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Abstract

System-level Techniques for
Resource-efficient Execution of
Distributed Machine Learning

Woo-Yeon Lee
School of Computer Science Engineering

Collage of Engineering
The Graduate School

Seoul National University

Machine Learning (ML) systems are widely used to extract insights from data. Ever in-

creasing dataset sizes and model complexity gave rise to many efforts towards efficient

distributed machine learning systems. One of the popular approaches to support large-

scale data and complicated models is the parameter server (PS) approach [2, 31, 40].

In this approach, a training job runs with distributed worker and server tasks, where

workers iteratively compute gradients to update the global model parameters that are

kept in servers.

To improve the PS system performance, this dissertation proposes two solutions

that automatically optimize resource efficiency and system performance. First, we pro-

pose a solution that optimizes the resource configuration and workload partitioning of

distributed ML training on PS system. To find the best configuration, we build an Op-

timizer based on a cost model that works with online metrics. To efficiently apply

decisions by Optimizer, we design our runtime elastic to perform reconfiguration in

the background with minimal overhead.

The second solution optimizes the scheduling of resources and tasks of multiple
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ML training jobs in a shared cluster. Specifically, we co-locate jobs with complemen-

tary resource use to increase resource utilization, while executing their tasks with fine-

grained unit to avoid resource contention. To alleviate memory pressure by co-located

jobs, we enable dynamic spill/reload of data, which adaptively changes the ratio of

data between disk and memory.

We build a working system that implements our approaches. The above two solu-

tions are implemented in the same system and share the runtime part that can dynam-

ically migrate jobs between machines and reallocate machine resources. We evaluate

our system with popular ML applications to verify the effectiveness of our solutions.

Keywords: Machine Learning, Distributed Training, Parameter Server, Cost-based

Performance Modeling, Dynamic Optimization, Job/Resource Scheduling

Student Number: 2013-23132
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Chapter 1

Introduction

1.1 Distributed Machine Learning on Parameter Servers

Machine learning (ML) training is one of the most popular data processing workloads

in datacenters today. Due to the resource-intensive nature, ML workloads typically

run on distributed systems that provide more resources, based on the Parameter Server

(PS) architecture, which is widely used in both research and industrial communities [3,

10, 11, 28, 36, 40, 42, 45, 46, 54, 62].

In PS-based systems, training data is partitioned across workers, while model pa-

rameters – which compose the global model being trained – are partitioned across

servers. During training, each of the workers computes model updates using the al-

located data and sends the model updates to the corresponding servers. Workers then

fetch fresh models from servers in order to work with the latest model parameter val-

ues. Servers, meanwhile, apply the model updates received from workers and send

the latest model parameter values back to workers as inquired. This process occurs

iteratively during the course of the ML training job until the global model converges.

Since ML training is resource-intensive and time-consuming, it is important to op-

timize the system to efficiently use the given resources and improve the system perfor-
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mance. Specifically, we focus on two key problems that we describe in the following

sections. First, choosing the right PS system configuration is challenging, however the

existing systems require users to configure it manually and also assume system con-

figuration to be static. Second, distributed ML training often suffers from inefficient

resource use, due to the fact that ML jobs repeat computation and communication

steps, each of which uses only a single type of resource intensively. In the following

sections, we elaborate on these problems and introduce our corresponding solutions.

1.2 Automating System Configuration of Distributed Machine
Learning

The performance of PS system is crucially dependent on choosing the right system

configuration: the number of workers and servers as well as the training data and

model partitioning across them. Current PS implementations assume system configu-

ration to be static: the configuration is chosen before training commences and remains

unchanged until job termination. However, as we illustrate in Section 3.1, choosing

the best system configuration is challenging; optimal system configuration parameters

vary widely for different algorithms, hyper-parameters, and environments. Further-

more, the best configuration changes during runtime as the total amount of available

resource changes.

We present cost-based optimization that finds a good system configuration for PS-

based frameworks. We extend a PS-based ML framework to build Cruise that automat-

ically tunes its system configuration with the optimization technique. Cruise focuses

on the system aspects and models performance of workers, as an optimization goal,

analytically with the system’s runtime statistics, and computes optimal configurations

by solving the optimization problem. Cruise applies the new configurations efficiently

during runtime by elastically changing allocated resources and migrating data. The

reconfiguration allows us to make the best use of given resources and also oppor-

tunistically available resources. Our evaluation shows that our cost model is valid and
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Cruise finds a good system configuration automatically to optimize the performance.

With widely-used machine learning workloads, we demonstrate that the configuration

found by Cruise performs close to the optimal configuration that we find exhaustively,

with the difference at most 6.5%. Cruise reduces the training time by up to 58.3%

compared to static configuration within tens of seconds reconfiguration overhead.

1.3 Scheduling of Multiple Distributed Machine Learning Jobs

Due to the resource-intensive nature, ML workloads are often executed on shared clus-

ters to utilize the given resources more efficiently [3,25,33,43,45,58]. In such settings,

efficient resource scheduling among the ML jobs is key to improving cluster-wide per-

formance. The problem is that an ML training job does not fully utilize the allocated

resources, as each step of an ML job intensively uses a particular type of resource

while leaving the others mostly idle, resulting in an average utilization of around 50%

of the overall assigned CPU and network resources [33, 40, 41, 58]. Concretely, ML

workloads consist of iterations that each repeat computation and communication steps,

using different resource alternately and causing inefficiency in the overall resource uti-

lization.

In order to improve resource utilization by breaking the barrier between the com-

putation and synchronization steps, a number of works have proposed asynchronous

training methods with local model cache that disintegrate the sequential dependency of

the different steps [15,19,31]. In such works, workers pull recent model parameters in

the background while computing for gradients during the computation steps, making

both the CPU and the network resources busy. However, breaking the sequential de-

pendency often results in model inconsistency and computations of stale models, and

hence hinders model convergence [9,16,18,19]. Although many works try to minimize

stale models in asynchronous training by constraining maximum staleness [14,15,31]

or by differentiating the learning rate of the delayed updates [34], they have been able

to reduce the side-effects but not completely resolve the issue, occasionally showing
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worse performance for complex models [16]. Due to such reasons, many works retain

synchronous training to avoid staleness [1, 9, 16, 18].

A possible approach to resolve the under-utilization problem while keeping syn-

chrony is to co-locate multiple jobs to share a pool of resources so that computation

and communication can be interleaved. Nevertheless, naively co-locating jobs may re-

sult in multiple jobs contending for the same type of resource, if both jobs happen

to have to use the same type of resources simultaneously. This can result in an even

slower job completion time than running each job alone (§4.4). In addition, while

ML training is memory-intensive [23, 49], co-locating multiple jobs incur even higher

memory pressure, which results in job failures caused by out-of-memory errors, or

slowdowns caused by garbage collection overheads, especially in managed runtimes

like Java Virtual Machine environments.

For example, a recent system, Gandiva [58] co-locates jobs by simply perform-

ing a series of trials-and-errors, which naively avoids contention when it faces one,

instead of fundamentally analyzing and eliminating contentions. Gandiva has used

several auxiliary techniques to minimize the interference between jobs, but its im-

provement in resource utilization is limited to only about 10%. Although Gandiva is

specialized for scheduling DL jobs running on GPUs, which we leave for future work,

interference of co-located jobs play a critical role in non-DL classical ML applications

as well, which we focus on in the dissertation. Moreover, Gandiva simply focuses on

sharing computation resources (e.g., GPU), and ignores network resources, which play

an important role during the parallelization and the model synchronization (communi-

cation) step of training jobs.

To overcome these limitations, we introduce Harmony, a scheduling framework

that co-locates multiple ML jobs and optimizes resource utilization among them, re-

ducing the average JCT and makespan, the total time to complete all given jobs. Har-

mony exploits the pattern of ML job tasks that iteratively use different types of re-

sources in each of their steps, to minimize resource contention. Specifically, Harmony

first decomposes each job into fine-grained subtasks, each of which dominantly uses
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a single type of resource (e.g., network-subtasks, CPU-subtasks), then schedules the

subtasks of co-located jobs in a pipelined manner, so that each subtask can fully utilize

each type of resource without contending with the other subtasks in execution.

Moreover, as the performance of co-located jobs vary upon the set of jobs co-

located and the number of machines allocated for the jobs, Harmony models the per-

formance of co-located jobs with profiled metrics and runs a scheduling algorithm to

make a decision towards higher resource utilization. As the pool of jobs changes with

job arrivals and completions, Harmony is designed to dynamically reschedule jobs

and resources to continuously find more efficient groupings and resource allocation.

To minimize overhead of continuous regroupings, we design our scheduling algorithm

to minimize job movements and our system to migrate jobs efficiently for multi-job

situation.

Furthermore, under the higher memory pressure caused by the increased number

of simultaneous jobs, Harmony prevents out-of-memory errors and garbage collection

overheads with a data spill/reload mechanism optimized for multiple jobs with iter-

ative execution pattern. Specifically, Harmony spills data that is not in active use to

disk to relieve memory pressure. Since reloading data from disk is slow and has non-

trivial overheads, we dynamically change the ratio of disk-side and memory-side data

to balance memory pressure and disk read overhead towards minimal training time.

Our evaluation on 64 m4.2xlarge AWS EC2 instances shows that Harmony im-

proves cluster resource utilization by up to 1.65× compared to traditional approaches

that maintain dedicated allocation of resources. The increased resource utilization re-

duces average job training time by up to 53%, and makespan by up to 38%.

1.4 Contributions

The proposed approaches and implementations in this dissertation adds new system-

level supports for PS-based distributed ML frameworks with the following contribu-

tions:
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• We identify the performance problem of PS ML systems and resolve the problem

by exploiting the execution characteristics of distributed ML training, which has

iterative pattern with separate computation and communication steps.

• We build an analytical performance model to predict system performance with runtime-

collected metrics, based on the analysis of resource usage pattern in the execution of

distributed ML training on PS-based systems.

• We present the practical solution and the complete open-sourced implementation

that automatically optimizes the system configuration and job/resource scheduling

for the optimized execution of distributed ML training on PS systems. Our solution

is general enough to be applied to other PS system implementations.

1.5 Dissertation Structure

This dissertation consists of five chapters. The first chapter presents an introduction

and the remainder chapters describe our work in more detail with conclusions and

future work.

In Chapter 2, we describe PS ML frameworks, which is a common background

for the overall work. Chapter 3 describes our first study for automating system con-

figurations of distributed machine learning frameworks. We explain how we find the

optimal configuration and apply it during runtime with minimal overhead. Chapter 4

presents our solution for efficient scheduling of multiple distributed machine learn-

ing jobs. We describe how to group jobs with complementary resource use, execute

co-located job tasks harmoniously without contention, and alleviate memory pressure

due to co-located jobs. Chapter 5 concludes this dissertation with a summary and de-

scribes future work.
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Chapter 2

Background

ML training is an iterative process that incrementally improves a model until it reaches

a certain convergence threshold. To facilitate large-scale ML training in distributed en-

vironments, systems designed with the parameter server (PS) architecture have been

introduced [11,20,40,59]. As illustrated in Figure 2.1, the PS architecture mainly con-

sists of servers that each maintains a partition of ML model parameters, and workers
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Figure 2.1: Parameter server ML framework
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Figure 2.2: The work-flow of a PS system.

that perform iterations of ML computations (e.g., deriving gradients) from each par-

tition of input data. Workers synchronize with each other by communicating through

servers via the push/pull APIs provided by the PS system. Therefore, servers mostly

utilize network resources to sync ML models with the workers, whereas workers

mainly use CPU resources for their computations. To highly utilize both CPU and net-

work resources and to reduce the network overheads, workers and servers are usually

located together [28, 54].

In the figure, Executor is an environment on which the ML application code (e.g.,

worker computation code and server model update code) runs. Executor takes care of

low-level system supports such as initializing and maintaining network connections

between nodes. In this dissertation, we consider a cluster environment where each

Executor runs in a container obtained from a Resource Manager such as YARN and

Mesos.

