNN partitioning is to create a partitioning plan, which determines

the execution location of DNN layers to minimize execution latency. Previous studies

on DNN partitioning [43] [35] have already introduced algorithms to find the best

partitioning plan with minimum execution time based upon the estimated execution time

of each DNN layer. So far, however, no previous study has considered the congestion of

GPU, which is critical to DNN execution performance, when partitioning a DNN model,

thus having difficulty when multiple clients simultaneously offload DNN execution to

an edge server equipped with a shared GPU. PerDNN uses GPU information when

estimating layer execution time, so it can derive a more accurate partitioning plan than

previous approaches in case of multi-client offloading.

However, estimating layer execution time is extremely challenging, because it is

affected by numerous factors. When a server concurrently executes DNN inferences

of multiple clients, the execution time is influenced by interference in shared GPU

or system resources such as streaming multiprocessors, GPU memory, and PCIe bus.
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Various GPU sharing schemes (temporal sharing [92], spatial sharing [103], or hybrid

of them) make it more difficult to predict the execution time. Building an estimation

model considering all these factors is extremely complicated, not feasible in general.

Therefore, I take a practical approach that does not require any prior knowledge of

hardware details or GPU scheduling policies.

PerDNN predicts layer execution time considering GPU statistics as well as layer

hyperparameters. I assumed edge servers can measure GPU statistics1 including ker-

nel/memory utilization, GPU memory usage, and GPU temperature without significant

overhead. So, before deriving a partitioning plan, the master server pings to an edge

server to obtain the current server workload and then estimates layer execution time

using the execution time estimator of the server based on the current server workload.

The execution time estimator of each edge server is trained offline using the dataset

generated by profiling the execution time of a DNN layer while concurrently running

DNN inferences issued by multiple clients. During the profiling, server workload is

changed by adjusting the number of clients; I extended perf_client in NVIDIA TensorRT

inference server [63] to control the concurrency level and to measure the execution

time. At the same time, the server records its GPU statistics whenever receiving a DNN

request from a client. Using the dataset, the edge server trains random forest models for

each layer type (conv, fc, etc) that predict the execution time given the server workload

and the layer hyperparameters.

Fig. 22 shows the mean absolute error (MAE) of the estimation of the execution

time for a convolution layer. For comparison, I plotted the MAE of the estimation model

of the latest approach (NeuroSurgeon [47]), which only uses layer hyperparameters to

train linear/logarithmic regression models (represented as LL); different models were

trained for each server load (≈ number of clients), as described in their dissertation.

The result shows that MAE of LL surges as the number of clients increases. The MAE
1Kernel/memory utilization and GPU temperature were measured with nvml, Nvidia management

library. Kernel/memory utilization means the percentage of time spent for kernel execution or memory
operation over the past sample period (between 1 second and 1/6 second)
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Figure 22: Mean absolute errors of execution time estimation with different server
workloads (conv layer).

of a single layer is insignificant (at most ∼800 us), but modern DNN models often use

hundreds of layers, so the aggregate error of the entire model would be substantial.

To test if the GPU information improves the estimation, I trained the same LL

models but with GPU statistics as well as layer hyperparameters (represented as LL

w/ server load info). LL w/ server load info showed much lower MAE than LL when

many clients send requests, which implies that GPU information is useful for estimating

layer execution time under heavy workloads. My method (RF w/ server load info)

showed even less MAE than LL w/ server load info, suggesting that a random forest

is better than linear/logarithmic models to learn the non-linear relationship between

execution time and workload features (# of clients, kernel/memory utilization, GPU

temperature). The right side of Fig. 22 shows the importance of each feature in the

random forests [78]. It indicates that the workload features were more important than

layer hyperparameters when estimating layer execution time.

Given the estimated layer execution time, the optimal partitioning plan leading to

the minimal execution time can be found with an algorithm proposed in IONN [43],

which models DNN execution as a directed graph and finds the shortest execution path

from the input to the output. By applying the algorithm to each edge server visible by

the client, I can find the best edge server and the corresponding execution locations of
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the DNN layers, which is the current partitioning plan. To derive future partitioning

plans for proactive migration, I apply the above algorithm to all edge servers within a

certain distance (r: 50 m or 100 m in the evaluation) from the predicted location.

