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Abstract

Low power design is of great importance in modern system-on-chips (SoCs). This
dissertation studies on low power design methodologies for saving dynamic and static
power consumption. Precisely, we unveil two novel techniques of cost effective low
power design.

Firstly, we propose a novel clock gating method for reducing the dynamic power
consumption. Flip-flop’s input data toggling based clock gating is one of the most
commonly used clock gating methods, in which one critical and inherent limitation is
the sharp increase of gating logic as more flip-flops are involved in gating. In this dis-
sertation, we propose a new clock gating method to overcome this limitation. Specif-
ically, (1) we analyze the resources of gating logic in the input data toggling based
clock gating, from which an ineffectiveness in resource utilization is observed and we
propose a new clock gating technique called flip-flop state driven clock gating which
completely eliminates the essential and expensive component of XOR gates for de-
tecting input toggling of flip-flops; (2) we provide the supporting logic circuitry of our
proposed XOR-free clock gating, confirming its safe applicability through a compre-
hensive timing analysis; (3) we propose, based on the flip-flops’ state profile, a clock
gating methodology that seamlessly combines our flip-flop state based clock gating
with the toggling based clock gating. Through experiments with benchmark circuits,
it is confirmed that our clock gating method is very effective in reducing power, which
otherwise the toggling based clock gating shall miss the power saving opportunity,
while meeting all timing constraints.

Secondly, for reducing the static power consumption, we solve two critical limi-
tations of the conventional approaches to the allocation of state retention storage for
power gated circuits. Those are (1) the long wakeup delay caused by the senseless use

of multi-bit retention flip-flops (MBRFFs) and (2) the inability to optimize retention



flip-flops for the flip-flops with mux-feedback loop. It should be noted that the conven-
tional approaches have regarded the long wakeup delay as an inevitable consequence
of maximizing the reduction of total storage size for state retention while they have
treated the flip-flops with mux-feedback loop (called self-loop flip-flop) as nonopti-
mizable component, but practically, the self-loop flip-flops synthesized from hardware
description language (HDL) code are not far from a small amount and thus, can in no
way be negligible. More precisely, for solving (1), we show that the use of MBRFFs
with up to two bits, consequently, constraining the wakeup delay to no more than two
clock cycles, is enough to maintain the high reduction of total retention storage and
for solving (2), we devise a 2-phase retention control mechanism for a pair of flip-
flops, one of which has self-loop, by which just a single retention bit can be used to
restore state of the two flip-flops, and propose an independent set based algorithm for
maximally extracting the non-conflict pairs from circuits. Through experiments with
benchmark circuits, it is shown that our proposed method is very effective against
reducing the state retention storage and the power consumption compared with the ex-
isting best MBRFF allocation while the wakeup delay is strictly limited to two clock

cycles.

Keywords: Low power, Clock gating, Power gating, State retention, Retention
flip-flop
Student number: 2016-30222
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Chapter 1

INTRODUCTION

1.1 Clock Gating

In synchronous digital system, a large portion of dynamic power is consumed by the
clock signal, taking over 40% of total power consumption in the entire systems [1,
2]. As a vehicle to reduce the dynamic power consumption, a technique by gating
clock signals has been known to be one of the most powerful techniques. As shown in
Fig. 1.1, Clock gating saves dynamic power by shutting off a subtree of clock network
during idle state of the driven logic blocks or by disabling the clock signals to a group

or groups of flip-flops during their untoggling states.

Clock Gating

\
: o
N FF
Clock ! Clock
nnihhnn FF nnnnnnn
> Clock Enable

Figure 1.1: Clock gating.

For the situation where designers have a prior knowledge of or can explicitly or

implicitly extract simple logic conditions for some blocks in a circuit that can be safely
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in an idle state, the idle state based clock gating can be applied to the part of clock
network that drives the blocks. Note that the clock enable/disable logic conditions are
generally extracted in the system or RTL design stage since the inter-dependency of the
execution among the logic sub-blocks is easily identifiable in those stages. However,
for the case where it is not easy or apparent to identify simple logic for clock gating
or there is no subcircuit block of reasonable size for clock gating, the toggling based

clocking gating can be the best alternative as shown in Fig. 1.2.

No clock gating condition identified explicitly

always @(posedge CLK)
begin

DOUT DIN:
end

Toggling-based OR-tree XORs
Clock Gating DIN C | pouT

DIN DOUT

FF Latch Gated CLK

’—(>
CLK 4 ICG
CLK

Integrated Clock Gating (ICG) cell

Figure 1.2: Toggling-based clock gating.

One important consideration in applying the toggling based gating is that since the
toggling based clock gating is a flip-flop level fine-grained gating, the sharp increase
of the supplemental logic required for detecting input toggling/untoggling of every
flip-flop for clock gating as well as generating enabling/disabling clock signal is a big
power burden on the circuits. Even so, there are many design cases available, to which
the application of toggling based clock gating is more effective in reducing power
over that of the idle state based clock gating [3], for instance, being reported for some
controller design that its idle based gating to RTL blocks reduces the power dissipation
by 23~27% while its toggling based gating to flip-flops reduces the power more than
double [4].

The traditional toggling based clock gating can be implemented at various design
levels, from architecture-level to cell-level (e.g., [5, 6, 7, 8]). The main focuses of most

of the existing methods of the clock gating are aggressively selecting candidate flip-



flops for clock gating and grouping the flip-flops for gating to (partially) share gating

logic at the expense of degradation of power saving (e.g., [9, 10]).

1.2 Power Gating and State Retention

As the semiconductor process technology shrinks, the impact of leakage power on
power consumption has been significantly increased and it has been extremely impor-
tant to reduce leakage power in modern SoCs. Power gating has been widely used and
has become one of the most popular design techniques to reduce the leakage power
consumption, thus to extend the battery lifetime in industrial products [11]. However
when the circuit goes the sleep mode by power gating, the state of flip-flops may be
lost. Therefore, a proper state restoration scheme is required to backup the state when
the circuit wakes up [12].

One commonly adopted restoration methodology is replacing each regular flip-flop
with a unique retention flip-flop that is able to perform the additional role of retaining
a prior state during the sleep mode [13]. While there are several variants on the im-
plementation of retention flip-flop, it is basically composed of two components: one
is a master flip-flop and the other is a slave latch. The master is designed with low-Vt
transistors for fast switching during the active mode while the slave retains the prior
state (i.e., 0 or 1) of the master flip-flop during the sleep mode and is designed with
high-Vt transistors to save leakage power during the sleep mode as shown in Fig. 1.3.
According to [14], applying this single-bit retention flip-flops (SBRFFs) causes in gen-
eral 20% area overhead over the regular flip-flops. Therefore, it is quite important to
minimize the total storage size of retention flip-flops (equivalently, the total number of
bits to be used to retain circuit state during the sleep mode) to be deployed.

To reduce total storage size of retention flip-flops, the selective state retention
power gating (SSRPG) techniques have been proposed [15, 16]. This techniques are

basically based on the assumption that relatively small essential flip-flops are required
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Figure 1.3: Structure of a single-bit retention flip-flop. A slave latch for retention is

designed with high-Vt transistors and powered by an always-on power supply (VDD).

to restore the state of entire flip-flops of the designs. However, these approaches are
based on an exhaustive simulation or a formal analysis and require a knowledge of

operations of the design, which are impractical in general.

1.3 Multi-bit Retention Registers

On the other hand, Chen et al. [14, 17] proposed to use multi-bit retention flip-flops
(MBRFFs) whose internal structure is shown in Fig. 1.4.

While an SBRFF has a single-bit storage element for retaining a single-bit state,
an MBRFF has a k-bit (k > 1) shift storage element for retaining k-bit states of the
regular (master) flip-flop. Before a circuit enters the sleep mode, consecutive prior
states of the master flip-flop are stored in the k-bit storage element sequentially and
then the states stored are retained during the sleep mode. When the circuit wakes up,
the stored state data will be shifted out to the master flip-flop for k consecutive cycles,
propagating them to the neighboring flip-flops through the connected combinational
logic. Chen et al. [14, 17] attempted to solve the problem of allocating k-bit uniform

MBRFFs with the objective of minimizing the number of flip-flops to be replaced with
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Figure 1.4: Structure of a multi-bit retention flip-flop (MBRFF). The k-bit (k > 1) shift
storage element is used to store prior k£ consecutive states of the regular flip-flop just

before entering the sleep mode.

k-bit retention flip-flops. They showed that even though the transition latency between
sleep and active modes takes kK — 1 more cycles over the case of applying SBRFFs,
the use of MBRFFs considerably decreases total storage size of the retention registers
used in power gating, thereby further reducing the power consumption. Based on the
MBREFF technique, recently Fan et al. [18] proposed an integer linear programming
(ILP) based incremental greedy method that is able to allocate non-uniform MBRFFs
of various sizes of retention storage under the constraint of maximum wake-up latency
bound. The objective function to be minimized in each iteration of the method is the
amount of storage size required for retaining the state of flip-flops in the ready list.
However, both uniform and non-uniform MBRFF replacement techniques have two
critical limitations. Those are (1) the long wakeup delay caused by the senseless use
of MBRFFs and (2) the inability to optimize retention flip-flops for the flip-flops with
mux-feedback loop. Note that the prior approaches have regarded the long wakeup

delay as an inevitable consequence of maximizing the reduction of total storage size for



state retention while they have treated the flip-flops with self-loop as nonoptimizable
component, but the flip-flops with self-loop synthesized from HDL code are prevalent

in practice and thus, can in no way be negligible.