Figure 2.2 illustrates how a worker task performs in a training job. In a PS job,

each iteration, or mini-batch processes a part of the input dataset, which altogether

forms an epoch, which describes a full scan of the training dataset. When an itera-

tion begins, each worker first pulls the current model from servers (PULL), computes

model gradients from the model and the assigned partition of input data (COMP), and

pushes the gradients to servers to update the model (PUSH). The PS job repeats the

process until sufficient epochs have been executed for the convergence of the model.

As ML training repeats same procedure composed of computation and communica-
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Figure 2.3: Iteration time during 100 training iterations of a NMF job.

Application NMF LDA MLR Lasso

Iteration time 48.3±1.0 s 94.5±1.8 s 32.4±0.7 s 28.9±0.5 s

Table 2.1: The average and standard deviation of iteration times of ML apps.

tion until the model converges, each iteration takes similar time with computation and

communication times as illustrated in Figure 2.3 and Table 2.1.
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Chapter 3

Automating System Configuration of
Distributed Machine Learning

The performance of distributed machine learning systems is dependent on their system

configuration. However, configuring the system for optimal performance is challeng-

ing and time consuming even for experts due to the diverse runtime factors such as

workloads or the system environment. We present cost-based optimization to auto-

matically find a good system configuration for parameter server (PS) machine learning

(ML) frameworks. We design and implement Cruise that applies the optimization tech-

nique to tune distributed PS ML execution automatically. Evaluation results on three

ML applications verify that Cruise automates the system configuration of the applica-

tions to achieve good performance with minor reconfiguration costs.

We organize the rest of this chapter in the following way. In § 3.1, we show the

configuration challenges in the parameter server. § 3.2 describes our approach to find

the optimal configuration based on cost model with runtime metrics. We then intro-

duce Cruise, which implements our approach and briefly explain the roles of each

component in § 3.3. We evaluate Cruise in § 3.4 to demonstrate the performance en-

hancements achieved by deploying the system, verifying its contributions towards the

current state-of-the-art. § 3.5 acknowledges our related work. We summarize our work
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App. NMF MLR LDA

(18,14) 1.30x 2.29x Best

(23,9) Best 1.12x 1.21x

(27,5) 1.66x Best 1.60x

(a) Case 1. Epoch time com-

parison in different algorithms:

NMF, MLR, and LDA.

#Topics 400 4K

(18,14) Best 1.44x

(23,9) 1.21x Best

(27,5) 1.60x 1.20x

(b) Case 2. Epoch time com-

parison in different hyper-

parameters in LDA.

Env.
m4.

large

m4.

xlarge

(34,18) Best 1.10x

(38,14) 1.08x 1.05x

(42,10) 1.48x Best

(c) Case 3. Epoch time com-

parison in different VM in-

stance types in NMF.

Table 3.1: Epoch times varying numbers of workers and servers for different algorithms,

hyper-parameters, and virtual machine instance types.

in § 3.6, with an endeavor to advance the system even further by suggesting potential

steps for the near future.

3.1 System Configuration Challenges

The system configuration of a PS system includes the allocation of worker and server

roles to available containers, as well as the partitioning of the training data across

workers and the model parameters across servers. A good system configuration is es-

sential for the performance of the machine learning system [60]. However, optimal

system configurations that produce minimal training time are difficult to find, even for

system experts. This is because, first, predicting how ML application code translates

to actual running time - how much time each step takes - is nontrivial. Even if we were

to estimate the exact running time for an algorithm, there may exist many different im-

plementations for that particular algorithm, all having slightly different running times.

Second, even for the same algorithm, using different hyper-parameters can change the

application’s computation or communication overhead. Finally, the capabilities of the

environment on which the applications run vary from cluster to cluster.

We illustrate the challenges with experiments that vary algorithms, hyper-parameters,

and machines in Table 3.1. In the table, we use notation (W , S), where W denotes the
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number of workers and S denotes the number of servers. For each column, a cell

presents a ratio between the epoch time of the configuration and the optimal epoch

time. In each case, we fix the total number of machines, assign a fraction of the ma-

chines to run workers, and assign the rest of the machines to run servers. We exper-

iment with all possible worker and server configurations to compare epoch time of

different configurations.

All experiments in Tables 3.1a and 3.1b were run on a cluster of 32 AWS EC2

r4.xlarge instances (4 CPU vCores, 30.5GB memory, and 1.25 Gbps network band-

width), and Table 3.1c shows epoch time of an ML application on either a cluster of 52

m4.large instances (2 CPU vCores, 8GB memory, and 0.5 Gbps network bandwidth)

or a cluster of 52 m4.xlarge instances (4 CPU vCores, 16GB memory, and 1.0 Gbps

network bandwidth). In the table, NMF denotes Non-negative Matrix Factorization,

MLR denotes Multinomial Logistic Regression, and LDA denotes Latent Dirichlet

Allocation. We present the details of these algorithms in § 3.4.1.

Case 1: ML algorithm. Different ML algorithms show different optimal config-

urations. From Table 3.1a, with (W:27, S:5) MLR achieves the smallest epoch time,

whereas LDA runs 1.6 times slower with this configuration compared to LDA’s opti-

mal configuration (W:18, S:14). This is because MLR is more compute-intensive than

LDA, thus requiring more workers for smaller epoch time.

Case 2: Hyper-parameter. Hyper-parameter values affect the optimal configu-

ration of an ML application. A hyper-parameter in LDA is the number of topics to

categorize documents. Increasing the number of topics makes both computation and

communication more expensive, but they are affected differently. Table 3.1b shows

that (W:18, S:14) is the best configuration for 400 topics but is 1.44 times slower than

the best configuration (W:23, S:9) for 4K topics.

Case 3: Machine environment. The specification of the cluster on which jobs run

also heavily affects the best configuration due to varying computation and communica-

tion capabilities. Running NMF on different clusters, we observe that the best config-

uration varies drastically as shown in Table 3.1c. When we use AWS EC2 m4.xlarge
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instances, the best configuration is (W:42, S:10), which is 1.48 times slower if the

same configuration of m4.large instances, compared to the m4.large best configuration

(W:34, S:18).

The three factors investigated above demonstrate that discovering the optimal sys-

tem configuration is challenging. Even worse, there are other factors such as algorithm

implementation and dataset that can also affect the performance for different configu-

rations. Since the problem space is too broad, it is hard to predict the performance of

an ML application given a specific setting. This motivates adapting to optimal config-

urations automatically.

3.2 Finding Good System Configuration

In this section, we describe our cost formulation of the training epoch time along with

our model assumptions, and how we minimize epoch time by using the cost model to

find values for system configuration parameters – namely, the number of workers and

servers as well as the training data and model partitioning across them.

3.2.1 Cost Model

Given the PS architecture, we define the costC of the entire system to be the maximum

of the time for each worker i to process the assigned training data in each epoch (Ci:

epoch time). By minimizing the maximum epoch time (C), we can improve the abso-

lute performance as well as balancing all workers’ performance. Unbalanced training

can slow down the learning process because training data does not contribute evenly

to the global model parameters. In a general system consisting of heterogeneous con-

tainers1 and uneven data partitions, Ci is usually different for each worker.

C = max
i
Ci (3.1)

1We focus on modeling heterogeneous containers because of heterogeneous hardware or virtual ma-
chines. Transient stragglers are not part of the model. We borrow work stealing techniques from prior
work [27] to handle stragglers.
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Figure 3.1: A worker’s epoch

A worker’s epoch can be further split into smaller components. Figure 3.1 depicts

the timeline of a worker’s epoch. A worker first performs computation on its training

data using the current model to produce model gradients. The worker then communi-

cates with the servers to send its gradients via push requests and fetches the updated

model via pull requests. Depending on the algorithm and additional job parameters,

workers may divide the training data into several smaller subsets and go through a

computation-communication cycle for each subset. Such computation-communication

cycles are called mini-batches. The next epoch begins once the worker has processed

all of its mini-batches (i.e., all training data assigned to the worker).

To simplify the cost model, we make the following assumption on communication

between workers and servers. First, push requests from workers do not block gradi-

ent computation and thus can be sent asynchronously with respect to the workers’

local computation. On the other hand, a fresh pull of the whole model must always

occur before local computation takes place. We assume such a model where pull re-

quests are issued synchronously and blocks local computation [60]. The synchrony

of pull requests can be partially resolved by decoupling the computation mechanism

from communication threads [53]; this leads to a different cost formulation that can be

understood as a variation of the one described in this section.

We define the total time spent on local computation of an epoch as computation

cost, and the time spent on the communication as communication cost (denoted by

(A) and (B) in Figure 3.1, respectively). Communication cost, to be more specific,

is the sum of the elapsed times between a push request’s initiation and the response
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for a successive pull request in each mini-batch. Using Ci
comp and Ci

comm to denote

the computation and communication cost of worker i respectively, the epoch time of

worker i becomes

Ci = Ci
comp + Ci

comm
(3.2)

3.2.2 Cost Formulation

Computation cost. This cost depends on the size of the training dataset and the

computing power of workers. The entire dataset of size D is split and distributed to

w workers. Ci
comp depends on the size of the training dataset di assigned to worker

i and the computing power of the worker. Depending on the time complexity f of

the ML algorithm, Ci
comp depends on f(di) since a worker-side computation scans

all of the allocated training data during an epoch. In case an ML algorithm has linear

time complexity (e.g., NMF, MLR, LDA), Ci
comp is proportional to di. In a general

system consisting of heterogeneous containers (e.g., containers with different numbers

of cores), each worker i takes Ci
w.proc, the time spent to perform computation on a

single training data instance, which varies across workers.

Ci
comp(di) = Ci

w.procdi (3.3)

Ci
w.proc depends on factors such as the implementation of ML algorithm or the hard-

ware of the worker container. In Cruise, Ci
w.proc is measured by monitoring workers’

local computation; we measure the elapsed time for workers to compute gradients and

divide it by the amount of the training data instances. A larger dataset makes the com-

putation cost more expensive, but we can reduce the cost by introducing more workers,

which reduces the size of dataset di that each worker processes in each epoch.

Communication cost. We model communication cost as the time a worker takes

when communicating with the server. The entire model of size M is split and dis-
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tributed over s servers. mj is the size of partial models assigned to server j. We con-

sider the following two cases to model Ci
comm.

1. Server network bandwidth is the bottleneck. The serving latency of server j is the

number of bytes sent to j divided by the bandwidth bij between worker i and server

j: mjw
bij

where w is the number of workers. With a mini-batch size of B, each

worker i executes ddiB e mini-batches per epoch. Since the communication cost is

determined by the slowest server, Ci
comm = ddiB emax

j
(
mjw
bij

).

2. Worker network bandwidth is the bottleneck. In this case, the worker’s network

bandwidth is being fully utilized to serve push and pull requests. The cost is formed

as the number of bytes sent by worker i divided by its bandwidth: Ci
comm =

ddiB e
∑
j

mj

bij
.

Then, the communication cost Ci
comm is the maximum of the above two terms.

Ci
comm =

⌈di
B

⌉
max

(
max

j
(
mjw

bij
),
∑
j

mj

bij

)
(3.4)

3.2.3 Optimization

Optimization problem. In Figure 3.2, we formally define our optimization problem.

For heterogeneous environments where some machines have higher computing power

or network bandwidth. In these environments, the configuration space becomes larger,

because we also need to determine the data distribution as well as deciding whether to

run a worker or a server on a container.

The optimization goal is to find the parameters w, s,d,m that minimize the cost

function, where w and s denote the assignment of machines to workers and servers,

respectively, and d and m denote the partitioning of the training dataset and partial

models, respectively.

Given N machines, we adjust the configurations to meet the optimal balance be-

tween computation and communication costs. For example, using more machines as
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1 Given parameters
2 N : the total number of machines
3 D: the entire dataset size
4 M : the entire model size
5 B: the mini-batch size
6 Variables
7 w = {0, 1}N : wi = 1 if a worker runs on machine i
8 s = {0, 1}N : sj = 1 if a server runs on machine j
9 d = (d1, ..., dN ): training data partitioning for workers

10 m = (m1, ...,mN ): model partitioning for servers
11 Problem
12 Find w∗, s∗,d∗,m∗

13 = argmin
w,s,d,m

max
i
Ci(w, s,d,m)

14 = argmin
w,s,d,m

[
max

i

[
Ci
w.procdi+

15 ddiB emax
(
max

j
(
mj‖w‖

bij
),
∑
j

mj

bij

)]]
16 Constraints
17 ‖w‖+ ‖s‖ = N : workers and servers are assigned to N machines disjointly
18

∑
i
di = D : total number of training data samples

19
∑
j
mj =M : total number of model partitions

Figure 3.2: Optimization Problem

workers certainly brings down the computation cost by reducing the training data size

that each worker deals with. However, this leads to high communication cost due to

an increased number of push and pull requests within an epoch and fewer containers

available for servers.

