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Deep neural networks (DNN) are becoming increasingly popular and widely

adopted for various applications. Energy efficiency of neural networks is criti-

cally important for both edge devices and servers. It is imperative to optimize

neural networks in terms of both speed and energy consumption while main-

taining the accuracy of the network.

Quantization is one of the most effective optimization techniques. By re-

ducing the bit-width of activations and weights, both the speed and energy can

be improved by executing more computations using the same amount of mem-

ory access and computational resources (e.g. silicon chip area and battery). It

is expected that computations with 4-bit and lower precision will contribute to

the energy efficient and real-time characteristics of future deep learning appli-

cations.
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One major drawback of quantization is the drop in accuracy, resulting from

the reduction in the degree of freedom of data representation. Recently, there

have been several studies that demonstrated that the inference of DNNs can

be accurately done by using 8-bit precision. However, many studies show that

the network quantized into 4-bit or less precision suffers from significant qual-

ity degradation. Especially, the state-of-the art networks cannot be quantized

easily due to their optimized structure.

In this dissertation, several methods are proposed that use different ap-

proaches to minimize the reduction in the accuracy of the quantized DNNs.

Weighted- entropy-based quantization is designed to fully utilize the limited

number of quantization levels by maximizing the weighted information of the

quantized data. This work shows the potential of multi-bit quantization for both

activation and weight. Value-aware quantization, or outlier-aware quantization

is designed to support sub-4-bit quantization, while allowing a small amount (1

∼ 3 %) of large values in high precision. This helps the quantized data to main-

tain the statistics, e.g. mean and variance corresponding to the full-precision,

thus minimizing the accuracy drop after quantization. The dedicated hardware

accelerator, called OLAccel, is also proposed to maximize the performance of

the network quantized by the outlier-aware quantization. The hardware takes

advantage of the benefit of reduced precision, i.e. 4-bit, with minimal accu-

racy drop by the proposed quantization algorithm. Precision-highway is the

structural concept that forms an end-to-end high-precision information flow

while performing ultra-low-precision computations. This minimizes the accu-
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mulated quantization error, which helps to improve the accuracy of the network

even with extremely low precision. BLast, the training methodology, and dif-

ferentiable and unified quantization (DuQ), a novel quantization algorithm, are

designed to support sub-4-bit quantization for the optimized mobile networks,

i.e. MobileNet-v3. These methods allow the MobileNet-v3 network to be quan-

tized into 4-bit for both activation and weight with negligible accuracy loss.

Keywords: Deep neural network, optimization, quantization, hardware archi-

tecture, accelerator

Student Number: 2015-31050
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Chapter 1

Introduction

Deep neural networks (DNN) are becoming more and more popular and widely

adopted for various applications. On edge devices, these applications have tight

constraints regarding the latency for real-time operation and energy consump-

tion due to the battery. On servers, fast training and inference are critical in

order to support fast deployment and on-line training. Therefore, it is imper-

ative to optimize neural networks in terms of speed and energy consumption

while maintaining the accuracy of the network.

Quantization is one of the most effective optimization techniques. By re-

ducing the bit-width of the activations and weights, both the speed and energy

can be improved by executing more computations with the same amount of

memory and computational resources (e.g. silicon chip area and battery). Re-

cently, there have been active studies that demonstrated that the inference of

DNNs can be accurately done by using 8-bits [4,5], and most existing hardware

exploits the benefit of quantization by supporting an 8-bit integer arithmetic

computation [4,6–8]. Some studies also show the potential of sub-4-bit quanti-

zation [9–12], and it is expected that 4-bit and lower precision computation can
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contribute significantly to the energy efficiency and real-time characteristics of

deep learning applications in the future [13].

One major drawback of quantization is the decrease in accuracy resulting

from the reduction in the degree of freedom of data representation. In this dis-

sertation, several methods are proposed that utilize various approaches to min-

imize the decrease in the accuracy of the quantized DNNs. Weighted-entropy-

based quantization [14] is designed to fully utilize the limited number of quan-

tization levels by maximizing the weighted information of the quantized data.

Value-aware quantization, or outlier-aware quantization [15] is designed to

support sub-4-bit quantization while allowing a small amount (1 ∼ 3 %) of

large values to have high precision. This helps the quantized data to maintain

the statistical characteristics, such as the mean and variance, of full-precision

data, thus minimizing the reduction in accuracy after the quantization. A dedi-

cated hardware accelerator [16] is also proposed, thus maximizing the perfor-

mance of the quantized network based on the proposed algorithm. Precision-

highway [17] is the structural concept that forms an end-to-end high-precision

information flow while performing ultra-low-precision computations. BLast is

the training pipeline for the quantized network, and differentiable and unified

quantization [18] is a novel quantization algorithm that is universally applica-

ble to various networks. Both methods are designed to support the quantization

of the optimized mobile networks.

This dissertation is organized as follows: Chapter 2 introduces the back-

ground of the quantization concept and reviews the previous studies. In chap-

2



ter 3, the weighted-entropy-based quantization is introduced. Chapter 4 ex-

plains the value-aware quantization and the corresponding dedicated hardware

accelerator called OLAccel is proposed in Chapter 5. Chapter 6 describes the

precision-highway, and the concepts of BLast and DuQ are introduced in Chap-

ter 7 in order to quantize the state-of- the art optimized mobile networks. Chap-

ter 8 concludes the dissertation.
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Chapter 2

Background and Related Work

Quantization refers to the task of restricting data representation. It maps float-

ing point data belonging to a wide range to one of the limited number of dis-

continuous values, i.e. quantization levels, through clustering. In addition, an

integer index is assigned to each cluster sequentially in the ascending order

in order to distinguish the different clusters. The range of the index is propor-

tional to the number of discontinuous values (= the number of quantization

levels Nlv), and thus, the bit-width representing the index data is also related

to Nlv; typically the bit-width is equal to log2(Nlv). The quantized data can be

represented by the combination of a mapping table and an index tensor; the

mapping table maps the quantization level index to the quantization value, and

the index tensor consists of element- wise integer indices that are identical in

shape to the original data before quantization. Because the bit-width of an in-

dex is generally much smaller than the floating-point data, quantization allows

the data to be stored in a smaller space.

The major advantage of quantization results from the reduction in the stor-

age space of the data, which improves the performance and energy consump-

4



Figure 2.1 The representative examples of the quantized data. The weights are

extracted from the second 3×3 convolution layer of GoogLeNet [1].

tion of deep neural networks. More data can be stored in the same memory foot-

print and the data can be loaded quickly from the same bandwidth. These ad-

vantages results in faster operation with less energy. Meanwhile, quantization

also has a major drawback, namely, limited capability for expression. Quan-

tized data has lower degrees of freedom when compared to full-precision data.

Thus, quantization algorithms should be applied carefully in order to maintain

the desired quality of the neural network with limited expressiveness.

Quantization algorithms are classified into two types, namely, linear or non-
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linear quantization, based on their representations. Linear quantization utilizes

the uniform spacing between quantization levels, while non-linear quantiza-

tion has non-uniform spacing so that the quantization levels can have arbitrary

value. In the case of linear quantization, as the quantization levels are sepa-

rated evenly and the index is assigned according to the value of the quantiza-

tion level, a linear relationship is established between the index and the quan-

tization level. In other words, the mapped quantization value can be calculated

from the index tensor using a scale and shift operation. This characteristic helps

to accelerate the computation of the quantized data at a lower hardware cost.

On the other hand, the non-linear quantization has a higher degree of freedom

than linear quantization, which is more stable and has a higher bit efficiency.

Therefore, non-linear quantization is preferred over linear quantization when

the bit-width needs to be reduced extremely while maintaining the accuracy.

Before proceeding, it is necessary to explain in more detail how linear

quantization can help hardware acceleration. In general, in order to perform

the convolution or matrix multiplication computation, it is necessary to convert

the quantized data, which is stored as a low-precision index tensor, into high-

precision data using the mapping table. Subsequently, high precision compu-

tation is performed. However, when the data is quantized linearly, we can take

advantage of the relationship between the quantization index and quantization

value for convolution or matrix multiplication computations; those functions

are linear operators, and thus, the desired output can be calculated by scal-

ing the outcome of the computation with the integer index alone. It can be

6



expressed as follows:

O = (α · I)⊗ (β ·W ) (2.1)

= (α ·β ) · (I ⊗W ) (2.2)

The convolution and matrix multiplication computations can be performed

with the index tensor having small bits of integer data. It helps to greatly reduce

the cost of computation because the number of operations of the convolution

and matrix multiplication are much larger than that of scaling in general.

Quantization of neural networks can be applied to the three types of data,

namely, the activation, weight, and gradient. Since each data type has different

characteristics, it is necessary to select the quantization algorithm carefully

depending on the application.

The weight is held constant after training, while it requires constant stor-

age space even when the network is not activated. In addition, the weight has

different characteristics depending on the operator used. In the case of ma-

trix multiplication, it is essential to reduce the bit-width of the weight because

it is not reused when the batch-size is 1, and the footprint of the weight is

proportional to the square of the feature map size. Meanwhile, in the case of

convolution, computation optimization is more important because the weight

can be re-used several times and convolution is a computationally intensive

operation. Considering those characteristics, different quantization algorithms

are selected. Non-linear quantization having high bit-efficiency is preferred in

order to minimize the storage overhead while linear quantization is often used

7



in order to accelerate the computation.

Meanwhile, the activation is related to input data, making it difficult to ap-

ply quantization with arbitrary mapping. Instead, the quantization algorithm

having regular expression like linear quantization or logarithm quantization is

utilized frequently. Those quantization methods enable the calculation of the

quantization value from the index without a mapping table, and the reverse

calculation is also possible. The purpose of activation quantization is to speed

up the computation in both inference and training and to reduce memory con-

sumption in training. In the former case, linear quantization is applied to ac-

tivation in parallel with the weight, which makes the convolution or matrix

computation possible with simple integer operations. On the other hand, in the

latter case, because intermediate activations need to be stored during training,

a large memory space should be reserved for the activation. Activation quan-

tization is used in order to minimize memory consumption by reducing the

bit-width of activation.

Gradient quantization is mainly applied to minimize the computation over-

head. As with activation, the gradient is input-dependent, and the linear quan-

tization is often utilized. It has a relatively large bit-width compared to the

activation and weight, because it has a profound impact on the accuracy of the

network and the distribution varies greatly at each layer and at each stage of

learning.

Figure 2.2 shows the typical applications quantization on deep neural net-

work. Convolution and matrix multiplication operations always produce high-
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Figure 2.2 Computation with quantization operator

precision output because both operations accumulate the products of activation

and weight.In order to reduce the bit-width of high-precision data, the quanti-

zation operator is inserted in the middle of the network. The quantization oper-

ator can be different depending on the quantization target and position. In addi-

tion, the convolution or matrix multiplication function can be optimized for the

quantized data. If the conventional high-precision operator is used, then there

is no performance gain. Meanwhile, if the optimized operator is used, there can

be an improvement in the performance. For instance, if the integer convolution

with scaling operator is used for the linearly quantized data, the computation

overhead, i.e. the ALU area, power consumption, and performance, can be im-

proved significantly. Likewise, additional improvement can be expected from

the combination of quantization with structural and operation optimization.
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Figure 2.3 Straight-through estimator for quantized-weight training [2]

Typically, the pre-trained weight of full-precision is used as initialization

weight for the quantized network because it works as a good initial point. How-

ever, there is significant decrease in the accuracy due to quantization, making

it inevitable to apply fine-tuning after quantization in order to recover the accu-

racy loss especially for sub-4-bit quantization. However, the quantized weight

has discontinuous values and so, updating the weight through the accumulation

of gradient. In order to fine-tune the quantized weight, there is an alternative

solution called the straight-through estimator [2]. As shown in the figure 2.3,

original floating-point data is held during fine-tuning. In the forward phase, the

quantized weight is used to perform the computation. In the backward phase,

the quantization operator bypasses the gradient, and the gradient is accumu-

lated on the original full-precision data. By repeating this process for several

iterations, the accuracy loss can be recovered. STE is used in all cases where

finetuning is required after quantization.

In order to exploit the benefit of quantization, there were several studies that

endeavored to minimize the bit-width of deep neural networks while minimiz-
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ing the accuracy loss. [9] is one of the early studies that showed the potential

for quantization. They proposed the optimal quantization method for weight

binarization and also proposed the quantization method for both activation and

weight binarization. The fully-binarized network is called XNOR-Net because

the multiplication-accumulation operation of the convolution operation can be

replaced by the element-wise xnor with a popcount operation. According to

their analysis, a weight-binarized AlexNet gives the same accuracy as a full-

precision one, and XNOR-Net also shows promising results.

More recently, [19] was introduced in order to increase the accuracy of the

binarized network. This study proposed a structural improvement to prevent er-

ror accumulation when applying quantization to the network having an identity

path, such as ResNet. This idea limits the effect of quantization error to within

a single module, thereby improving the accuracy significantly. The precision-

highway, introduced in chapter 6, generalizes the structural improvement to a

more general network structure including LSTM.

[10] presented DoReFA-Net, which applies tanh-based weight quantiza-

tion and bounded activation quantization. It is a representative study for multi-

bit linear quantization that allows the bit-width of activation and weight to have

an arbitrary positive integer value. The trade-off relationship between accuracy

and bit-width was introduced.

There were also other quantization algorithms based on linear quantization,

e.g. [20], [11] and [12]. [20] proposed a balanced quantization that attempts to

balance the population of values on quantization levels. By recursively parti-
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tioning the parameters into balanced bins, they try to maximize the information

(entropy) of the quantized data. They not only showed the quantization re-

sults of AlexNet but also presented the quantization result of deeper networks,

ResNet-18 and GoogLeNet.

[11] and [12] are the state-of-the-art studies that present the loss-less quan-

tization results of the 4-bit quantization of AlexNet and ResNet-50. Both algo-

rithms are designed to optimize not only the network parameters but also the

quantization parameters, e.g. clustering range and the value of quantization

level. Because the quantization parameters are converted in order to minimize

target loss, it shows better quantization result.

On the other hand, there are also interesting studies based on nonlinear

quantization. [21] proposes logarithm-based quantization. This algorithm only

allows the value of the quantization level to have an exponent value of two. It

can give significant performance benefits because multiplication can be substi-

tuted by the shift operation. The study showed that AlexNet can be quantized

with 4-bit weights and 5-bit activation at 1.7 % additional loss of top-5 accu-

racy.

[22] show that deep models can be quantized with separately scaled ternary

weights while utilizing full-precision activations. In the case of [23], they quan-

tize the networks using clustering-based methods. Those non-linear quantiza-

tion methods show the potential to further reduce the precision, but they could

not be mapped to optimized computation operation on the existing ALU, which

makes them less hardware-friendly.
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[24] improves the accuracy of the quantized network by improving the

learning methods. It is based on the quantization method proposed by DoReFA-

Net, but the quantized network gives higher accuracy by adopting the proposed

training technique, a progressive quantization and knowledge distillation. The

progressive quantization quantizes the network by lowering the bit-width se-

quentially from high-precision to lowprecision. Knowledge distillation trans-

fers the knowledge of the teacher network to the quantized network that allows

the quantized network to learn better. Those training techniques help to recover

the accuracy drop of quantization.

[25] takes a different approach to improve the accuracy of the quantized

network. It increases the number of filters of the network while maintaining

the connection structure. The increased filters grow the capacity of the net-

work, which helps the network to approximate the target function even with

the limited representation.

In order to fully utilize the benefit of the quantized model, there have

been active studies on the implementation of quantization on the CPU and

GPU [4,6]. Current hardware supports 8-bit integer operations, and thus, those

functions are mainly leveraged to accelerate the network with 8-bit quantiza-

tion.

Besides the existing hardware, several dedicated accelerators are proposed

[26–29]. [26,27] adopt high-precision computation in order to accelerate com-

putation without the loss of accuracy. Instead, they perform the optimization by

minimizing access to the external memory and maximizing data re-use. [28,29]
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are the large-scale accelerators that have tens of thousands of processing el-

ements. They show more than ten times higher energy efficiency than GPU

based on their optimized structure for DNN.

Zero skipping is crucial for performance as well as energy efficiency. In

[30], Albericio et al. proposed Cnvlutin that skips multiplications with zero-

input activations. Only non-zero input activations are broadcast to MAC units

while skipping zero-input activations. In [31], Zhang et al. proposed the Cam-

bricon-X, which skips multiplications with zero weights obtained by prun-

ing [23]. In [32], Parashar et al. proposed a sparse CNN (SCNN) that exploits

both zero weights and activations by calculating the Cartesian products of non-

zero weights and activations, and adding the results to the corresponding partial

sums. SCNN suffers from low resource utilization in the case of high sparsity

and high area/power overhead due to accumulator buffers and the crossbar.

In [33], Kim et al. proposed a zero-aware neural network accelerator (ZeNA)

that also skips the computation with both zero weights and activations. They

reported that ZeNA provides an acceleration of 4.4x on AlexNet.
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Chapter 3

Weighted-entropy-based
Quantization

3.1 Introduction

This work was published in CVPR’2017 conference [14]. Existing quantization

techniques have two limitations that can hinder practical application of such

techniques into mobile and embedded systems. First, existing methods lack

in supporting flexible trade-off between output quality and inference perfor-

mance. Mobile and embedded systems often have stringent constraints in both

resource and inference accuracy, which requires design space exploration for

trade-off between output quality and inference performance. However, some of

the existing approaches are not flexible enough to exploit such trade-off rela-

tionship. For example, techniques that binarize weights [9, 10, 34] suffer from

a significant loss of output quality for deep networks, which cannot be applied

if the target system allows a very small accuracy loss, e.g. 1%.

Second, even if existing quantization techniques support such trade-off,

they require modifications to the target network to achieve good quantization
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quality and/or apply quantization to only part of the network. Due to this, such

techniques may require significant effort at design time, which may eventually

prevent widespread adoption of them. In addition, existing methods such as

XNOR-Net [9] and DoReFa-Net [10] do not apply quantization to the first and

the last layer to avoid excessive accuracy loss, which may limit the benefits of

reduced precision.

In order to address these two limitations, we propose a new quantization

scheme based on the concept of weighted entropy. Our approach addresses both

of the aforementioned limitations while quantizing weights and activiations.

Our contributions can be summarized as follows:

1. We propose a new multi-bit quantization method for both weights and ac-

tivations. Unlike binary quantization approaches, our scheme is able to

produce quantization results for any number of bits per weight/activation,

thereby realizing much more flexibility for exploiting accuracy and per-

formance trade-off.

2. Our scheme facilitates automated quantization of the entire neural net-

work. It does not require any modifications to the network except for

activation quantization, and thus, it can be easily integrated into conven-

tional training algorithms for neural networks.

3. We demonstrate the effectiveness of our method based on various prac-

tical neural network designs, including AlexNet [35], GoogLeNet [1],

ResNet50/101 [36], R-FCN [37], and an LSTM for language model-
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ing [38].

3.2 Motivation

Recent studies have shown that most of the weights in convolutional or fully-

connected layers are concentrated near zero, resulting in a bell-shaped distri-

bution [23]. The distribution of activation values are similar, except that acti-

vation values are always non-negative due to a ReLU layer. Existing quantiza-

tion schemes are based on such characteristics to judiciously assign quantiza-

tion levels. For example, logarithm-based quantization (or LogQuant) exploits

denser distribution of weights near zero by assigning more quantization levels

to near-zero values.