1.4 Contributions of This Dissertation

In this dissertation, Chapter 2 and Chapter 3 present novel low power techniques for
reducing dynamic power consumption and static power consumption respectively. !

In Chapter 2, we propose a new clock gating technique by addressing (1) how the
supplemental (non-sharing) logic for toggling based clock gating can be elegantly re-
duced or completely eliminated while maximally reaping the benefit of power saving
by the clock gating and (2) how the input toggling based clock gating flow is seam-
lessly integrated into our clock gating flow to maximally exploit the synergy effect on
power saving.

The contributions of this work are summarized as:

1. We analyze the resources of gating logic in input data toggling based clock
gating, from which we observe an ineffectiveness in resource utilization and
propose a new clock gating technique called flip-flop state driven clock gating,
which completely eliminates the essential component of XOR gates for detect-

ing input toggling of flip-flops.

2. We provide the XOR-free gating logic circuitry supporting our flip-flop state
driven clock gating, confirming its safe applicability through a comprehensive

timing analysis.

3. We propose, based on the flip-flops’ state profile, a clock gating methodology
that seamlessly integrates our flip-flop state driven clock gating with the appli-

cation flow of the conventional toggling driven clock gating.

1Prf:liminary versions of this work were presented in [19] and [20]



4. A set of experiments with benchmark circuits is performed to assess how much
our new clock gating methodology is effective in saving power without timing
violation.? In summary, ours is able to achieve on average 7.59% more power

saving over the input data toggling based clock gating.

In Chapter 3, we propose a new allocation algorithm of multi-bit retention registers
for power gated circuits to overcome the limitations of conventional approaches: (1)
the long wakeup delay; (2) the inability to optimize the flip-flops with mux-feedback
loop. Precisely, for solving (1), we show that the use of MBRFFs with up to two
bits, consequently, constraining the wakeup delay to no more than two clock cycles,
is enough to maintain the high reduction of total retention storage and for solving (2),
we devise a 2-phase retention control mechanism for a pair of flip-flops, one of which
has self-loop, by which just a single retention bit can be used to restore state of the two
flip-flops, and propose an independent set based algorithm for maximally extracting
the non-conflict pairs from circuits.

The contributions of this work are summarized as:

1. Unlike the conventional approaches, which have tried to reduce the retention
storage at the expense of (long) wakeup delay, we develop an effective algorithm
for MBRFF allocation that is specialized to the wakeup delay constrained to two

clock cycles.

2. While the conventional approaches have invariably taken into no consideration
of the retention storage optimization for the flip-flops with self-loop together
with their neighbor flip-flops, we propose a 2-phase retention control scheme,
so that just a single retention bit can be used to restore state of a flip-flop with

self-loop and one of its neighbors.

2Qur proposed clock gating in this work is carried out after the completion of cell placement, from
which the location information of the flip-flops is available. However, if the wire delay perturbation is not

a serious concern, our clock gating is also applicable to the logic synthesis stage.



3. Based on the proposed control scheme, we formulate the retention storage reduc-
tion problem into an independent set based problem and we develop an effective

heuristic that maximally extracts non-conflict pairs of flip-flops from circuits.

4. We propose a new design of a multi-bit retention flip-flop and its multi-bit flip-
flop extension to reduce the area and power overhead of multi-bit retention flip-

flops and control paths for state retention powered by an always-on power sup-

ply.

5. Experimental data are provided to show how much our proposed approach re-
duces the total retention storage size for practical designs while the wakeup
delay is constrained to up to two cycles. In short, our approach is able to use the
retention storage by 9.8% less on average over that used by the state-of-the-art

MBRFF method.

The rest of the paper is organized as follows. Chapter 2 describes the concept,
design, and methodology of our flip-flop state driven clock gating. Then, Chapter 3
describes a new allocation algorithm and design of multi-bit retention flip-flops for

power gated circuits. Finally, Chapter 4 presents the conclusions of this dissertation.



Chapter 2

FLIP-FLOP STATE DRIVEN CLOCK GATING: CON-
CEPT, DESIGN, AND METHODOLOGY

2.1 Motivations

2.1.1 Toggling based Clock Gating

Flip-flop’s input data toggling based clock gating shuts off the clock signal to a flip-flop
when the state of the flip-flop is not subject to change at the next clock cycle. A block-
level circuit structure supporting the clock gating for a group of & flip-flops (R = { f1,
f2, ... fr}) is shown in Fig. 2.1(a) [8], in which the newly added logic blocks (i.e.,
Clock Disable (CD) and Integrated Clock Gating (ICG) [21]) to the original circuit are
marked with yellow color.

The logic operations of CD and ICG are:
e CD (= XORs + OR-tree): Boolean equation for CD can be expressed as:

g=(D1©Q1)+ (D2®Q2) + -+ (D, © Qx) (2.1)

Thus, the implementation requires k 2-input XOR gates, one for each flip-flop,
and an OR-tree consisting of k — 1 2-input OR gates. The equation indicates that
if g is 1, there is at least one flip-flop in R that will change its state at the next
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clock cycle. Thus, the condition of disabling clock signal to all k flip-flopsin R

at the next clock cycle is g.

e ICG (= Latch + AND): It receives the logic value of g from CD and decides if
the clock signal is to be disabled or not while synchronizing it to the rising edge

of CLK.

The effectiveness of the toggling based clock gating on reducing power closely
relies on the number of occurrences of the clock cycles at which g is false (i.e., all
flip-flops simultaneously untoggling).

One strong evidence of the usefulness of the toggling based clock gating can be
found in [3], which measured statistical toggling data of more than 22,000 flip-flops
in a DSP core and found that on average 95% of clock signals to the flip-flops in a
clock cycle was untoggled. On the other side, this evidence has cast a strong doubt
towards us on “is it really necessary to allocate an expensive 2-input XOR for every
flip-flop in toggling driven clock gating?” for the circuits with such extremely biased
toggling distribution. That is, there is an important factor that has not been carefully
addressed by the existing works on the toggling based clock gating. Precisely, the
resulting clock gating logic components (XORs and OR-tree in CD and a latch in
ICG) incur area overhead, which causes nontrivial impact on power. The following

subsection describes in-depth analyses of the gating overhead.

2.1.2 Area and Power by Clock Gating

We performed power analysis using Synopsys PrimeTime-PX to the blocks enclosed
by the dotted line in Fig. 2.1(a), varying the flip-flop group size k=0, 2, 4, . . ., 32 for
clock gating, assuming that the circuit has a total of 32 (= V) flip-flops, and each flip-
flop toggles independently with toggling probability of 0.05. The curves in Figs. 2.1(b)

and 2.1(c) show the changes of the area and the power consumption of the blocks
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Figure 2.1: (a) Block-level structure of the input data toggling based clock gating [8],
in which the logic blocks added for clock gating are marked with yellow color. (b) The
changes of area including XORs (i.e., FFs + XORs + OR-tree + ICG) and excluding
XORs (i.e., FFs + OR-tree + ICG) as the flip-flop grouping size k changes. (c) The
changes of power consumption including (i.e., FFs + XORs + OR-tree + ICG) and

excluding XORs (i.e., FFs + OR-tree + ICG) as the grouping size changes.
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enclosed by the dotted line in Fig. 2.1(a) as the grouping size k of flip-flops varies.

Observation 1: The total quantity, Area(C'G), of area overhead incurred by clock

gating for a group of k flip-flops is:
Area(CG) =k - Area(XOR) + (k — 1) - Area(OR) 4+ Area(ICG) (2.2)

N - Area(FF)+ Area(CG) ifk >0
Area(CG + FF's) = (2.3)

N - Area(FF) ifk=0
The black curve in Fig. 2.1(b) shows the changes of the value of Area(CG+FF's)
in terms of the cell size as the value of k changes while the blue curve in Fig. 2.1(b)
shows the changes of the value of Area(CG + FF's) - k- Area(XOR). The big gap
between the two curves in Fig. 2.1(b) indicates that XORs occupy a significant portion

of Area(CG + FF's) as k increases.

Observation 2: The numbers on the black power curve in Fig. 2.1(c) are obtained by
summing the power consumption of (1) the clock gating logic (i.e., XORs, OR-tree,
and ICG), (2) the k flip-flops selected for clock gating, and (3) the remaining 32-k flip-
flops. (The details of the calculation of their power consumption will be described in
Sec. 3.10.) The power curve indicates that the power consumption gradually decreases
as k increases, and then grows back. It means that the total power saving heavily de-
pends on the value of group size k, which in turn closely relies on the joint toggling
probabilities among the grouped flip-flops.

On the other hand. the blue curve in Fig. 2.1(c) indicates the changes of power
consumption by (1), (2) and, (3) excluding that by XORs. The comparison of the two
curves implies that XORs occupy a considerable portion of power consumption. (Note
that if XORs were all removed, clearly the timing of clock gating would also be shorten
by the amount of 2-input XOR delay, though it’s a small constant saving.)