Solution. Based on the problem definition in Figure 3.2, we cast the optimization

problem as Mixed Integer Programming (MIP) and solves the problem using a solver

library from Gurobi [26]. Since the quadratic terms affect the performance signifi-

cantly, we encode integer variables d and m in binary representation, which allows the

solver to multiply variables faster. As a result, the MIP program consists of O(N2)

variables, O(N) quadratic constraints, and objective terms. In case that we have ho-

mogeneous machines (i.e., all machines have the same computing power and network
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Figure 3.3: Cruise Architecture.

bandwidth), the optimal solution distributes d evenly across workers and m evenly

across servers. Thus, we can derive an analytical solution that runs in O(N). We

present our analytical solution below, but due to space constraints, we omit its deriva-

tion.

w∗ = argmin
w

[ D

‖w‖
T (‖w‖)

]
,

where T (‖w‖) = Cw.proc +
M

b
max(1,

‖w‖
N − ‖w‖

)/B.

s∗ : si = 1−wi
∗, d∗ : di =

D

‖w∗‖
,

m∗ : mj =
M

N − ‖w∗‖
, b : machines’ bandwidth

(3.5)

3.3 Cruise

We extend an existing PS system to automatically configure distributed ML execution.

The extended system called Cruise adds Optimizer and Elastic Runtime to the PS

system, as depicted in Figure 4.5. Optimizer estimates the optimal configuration for a

running ML job using runtime metrics. Following the decision of Optimizer, Elastic

Runtime applies the necessary changes dynamically to the system without stopping
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the running job.

3.3.1 Optimizer

Optimizer performs cost-based optimization by solving an optimal configuration prob-

lem formulated in § 3.2. Monitors collect runtime statistics related to the performance

(e.g., the elapsed time for workers to compute gradients) and reports the metrics to

Master periodically. Optimizer then estimates the performance in different system con-

figurations based on the runtime status. By doing so, our optimizer does not require

knowledge about the ML jobs (e.g., algorithms and hyper-parameters). After finding

the configuration that is expected to be optimal, Optimizer maps the difference from

the current configuration and generates an optimization plan, consisting of operations

provided by Elastic Runtime. By executing the operations in the plan, Cruise changes

the system configuration to the one with better performance. To achieve performance

benefit with optimization, we need to make decisions such as when to calculate an op-

timization plan, whether to execute the plan or not. We describe these policies below.

Metric Collection

Cruise collects runtime metrics to use them as inputs to the Optimizer. Workers mea-

sure local computation time and communication time and report to Master at the end of

every mini-batch. On the other hand, Servers report the metrics to Master periodically.

Since the runtime metrics can fluctuate, we apply moving average to reduce noise.

Optimization Trigger Policy

Based on the cost model above, Cruise triggers optimization after collecting sufficient

metrics to substitute the unknown variables in the cost model. We use metrics at the

mini-batch granularity to be responsive to the changes of the running job. Using met-

rics from a configured number of subsequent mini-batches, we estimate the cost of an

epoch.

In order to avoid the system from continuously reconfiguring back and forth around

the estimated optimum, Optimizer predicts the performance benefit of a new config-
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uration and skips that attempt if the gain is less than a certain threshold. A threshold

number from our experience -5%- is good enough to prevent the system from “oscil-

lating”, while allowing the system to undergo moderately-sized optimizations.

When the amount of available resources (e.g.,N ) increases, Optimizer opportunis-

tically tries to use the extra resources. If more resources become available, Optimizer

can adjust to find an optimal configuration including the new resources. When the

amount of available resources decreases, it rebalances execution accordingly.

Optimization Execution

Once the decision of a reconfiguration is made with the computed system configuration

(w∗, s∗,d∗,m∗), the new configuration is contrasted with the current configuration

(w, s,d,m) to generate a reconfiguration plan. All plans consist of a subset of four

Elastic Runtime operations, which we discuss in detail in § 3.3.2. The operation add

is for newly joining containers, while the operation delete deletes containers that

are no longer assigned any data or partial model. The operation switch is to change

an existing server container to worker or from worker to server. Training data and

model partitioning, (d,m), can be modified by migrating data between containers to

preserve the state of the running job, which we will further discuss in § 3.3.2. The

move operation migrates data between containers, starting with containers that have

the largest training data or model changes in a greedy fashion, to minimize the amount

of data to move and the number of movements.

Optimizer executes a plan by simply invoking Elastic Runtime API that reconfig-

ures system transparently without stopping training. The simplest approach to execute

the plan would be to invoke the operations sequentially. However, to make the recon-

figuration agile, Optimizer generates the plan as directed acyclic graphs of independent

operations that can be executed concurrently.
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3.3.2 Elastic Runtime

Elastic Runtime is an execution environment that exposes operations which Optimizer

can call to dynamically reconfigure the system. Elastic Runtime manages workers and

servers in the form of containers, each integrated with an Elastic Executor. Elastic

Executor runs application code on data encapsulated by Elastic Store, a distributed

key-value store that constructs an effective management scheme. Elasticity Controller

manages the distributed Elastic Executors. It is also the endpoint where Optimizer

triggers reconfigurations according to the generated optimization plan.

Elastic Runtime deals with two types of reconfigurations: resource reconfiguration

and workload repartitioning. Resource reconfiguration is achieved by Elastic Execu-

tor, a containerized and reconfigurable runtime which extends the existing PS archi-

tecture’s Executor. Elasticity Controller coordinates resource reconfiguration by easily

adding and removing Elastic Executors. Workload repartitioning is conducted effi-

ciently with Elastic Executor’s internal component, Elastic Store. An Elastic Store

encapsulates data in an in-memory storage with a management scheme that provides

flexibility in the accommodated data type (e.g., training data or model data).

Transparency must be maintained in the course of a reconfiguration. Reconfig-

uration must occur with minimal effects to the running job by maintaining the ap-

plication’s access to data without any loss or significant overhead. Elastic Executor

performs several additional tasks required for a transparent reconfiguration, such as

adaptive data ownership management or redirection of requests to the new owner of

data.

We explain the details on resource reconfiguration in § 3.3.2 and workload repar-

titioning in § 3.3.2 while maintaining transparency in § 3.3.2.

Resource Reconfiguration

Containers can be added or deleted when Optimizer determines so with operations add

and delete for which the simple signatures are provided in Figure 3.2. When add

is executed, Elastic Runtime simply launches an Elastic Executor on a new container.
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Data access interface Description
put(Key, Value) Puts (Key,Value) to Elastic Store
get(Key) Gets the value associated with Key
update(Key, Func, Delta) Updates the value for Key with the result

of Func(Value, Delta)

Reconfiguration interface Description
add(ResourceConf, RuntimeConf) Adds new containers and starts runtime on

them
delete(Containers) Deletes existing containers
switch(Container, RuntimeConf) Switches a container to run a specified run-

time
move(Blocks, SrcContainer,
DstContainer)

Moves blocks from one container to an-
other

Table 3.2: Elastic Runtime Interfaces.

In the case of a container delete, Elastic Executor stops the app code and itself to

release the container.

When deleting an executor, Elastic Runtime performs additional wrap up, corre-

sponding to its role (e.g., worker or server). Before a server-side Elastic Executor shuts

down, it redirects all remaining pull requests from workers to the new owning Elas-

tic Executors to prevent workers from waiting long for a response. For worker-side, it

waits until ongoing mini-batch to be finished and push requests are flushed to servers.

Elastic Runtime also provides switch operation that changes Elastic Executor to

another type (e.g., from server to worker or from worker to server). This operation also

involves the setup and cleanup procedure involved in add and delete. However, the

two procedures occur in parallel in the existing container and there is no container

setup or cleanup involved. This is especially beneficial in an environment with con-

strained resources as add must wait for a container to become free after a delete

completes.

Workload Repartitioning

Workload repartitioning includes changing each container’s ownership of training data/-

partial models and migrating the data accordingly. A resource reconfiguration must

occur in conjunction with workload repartitioning. When a container is added/deleted,

the workload for each container must be readjusted across the new set of containers
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now running in the system. Workload repartitioning may occur on its own in the case

of an imbalance in workload between containers.

Any runtime state of the job such as the model data across servers must be pre-

served, not to lose the job’s progress. Thus, the states must be migrated from one

container to another. In addition to such mutable data, training data across workers

which remains unchanged can enjoy the benefit of migration to reduce the overhead of

reloading the entire dataset in workload repartitioning. Both mutable and immutable

data can be stored in Elastic Stores on which workload repartitioning occurs.

Data Storage and Ownership Management: Data management in Elastic Run-

time involves a collection of Elastic Stores where the actual key-value tuples are stored.

The actual ownership of each data instance is maintained by the respective Elastic

Store, but Elasticity Controller also maintains a global ownership view to orchestrate

migration between Elastic Stores. Ownership tables are updated during the migration

process, which we will discuss the details below in this section.

Elastic Stores are composed of blocks containing data and a block is owned by

exactly one Elastic Store. The entire key-space of data is partitioned and each block

contains data for a range in the key-space. For an even partitioning of keys over blocks,

each block stores data for a hashed key range. Clients of Elastic Stores - worker and

server code - use a key which is mapped to a value to access each key-value tuple. For

each client access, the only Elastic Store owning the block where the key-value tuple

is stored processes the request according to the ownership table.

Data Access: Elastic Runtime allows values to be stored to and retrieved from

Elastic Stores through simple operations, similar to what can be done in distributed

hash tables (DHTs) [21]. The difference of Elastic Stores over such key-value stores

is that Elastic Runtime exposes options to migrate data. Elastic Store provides simple

and standard operations for clients to access and update each data instance with a

key as shown in Figure 3.2. Elastic Runtime guarantees that operations are served

exactly once by maintaining a single owner of the block containing the key-value tuple

on which the operation is conducted across all Elastic Stores. When an operation is
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requested to the Elastic Store that does not own the block, the request is processed by

remotely accessing the owner according to the ownership table in each Elastic Store.

In addition to the put/get operations, we provide update operation, which

atomically executes Func, a user-defined function that should be commutative and

accumulative to guarantee atomic incremental updates.

In Cruise, when starting a job, a worker Elastic Executor loads its assigned set

of training data using put into its local Elastic Store. While running the job, Elastic

Executor fetches the data to process for each mini-batch from the local Elastic Store

using get. Servers, however, must use update when processing a push request to

guarantee atomicity. To process a pull request, servers simply get model data from

the local Elastic Store.

Data Migration: move operation changes ownership and migrates data between

Elastic Stores. This should be done carefully to prevent loss or duplicated processing

of an operation, while changing block owner. It is also the most critical factor that

determines reconfiguration performance and thus Elastic Runtime executes multiple

moves concurrently, each move parallelized in block units.

We implement the following protocol in Elastic Runtime to provide an efficient mi-

gration process. Elasticity Controller initiates a migration for a set of blocks by sending

a message to the source container. The source container migrates blocks concurrently

to the destination container and reports Elasticity Controller about the completion of

the migration for every block, upon each ACK message from the destination container.

Finally, Elasticity Controller broadcasts ownership change of the block to all other

containers. Specifically, the block migration is done in two distinct steps: ownership

handover and actual data transfer. In the source container, when starting migration for a

block it hands over ownership first, so access operations for the block in this container

are redirected to the destination container. In the destination container, when it takes

an ownership it starts queueing access operations for the block and starts processing

them after receiving actual block data.

The key point in the migration process is that block ownership is transferred atom-
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ically such that there is always a single owner for a block. Another key point is that

even if multiple blocks are requested for migration, client access to a key is blocked

only during the actual migration of the block containing the key.