After the execution location of each layer is determined, I need to decide the order

of uploading server-side layers. My strategy is to send layers with high offloading

benefits first [80]. I defined the efficiency of layers as the latency reduced by offloading

the layers divided by the size of the layers. I create the partitions of the server-side

layers, which are all possible successive layers in the server-side layers, and calculate

the efficiency of each partition. Then, I decide to upload a partition with the highest

efficiency first and update the efficiency of the remaining partitions. The same process is

repeated until all server-side layers are uploaded. I use the same algorithm for proactive

migration as well, to determine the order of sending layers from the current edge server

to the target edge server.

4.2.4 Mobility Prediction

The purpose of mobility prediction is to predict the location of a mobile user to

determine the next visited edge servers. Since PerDNN continuously makes predictions

in real time, its prediction mechanism has to be lightweight. Also, the prediction should

capture the point where the client enters the service area of the next server, so it needs to

be short-ranged. To meet these requirements, PerDNN predicts the user’s next location

based on the user’s recent trajectory, which can be easily collected in modern mobile

devices and highly correlated with the user’s next movement [45]. I assumed a client

periodically collects its location (x, y coordinates) every time interval t and sends n

most recent locations to the master server. The master server predicts the next location

of the client after the interval t.

To achieve high prediction accuracy and system efficiency, the values of n and t

have to be carefully determined. Trajectory length (n) directly affects the prediction

accuracy, e.g., if n is too small, the prediction will be inaccurate due to the lack of
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Figure 23: Left: Prediction errors with different time steps. Right: Effects of time
intervals on futile predictions and prediction errors.

previous location information. Time interval (t) affects the number of futile predictions

as well as prediction accuracy; futile predictions are predictions made while the client

stays in the same edge server, which do not contribute to any performance improvement

but waste the mobile device energy and the backhaul traffics. If I make predictions

too frequently (i.e., t is small), the master server will make many futile predictions

before a client leaves the server. If I increase t to reduce futile predictions, however,

the prediction error will increase, because the master server will predict the client’s

location of a too distant future.

To determine the values of n and t, I investigated their impacts on mobility prediction

using the international-scale open source dataset named Geolife [104]. Geolife contains

trajectories of mobile users with short measurement intervals (1∼5 seconds), so I could

make datasets with different time intervals by sampling the trajectory data in a different

rate. I trained singular vector regression (SVR) models that predict the mobility of the

users in the datasets and tested the performance of the predictors.

The left side of Fig. 23 shows prediction errors (MAE) of the mobility predictors

while changing the length of trajectories (n) used for prediction. For all time intervals

(15, 20, 25, 30 seconds), the prediction error dropped when n is two, which implies

60



that the locations of the recent two time steps are crucial to predict the location of the

next time step; this finding is consistent with that of Song et al. [83], which evaluated

various location predictors with extensive Wi-Fi mobility data. The prediction errors

slowly decreased (30s interval) or remained the same (the others) after five steps, so I

set n as five in this dissertation.

The right side of Fig. 23 shows the effects of time interval (t) on prediction errors

(MAE) and the ratio of futile predictions over all predictions. For the experiment, I

divided the region of the dataset into a hexagonal grid and assumed an edge server is

allocated in each cell with radius of 50 m (see Section 4.3.2 for more details about the

environment). The result shows that the larger t reduces the futile prediction ratio but

at the same time increases the prediction error. To determine the proper value of t, I

devised a scoring metric based on the benefit and the cost of proactive migration, which

have following characteristics.

(4.1)benefit ∝ a× (t− f)

(4.2)cost ∝ t

where t is the number of total predictions, f is the number of futile predictions, and

a is the prediction accuracy when the predicted location is inside the service range of

the next edge server. I calculated the benefit-to-cost ratios for different time intervals

ranging from 15 seconds to 60 seconds, and selected the best t with the maximum

benefit-to-cost ratio. The best t was 20 seconds in the settings with Geolife dataset.