In addition to the distribution of weight/activation values, we make a key

observation that the impact of each weight/activation value on the final result

should also be considered during the quantization. Since the objective of a

quantization method is to minimize the accuracy degradation with the fewest

quantization levels, taking the actual impact of quantizing each value into ac-

count allows us to develop a new scheme that uses each quantization level more

effectively. More specifically, our insight can be summarized as follows:

1. Near-zero values dominate the total frequency of values in both weight

and activation distribution; however, their impact on the output is small

(e.g., errors in a very small weight may not affect much to the result of

convolution). Thus, it is desirable to assign fewer quantization levels (in
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Figure 3.1 Comparison of various quantization schemes. The weights are ex-

tracted from the second 3×3 convolution layer of GoogLeNet [1]. Each quanti-

zation scheme is given to assign 24 levels. We use 20.5 as the base of LogQuant

and optimize both linear quantization and LogQuant towards minimizing the

L2 norm of overall activations.
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short, levels throughout this work) to near-zero values than in a typical

linear or logarithm-based quantization.

2. Large weights and activations have significant impact on the quality of

output, but they are infrequent. Thus, it is also desirable to assign a small

number of levels to those values in order to maximize the utility of each

quantization level.

3. Values that do not belong to neither of the two aforementioned cate-

gories have a relatively large number of population with noticeable im-

pacts on the output quality. Thus, it makes sense to assign more levels to

those values than in conventional quantization methods.

Figure 3.1 illustrates how existing and proposed methods assign levels to

the given weight distribution. While the linear quantization does not consider

the weight distribution at all and LogQuant assigns too many levels to near-zero

values, our approach shows distribution that is more concentrated on the values

that are neither too small nor too large. Through quantitative evaluations, we

will show later that this style of quantization achieves higher efficiency than

conventional schemes.
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3.3 Quantization

based on Weighted Entropy

3.3.1 Weight Quantization

The high-level idea of our weight quantization approach is to group weights

into N clusters in a way to have more clusters for important ranges of weights,

assign a representative value to each cluster, and quantize all weights in each

cluster into the representative value of the cluster. For this purpose, we have to

be able to evaluate the clustering quality and find a set of clusters optimizing

such quality metric.

As the first step, we define a quantitative metric for evaluating the impor-

tance of a single weight (or the impact of a weight on output quality). Since

larger weights have a higher impact on the output quality, we empirically define

the importance i(n,m) of m-th weight in n-th cluster, i.e., w(n,m) to be quadrati-

cally proportional to the magnitude of the weight, i.e., i(n,m) = w(n,m)
2.

Based on this importance value of each weight, we derive a metric for

evaluating the quality of a clustering result (i.e., quantization result) based on

weighted entropy [39, 40]. Weighted entropy is originated from the concept of

entropy in physics and is designed to take the importance of data into account.

For a set of clusters C0, ..., CN−1, weighted entropy S is defined as

S =−∑
n

InPn logPn (3.1)
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where

Pn =
|Cn|

∑k |Ck| (relative frequency) (3.2)

In =
∑m i(n,m)

|Cn| (representative importance) (3.3)

In this equation, Pn represents how many weights are in the range of values

for cluster Cn, while In is the average importance of all weights in cluster Cn.

Roughly speaking, clusters for large weights will generally have high In but low

Pn (i.e., high importance but low frequency), while clusters for small weights

will have high Pn but low In (i.e., high frequency but low importance). Ac-

cording to our experiments, finding a clustering result that maximizes S yields

quantization whose levels are assigned sparsely for too small or too large val-

ues, just as we showed in Figure 3.1. Therefore, we define our weight quanti-

zation problem as follows:

Problem 1 (Weight Quantization). Given the training data (i.e., mini-batch in-

put) and the desired logN-bit precision (i.e., the number of clusters N), our

method aims at finding N weight clusters that maximize the weighted entropy.

The representative value of a cluster corresponds to a level in the weight quan-

tization.

Our solution to this problem is shown in Algorithm 1. Note that the algo-

rithm shows the weighted quantization for non-negative weights only. This is

because, due to the limitation of the weighted entropy theory, we cannot obtain

a clustering result that has both negative and non-negative representative val-
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ues. Thus, we separate the weights into two negative and non-negative groups,

and apply our algorithm to each group with N/2 levels each.

At the beginning of the algorithm, we calculate the importance of each

weight (lines 2 and 3). This is done by an importance mapping function fi,

which calculates the importance ik from weight wk. In this work, we empiri-

cally choose a square function fi(w) = w2 to compute the importance of each

weight. After obtaining the importance values of all weights, they are sorted in

the increasing order of their magnitude (line 4).

Based on the sorted importance values, the algorithm initializes cluster

boundary indexes c0 to cN
1 (line 5) such that (1) each cluster has the same num-

ber of weights and (2) weights in Ci+1 have higher importance than weights in

Ci. This is achieved simply by partitioning the sorted array s into N pieces and

assign each piece to each cluster. For example, if s = [1,2,3,4] and N = 2, we

set c0 = 0, c1 = 2, and c2 = 4 so that C0 = {1,2} and C1 = {3,4}.

Starting from the initial cluster boundaries, we iteratively perform incre-

mental search on the new cluster boundaries (lines 6–11). At each iteration, for

each cluster Ci and its boundaries ci and ci+1, we sweep ci from ci−1 to ci+1 by

using bisection method. For each cluster boundary candidate c′i, we recalculate

the weighted entropy of cluster Ci−1 and Ci, which are the only ones affected

by the new boundary, and update the boundary to c′i only if the new overall

weighted entropy S′ is higher than the current one.

1Cluster boundary indexes determine which weights belong to which clusters. Precisely,

cluster Ci is defined as containing ci-th weight to (ci+1 −1)-th weight (zero-based indexing) in

array s.
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After obtaining the new cluster boundaries, we calculate the representative

importance Ik of each cluster Ck (line 13). We obtain the representative weight

value rk for cluster Ck (line 14). In order to identify which weights belong to

which cluster, weight values at cluster boundaries, bk, are identified as well

for weight quantization (line 15), i.e., cluster Ci contains weights w that sat-

isfy bk ≤w< bk+1. Function QUANTIZE implements this quantization method.

That is, given a weight wn, it produces the representative weight value rk of the

associated cluster ck.

The weighted-entropy-based clustering can provide levels that satisfy our

requirements on quantization in Section 3.2. Maximizing the weighted entropy

optimizes the quantization result towards maximizing entropy while consid-

ering the importance of data. Thus, our method groups many near-zero values

into a large cluster by considering their lower importance. Large, but infrequent

values are also grouped into a cluster that covers a wide range of weight values.

3.3.2 Activation Quantization

Activation quantization needs a different approach from weight quantization.

While weights are fixed after the training, activations change at inference time

according to the input data. This makes activations less suitable to be quantized

by clustering-based approaches, which require a stable distribution of values.

According to our investigation, logarithm-based quantization (LogQuant)

can be effective for activation quantization. LogQuant is also beneficial to min-

imize the cost of implementation (e.g., dedicated hardware accelerators) as it
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can transform multiplications into inexpensive bitwise shift operations (i.e.,

w×2x = w � x). However, the original LogQuant method does not provide an

effective search strategy for exploring the best LogQuant parameters (i.e., base

and offset) for each layer of the network.

Our approach to activation quantization consists of two parts: a modified

version of LogQuant and a fast search strategy for LogQuant parameters. Al-

gorithm 2 shows key functions used in our modified LogQuant method.

First, we modify the the original LogQuant method to improve overall ac-

curacy and stability. Unlike the conventional LogQuant, we adopt smaller log

bases (1/8 and its multiples) and offsets (1/16 and its multiples), which corre-

spond to ‘step’ and ‘fsr’ in Algorithm 2, respectively. We assign the first quan-

tization level to zero activation and the other levels to the corresponding log

scale. For example, when we perform 3-bit quantization of activations, the first

level is assigned to value 0, the second one to 2
fsr
16 , the third one to 2

fsr+step
16 , and

so on. For simplicity, we integrate our activation quantization as part of the

rectified linear unit (ReLU) activation function, which is described as Function

WEIGHTEDLOGQUANTRELU in Algorithm 2.

Second, we propose a novel parameter search method for our LogQuant

variant, which determines the base and the offset in a way to minimize the loss

of output quality. Our idea is to take advantage of the concept of weighted en-

tropy maximization in our weight quantization. Algorithm 2 shows functions

that calculate the representative importance I (REPRIMPORTANCE) and the rel-

ative frequency P (RELATIVEFREQUENCY), which are the two ingredients for
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computing the weighted entropy. During training, in order to maximize the

weighted entropy of the given per-layer activations under LogQuant, we apply

an exhaustive search for ‘fsr’ and ‘step’ since the numbers of possible bases

and offsets are usually small (e.g., 16 for bases and around 500 for offsets in

our experiments).

3.3.3 Integrating Weight/Activation Quantization into
the Training Algorithm

We integrate the proposed weight/activation quantization into the conventional

training algorithm for neural networks. Since weights do not change during

each mini-batch, weight quantization can be simply applied by quantizing the

weights at the end of each mini-batch after the weight update. Note that we use

full-precision weights during the weight update as in other previous work [9,

10].

On the other hand, activation quantization has to be applied to every for-

ward/backward pass as each pass has its own set of activations. For each layer,

we first perform the forward pass and apply the ordinary ReLU (without Log-

Quant). The resulting activations are fed into our algorithm for LogQuant pa-

rameter search. The best base/offset combination from the algorithm is then

used to quantize the activations by using WEIGHTEDLOGQUANTRELU. The

quantized activations are passed to the next layer to perform the same process

for the rest of the layers in the network.

Under our training framework, any network can automatically benefit from
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our quantization schemes without modifications to the network. This makes

it much easier to apply aggressive quantization to the entire neural network,

which contributes to greatly reducing the inference cost of the network. Exist-

ing approaches are less practical in this regard, considering that they require

network modification and/or significant manual effort at design time.

3.4 Experiment

We evaluate our approach in three representative domains of neural network

applications: image classification, object detection, and language modeling.

We modify Caffe [41] to implement our technique on top of all networks2,

except for language modeling, in which we use TensorFlow [42] to implement

an LSTM. We constrain the accuracy loss to 1% and aim at finding the quan-

tization configuration that gives the minimum bitwidth while satisfying the ac-

curacy constraint. For brevity, we introduce a notation (x,y) to represent the

bitwidth of weights x and that of activations y in a quantization configuration.

In this notation, ‘f’ represents full precision. For example, (1,f) indicates 1-bit

weights and full-precision activations.

3.4.1 Image Classification:
AlexNet, GoogLeNet and ResNet-50/101

For image classification tasks, we evaluate the proposed method by quantizing

two widely used CNNs for ImageNet tasks [43]: AlexNet [35], GoogLeNet [1]

2Modified caffe code is available at https://github.com/EunhyeokPark/script_for

_WQ
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(both from Caffe framework [41]), and ResNet3 [36]. In order to apply our

quantization scheme into these networks, we perform fine-tuning combined

with our weight/activation quantization schemes under the batch size of 256

(for AlexNet), 64 (for GoogLeNet), or 16 (for ResNet-50/101). In the cases of

GoogLeNet and ResNet, the batch size is limited due to insufficient GPU mem-

ory capacity; this may increase overall accuracy loss. We use ILSVRC2012

data set, which contains 1.28M images for training and 50K images for test-

ing. During the six epochs of fine-tuning, we first set the initial learning rate to

0.001 and decrease it by 10 times every two epochs.

In the following subsections, we present two styles of evaluation results.

First, we demonstrate the effectiveness of our approach by quantizing the entire

networks (whole network quantization), which was not possible in prior work.

Second, we apply our scheme to all layers except the first and the last one

(partial network comparison) and compare ours against previous quantization

approaches that use the full precision at the first/last layer of a network.

Whole Network Quantization

Figure 3.2 compares the test accuracy of CNNs quantized by our techniques.

As shown in the figure, the quantized CNNs achieve higher accuracy under less

restrictive bitwidth constraint.

For AlexNet, the best quantization configurations that use the fewest bits

while satisfying the 1% top-5 accuracy loss constraint are (3,6), (4,4), (4,5) and

3Base models are available at https://github.com/KaimingHe/deep-residual-net

works
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Figure 3.2 Top-1 and top-5 accuracy of quantized CNNs after fine-tuning. The

dashed lines represent the accuracy of the baseline networks, which use full-

precision arithmetic.
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(4,6). For example, (4,4) reduces the bitwidths of both weights and activations

by 87.5% (= 1− 4/32) with less than 1% loss of top-5 accuracy. Moreover,

our approach provides much lower iso-accuracy bitwidth compared to previous

work. For example, LogQuant [21] achieves 75.1% top-5 accuracy with 4-bit

weights and 5-bit activations; Qiu et al. [44] used 8-bit weights and activations

and showed 76.6% (53.0%) of top-5 (top-1) accuracy. Our approach achieves

a similar level of top-5/top-1 accuracy (i.e., 75.49%/51.37%) with only 2-bit

weights and 3-bit activations.

For GoogLeNet, under the 1% accuracy loss constraint, our approach can

quantize weights and activations down to only 4–5 bits and 6 bits, respectively,

as shown in Figure 3.2. We also observe that GoogLeNet suffers more from

accuracy loss than AlexNet under the same level of bitwidth constraint. We

believe that this is because the model size of GoogLeNet is more compact than

AlexNet, yet the former performs more computation than the latter. In other

words, GoogLeNet reuses each weight more frequently during the computa-

tion than AlexNet, which makes the impact of reduced weight precision more

pronounced in GoogLeNet. Even so, our approach still achieves a significant

(more than 5x) reduction in both the model size and the amount of computation

(in bits) compared to the full-precision implementation.

For ResNet, to the best of our knowledge, this study is the first to report the

result of quantizing the entire networks whose depth is as much as 50 and 101

layers. Both networks maintain similar levels of accuracy even after aggres-

sive quantization of weights, e.g., 3 bits. However, we observe that the deeper
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Figure 3.3 Accuracy comparison of quantization methods applied to AlexNet.

‘Weighted Quantization’ represents our approach, while ‘X’ and ‘D’ are for

XNOR-Net and DoReFa-Net, respectively. The dashed lines indicate the accu-

racy of the baseline full-precision network.

network demands more bits for activations, e.g., 6 bits, possibly because quan-

tization errors of activations get accumulated over deeper layers.

Partial Network Quantization

In this subsection, we compare the performance of our quantization method

against two state-of-the-art approaches: XNOR-Net [9] and DoReFa-Net [10].

For fair comparison, we apply our quantization scheme to all layers but the first

and last ones, just as in our comparison targets. Note that the comparison is still

not apple-to-apple in that (1) the (best available) results from previous work are

limited to 1-bit weights and k-bit activations, while ours include k-bit weights

and activations, and (2) both XNOR-Net and DoReFa-Net modify the network,

whereas ours does not except ReLU layers (in activation quantization).

Figure 3.3 shows the comparison of our approach against XNOR-Net and
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DoReFa-Net. While XNOR-Net with binary weights, i.e., (1,f), shows very

small accuracy drop with 1-bit weights, it is limited to binary quantization

and full-precision activation, which is not flexible enough to exploit accuracy-

performance trade-off under a stringent accuracy loss constraint. XNOR-Net

with binary weight and activation quantization, i.e., (1,1), degrades the accu-

racy too much, whereas our method provides multi-bit quantization meeting

the accuracy constraint. DoReFa-Net alleviates some of such limitations by

allowing multi-bit quantization of activations. However, under the similar con-

figurations, our scheme with 2-bit weights and 3-bit activations outperforms

DoReFa-Net with 1-bit weights and 4-bit activations by 0.69% in terms of top-

1 accuracy. In summary, our method facilitates more flexible choice of quan-

tization configurations with smaller iso-accuracy bitwidth than previous work,

which is extremely useful for systems that require efficient inference under a

tight accuracy constraint.

Compression Analysis

Table 3.1 compares existing methods and ours in the context of compression.

From this, we observe the followings.

First, both XNOR-Net [9] and DoReFa-Net [10] show larger weights than

our method (WQ) since they do not quantize the first and the last layers. More-

over, Huffman encoding is not helpful since they use binary and full-precision

weights, respectively.

Second, when WQ is applied on top of pruning [23], it achieves 5.4x smaller
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Weights Activations Top-1

P [%] Q [MB] +H Q [MB] [%]

WQ(4,4) - 30.5 18.1 0.47 55.8

WQ(2,3) - 15.3 12.5 0.35 53.7

XNOR-Net [9] - 23.7 - 0.72 44.2

DoReFa-Net [10] - 23.6 - 0.47 53.0

Deep Compression [23] 11 8.9 6.9 3.75 57.2

[23] + WQ(4,6) 11 8.3 6.5 0.70 56.3

Table 3.1 Memory requirement comparison with AlexNet (P: Pruning ratio, Q:

Quantization, H: Huffman encoding).

activations and slightly smaller weights (8.9 MB vs. 8.3 MB) at an additional

accuracy loss of 0.9 %. Ours achieves larger bitwidth reductions in activations

than in weights because [23] utilizes full-precision activations while ours uses

6-bit activations.

Layer-wise Quantization: A Feasibility Study

In the previous subsections, we use the same bitwidth constraint for all layers

in the network. However, according to our observation, different layers have

different levels of sensitivity to the quantization bitwidth. Thus, we perform

a feasibility study of the potential of layer-wise quantization, where different

layers may have different bitwidths. In this study, we evaluate the following

four styles of per-layer bitwidth assignment based on AlexNet: monotonically

decreasing (DEC), monotonically increasing (INC), concave (CONCAVE), and

convex (CONVEX). All four schemes are designed to have the same number of

bitwidth in total. For example, DEC assigns 6 bits to each weight/activation in
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the first convolution layer, while it uses only 2 bits for weights/activations in

the last fully-connected layer.

DEC INC CONCAVE CONVEX

Top-1 [%] 53.79 50.35 54.45 54.33

Top-5 [%] 77.59 74.89 76.43 78.20

Table 3.2 Accuracy comparison of our approach under different styles of layer-

wise quantization.

As shown in Table 3.2, we observe that using less bits in intermediate lay-

ers (i.e., CONVEX) achieves the highest accuracy, while assigning fewer bits

to near-input layers (i.e., INC) shows the lowest. A similar phenomenon to

this was observed by Zhou et al. [10]. We believe that even more aggressive

bitwidth optimization could be possible by taking this layer-wise sensitivity

to bitwidths into account during quantization. Exhaustive search of all possible

combinations of bitwidths is impractical as there are too many of them even for

small networks (e.g., AlexNet has 515 ≈ 3× 1010 possible configurations that

use two to six bits for each layer). Algorithms for fast design space exploration

of layer-wise quantization are left for future work.

3.4.2 Object Detection: R-FCN with ResNet-50

In order to evaluate the effectiveness of our quantization method on more com-

plex vision tasks, we use a state-of-the-art 50-layer R-FCN model for object

detection [37]. The R-FCN model combines a residual network (ResNet) [36]

(for representation) and Faster R-CNN [45] (for region proposal, object classi-

35



65

70

75

80

(2
,f

)

(3
,f

)

(4
,f

)

(5
,f

)

(f
,3

)

(f
,4

)

(f
,5

)

(f
,6

)

(2
,3

)

(2
,4

)

(2
,5

)

(2
,6

)

(3
,3

)

(3
,4

)

(3
,5

)

(3
,6

)

(4
,3

)

(4
,4

)

(4
,5

)

(4
,6

)

(5
,3

)

(5
,4

)

(5
,5

)

(5
,6

)

m
A

P
 [

%
]

1
2
.7
0

Full Precision - 77.61 %

Figure 3.4 mAP results of R-FCN. The dashed line represents the accuracy of

the baseline full-precision network.

fication, and box localization). On top of the existing full-precision model, we

perform fine-tuning with our quantization method.

Even though deep models are known to be difficult to quantize since quanti-

zation errors are accumulated over deep layers, our method successfully quan-

tizes the 50-layer model for object detection with very small accuracy loss.