Transparency during Reconfiguration

Dynamic reconfiguration must occur without any extra work for Elastic Runtime’s

clients, but also must refrain from any performance degradation. Such transparent re-

configurations include the following requirements. First, client access APIs must be

supported during reconfiguration, maintaining read-my-write consistency. Second, in

effort to serve client access, overheads such as increased number of remote data ac-

cesses are inevitable due to resource reconfigurations. Such inefficiency must be min-

imized. Finally, the reconfiguration must guarantee that the accuracy of the model be-

ing learned is unaffected. Elastic Runtime reinforces the key requirements in achieving

transparent reconfigurations with the following features.

Data accessibility: Data must be accessible any time during and after data mi-

gration for client access. Elastic Store enables remote access with the ownership table

maintained atomically during the migration process.

Data locality: Though data is remotely accessible through local Elastic Stores,

remote access is expensive. Elastic Executor aligns its workload partitioning with the

actual data in its Elastic Store to maximize locality with the migration protocol. During

a migration, when worker code running on Elastic Executor asks for a batch of data to

process, a local set of data is guaranteed to be returned by keeping track of the keys

for local training data.

Dynamic ownership table: In Cruise, workers send requests to specific servers

containing the key of the partial model according to each worker’s local ownership

table. When the ownership update is immediately broadcasted to all worker Elastic

Executors during migration, workers can immediately request to the new owner server.

For requests that arrive at the old owner server prior to the worker-side ownership up-

date, Elastic Executor of the old owner server refers to its ownership table and redirects
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App. Dataset Hyper-parameter
Num. of
model params

NMF 16x Netflix (1.9M users, 71K movies) 1K rank 1K * 71K
LDA PubMed (8.2M documents, 141K words) 400 topics 400 * 141K
MLR Synthetic sparse (100K samples, 160K features) 4K classes 4K * 160KLasso

Table 3.3: Description of datasets used in evaluation.

the requests to the new owning server.

3.4 Evaluation

We implemented Cruise with around 20K lines of code in Java 1.8. We built Cruise on

Apache REEF [12], a library for application development on cluster resource managers

such as Apache YARN and Apache Mesos. REEF provides a control plane for data

processing frameworks including the negotiation with the cluster resource manager

and the control channel between containers.

We evaluate Cruise with three machine learning applications. Our evaluation mainly

consists of the following four sections: (1) We compare the performance of our ex-

pected optimal configuration to that of the actual optimal configuration (§ 3.4.2). (2)

We demonstrate that Cruise reduces epoch time, speeding up training (§ 3.4.3). (3)

We show how Cruise optimizes the system configuration when resource availability

changes (§ 3.4.4) and in heterogeneous environments (§ 3.4.5). (4) We investigate the

overhead incurred while optimizing the system. (§ 3.4.6).

3.4.1 Experimental Setup

Default cluster setup: We run experiments on AWS EC2 instances with YARN run-

ning on Ubuntu 14.04. Unless explicitly mentioned, we use 32 r4.xlarge instances,

each of which has 4 virtual cores, 30.5GB RAM, and 1.25 Gbps network connection
2. We launch one Elastic Executor per machine to run a worker or a server.

Workloads: We choose three popular ML workloads in different categories: rec-

ommendation, classification, and topic modeling as summarized in Table 4.9.
2AWS specifies that the r4.xlarge type provides up to 10 Gbps network bandwidth. We measured the

actual bandwidth with iperf tool.
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Non-negative Matrix Factorization (NMF) is commonly used in recommendation

systems. The main idea is to find undetermined entries in a given matrix. NMF factor-

izes a matrixM (m×n) into factor matricesL (m×r) andR (r×n), whereM ≈ LR.

We implement NMF via the stochastic gradient descent (SGD) algorithm, similar to

the one described in [54]. MatrixR is partitioned across servers, while L is partitioned

across workers, where the smallest unit of training data is a single user’s rating matrix

(1 × n). NMF experiments use the 16x Netflix dataset whose size is around 40 times

greater that the one in the evaluation of [54]. We set mini-batch size to be 10K.

LDA is an algorithm to discover hidden properties (topic) from a group of docu-

ments. Each document consists of a bag of words, where LDA associates latent topic

assignments. Our LDA implementation uses an efficient variant of the collapsed Gibbs

sampling algorithm [61], which is widely used [47, 54]. We run LDA experiments us-

ing the PubMed dataset. Our dataset is 15 times larger than one of the datasets used

in [54]. We process 1K documents in a mini-batch.

Multinomial Logistic Regression (MLR) is an algorithm for classification. Each

d-dimensional observation x ∈ Rd belongs to one of the M classes, with the model

parameter size of M × d. We also implement MLR using SGD. Our experiments use

a synthetic dataset generated by a public script from the Petuum framework [7]. The

dataset is around 46 times greater that the one used in the evaluation of [54]. We

process 1K observations in a mini-batch for our experiments.

Optimizer setup: We observe that the performance of the initial mini-batches fluc-

tuate until the system stabilizes. To prevent Optimizer from computing the cost inaccu-

rately, we configure it to wait until all workers finish a set of mini-batches. In addition,

Optimizer does not trigger reconfiguration if the estimated performance gain (in terms

of the cost) is below 5% in order to avoid oscillation. As mentioned in § 3.2.3, we use

the O(N) analytical solver for the homogeneous environment and use the ILP solver

for the heterogeneous environment.
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App. Initial Cruise’s Optimal Rel.
(W, S) Choice (W, S) Perf

NMF (27, 5) (24, 8) (23, 9) 98.8%
(18, 14) (22, 10) 93.9%

MLR (18, 14) (26, 6) (27, 5) 97.8%(23, 9)

LDA (27, 5) (18, 14) (18, 14) 100%(23, 9)

Lasso (27, 5) (20, 12) (20, 12) 100%(23, 9)

Table 3.4: Comparison between the configurations found by Cruise’s Optimizer and the ground
truth optimum found by the grid search.

3.4.2 Finding Baselines with Grid Search

Before evaluating Cruise’s optimization, we find the baseline for all experiments. We

simply perform a grid search that runs all possible configurations (w, s), to find the

ground truth optimal configurations for the various experiments. Since such a grid

search including (d,m) is quite complicated, we use heuristics to eliminate these

variables. In the homogeneous environment, an even partitioning is intuitively opti-

mal. The result of this grid search yields the ‘Optimal (W, S)’ column in Table 3.4 for

the cases in Table 3.1 3.1. Relative performance is the epoch time in the optimal (W,

S), divided by the epoch time in each configuration. In the heterogeneous environment,

we distribute blocks proportional to each machine’s power based on metrics including

worker’s local computation time and server’s bandwidth.

3.4.3 Optimization in the Homogeneous Environment

After performing the grid search, we run NMF, MLR, Lasso, and LDA each starting

with its optimal configuration and the optimal configurations for the other two appli-

cations (as the two configurations are reasonable starting points for users running the

applications in the same cluster).

Cruise finds configurations close to the ground-truth optimum found in § 3.4.2

for the various cases mentioned in § 3.1 in the homogeneous environment. Table 3.4

shows the comparisons: In NMF and MLR, Cruise chooses near-optimal configura-

tions where the number of machines for each role differs by one node compared to the
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Figure 3.4: Epoch time of an NMF job starting at 3 different configurations.

optimum found by grid search. The resulting performance in terms of epoch time is

slightly inferior to the optimum but the difference is smaller than 6.1%. Cruise finds the

optimal configuration in LDA and Lasso with the same performance as the optimum.

Figure 3.4 depicts how Cruise decreases the epoch times of NMF. In the figure, the

black line shows the global optimum and the blue and red lines show optimizations

from the other initial configurations. The dotted lines show the performance without

optimization to the corresponding colors. The vertical lines represent the reconfigu-

ration of each cases. Starting at (W:27, S:5), Cruise moves to (W:24, S:8), with the

relative performance of 1.1% slower than the optimum at (W:23, S:9). With the ini-

tial (W:18, S:14) configuration, Cruise reconfigures to (W:22, S:10), with 6.5% slower

performance than the optimum. We observe that Cruise optimizes the misconfigured

NMF jobs with significant drops in epoch time of 35.8% and 22.3% in each case, soon

stabilizing to that of the new configuration. Our experiments with other applications

in the same environment also decrease epoch time by 55.3% and 8.7% in MLR, and

37.5% and 17.4% in LDA, and 42.7% and 28.5% in Lasso.
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Figure 3.5: Utilizing opportunistic resources in the NMF job.

3.4.4 Utilizing Opportunistic Resources

The previous experiments show how Cruise optimizes system configuration when

available resources do not change. Cruise’s capability to optimize system configuration

during runtime, however, is more powerful when available resources change over time.

Cruise keeps track of available resources in the cluster and updates the system config-

uration if there are changes in resource availability. In this experiment, we assume that

the cluster has 16 extra containers that are available opportunistically; starting with 16

containers, we add/reclaim 16 containers at every 20 minutes. We show how Cruise’s

runtime optimization utilizes opportunistic resources by comparing cases with and

without optimization. In both cases, we run ML jobs with the initial configuration of

(W:14, S:2), the actual optimum found for 16 containers from experiments.

Figure 3.5 demonstrates that the average epoch time approximately halves when

16 more resources are available. The training time reduces 18.4% and the resource

cost reduces 12% by efficiently using oppotunistic resources, which is cheaper than

static resources. The cost per hour is 6.7 × lower for r4.xlarge type. In the figure, the

blue line shows Cruise’s ability to adapt to resource availability compared to the base-
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line drawn in black line, where the configuration is fixed to the initial 16 resources.

Vertical lines represent the event of resource addition (green) and reclamation (red).

The areas filled in sky-blue denote the reconfigurations. At the 20th minute, the con-

figuration moves toward (W:25, S:7), taking advantage of the added resources. The

reconfiguration takes around 87.3 seconds, most of the overhead caused by the data

migration of the half of total training data and model data, to the new containers. At

the 40th minute, Cruise returns to the previous configuration (W:12, S:4) with 98.4

seconds of reconfiguration overhead for data migration and state cleanup. The addi-

tional resources become available again at the 60th minute and Cruise goes to (W:25,

S:7), same as the previous optimization at the [20, 40] minutes time interval.

3.4.5 Optimization in the Heterogeneous Environment

There are two different aspects to the setup in the heterogeneous environment from the

homogeneous environment. Workload should be partitioned differently corresponding

to machine types and each type of machine should be assigned a more proper role

(e.g., worker or server). The heterogeneous environment uses two types of machines:

in addition to the 28 instances of r4.xlarge, we use 4 faster machines (r4.4xlarge) that

have 16 virtual cores, 122 GB RAM, and 5.00 Gbps network connection. 3 In our

experiments, we allocate the faster instances evenly to begin with, 2 for workers and

2 for servers. For block partitioning, we start all experiments with even partitioning

denoted as ‘E’, whereas the optimal configuration distributes blocks proportially to

machine’s capability, which is denoted as ‘P’. For example, we denote a configuration

of 20 workers with 3 strong machines and 12 servers with 1 strong machine with even

block partitioning as (W:17+3, S:11+1)|E. We run the same three applications with the

same starting points as the homogeneous environment, and we show how differently

Cruise optimizes the configuration in the heterogeneous environment.

Figure 3.6 shows the results of running NMF starting at (W:25+2, S:3+2)|E. Cruise

reconfigures the job to (W:20+4, S:8+0)|E close to the ground truth optimum in the

3AWS specifies that the r4.4xlarge type provides up to 10 Gbps network bandwidth. We measured the
actual bandwidth with iperf tool.
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Figure 3.6: Epoch time of NMF at different starting points in the heterogeneous environment.
heterogeneous environment (W:19+4, S:9+0)|P. Data is repartitioned so that the faster

instances have about 2 times more blocks than the slower instances, reflecting the

heterogeneity. Epoch time decreases by 35.2% (from 162 s to 105 s). Our experi-

ments with other applications in the same environment also reduce the epoch times by

58.3% in MLR starting at (W:16+2, S:12+2)|E and 41.3% in LDA starting at (W:25+2,

S:3+2)|E.

To focus on the benefit of role reassignment and workload repartitioning, we run

the job again at (W:21+2, S:7+2)|E, without any optimization (the green line). Here,

we observe that this static configuration is 12.4% slower (118 s vs. 105 s) than the

epoch time for the configuration chosen by Cruise.