Based on the observations, our strategy targets two directions: (i) investigating
a new clock gating technique that does not need the expensive XORs required for

detecting input toggling while maximally reaping the benefit of toggling driven clock
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gating (Sec. 2.2) and (ii) seamlessly integrating our clock gating flow into the existing

flow of toggling driven clock gating (Sec. 2.2.3).

2.2 The Proposed Clock Gating

2.2.1 Concept of Flip-flop State Driven Clock Gating

Our idea of an XOR-free clock gating is based on the following observation.
Observation 3: We performed circuit simulation as does in observations 1 and 2 to a
set of IWLS benchmark circuits [22] for a sufficiently long period of time and mea-
sured the probability of each flip-flop being state-1. Fig. 2.2 shows the flip-flop distri-
bution with respect to the state-1 probability. For example, the length of the bars on
the z-coordinate [p,, p,+0.05] represents the number of flip-flops whose probability
of being state-1 is in between p, and p,+0.05. The shape of flip-flop distribution in
Fig. 2.2 clearly indicates that a large portion (> 39%) of the flip-flops in circuits tends
to be stuck at state-0 or state-1 most of the simulation time, which means the input
toggling on those flip-flops rarely happens. Thus, the role (i.e., detecting toggling) of
XORs is actually not fully utilized on those flip-flops, although the flip-flops shall in
fact very likely be selected for toggling driven clock gating.

Observation 3 motivates us to elaborate the toggling based clock gating by devising

a new strategy of clock gating.

Definition 1. (State driven clock gating) For a flip-flop which is classified as stuck at
state-0 (state-1) most of time, disable the clock signal to the flip-flop when the coming

input at the next clock cycle is 0 (1).

For a flip-flop which is classified as unstuck at state-0 or state-1 most of time, we will
apply the toggling driven clock gating to the flip-flop. (The selection of flip-flops for
applying state driven clock gating and the integration into the toggling based clock
gating will be described in Sec. 2.2.3.) For example, Fig. 2.3(a) shows the state wave-

forms of flip-flops f1, fo, ..., f5. Flip-flops f1, fo, and f3 are classified as stuck at
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Figure 2.3: (a) State-0/1 waveforms of flip-flops f1, f2, ..., f5.in which fi, fo and f3
are stuck at state-0 most of time while f; and f5 are stuck at state-1 most of time. (b)
State-0 waveforms and ratios in Definition 2 of { f1, f2} and { f1, f3} derived from (a).

(c) State-1 waveform and ratio in Definition 3 of { f4, f5} derived from (a).
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state-0 and f; and f5 as state-1, in which the blue intervals are the time on which
our state driven clock gating safely disables the clock signal. Thus, as long as fi, fo,
and f3 (f4 and f5) are in state-O (state-1), their clock signal can be disabled with no
help of XOR. However, since applying clock gating to the flip-flops individually will
still increase the gating overhead, because of no sharing of ICG, a careful grouping of
flip-flops for clock gating is essential.

Definition 2. (W°(S,t), p(S)) Let w(f,t) be the state value on the simulation wave-
form of flip-flop f at simulation time t, 0 < t < Tiqq. Then, for a set S of flip-flops
and simulation waveforms of the flip-flops in S, W°(S, t) called state-0 waveform of

S is defined to a waveform which satisfies, for every t in [0, tyaz),
1. WO(S,t) =0, ifw(fi,t) =0, forall f; € S.
2. W9(S,t) = I, otherwise.

Then, p°(S) called state-0 ratio is defined to the portion of the simulation times at
which W (S,t) = 0,0 <t < Thaz-

For example, Fig. 2.3(b) shows the generation of state-0 waveforms of S1 = {f1, fa}
and S2 = { f1, f3} from the waveforms of f1, f2, and f3 in Fig. 2.3(a), and the values
of p%(-). The blue bars in Fig. 2.3(b) indicate the clock cycle times at which the clock
signals to the flip-flops in S1 and S2 are disabled if our state driven clock gating were
applied to flip-flop groupings S1 and S2. Thus, for the two grouping .S and Sz of flip-
flops, containing the same number of flip-flops, since S; has the higher p%(-) value
than that of S5, selecting grouping S1 rather than S2 is a better choice for applying

our state driven clock gating.

Definition 3. (W1 (S, 1), p*(S)) W(S,t) called state-1 waveform of S is defined to

be a waveform that satisfies, for every t in [0, tyaz),
1. WYS,t) = 1, ifw(fi,t) =1, forall f; € S.

2. WI(S,t) = 0, otherwise.
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Then, p'(S) called state-1 ratio is defined to the portion of the simulation times at
which W1(S,t) = 1.

For example, Fig. 2.3(c) shows the generation of state-1 waveform for S3 = {f4, f5}
from the waveforms of f4, and f5 in Fig. 2.3(a), and the value of p'(S3). Note that
the generation of W(S) and W(S) can be performed incrementally as S gradually

increases, thus, the time complexity is bounded by O(|S| - Trnaz)-

2.2.2 Design of Gating Logic Circuitry

Fig. 2.4(a) shows the block-level structure of our proposed state driven gating and
Figs. 2.4(b) and (c) show the internal structure of two types (i.e., OR-tree type or
AND-tree type) of Clock Disable (CD) block. Compared with the structure of toggling
driven clock gating shown in Fig. 2.1, ours never include the most expensive XORs in
CD, one for every gated flip-flop in toggling driven clock gating. The supporting new

or updated logic circuitry is the followings:

1. Unlike the toggling driven clock gating which consistently allocates an OR-tree
for a group of flip-flops, ours allocates an AND-tree, shown in Fig. 2.4(c), for a
flip-flop group that has a high probability of state-1 while allocating an OR-tree,
shown in Fig. 2.4(b), for a flip-flop group that has a high probability of state-0.

2. Our clock gating includes a signal stretcher' composed of a flip-flop and an

2-input OR gate, for each group of flip-flops as shown in Figs. 2.4(b) and (c).

3. An inverter is needed in the AND-tree type CD block before the signal stretcher

because it is assumed that the clock enable signal (en) is active high.

"Note that just one distinct signal stretcher is required for every group of gated flip-flops in the state
driven clock gating while one distinct XOR is required for every gated flip-flop in the toggling driven

clock gating.
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Figure 2.4: Circuitry of the proposed state driven clock gating. (a) Block-level struc-

ture, in which the logic blocks added for clock gating are marked with yellow color. (b)

Clock Disable (CD) block including OR-tree to assert the clock enable for flip-flops

that have a high probability of state-0. (c) Clock Disable (CD) block including AND-

tree to assert the clock enable for flip-flops that have a high probability of state-1.
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The role of signal stretcher to expand clock enable signal en from CD block and
guarantee one more clock toggling at the next cycle after en is de-asserted. For ex-
ample, in the case where a group of flip-flops has a high probability of state-0, the
OR-tree type is used and en is asserted to high when at least one of the input data (D)
is changed to state-1 and the clock is enabled. When every value of the input data (D)
goes to state-0, en is de-asserted but one more clock toggling is required to capture
the last state transition from state-1 to state-0.

Fig. 2.5 demonstrates the timing waveforms of the signals on CD blocks in Figs. 2.4(b)
and (c), in which the enable signal for ICG (g) is stretched by one cycle compared with
en and the gated clock (GC'LK) is toggling during consecutive cycles during g is as-
serted.

We performed HSPICE simulation to extract the actual timing delay on the gated
flip-flops and CD blocks in Fig. 2.1 and Fig. 2.4. Fig. 2.6 compares the timing wave-
forms for the clock-to-Q (Tcrkg) on a gated flip-flop in the toggling driven clock
gating and a gated flip-flop in the proposed state driven clock gating. Compared with
the toggling driven clock gating which has an XOR gate on the output of the flip-
flop (Q¢y, the red curves in Fig. 2.6), the clock-to-Q delay (Q)s4c4, the blue curves in
Fig. 2.6) of the flip-flop in the state driven clock gating is decreased by 6.1 ps for rise
transition and 6.23 ps for fall transition. Contrary to the conventional toggling based
gating, the proposed clock gating requires no additional output load on the output of
the gated flip-flop, thereby not increasing the clock-to-Q delay in comparison with a
regular ungated flip-flop.

The delay of CD block varies depending on the flip-flop grouping size k. Fig. 2.7
shows the timing waveforms of the outputs of CD block in Fig. 2.1 and Fig. 2.4 varying
k = 2,4,...,16. For the simulation, we used 2- ,3-, and 4-input OR gates and 2-, 3-
input XOR gates which are available in the cell library. In comparison with the delay
of CD block (red curves) in the toggling based gating, the delay (blue curves) in the
state driven clock gating is reduced by 8.11% ~ 29.79%.
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curves). The flip-flop group size is k = 2,4, ..., 16.
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The timing analyses shown in Fig. 2.6 and Fig. 2.7 clearly ensure that the appli-
cation of our state drive clock gating is more safe in terms of timing as well as more

economical in terms of area/power over the toggling driven clock gating.