Figure 3.4 shows that the configuration of 5-bit weights and 6-bit activations

loses only 0.51% of mAP, while reducing the model size and the amount of

computation by more than 5x. We also observe that activations typically re-

quire more bits than weights in our quantization method (e.g., 6-bit activations

or 4-/5-bit weights are needed for stable and satisfactory results, as shown in

Figure 3.4). We believe that this is because the bounding box regression mech-

anism of R-FCN is simple (obtaining boxes directly from the region proposal

network), and thus, is sensitive to activation accuracy. We will perform further

investigation on this in our future work.
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In our future work, we will also study the feasibility of our method with

deeper models. According to our preliminary study with R-FCN based on

ResNet-101, we failed to obtain quantization with reasonable accuracy when

fine-tuning the model with the PASCAL VOC data set. We believe that this

problem is due to the mixed effects of transfer learning and quantization on

a very deep network, which requires further investigation into quantization on

the very deep networks.

3.4.3 Language Modeling: An LSTM

In order to evaluate our scheme on recurrent neural networks, we perform a pre-

liminary analysis by applying our method to an LSTM network for language

modeling [38], provided along with the Tensorflow framework [42]. We eval-

uate three sizes of RNNs, small (200 hidden units and 20 time steps), medium

(650 hidden unuts and 35 time steps), and large (1500 hidden units and 35

time steps), all of which have two layers each. We measure the word-level per-

plexity of these three RNNs before/after quantization with the Penn Tree Bank

dataset [46]. We apply only the weight quantization to the LSTM network since

our activation quantization is currently incompatible with bounded gates and

linear outputs in RNNs.

Table 3.3 compares the word-level perplexity of the LSTM network be-

tween full-precision (float) and quantization cases. The result shows that 4-bit

weights achieve comparable results to the full-precision implementation. Also,

our scheme provides options to further reduce the model size and the amount
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Large Medium Small

Valid Test Valid Test Valid Test

float 82.77 78.63 87.69 83.54 119.19 114.46

1-bit 92.20 88.48 104.0 100.7 147.19 141.07

2-bit 86.73 82.90 92.49 89.24 137.34 131.15

3-bit 85.59 81.57 86.73 83.50 121.21 117.00

4-bit 81.83 78.09 88.01 83.84 121.84 114.95

Table 3.3 Impact of quantization on word-level perplexity of an LSTM for

language modeling.

of computation by using fewer bits at a cost of lower output quality (i.e., higher

perplexity).

3.5 Conclusion

In this work, we proposed a novel weight/activation quantization method based

on the concept of weighted entropy. The key benefits of our approach are

twofold: (1) flexible multi-bit quantization, which allows us to optimize the

neural network design under the tight accuracy loss constraint and (2) auto-

mated quantization, which does not require modifications to the input net-

works. According to our extensive evaluation results based on practical neu-

ral networks including AlexNet, GoogLeNet, ResNet-50/101, R-FCN, and an

LSTM, our approach achieves 1% accuracy loss (top-5 or mAP) with 4-bit

weights/activations (AlexNet), 4/5-bit weights and 6-bit activations (GoogLe-

Net, ResNet and R-FCN). Our future work includes investigating the effective-

ness of our method on very deep neural network models (e.g., ResNet-152) and
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devising activation quantization for RNN models.
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Chapter 4

Value-aware Quantization for
Training and Inference of Neural
Networks

4.1 Introduction

This work was publisehd in ECCV’2018 conference [15].Reduced precision

has potential to resolve the problems of runtime, energy consumption, and

memory cost by reducing the data size thereby enabling more parallel and

energy-efficient computation, e.g., four int8 operations instead of a single fp32

operation, at a smaller memory footprint. The state-of-the-art techniques of

quantization are 16-bit training [47] and 8-bit inference [6]. Considering the

trend of ever-increasing demand for training and inference on both servers and

edge devices, further optimizations in quantization, e.g., 4 bits, will be more

and more required.

In this work, we propose a novel quantization method based on the fact that

the distributions of weights and activations have the majority of data concen-

trated in narrow regions while having a small number of large values scattered
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in large regions. By exploiting the fact, we apply reduced precision only to

the narrow regions thereby reducing quantization errors for the majority of

data while separately handling large values in high precision. For very deep

networks such as ResNet-152 and DenseNet-201, our proposed quantization

method enables training with 3-bit activations (2% large values). Our method

also offers low-precision inference with 4 to 5-bit weights and activations (1%

large values) even for optimized networks such as SqueezeNet-1.1 and Mobile-

Net-v2 as well as deeper networks.

4.2 Motivation

Figure 4.1 (a) and (b) illustrate the distributions (y-axis in log scale) of acti-

vations and weights in the second convolutional layer of GoogLeNet. As the

figures show, both distributions are wide due to a small number of large values.

Given a bitwidth for low precision, e.g., 3 bits, the wider the distribution is, the

larger quantization errors we obtain. Figure 4.1 (c) exemplifies the conventional

3-bit linear quantization applied to the distribution of activations in Figure 4.1

(a). As the figure shows, the spacing between quantization levels (vertical bars)

is large due to the wide distribution, which incurs large quantization errors.

When comparing Figure 4.1 (a) and (c), it is clear that the majority of quan-

tization levels is not fully utilized. Especially, the levels assigned to large val-

ues have much fewer data than those assigned to small values, which motivates

our idea. Figure 4.1 (d) illustrates our idea. We propose applying low precision

only to small values, i.e., the majority of data, not all. As the figure shows, the
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(d) Value-aware quantization

Figure 4.1 Activation and weight distributions of second convolutional layer in

GoogLeNet.

spacing between quantization levels gets much smaller than that in the con-

ventional linear quantization in Figure 4.1 (c). Such a small spacing can sig-

nificantly reduce the quantization error for the majority of data. Large values

have the more significant impact on the quality of network output. Thus, we

propose handling the remaining large values in high precision, e.g., in 32 or 16

bits. The computation and memory overhead of handling high-precision data

is small because their frequency, which is called the ratio of large activations,

in short, activation ratio (AR), is small, e.g., 1-3% of total activation data.1

1We use two ratios of large values, one for large weights and the other for large activations.

We use AR to denote the ratio of large activations.
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4.3 Proposed Method

Our basic approach is first to perform value profiling to identify large values

during training and inference. Then, we apply reduced precision to the majority

of data, i.e., small ones while keeping high precision for the large values. We

call this method value-aware quantization (V-Quant).

We apply V-Quant to training to reduce the memory cost of activations. We

also apply it to inference to reduce the bitwidth of weights and activations of

the trained neural network. To do that, we address new problems as follows.

• (Sections 4.3.1 and 4.3.2) To prevent the quality degradation of training

results due to quantization, we propose a novel scheme called quantized

activation back-propagation, in short, quantized back-propagation. We

apply our quantization only to the activations used in the backward pass

of training and perform forward pass with full-precision activations.

• (Sections 4.3.4 and 4.3.7) Identifying large values requires sorting which

is expensive. To avoid the overhead of global communication between

GPUs for sorting during training, we propose performing sorting and

identifying large values locally on each GPU.

• (Sections 4.3.5 and 4.3.6) We present new methods for further reduction

in memory cost of training. To reduce the overhead of mask informa-

tion required for ReLU function during back-propagation, we propose

ReLU and value-aware quantization. For further reduction in memory
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Figure 4.2 Value-aware quantization in training pipeline.

cost, we also propose exploiting the fact that, as training continues, the

less amount of large activations is required.

4.3.1 Quantized Back-Propagation

Figure 4.2 shows how to integrate the proposed method with the existing train-

ing pipeline. As the figure shows, we add a new component of value-aware

quantization to the existing training flow. In the figure, thick arrows represent

the flow of full-precision activations (in black) and gradients (in red).

First, we perform the forward pass with full-precision activations and weig-

hts, which gives the same loss as that of the existing full-precision forward

pass (step 1 in the figure). During the forward pass, after obtaining the output

activations of each layer, e.g., layer l, the next layer (layer l + 1) of network

takes as input the full-precision activations. Then, we apply our quantization

method, RV-Quant to them (those of layer l) in order to reduce their size (step

2). As the result of the forward pass, we obtain the loss and the quantized

activations.

During the backward pass, when the activations of a layer are required for
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weight update, we convert the quantized, mostly low-precision, activations,

which are stored in the forward pass, into full-precision ones (step 3). Note

that this step only converts the data type from low to high precision, e.g., from

3 to 32 bits. Then, we perform the weight update with back-propagated error

(thick red arrow) and the activations (step 4).

Note that there is no modification in the computation of the existing for-

ward and backward passes. Especially, as will be explained in the next sub-

section, when ReLU is used as activation function, the backward error propa-

gation (step 5 in the figure) keeps full-precision accuracy. The added compo-

nent of value-aware quantization performs conversions between full-precision

and reduced-precision activations and compresses a small number of remain-

ing large high-precision activations, which are sparse, utilizing a conventional

sparse data representation, e.g., compressed sparse row (CSR).

The conversion from full to reduced precision (step 2) reduces memory cost

while that from reduced to full precision (step 3) changes data type back to full

precision one thereby increasing memory cost back to that of full precision.

Note that the full-precision activations, obtained from the quantized ones, are

discarded after weight update for their associated layer. Thus, we need memory

resource for the stored quantized activations of the entire network and the full-

precision input/output activations of only one layer, which we call working

activations, for the forward/backward computation.

As will be explained later in this section, for further reduction in memory

cost, the ReLU function consults the value-aware quantization component for
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the mask information which is required to determine to which neuron to back-

propagate the error (step 6).

4.3.2 Back-Propagation of Full-Precision Loss

Our proposed method can suffer from quantization error in weight update since

we utilize quantized activations. We try to reduce the quantization error by ap-

plying reduced precision only to narrow regions, determined by AR, having the

majority of data while separately handling the large values in high precision.

Moreover, in state-of-the-art networks where ReLU is utilized as activation

function, the back-propagated error is not affected by our quantization of ac-

tivations as is explained below. Equation (1) shows how we calculate weight

update during back-propagation for a multilayer perceptron (MLP).

Δw ji = ηδ jyi (4.1)

where Δw ji represents the update of weight from neuron i (of layer l) to neuron

j (of layer l + 1), η learning rate, δ j the local gradient of neuron j (back-

propagated error to this neuron), and yi the activation of neuron i. Equation (1)

shows that the quantization error of activation yi can affect the weight update.

In order to reduce the quantization error in Equation (1), we apply V-Quant to

activations yi.

The local gradient δ j is calculated as follows.

δ j = ϕ ′(v j) · (Σkδkwk j) (4.2)
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where ϕ ′() represents the derivative of activation function, v j the input to

neuron j and wk j the weight between neuron j (of layer l + 1) to neuron

k (of layer l + 2). Equation (2) shows that the local gradient is a function

of the input to neuron, v j which is the weighted sum of activations. How-

ever, if ReLU is used as the activation function, then ϕ ′() becomes 1 yielding

δ j = ϕ ′(v j) · (Σkδkwk j) = Σkδkwk j, which means the local gradient becomes

independent of activations. Thus, aggressive quantizations of intermediate ac-

tivations, e.g., 3-bit activations can hurt only the weight update in Equation

(1), not the local gradient in Equation (2). This is the main reason why our pro-

posed method can offer full-precision training accuracy even under aggressive

quantization of intermediate activations as will be shown in the experiments.

4.3.3 Potential of Further Reduction in Computation
Cost

Compared with the existing methods of low memory cost in training [48, 49],

our proposed method reduces computation cost by avoiding re-computation

during back-propagation. More importantly, our proposed method has a poten-

tial for further reduction in computation cost especially in Equation (1), though

we have not yet realized the speedup potential in this study. It is because the

activation yi is mostly in low precision in our method. Thus, utilizing the capa-

bility of 8-bit multiplication on GPUs, our method can transform a single 16-

bit x 16-bit multiplication in Equation (1) into an 8-bit x 16-bit multiplication.

In state-of-the-art GPUs, we can perform two 8-bit x 16-bit multiplications at
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the same computation cost, i.e., execution cycle, of one 16-bit x 16-bit multi-

plication, which means our proposed method can double the performance of

Equation (1) on the existing GPUs.

Assuming that the forward pass takes M multiplications, the backward pass

takes 2M multiplications while each of Equations (1) and (2) taking M multipli-

cations, respectively. Thus, the 2x improvement in computation cost of Equa-

tion (1) can reduce by up to 1/6 total computation cost of training. In order to

realize the potential, further study is needed to prove that our proposed method

enables 8-bit low-precision activations (with a small number of 16-bit high-

precision activations) without losing the accuracy of 16-bit training [47].

Although our method can currently reduce computation cost utilizing only

8-bit multiplications on GPUs, its reduced-precision computation, e.g., 3-bit

multiplications, offers opportunities of further reduction in computation cost

for training in future hardware platforms supporting aggressively low preci-

sion, e.g., [50].

4.3.4 Local Sorting in Data Parallel Training

V-Quant requires sorting activations. Assuming that we adopt data parallelism

in multi-GPU training, the sorting can incur significant overhead in training

runtime since it requires exchanging the activations of each layer between

GPUs. What is worse, in reality, such a communication is not easily supported

in some training environments, e.g., PyTorch, and it restrict the scalability in

any training environments including TensorFlow , Caffe2 and others as well as
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PyTorch. In order to address the problem of activation exchange, we propose

performing sorting locally on each GPU, which eliminates inter-GPU commu-

nication for activation exchange. Then, each GPU performs V-Quant locally by

applying the same AR, i.e., the same ratio of large activations. Compared with

the global solution that collects all the activations and applies the AR to the

global distribution of activations, the proposed local solution can lose accuracy

in selecting large values. However, our experiments show that the proposed

method of local sorting works well, which means that the selection of large

values does not need to be accurate.

4.3.5 ReLU and Value-aware Quantization (RV-Quant)

The error is back-propagated through the neurons the output activations of

which are non-zero. The zero activations result from quantization (called quant-

ization-induced zero) as well as ReLU activation function. In order to realize

the same back-propagation as the full-precision training, it is required to back-

propagate errors in the case of quantization-induced zero. To identify the neu-

rons having quantization-induced zero, we would need a bit mask, i.e., 1-bit

memory cost for a neuron. In case that the activations are quantized at a mini-

mal number of bits, e.g., 3 bits, the overhead of the mask bit is significant, e.g.,

one additional bit for 3-bit activation on each neuron. To reduce the overhead

of the mask bit, we exploit the fact that the mask bit is needed only for the

case of zero activation. We allocate two states to represent two different types

of zero values, i.e., original zero and quantization-induced zero. Thus, given K
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bits for low precision, we allocate two of 2K quantization levels to the zero val-

ues while representing the positive activation values with 2K −2 levels. We call

this quantization ReLU and value-aware quantization (RV-Quant). As will be

shown in the experiments, RV-Quant removes the overhead of mask bit while

keeping training accuracy.

4.3.6 Activation Annealing

According to our investigation, the required amount of large activations varies

across training phases. To be specific, the early stage of training tends to require

more large activations while the later stage tends to need less large activations.

We propose exploiting the fact and adjusting AR in a gradual manner from

large to small AR across training phases, which we call activation annealing.

As will be shown in the experiments, activation annealing can maintain train-

ing quality while reducing the average memory cost across the entire training

phases.

4.3.7 Quantized Inference

In order to obtain quantized neural networks for inference, we perform V-Quant

as a post-processing of training, i.e., we apply V-Quant to the weights and ac-

tivations of trained networks. To recover from the accuracy loss due to quan-

tization, we perform fine-tuning as follows. We perform forward pass while

utilizing the quantized network, i.e., applying V-Quant to weights and activa-

tions. During back-propagation, we update full-precision weights. As will be
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shown in the experiments, the fine-tuning incurs a minimal overhead in train-

ing time, i.e., only a few additional epochs of training. Note that we apply local

sorting in Section 4.3.4 to avoid communication overhead when multiple GPUs

are utilized in fine-tuning.

During fine-tuning, we evaluate candidate ratios for large weights and acti-

vations and, among those candidates, select the best configuration which min-

imizes the bitwidth while meeting accuracy requirements. Note that, as will be

explained in the experiments, the total number of candidate combinations is

small.

In order to identify large activations meeting the AR, we need to sort ac-

tivations, which can be expensive in inference. In order to avoid the sorting

overhead, we need low-cost sorting solutions, e.g., sampling activations to ob-

tain an approximate distribution of activations. Detailed implementations of

quantized models including the low-cost sorting are beyond the scope of this

work and left for further study.

4.4 Experiments

We evaluate our proposed method on ImageNet classification networks, Alex-

Net, VGG-16, SqueezeNet-1.1, MobileNet-v2, Inception-v3, ResNet-18/50/

101/152 and DenseNet-121/201. We test the trained/quantized networks with

ILSVRC2012 validation set (50k images) utilizing a single center crop of 256x

256 resized image. We also use an LSTM for word-level language model-

ing [38, 51, 52]. We implemented our method on PyTorch framework [53] and
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use the training data at Torchvision [54].

The initial learning rate is set to 0.1 (ResNet-18/50/152 and DenseNet-

201), or 0.01 (AlexNet and VGG-16). The learning rate is decreased by 10x at

every multiple of 30 epochs and the training stops at 90 epochs. In SqueezeNet-

1.1, MobileNet-v2, and Inception-v3, we use the same parameters in the papers

except that we use a mini-batch of 256 and SGD instead of RMSprop. In addi-

tion, we replace ReLU6 in MobileNet-v2 with ReLU to apply V-Quant.

We apply V-Quant and RV-Quant to training to minimize memory cost.

During training, in order to compress the sparse large activations on GPU, we

use the existing work in [55]. To obtain quantized networks for inference, we

perform fine-tuning with V-Quant for a small number of additional epochs,

e.g., 1-3 epochs after total 90 epochs of original training. All networks are

initialized in the same condition.

We compare classification accuracy between full-precision models and those

under RV-Quant (training) and V-Quant (training/inference). For each network,

we use the same randomly initialized condition and perform training for differ-

ent RV-Quant and V-Quant configurations.

4.4.1 Training Results

Table 4.1 shows top-1/top-5 accuracy of ResNet-50 obtained, under V-Quant,

varying the bitwidth of low-precision activation and the ratio of large activa-

tion, AR. The table shows that the configuration of 3-bit activations with the

AR of 2% (in bold) gives training results equivalent to the full-precision (32-
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AR [%] 0 1 2 3 4 5

1-bit 5.30 / 15.23 74.51 / 92.05 75.17 / 92.50 75.21 / 92.48 75.70 / 92.66 75.57 / 92.66

2-bit 65.75 / 86.72 75.65 / 92.66 75.64 / 92.70 75.66 / 92.51 75.34 / 92.66 75.58 / 92.62

3-bit 75.49 / 92.61 75.71 / 92.59 75.92 / 92.86 75.93 / 92.96 75.89 / 92.94 75.73 / 92.63

4-bit 75.70 / 92.75 75.78 / 92.67 75.88 / 92.93 75.79 / 92.71 75.85 / 92.69 75.92 / 92.86

5-bit with AR 0 % 75.60 / 92.61 6-bit with AR 0 % 75.92 / 92.83

7-bit with AR 0 % 75.89 / 92.79 8-bit with AR 0 % 75.67 / 92.85

Table 4.1 Top-1/top-5 accuracy [%] of ResNet-50 with various bitwidth &

AR configurations. The full precision network gives the accuracy of 75.92 /

92.90%.

bit) training in terms of top-1 accuracy, which corresponds to 6.1X (=1/((3+1)/32

+ 0.04)) reduction in the memory cost of stored activation at the same quality

of training.2 The table also shows that a very aggressive quantization of 2-bit

activation and 1% AR loses only 0.27%/0.24% in top-1/top-5 accuracy, which

is comparable to the case of 5-bit quantization without large values (5-bit with

AR 0% in the table).