3.4.6 Reconfiguration Speed

The optimization procedure is composed of cost calculation and plan execution. Cost

calculation takes 30 ms for the homogeneous environment and 37.4 s for the hetero-

geneous environment on average. More time is spent on plan execution, especially

for move: the overhead includes (de)serialization time, network transfer time, and the

time to acquire the lock on the block to migrate. The data size also affects the time to
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execute the operation. The overhead of add and delete is relatively small, which

takes around 2~3 s for resource initialization and cleanup. The time for switch is

more negligible since there is no cost for resource setup

Here we break down the plan execution of an NMF experiment that starts from

(W:18, S:14) in § 3.4.3. The plan changes the configuration to (W:22, S:10), composed

of 4 switches from server to worker and 30 moves that repartition data and model

blocks. It takes 31.3 s in total for our plan executor to execute these operations in

parallel. Most of this time is taken during worker-side moves, due to the huge size of

data being migrated. Input data is divided into 200 worker blocks. A worker block is

100 MB, each of which contains 10K items. 18 moves migrate 36 data blocks in total

between worker executors. The longest move takes 25.8 s, migrating 4 blocks at once,

serving as the bottleneck to this plan execution time. On the other hand, model data is

divided into 128 server blocks. Block size is 2 MB and each contains only 280 items.

The plan migrates 36 model blocks with 12 moves. Server-side moves take at most

1.4s.

3.5 Related Work

TuPAQ [48] is a system for identifying ML model configurations (e.g., support vector

machine vs. logistic regression, hyper-parameter values) that lead to high performance

in terms of model accuracy, built on Apache Spark [38, 64]. TuPAQ casts ML model

identification as a query planning problem and applies a bandit allocation strategy as

well as various optimizations such as batching, optimal cluster sizing, and advanced

hyper-parameter tuning techniques to solve the problem efficiently. This study focuses

on supervised ML models. In contrast, Cruise addresses the problem of tuning system

configuration in the PS architecture.

SystemML [32] is a hybrid runtime system that uses in-memory Control Program

(CP) and MapReduce (MR) jobs to run declarative ML programs. There also is another

version of the work [6] that applied the same concept to Spark [64], regarding Spark

Driver as the CP and Executors as the worker jobs. The system focuses on optimizing
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memory configurations during runtime when there is a change in available resources.

On the other hand, Cruise optimizes the running time of ML applications on the PS

architecture by automatically tuning system configuration.

Yan et al. [60] propose a cost formulization that predicts the computation and com-

munication overheads of Deep Neural Network (DNN) applications by modeling the

internals of the algorithm. In contrast, Cruise measures computation and communi-

cation time at run time instead of modeling the internals of the algorithm, uses the

run-time measurement for cost-based optimization, and applies the estimated optimal

system configuration by reconfiguring a running job, which allows us to take advan-

tage of resource elasticity.

Starfish [29], built on Apache Hadoop [51], performs optimization on MapReduce.

It gathers job profiles from runtime statistics via dynamic instrumentation for job-level

tuning, guaranteeing shorter execution times. Many of Starfish’s design considerations

come from the MapReduce programming model, while Cruise targets ML applications

running on the PS architecture.

Recent works like Bösen [54], Ako [53], and MALT [39] do not decide on the

number of workers and servers since each node runs both worker and server. They

have different styles of model synchronization. Bösen is a PS implementation, which

requires all-to-all communication. Ako is a peer-to-peer DNN training system. Ako

exchanges partial gradients across multiple rounds to adjust the hardware and statisti-

cal efficiency. Similarly, MALT is a peer-to-peer ML training system where each node

exchanges parameter updates with log n nodes deterministically. In contrast, Cruise

employs cost-based optimization, allows flexible worker and server allocation, han-

dles elastically changing resources, and considers heterogeneous environments.

3.6 Summary

In this chapter, we present a methodology to automatically tune system configuration

of PS-based ML systems. We build Cruise by extending an existing PS-based system to

optimize system configuration based on the methodology. Cruise Optimizer estimates
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the optimal system configuration - resource configuration and workload partitioning -

using a cost-based model with runtime metrics. Elastic Runtime enables efficient run-

time reconfigurations according to the computed optimal configuration. Our evaluation

shows that Cruise frees ML application developers of choosing right system configu-

ration by tuning system configuration automatically. Cruise is publicly available at

https://github.com/snuspl/cruise.
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Chapter 4

A Scheduling Framework Optimized
for Multiple Distributed Machine
Learning Jobs

Machine Learning (ML) is growing ever more popular with the diversity of its use

cases. However, distributed ML training jobs often suffer from inefficient resource us-

ages, only using up to about half of the overall CPU and network resources that they

are provided with, due to the fact that ML jobs typically consist of iterative training

cycles that repeat computation and communication steps, each of which uses only a

single type of resource intensively. This results in low resource utilization rates, as it

leaves most of the other resource types idle during each step. Although asynchronous

execution of the different steps or co-locating multiple jobs with naive trial-and-error

have mitigated the problem to a certain degree, they often suffer from the model stale-

ness and the interference between the co-located jobs.

We introduce Harmony, a new scheduling framework that executes multiple Param-

eter-Server ML training jobs together to improve cluster resource utilization. Harmony

coordinates a fine-grained execution of co-located jobs with complementary resource

usages to avoid contention and to efficiently share resources between the jobs. Har-

mony enables fine-grained execution by first dividing each job into subtasks, each of
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which dominantly uses a single type of resource. Then, Harmony models the perfor-

mance of co-located jobs based on runtime metrics to identify the jobs that can run

harmoniously, and dynamically groups them in real-time for higher utilization rates.

While the increased number of simultaneous jobs increases the memory pressure, Har-

mony resolves the problem by using a data spill/reload mechanism, optimized for mul-

tiple jobs with the iterative execution pattern. Our evaluation shows that Harmony im-

proves cluster resource utilization by up to 1.65×, resulting in a reduction of the mean

ML training job time by about 53%, and makespan, the total time to process all given

jobs, by about 38%, compared to the traditional approaches that allocate dedicated

resources to each job.

The rest of the chapter is organized as follows: §4.1 describes the problem that we

aim to solve, §4.2 illustrates the overview of Harmony, §4.3 describes how Harmony

divides jobs into subtasks and enables multiplexing of multiple jobs while mitigating

memory pressures, §4.3.2 elaborates on how Harmony profiles and models jobs to

predict and appropriately group jobs to co-locate on the provided nodes, §4.4 presents

the evaluation results and the comparison between Harmony and the baselines that

represent existing systems, §4.5 discusses the limitations of Harmony and the future

works, §4.6 covers related works, and §4.7 concludes.

4.1 Resource Under-utilization Problems in PS ML Training

In a training iteration, each step (e.g., PULL, COMP, PUSH) intensively uses a specific

type of resource, while leaving the others mostly idle, resulting in an under-utilization

of resources. In the COMP step, CPU and memory resources are intensively used,

while network resources are heavily utilized in the PUSH and PULL steps. Figure 4.1

shows how CPU and network resources are underutilized while running ML applica-

tions with different algorithms, different hyper-parameters, and with different datasets.

In the experiment, we use multinomial logistic regression (MLR) and latent Dirichlet

allocation (LDA) as workloads, which are widely used for classification and topic

modeling. We run the experiment 10 times on 16 AWS m4.2xlarge EC2 instances us-
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Figure 4.1: Resource utilization of maching learning training, varying applications, datasets,
and hyper-parameters.

ing our PS system, which has comparable performance to an open-source PS system

referenced in §4.4. In both applications, we can observe that the overall utilization

rates stay rather indifferent, but also that the ratios of CPU and network utilization

vary greatly.

Next, Figure 4.2 illustrates how the resource utilization changes with the number

of machines allocated to the job. More number of machines naturally means that we

could use higher degree of parallelism (DoP) using more CPU cores across multiple

machines, leading to a shorter completion time, but also that the communication cost

increases with more machines, leading to lower CPU resource utilization. On the other

hand, less machines lead to less communication and thus higher utilization of CPU

resources. Nevertheless, it wastes network resources, which could be used to increase

the parallelism of a job to shorten its execution time. In short, although increasing

the number of machines results in better execution time and can adjust the ratio of

CPU and network resource utilization rates, the resource under-utilization problem

still remains as a challenge.

Co-location of Multiple Machine Learning Jobs. A possible approach in solving

the inefficiency caused by idle resources of the different steps is to run multiple tasks
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Figure 4.2: Running a job with different number of machines.

of different jobs simultaneously. As the tasks that use different types of resources can

run at the same time, we can expect the different types of resources to be utilized

more intensively. Nevertheless, naively putting different jobs together does not solve

the problem.

In Figure 4.3, we empirically show how co-located parameter server jobs may still

lead to resource under-utilization. In addition to the MLR application used in Fig-

ure 4.1, we use non-negative matrix factorization (NMF) and lasso regression (Lasso)

workloads, which are widely used for recommendation and regression problems, re-

spectively. We compare the results when applications run on their own, and also when

they run while they are co-located with others. When run on its own, each application

shows varying levels of CPU and network resource utilization rates depending on the

workload, as shown in the left half of Figure 4.3. Nevertheless, the overall utilization

rates do not improve much even when co-located with other workloads, as shown in

the right half of Figure 4.3. We first list the observations of each of the cases as follows:

• NMF+Lasso: Although NMF shows relatively high CPU utilization and Lasso shows

relatively high network utilization when run on their own, co-locating two jobs do

not result in high utilization of both resources, but averages out the utilization for

both of them to around 50%. Also, the standard error bars for co-location are much
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Figure 4.3: Resource utilization of co-located multiple parameter server jobs.

larger compared to when running each job on their own, which indicates that re-

source utilizations are more unpredictable.

• NMF+MLR: Similar to the NMF+Lasso case, this co-location also results in an

average utilization of different resources and high variance in the utilization rates,

instead of in higher utilization rates.

• NMF+MLR+Lasso: Co-locating all three jobs results in an out-of-memory error,

as the sum of their memory use exceeds the amount of the total available memory.

This indicates that higher utilization rates cannot be achieved by simply increasing

the number of concurrent jobs.

As it can be seen from the observations, the resource under-utilization problem

cannot be easily addressed with a black box approach, where jobs are naively co-

located without being aware of the potential problems of the co-location. First, the root

cause of under-utilization comes from the resource contentions that occur between the

naively co-located jobs, as the tasks of different jobs that use the same type of resources

compete with each other for the specific resource, as illustrated in Figure 4.4a. Such

resource contention results in a lagged and unpredictable completion of each step of

the job, and leaves big portions of resources idle. Second, the performance of co-

located jobs is heavily dependent on the type of the co-located jobs. When grouping
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jobs together, one must carefully consider the characteristics and the complementary

effects of their co-location, as otherwise it would lead to an imbalanced utilization

of resources or even higher resource contention problems. Third, memory pressure

from co-located ML jobs may result in job slowdown by GC overheads or job failures

by OOM error. For performance reason, input data is often maintained in workers’

memory because during training iterations workers repeatedly access the input data.

Also model data is maintained in servers’ memory to respond immediately for arbitrary

accesses from workers. In addition, each training step consumes additional memory

resources to generate intermediate results. As a result, arbitrarily executing multiple

co-located jobs incurs higher memory pressure.

Therefore, in order to achieve higher resource utilizations, it is crucial to combine

and execute tasks in a coordinated way, with the knowledge about resource use of each

of the different task steps of different jobs. In the following section, we describe our

solution to resolve these challenges and achieve efficient utilization of resources for

co-location of PS ML jobs.
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4.2 Harmony Overview

We introduce Harmony, a new scheduling framework that embodies our approach,

which co-locates jobs with complementary resource use with each other and multi-

plexes their tasks to harmoniously share resources. To enable this, we provide three

key techniques. First, we execute and control jobs with fine-grained scheduling unit

called subtasks, each of which uses a specific type of resources as illustrated in Fig-

ure 4.4b. With subtasks, we can prevent the resource contention (e.g., CPU, network)

with fine-grained management of the resource usage pattern during the execution co-

located jobs.