2.2.3 Integrated Clock Gating Methodology

Our clock gating methodology applies the proposed state driven clock gating to two
disjoint subsets of flip-flops which have a high probability of state-O or state-1, fol-
lowed by applying the conventional toggling driven clock gating to the rest of flip-
flops. Precisely, we carry out the clock gating methodology to an input circuit C in the

following three steps.

e Step 1: For the circuit C, the flip-flop set F in C with the placement information, and

simulation waveform w( f;, ) and its WO(-), W(-), p°(-), p*(-) for every f; € F,
1.1 Set FO = {fi|p)°({f:}) > pricu}.>

1.2 Set 7' ={filp'({fi}) > pHicH}

1.3 Apply Step 2 to FO.
1.4 Apply Step 2 to F*.

1.5 Apply Step 3 to F - (FO U F1).

e Step 2 (State driven clock gating): For an input flip-flop set F, Dy,q, (in terms
of Manhattan distance), and cost VP(S, f;) which represents the amount of power
consumption to be saved additionally by the inclusion of flip-flop f; to flip-flop group

S of clock gating. (The details on the cost formulation will be described in Sec. 3.10.)
2.1 Seti=1.

2.2 If F is empty, return. Otherwise, pick a seed, fs, which has the largest number

of flip-flops in F within D, 4;.

*prraH is a user controlled parameter, and set to 0.95 ~ 0.99 in our experiments.

¥ i 11
-':I'\-\."i e ] !u
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2.3 Set S; = {f}.

2.4 Expand flip-flop group S; by iteratively including f; € F such that (condition I)
the half perimeter on S; U { f;} is within D, and (condition 2) its V.P(S;, f;)

is the largest positive value.
2.5 Implement a clock gating logic for .S;.

2.6 Update i =i+ 1, F = F - .5;, and go to Step 2.2.

o Step 3 (Toggling based clock gating): Apply a conventional toggling based clock

gating to the rest of flip-flops unprocessed in Step 2.

Fig. 2.8 shows an illustrative example of generating flip-flop group for clock gating in
Step 2.4, in which starting from seed f; picked in Step 2.2, flip-flops fs, fo, and f5 are

selected in the first, second, and third iterations, respectively.

2.2.4 Cost Formulation

Let S be a group of flip-flops selected for state-0 driven clock gating in Step 2 and k =
|S]. (The power saving cost in state-1 driven clock gating can be similarly formulated.)
The amount of power consumption decreased by including flop-flop f; to S for a clock

gating with respect to a clock gating to S (without f;) is:

V Psaving(S, f) = (Pg(S) + Pug(f;)) — Pe(SU{f;}) (2.4)
k

Py=3_ Pyrr(p(9)) + Por(p°(S)) (2.5)

PCIE'L(p()(S)) = PngtreeO)O(S)) + P~const (26)

Prconst = Prea(p°(9)) + Prr(p°(S)) + Por(p°(9)) 2.7)

o Pypr(pY(S)): the total power consumed by the flip-flops when state-0 clock
gating is applied to the group S of flip-flops including the power consumed by

the internal clock inverters in the flip-flops.
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Grouping iteration (k) S; VP(S;, f;) Remark
VP(S;, f2) =50
VP(S;, f3) = 150 Selected
1 {fs=h} | VP(Si fa) =10
VP(S;, f5) =80
VP(S;, f¢) = 10

VP(S;, fa) = 30 Selected
VP(S;, fa) =10

2 {f1, fs} VP(Si f2) = 20
VP(Si, fo) =5
VP(S;, fa) =2

3 {f1, f2, f3} VP(S;, f5) =8 Selected
VP(S;, f6) = =5
VP(S;, fa) = =5

4 {f1, f2, f3, f5} No positive value

VP(S;, fe) = —20

Si = {f1. f2, 3. [5}
i=1+1,F = {f4,f6} — Step 2.2

Figure 2.8: Example of generating a flip-flop group S; for clock gating. The input
flip-flop set F is { f1, fo, f3, f1, f5} and f; is picked as a seed in Step 2.2.
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o PL,(p°(S)): the total power consumed by the state-0 clock gating logic i.e.,
OR-tree, ICG, a signal stretcher (flip-flop and a 2-input OR gate) where the
power consumed by OR-tree increases as the group size k increases whereas
the power consumed by ICG and a stretcher is almost constant regardless of the

value of k.

e P,4(f;): the power consumed by ungated flip-flop f; including the power con-

sumed by the internal clock inverters in the flip-flop.

Note that a fast calculation of the power costs, which will be iteratively required in
Step 2.4, is enabled by simply referring the pre-computed data in a lookup table (LUT)

forms.

2.3 Experiments

2.3.1 Experimental Setup

To evaluate the effectiveness of our state driven clock gating, we tested our method
and the conventional clock gating methods for circuits taken from IWLS benchmarks
[22]. The benchmark circuits were synthesized and physically implemented by using
Synopsys Design Compiler and IC Compiler. The operating clock frequency was set
to 200 MHz for all circuits and the initial layout utilization was 70%. We used Syn-
opsys 32/28 nm Generic Library and a slow PVT corner to guarantee the worst case
performance. In addition, for power analysis we performed RTL simulations to get the
switching activity information of the benchmark circuits and used PrimeTime PX for
power estimation.

To compare our clock gating called State-driven CG with the existing clock gat-
ing methods, we used the conventional idle logic driven clock gating in RTL (Logic-
driven CG) and toggle driven clock gating (Toggling-driven CG) provided by De-

sign Compiler and IC Compiler. We tested three clock gating flows for the experi-
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ment as shown in Fig. 2.9. Those are (1) flow of Logic-driven CG only, (2) flow of
Logic-driven CG followed by Toggling-driven CG, and (3) flow of Logic-driven
CG followed by our State-driven CG and finally Toggling-driven CG as described
in Sec. 2.2.3.

Circuit
Lﬂﬁ_\\ L/f_\\ ’ Logic-driven CG ’
’ Logic-driven CG ’ i

’ Logic-driven CG ’ i | State-driven CG |

’ Toggling-driven CG ’ ] Ungated Frs
I Toggling-driven CG l

() (b) (©)

Figure 2.9: Tested clock gating flows. (a) Logic-driven CG only. (b) Logic-driven
CG followed by Toggling-driven CG. (c) Logic-driven CG followed by our State-
driven CG and finally Toggling-driven CG.

Table 2.1 shows the information of benchmark circuits including the number of
flip-flops, the number of gates, the percentage of the number of flip-flops whose state-1
probability is smaller than 0.05 over the total number of flip-flops (i.e., state-0O proba-
bility > 0.95), and the percentage of the number of flip-flops whose state-1 probability
is bigger than 0.95. To extract the switching activity information, we performed simu-

lations of typical operation modes for a sufficiently long period of time.

2.3.2 Experimental Results

Table 2.2 summarizes the results produced by the conventional idle logic driven and
toggling driven clock gating methods provided by a commercial electronic design au-
tomation (EDA) tool and our state driven clock gating method combined with the
conventional methods. The Logic-driven CG, which has been commonly applied to

practical low power designs, is used as a baseline for the comparison. We compared the
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Table 2.1: Benchmark circuit information.

Circuit #of FFs | # of gates | % of state-1 prob. < 0.05 | % of state-1 prob. > 0.95
SPI 229 1612 27.90% 12.20%
WB_DMA 523 2571 17.00% 39.77%
AES_CORE 530 8422 7.74% 6.42%
WB_CONMAX 770 19600 39.61% 10.39%
MEM_CTRL 1065 5078 31.74% 19.34%
AC97_CTRL 2199 8471 21.87% 4.37%
VGA_LCD 17053 62187 14.95% 43.47%

clock gating ratio (i.e., the ratio of the number of gated flip-flops to the total number of
flip-flops), the number of clock gating cells, and the power consumption of clock tree
(Pu), flip-flops (Pff), combinational logics (Peompi), the total power consumption
(P,otal), the percentage of reduction of total power consumption 3.

Compared with the conventional clock gatings, the flip-flop power Pr; was re-
duced consistently and effectively by our method for all test cases while there were
fluctuations in the clock power P, due to the load changes on the driving buffers to
the groups of gated flip-flops. In addition, the combinational logic power P,,.,5; Was
increased because more flip-flops were gated by our method, which increased the cor-
responding supplemental clock gating logic. However, the flip-flop power Py ¢ and the
clock power P, dominated the overall power, therefore decreasing the total power
consumption over the conventional clock gating methods. In summary, our method
reduced the total power consumption by 10.81% on average (up to 28.23%) while
the conventional toggling driven clock gating reduced the total power consumption by
3.22% on average (up to 9.93%).

It is worthy to note that the power consumption of AES_CORE was increased by

3 A negative sign indicates increase.
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both the toggling driven clock gating and our method compared with that of the logic
driven clock gating. In the case of designs in which most flip-flops exhibit high switch-
ing activity like AES_CORE, our method and toggling driven clock gatings are all un-
suitable to the designs due to a high demand of supplemental clock gating logic. On
the other hand, for the other circuits in which a large portion of flip-flops tends to
be stuck at state-0 or state-1 most of time, our method is able to reduced the power
consumption very effectively.