Note that the total memory cost of activations includes that of stored ac-

tivations of the entire network and that of full-precision working activations

(input to the associated layer) required for weight update. Thus, the above-

mentioned reduction of 6.1X is only for the memory cost of stored activations.

We will give the comparison of the total memory cost of activations later in

this section. In addition, we do not compare the accuracy of the state-of-the-

art method [48] since it provides the same accuracy as full-precision training.

However, we provide the memory consumption of this method later in this sec-

2Note that V-Quant still requires 1-bit mask information for each neuron. In addition, the

sparse data representation of large values, e.g., CSR doubles the size of the original sparse data

yielding the memory cost of 4% with the AR of 2%.
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tion, including that of the conventional linear quantization method (8-bit with

AR 0%).

AR [%] 0 1 2 3 4 5

2-bit 35.52 / 60.86 75.34 / 92.56 75.41 / 92.49 75.67 / 92.59 75.50 / 92.46 75.27 / 92.65

3-bit 75.16 / 92.55 75.88 / 92.80 75.93 / 92.70 75.66 / 92.74 75.91 / 92.75 75.49 / 92.58

Table 4.2 Top-1/top-5 accuracy [%] of ResNet-50 under RV-Quant. The full-

precision network gives the accuracy of 75.92 / 92.90%.

Table 4.2 shows top-1/top-5 accuracy of ResNet-50 under RV-Quant. As the

table shows, RV-Quant gives similar results to V-Quant, e.g., top-1 accuracy of

3-bit 2% RV-Quant gives an equivalent result to full precision. Compared with

V-Quant, RV-Quant reduces the memory cost by 1 bit per neuron. Thus, the

configuration of 3-bit 2% RV-Quant gives 7.5X (=1/(3/32 + 0.04)) reduction in

the memory cost of stored activations. In addition, we can further reduce the

memory cost of stored activations by applying traditional compression tech-

niques to the reduced-precision activations. In the case of 3-bit 2% RV-Quant

for ResNet-50, by applying Lempel-Ziv compression, we can further reduce

the memory cost of the 3-bit data by 24.4%, which corresponds to 9.0x reduc-

tion in the memory cost of the whole stored activations.

Table 4.3 compares the accuracy of neural networks under full-precision

training and two RV-Quant configurations. As the table shows, 3-bit 2% RV-

Quant gives almost the same training accuracy as full-precision training for all

the networks.

Table 4.4 compares the total memory cost of activations (both stored quan-
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AlexNet ResNet-18 SqueezeNet-1.1 MobileNet-v2

Full 56.35 / 79.02 69.91 / 89.38 58.67 / 81.05 70.10 / 89.74

3-bit 2% 56.14 / 78.99 69.92 / 89.23 58.53 / 80.94 70.12 / 89.76

8-bit 0% 56.24 / 78.95 70.01 / 89.28 58.75 / 81.29 70.29 / 89.64

VGG-16 Inception-v3 ResNet-152 DenseNet-201

Full 71.86 / 90.48 74.19 / 91.92 77.95 / 94.02 77.42 / 93.59

3-bit 2% 71.74 / 90.46 74.14 / 91.92 77.76 / 93.89 77.28 / 93.44

8-bit 0% 71.77 / 90.66 74.22 / 92.08 78.35 / 93.95 77.32 / 93.51

Table 4.3 Training results. Full means the results of conventional full-precision

training, while 3-bit 2% and 8-bit 0% correspond to RV-Quant. The full-

precision network gives the accuracy of 75.92 / 92.90%.

tized and full-precision working activations) in training with 256 mini-batch

sizes. We compare two existing methods and three RV-Quant configurations.

’Full’ represents the memory cost of conventional training with full-precision

activation. As a baseline, we use the checkpointing method of Chen et al. [48]

since it is superior to others including [49], especially for deep neural networks.

We calculate the memory cost of the checkpointing method to account for the

minimum amount of intermediate activations to re-compute correct activations

while having the memory cost of O(
√

N) where N is the number of layers [48].

The table shows that, compared with the checkpointing method, RV-Quant

gives significant reductions in the total memory cost of activations. For in-

stance, in the case of ResNet-152 which is favorable to the checkpointing

method due to the simple structure as well as a large number of layers, ours

reduces the memory cost by 41.6% (from 5.29GB to 3.09GB). In networks hav-

ing more complex sub-networks, e.g., Inception modules, ours gives more re-

ductions. In the case of Inception-v3, ours gives a reduction of 53.7% (3.87GB

to 1.79GB). Note that in the case of AlexNet, the reduction is not significant. It
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AlexNet ResNet-18 SqueezeNet-1.1 MobileNet-v2 ResNet-50

Full 0.35 1.86 1.58 7.34 9.27

Chen et al. [48] x
0.98

(52.1 %)

1.05

(66.9 %)

4.21

(52.1 %)

3.70

(39.9 %)

(2,0) 0.23

(66.4 %)

0.42

(22.6 %)

0.59

(37.5 %)

0.74

(10.0 %)

1.22

(13.2 %)

(3,0) 0.23

(67.8 %)

0.46

(24.3 %)

0.61

(38.8 %)

0.84

(11.4 %)

1.34

(14.5 %)

(3,2) 0.24

(69.5 %)

0.50

(26.5 %)

0.64

(40.4 %)

1.13

(15.4 %)

1.52

(16.4 %)

VGG-16 Inception-v3 ResNet-152 DenseNet-201

Full 9.30 9.75 20.99 24.53

Chen et al. [48] x
3.87

(39.8 %)

5.29

(25.2 %)

6.62

(27.0 %)

(2,0) 3.65

(39.2 %)

1.16

(11.9 %)

1.64

(7.78 %)

2.09

(8.51 %)

(3,0) 3.75

(40.3 %)

1.43

(14.8 %)

2.27

(10.8 %)

2.85

(11.6 %)

(3,2) 3.88

(41.7 %)

1.79

(18.4 %)

3.09

(14.7 %)

3.83

(15.6 %)

Table 4.4 Comparison of memory cost (in GB).

is because the input data occupy the majority of stored activations and we store

them in full precision. However, the impact of input data storage diminishes in

deep networks.

We also measured the training runtime of ResNet-50 with mini-batch of

64 on NVIDIA Tesla M40 GPU. Compared to the runtime of existing full-

precision training, our method requires a small additional runtime, 8.8% while

the checkpointing method has much larger runtime overhead, 32.4%. Note that

as mentioned in Section 4.3.3, our method has a potential for further reduction

in training time on hardware platforms supporting reduced-precision computa-
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tion.

Configuration Accuracy Configuration Accuracy Configuration Accuracy

(3,2)-(2,1)-(2,0) 75.01 / 92.42 (2,0)-(2,1)-(3,2) 47.35 / 72.31 (3,2)-(3,1)-(3,0) 75.72 / 92.69

(F)-(3,2)-(2,0) 75.45 / 92.63 (2,0)-(3,2)-(F) 50.36 / 75.02 (3,2)-(3,1)-(2,0) 75.34 / 92.55

(F)-(2,1)-(2,0) 75.38 / 92.44 (2,0)-(2,1)-(F) 52.72 / 76.76 (3,0)-(3,1)-(3,2) 75.60 / 92.77

(2,0)-(3,1)-(3,2) 48.67 / 73.54

Table 4.5 Sensitivity analysis of RV-Quant configurations (bitwidth and AR

[%]) across training phases. The full-precision network gives the accuracy of

75.92 / 92.90%.

Table 4.5 shows the impact of RV-Quant configurations on training ac-

curacy of ResNet-50. We change the configurations when the learning rate

changes (with the initial value of 0.1) at 0.01 and 0.001. For instance, (F)-(3,2)-

(2,0) represents the case that, as the initial configuration, we use full-precision

activation (F) during back-propagation. After 30 epochs, the configuration is

changed to 3-bit 2% RV-Quant. Then, after 60 epochs, it is changed to 2-bit

0% RV-Quant.

In Table 4.5, the key observation is that it is important to have high preci-

sion at the beginning of training. Compared with the case that training starts

with full-precision activations and ends with aggressively reduced precision,

(F)-(3,2)-(2,0), the opposite case, (2,0)-(3,2)-(F) gives significantly lower ac-

curacy, 75.45% vs. 50.36%. Another important observation is that activation

annealing works. For instance, (3,2)-(3,1)-(3,0) gives almost the same result

to (3,2)-(3,2)-(3,2) in Table 4.2 and, a more aggressive case, (3,2)-(3,1)-(2,0)

gives only by 0.58% smaller top-1 accuracy. Thus, as training advances, we

need the smaller amount of large values, which means we can have smaller
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Figure 4.3 Training loss of ResNet-50 with various RV-Quant configurations.

memory cost of activations. This can be exploited for memory management

in servers. We expect it can also be utilized in memory-efficient server-mobile

co-training in federated learning [56] where the later stage of training requir-

ing smaller memory cost can be performed on memory-limited mobile devices

while meeting the requirements of user-specific adaptation using private data.

Figure 4.3 shows the training loss of different RV-Quant configurations

during training. First, the figure shows that too aggressive quantization at the

beginning of training, i.e., (2,0)-(3,2)-(F), does not catch up with the loss of

full-precision training (Full in the figure). The figure also shows that the con-

figuration of 3-bit 2% RV-Quant gives almost the same loss as the full-precision

training.
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Figure 4.4 V-Quant results. The dashed lines and black solid bar represent full-

precision accuracy. Legend: bitwidth / AR [%] / fine-tuning or not.

4.4.2 Inference Results

Figure 4.4 shows the accuracy of quantized models across different configura-

tions of bitwidth and AR. We apply the same bitwidth of low precision to both

weights and activations and 16 bits to large values of weights and activations.

In addition, we quantize all the layers including the first (quantized weights)

and last convolutional layers. As the figure shows, V-Quant with fine-tuning,

at 4 bits and an AR of 1%, gives accuracy comparable to full precision in all

the networks within 1% of top-1 accuracy. If V-Quant is applied without fine-

tuning, the larger AR needs to be used to compensate for accuracy drop due

to quantization. However, the figure shows that fine-tuning successfully closes

the accuracy gap between V-Quant and full-precision networks.

Figure 4.5 illustrates the effect of large values on the classification abil-

ity. The figure shows the principal component analysis (PCA) results of the

last convolutional layer of AlexNet for four classes. Figure 4.5 (a) shows the

59



Figure 4.5 PCA analysis of the input activations on the last fully-connected

layer of AlexNet.

PCA result of full-precision network. As Figure 4.5 (b) shows, when the con-

ventional 4-bit linear quantization, or 4-bit 0% V-Quant is applied to weight-

s/activations, it is difficult to classify four groups of data successfully. This is

because the quantization errors are accumulated across layers thereby deteri-

orating the quality of activations. However, as Figure 4.5 (c) shows, only a

very small amount (0.1%) of large values can improve the situation. As more

large values are utilized, the classification ability continues to improve (3% in

Figure 4.5 (d)). The figure demonstrates that our idea of reducing quantization

errors for the majority of data by separately handling large values is effective

in keeping good representations.
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4.4.3 LSTM Language Model

Large-1% Large-3% Small-1% Small-3%

Valid Test Valid Test Valid Test Valid Test

float 75.34 72.31 75.34 72.31 103.64 99.24 103.64 99.24

2-bit 79.92 77.31 77.87 74.99 140.70 135.11 122.25 117.76

3-bit 76.19 73.22 75.79 72.72 107.60 102.82 105.99 101.44

4-bit 75.46 72.48 75.44 72.44 104.22 99.83 103.95 99.57

Table 4.6 Impact of quantization on word-level perplexity of an LSTM for

language modeling.

We apply V-Quant to an LSTM for word-level language modeling [38, 51,

52]. Table 4.6 shows the results of the models. Each of the large and small

models has two layers. The large model has 1,500 hidden units and the small

one 200 units. We measure word-level perplexity on Penn Tree Bank data [46].

We apply V-Quant only to the weights of the models since clipping is applied

to the activation.3

As Table 4.6 shows, we evaluate three cases of bitwidth, 2, 3 and 4 bits

and two ratios of large weights, 1%, and 3%. As the table shows, for the

large model, the 4-bit 1% V-Quant preserves the accuracy of the full-precision

model. However, the small model requires the larger ratio of large weights (3%)

in order to keep the accuracy.

3The distribution of activations obtained by clipping tends to have the large population near

the maximum/minimum values. Considering that clipped activation functions like ReLU6 are

useful, it will be interesting to further investigate clipping-aware quantization.
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4.5 Conclusions

We presented a novel value-aware quantization to reduce memory cost in train-

ing and computation/memory cost in inference. To realize aggressively low

precision, we proposed separately handling a small number of large values

and applying reduced precision to the majority of small values, which con-

tributes to reducing quantization errors. In order to apply our idea to training,

we proposed quantized back-propagation which utilizes quantized activations

only during back-propagation. For inference, we proposed applying fine-tuning

to quantized networks to recover from accuracy loss due to quantization. Our

experiments show that our proposed method outperforms the state-of-the-art

method of low-cost memory in training in deep networks, e.g., 41.6% and

53.7% smaller memory cost in ResNet-152 and Inception-v3, respectively. It

also enables 4-bit inference (with 1% large values) for deep networks such as

ResNet-101 and DenseNet-121, and 5-bit inference for efficient networks such

as SqueezeNet-1.1 and MobileNet-v2 within 1% of additional top-1 accuracy

loss.
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Chapter 5

Energy-efficient Neural Network
Accelerator Based on Outlier-aware
Low-precision Computation

5.1 Introduction

This work was published in ISCA’2018 conference [16]. Our proposed acceler-

ator is based a quantization method called value-aware quantization, or outlier-

aware quantization, which divides the distribution of data (weights or activa-

tions) into two regions, of low and high precision. It applies reduced precision,

e.g., 4-bit representation, to the low-precision region that contains a majority

of the data. The high-precision region contains only a small portion (e.g., 3%)

of the total data, and maintains the original, high precision, e.g., 16-bit rep-

resentation. We call the data in the high-precision region outliers, as they are

far fewer in number and larger in size than data in the low-precision region.

Outlier-aware quantization enables low precision, e.g., four bits, for very deep

models, such as ResNet-101 and DenseNet-121, with a very small (3%) ratio

of outliers at a negligible (<1%) loss of accuracy.
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In this study, we propose a hardware accelerator that performs dense and

reduced precision computations on a majority of data in the low-precision re-

gion while performing sparse and high-precision computation on outliers. The

proposed accelerator, called the outlier-aware accelerator (OLAccel), achieves

a significant reduction in energy consumption by reducing the amount of mem-

ory access, and by using smaller units of computation.

The contributions of this work are as follows:

• We propose an accelerator called OLAccel that implements 4-bit com-

putations on very deep neural networks, e.g., ResNet-101 and DenseNet-

121.

• OLAccel differently handles outlier activations and weights for compu-

tational efficiency.

• OLAccel performs sparse high-precision computation for outlier activa-

tions in parallel with dense low-precision computation for a majority of

activations.

• OLAccel reduces the number of additional execution cycles due to out-

lier weights by equipping SIMD lanes with an outlier MAC unit that runs

in parallel with them to reduce latency in most cases of outlier weight oc-

currence.

• OLAccel skips computations with zero-input activation, thereby further

improving energy efficiency.
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• We designed OLAccel in Verilog and compare it with prevalent acceler-

ators, Eyeriss [26] and ZeNA [33] at reduced precision.

5.2 Proposed Architecture
5.2.1 Overall Structure

The computational micro-architecture is important, especially for performance.

We use 4-bit data that reduce buffer size and MAC unit overhead significantly.

This emphasizes the control overhead of the accelerator, and thus an SIMD

structure is needed to minimize overhead. However, the conventional SIMD

structure is not appropriate for outlier-aware quantization. For instance, if we

use 4-bit precision in 16-way SIMD accelerators like DianNao [27] and SCNN

[32], the performance overhead for outlier handling can be significant owing

to the high probability of outlier occurrence, e.g., 27.5% (= 1−0.9932), even

with 1% of outliers. OLAccel addresses this with two following novel solu-

tions: outlier PEs and outlier PE groups, and by supporting data structures for

sparse and dense data.

Figure 5.1 shows the overall structure of OLAccel. At the top of the hier-

archy is a PE swarm consisting of multiple PE clusters, a swarm buffer, and a

controller. As the figure shows, each PE cluster has cluster activation/weight

buffers (left), PE groups (center), and a cluster output buffer (right). Each

PE group consists of multiple MAC units and group activation/weight/output

buffers. OLAccel is based on 4-bit MAC units1 (and a small number of full

1In this work, we explain OLAccel based on 4-bit MAC units. However, it is not limited to
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precision MAC units), and supports computation with 4-/8-/16-bit activations

and 4-/8-bit weights.

As the figure shows, there are two types of PE groups, normal and outlier.

The normal PE group contains 17 (16 normal and one outlier) 4-bit MAC units

while the outlier PE group contains 17 mixed-precision MAC units that support

16-bit × 4-bit operations. Note that each normal 4-bit or 16-bit MAC unit is

in charge of producing a partial sum of its associated output channel. Thus,

on each cycle, it receives its associated weight and a broadcast activation and

produces a partial sum. As will be explained in Section 5.2.4, the additional

outlier MAC unit in the PE group is involved in multiplication using outlier

weights. Thus, the group weight buffer contains both normal (4-bit) and outlier

(8-bit) weights while the group activation buffer contains only 4-bit activations.

As the figure shows, the outlier PE group reads 4-bit or 8-bit weights from the

cluster weight buffer, and 8-bit or 16-bit outlier activations from the swarm

buffer. It then performs computations using outlier activations. Note that the

outlier activations are stored only in the swarm buffer while outlier weights

can be stored in the swarm buffer and the cluster/group weight buffers.

The figure shows two (normal and outlier) accumulation units connected

to the tri-buffer containing the output of the cluster. Each accumulation unit

adds the results of the associated (normal or outlier) PE group with the asso-

ciated partial sum stored in the tri-buffer. To resolve the issue of coherence

between the accumulation units, their execution is pipelined. The outlier ac-

4-bit precision, and can be easily extended to other base bitwidths, e.g., 2 or 8 bits.
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cumulation unit accesses partial sums only once the normal accumulation unit

finishes adding the partial sums. Thus, both accumulation units run in parallel

in a pipeline. To support the required bandwidth for the normal and outlier ac-

cumulation units, the tri-buffer containing the cluster output consists of three

buffers, two for the normal accumulation unit and one for the outlier accumu-

lation unit.

5.2.2 Dataflow

Figure 5.2 shows the data structures of the normal/outlier weights and nor-

mal activations. In the figure, we use the following notation for the sake of

a clear and concise description. In the case of activation, the width, height,

and the number of channels of the 3D tensor are expressed as Aw×h×c. The

kernel weight uses a similar notation, Kw×h×i×o, which represents the width,

height, and the numbers of input and output channels of a 4D tensor. As the

figure shows, the cluster weight buffer stores a subset of kernel weights, e.g.,

Kw×h×16×16. As shown in the box of the cluster weight buffer in the figure,

the weights are stored at a granularity of 80-bit weight chunks (entries in the

table). The weight chunk consists of 16 4-bit weights (= 4b × 16), an 8-bit

pointer (OLptr), a 4-bit pointer (OLidx), and the most significant four bits of an

outlier weight (OLMSB). As the figure shows, the cluster weight buffer contains

200 weight chunks. The PE group receives these chunks and stores them in the

group weight buffer for its execution.