Second, we co-locate jobs with complementary resource usage patterns to maxi-

mize the effect of job multiplexing. To solve this scheduling problem, we first model

the performance of co-located jobs with the metrics collected during runtime. The

subtask-based execution makes the performance predictable, and enables performance

modeling. Based on the performance model, we devise a scalable scheduling algorithm

that chooses the option for higher resource utilization, as well as for shorter execution

times. In addition, to deal with the changing pool of jobs, we design a system and a

scheduling algorithm to dynamically regroup jobs and to reallocate resources to them.

Lastly, we only maintain the input data of the subtasks in action in memory, while

spilling the input data of other jobs on disk. This way, Harmony successfully relieves

the memory pressure, by letting the jobs use memory resource in turns. However, as

putting too much data on disk may lead to an increased latency for data loading due

to a shortage of disk bandwidth, we dynamically balance the amount of input data in

memory and disk. Also, we support similar mechanisms for the model data when the

input data spill is not enough for mitigating the memory pressure.

Harmony provides a runtime to execute jobs, consisting of a master, with multi-

ple servers and workers, as depicted in Figure 4.5. The master serves as a center for

collecting metrics, grouping jobs into job groups, and scheduling them across avail-

able machines. Once a job is submitted, its worker and server code with its arguments
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are sent to the master, and the job is enqueued to the job queue with a waiting

state. When the job is picked up, it gets naively assigned to a group and executed on

the group’s set of machines to be profiled. The master triggers the appropriate work-

ers to load the input data, and servers to initialize their model parameters. Once they

are set up, the master distributes its subtasks across workers, and the job enters the

profiling state and the profiled and running state afterwards.

Workers continuously collect runtime metrics during the execution to keep the

master and job scheduler updated with the profiled metrics. Based on the profiled met-

rics, the job is assigned to a job group by the job scheduler, through the job scheduling

algorithm described in §4.3.2, and gets paused or migrated to the machine allo-

cated for the optimized job group, with techniques that minimize the overhead on the

progress of the jobs in execution. In the end, jobs are grouped into appropriate job

groups, and each job group gets executed on the allocated machines until the conver-

gence of the model (finished).

4.3 Multiplexing ML Jobs

In this section, we first describe how Harmony executes multiple tasks in each worker

with minimal contention using subtasks. We then describe scheduling for grouping

jobs with complementary resource usage patterns, built upon the subtask-based exe-

cution model. Lastly, we describe our dynamic data reloading technique for relieving

memory pressure caused by the multiple co-located jobs.
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Figure 4.6: Scheduling and execution of jobs A, B, and C, where A is at the COMP subtask,
and B and C are at the COMM subtask.

4.3.1 Fine-grained Execution with Subtasks

To minimize the resource contention between jobs, we decompose long-running worker

tasks into smaller subtasks, each of which uses a single dominant type of a resource. In

our context, COMP subtasks use CPU resources while PULL and PUSH subtasks use

network resources. For the ease of representation, we call the network-intensive PULL

and PUSH subtasks as COMM subtasks. The COMP and COMM subtasks from mul-

tiple different jobs can be coordinated so that only a single subtask can run at a time for

a specific type of resources and the subtasks that require different types of resources

simultaneously run together, utilizing the available resources.

Figure 4.6 illustrates how subtasks are scheduled and executed in a pipelined man-

ner on Harmony. On the left, the subtask synchronizer in the master manages the state

of the distributed job subtasks across multiple workers, to synchronize the overall

progress of the job. On the right, in the worker, the subtasks get enqueued to the CPU

or the network queue respectively, by the threads that run the subtasks for each job.

The subtask executors of the workers run the queued subtasks in the provided order. In

a subtask executor, a single CPU subtask is executed at a time as a single CPU subtask

usually uses almost all of the provided CPU resources. On the other hand, as network

subtasks often show asynchronous behaviors and cause idle network resources during

the time that it takes for the servers to handle the pull/push requests, a single network

subtask may not fully utilize the given network resources. To solve this, we schedule a
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secondary network subtask that uses the network resources whenever available, while

yielding the network resources to the primary network subtask whenever a contention

occurs.

Subtask scheduling and execution is illustrated by an example shown in Figure 4.6(1-

4). In the example, when a single COMM subtask of job C completes its execution (1),

the SubTask Synchronizer checks the completeness of the other COMM subtasks of

the other workers to synchronize the progress of the job (2). Then, when all distributed

COMM subtasks of job C are complete, the COMP subtask of C is enqueued to the

CPU queue (3-4), to be executed after the COMP subtask of A, which is already in

execution. The executions of the subtasks occur in a similar manner for all other types

of subtasks for each of the jobs.

Harmony does not require users to write their code with subtasks. Decomposing

a worker task into subtasks can be done internally by the system, because model

synchronization step is done by explicitly calling PS push/pull interfaces. Harmony

naturally treats PS push/pull methods as COMM subtasks and the remainder parts

of worker task as COMP subtasks. For better separation of resource use, we modify

push/pull methods to minimize its CPU consumptions by performing data (de)serialization

outside of COMM subtask.

In the following section, we describe higher-level scheduling problem of deter-

mining which jobs to co-locate and how many number of machines to allocate to co-

located jobs.

4.3.2 Dynamic Grouping of Jobs

Although now we have the techniques to run multiple co-located ML jobs without

contention, the performance varies greatly based on which jobs are co-located together.

Thus, it is crucial to co-locate jobs with complementary resource usages together.

Harmony divides jobs into groups, where each group means a set of jobs to be co-

located, and allocates a set of machine resources to each group. We call the group of

co-located jobs as a job group, and a full iteration of the job group as a group iteration.
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A job group should have the balanced use of resources and the allocated resources

should be keep busy during group iterations. To achieve this goal, Harmony makes a

scheduling decision using runtime metrics and the performance model.

In this section, we describe how Harmony collects runtime metrics (§4.3.2) and

models performance of co-located jobs based on the collected metrics (§4.3.2), and

finally schedules jobs and machine resources (§4.3.2) and performs regrouping during

runtime (§4.3.2).

Profiling

Fine-grained subtasks enable us to manage iterative ML jobs to run with smaller re-

source contention between their tasks, which makes it much easier to predict the per-

formance of future iterations. Resource utilization can be profiled using the execution

time of the individual subtasks. ML jobs on Harmony show stable performance with

reduced resource contention and thus the profiled metrics of subtasks can be meaning-

fully reused, while being updated using moving averages for up-to-date information.

Group iteration time and the resource utilization can be predicted using these metrics.

Harmony has no information about the jobs at submission. Harmony first tries

to run as many jobs as possible at initialization, naively grouping and allocating the

smallest number of machines for each job, to minimize the communication overhead

and get information from as many jobs as possible. A 3-tuple is produced after each

job j in group g is profiled, which consists of the average execution times of CPU and

Network subtasks and the number of machines allocated to the group when collecting

metrics (Tcpuj , Tnetj , cg). Although multiple jobs are co-located on the machines, we

can obtain meaningful metrics for each subtask, since individual subtasks are executed

in isolation from other subtasks. After the profiling, the jobs carry on with their exe-

cution, until they are later paused or migrated to other machines for better co-location

with other jobs. The initial profiling phase terminates when the profiling for all ini-

tially started jobs completes. Those not profiled yet wait in the waiting queue and are

selected to profile later.
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Figure 4.7: Problematic cases of unbalanced co-located jobs.

For jobs not selected in the initial profiling and jobs arrived later, the scheduler

profiles the job in background, deploying to a job group with the smallest number of

machines or a job group that is already profiling an another new job, to minimize the

potential degradation of U .

Performance Modeling

When predicting group iteration time using the collected metrics, Harmony considers

several cases of non-uniform resource use of jobs into account, since naively grouping

jobs usually does not produce results where multiple co-located jobs fully utilize the

resources. Figure 4.7 shows two cases where naive subtask scheduling can be prob-

lematic. In the figure, subtasks with bold lines incur under-utilization of resources and

Red hatched boxes represent idle resources. First, Figure 4.7a presents a resource-

bound case, in which jobs in a job group are bounded by a certain type of resources

due to imbalanced resource use, leaving the other type of resources idle. Second, Fig-

ure 4.7b shows a job-bound case, where a certain job has a much longer job iteration

time compared to other jobs.

From the observations, we derive the equation for group iteration time Tg itrg ,

which is the time for all jobs j of a group g to finish an iteration, with three terms:

the maximum of job iteration times for the job-bound case, and the sum of COMP or
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COMM subtask times of the grouped jobs for the resource-bound case, as follows:

Tg itrg = max
(∑

j∈g
Tcpuj ,

∑
j∈g

Tnetj ,max
j∈g

Tj itrj

)
(4.1)

The time for a COMP subtask Tcpuj can be controlled by increasing the degree

of parallelism (DoP), since each COMP subtask processes a smaller portion of input

data with higher DoP, while COMM subtasks using network resources remain rather

indifferent. Thus, Tcpuj of a job j can be expressed with respect to the group DoP mg

of the job group g as follows:

Tcpuj ∝
1

mg
(j ∈ g) (4.2)

This implies that manipulating the group DoP mg of the job group may have an

effect on Tg itrg according to Eq.4.1.

The utilization of CPU and network resources can be expressed as the percentage

of the time spent by the subtasks for each type of resource, out of the group iteration

time derived above (Tg itrg ). The utilization rates of CPU and network can be thus

expressed as a two-dimensional vector as follows:

U(g) =
[
Ucpug Unetg

]
=

[∑
j∈g

Tcpuj

Tg itrg

∑
j∈g

Tnetj

Tg itrg

]
(4.3)

If the job group is CPU-bound, then the CPU utilization rate becomes 1, and the

same can be inferred for the network. In the job-bound case, the denominator (Tg itrg )

is larger than both the sum of CPU subtasks and network subtasks in the job group,

leaving both type of resources partially idle.

We define the resource utilization of an entire cluster U as the weighted sum of the

utilization rates of all job groups, where G is the set of job groups:

U =

∑
g∈G

(mg × U(g))∑
g∈G

mg
(4.4)
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Harmony constantly seeks for higher resource utilization U , and when it detects a

potential improvement, it dynamically updates the jobs, job groups, and the allocated

machines to increase efficiency.

There are a few other things that we consider with our performance model. First,

we prefer fitting a smaller number of jobs in a job group for shorter JCTs and lower

memory pressure. Second, CPU utilization rates are treated more importantly than the

network utilization in our model, since CPU resources directly contribute to the job

progress, whereas network resources is for communication.

Grouping Jobs and Allocating Machines

Based on the model, Harmony makes a scheduling decision that groups jobs and al-

locates machines to each job group. Concretely, we need to address the following

questions:

• How many jobs should we run concurrently?

• How many job groups should we create, and how should we assign the jobs to the

groups?

• How should we allocate resources across the job groups?

However, the scheduling problem is too complex with exponential time complexity

and further Harmony requires the continuous scheduling corresponding to the chang-

ing pool of jobs. To be practical, we use heuristics that roughly determine initial values

and do fine-tuning, which we show the scalability in Section 4.4.

Algorithm 1 presents the scheduling algorithm. The algorithm observes all jobs

that are profiled and in the state of running, paused, or profiled (L2). While

incrementing the number of jobs to consider, starting from a single job, Harmony tries

to find the set of job groups G with better resource utilization, considering how to

group them together and how to allocate resources to them (L4-13). Harmony first

determines the number of groups n∗G, which determines the DoP that balances the

CPU and network usage of the jobs the most, assuming that all groups have an equal
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Algorithm 1: Job scheduling algorithm.
input : Jpaused: list of paused jobs,

Jprofiled: list of profiled jobs,
Jrunning: list of running jobs,
M : set of machines

output: G: grouping that maximizes utilization.
1 Function schedule(Jprofiled, Jpaused, Jrunning, M):
2 Jto sched ← Jprofiled ∪ Jpaused ∪ Jrunning
3 Umax ← 0
4 for nj ← 2 to |Jto sched| do
5 Jto group ← Jto sched[0 : nj − 1]
6 nG

∗ ← argmin
nG

∑
j∈Jto group

|Tcpuj
(nG)− Tnetj |

7 GJ ← assignJobs(Jto group, n
∗
G)

8 GM ← allocateMachines(GJ ,M, n∗G)
9 G← (GJ , GM )

10 if U(G) > Umax then
11 Umax ← U(G)

12 else
13 break

14 return G

number of machines and thus the same DoP for all of the jobs (L6). Here, since we

assume that the DoP is equal among the job groups, mg ∝ 1
nG

and thus Tcpu∝nG (∵

Eq.4.2). Then, with the number of job groups decided, Harmony performs a grouping

algorithm (L7), and allocates machines to the job groups (L8). With this information,

Harmony computes the potential resource utilization U(G), and continues with the

loop if it sees potential improvement in the overall utilization (L10). Once it sees no

more improvement with the increasing set of jobs, Harmony stops and runs the jobs

with the optimized set of job groups (L12-14).