After t and n are determined, the next step is to build a mobility prediction model,

which predicts the next value (x, y coordinates) in the trajectory given historical tra-

jectory information. There exist a ton of previous studies on trajectory-based mobility

prediction [83] [61] [45] [100]. I engineered three previous prediction algorithms

(Markov, SVR, RNN) to suit the edge server environment, and used the one with high

prediction accuracy and fast performance (linear SVR). Comparison of each algorithm
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is reported in section 4.3.2. Detailed implementation of each algorithm is explained

below.

Markov: We implemented a Markov model based on several previous studies

on mobility prediction [61] [100] [83]. The client’s location (x, y coordinates) was

discretized by mapping to the identifier of the closest edge server; edge servers are

assumed to be distributed in a hexagonal grid (see Section 4.2.1 for more details). We

created a variable-order Markov model, implemented as a prediction suffix tree [73],

from the history of trajectories, based on the frequency of a sequence. Given a new

user’s recent trajectory, we search the longest matching pattern in the suffix tree. We

multiply a (0 < a ≤ 1) to the length of the longest matching pattern, and use the

sampled subsequence with that length to get prediction [40]. The subsequence ratio (a)

was set to 0.7, which achieved the best accuracy in our datasets.

Support Vector Regression (SVR): We made an SVR model [82] which takes the

array of x, y coordinates, the recent trajectory of a client, as an input and outputs the

x, y coordinates of the client’s next location. The x, y coordinates were normalized to

standard scores before fed into the SVR model for training and testing. We compared

SVR models with different kernel functions (linear, polynomial, rbf) using scikit-learn

v0.20.3 and chose the best one (linear SVR) with the highest accuracy. The model

parameters (epsilon, tolerance) were empirically determined.

Recurrent Neural Network (RNN): We made an RNN model using a long short-

term memory (LSTM) cell [33], which has been widely used for mobility prediction

[84] [2] [45]. The client’s trajectory was transformed to a sequence of x, y coordinates

normalized to standard scores. An LSTM cell reads an input sequence and produces a

latent vector with size of 16∼32 (depending on a dataset). The latent vector is delivered

to an fc layer with no activation function which outputs the x, y coordinates of the

predicted location. We used MAE as a loss function and the Adam optimizer [48] with

learning rate of 0.001. Hyperparameters (number of LSTM cells, latent vector size,

learning rate, and optimizers) were empirically determined by using grid search.
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Table 7: DNN models used for evaluation.

Name # of
Layers

Size
(MB) Description

MobileNet 110 16 MobileNet v1. Image classification
among 1k classes [34]

Inception 312 128 Inception. Image classification
among 21k classes [90]

ResNet 245 98 ResNet-50. Image classification
among 1k classes [31]

4.3 Evaluation

In this section, I evaluate PerDNN in two setups. First, I examined the performance

improvement that a single client can gain with proactive migration. Next, I conducted

large-scale simulation where a number of mobile users offload DNN computations to

public edge servers in the smart city.

The test application was a cognitive assistance, which continuously performs DNN

inference to recognize objects around a visually-impaired person [26]. I assumed that a

mobile client constantly generates a DNN inference query 0.5 seconds after the previous

query is executed. I used three widely used DNN models for experiment. MobileNet

[34] is a tiny DNN model designed to run on resource-constrained devices. Inception

[90] and ResNet [31] are larger DNN models for a more complex task and higher

accuracy. Table 7 shows the details of each model.

The client board was an ODROID XU4 [74], equipped with ARM big.LITTLE

CPU (2.0/1.5 GHz 4 cores) with 2 GB memory. I used an x86 desktop PC equipped

with a quad-core CPU (i7-7700), Titan Xp GPU, and 32 GB memory as an edge server.

The client was connected to lab Wi-Fi (35∼50 Mbps) provided by the router directly

connected to the edge server. Mobility predictor was implemented with a machine

learning library named scikit-learn [78], and the rest of the system (DNN executor and

DNN partitioner) was implemented based on a popular DNN framework named caffe

[44].
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Figure 24: First query execution time with proactive migration.