Table 2.3 shows the area used by the conventional idle logic driven and toggling
driven clock gating methods and our state driven clock gating method with the conven-
tional methods. Compared with the logic driven clock gating, the area was increased
by 5.4% on average by our approach but it was almost the same as that of the toggling
driven clock gating.

Fig. 2.10 shows the layouts of WB_DMA produced by Logic-driven CG, Toggling-
driven CG, and our State-driven CG. The colored rectangles indicate flip-flops and
the white flip-flops are ungated flip-flops. Compared with the conventional methods in

Figs. 2.10(a) and (b), more flip-flops were gated by our method.
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(a) (b) (©

Figure 2.10: Layouts for WB_DMA. The colored rectangles represent flip-flops: ungated
(white), gated by Logic-driven CG (yellow), gated by Toggling-driven CG (orange),
gated by our State-driven CG (blue). (a) Layout produced by Logic-driven CG. (b)
Layout produced by Toggling-driven CG. (c) Layout produced by our State-driven
CG.
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Chapter 3

ALGORITHM AND DESIGN OPTIMIZATION OF AL-
LOCATING MULTI-BIT RETENTION FLIP-FLOPS
FOR POWER GATED CIRCUITS

3.1 Motivations

3.1.1 Flip-flops with Mux-feedback Loop

Fig. 3.1(a) and Fig. 3.1(b) show a section of Verilog code that commonly appears in the
description of design behavior and its synthesized structure, respectively, from which
we can see that each of the eight flip-flops contains combinational (i.e., mux-feedback)
loop. We call such a flop-flop that has a mux-feedback loop a self-loop FF while we
call a flip-flop which has no self-loop an ordinary FF.

Table 3.1 summarizes the number of self-loop FFs in the circuits synthesized from
IWLS benchmark code [22]. It is shown that the proportion of self-loop FFs is in
24%~77% of the total number of flip-flops in circuits, which clearly indicates that a
careful treatment should be taken into account when allocating state retention flip-flops
to circuits with a high portion of self-loop FFs.

It should be noted that we should replace every self-loop FF with a distinct re-
tention flip-flop with at least one bit storage for state retention since we have no idea

1]
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reg [7:0] F;

begin

if ( cond )
F <= A + B;

end

always @Q( posedge clk )

()

Feedback loop

F[0]
F[1]
‘———— —-~~N.
1
"E. L 4
= FF > F7]
| X
A
Bl
cond clk

(b)

Figure 3.1: Synthesis of flip-flops with mux-feedback loop. (a) a Verilog HDL code

(b) a synthesized structure for the code in (a).

Table 3.1: Proportion of self-loop FFs in IWLS benchmark circuits.

Circuit | # of FFs | # of self-loop FFs | % of self-loop FFs
s15850 128 40 31.25%
s13207 214 100 46.73%
wb_dma 523 324 61.95%
aes_core 530 132 2491%
mem_ctrl 1118 864 77.28%
Avg. 503 292 48.42%
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whether the flip-flop state, when waking up, comes from the mux-feedback loop or
driving flip-flops other than itself (e.g., the red signal path in Fig. 3.1). Unfortunately,
to our knowledge, all conventional approaches [14, 18, 25] are not fully aware of the
abundance of self-loop FFs, and simply performed the allocation of retention flip-flop
to self-loop FFs as a pre-processing or post-processing task. Specifically, they could

not but adopt one of the following two flow options:

Flow option 1: (1.1) Generating a flip-flop dependency graph G’ by removing all self-
loops in the original dependency graph G of input circuit; (1.2) applying any conven-
tional approach of MBRFF allocation to G’; (1.3) additionally, allocating an SBRFF
for every self-loop FF if it has not been replaced with a retention flip-flop during step
1.2.

Example: Fig. 3.2(b) shows graph G’ in Flow option 1, obtained from the original
flip-flop dependency graph G in Fig. 3.2(a). Then, the upper part in Fig. 3.2(d) shows
the MBRFF allocation produced by applying the ILP-based method in [18] to G’ in
Fig. 3.2(b) while constraining the maximum wakeup latency to 3 clock cycles. Finally,
the lower part in Fig. 3.2(d) is obtained by simply adding two SBRFFs to self-loop
FFs f5 and fs.

Flow option 2: (2.1) Generating a set .S of flip-flop dependency subgraphs by decom-
posing the original graph G, so that every self-loop FF in the decomposed maximal
subgraph should have no driving flip-flops (i.e., no predecessors); (2.2) applying any
conventional approach of MBRFF allocation to all subgraphs in S independently while
ensuring an MBRFF/SBRFF allocation for every self-loop FF.

Example: Fig. 3.2(c) shows set S, in Flow option 2, of three connected components,
obtained from G in Fig. 3.2(a). Then, Fig. 3.2(e) shows the MBRFF allocation pro-
duced by applying the ILP-based method in [18] to the connected subgraphs in S in
Fig. 3.2(c) while constraining the maximum wakeup delay to 2 clock cycles. Thus,
total of 8 retention bits are allocated.

However, for GG in Fig. 3.2(a) it is possible to save two more retention bits, as
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fa

-]
y
o]

-
8] G
]

Retention bits: 8, Wakeup delay: 3

(b) G’ from G by removing self-loop

(d) Flow option 1 using G’

7]
-

-bit

@@

(c) Set S of decomposed subgraphs of G

Retention bits: 8, Wakeup delay: 2

(e) Flow option 2 using S

Figure 3.2: Two flow options used by the conventional approaches of allocating reten-

tion flip-flops to circuits with self-loop FFs.
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f fs
EEI [§ > f7
1-bit fa 1-bit
e

f2 -bit f6
[t;l [t;l > fg
1-bit 1-bit

Retention bits: 6, Wakeup delay: 2

(a)

Cycle  fi 2 fs fa Is fe fr [s
to X X X X X X X X
,,,,,, {a}_Ad} A d} A} Ak}
t di s X d} dr a4 X X

{di}
s RE - B R B -
(b)

Figure 3.3: (a) A better allocation of retention bits over that in Fig. 3.2. (b) The state
restoration of the wakeup sequence for the retention bit allocation in (a). ({--- } in-
dicates the state(s), to be used when waking up, stored in the retention bit(s) and dg

indicates the state of flip-flop f; at time ¢;, j =1, 2.)
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shown in Fig. 3.3, over the allocation results produced by Flow options 1 and 2. Specif-
ically, Fig. 3.3(b) illustrates the state restoration when waking up for the retention stor-
age allocation in Fig. 3.3(a): At the first clock cycle, i.e., at time ¢1, states of flip-flops
f1, fo, fa, f5, and fg will be set by using their own retention bits. Then, at the next
cycle, i.e., at time to, states of f; and fg will be set by using the states of f5 and fg,
respectively; the states (i.e, d% and d%) of f5 and fg are set by using either their states
(i.e., di and d}) or the state (i.e., d}) of fy; state of f4 is set by its own retention bit
(i.e., d%); state of f3 is set by the states of f; and fo; state of f; and f are set by the

driving inputs.

3.1.2 Impact of Wakeup Delay

Intuitively, it is obvious that a long wakeup delay enables to provide an increased
opportunity of reducing total size of retention storage at the expense of the loss of
circuit performance. To observe the impact of the wakeup delay on the size of retention
storage, we measured the reductions of retention storage size allocated by Flow options
1 and 2 using the conventional MBRFF algorithm [18] by varying the constraint of
wakeup delay for IWLS benchmark circuits in Table 3.1. The bars in Fig. 3.4 show the
average changes of reduction rate of retention storage size for Flow options 1 and 2 as
the wakeup delay constraint changes, which strongly points out that wakeup latency of

2 clock cycles (the purple bars in Fig. 3.4) suffices in practice.
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W 1—2cycles m 2— 3 cycles m 3 — 4 cycles @m 4 — 5 cycles

Reduction rate (relative)

Flow option 1 Flow option 2

Change of wakeup latency

Figure 3.4: Average changes of the reduction rate of the total size of retention storage
by Flow options 1 and 2 using [18] as the wakeup latency changes for IWLS bench-

mark circuits in Table 3.1.
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3.2 The Proposed Allocation Algorithm

We propose a practically effective algorithm for allocating state retention storage that
is able to perform a global minimization of total size of retention storage for self-loop
FFs as well as ordinary FFs in circuits under the wakeup delay is strictly limited to two

clock cycles. We start with a few definitions and concepts.

Definition 1. (2-phase retention control scheme): The state retention flip-flops to be
used by our allocation algorithm can be classified by three types: (1) /st-phase SBRFF
that retains or restores at the first clock cycle of power-down or wakeup sequence, (2)
2nd-phase SBRFF that retains or restores at the second clock cycle of power-down or
wakeup sequence, and (3) 2-bit MBRFF.

Lemma 1. For a flip-flip dependency f; — f; in G, if f; is replaced by a 2nd-phase
SBRFF, f; cannot be replaced by a 1st-phase SBRFF. (It is clear by observing that the

input state of f; is unknown at the 2nd phase of the wakeup sequence.)