Algorithm 2 describes the grouping algorithm in more detail, which assigns jobs

J into a given number of groups n∗G, towards a higher resource utilization. In order to

prevent job-bound cases and to minimize the average group iteration time of the job

groups, we place jobs with similar iteration times together as much as possible. For

example, if large jobs are spread around each of the job groups, then it would result in

a higher average group iteration time, due to the scattered large jobs, so we try to keep

the large ones together. In order to do this, the scheduler first sorts jobs by their job
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Algorithm 2: Assign jobs to groups.
input : J : jobs to assign, nG: number of groups.
output: GJ : list of job groups.

1 Function assignJobs(J , nG):
// Sort J by Tj itr in descending order.

2 Jsort ← sortByDsc(J, j ⇒ Tj itrj )
3 GJ ← ∅// GJ: list of job groups.

4 for i← 0 to nG − 1 do
5 g ← ∅// g: i-th job group.

6 while |g| ≤
⌊
|J|
nG

⌋
do

// l.popFirst(pred): pop the first item in l, which

satisfies pred.

// Tdiffj : Tcpuj − Tnetj , Sdiffg :
∑

j∈g(Tdiffj )

7 j ←Jsort.popFirst(j ⇒ Tdiffj×Sdiffg ≤ 0)
8 if j = ∅ then
9 j ← Jsort.pop()

10 g.add(j)

11 GJ [i]← g

12 Jsort
′ ← sortByDsc(Jsort, j ⇒ |Tdiffj |)

13 foreach j ∈ Jsort′ do
// g∗: group that has the most opposite resource use from

j.

14 g∗ ← argmin
g∈GJ

|Tdiffj + Sdiffg |

15 G− ← ∅ // G−: groups to exclude

16 while Tj itrj > max
j′∈g∗

(Tj itrj′ ) do

17 if isJobBound(g∗ ∪ {j}) then
18 G−.add(g∗)
19 g∗ ← argmin

g∈(GJ−G−)
|Tdiffj + Sdiffg |

20 else
21 break

22 g∗.add(j)

23 return GJ

iteration time Tj itrj (L2).

Then, it determines whether the jobs of the group g are CPU-bound (
∑

j′∈g Tdiffj′ =∑
j′∈g(Tcpuj′ −Tnetj′ ) > 0) or network-bound (

∑
j′∈g Tdiffj′ < 0), and chooses the

largest job j that has the complementary resource-bound pattern to place in the group

(Tdiffj×
∑

j′∈g Tdiffj′ < 0) (L7). If there is no job j with a complementary resource-

bound pattern, it just picks the largest one out of the jobs Jsort (L8-9). This process

repeats until each of the n∗G job groups are filled up with
⌊ |J |
nG

⌋
jobs (L6).
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For the remaining |J |−nG ·
⌊ |J |
nG

⌋
jobs, the scheduler sorts the jobs by the “resource-

imbalance” of the job |Tdiffj | (L12), and finds the group g∗ that would balance out the

resource use the most in that order (g∗ ← argming∈GJ
|Tdiffj +

∑
j′∈g Tdiffj′ |) (L14).

In the case where the iteration time of job j is larger than all of the jobs in the chosen

job group g∗ (Tj itrj > maxj′∈g∗ Tj itrj′ ), it checks if a new job group g∗∗ ← g∗ ∪ j

would be job-bound (Tg itrg∗∗ =Tj itrj ,∵Eq.4.1), and looks for the next best group if

that is the case (g∗ ← argming∈(GJ−{g∗}) |Tdiffj +
∑

j′∈g Tdiffj′ |), until it is no longer

job-bound by the job j (L15-22).

Lastly, the algorithm fine-tunes the result by swapping jobs between the groups,

until the convergence of the job models. First, it picks the most imbalanced group

gu ← argmaxg∈GJ
|
∑

j∈g Tdiffj |, and finds the group that has the most complemen-

tary resource use argmaxg∈(GJ−{gu}) |
∑

j∈gu Tdiffj−
∑

j∈g Tdiffj |. Then, it finds the

tuple of jobs from each of the groups that would minimize the “resource-imbalance”

for both of the groups, and swaps the two jobs between the groups. The fine-tuning

repeats until there are no possible swap cases.

After the job assignment, we distribute the machines to the job groups to balance

the computation and communication in each job group. First, the algorithm allocates

one machine for every job group. The algorithm then repeats a step of allocating one

machine to a group that needs additional machines the most. Those groups that need

machines are the most computation-intensive ones, as having more machines would

reduce the computation cost in an iteration (∵Eq.4.2), reducing the CPU-bound cases

(Eq.4.1).

Dynamic Job Regrouping

When (1) a new job is submitted or (2) a job completes execution, scheduling has to

be triggered, in order to look for the set of job groups that best fit the newly updated

set of jobs. Since regrouping may cause extra overhead, we minimize the number of

jobs participating in regrouping using the following regrouping algorithm. (1) When a

new job arrives, the scheduler first performs profiling to get its statistics as described
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in § 4.3.2. After profiling, the scheduler handles the job only when there is no other

profiled/paused jobs, because existence of those jobs means that Harmony al-

ready satisfies with the currently running jobs. The scheduler handles the job by

adding it to a proper group that maximizes U or let it wait if it does not improve U . (2)

When one of existing jobs finishes, Harmony needs to repair a group of the finished job

to be computation-communication balanced again. The scheduler searches for a simi-

lar job in terms of iteration time and comp/comm ratio among profiled/paused

jobs to replace the finished job. When failing to find a similar job, the scheduler

searches for a bunch of jobs with equivalent characteristics, whose the sum of iter-

ation times and the ratio of respective sum of computation and communication times

are similar to the finished job. We judge that jobs are similar when the difference of

statistics is within 5%, which is an acceptable error as we shown in §4.4.6. If the

scheduler fails to replace the finished job with profiled/paused jobs, the sched-

uler involves other job groups in regrouping, using the main scheduling algorithm

(Algorithm 1). The scheduler calls schedule function altering Jrunning with jobs in

selected job groups. At first, the scheduler selects a group with the smallest number

of jobs in addition to the group that the finished job belonged to. Then it changes the

job group or adds more job groups, in the way of incrementally increasing the num-

ber of jobs that participate in regrouping. After finishing all possible combinations of

job groups, it compares their predicted performance and selects the grouping decision

with smaller number of jobs, if the performance improvement of decisions with more

number of jobs is less than 5% compared to the decision with smaller number of job

groups. In the same context, Harmony does not perform regrouping when the expected

benefit is less than 5% of U .

To apply the new grouping decision by the scheduler, Harmony migrates running

jobs between job groups and machines, also enabling reallocation of machines between

the groups. During the migration of a job, the master simply pauses the job and exe-

cutes the other co-located jobs in the meanwhile, keeping the resources busy. Harmony

migrates only the stateful model parameters, which are trickier to handle, and simply

53



reloads the immutable input data. In the case of the local states of subtasks (e.g., pulled

model parameters, computed gradients), we simply perform the migration at the end of

the iteration (i.e., after PUSH subtask). When temporarily pausing a running job dur-

ing runtime, Harmony waits until ongoing iteration ends, stops the subtasks of the job,

and checkpoints the model parameters on disk. Whenever it decides to resume the job,

Harmony reloads the input data, restores the model parameters from the checkpoint

data, and runs the corresponding subtasks on workers.

4.3.3 Dynamic Data Reloading

When running a single job on dedicated resources, memory pressure rarely becomes

a problem. However, as Harmony runs multiple jobs simultaneously, higher memory

pressure is inevitable due to the increased number of concurrent jobs. Moreover, in a

managed runtime, such as Java and C#, using a large amount of memory often causes

unwanted garbage collection (GC) overheads.

In order to solve this problem, Harmony dynamically spills and reloads input data

to/from disks. Within subtask execution model, we can put down the most of input

data to disk, because only a single COMP subtask runs at a time even if there exist

multiple co-located jobs. Though data reloading can save much memory resources, we

need to meet the following requirements not to hinder performance. First, data should

be preloaded so as to not block task progress. Second, the total amount of data to

reload should be minimized, since it requires additional overheads (e.g., deserializa-

tion). To resolve the problem, we designate a portion of data to be in disk and perform

spill/reload only for disk-side data, instead of all data. While processing data in mem-

ory, we can reload disk-side data in background.

To facilitate the overall management of data, Harmony manages data as fine-

grained blocks in memory and on disks. Data blocks can be kept in disk (disk-block)

and dynamically reloaded in the background, while blocks in memory (memory-block)

are processed by the corresponding subtasks as illustrated in Figure 4.8. Each disk-

block should be loaded before its use and is spilled right after the use.
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Figure 4.8: Dynamic data reloading in background.

An important factor we need to decide is the ratio of disk-blocks out of the total

number of input data blocks. We express the ratio of job j as αj =
Bdiskj

Btotalj
, where

Bdiskj and Btotalj represent the number of input data blocks of job j on disk and in

total, respectively. Naturally, 1 − αj is the ratio of memory-blocks. If block loading

speed is slower than the speed of block processing speed, αj should be small enough

for reloading not to block task progress. We can determine the maximum bound of

αj with Tb procj (Btotalj − 1)≥Tb loadj (Bdiskj − 1), where Tb procj is the time that it

requires for a single data block to be processed in memory and Tb loadj is the time that

it requires Harmony to load a single disk-block.

During runtime, Harmony keeps adjusting the block ratio to find its optimal value.

Increasing αj makes more amount of data to be spilled and reloaded, which brings

additional overhead (e.g., deserialization). We aim to use as least number of disk-

blocks Bdiskj as possible, while preventing memory pressures and GC overheads. We

use hill-climbing method to incrementally move αj to an optimal value. We determine

the initial value by estimating the memory use for accomodating input data and model

data. We calculate the size of input and model data by sampling.

When input data spilling is not enough for relieving memory pressure (when α al-

ready becomes 1), Harmony also enables spill/reload of model data. However, model

data provides less benefits due to the following reasons. First, a subtask may access

the whole model data and corresponding disk-blocks should be loaded before the start

of a subtask. It’s different from input data, whose data element is independent from

each other and data loading and processing can be pipelined by streaming data blocks.
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Second, when spilling, model data should be checkpointed because it is mutable. For

these reasons, Harmony rarely enables spill/reload of model data, only if memory pres-

sure is still high after aggressively increasing the disk-side portion of input data. With

experiments, we found that input data handling is sufficient at most of the times, but in

several cases model data handling successfully reduces memory pressure and avoids

failures by OOM.

4.4 Evaluation

We have implemented Harmony with 8.8K lines of Java code. We have built Harmony

on top of Apache REEF [13,55] that provides common functionalities such as the mas-

ter and worker abstractions, which are required to write systems running in distributed

environments.

In this section, we try to prove two statements about Harmony with the evaluation

results to quantify its effectiveness against other scheduling approaches:

• Harmony provides shorter average JCTs and makespans with its scheduling ap-

proach for diverse workloads compared to existing approaches.

• Harmony provides a scheduling algorithm that is scalable enough to schedule large-

scale workloads within a reasonable time.

4.4.1 Baselines

Throughout the experimental results, we provide the following two performance base-

lines for Harmony:

Isolated: The isolated baseline allocates disjoint sets of resources for each distinct

job. In the isolated approach, we try to maximize the CPU utilization rates, as it deter-

mines the actual training progress of each job, while reducing the network overheads

that occur with lower DoP and higher CPU utilization. Existing works that take similar

approaches for allocating resources to each job include Optimus [45] and SLAQ [65].