4.3.1 Performance Gain of Single Client

To evaluate the performance improvement from proactive migration, I measured the

time to execute the first DNN query that a client raises after connecting to a new edge

server. All server-side DNN layers might have already been migrated at the new server

(hit), or none of them were migrated (miss). I also measured for the cases when the

layers are migrated partially, according to the amount of layers migrated.

Fig. 24 shows the result. For all DNN models, the first query execution time rapidly

decreases as the server has more migrated layers. The sharp decline of execution time

results from my partitioning algorithm, which sends layers with high efficiency first

(Section 4.2.3). Especially, Inception showed a remarkable speedup (2.5x) in the first

query execution when only 8% of the total model (∼10 MB) was sent to the server

in advance. The dramatic speedup of Inception is due to its structure, where compute-

intensive convolution layers (having high efficiency for efficiency-based uploading order

mentioned in Section 4.2.3) are concentrated in the front part, so the execution perfor-

mance was quickly improved by sending those layers first; other models have relatively

lower-efficiency, evenly-distributed layers. These results indicate that migrating only a

small fraction of a model can lead to significant performance improvement, which I

can exploit to reduce the network traffic (see Section 4.3.2).
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Table 8: Number of DNN queries executed during uploading of a DNN model (through-
put).

Data MobileNet Inception ResNet

Uploading time (sec) 3.7 29.3 22.4
Executed queries of miss

(IONN [43])
4 33 14

Executed queries of hit
(PerDNN)

5 44 34

Next, I observed throughput gains achievable by proactive migration. I measured

the number of executed queries while a client uploads all DNN layers to an edge

server, i.e., throughput during uploading a DNN model. A hit case indicates that the

server received all DNN layers of a client from another server in advance, so the client

immediately offloads DNN execution; this represents the best performance of PerDNN.

A miss case indicates that the edge server did not receive any DNN layer, so the client

incrementally uploads its DNN layers from scratch, which represents the baseline

(IONN [43]). Table 8 shows the throughput of each case. The throughput increase was

small (4→5) in MobileNet due to its short uploading time, but for large DNN models,

proactive migration significantly improved the throughput (Inception (33→44) and

ResNet (14→34)).

4.3.2 Large-Scale Simulation

Simulation Environment

I envisioned a public edge server environment where edge servers are pervasively

distributed, so mobile users can access at least one edge server in any place. I set up

such an environment based on two real-world mobility datasets listed below.

KAIST: KAIST is daily GPS tracks of students, collected every 30 seconds on

campus [71]. The dataset contains outliers moving very far, so I only used the data

points in the rectangular area (1.5 km x 2 km) including the campus site.
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Figure 25: User trajectories and edge server distribution. The blue part indicates where
the user trajectories have passed.

Geolife: Geolife is a GPS trajectory dataset of 182 users, collected every 1∼5

seconds in multiple countries [104]. I only used the data inside the rectangular area (7.2

km x 5.6 km) encompassing the circular railway of subway line 2 in Beijing, China; the

ranges of latitudes and longitudes are 39.900341∼39.950932 and 116.353370∼116.437765.

Fig. 25 visualizes the user trajectories in the Geolife dataset. The blue points indicate

data points of user trajectories. I divided the region into a hexagonal grid where each

cell has the radius of 50 m, which is the service range of a typical Wi-Fi AP [95]. I

allocated an edge server to a cell which had been visited by any user, so all users in the

dataset can offload computations to the server in the current cell. The wireless network

speed between the client and the edge server was set to 50 Mbps for download and 35

Mbps for upload, the average speed of lab Wi-Fi (5 GHz) in various crowdedness. Edge

servers were distributed in the KAIST dataset in the same way.

To simulate realistic user movements, I played back user trajectories in the test sets

of our datasets, which were not used for training mobility predictors; the number of

mobile users was 31 for KAIST and 138 for Geolife. The location of each user was

updated every time interval. All clients used the same DNN model for each simulation

run; the DNN model of each client was not shared at the edge server, because in a real

scenario the model could be personalized and is likely to be different, thus by default
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Table 9: Accuracy of edge server prediction (%). The number inside parenthesis indi-
cates mean absolute error (m).