The weight chunk represents a set of 16 kernel weights, each of which
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Figure 5.2 Data structure associated with normal / outlier weight and normal

activation.
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belongs to one of 16 output channels. In case there is no outlier weight among

the 16 weights, the two pointers, OLptr, and OLidx, and the 4-bit field OLMSB

are all zero. When an outlier weight exists, OLidx points to the index (of the 16)

of the weight in the given chunk and OLMSB contains the most significant four

bits of the 8-bit outlier weight. The remaining least significant three bits and

a sign bit of the outlier weight are stored in the associated position of 4× 16

weight bits in the chunk. In case there is more than one outlier weight among

the 16 weights, their most significant four bits are stored in (the 64b field of

the input weight of) another weight chunk, and OLptr points to that chunk in

the cluster weight buffer (or group weight buffer). Thus, the PE group checks

OLptr to see if there are more than one outlier weights in the weight chunk. We

explain this in detail in Section 5.2.4.

Figure 5.2 also shows how low-precision input activations are stored in

the PE cluster and group. The cluster activation buffer stores a subset of input

activations of Ai
w×h×16, which consist of activation chunks each of which has

16×4-bit input activations. The PE group receives input activations at the gran-

ularity of the chunk. As the figure shows, the cluster activation buffer stores

64 activation chunks while the group activation buffer stores two chunks. As

shown at the bottom of the figure, the cluster output tri-buffer manages output

partial sums with a larger chunk size, 24b×16, as a partial sum requires higher

precision (24 bits) than that of the input (4/8/16 bits).
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5.2.3 PE Cluster

Figure 5.3 shows how the PE cluster controls the execution of its PE groups.

As the figure shows, a PE group takes as input an activation chunk Ai
1×1×16

and generates as output a partial sum chunk of Ao
1×1×16. The figure illustrates

a scenario where four PE groups run in parallel.

The PE group skips computations with zero-input activations. Thus, owing

to the different numbers of non-zero values in the input activation chunks, some

PE groups can finish earlier than others. In the figure, we assume that PE group

1 finishes followed by group 0, before the other PE groups. In such a case,

as shown on the right-hand side of the figure, the PE cluster allocates new

input activation chunks to the PE groups that are ready, which keeps them busy

as far as there are available input activations in the cluster activation buffer.

This mechanism is important in OLAccel as it enables high utilization of MAC

units.

5.2.4 Normal PE Group

Figure 5.4 shows how the PE group functions when there is one outlier among

the 16 4-bit weights. The group activation buffer shows that the input activa-

tion chunk has only three non-zero activations (a0, a3, and a15) among the 16

activations. The PE group selects, from the input activation chunk, a non-zero

activation, e.g., a0, and broadcasts it to the 16 normal and one outlier MAC

units. The PE group also selects a weight chunk from the group weight buffer

and provides the 16 normal MAC units with their associated kernel weights.
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Figure 5.5 PE group in the case of more than one outlier weight.

The figure shows that the selected weight chunk contains an outlier weight, the

index of which, OLidx is three. Thus, the outlier MAC unit takes as input the

most significant four bits of the outlier weight OLMSB from the weight chunk

and multiplies it with the broadcast activation a0. Then, the result is broadcast

to all normal MAC units and the normal MAC unit pointed by OLidx receives it.

As the figure shows, the MAC unit, MAC3, which performs computation with

the least significant four bits of the outlier weight (in the input weight field of

the weight chunk), receives and adds it to its partial sum. The entire operation

of 17 MAC units can be carried out in one clock cycle. When there is no outlier

weight, the PE group runs in the same manner as above, but OLMSB stores the

value zero. Thus, the outlier MAC unit generates a zero result, which does not

affect the partial sum of the normal MAC units.

Figure 5.5 shows how the PE group performs computation when there are

more than one outlier weights in the weight chunk. As mentioned above, in

such a case, two weight chunks are used. In the figure, the first weight chunk
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Figure 5.6 Data structure associated with outlier activation.

sets the pointer, OLptr, to the index of the second weight chunk, e.g., 19. In this

case, the MAC operation takes two clock cycles to perform an 8-bit weight ×
4-bit activation. Thus, in the first clock cycle, the 16 4-bit weights (the least

significant four bits) of the first chunk are provided to the 16 normal MAC

units. In the next clock cycle, the 4-bit weights of the second weight chunk are

provided. Each normal MAC units adds the two results. Note that the outlier

MAC is not used in this scenario. Moreover, MAC units with normal 4-bit

weights become idle in the second clock cycle.

5.2.5 Outlier PE Group and Cluster Output Tri-buffer

Figure 5.6 shows the data structure and data flow in the outlier PE group. As

the figure shows, input outlier activations are fetched from the swarm buffer to
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the outlier PE group. The activations are sparse data. Thus, as shown in the fig-

ure (Outlier activation FIFO), each outlier activation is represented by an out-

lier chunk consisting of a 16-bit activation and the three coordinates (OLw.idx,

OLh.idx, and OLc.idx) of the outlier in the tensor of the input activation. The

outlier PE group also fetches weight chunks from the cluster weight buffer. As

mentioned above, the outlier PE group consists of 17 mixed-precision MAC

units and runs in the same way as the normal PE group. Thus, the non-zero

activation is broadcast to the 17 MAC units and multiplied by the associated

weights to produce partial sums for the 16 output channels. The partial sums

(16 24-bit data items) are stored in the cluster output tri-buffer as shown in the

figure.

Figure 5.7 shows how the normal and outlier accumulation units accumu-

late the partial sums of the normal and outlier PE groups in a pipelined manner

while accessing the three buffers in the cluster output tri-buffer. The figure

illustrates a scenario of the pipeline at times t0 and t1. At t0, the normal accu-

mulation unit calculates 16 partial sums by accessing two buffers, bu f f er0 and

bu f f er1, in the cluster output tri-buffers. Then, at t1, the normal accumulation

unit accesses two buffers, bu f f er1 and bu f f er2, while the outlier accumula-

tion unit accesses bu f f er0. Thus, there is no problem of coherence when the

outlier accumulation unit accesses the buffer. To complete partial sum calcula-

tions for a convolution, e.g., a 3× 3 convolution in the figure, multiple stages

of the pipeline operation are needed.
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Figure 5.7 Cluster output tri-buffer.
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5.3 Evaluation Methodology

We implemented outlier-aware quantization in the PyTorch and Caffe envi-

ronments [41, 53]. We used randomly selected data in TorchVision [54] and

Caffe [41] to calculate average energy consumption and execution cycles by

running neural networks on our hardware accelerator models. In case of Alex-

Net and VGG-16, we used pruned models [23] to evaluate the capability of

zero skipping while we pruned ResNet-18 on our own.

For the baseline and our architectures, we developed cycle-accurate mod-

els. We did a Verilog design and synthesized them using Design Compiler with

a commercial 65-nm LP library (typical) at 250 MHz and 1.0 V. We used

CACTI to estimate SRAM area/power/latency [57] and the DRAM power

model from Micron [58].

We compare our 4-bit OLAccel with the following baselines:

• 16-bit and 8-bit Eyeriss (denoted by Eyeriss16 and Eyeriss8, respec-

tively), which, for zero input, do not reduce the number of execution

cycles but clock-gate computations [26].

• 16-bit and 8-bit ZeNAs that reduce the number of execution cycles by

skipping computations with zero input weights and activations [33].2

In 16/8-bit comparison, we utilize 16/8-bit raw input activation for all the

2We chose ZeNA as the baseline for the zero-skipping accelerator as it provides the best

speedup for AlexNet by skipping both zero weights and activations, compared with other zero-

skipping baselines.
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networks. In [5], Migacz reported that the minimum bitwidth for linear quan-

tization (without loss of accuracy) is eight bits for deep networks like ResNet-

101/152 and GoogLeNet. In case of 8-bit Eyeriss and ZeNA, we assume that

existing accelerators support eight bits and there is no degradation in accuracy

by using the aforementioned quantization. In 8-bit comparison, we use 8-bit

outlier activations for OLAccel based on the same assumption.

Eyeriss ZeNA OLAccel

8-bit 16-bit 8-bit 16-bit 8-bit 16-bit

# PEs 165 165 168 168 576 768

area (mm2) 0.96 1.53 1.01 1.66 0.93 1.67

On-chip memory Act 393 kB (16-bit) / 196 kB (8-bit)

(AlexNet) Weight 16 kB (16-bit) / 8 kB (8-bit)

On-chip memory Act 4.8 MB (16-bit) / 2.4 MB (8-bit)

(VGG-16 & ResNet-18) Weight 16 kB (16-bit) / 8 kB(8-bit)

Table 5.1 Configurations of Eyeriss, ZeNA, and OLAccel.

Table 5.1 shows the architectural configurations used in our experiments. In

case of 16 (8)-bit comparison, OLAccel has 16 (8)-bit outlier activations with

4-bit MAC units and 8-bit outlier weights. We perform an ISO-area comparison

between the baselines and OLAccel. Thus, given the same amount of on-chip

memory, which keeps all the data required for a layer to avoid off-chip memory

accesses, each architecture is allocated the same chip area for logic and buffer

implementations as Eyeriss. In case of 8-bit Eyeriss, we first obtain the area
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of 165 8-bit processing elements (PEs) [26]3. We then determine the config-

uration (number of MAC units) of OLAccel to meet the given area target. In

16 (8)-bit comparisons, Eyeriss, ZeNA, and OLAccel occupy 1.53 (0.96) mm2,

1.66 (1.01) mm2, and 1.67 (0.93) mm2, respectively. ZeNA has 168 PEs in both

the 16- and 8-bit cases. In these cases, we use 393 kB (16-bit comparison) and

196 kB (8-bit) of on-chip memory for AlexNet, and 4.8 MB and 2.4 MB for

VGG-16 and ResNet-18, respectively. We use the same memory size for the

three accelerators on each network for fair comparison. A single large memory

for different networks is advantageous for OLAccel, especially on AlexNet as

OLAccel benefits from reduced memory access, and the larger memory ren-

ders the memory more dominant in terms of energy consumption. In case of

OLAccel, the on-chip memory is used as the swarm buffer.

In case of 16-bit comparison, OLAccel is equipped with eight PE clusters,

six PE groups/cluster, and a total of 768 (= 8×6×16) 4-bit MAC units. How-

ever, in case of 8-bit comparison, OLAccel has a smaller number of 4-bit MAC

units, 576 (in six PE clusters), to satisfy the constraint of the reduced area,

0.96 mm2.

5.4 Experimental Results

Figure 5.8 compares the number of execution cycles and energy consumption

(normalized to Eyeriss16) on AlexNet. Compared with Eyeriss16, OLAccel16

3In the case of Eyeriss and ZeNA, the PE consists of a MAC unit and internal buffers.
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Figure 5.8 AlexNet cycle and energy breakdown.

yields a 71.8% reduction in execution cycles.4 This is mainly due to a large

number of MAC units (768 in OLAccel versus 165 in Eyeriss), which is en-

abled by reduced precision (from 16 to 4 bits). Compared with ZeNA16 con-

taining 168 PEs, OLAccel16 gives a 31.5% reduction in execution cycles. The

reduction is smaller than in Eyeriss because ZeNA skips computations for zero

weights and activations, whereas OLAccel skips computations for only zero

activations. In addition, OLAccel16 spends a long execution cycle for the first

convolutional layer due to the handling of 16-bit raw input activation on 4-bit

MAC units.

OLAccel8 gives an 35.1% reduction in execution cycles compared with

ZeNA8. Due to the smaller number (576) of 4-bit MAC units, OLAccel8 slows

4Note that both 16-bit and 8-bit Eyeriss (ZeNAs) yield the same number of execution cycles

as we maintain the same number of PEs, 165 (168 in ZeNA), in both cases.
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Figure 5.9 VGG-16 cycle and energy breakdown.

down from the second to fifth convolutional layer compared to OLAccel16.

However, the input activation of the first layer has 8 bits, which reduces the

execution cycle of the first convolutional layer significantly compared with

OLAccel16 thereby enabling OLAccel8 to outperform OLAccel16.

Figure 5.8 also compares energy consumption (normalized to Eyeriss16)

decomposed into DRAM, on-chip memory or swarm buffer (Buffer), the local

buffer of the PE or PE clusters/groups (local), and logic circuits, e.g., MAC

unit and bus (logic). OLAccel16 (OLAccel8) yields a 43.5% (27.0%) reduc-

tion compared with ZeNA16 (ZeNA8). As the figure shows, the reduction

is mainly due to energy reduction in the memory components (DRAM and

SRAM buffers) enabled by reduced precision.

Figure 5.9 shows comparisons for VGG-16. Compared with ZeNA8/16,
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Figure 5.10 ResNet-18 cycle and energy breakdown.

OLAccel16 and OLAccel8 reduce by 45.3% and 28.3% execution cycles, re-

spectively. OLAccel16 delivers the best performance owing to a large number

(768) of MAC units. The performance improvement of OLAccel16 is greater

than in the case of AlexNet because the effect of the first convolutional layer is

mitigated due to the speedup of the other layers. Meanwhile, OLAccel8 shows

worse performance than OLAccel16 because of the small number (576) of PEs.

The comparison of energy consumption shows that OLAccel16 and OLAccel8

give a reduction of 56.7% and 36.3% compared with ZeNA16 and ZeNA8, re-

spectively. As in the case of AlexNet, the reduced precision enables OLAccel

to significantly reduce energy consumption in the memory components.

In the case of ResNet-18, as shown in Figure 5.10, OLAccel significantly

reduces the number of execution cycles compared with Eyeriss. As in the
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case of AlexNet, ResNet-18 has a long execution cycle for the first convo-

lutional layer. Especially, as shown in Figure 5.10, the first convolutional layer

of ResNet-18 requires dense computation with 8-bit weights and 16/8-bit in-

put activations in 16/8-bit comparison. Thus, in 16 (8)-bit comparison, the first

convolutional layer takes 8 (4) times longer execution cycle than a simple 4-

bit dense computation, which makes the first convolutional layer (C1 in Fig-

ure 5.10) occupy half the total execution cycle of OLAccel16. However, ow-

ing to the speedups of the other layers where 4-bit dense computation is per-

formed, OLAccel is able to reduce execution cycles more significantly than in

the case of AlexNet. Specifically, compared with Eyeriss16 (Eyeriss8), OLAc-

cel16 (OLAccel8) reduces the numbers of cycles by 80.1% (81.1%) in ResNet-

18 while it gives a reduction of 71.8% (73.2%) in AlexNet.

Compared with ZeNA, OLAccel16 and OLAccel8 reduce by 25.3% and

29.0% execution cycles, respectively. Considering the fact that, as the decom-

position of execution cycle in OLAccel and ZeNA shows in Figure 5.10, OLAc-

cel is superior to ZeNA in the other layers except the first one, we expect that

OLAccel can give much better performance than ZeNA in deeper networks,

e.g., ResNet-101.5

OLAccel significantly reduces energy consumption in ResNet-18. Com-

pared with ZeNA, OLAccel16 and OLAccel8 give energy reductions of 62.2%

and 49.5%, respectively. Note that, aside from the effect of the first layer,

5When fine-tuning is adopted, OLAccel can give further speedup in ResNet-18 since fine-

tuning can reduce the bitwidth of weights from 8 to 4 bits for the dense computation of the first

convolutional layer as mentioned in Section II.
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Figure 5.11 Normalized energy and cycle vs. outlier ratio: AlexNet on OLAc-

cel16.

OLAccel gives more reduction in energy consumption for VGG-16 and ResNet-

18 than AlexNet because the larger on-chip memory used for VGG-16 and

ResNet-18 (Table 5.1) makes the energy consumption of on-chip memory more

dominant thereby amplifying the effects of reduced precision, i.e., reduction in

on-chip memory traffics.

Figure 5.11 shows the impact of outliers on the number of execution cy-

cles, energy consumption, and accuracy when running AlexNet on OLAccel16.

As the figure shows, as outlier ratio increases, both energy consumption and

the number of execution cycles increase while accuracy improves. In the case

where there are 3.5% outliers, compared with the case of 0% outlier, the to-

tal energy consumption and the number of execution cycles increase by 20.6%

and 10.6%, respectively, while yielding much better accuracy, only 0.8% drop
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Figure 5.12 Scalability analysis on AlexNet: speedup (y-axis) vs. number of

NPUs.

from the top-5 accuracy of full precision.

Figure 5.12 shows scalability on AlexNet. One instance of neural process-

ing unit (NPU) is equipped with 768 4-bit MAC units in OLAccel (16-bit out-

liers) and 168 16-bit PEs in ZeNA. As the figure shows, we increase both the

number of NPUs and batch size. The speedup (y-axis) is normalized to ZeNA

with a batch size of one. The figure shows that both OLAccel and ZeNA ex-

hibit good scalability when the batch size is 4 and 16. In case of a single batch,

speedup tends to saturate in both cases when the number of NPUs reaches 16.

This is due to low resource utilization. OLAccel yields a slightly better speedup

in batch 4 than batch 16, mainly due to the off-chip bandwidth limit because

batch 16 requires more off-chip memory bandwidth than batch 4.

Figure 5.13 shows the histogram of outlier activations in AlexNet when
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Figure 5.13 Histogram of outlier activation: outlier ratio of 3%.

the outlier ratio is 3%. As explained above, to avoid computing histograms at

runtime, we obtain a static threshold for each layer by utilizing sample inputs

during design time and compare the activation with the threshold at runtime to

identify outlier activations. The figure shows that the distributions have mean

values near 0.03, meaning that our implementation works relatively well. Al-

though not shown in the work, the neural networks adopting batch normaliza-

tion layers, e.g., ResNet-101, tend to provide better distributions with sharp

peaks near the target outlier ratio.

Figure 5.14 shows how we determined 16 MAC units in a single PE group.

A large number of MAC units in a PE group can improve performance by

better exploiting activation broadcast. However, as the figure shows, in case

of 32 and 64 MAC units, the probability of multiple outlier occurrences on

32 and 64 weights is higher than 50% at an outlier ratio of 5%. In case of
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Figure 5.14 Probability of multiple outlier weights (y-axis) vs. outlier ratio.

multiple outlier weights in a PE group, OLAccel suffers from long execution

cycles. Thus, we set the number of MAC units in a PE group to 16, which

yields a smaller probability, e.g., 20%, even at an outlier ratio of 5%. Another

reason for our choice is recent trends in neural network architectures. In state-

of-the-art architectures like ResNext [59] and Deep Roots [60], the number of

channels (on a branch) tends to decrease, e.g., to 32 or 16. Thus, channel-level

parallelism can be limited. In such a case, a PE group with a large number of

MAC units can suffer from low resource utilization.

Figure 5.15 shows the utilization breakdown of the convolutional layers in

AlexNet. As the figure shows, the active period (Run) is relatively proportional

to the ratio of non-zero activations (Non-zero). The figure also shows that the

overhead of zero-skip operation (Skip) increases in proportion to the ratio. This
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Figure 5.15 Utilization breakdown: AlexNet.

is because in the PE group, the zero-activation skip operation is performed

every four activations while consuming a constant overhead of a clock cycle.

Thus, when there is a large number of zero activations, as in Conv4 or Conv5,

it is often the case that zero skipping, without computations, spends cycles

only to skip four consecutive zero activations. As the figure shows, the cycle

overhead can amount to approximately 20%. In future work, we will work to

reduce these overhead cycles.

Figure 5.16 shows the average number of cycles a PE group spends to pro-

cess a A1×1×16 input activation chunk in AlexNet. Due to the difference in the

number of non-zero activations, convolutional layers yield different distribu-

tions. For instance, Conv2 has a peak near 15 and 16 cycles owing to the high

ratio of non-zero activations shown in Figure 5.15. On the contrary, Conv4 and

Conv5 show similar distributions with peaks near five cycles, which can also
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Figure 5.16 Execution cycles when processing a chunk of A1×1×16 input acti-

vations.

be explained by the low ratio of non-zero activations in Figure 5.15.