Table 3.2 describes the detailed operation of the three types of retention flip-flop at

power down and wakeup modes.
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Table 3.2: State retention and restoration for the three types of retention flip-flop. (The

notations in parentheses represent the values in the retention storage of the correspond-

ing SBRFFs/MBRFF and cycle times.)

Cycle | Power state | Ist-phase SBRFF (f;) | 2nd-phase SBRFF (f;) | 2-bit MBRFF (f})
t on d. dé‘ dl
ti+1 power down di“ dé»“ déjl
{a;"'} {3 {a"}
tigo power down d§+2 dé-“ déjQ
{@;"} {d57%} @, di"?}
sleep X X X
{@;""} {457} @, di"?}
tm sleep X X X
{a;"'} {d;7%} (@, d"?}
tm+1 wakeup dé“ X dﬁjl
{} {dj*} {d,"*}
tm+2 wakeup di—+2 dé-” dﬁjQ
] |
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Definition 2. (Retention pair): A retention pair in a flip-flop dependency graph G
refers to a pair of nodes f; and f; in G that satisfies (1) f; directly drives f; and (2) f;
is an ordinary FF, i.e., not a self-loop FF as shown in Fig. 3.5. A retention pair is called
a type 1 retention pair if f; is an ordinary FF and is called a type 2 retention pair if f;
is a self-loop FF. We use notation p( f;, f;) to refer the retention pair. For example, the
pairs of flip-flops connected by red and blue colors in Fig. 3.6 indicate type 1 and type

2 retention pairs, respectively.

/’ R
\
I}
/7
-
@ @

Figure 3.5: Retention pair p(f;, f;).

Total 5 retention pairs

p1 = (f1. f3)
p2 = (f2,f3)
p3 = (f3,/a)
pa = (fs,17)
ps = (f6, f8)

Figure 3.6: Retention pairs of type 1 (in red color) and type 2 (in blue color) in a

flip-flop dependency graph G.
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Table 3.3: State restoration of flip-flops in a retention pair p(f;, f;) where f; is mini-

mally allocated by a 1st-phase SBRFF. The state of f; at the second cycle will be set by

one of the blue solid and red dotted arrows if f; is a self-loop FF (i.e., type 2 retention

pair) and otherwise (i.e., type 1 retention pair) will be set only by the blue arrow.

Cycle i f;

to X X
NI, . W

t Driving retention flip-  d} ) X

flops

to \ de/

Not referenced by other

fip-flops
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Definition 3. (Conflict between retention pairs): A conflict between two retention
pairs p(f;, f;) and p(fx, fi) in a flip-flop dependency graph G exists if any of the

following conditions hold:
o Condition I: f; = fp.
e Condition 2: f; directly drives fy.

e Condition 3: f; directly drives f;.

Figure 3.7: Conditions of conflict between retention pairs. (a) Condition 1 (b) Condi-

tion 2 (c) Condition 3.

Lemma 2. The following allocations are required minimally for a retention pair
p(fi, f;) and its driven and driving flip-flops. (The allocation requirement can be easily

checked by examining the activity in the two-cycle wakeup sequence.)
1. f; minimally requires a 1st-phase SBRFF.
2. f; minimally requires no retention.
3. A flip-flop that drives f; or f; minimally requires a Ist-phase SBRFF.
4. A flip-flop that is driven by f; minimally requires a 2nd-phase SBRFF.

5. A flip-flop that is driven by f; minimally requires no retention.

Fig. 3.8 summarizes the minimally required retention bits for the flip-flops in a reten-

tion pair and its driving and driven flip-flops. For example, Table 3.3 shows the state
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restoration for a pair p(f;, f;) of either type 1 or type 2, in which f; is minimally al-
located with a 1st-phase SBRFF. In addition, Fig. 3.9 shows examples of the conflicts
between retention pairs by conditions 1, 2, and 3 and the minimally required retention
bits for the green pairs when the yellow pairs are minimally allocated according to the

allocation rules in Lemma 2 and Fig. 3.8.

Flip-flop Minimal allocation
fi 1st-phase SBRFF
f2 No retention
fs,farfs | 1st-phase SBRFF
for f7 2nd-phase SBRFF

fs No retention

Figure 3.8: Minimally required retention bits for the flip-flops in a retention pair

p(f1, f2) and its driving and driven flip-flops.
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Inbound Minimal Outbound Minimal
cost cost
Cond1 1
Cond?2 2
Cond3 1

Figure 3.9: Two retention pairs that cause conflicts due to each of conditions 1, 2, and

3, and the minimally required retention bits for the green pair when the yellow pair is

allocated by the minimally required retention bits.
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Thus, our allocation strategy is: we maximally extract a set, 12, of retention pairs with
no conflict each other, and apply Lemma 2 to R with the objective of minimally al-
locating retention bits to G. (Note that due to an existence of conflicts among pairs,
some flip-flops shall be allocated with 2-bit MBRFFs to resolve the conflicts.)

Our allocation approach consists of three steps: (Step 1) generating a flip-flop de-
pendency graph G from an input circuit C and then a conflict graph G, of retention
pairs from G, (Step 2) extracting a maximal retention pairs with non-conflict from G/,
by applying an iterative heuristic, and (Step 3) resolving the allocation conflicts among

the flip-flops with a minimal additional allocation of retention bits.

Step 1. Generating flip-flop dependency graph and its conflict graph: We first convert
an input circuit C into a flip-flop dependency graph G(V, E). G(V, E) is a directed
graph where nodes in V' represent distinct flip-flops in C and there exists an edge
fi — f; in E if and only if the flip-flop of f; drives the flip-flop of f; through a
combinational logic path in C. We then extract a set, P, of all retention pairs from G
in O(|V|?) time. Finally, we construct a conflict graph G,,(V},, E,) from P, in which
nodes in V), represent distinct retention pairs in P and there is an edge between nodes
p; and p; in G), if and only if a conflict exists between the retention pairs of the two

nodes.

Step 2. Extracting a maximal retention pairs: We transform the problem of finding a
maximal retention pairs in G, into a maximum independent set problem [23] on G,
and solve it by applying a greedy heuristic: At each iteration, we select the node in G,
which has the least number of adjacent nodes (i.e., the smallest degree). If there are

ties, we choose the node p; that has the smallest value of C'ost(-):
Cost(p;) =1- N}, +1-Npy +2-Nj, +2-Ng, +2-Nj, +1-Np,, (3.1

where N}n and N, éut, 7 = 1,2, 3 represent the the numbers of the inbound and out-
bound retention pairs, as defined in Fig. 3.9 with respect to p; for condition j, respec-

tively. Thus, C'ost(p;) indicates a minimally required cost in terms of the number of
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retention bits caused by the selection of the p;. Fig. 3.10 illustrates how the tie-breaking

is applied by using the cost in Fq.(3.1).

Outbound/Cond2 (Cost = 2)

. |:> Outbound/Cond2 (Cost = 2)

Inbound/ Cond1 (Cost = 1
nbound/ Cond1 (Cos ) Outbound/ Cond2 (Cost = 2)

Degree(p;;) = 4,Cost(p;;) =7

Inbound/Cond1 (Cost = 1) Outbound/Cond2 (Cost = 2)

Inbound/Cond1 (Cost = 1)

Inbound/Cond1 (Cost = 1)

Degree(py;) = 4,Cost(py) =5

Figure 3.10: Tie-breaking based on the cost formulation in Fq.(3.1).

Step 3. Resolving conflicts with a minimal allocation of retention bits: This step re-
solves the conflicts caused by the allocation performed in step 2 according to the rules
of minimal retention bit allocation in Lemma 1, Lemma 2, and Fig. 3.9. Thus, in case
where a particular flip-flop is minimally required to be both of a 1st-phase SBRFF and
a 2nd-phase SBRFF, it should be replaced with a 2-bit MBRFF.
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3.3 Design of Multi-Bit Retention Flip-Flop and Multi-Bit

Extension

3.3.1 Multi-Bit Retention Flip-Flop

A MBREFF design was proposed by Chen et al. [14]. In this design, a pulse-driven
latch array is used instead of the conventional shift registers to reduce the area over-
head. Fig. 3.11 shows the conceptual schematic of this pulse-driven latch array. Each
retention latch has an extra three-stage inverter chain to provide the necessary delay

for shift operation.

high-Vth, Always-on supply

————————————————————————————————————————

Retention | ! i | Retention | ! i Retention

In —| Latch W Latch W Latch > Out
1 ; 5 2 : i k-1

Inverter chain Inverter chain

Latch clock

Figure 3.11: Conceptual schematic of the pulsed latch array of the k-bit retention reg-
ister in [14]. High-Vt transistors powered by an always-on power supply are used for

the retention latches (in green color).

However there are two critical issues in this design [14]. First, the width of the
pulse signal for the retention latches should be smaller than the delay of the inverter
chain and the global network of this pulse signal also should be designed carefully. But
it is not easy to implement the narrow pulse network physically to meet this constraint.
In addition, the number of the stage of the inverter chain might need to be increased to
consider on-chip variation and it can increases the area overhead further.