Dataset Markov SVR RNN
top-1 top-2 top-1 top-2 top-1 top-2

KAIST 4.6 44.4
8.1

(12.9)
54.1

(12.9)
9.2

(12.4)
54.6

(12.4)

Geolife 15.0 32.0
38.1

(31.4)
59.6

(31.4)
36.9

(32.1)
58.1

(32.1)

not sharable across different clients. Time to perform DNN partitioning and mobility

prediction was ignored, since it is negligible compared to DNN execution time. As I

could not prepare hundreds of real edge servers, I profiled the execution time of DNN

layers at the server and at the client in advance using caffe [44], and performed the

simulation using those execution profiles.

Accuracy of Mobility Prediction Algorithms

We compared the accuracy of the mobility prediction algorithms (Markov, SVR, RNN)

explained in section 3.4. When calculating the accuracy, we only counted non-futile

predictions, i.e., predictions made just before when a client moves to another server,

because futile predictions are useless for proactive migration. For Markov, the top-n

accuracy means that the prediction is correct when the client visits one of n highest

probable servers. For SVR and RNN, the prediction is correct when the client visits

one of n closest servers from the predicted location. We considered top-2 accuracy as

well as top-1, because most of top-1 result was the current server, i.e., the client was

predicted to stay in the same edge server. Top-2 results always include a server other

than the current one, thus more suitable for evaluating the edge server prediction for

proactive migration.

Table 9 summarizes the result. Markov shows definitely lower top-1 and top-2

accuracy than SVR and RNN in both datasets. This is because Markov predictor loses

the exact location information of clients when mapping from x, y coordinates to a
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discrete edge server identifier. SVR and RNN showed similar accuracy and MAE in

both datasets. We tested various RNN models, but the best configuration for minimum

MAE required just a single LSTM cell (with an output dimension of 32 for KAIST and

16 for Geolife), which is much simpler than RNNs for difficult tasks such as speech

recognition [87]. The result implies that location prediction with a short-term trajectory

does not require such a complex RNN model, or our training data was not sufficient

enough for training. Since linear SVR showed an accuracy similar to RNN and was

faster than RNN in terms of both training and testing, we decided to use it in the

simulation.

Simulation Result

To evaluate the impact of proactive migration on DNN execution performance, I mea-

sured the total number of executed DNN queries and hit ratios (the ratio of hit cases

over the sum of hit and miss cases) while all clients traverse their trajectories. For

baseline (IONN [43]), the clients incrementally upload DNN layers from scratch when-

ever connecting to a different edge server (hit ratio = 0%). PerDNN predicts the next

location of a client and proactively migrates DNN layers to all edge servers within a

certain distance (r meters) from the predicted location; edge servers keep those layers

for five time intervals (TTL=5). Optimal is when all DNN layers are always available

in all edge servers, so DNN queries are always executed in full speed (hit ratio = 100

%). I only measured the number of queries executed for a time interval right after a

client connects to a new edge server, i.e., whenever a cold start occurs, which are our

optimization targets.

Fig. 26 shows the result. The hit ratio of the system was 37% (r=50) and 90% (r=100)

in KAIST and 43% (r=50) and 70% (r=100) in Geolife; the hit ratio is proportional to

the increase of query counts from the baseline. Larger r means edge servers further

away from the predicted location can receive DNN layers, thus increasing the hit ratio.

The result of KAIST with r=100 is highly promising, because it means that I can remove
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90% of cold starts. In Geolife, the hit ratio was relatively low even with r=100 (70%),

because users in Geolife moved much faster than them in KAIST, hindering accurate

user location prediction; the average speed of users in KAIST and Geolife was ∼0.5

m/s and ∼3.9 m/s, respectively. Since Geolife dataset was collected from different

modes of transportation, I anticipate that the hit ratio of Geolife can be improved with

advanced prediction techniques such as transportation mode inference [84].

MobileNet showed a small increase in query counts, because it is a tiny model

that can be quickly uploaded even in the wireless network; the difference between the

number of executed queries of baseline and that of optimal, i.e., optimizable queries,

was small (∼3.5k). Inception and ResNet have much more optimizable queries than

MobileNet (∼40k and ∼64k, respectively), such that the increase in executed queries

was clearly visible. This indicates that PerDNN is more effective for large DNN models

with high deployment overheads.