5.5 Conclusion

In this work, we proposed a hardware accelerator called OLAccel. It imple-

ments outlier-aware quantization, which provides a majority of data with fine-

grained quantization while maintaining the precision of important outliers.

OLAccel is based on 4-bit MAC units, and performs 4-bit dense computa-

tions on a majority of the data. To efficiently handle high-precision outliers, it

has two mechanisms at the levels of the PE group and cluster. The PE group,

equipped with an outlier MAC unit, performs computations with a single out-

lier weight without additional cycles, incurring a cycle overhead only when

multiple outlier weights need to be handled. The outlier PE group performs
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computations with outlier activations using high-precision MAC units. The ac-

cumulation of partial sums from the normal and outlier PE groups is performed

in a pipelined manner to avoid a coherence problem. Our experiments show

that OLAccel reduces energy consumption by 43.5% and 27.0% on AlexNet

compared with the state-of-the-art 16-bit and 8-bit zero-aware accelerators, re-

spectively. It provides further energy reduction in VGG-16 (56.7%/36.3% with

16/8 bits) and ResNet-18 (62.2%/49.5%), where the performance degradation

due to the first convolutional layer is mitigated and the energy benefit of re-

duced precision is amplified due to large on-chip memory. The experiments

also show that OLAccel has the potential for scalability on large-scale prob-

lems.
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Chapter 6

Precision Highway for Ultra
Low-Precision Quantization

6.1 Introduction

This work is available at arXiv:1812.09818. The existing quantization meth-

ods suffer from a problem called accumulated quantization error where large

quantization errors get accumulated across layers, making it difficult to enable

ultra-low precision in deep neural networks.

In order to address this problem, we propose a novel concept called preci-

sion highway where an end-to-end path of high-precision information reduces

the accumulated quantization error thereby enabling ultra-low-precision com-

putation. Our proposed work is similar to recent studies [19, 61] which pro-

pose utilizing pre-activation residual networks, where skip connections are kept

in full precision while the residual path performs low-precision computation.

Compared with these works, our proposed method offers a generalized concept

of high-precision information flow, namely, precision highway, which can be

applied to not only the pre-activation convolutional networks but also both the
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post-activation convolutional and recurrent neural networks. Our contributions

are as follows.

• We propose a novel idea of network-level approach to quantization, called

precision highway and quantitatively analyze its benefits in terms of the

propagation of quantization errors and the difficulty of convergence in

training based on the shape of loss surface.

• We provide the detailed analysis of the energy and memory overhead

of precision highway based on the state-of-the-art hardware accelerator

model. According to our experiments, the overhead is negligible while

offering significant improvements in accuracy.

• We apply precision highway to both convolution and recurrent networks.

We report a 3-bit quantization of ResNet-50 without accuracy loss and a

2-bit quantization with a very small accuracy loss. We also provide the

sub 4-bit quantization results of long short-term memory (LSTM) for

language modeling.

6.2 Proposed Method

In precision highway, we build a path from the input to output of a network to

enable the end-to-end flow of high-precision activation, while performing low-

precision computation. Our proposed method was motivated (1) by a residual

network where the signal, i.e., the activation/gradient in a forward/backward

pass, can be directly propagated from one block to another [62] and (2) by the
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LSTM, which provides an uninterrupted gradient flow across time steps via the

inter-cell state path [63]. Our proposed method focuses instead on improving

the accuracy of quantized network by providing an end-to-end high-precision

information flow.

In this section, we first describe the precision highway in the cases of resid-

ual network (section 6.2.1) and recurrent neural network (section 6.2.2). Then,

we discuss practical issues to be addressed before application to other networks

in section 6.2.3.

6.2.1 Precision Highway on Residual Network

In the case of a residual network, we can form a precision highway by mak-

ing high-precision skip connections. In this subsection, we explain how high-

precision skip connections can be constructed to reduce the accumulated quan-

tization error.

In the conventional residual block shown in Figure 6.1 (a), quantization

(denoted as Q[0,1]
k , k-bit linear quantization in range from 0 to 1) is applied to all

of the activations after the activation function. In the figure, thick (thin) arrows

represent high-precision (low-precision) activations. As the figure shows, the

input of a residual block is first quantized, and the quantized input (x+e in the

figure), which contains the quantization error e, enters both the skip connection

and residual path. The output of a residual block, y, is calculated as follows:

y = F(x+ e)+ x+ e = F(x)+ x+ er + e, (6.1)

where F() represents a residual function (typically, 2 or 3 consecutive convo-
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lutional layers). For simplicity of explanation, we assume that F(x+ e) can be

decomposed into F(x)+er, where er represents the resulting quantization error

of the residual path incurred by the quantization operations on the residual path

as well as the quantization error in the input, e. As the equation shows, output

y has two quantization error terms, that of residual path, er, and that of the skip

connection, e.

Figure 6.1 (b) shows our idea of high-precision skip connection. Compared

with Figure 6.1 (a), the difference is the location of the first quantization op-

eration in the residual block. In Figure 6.1 (b), quantization is applied only to

the residual path after the bifurcation to the residual path and skip connection.

As shown in the figure, the skip connection now becomes a thick arrow, i.e., a

high-precision path. The proposed idea gives the output of the residual block

as follows:

y = F(x+ e)+ x = F(x)+ x+ er. (6.2)

As Equation 6.2 shows, the proposed idea eliminates the quantization error of

skip connection e. Thus, only the quantization error of the residual path er re-

mains in the output of the residual block. Note that all of the input activations

of the residual path are kept in low precision. It enables us to perform low-

precision convolution operations in the residual path. We keep high-precision

activation only on the skip connection and utilize it only for the element-wise

addition. As will be shown in our experiments, the overhead of computation

and memory access cost is small since the element-wise addition is much less

expensive than the convolution on the residual path, and the low-precision ac-
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tivation is accessed for the computation on the residual path.

As will be shown later, our method gives a smaller quantization error, and

the gap between the quantization error of the existing method and that of ours

becomes wider across layers. Because of the reduction of the accumulated

quantization error, the proposed method offers much better accuracy than the

state-of-the-art methods with an ultra-low precision of 2 and 3 bits.

Note also that, as shown in figure 6.1 (c), our idea can be applied to other

types of residual blocks, including the full pre-activation residual block [62] as

proposed in some recent works [11, 19]. However, our idea is general in that

it is applicable to recurrent networks as well as post-activation convolutional

networks. Especially, our proposed idea is advantageous over the existing ones

since hardware accelerators tend to be designed assuming as the input non-

negative input activations enabled by ReLU activation functions [16,33]. Con-

trary to the existing works [11,19], we provide a detailed analysis of the effect

of precision highway.

6.2.2 Precision Highway on Recurrent Neural Network

Figure 6.2 illustrates how the precision highway can be constructed on the

LSTM [63]. In time step t, the LSTM cell takes, as an input, new input xt ,

along with the results of the previous time step, output ht−1 and cell state ct−1.

First, it calculates four intermediate signals: i (input gate), f (forget gate), g

(gate gate), and o (output gate). Then, it produces two results, ct and ht , as
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follows:

it = σ(Wiixt +bii +Whih(t−1) +bhi), (6.3a)

ft = σ(Wi f xt +bi f +Wh f h(t−1) +bh f ), (6.3b)

gt = tanh(Wigxt +big +Whgh(t−1) +bhg), (6.3c)

ot = σ(Wioxt +bio +Whoh(t−1) +bho), (6.3d)

ct = ft 	 c(t−1) + it 	gt , (6.3e)

ht = ot 	 tanh(ct), (6.3f)

where σ represents a sigmoid function, 	 the element-wise multiplication, W

the weight matrix, and b the bias.

In the conventional LSTM operation, as Figure 6.2 (a) shows, the quantiza-

tion (gray box denoted by Qk with the output value range as the superscript) is

applied to all of the activations before computation. The results of a time step,

ct and ht , are calculated based on such inputs with quantization errors. More

specifically, cell state ct is calculated with the quantized, i.e., low-precision,

inputs of ct−1, f , i, and g. Thus, cell state ct accumulates the quantization er-

rors of those inputs. In addition, output ht also accumulates the quantization

errors from its inputs, ct and o. Then, they are propagated to the next time

steps. Thus, we have the problem of accumulated quantization error across the

time steps. Such an accumulation of quantization error will prevent us from

achieving ultra-low precision.

Figure 6.2 (b) shows how we can build the precision highway in the LSTM

cell. The figure shows that the quantization operation is applied only to the in-
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puts of matrix multiplication (a circle denoted with × in the figure). Thus, all

of the other operations and their input activations are in high precision. Specif-

ically, when calculating ct , the inputs are not quantized, which reduces the ac-

cumulation of quantization error on ct . The computation of ht can also reduce

the accumulation of quantization error by utilizing high-precision inputs. The

construction of such a precision highway allows us to propagate high-precision

information, i.e., cell states ct and outputs ht , across time steps.

Note that we benefit from low-precision computation by performing low-

precision matrix multiplications (in Equations 6.3a-6.3d), which dominate the

total computation cost. In our proposed method, all of the element-wise multi-

plications in Equations 6.3e and 6.3f are performed in high precision. However,

the overhead of this high-precision element-wise multiplications is negligible

compared with the matrix multiplication in Equations 6.3a-6.3d. In addition,

this method can be applied to other types of recurrent neural networks. For in-

stance, the GRU [64] can be equipped with a precision highway, in a way sim-

ilar to that shown in Figure 6.2 (b), by keeping high-precision output ht while

performing low-precision matrix multiplications and high-precision element-

wise multiplications.

6.2.3 Practical Issues with Precision Highway

In order to generalize our proposed idea to other networks in real applications,

we need to address the following issues. First, in the case of feed-forward net-

works with identity path, our precision highway idea is applicable regardless
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of pre-activation or post-activation structure. We can exploit the benefit of re-

duced precision by applying quantization in front of matrix multiplications,

while maintain the accuracy by handing the identity path in high precision.

Second, in the case of non-residual feed-forward networks, the precision high-

way can be constructed by equipping them with additional skip connections. In

the case of networks with multiple candidates for the precision highway, e.g.,

DenseNet, which has multiple parallel skip connections [65], we need to ad-

dress a new problem of selecting skip connections to form a precision highway,

which is left for future work.

6.3 Training

In this section, we describe weight quantization and fine-tuning for weight/ac-

tivation quantization.

6.3.1 Linear Weight Quantization based on Laplace
Distribution Model

Figure 6.3 illustrates that a Laplace distribution can well fit the distributions

of weights in full-precision trained networks. Thus, we propose modeling the

weight distribution with Laplace distribution and selecting quantization levels

for weights based on a Laplace distribution.

Given a distribution of weights and a target precision of k bits, e.g., 2 bits,

the quantization levels are determined as follows. First, the quantization levels

for k bits are pre-computed for the normalized Laplace distribution. We de-
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termine quantization levels that minimize L2 error on the normalized Laplace

distribution. For instance, in case of the 2-bit quantization, the error is mini-

mized when four quantization levels are placed evenly with a spacing of 1.53

× μ , where μ is the mean of the absolute value of weights. Given the distri-

bution of weights and the pre-calculated quantization levels on the normalized

Laplace distribution for the given k bits, we determine the real quantization

levels by multiplying the pre-computed quantization levels and the mean of the

absolute value of weights.

Our proposed weight quantization is similar to the one in [11]. Compared

to it, ours is simpler in that only Laplace distribution model is utilized, and

our experiments show that the precision highway together with the proposed

simple weight quantization gives outstanding results.

6.3.2 Fine-tuning for Weight/Activation Quantization

Our quantization is applied during fine-tuning after training a full-precision

network. As the baseline, we adopt the fine-tuning procedure in [24], where

we perform incremental/progressive quantization. In contrast to [24], we first

quantize activations and then weights in an incremental quantization. In addi-

tion, for each precision configuration, we perform teacher-student training to

improve the quantized network [24, 66]. As the teacher network, we utilize a

deeper full-precision network, e.g., ResNet-101, compared to the student net-

work, e.g., quantized ResNet-50. Note that, during fine-tuning, we apply quan-

tization in forward pass while updating full-precision weights during backward
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pass.

6.4 Experiments
6.4.1 Experimental Setup

We implemented the proposed method in PyTorch and Caffe2. We use two

types of trained neural networks, ResNet-18/50 for ImageNet and an LSTM

for language modeling [38, 51, 52]. We evaluate 4-, 3-, and 2-bit quantizations

for the networks.

For ResNet, we did test with single center crop of 256x256 resized image.

We compare our proposed method with the state-of-the-art methods [10, 11,

19, 24, 61]. Note that, for the teacher-student training, we use the same teacher

network for both the baseline method (our implementation) [24] and ours. We

also evaluate the effects of increasing the number of channels [25] to recover

from accuracy loss due to quantization. As in the previous works [11, 19, 20,

24, 25, 61, 67], we do not apply quantization to the first and last layers.

The LSTM has 2 layers and 300 cells on each layer. We used the Penn Tree-

bank dataset and evaluated the perplexity per word. We compared the state-of-

the-art method in [68] and our proposed method.

6.4.2 Analysis of Accumulated Quantization Error

Figure 6.4 shows the quantization errors across layers in ResNet-50 when ap-

plying the state-of-the-art 4-bit quantization to activations. We prepared, from

the same initial condition, two activation-quantized networks (one with preci-
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sion highway and the other with low precision skip connection) where weights

are not modified and only activations are quantized to 4 bits. As the metric

of the quantization error, we utilize a metric based on the cosine similarity

between the activation tensor of corresponding layer in the full-precision and

quantized networks, respectively.

As the figure shows, in the existing method, the quantization errors become

larger for deeper layers. It is because the quantization error generated in each

layer is propagated and accumulated across layers. We call this accumulated

quantization error. The accumulated errors become larger with more aggres-

sive quantization, e.g., 2 bits, and cause poor performance, i.e., 4.8 % drop [24]

from the top-1 accuracy of the full-precision ResNet-50 for ImageNet classifi-

cation.

The accumulation of quantization errors is an inherent characteristic of a

quantized network in both feed-forward and feed-back networks. In the case of

a recurrent neural network, the quantization errors are propagated across time

steps. As shown in Figure 6.4, our proposed precision highway significantly

reduces the accumulated quantization errors, which enables 3-bit quantization

without accuracy drop and much better accuracy in 2-bit quantization than the

existing methods.
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6.4.3 Loss Surface Analysis of Quantized Model Train-
ing

Figure 6.5 visualizes the complexity of loss surface depending on the existence

of precision highway. We obtained the figures by applying the method proposed

by Li et al. [69]. Each figure represents loss surface seen from the local mini-

mum we obtained from the training, i.e., the weight vector of the final trained

model. The origin of the figure at (0, 0) corresponds to the weight vector of

the local minimum. As shown in the figure 6.5 (d), the precision highway gives

better loss surface (having lower and smoother surface near the minimum point

and steep and simple surface elsewhere) than the existing quantization method.

This characteristic helps stochastic gradient descent (SGD) method to quickly

converge to a good local minimum offering better accuracy than the existing

method.

6.4.4 Evaluating the Accuracy of Quantized Model

Laplace Teacher Highway ResNet-18 ResNet-50

� 61.66 / 84.28 70.50 / 89.84

� � 62.66 / 85.00 71.70 / 90.39

� � 65.83 / 86.71 72.99 / 91.19

� � � 66.71 / 87.40 73.55 / 91.40

Full-precision 70.15 / 89.27 76.00 / 92.98

Zhuang’s (ours) 60.06 / 83.34 69.04 / 89.14

Zhuang’s (ours) + Teacher 61.21 / 84.36 70.48 / 89.83

Table 6.1 2-bit quantization results. Top-1 / Top-5 accuracy [%].

Table 6.1 shows the accuracy of 2-bit quantization for ResNet-18/50. We
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evaluate each of our proposed methods, Laplace, teacher, and highway, as

shown in the table. When the highway box is unchecked the skip connection is

branched after the quantization and when the teacher box is unchecked, we use

the conventional cross-entropy loss. Compared with the full-precision accu-

racy, our 2-bit quantization (when all the methods were applied) gives a top-1

accuracy of 73.55 %, which is within 2.45 % of the full-precision accuracy

and much better than the state-of-the-art method (Zhuang’s 70.8 %) having a

top-1 accuracy loss of 4.8 %. Note that Zhuang’s implemented all the methods,

incremental/progressive quantization and teacher-student training, in [24]. We

presents the accuracy results of our own implementations of Zhuang’s method

under the same amount of training time. Zhuang’s (ours) implemented only

incremental and progressive methods while Zhuang’s + Teacher utilized our

teacher network.

Table 6.1 shows the effects of the precision highway. Compared with our

solution supporting only Laplace and teacher, the highway provides an addi-

tional gain of 1.85 % (71.70 % to 73.55 %) in the top-1 accuracy of ResNet-50.

The effects of the Laplace method can be evaluated by comparing the result of

our implementation of Zhuang’s (69.04 % of top-1 accuracy in ResNet-50) and

that of our solution adopting the Laplace model (70.50 %) because these are the

same except for the weight quantization method, i.e., tanh vs. Laplace based

model. The Laplace method gives 1.46 % better accuracy. The table indicates

that ResNet-18 also benefits from our proposed methods like ResNet-50.

Table 6.2 compares the additional accuracy loss of quantization methods
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ResNet-18 ResNet-50

Ours 3.44 2.45

DoReFa [10] 7.6 9.8

Zhuang’s [24] - 4.8

PACT [61] 5.8 4.7

PACT new [11] 3.4 2.7

Bi-Real [19] 12.9 -

Table 6.2 Comparison of accuracy loss in 2-bit activation / weight quantization.

Bi-real applies 1-bit activation / weight quantization.

with respect to full-precision accuracy. The table shows that ours significantly

outperform the methods without precision-highway (DoReFa, Zhuang’s, and

PACT). PACT new and Bi-Real utilize high-precision skip connections on pre-

activation resiudal networks. Thus, they show comparable results to ours1. Note

that our results in the table are obtained from the conventional post-activation

residual network, which demonstrates the generality of our proposed precision

highway. As will be shown below for the LSTM, our proposed method is gen-

erally applied to recurrent networks as well as feed forward ones.

Table 6.3 shows the impact of the precision of the precision highway. We

obtained the results by varying the highway precision (without retraining) after

obtaining the results with the full-precision highway. The table shows that 2-

bit quantization with the 8-bit highway gives only 0.09 % and 0.40 % drops

in the top-1 accuracy for ResNet-18 and ResNet-50, respectively, from that of

1We performed 1-bit activation/weight quantization for the post-act style ResNet-18. For a

fair comparison, we didn’t apply the teacher-student and progressive quantization method and

instead adopted BN-retraining proposed in Bi-Real Net. Our 1-bit activation/weight ResNet-18

gives 56.73 / 80.11 % of Top-1/Top-5 accuracy, which is by 0.33 / 0.61 % higher than the result

of Bi-Real Net, respectively.
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Full 8-bit 6-bit

4-bit 71.05 / 90.16 71.07 / 90.20 70.54 / 89.77

ResNet-18 3-bit 70.29 / 89.54 70.08 / 89.51 69.39 / 88.95

2-bit 66.71 / 87.40 66.62 / 87.33 65.26 / 86.47

Full 8-bit 6-bit

4-bit 76.92 / 93.44 76.69 / 93.27 76.25 / 93.13

ResNet-50 3-bit 76.20 / 93.09 76.08 / 93.03 75.33 / 92.63

2-bit 73.55 / 91.40 73.15 / 91.34 72.79 / 91.20

Table 6.3 Impact of highway precision (y-axis: low precision and x-axis: high-

way precision). Top-1 / Top-5 accuracy [%].

the 2-bit quantization with the full-precision highway. Most importantly, our

3-bit quantization (with the 8-bit highway) gives the same accuracy as the full-

precision network, i.e., 76.08 % in ResNet-50, which means that our proposed

method reduces the precision of the ResNet-50 from 4 bits with [24] down to

3 bits even with the 8-bit highway.