Second, it is possible the overall area might increase rather by using multi-bit re-
tention flip-flops due to the area overhead of the inverter chain. Each retention latch
has the extra inverter chain therefore this overhead is inevitable and the overall area
can be increased even the total storage size of the retention registers is decreased.

To address these issues, we devise a new design for the MBRFF especially where
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the size of the retention storage is two bits which is the maximum size required by
our approach. Fig. 3.12 shows the schematic of our 2-bit MBRFF. Compared with the
conventional design of [14], there is no inverter chain in the retention latches. Instead,
an extra pin SHIFT for the clock of the second retention latch is used. Fig. 3.13 shows

the shift operation of the proposed design of retention latches.

CK RET CKN
oA e e e e
CKN NRET CK
CKN CK

CLK l: CKNI: CK

Always-on, High Vth

SHIFTN RET

Retention Latch 2 Retention Latch 1

Figure 3.12: Schematic of our 2-bit MBRFF. The always-on supply region in green
color consists of two retention latches and two input inverters for control pins NRET

and SHIFT.

To verify the functionality of the retention operation, we implemented a simple
power gated design composed of a power switch cell and an our 2-bit MBRFF and
then simulated it using Synopsys HSPICE for all process corners supported by the
library. Fig. 3.14 illustrates the spice simulation waveforms of our 2-bit MBRFF design
at the typical operating condition (TT/1.05V/25°C). During the power down process,
the input data are shifted sequentially into the retention latches by the latch clock
signals RETN and SHIFT. When the control signal NSLEEP of the power switch cell

goes down, the gated power supply VVDD is turned off while the retention latches in

49



Shift In (Power down) Shift Out (Wakeup)

piv T D1 X 12 |
NRET | 'l 7 | |
RL1 ‘ D1 ) : /;/ : D2 :
SHIFT i [ i (( i [ i
rr2 2T X D

=

Figure 3.13: Waveforms of the 2-bit shift register using two control signals.

the always-on supply region are powered by the always-on power supply RVDD and
retain the data. After the gated power supply VVDD is turned on again according to
the power control signal NSLEEP, the retained data is shifted out from the retention
latches during the consecutive two clock cycles.

It is worth to note that the proposed design has no area overhead due to the inverter
chain while the extra pin SHIFT is added newly and it requires an additional buffer

network powered by the always-on power supply.
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3.3.2 Multi-Bit Flip-Flop Extension

A multi-bit flip-flop (MBFF) is a cell which contains several single-bit flip-flops and

shares common inverters mainly to save the clock power consumption [24].

CKN CK
: * CKN CK
Master Slave ¥ y
D - - Q
Latch Latch D1_L Master | | Slave Q1
F ¥ Latch Latch
CK CKN

T f
CKNI|: CK CK CKN

e Cﬁc = CLK I>CCKNI|: CK
' CK

* CKN
v v
D_L Master | | Slave 1 Q
Latch Latch D1 Master | | Slave Q2
F T Latch Latch
CK CKN 7 T
CK CKN
CLK =>c CKN |I> CK
(a) Two 1-bit flip-flops. (b) One 2-bit flip-flop combining the

flip-flops in (a).

Figure 3.15: Comparison of the internal structures of the 1-bit master-slave based flip-

flop and the 2-bit master-slave flip-flop.

Fig. 3.15 shows the internal structures of the transitional 1-bit master-slave flip-
flop and the 2-bit MBFF which plays same role of two 1-bit flip-flops. Each 1-bit
flip-flop has two inverters for the clock signal respectively while the 2-bit MBFF has
only two inverters for driving all master and slave latches. Therefore we can reduce
the clock power consumption by adopting the MBFF.

By the similar way, the internal always-on inverters and the always-on network
for SHIFT of multiple MBRFFs can be shared by merging those MBRFFs to a single
multi-bit retention multi-bit flip-flop (MBR-MBFF).
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Fig. 3.16 shows the schematic of the proposed MBR-MBFF where two 2-bit MBRFFs

are merged.

NRET
SHIFT

Figure 3.16: Schematic of a 2-bit/2-bit MBR-MBFF. The cells in light blue color are
shared between two master flip-flops F'F'1 and F'F'2.

By merging two 2-bit MBRFFs, two always-on inverters for RETN and SHIFT are
shared as well as the common inverters for the clock input CLK. Therefore it reduces
not only the dynamic power consumption due to the internal clock inverters but also
the leakage power consumption due to the always-on inverters by the extra pin SHIFT
during the sleep mode.

Fig. 3.17 shows the comparisons of the sleep power consumption and the area
of a MBR-MBFF between the conventional design of [14] and the proposed design.
The size of the retention storage is 2-bit while the the size of the master flip-flop is
increased from 1-bit to 8-bit.

Compared with the conventional design, the sleep power consumption of the pro-
posed design is almost the same regardless of the multi-bit size. The proposed design

requires one more always-on inverter for the extra pin SHIFT however the impact of

H k._l 1_'_” (e
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the additional inverter is negligible for the sleep power consumption. On the other
hand, in the case of the area, the proposed design is 10.5% less smaller on average
than the conventional design that includes the inverter chain.

Fig. 3.18 shows the overall flow of our design methodology using MBR-MBFFs.
For the given gate-level netlist C, our three-step MBRFF allocation algorithm is per-
formed with the MBRFF library cells. And then with the generated netlist C’ and our
MBR-MBEFF library cells, multiple MBRFFs are grouped into a single MBR-MBRFF

like the traditional MBFF flow at the physical implementation stage.

3.4 Experiments

3.4.1 Experimental Setup

We implemented the proposed approach in C++ and Python with the igraph-python
package [26] for graph analysis. In addition, to compare our results with that pro-
duced by the previous ILP-based MBRFF methods [18], we implemented them with
the Gurobi Optimizer [27] as an ILP solver. We tested our allocation approach and the
conventional approaches using IWLS benchmark circuits [22]. The benchmark cir-
cuits were synthesized and implemented by Synopsys Design Compiler and IC Com-
piler with Synopsys 32/28 nm Generic Library. We set the operating clock frequency
to 200 MHz for all circuits and the target utilization ratio for the core area of those
placements was 70%. We also implemented the logic and physical library of our 2-bit
MBREFF and the corresponding multi-bit flip-flops. The maximum number of single
flip-flops to group into multi-bit flip-flops was 8. To replace single-bit flip-flops with
multi-bit flip-flops, we used the conventional placement-aware multi-bit register bank-
ing flow provided by IC Compiler.

Table 3.4 shows the detailed information of benchmark circuits including the num-
ber of flip-flops (“# of FFs”), the number of dependencies among flip-flops (“# of
edges”), and the percentage of self-loop FFs (“% of self-loops”).
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Figure 3.18: Design flow of the proposed MBR-MBFF approach.
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Table 3.4: Benchmark circuit information.

Circuit # of FFs | # of edges | % of self-loops
SPI 229 3690 84.72%
WB_DMA 523 7351 61.95%
AES_CORE 530 7198 24.91%
WB_CONMAX 818 12174 50.86%
MEM_CTRL 1118 59954 77.28%
USB_FUNCT 1739 19876 69.29%
AC97_CTRL 2199 14891 77.72%

3.4.2 Experimental Results

Table 3.5 shows the number of retention flip-flops (SBRFFs or MBRFFs) (“# RFFs”)
and the total storage size for state retention (“# RetentionBits”), the wakeup latency
(“Latency”), and the percentage of reduction of retention bits over the total bits of all
flip-flops (“% Reduction”) of Fan et al.’s ILP based approach [18] with Flow option
1 and Flow option 2, and our proposed approach. Note that we ran the previous ap-
proach with various sizes of the wakeup latency for the given circuits and used the
best results while the wakeup latency of our approach is less than or equal to two cy-
cles. In addition, it should be noted that the ordinary flip-flops which are driven only
by the primary inputs are not counted for a fair comparison. When comparing with
the non-uniform MBRFF approach [18] with Flow option 1, our proposed approach
reduced the retention storage by 11.9% on average. Furthermore, compared with the
non-uniform MBRFF approach [18] with Flow option 2, our approach reduced the
retention storage by 9.82% (= 12.97% - 3.15%) on average.

We also compared the power consumption and the area used by the conventional

SBRFF approach and our proposed MBRFF approach, and their MBFF extensions.
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Table 3.6 indicates the comparisons of the active and the sleep power consumption.
The active power is the power consumption in the normal operation mode and the sleep
power means the leakage power consumption in the retention mode during the sleep
mode.