Backhaul Traffics

The cost of proactive migration is the backhaul traffics for migrating DNN layers.

I measured the backhaul traffics of each edge server for each time interval in two

directions: uplink traffic, the sum of all data traffics sent from the server within the

time interval, and downlink traffic, the sum of all data traffics coming into the server

within the time interval. When clients were using Inception, the peak uplink/downlink

traffic of the most crowded server was 616/205 Mbps in KAIST and 667/359 Mbps

in Geolife; at that time, the server was transmitting DNN models simultaneously to

13 clients and 18 clients, respectively. That amount of traffics is beyond the capacity

of typical wireless broadband, so a wired network system such as fiber-optic cables

would be needed for connecting the crowded server with nearby servers. Fortunately,

I found that a relatively small number of servers require such a high traffic (60∼70%

of the servers needed less than 100 Mbps uplink/donwnload traffics), so it would be

possible to build the PerDNN system on the hybrid network where most edge servers
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are connected via wireless broadband and some crowded ones are connected via wired

links.

Fractional Migration

Although I found that the number of crowded servers are relatively small in the previous

section, setting up wired connections for those servers would require significant costs.

Based on the observation in Section 4.3.1 (DNN execution performance can be highly

improved even if I proactively migrate a fraction of a DNN model), I explored the

possibility to reduce the peak backhaul traffics of crowded servers by migrating only a

fraction of a DNN model, instead of the whole model.

I chose the top 5∼7% of the most crowded edge servers (24 servers in KAIST and

86 servers in Geolife) based on the uplink traffics at the peak time and ran a simulation

where the chosen servers transmit (or receive) only a fraction of the server-side layers;

the rest of the servers transmit (or receive) the whole DNN layers as usual. The migrated

layers for the crowded servers were selected based on the highest-efficiency-first rule,

same as Section 4.3.1. Fig. 27 shows the result in the KAIST dataset. For Inception, I

could reduce 67% of the peak uplink traffic (616→206 Mbps) by sacrificing only 2% of

the executed queries (when transmitting 43 MB of layers instead of the whole layers).

For ResNet, the peak uplink traffic decreased by 43% (469→268 Mbps) in return for

1% reduction of executed queries when transmitting 56 MB of layers. These results

imply that the high backhaul traffics of a few crowded servers can be greatly reduced

by fractional migration, with little loss in performance.
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Figure 26: Number of executed queries and hit ratios during simulation.
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Figure 27: Impact of fractional migration on peak backhaul traffics and execution
performance.
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Chapter 5. Related Works

Our mobile web worker system stems from a concept of cyber foraging, which offloads

computations of resource-constrained clients to surrogate machines (cloudlet) [75]. M.

Satyanarayanan et al. proposed a technique to deploy a custom service software to any

nearby cloudlet by encapsulating the software with VM [77]. Ha et al. improved the

performance of VM deployment for rapid provisioning of cloudlet [25]. In the context

of edge computing, Ha et al. proposed agile handoff of service by migrating a VM

instance between edge servers [27]. Recently, edge computing communities started to

focus on using container (such as Docker) to encapsulate the offloaded program rather

than VM. Lele Ma et al. proposed a technique to accelerate container migration between

edge servers via sharing of container image layers between Docker hosts [57]. The

above approaches inevitably involve the overhead of migrating system states such as OS

or language runtime. Such overheads slow down the service migration between edge

servers, so a more optimized, specialized solution can be used for popular platforms,

such as web or machine learning. Our system is one of those solutions specialized for

web apps.

MAUI is an early work in partitioning-based offloading, which partitions an appli-

cation code and offloads the execution of computation-intensive parts to a remote server

[12]. Many researchers adopted the partitioning scheme and improved programmability

[9], parallelism [49], and stream data processing [97]. We avoided complex issues faced

by the previous studies by exploiting the characteristics of web apps. Web workers are

intended to run long-running, compute-intensive codes in web apps, so we offload web

workers in a regular web app, rather than explicitly partition the app code [12] [9] or

use annotations [68]. Also, web workers communicate with the main thread only in a

message passing manner, so we need not consider the synchronization of shared data

[22] [23]. Finally, once the worker is migrated, the main thread can offload computa-

tions by only sending the input data, while some approaches migrate unnecessary app
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states whenever offloading computations [12] [9] [41].