Full 3-bit 2-bit Zhuang’s (ours) 2-bit

wResNet-18 74.60 / 91.85 75.49 / 92.45 73.80 / 91.56 70.81 / 90.02

wResNet-50 77.78 / 93.87 78.45 / 94.28 77.35 / 93.69 75.54 / 92.71

Table 6.4 Accuracy of wide ResNet-18 and ResNet-50 with quantization. Top-

1/Top-5 accuracy [%].

Table 6.4 shows the effects of two times wider channel under 2-bit quan-

tization. We first doubled the number of channels in ResNet-18 and ResNet-

50, and then quantized them with our methods. As the table shows, the wide

ResNets give better accuracy than the full-precision ones even for 2-bit quan-

tization, i.e., 73.80 % (77.35 %) in Table 6.4 vs. 70.15 % (76.00 %) of the
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full precision in Table 6.1 for ResNet-18 (ResNet-50). It would be worth in-

vestigating how to minimize the channel size while meeting the full-precision

accuracy with ultra-low precision, which is left for future work.

(4,4) (3,4) (3,3) (2,3) (2,2)

Without Highway 97.21 98.14 105.33 107.45 133.25

With Highway 95.94 96.29 100.77 102.55 114.44

Table 6.5 Perplexity of quantized LSTM. (x,y) means x-bit weight / y-bit acti-

vation.

Table 6.5 lists the quantization results for the LSTM. We varied the bit con-

figuration (weight, activation) and obtained the perplexity results (the lower,

the better). The table shows that our proposed method significantly reduces

the perplexity. Compared with the perplexity of full-precision model (92.84),

our 4-bit quantization gives a very small increase of 3.3 % (92.84 to 95.94).

The precision highway provides more gain for a more aggressive quantization.

Specifically, it reduces the perplexity by 14.1 % (from 133.25 to 114.44) in the

2-bit quantization, (2,2). Compared with the state-of-the-art quantization of a

similar LSTM [68]2, ours offers much better results, i.e., a much smaller in-

crease in perplexity, e.g., a 23.3 % increase (92.84 to 114.44 in Table 6.5) vs. a

39.4 % increase (109 to 152 in [68]) in perplexity for 2-bit quantization.
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6.4.5 Hardware Cost Evaluation of Quantized Model

Figure 6.6 shows the chip area cost and energy consumption of ResNet-18 at

different levels of precision on the state-of-the-art hardware accelerator [26].

The accelerator is synthesized at 65 nm, 250 MHz, and 1.0 V. Each processing

element (PE) consists of a multiply-accumulate (MAC) unit and local buffers.

The PEs share global on-chip 2 MB static random access memory (SRAM)

at 16-bit precision and the size of which is adjusted proportional to the preci-

sion. As the figure shows, the reduced precision offers significant reduction in

chip area, e.g., 82.3 % reduction from 16 to 3 bits and energy consumption,

e.g., 73.1 % from 16 to 3 bits. In the 2-bit case where the overhead of preci-

sion highway is the largest, the precision highway incurs only 3.9 % additional

energy consumption due to the high-precision data while offering 4.1 % better

accuracy than the case that precision highway is not adopted. The accelerator is

already equipped large internal buffer for partial sum accumulation. Thus, pre-

cision highway incurs additional energy consumption mainly on the accesses to

on-chip SRAM and main memory (dynamic random access memory, DRAM).

Table 6.6 compares the number of operations in three neural networks used

in our experiments. The table explains why the high-precision operations incur

such a small overhead in energy consumption. As the table shows, it is be-

cause the frequency of high-precision operations is much smaller than that of

low-precision operations. For instance, the 2-bit LSTM network has one high-

2Note that we compared their relative change from the full-precision perplexity because

the full-precision perplexity of the state-of-the-art method (109) is different from that of ours

(92.84).
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LSTM (300) ResNet-18 ResNet-50

Low-precision MAC 720 K 6.89 G 15.1 G

High-precision Add 0.3 K 9.68 M 62.0 M

Non-linear Op* 1.5 K 7.48 M 39.9 M

Elt-wise Multi* 0.9 K - -

Table 6.6 Number of operations. * denotes the high-precision operation.

precision (in 32 bits) element-wise multiplication for every 800 2-bit multipli-

cations.

6.5 Conclusion

In this work, we proposed the concept of end-to-end precision highway which

can be applied to both feedforward and feedback networks and enable ultra-

low precision in deep neural networks. The proposed precision highway re-

duces quantization errors by keeping high-precision activation from the input

to output of the network with small computation costs. We described how it re-

duces the accumulated quantization error and presented quantitative analyses

in terms of accuracy and hardware cost as well as training characteristics. Our

experiments showed that the proposed method outperforms the state-of-the-art

methods in the 3- and 2-bit quantizations of ResNet-18/50 and 2-bit quantiza-

tion of an LSTM model. We believe that our work will serve as a step toward

mixed precision networks for computational efficiency.
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Figure 6.1 Comparison of conventional quantization and our proposed idea on

residual network.
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Figure 6.2 Comparison on residual network.

Figure 6.3 Weight histogram and Laplace approximation (dashed line) of the

convolutional layer of a trained full-precision ResNet-50.
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Figure 6.6 Comparison of chip area and energy consumption on the hardware

accelerator.
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Chapter 7

Towards Sub-4-bit Quantization of
Optimized Mobile Netowrks

7.1 Introduction
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This work is currently under review in CVPR’2020 conference [18]. Unfor-

tunately, the previous quantization methods do not work on state-of-the-art op-

timized networks like MobileNet-v3 [70]. It is because they focused on simple

neural network architectures having ReLU activation and conventional con-

volution. Meanwhile, recent state-of-the-art optimized networks adopt novel

structures like depth-wise separable convolution [71], inverted residual block

with linear expansion layer [72], squeeze-excitation module, and h-swish acti-

vation function [70]. As a result, recent optimized mobile models outperform

the previous ones by a large margin, e.g., MobileNet-v3 has only 38.5 % of

MACs compared to MobileNet-v1 [70, 71]. However, according to our experi-

ments, those novel structures make 4-bit and lower precision quantization chal-

lenging in the existing quantization methods.

In this work, we propose two novel ideas that enable 4-bit quantization for

the optimized mobile networks. First, we report that the primary reason of ac-

curacy loss in sub-4-bit quantization is the poor running mean and variance. In

training time, we obtain running mean and variance and, in test time, use them

in the batch normalization layer. Our analysis shows that the running mean and

variance are hurt by the activation instability induced by weight quantization

(AIWQ).

Fine-tuning is essential to recover from the accuracy loss of sub-4-bit quan-

tization [11, 12]. However, the fine-tuning tends to increase the frequency of

weights near the quantization thresholds. In such a case, a small change of the

full-precision weight (by back-propagation) near the quantization threshold is

115



amplified by the weight quantization, i.e., the rounding operation. This causes

the convolution output to significantly change across batches, which we call

the AIWQ problem.

The activation instability perturbs the activation distribution, which finally

prevents us from obtaining good running mean and variance in training time.

Such poor running mean and variance make batch normalization less effec-

tive in test time. In order to address this problem, we propose a novel training

method called BLast (BN Last) that tries to minimize the effects of AIWQ by

judiciously performing the training of batch normalization (BN) layer while

progressively freezing the weights sensitive to the AIWQ problem.

Second, we identified the limitations of the state-of-the-art trainable meth-

ods of linear quantization in terms of rounding/truncation errors and negative

activation support and propose a novel quantization method called differen-

tiable and unified quantization (DuQ). The state-of-the-art methods try to min-

imize either rounding error [12] or truncation error [11]. It is desired to mini-

mize both errors for further reduction in precision. In addition, existing meth-

ods like PACT and QIL support only a limited value range of output activation,

e.g., non-negative or [0,1]. Thus, they cannot be applied to novel activation

functions, e.g., h-swish function, which utilizes negative activations and novel

structures like squeeze-and-excitation module and expansion layer which both

require producing both positive and negative activations. Our proposed DuQ

method resolves the above problems without limiting the value range while

minimizing both rounding and truncation errors in a differentiable manner.
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As Figure 7.1 shows, our proposed methods enable 4-bit quantization of

optimized networks at high accuracy thereby pushing mobile networks towards

more resource-efficient regime compared with the state-of-the-art quantization

solutions.
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40

55

70

85

Ac
cu
ra
cy

[%
]

Test
Training

0.000

0.002

0.004

0.006

AI
W
Q

M
et
ri
c Expansion

Depthwise
Bottleneck

= = = =

-2
-1
0

1

R
un
ni
ng

M
ea
n

0

1

2

3

0 10 20 30 40 50 60

R
un
ni
ng

Va
ri
an
ce

Epoch

Figure 7.2 Top-1 accuracy [%], AIWQ metric, and running mean/variance

during the fine-tuning for quantization where Nlv represents the number of

available quantization levels. Running mean/variance are extracted from the

arbitrary channels of batch normalization layer after depth-wise convolution in

the 2nd inverted residual module.

In this section, we first demonstrate the AIWQ problem is strongly corre-

lated with accuracy degradation in reduced precision. Then, we present a met-

ric to measure activation instability. We also propose a training method called

BLast which, based on the activation instability metric, controls the training
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of each layer to minimize the effect of activation instability thereby offering

better test accuracy.

7.2.1 Notation

First, we explain the notation used in the work. The subscripts l, i, and o rep-

resent the layer index, input channel index, and output channel index, respec-

tively, and W, I, and O represent weight, input activation, and output activation,

respectively. In addition, the superscript t denotes the iteration index. For in-

stance, Wt
l,o,i represents the weights updated at t-th iteration on l-th layer, o-th

output channel and i-th input channel. In the case of weight-quantized convo-

lution layer, the output activation can be expressed as follows:

Ot
l,o = ∑

i
Q(Wt

l,o,i)⊗ It
l,i, (7.1)

where ⊗ is the convolution operation and Q is the quantization function. Note

that, for simplicity, activation quantization, which is performed after BN layer,

is not shown in the equation.

7.2.2 Observation

Figure 7.2 (Accuracy) shows the accuracy of MobileNet-v3 for Cifar-100 data-

set [73]. The accuracy is measured during fine-tuning in progressive weight

quantization [24] where the number of quantization levels of weights gets grad-

ually reduced from 255 to 5 while using full-precision activation. The orange

line, denoted by Training represents the accuracy obtained by using the mean

and variance of the current training batch at the batch normalization layers.
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Meanwhile, the blue line, denoted by Test represents the accuracy measured

by using the running mean and variance which are obtained during training,

i.e., continuously updated at each batch for later test time usage.

The accuracy curves in Figure 7.2 show that, at each case of levels, e.g.,

Nlv = 15, both training and test accuracy are recovered gradually as fine-tuning

advances. However, when the number of available levels gets down to 5, the

test accuracy significantly oscillates and fails to converge while the training

accuracy can be recovered as usual with small oscillations.

According to our analysis which will be given in the next subsection, this

is mainly due to poor running mean and variance obtained during training. The

problem is that the effects of weight update, due to back-propagation, could be

amplified by the quantization operation, i.e., rounding operation. Specifically,

if a weight near the quantization threshold is updated to change its value cross

the threshold, then the quantization will result in different quantized weight

values before and after weight update. Thus, the results of convolution oper-

ation will change due to weight update and quantization, in fact, perturbing

the statistics of output activation, which finally yields poor running mean and

variance.

In reduced precision, the above activation instability induced by weight

quantization (AIWQ) becomes more significant because the two quantized

weight values will become farther apart due to the larger spacing between quan-

tization levels which is proportional to the inverse of 2bit-width. Thus, the lower

the precision gets, the more activation instability can be incurred.
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The perturbed activation prevents us from obtaining good running mean

and variance during training. If those poor statistics of mean and variance are

used in test time, then it is likely to obtain poor test accuracy as demonstrated in

Figure 7.2. Note that the effects of perturbed activation on the next layer tends

to be small due to the batch normalization layer. Only the running mean and

variance are mainly affected by the activation instability since they are obtained

by exponential moving average of mean and variance of the un-normalized

activation. This is why the test accuracy in Figure 7.2 heavily oscillates while

the training accuracy gives much smaller oscillations.

7.2.3 Activation Instability Metric

We present a metric to quantify per-layer activation instability and use it in

order to (1) prove that AIWQ is strongly correlated with the test accuracy of

reduced precision model (in Figure 7.2) and (2) evaluate the per-layer sensitiv-

ity when determining the order of freezing the weights during training (to be

explained in Section 7.2.4).

In order to measure per-layer activation instability, we obtain KL diver-

gence between the output of weight-quantized convolution before and after

weight update as follows. First, we approximate the output of weight-quantized

convolution before and after weight update as uni-variate Gaussian random
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variables as follows.

pt
o ≈ N

(
μo,σo || ∑

i
Q(Wt

l,o,i)⊗ It
l,i

)
, (7.2)

qt
o ≈ N

(
μ ′

o,σ
′
o || ∑

i
Q(Wt−1

l,o,i )⊗ It
l,i

)
. (7.3)

where pt
o and qt

o represent the approximate distribution of convolution output

on a channel after (at iteration index t) and before (at index t−1) weight update,

respectively. Note that the same input activation It
l,i is used to evaluate the effect

of weight quantization on the convolution output.

We first calculate per-output channel KL divergence between pt
o and qt

o.

Then, as shown below, we compute the layer-wise AIWQ metric Dl by averag-

ing the per-output channel KL divergence across all the output channels of the

current layer in the current training batch.

Dl = Et
o
[
DKL(pt

o || qt
o)
]
. (7.4)

The AIWQ metric in Figure 7.2 illustrates how the AIWQ metric varies

during the fine-tuning in the case of the 2nd inverted residual block of Mobile-

Net-v3. As shown in the figure, the instability gets increased in 7- and 5-level

quantization, which empirically proves that weight quantization in low preci-

sion can incur significant perturbation on the convolution output, i.e., make out-

put activation unstable. As Figure 7.2 shows, such an instability causes running

mean and variance1 to fluctuate, which prevents us from obtaining good run-

ning mean and variance during training. When comparing the accuracy, AIWQ

1We show mean/variance on three sampled output channels.
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metric and mean/variance in Figure 7.2, they are closely correlated in low pre-

cision, i.e., Nlv = 5, which shows the poor running mean and variance due to

the activation instability can degrade test accuracy.

7.2.4 BLast Training

In order to improve the accuracy of reduced precision networks, we propose a

novel training method which aims at minimizing the AIWQ effect. As shown

previously, the running mean and variance are affected by AIWQ. Our basic

idea is to additionally train the batch normalization and quantization layer, after

freezing all the other weights in the last training step of training, which is called

BN last training, in short, BLast. In the last training step, there is no AIWQ

since the weights are freezed. Thus, the additional training can offer better

running mean and variance.

Epoch

Learning Rate

Sampling

…

Fine-tuning #0
0/N freeze

Fine-tuning #1
1/N freeze

Fine-tuning #N-1
N-1/N freeze

BLast
N/N freeze

Figure 7.3 BLast training method.

In order to further reduce the impact of AIWQ, we determine the layer-

wise order of weight freezing considering the per-layer AIWQ metric in Eqn.
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7.4. Figure 7.3 shows how our method works. When BLast is triggered, as

shown in the figure, we start a sampling stage where we evaluate the per-layer

AIWQ metric for each layer. After the sampling stage, we perform fine-tuning

in an initial stage (typically, 10-15 epochs) without freezing weights. Then, af-

ter sorting all the weight layers in terms of the per-layer metric, we perform

weight freezing stages by selecting the most sensitive layers (the ones having

the largest AIWQ metric values) and freezing their weights. As shown in the

figure, we perform N freezing stages. Thus, in each stage, 1/N of all the lay-

ers (not weight-freezed ones) are selected from the sorted layer list and their

weights are freezed. Then, we perform BN layer training for all the freezed

layers while also training the other un-freezed layers. After finishing a freezing

stage, we select the next set of sensitive layers (another 1/N of all the layers)

and repeat the same procedure until there is no more un-freezed layer left. We

call the last freezing stage BLast stage since only BN layers are trained in the

stage.

Figure 7.3 shows that there are N+2 stages including one sampling, one

initial and N freezing ones. We call this method of freezing weights in the

order of AIWQ metric and training BN layer in a layer-wise manner, BLast+.

BLast+ helps to reduce AIWQ noise for not only running mean and variance

but also the weights of subsequent layers. As will be shown in our experimental

results, BLast+ helps to improve the accuracy of reduced precision networks.
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Truncation IntervalQuantization Interval

Truncation Error

Rounding Error

Figure 7.4 Two error sources of quantization.

7.3 Differentiable and Unified Quantization
7.3.1 Rounding and Truncation Errors

Figure 7.4 shows that quantization has two error sources, rounding and trunca-

tion. As shown in the figure, depending on whether a data is located inside/out-

side of quantization interval, rounding/truncation error is incurred. Both errors

are closely related with each other. For instance, the smaller truncation error

(by increasing the truncation threshold) can incur the larger rounding error

(due to the larger quantization interval). Thus, the quantization method needs

to find the best trade-off between the two errors in minimizing the training loss.

7.3.2 Limitations of State-of-the-Art Methods

Our goal is to realize a differentiable quantization which minimizes the task

loss. There are two representative differentiable quantization methods, param-

eterized clipping activation function (PACT) [11] and quantization interval

learning (QIL) [12]. In both methods, differentiable parameters and quantiza-
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tion interval are updated through back-propagation to minimize the task loss.

Parameterized Clipping Discretization

Figure 7.5 PACT algorithm.

Figure 7.5 shows that PACT has two steps, parameterized clipping to de-

termine the truncation threshold and discretization to assign quantization lev-

els. As the figure shows, PACT has a trainable parameter p for the truncation

threshold. During back-propagation, the gradient of data in the truncation in-

terval is transferred to p to update it. However, the gradient of data in quan-

tization interval [0, p] is bypassed by straight-through-estimator (STE). Thus,

the gradient in the quantization interval is not utilized to update the trainable

parameter p. Due to this limitation, p tends to keep increasing to minimize

the truncation error. PACT tries to mitigate this problem by introducing an L2

regularization term p2 to the training loss.

As Figure 7.6 shows, QIL has two stages, transformation and discretization.

In transformation, the input data is linearly transformed based on slope (=

1/2d) and offset (= (1− c)/d). The transformed input is clipped between 0

and 1. The clipped data are quantized in discretization stage. Since c and d

are differentiable, quantization interval [c− d, c+ d] can be learned through
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Figure 7.6 QIL algorithm.

back-propagation. In contrast to PACT, QIL ignores the gradient outside of

quantization interval. In other words, QIL tries to reduce only rounding error

in the quantization interval.

In addition, both PACT and QIL have critical limitations in supporting

new activation functions, e.g., h-swish and new structures, e.g., squeeze-and-

excitation used on state-of-the-art optimized networks. It is because transfor-

mation stage forces the data to be mapped to [0, 1] in [12] or [0, p] in [11].

Thus, it is not applicable to those activation functions and structures requiring

negative activations. For instance, h-swish activation, squeeze-and-excitation

module and linear expansion layer require representing negative activations.

Since both methods assume only non-negative activations, they do not provide

competitive results for optimized networks in the reduced precision like 4 bits.