When the MBFF extension was used, as shown in Table 3.6, the active power of
the SBRFF-based designs and the proposed MBRFF-based designs were reduced sim-
ilarly because, in the active mode, the dynamic power was larger than the sleep power
so it dominated the total power consumption and the dynamic power was reduced by
the MBFF extension in both approaches. The sleep power was also reduced in both
approaches because the number of always-on cells for control signals of retention flip-
flops was decreased by merging registers. However, in the case of the sleep power
consumption, the MBR-MBFF approach reduced about 31.2% and 8.5% on average
over that produced by the conventional SBRFF approach (SBRFF) and its MBFF ex-
tension (SBR-MBFF).
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Table 3.6: Comparison of active power and sleep power consumption used by SBRFF
(conventional single bit retention flip-flop allocation for single bit flip-flops), SBR-
MBFF (conventional single bit retention flip-flop allocation for multi-bit flip-flops),
MBREFF (our multi-bit retention flip-flop allocation for single-bit flip-flops), and MBR-

MBFF (our multi-bit retention flip-flop allocation for multi-bit flip-flops).

o Active Power (W) Sleep Power (W)
Clreuit SBRFF SBR-MBFF MBRFF MBR-MBFF | SBRFF SBR-MBFF MBRFF MBR-MBFF
SPI 5743 | 549.6(4.30%) | 5453 (5.05%) | 539.4 ( 6.08%) 89.3 | 84.9(4.90%) | 82.7(7.40%) | 75.5(15.49%)
WB_DMA 1248.0 | 904.0 (27.56%) | 1215.0 (2.64%) 978.5 (21.59%) 222.0 | 143.1 (35.54%) | 176.3 (20.59%) | 135.3 (39.05%)
AES_CORE 3614.0 | 3395.0 (6.06%) | 3389.0 (6.23%) | 3162.0 (12.51%) 281.2 | 256.6 (8.75%) | 225.5 (19.81%) | 165.6 (41.11%)
WB_CONMAX | 6011.0 | 5504.0 ( 8.43%) | 5855.0 (2.60%) | 5529.0 (8.02%) | 970.3 | 701.6 (27.69%) | 891.7 (8.10%) | 664.5 (31.52%)
MEM_CTRL 1768.0 | 1493.0 (15.55%) | 1631.0 (7.75%) | 1379.0 (22.00%) 403.2 | 320.4 (20.54%) | 358.0 (11.21%) | 247.5 (38.62%)
USB_FUNCT 2766.0 | 2459.0 (11.10%) | 2521.0 (8.86%) | 2371.0 (14.28%) 711.9 | 649.6 (8.75%) | 622.9 (12.50%) | 579.1 (18.65%)
AC97_CTRL 3198.0 | 2378.0 (25.64%) | 3134.0 (2.00%) | 2394.0 (25.14%) 705.9 | 457.9 (35.13%) | 696.1 (1.39%) | 460.7 (34.74%)
Avg. 2739.9 | 2383.2 (13.02%) | 2612.9 (4.64%) | 2336.1 (14.74%) 483.4 | 373.4 (22.75%) | 436.2 (9.77%) | 332.6 (31.20%)

(a) Total power consumption
o Active Power (WW) Sleep Power (uW)

Creult SBRFF SBR-MBFF MBRFF MBR-MBFF | SBRFF SBR-MBFF MBRFF MBR-MBFF
SPI 425.3 402.0 ( 5.48%) 399.1 (6.16%) 409.0 ( 3.83%) 184 | 179(2.77%) | 15.9(13.94%) | 15.6 (15.63%)
WB_DMA 751.3 | 516.1 (31.31%) 722.6 (3.82%) 568.6 (24.32%) 42.1 39.0(7.41%) | 37.7(10.43%) | 33.6 (20.24%)
AES_CORE 1645.0 | 1497.0 (9.00%) | 1461.0 (11.19%) | 1369.0 (16.78%) 427 | 409 (4.06%) | 35.1(17.82%) | 33.5(21.59%)
WB_CONMAX 846.4 | 668.6 (21.01%) 781.5 (7.67%) 718.7 (15.09%) 62.0 | 57.6(7.11%) | 53.6 (13.52%) | 50.0 (19.29%)
MEM_CTRL 1155.0 | 980.9 (15.07%) | 1086.0 (5.97%) 959.1 (16.96%) 85.7 | 80.7(5.83%) | 79.0(7.86%) | 73.2 (14.58%)
USB_FUNCT 1784.0 | 1537.0 (13.85%) | 1627.0 ( 8.80%) | 1508.0 (15.47%) 140.2 | 137.1 (2.21%) | 142.5 (-1.64%) | 139.7 ( 0.36%)
AC97_CTRL 2288.0 | 1827.0 (20.15%) | 2217.0 (3.10%) | 1806.0 (21.07%) 177.0 | 165.9 (6.27%) | 176.1 (0.51%) | 164.7 (6.95%)
Avg. 1270.7 | 1061.2 (16.49%) | 1184.9 (6.75%) | 1048.3 (17.50%) 81.2 | 77.0(5.10%) | 77.1(4.98%) | 72.9 (10.19%)

(b) Register-only power consumption
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Table 3.7 shows the area used by the conventional SBRFF-based designs and our
proposed MBRFF-based designs with their MBFF extensions. Compared with the con-
ventional SBRFF approach without MBFF extension (SBRFF), our MBRFF-based de-
sign without MBFF extension (MBRFF) reduced the total area by 4% on average. Fur-
thermore, our MBRFF-based design with MBFF extension (MBR-MBFF) reduced the
area by 12.5% on average. It was because that the area of always-on cells for control
signals of retention flip-flops were reduced effectively in the MBFF extension.

For the MBR-MBFF based designs, the detailed information of usage of multi-bit
flip-flops is shown in Table 3.8. It shows the number of 1-bit FFs (“# 1-bit FFs), 2 to
4-bit MBR-MBFFs, and 5 to 8-bit MBR-MBFFs. The multi-bit banking ratio means
the ratio of the number of total bits of MBR-MBFFs to the number of total bits of all
flip-flops in the design.

Fig. 3.19 shows the power breakdown used by our MBRFF approach with no
MBFF extension and our MBR-MBFF approach during the sleep mode. The power
management cells indicate the power switch cells and the isolation cells. The always-
on cells means the always-on buffers for control signals of retention flip-flops. By the
MBEFF extension, the power consumption of the flip-flops was reduced by about 5.5%
while the power consumption of the always-on cells was reduced by 33.9% compared
to those of the MBRFF approach with no MBFF extension.

In addition, Fig. 3.20 shows the comparison of total area of always-on cells of our
MBREFF approach with no MBFF extension and our MBR-MBFF approach. Compared
with the MBRFF approach with no MBFF extension, Our MBR-MBFF approach de-
creased the total area of always-on cells by 9.6% on average.

Consequently, the power and area overhead caused by the extra input pin in our

MBREFF design (i.e., SHIFT) were decreased effectively by the MBFF extension.
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Table 3.8: Multi-bit information of the MBR-MBFF based designs.

Circuit H # 1-bit FFs ‘ # 2 to 4-bit FFs | # 5 to 8-bit FFs | Total bits of MBFFs | Multi-bit banking ratio

SPI 182 1 6 229 20.5%
WB_DMA 152 24 47 523 70.9%
AES_CORE 270 14 33 530 49.1%
WB_CONMAX 147 100 51 770 80.9%
MEM_CTRL 298 53 91 1065 72.0%
USB_FUNCT 1347 33 43 1741 22.6%
AC97_CTRL 453 117 214 2199 79.4%
Avg. H 407 ‘ 49 69 1008 56.5%
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Figure 3.19: Sleep power breakdown of our MBRFF approach without MBFF exten-
sion (MBRFF) and MBRFF approach with MBFF extension (MBR-MBFF).
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Chapter 4

CONCLUSIONS

4.1 Flip-flop State Driven Clock Gating: Concept, Design,
and Methodology

This work proposed a novel clock gating method to overcome the inherent and critical
limitation of the prevalent input data toggling driven clock gating. Precisely, (1) we
proposed a new clock gating method called flip-flop state driven clock gating which
completely eliminates the essential and expensive component of XOR gates for detect-
ing input toggling of flip-flops; (2) we provided the supporting logic circuitry of our
proposed XOR-free clock gating, confirming its safe applicability through a compre-
hensive timing analysis; (3) we proposed, based on the flip-flops’ state profile, a clock
gating methodology that seamlessly combines our flip-flop state based clock gating
with the toggling based clock gating. Through experiments with benchmark circuits,
it was confirmed that our state driven clock gating method is very effective, reducing

the power on average by 7.59% further over the toggling driven clock gating.
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4.2 Algorithm and Design Optimization of Allocating Multi-
bit Retention Flip-flops for Power Gated Circuits

This work proposed a practical solution to the problem of state retention flip-flops
for power gated circuits. To overcome the limitations of the previous approaches, the
long wakeup delay and the degradation of reduction performance due to flip-flops with
mux-feedback loop, we introduced a concept of 2-phase retention control scheme and
retention pairs of flip-flops to practically reduce the required storage for state retention
while the wakeup latency is constrained up to two clock cycles. With the proposed
control scheme, we formulated the problem into an independent set based problem
and developed an effective heuristic algorithm. Our experiment results showed that the
proposed approach can reduce the state retention storage by 9.8% on average compared
with the state-of-the-art MBRFF allocation for practical designs containing self-loop
FFs while the wakeup delay is limited up to two clock cycles. In addition, we proposed
a new design of a multi-bit retention flip-flop and its multi-bit flip-flop extension to ad-
dress the overhead problem of the internal inverter chain of the conventional multi-bit
retention flip-flop design. With the proposed multi-bit design, the sleep power con-
sumption and the area are reduced by about 31.2% and 12.5%, respectively, compared

with those of the single-bit retention flip-flop approach.
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