Pelin Angin et al. proposed an agent-based offloading system, which offloads

autonomous application modules, each of which is packed in a mobile agent, to the

cloud server [3]. Our mobile worker system can be viewed as a web version of the

agent-based offloading. However, this dissertation deals with how to efficiently migrate

the state of HTML5 web worker, while Pelin Angin et al. did not concern such issues

and relied on an existing Java mobile agent framework named JADE [6]. JADE heavily

depends on programmers, requiring them to design apps based on their application

model (agent-behavior) [6]. To port an existing app into a JADE app, developers have to

rewrite their apps from scratch based on the JADE application model. On the other hand,

our system automatically migrates web workers in normal web apps, so our system can

be easily adapted to existing web apps.

There have been a few researches on computation offloading for web platforms. S.

Park et al. proposed an offloading framework for web-centric devices, which offloads

the execution of JS functions to a remote server relying on programmers’ annotations to

designate migrated states [68]. Their work offloads the execution of the main thread of

a web app, so user interaction is blocked until the server returns the result. Our system

offloads the execution of web workers, hence does not block the main thread execution

during offloading. M. Zbierski proposed transparent offloading of web workers by

dispatching web workers in the cloud server [102]. However, their work does not

support subsequent migration of web workers, meaning that the fallback or handoff

of a worker is unavailable. Imagen [55] and ThingsMigrate [18] support offloading of

stateful JS apps without modifying the web platform by instrumenting the app codes to

collect the runtime state needed for migration (e.g., closure). The instrumented codes

are significantly slower than the original app codes (up to 40% in the micro-benchmark

program [18]), so we take another approach that does not require app instrumentation

but uses a modified web platform to capture some JS states such as closure [64] [52],

obviating performance degradation from running instrumentation codes. Lastly, our
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work is different from all of the above studies on the web-based offloading in that they

only deal with offloading of JS code, excluding wasm code.

IONN is related to the work of Lei Yang et al. [99], which partitions app execution

between a client and a server for reducing the latency of mobile cloud applications

under multi-user environments. They model an application as a sequence of modules

and determines where to execute each module (client or server) by solving a recursive

formula. The shortest path algorithm used in IONN is similar to the recursive algorithm

proposed in [99], although IONN treats DNN structure which is more complex than

the sequence of modules, requiring handling of multiple paths (section 5.3). Also, [99]

does not consider the uploading overhead.

Recently, DNN-focused offloading approaches have been studied. MCDNN offloads

DNN execution for streaming data in multi-programming environments [30]. MCDNN

creates variants of a DNN model and chooses DNN models among them for a given

task to satisfy resource/cost constraints with maximal accuracy. MCDNN assumes

the same DNN models are pre-installed at the client and the server, which is different

from our edge scenario that uploads DNN models at runtime. Also, MCDNN does not

focus on DNN partitioning. NeuroSurgeon [47] is the first work on DNN partitioning.

However, it allows only fixed, two-way partitioning (front layers by the client and rear

layers by the server), while IONN can make a more flexible partitioning (e.g., front

layers by the client, middle by the server, and rear by the client), depending on the

computation power of server/client and the transmission overhead of layers/feature

data. As MCDNN, NeuroSurgeon also requires the server to store the DNN model in

advance, which is different from IONN.

Machine learning researchers are actively developing techniques that reduce the

amount of computation and the size of DNN models to run DNNs on mobile devices.