7.3.3 Proposed Method: DuQ

Our proposed method, called differentiable and unified quantization (DuQ),

learns quantization and truncation intervals through back-propagation exploit-
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Figure 7.7 Proposed DuQ algorithm.

ing all the gradients over the entire value range of activation. Figure 7.7 shows

that DuQ has three stages, transformation, discretization, and denormalization.

As shown in the figure, it has four parameters; transform scale (a), transform

offset (b), denormalization scale (α), and denormalization offset (β ).

Our proposed DuQ method improves upon QIL by additionally performing

denormalization and utilizing gradients on truncation interval. Thus, we use

the same task loss as QIL. The two stages of transformation (Eqn. 7.5) and

discretization (Eqn. 7.6) are identical to those of QIL except that scale a and

offset b are used in transformation stage instead of center c and width d in QIL.

As Eqns. 7.5 and 7.7 show, we use softplus function for a and al pha in order

to make them positive values, which proves effective in improving the stability

of transformation stage. Eqn. 7.6 represents the discretization stage where Nlv

is the number of quantization levels.

x̂ = clip
(

x−b
a′

,0,1

)
, a′ = so f t plus(a), (7.5)
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x̄ =
1

Nlv −1
· round

(
(Nlv −1) · x̂), (7.6)

x̃ = α ′ · x̄+β , α ′ = so f t plus(α). (7.7)

Our proposed DuQ method allows us to utilize full value range of activation

including negative ones. To do that, in denormalization stage, the discretized

data can be mapped to an arbitrary range through scale α and offset β as shown

in Eqn. 7.7. Unlike PACT or QIL, DuQ utilizes all the gradients across the en-

tire activation data including not only data in truncation interval but also those

in quantization interval. Thus, a good quantization interval can be learned via

back-propagation considering the trade-off between rounding and truncation

errors.

7.3.4 Handling Negative Values

We apply the proposed DuQ to the quantization of weights and activations. In

case of weights, we apply DuQ to the absolute value of weight and multiply

sign after the quantization. Thus, the quantization levels are assigned symmet-

rically without using one level. For instance, in case of 4-bit precision, we use

15 integer levels in [-7, 7]. In addition, we fix β to zero. Otherwise, each of

quantized weights cannot be mapped to a single integer operation with scal-

ing [4].

There are two cases of encountering negative activations: the activation of

linear layer without activation function, e.g., expansion layer in the inverted
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residual block, and the output activation of h-swish function [70]. For the out-

put activation of linear layer, we apply DuQ to activations as in the case of

weight quantization to obtain an odd number of symmetrical quantization lev-

els. On the other hand, for the output activation of h-swish function whose

distribution is not symmetrical, in order to avoid wasting quantization levels

for large negative values, we propose an additional technique called negative

padding.

Negative 
padding

Conv

Conv

Precomputed 
bias

Conv

+

Training Phase

H-swish
output

DuQ with= .

H-swish
output

Negative
constant

Inference Phase

Offline Update

Positive only
DuQ with =

Figure 7.8 Negative padding for h-swish function.
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H-swish function gives an asymmetrical distribution of activations having

small negative and large positive value ranges. Thus, a symmetrical allocation

of quantization levels will waste quantization levels allocated to un-used large

negative values. In order to avoid this waste, we propose shifting input activa-

tions to the convolution by the minimal value of h-swish function, -0.3752 and,

instead of zero padding, padding the negative value, -0.375.

Figure 7.8 (Inference Phase) shows how convolution is performed in infer-

ence under this method. As the figure shows, the original input (h-swish out-

put) can be decomposed into the negative constant (=-0.375) and non-negative

quantized input (=Q(I +0.375) where I is the original activation before quan-

tization). Note that we apply DuQ to the non-negative input thereby avoiding

the waste of quantization levels for large negative values. As shown in the bot-

tom of the figure, the convolution output of the negative constant input can be

computed offline and absorbed to the bias of convolution or to the batch nor-

malization layer. Note also that our proposed method yields only non-negative

activations during inference. Thus, as the figure shows, we set β to 0 in infer-

ence while setting it to -0.375 in training.

Quantization of h-swish function output may not guarantee the usage of

zero as one of quantization levels. However, our proposed negative padding

makes the minimum quantization level of input activation zero. Thus, the pro-

posed method can also be beneficial to zero skipping solutions like zero skip-

2Hard swish function, h-swish is given as x*ReLU6(x+3) which gives the minimum output

of -0.375 [70].
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ping hardware accelerators [30, 32] to improve inference speed.

7.4 Experiments

We implemented the proposed methods in PyTorch 1.2.0, and demonstrate their

effectiveness by measuring the accuracy of the quantized networks.

7.4.1 Accuracy on ImageNet Dataset

We apply quantization to the well-known optimized CNNs, MobileNet-v1 to

v3 and MNasNet. We also quantize ResNet-18 as a representative example of

conventional CNN. The networks are trained on 4-GPU with 256 batch, SGD

with momentum and cosine learning rate decay with warmup [74,75]. In order

to improve the accuracy, we adopt the progressive quantization method [24]

that gradually decreases bit-width to 8, 5, and 4 bits during fine-tuning, and use

knowledge distillation [76] using ResNet-101 as teacher. We use exponential

moving average of parameters with momentum 0.9997 [77], and all networks

are trained using BLast+ and DuQ (with negative padding if applicable). We

train the model for 15 epochs every progressive quantization and BLast+ fine-

tuning step. Note that all the layers of the networks are quantized including

the first and last layers. We used 8-bit data only for the input image of the first

convolution layer and the activation of squeeze-excitation module.

Table 7.1 shows the accuracy of quantized networks under our proposed

methods. Compared to the full precision (Full in the table), our 4-bit models

give comparable accuracy with less than 1% of accuracy loss. To the best of
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Table 7.1 Top-1 / Top-5 accuracy [%] of the quantized networks on ImageNet

MobileNet-v1 MobileNet-v2 MobileNet-v3 MNasNet ResNet-18

Full 68.848 / 88.740 71.328 / 90.016 74.728 / 92.136 73.130 / 91.276 69.546 / 89.090

8-bit 70.164 / 89.370 72.352 / 90.636 75.166 / 92.498 73.742 / 91.756 71.246 / 89.988

5-bit 69.866 / 89.058 71.540 / 90.058 74.690 / 92.092 73.378 / 91.244 71.672 / 90.168

4-bit 69.056 / 88.412 71.564 / 90.398 73.812 / 91.588 72.244 / 90.584 70.968 / 89.914

the authors’ knowledge, this is the first study to achieve less than 1% top-1 loss

on 4-bit MobileNet-v3.

When we train the network without BLast+, the 4-bit accuracy of Mobile-

Net-v3 gives only 71.720 % / 90.386 % for top-1/top-5 accuracy, having more

than 2 % accuracy loss compared to the accuracy obtained with BLast+. The

table also shows that, compared with full-precision, our methods do not lose

accuracy on 4-bit MobileNet-v2 and has less than 1% loss on 4-bit MobileNet-

v1 and MNasNet, and better accuracy on 4-bit ResNet-18.

Our 8-bit model accuracy, 75.166 % is superior to that (73.8 %) in [70]. We

think it is mainly because fused-batch normalization, adopted in [70], has an

adverse effect on the accuracy of low precision model, which will be elaborated

in more detail in the next subsection.

We compare the accuracy of MobileNet v1 and v2 with the existing works

in Table 7.2 where aN and wM represent N-bit activation and M-bit weight

quantization and c and l channel-wise and layer-wise quantization, respec-

tively. * represents the post-training quantization. Compared to [78], our 4-bit

layer-wise quantization gives comparable accuracy to the 8-bit models of the

previous work, and better accuracy than the channel-wise 8/4-bit models. In ad-
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Table 7.2 Top-1 accuracy [%] comparison of existing works on MobileNet-v1

and MobileNet-v2.

MobileNet-v1 MobileNet-v2

[78], a8,w8,c 70.7 71.1

[78], a8,w8,l 70.0 70.9

[78], a8,w4,c 64.0 58.0

[78], a4,w8,c 65.0 62.0

[79]*, a8,w8 69.99 70.60

[80]*, a8,w8 70.5 71.2

Our, a5,w5 69.866 71.540

Our, a4,w4 69.056 71.564

dition, our 4-bit MobileNet-v2 outperforms even the 8-bit models of existing

works.

7.4.2 Discussion on Fused-BatchNorm

Batch normalization layer normalizes input activation using batch statistics,

i.e., mean and variance, and applies scale and shift (Eqn. 7.8) [81]. After train-

ing, the running mean and variance of the batch normalization layer can be

absorbed to scale and shift. In addition, the combined scale and shift terms can

be absorbed by scaling convolution kernel weights and adding to the bias of the

prior convolution layer (Eqn. 7.9). This technique, called fused-batchnorm [4],

was proposed to remove the overhead of batch normalization layer in inference.
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x̂ = γ
x−μ√
σ2 + ε

+β . (7.8)

x =W ⊗a, x̂ = (
γ√

σ2 + ε
W )⊗a+β − γμ√

σ2 + ε
. (7.9)

x̂′ = Q(
γ√

σ2 + ε
W )⊗a+β − γμ√

σ2 + ε
. (7.10)

When we quantize weights under fused-batchnorm, we need to apply quanti-

zation to the weight with batch norm scaling, as shown in Eqn. 7.10. However,

according to our observation, all models under fused-batchnorm failed to con-

verge when 4-bit quantization is applied to the weights with fused-batchnorm.

It is because the weights under fused-batchnorm tend to have wider value

ranges, due to the additional scaling, than the original weights. We think that,

in order to exploit fused-batchnorm in 4-bit and lower precision, it is desirable

to apply channel-wise quantization, which is the beyond of the scope of this

work and left as future work.

7.4.3 Ablation Study

In order to evaluate the proposed method in detail, we perform ablation study

on CIFAR-100 dataset with ResNet-18, MobileNet-v2 and MobileNet-v3 mod-

els. Each network has the full-precision top-1 accuracy of 74.39 %, 75.21 %

and 76.22 %, respectively.

Figure 7.9 compares the top-1 accuracy of PACT, QIL and DuQ. Note that,

in order to evaluate the performance of DuQ, all the three methods run under

BLast and we extend PACT and QIL to support symmetric quantization for the
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Figure 7.9 Comparison of quantization algorithms under BLast.

activation of linear output as explained in Section 7.3.4. As the figure shows,

ResNet-18 gives higher accuracy than MobileNet-v2 and v3 because ResNet-

18 is simpler than MobileNets and thus easier to train in low precision. As

shown in the figure, PACT and QIL under BLast give comparable accuracy to

DuQ on ResNet-18. PACT under BLast offers slightly better accuracy in 3-bit

weights due to the weight quantization called statistics-aware weight binning

(SAWB). Meanwhile, QIL gives better activation quantization than PACT. In

all the three networks, DuQ gives better accuracy when the bit-width is small.

Moreover, it significantly outperforms the other two methods in MobileNet-v3

because, as explained in Section 7.3.4, DuQ with negative padding can support

the full value range of h-swish function without wasting quantization levels.

In order to evaluate the effects of BLast(+), we measure the test accu-
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Figure 7.10 Evaluation of BLast(+).

racy in the fine-tuning of 3-bit quantization for MobileNet-v3. As Figure 7.10

shows, we compare three cases. ”No BLast” does not freeze weights during

fine-tuning. BLast+ freezes weights in the order of AIWQ metric and BLast+R

freezes weights in the reverse order of AIWQ metric. The three cases share the

same learning rate schedule. As shown in the figure, BLast+ helps to stabilize

test accuracy during training. It gives much smaller oscillations at the 3rd (de-

noted by ”1/3 freeze”) and 4th (=”2/3 freeze”) stages where the weights having

large AIWQ metric are first freezed minimizing the AIWQ effect. Meanwhile,

BLast+R gives the worst accuracy, which reconfirms the effectiveness of freez-

ing the weights with large AIWQ metric earlier than the others.
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7.5 Conclusion

In this work, we propose a novel training method called BN last (BLast) and

a quantization method called differentiable and unified quantization (DuQ).

BLast aims at minimizing the effect of activation instability induced by weight

quantization, and DuQ enables the quantization of negative activations found in

optimized networks. Based on the proposed methods, we can quantize the state-

of-the-art optimized network, MobileNet-v3 into 4 bits with 0.916 % of accu-

racy loss. In addition, other optimized mobile networks such as MobileNet-

v2 and MNasNet are also quantized into 4 bits with negligible accuracy loss.

We hope our proposed methods can contribute to advancing towards 4-bit and

lower precision computation on embedded devices.
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Chapter 8

Conclusion

This dissertation aims to minimize the accuracy loss of quantization to exploit

its benefit. Several novel quantization algorithms are proposed, e.g. weight-

entropy-based quantization, outlier-aware quantization, and differentiable and

unified quantization, DuQ. Besides, additional optimization techniques are pro-

posed to minimize the accuracy drop resulting from quantization, such as a

structural concept called precision-highway and a training methodology called

BLast(+).

In weight-entropy-based quantization (section 3), the flexible multi-bit quan-

tization method presented enables automated optimization without modifica-

tion of the original network structure. This work shows the potential of multi-

bit quantization that enables sub-6-bit quantization of very deep networks, i.e.

AlexNet, GoogLeNet, and ResNet-101 with less than 1 % of top-1 accuracy

loss.

In chapters 4 and 5, a novel non-linear quantization algorithm is proposed,

called value-aware quantization or outlier-aware quantization. This algorithm

is designed considering the characteristics of distributions of weight and acti-
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vation, and it shows outstanding results of post-training quantization. Addition-

ally, this helps to reduce memory consumption during training, which enables

ResNet-50 training with a 7.5x reduction of memory cost for activation with

negligible accuracy loss. Also, the dedicated hardware accelerator, OLAccel,

gives a significant amount of energy consumption reduction on ResNet-18 by

62.2 % and 49.5 % compared to the state-of-the-art 16-bit and 8-bit zero-aware

accelerators, respectively. This work presents the potential of a hardware ac-

celerator with reduced precision computation.

In chapters 6 and 7, the proposed studies presented a state-of-the-art accu-

racy of quantized networks based on linear quantization. The precision high-

way forms a piece of end-to-end high-precision information that minimizes ac-

cumulated quantization error across a network. Based on the proposed method,

ResNet-18/50 can be quantized into 3-bit without accuracy loss and the 2-bit

model also gives a comparable result, whereas LSTM models are also success-

fully quantized. A novel training method, BN last (BLast) and the differen-

tiable and unified quantization (DuQ) are designed to support reduced preci-

sion for the optimized mobile networks, i.e. MobileNet-v2 and MobileNet-v3.

BLast is designed to suppress the disturbance of activation instability induced

by weight quantization, while the DuQ is applicable for the state-of-the-art op-

timized structure, e.g. squeeze-excitation module and the swish function. This

enables the MobileNet-v3 into 4-bits with less than 1 % accuracy loss. We be-

lieve that the proposed algorithms will contribute to the efficient computation

of DNNs with reduced precision.

139



As future work, I plan to extend our work toward quantization-friendly

architecture search and quantization algorithms for the BERT model. Auto-

mated architecture search is one of the most popular areas of interest in re-

cent [82–84]. Since [82] show the possibility of an automated architecture

search, there have been active studies on improving the accuracy of the found

model. Furthermore, some studies focused on improving not only accuracy but

also other metrics such as performance [84]. To fully utilize the potential of

reduced precision, I will extend the idea to an architecture search. In particular,

by minimizing the major reason of accuracy degradation of the quantized net-

work, activation instability induced by weight quantization, I hope to find out

the quantization-robust network during architecture search.

On the other hand, I will try to optimize the BERT model [85] that shows

the outstanding performance for language model and recommendation system.

This model is expected to be used frequently, thus it is practically important to

optimize the model. Our previous study [17] shows the potential of the quanti-

zation for the language model, but I will need to improve our algorithm for the

BERT. I will focus on quantization for computation, i.e. linear operator, and

embedding table that requires a significant amount of memory.
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국문초록

딥 뉴럴 네트워크 (DNN)는 활용 범위를 점차 넓혀가며 다양한 분야에 적

용되고있다.뉴럴네트워크는서버뿐만아니라임베디드기기에서도널리

활용되고 있으며 이로인해 뉴럴 네트워크의 효율성을 높이는 것은 점점 더

중요해지는 중이다. 이제 정확도를 유지하면서 속도를 빠르게 하고 에너지

소모를줄이는뉴럴네트워크의최적화는필수적요소로자리잡았다.

양자화는 가장 효과적인 최적화 기법 중 하나이다. 뉴런의 활성도 (acti-

vation)및학습가중치 (weight)를저장하는데필요한비트수를줄임으로써

동일한 양의 데이터 접근과 연산 비용 (칩 면적 및 에너지 소모 등)으로 더

많은 연산이 가능해지며 이로인해 속도와 에너지 소모를 동시에 최적화할

수 있다. 추후 딥 러닝을 활용하기 위하여 필요할 것으로 예측되는 에너지

효율및연산속도를만족시키기위해서 4비트혹은더적은정밀도기반의

양자화연산이지대한공헌을할것으로기대된다.

그러나 양자화의 가장 중요한 단점 중 하나는 데이터의 표현형을 제한

하여 자유도가 떨어지게 됨으로서 발생하는 정확도의 손실이다. 이러한 단

점을 해결하기 위하여 다양한 연구들이 진행중이다. 최근 일부 연구들은 8

비트의 정밀도에서 뉴럴 네트워크를 활용해 결과를 추론 (inference)하는데

정확도 손실이 거의 없음을 보고하고 있다. 반면 그 외의 다양한 연구들을

통해 4 비트 혹은 더 낮은 정밀도에서 양자화를 적용했을 때 많은 네트워크

들의정확도가크게손상되는현상도함께보고되고있다.특히최근제안된
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네트워크들의 경우 성능 향상을 위해 도입한 최적화된 구조가 양자화 하기

어려운특성을가져이러한현상이심화된다.

본 논문에서는 양자화된 DNN의 정확도 손실을 최소화하기위한 다양한

방법들을 제안하였다. 가중 엔트로피 기반 양자화 (Weighted-entropy-based

quantization)은제한된개수의양자화레벨을최대한활용하기위하여양자

화된데이터의정보량을최대화하는방향으로양자화를진행하도록설계되

었다. 이 연구를 통해 아주 깊은 네트워크에서도 뉴런의 활성도와 학습 가

중치 모두의 양자화가 적용 가능함을 보였다. 값-의식 양자화 (value-aware

quantization), 혹은 예외-의식 양자화 (outlier-aware quantization)는 빈도는

낮지만큰값을가지는데이터를큰정밀도로저장하는대신나머지데이터

에 4 비트 이하의 양자화를 적용하도록 설계된 알고리즘이다. 이는 원본 데

이터의평균과분산같은특성이양자화된후에도유지하도록도와주어양자

화된네트워크의정확도를유지하는데기여한다.이에더하여 OLAccel이라

명명된특화가속기를제안하였다.이가속기는값-의식양자화알고리즘을

통해양자화된네트워크를가속함으로써정확도감소는최소화하면서낮은

정밀도의 성능 이득을 최대화한다. 고정밀도-통로 구조 (precision-highway)

는 네트워크의 구조를 개선하여 초저정밀도 연산을 수행하면서도 고정밀

도 정보 통로를 생성한다. 이는 양자화로 인하여 에러가 누적되는 현상을

완화하여 매우 낮은 정밀도에서 정확도를 개선하는데 기여한다. 학습 기법

인 BLast와 미분 가능하고 통합된 양자화 알고리즘 (DuQ)는 MobileNet-v3

과 같은 최적화된 모바일향 네트워크를 최적화하기 위하여 제안되었다. 이

방법들을 통해 미미한 정확도 손실만으로 MobileNet-v3의 활성도 및 학습

가중치모두를 4비트정밀도로양자화하는데성공하였다.
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