MobileNet [34] decreases the amount of convolution computation by replacing point-

wise convolution to depth-wise separable convolution. SqueezeNet [37] is a small DNN

(∼4.8 MB) designed to have few model parameters with an accuracy similar to AlexNet
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(∼233 MB). Applied with DNN compression techniques [29], the size of SqueezeNet

drops to 0.47 MB [37]. If a mobile user wants to offload the execution of such a tiny

DNN, the benefit of IONN would be insignificant, because the whole DNN model might

be uploaded soon. However, DNNs for complex tasks still have complicated structure

and a large model size. For example, SENet [36], one of the winners of ILSVRC 2017,

consists of more than 900 layers and has a model size of ∼440 MB. Also, emerging

end-to-end DNN architecture, which performs an entire process to solve a cognitive

[60] or generative task [13] [93] in a single DNN, might lead to the increase of the DNN

model size. It would be difficult to run such a large DNN model on mobile devices.

IONN is a feasible solution for offloading large, complex DNNs in mobile applications,

because incremental offloading results in high performance benefits even during the

uploading stage of DNN models.

To our knowledge, NeuroSurgeon [47] is the first work on the layer-level partitioning

of DNN, which finds a partitioning point in a heuristic way. Chuang Hu et al. proposed a

partitioning algorithm applicable to DAG-formed DNNs based on the min-cut algorithm

[35]. Unlike the above studies, PerDNN uses runtime GPU information for DNN

partitioning to cope with congestion in a server. Also, most of the above studies assume

DNN models are already saved at the server (either cloud or edge), not focusing on how

to deploy DNN models to offloading servers. PerDNN addresses the cold start issue,

thus complementing the above studies by helping them to quickly establish optimal

offloading status.

Follow-Me cloud migrates cloud-based services between data centers in a federated

cloud, to allow mobile users to always be connected with the optimal data center and

data anchor [91]. Follow-Me cloud makes a migration decision based on the distance

between the client and the data center, while PerDNN migrates DNN layers based

on expected execution latency. Also, Follow-Me cloud performs live migration of the

whole VM instance, whereas PerDNN allows migrating a fraction of a DNN model to

reduce backhaul traffics.
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PerDNN’s proactive DNN migration resembles the concept of proactive caching

(aka femto caching), which reduces data traffics to central clouds by saving popular

files at the edge servers in advance [79] [5]. The major difference between proactive

caching and PerDNN is that proactive caching saves data at the client far before the

client visits the server, but PerDNN transmits DNN layers between edge servers in real

time. Also, unlike typical file caching based on user’s file popularity, PerDNN selects

DNN layers to be offloaded using a partitioning algorithm based on the current runtime

states.
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Chapter 6. Conclusion

In this thesis, I propose an offloading system that supports seamless offloading of

web app computations in the edge cloud environment. The proposed system migrates

HTML5 web worker across the client, the edge, and the cloud, and maintains the

offloading states while the mobile client changes its target server. Web workers are

migrated using snapshot, a JavaScript code that restores the runtime state of a web

worker when executed. I addressed issues on how to generate a snapshot code that

restores not only JavaScript objects but also native data such as built-in objects and

webassembly functions. Experimental result showed the mobile worker migration

is lightweight (a few seconds for non-trivial apps and within 150 ms for a simple

image processing app), and offloading of wasm code is much faster than offloading of

JavaScript code (up to 8.4x).

In the context of DNN applications, I propose IONN, a novel DNN offloading

technique for edge computing. IONN partitions the DNN layers and incrementally

uploads the partitions to allow collaborative execution by the client and the edge server

even before the entire DNN model is uploaded. Experimental results show that IONN

improves both the query performance and the energy consumption during DNN model

uploading, compared to a simple all-at-once approach.

I also propose PerDNN to address an issue of performance degradation at cold

start, when DNN layers are dynamically deployed to a new edge server. PerDNN

tackles the issue with proactive migration of DNN layers based on real-time mobility

prediction. Also, I demonstrated the impact of the server’s workload on the DNN

execution time and proposed a GPU-aware estimation model for layer execution time

of edge servers. In the simulation with real world trace datasets and execution profile

of real hardware, PerDNN removed up to 90% and 70% of cold starts in KAIST and

Geolife, respectively, and achieved 1.6∼2.0x throughput improvement, compared to

a baseline with no proactive migration. The backhaul traffics of the system could be
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sharply reduced with negligible performance loss, by sending only a small fraction of a

DNN model.
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