Naively co-located: The naively co-located baseline naively shares resources be-

tween the co-located jobs. In this setting, the different combinations of jobs and the
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Apps Domain Dataset
Input
(in GBs)

Model
(in GBs)

Non-negative Matrix
Factorization (NMF)

Recomm-
endation

Netflix64x [4] 45.6 1.0
Netflix128x 91.2 5.0

Latent Dirichlet
Allocation (LDA)

Topic modeling PubMed [22] 4.3 2.1
NyTimes [22] 0.6 1.1

Multinomial Logistic
Regression (MLR)

Classi-
fication Synthetic [8] 78.4,

155.0
12.0,
24.0Lasso Regression

Table 4.1: Workloads used for evaluation. In MLR and Lasso, we use a script for generating
synthetic datasets, which is included in Bösen.

different allocations of resources cause greater variance in the makespan compared to

the isolated baseline. To find the optimal solution of the approach, we run all possible

cases in a brute-force manner, and report the best and the worst case among the possi-

ble choices. This baseline represents the approach introduced in Gandiva [58], which

does not provide fine coordination between co-located jobs and an analytical basis for

job grouping. In our baseline, the minor optimizations described in Gandiva for find-

ing better match of jobs are neglected, as we present the best choice obtained from the

exhaustive search.

As the baseline systems mentioned above are not open-sourced, we implement

their scheduling schemes on Harmony.

4.4.2 Experimental Setup

We run experiments on 100 m4.2xlarge EC2 instances, each with 8 vCPU cores, 32

GB memory and 1.1 Gbps network. On each instance, we co-locate a server and a

worker, and one extra instance with the same specifications is used as the master.

As specified in Table 4.1, we use 4 applications, 2 datasets, and 10 different hyper-

parameters for each of the 80 different (application, dataset) tuple. The distribution of

workload characteristics such as the iteration time and the computation to communi-

cation ratio are illustrated in Figure 4.9. We measure the statistics using DoP 16 for all

jobs.

We run each job until the model convergence. We monitor the objective value

(e.g., log-likelihood for LDA, and L2-loss for NMF/MLR/Lasso) at the end of every
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Figure 4.9: Key characteristics of workload used for evaluation. We use DoP 16 for these
experiments.
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Figure 4.10: JCT and makespan in Harmony and the baseline approaches.

epoch and determine the convergence by comparing the objective value with the pre-

defined threshold. The average CPU and network utilization are measured with an

1-minute interval. For memory resources, we report the GC time during execution,

which represents to which extent Harmony relieves the increased memory pressure

caused by co-located jobs.

At the baseline of a single job execution in isolation, we confirm that the PS im-

plementation and the machine learning algorithms used in Harmony show similar per-

formances with Bösen [8], an open-source PS system, with its staleness parameter set

to 0 for synchronous training. With this condition set, we compare the performances

of the scheduling methods in our main evaluations.
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4.4.3 Performance Comparison

In this section, we compare the performance of Harmony with the other baseline ap-

proaches in terms of makespan and average job completion times (JCTs). Concretely,

makespan is the time to complete all 80 jobs from the start of the first job, whereas

JCT of a job is the elapsed time between the submission and the termination of the

particular job.

We show the results in Figure 4.10, where the makespan and JCT are normalized

by the baseline isolated approach and for naively co-located approach, the bar means

average value and the error bar represents max/min values. First, naively co-located

approach is 11% and 9% faster in JCT and makespan, respectively, due to the reduced

idle time from the co-location of jobs. However, the improvement is limited, as jobs

contend with each other for the resources. In the worst case, it is even slower than the

isolated approach.

Lastly, Harmony achieves a 2.11× speedup in terms of JCT and 1.60× in makespan

with higher utilization of resources, where the regrouping overhead is below 2% of the

overall makespan. Figure 4.11 shows that Harmony shows higher and less fluctuating

resource utilization patterns. The vertical lines represent the completion time for all

jobs (i.e., makespan). Harmony achieves average utilization of 93.2% CPU and 83.1%

network resources, which is 1.65× higher than the isolated approach. Note that our

scheduling can achieve higher network utilizations with further optimizations in the

communication layer (e.g., minimizing the serialization overhead). Both the CPU and

network utilizations decrease near the end of the execution with smaller number of

jobs to co-locate, after the termination of earlier jobs. Note that during an entire exe-

cution, 27.2 concurrent jobs were running together on average, while divided into

6.7 job groups across all 100 machines.

4.4.4 Performance Breakdown

Figure 4.12 presents how the individual techniques of Harmony contribute to the over-

all performance benefit. We compare the performance by gradually adding the different
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Figure 4.11: Resource utilization of Harmony and isolated-approach during an experiment
that runs 80 jobs.
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Figure 4.12: Breakdown of performance gain.

techniques on top of each other. For naively co-located approach, we use the value of

the best case.

Subtask: With subtasks, we achieve 1.27× and 1.15× speedup in JCT and makespan,

respectively. Subtasks eliminate and minimize the contention, resulting in better re-

source utilizations even when the group runs in the ‘naively co-located’ fashion.

Grouping: We perform scheduling algorithms mentioned in §4.3.2 for group-

ing jobs together. After considering the cases for different sets of job groups, we

achieve 1.72× and 1.35× speedup in JCT and makespan, respectively. Note that the

JCT improvement is larger, since we prefer the smallest number of jobs as possible

while increasing the utilization in our grouping algorithm, which avoids sacrificing the
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makespan, differently from the isolated approach.

Reloading: Dynamic reloading (§4.3.3) enables more number of jobs to run si-

multaneously. Previous experiments limit the number of jobs in a job group so that the

amount of the required memory does not exceed the sum of the machines’ memory

assigned to the group, as OOM occurs otherwise. More number of concurrent jobs

contributes to the speedup, since it results in a higher resource utilization, compared to

the case where it was not possible due to the memory limit.

4.4.5 Workload Sensitivity Analysis

To show that Harmony can work well with diverse workload, we run two experiments

with varying resource usage ratios of jobs and job arrival rates, respectively.

Workloads with different resource usage ratios: We use two different sets cho-

sen from the base workload with 80 jobs. The top and bottom 60 jobs are chosen based

on the ratio of computation to communication time (Figure 4.9b). As a result, the two

set of jobs are relatively computation-heavy and communication-heavy compared to

the base workload.

Figure 4.13 shows the comparison result. The computation-intensive workload

runs faster with 1.58× improvement in makespan with 90.5% CPU and 82.1% net-

work utilization in average. The communication-intensive workload also shows 1.57×

makespan speedup with 91.8% CPU and 80.9% network utilization in average. From

the results, we can see that Harmony successfully achieves high resource utilization

regardless of the workload characteristics. It is because Harmony can dynamically de-

termine the average DoP and the entry of running jobs to balance out the computation

and communication of running jobs in each group.

The difference comes from the improvement of the average JCT. The computation-

intensive workload shows 2.31× speedup of average JCT, but the communication-

intensive workload shows 1.83× speedup. We found that the reason is that Harmony

uses different DoPs and the number of concurrently running jobs depending on the

characteristics based on the information extracted from grouping decisions of the
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Figure 4.13: JCT and makespan of workloads with different resource usage ratios.
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Figure 4.14: Distribution of group DoPs and the number of jobs in a group.

scheduler during whole execution, Harmony uses larger DoPs for the computation-

intensive workload and smaller DoPs for communication-intensive workload as illus-

trated in the left graph of Figure 4.14. Larger DoPs mean smaller number of job groups

and subsequently the smaller number of concurrently running jobs. The number of jobs

in a group stay rather indifferent to the varying workload characteristics as illustrated

in the right graph of Figure 4.14.

Workload with different job arrival rates: In this experiment, we vary the arrival

rate of the base workload for the same set of jobs. We submit jobs with arrival times

that follow a Poisson distribution, varying the arrival rates as illustrated in Figure 4.15.
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Figure 4.15: Performance varying job arrival rate. 0 arrival time means that we submit all jobs
at once.

As the mean job arrival time increases, the performance slightly decreases as the num-

ber of concurrent jobs decreases, preventing them from being fully multiplexed at all

times. In contrast, when the jobs are submitted more frequently, the performance in-

creases with better multiplexing. The effect of multiplexing does not increase more

when the mean job arrival time is less than 4 minutes, because at that point Harmony

already has enough number of jobs to multiplex.

Lastly, we use job arrival rates processes from Google cluster workload traces [56].

We extract 10 job arrival processes randomly from different time windows. While the

traces have more diverse pattern of arrivals and job arrival spikes, Harmony handles

them well, showing 2.02× speedup of avg. JCT and 1.57× speedup of makespan in

average.

4.4.6 Accuracy of the Performance Model

To show how important the accuracy of the performance model is, we simulate the

execution with different error levels. Figure 4.16a shows that Harmony manages to

provide over 90% of speedup with relatively small errors under 7.5%. However, the

performance of Harmony rapidly degrades with larger error levels. It means that the

high accuracy of the performance model is crucial for multi-job performance.
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Figure 4.16: Accuracy of performance model. The vertical line represents the min/max values.

We evaluate the accuracy of our performance model, which is used by the sched-

uler to predict the group iteration time and the resource utilization of the multiplexed

jobs. We measure the prediction error by comparing the actual performance and the

predicted performance for all scheduling decisions made during all experiments in

§4.4. Thanks to subtask execution model, the prediction error stays below 5% at all

times as illustrated in Figure 4.16b.

4.4.7 Performance and Scalability of the Scheduling Algorithm

We evaluate Harmony’s scheduling algorithm with an exhaustive search that finds

the ground truth that maximizes resource utilization by measuring all possible search

spaces. We compare (1) how close the Harmony scheduling decision is compared to

the ground truth, and (2) how long it takes to accomplish the scheduling algorithm.

Figure 4.17 shows the comparison result of resource utilization, average JCT, and

makespan, between the solution found with the exhaustive search and the one provided

by Harmony. We see that the results in Harmony is slightly worse by up to around 2%.

The difference comes from the fact that our scheduling algorithm finds its solution

in a greedy way with a preference of running smaller number of jobs together. This

prevents us from exploring the problem space further. However, as shown in the results,

the difference is insignificant and this simplification leads to a much higher scalability

as we show below.

In the experiment above, we run scheduling algorithms for running 80 jobs on 100

machines. The average time to run the scheduling algorithm during overall execution

64



CPU Network
0

50

100

Re
so
ur
ce
 U
til
. (
%
)

92.190.2 80.5 80.2

JCT Makespan
0

600

1200

Ti
m
e 
(m

in
)

214 212

10841107

Oracle Harmony
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Figure 4.18: Scalability varying the number of machines and jobs to schedule.

is 1.2 seconds in Harmony and 13.8 minutes in Oracle obtained by exhaustive search,

respectively. To test on a large-scale environment (e.g., datacenters), we emulate the

submission and scheduling of thousands of jobs to thousands of machines.

As illustrated in Figure 4.18, Harmony can schedule 8K jobs to 10K machines

within 5 seconds. This result is comparable to the performance of a scheduler devel-

oped recently [45] and a default scheduler of a general RM [57]. Optimus is scalable

up to 4K jobs to 16K machines within 5 seconds. On the other hand, the exhaustive

search algorithm for 4K jobs on 10K machines takes about 10 hours, due to the expo-
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Figure 4.19: Proportion of fixed block ratio to our dynamic adaptation. Load stop time and GC
stop time means the time the job tasks are stopped due to data reloading and GC, respectively.

nential growth of the time for running the scheduling algorithm with more number of

jobs and machines.

4.4.8 Dynamic Data Reloading

We perform micro-benchmarks on dynamic data reloading. To evaluate the capability

of dynamic adaptation of disk block ratio (αj) for each job j, we set a baseline that uses

the same fixed α for all jobs. In this experiment, we run 8 jobs (4 apps * 2 datasets) on

32 EC2 instances. Figure 4.19 illustrates the result. When α is too high, group iteration

slows down due to the load stop time, which means the time of task being blocked by

loading corresponding input data blocks. When α is too low, GC explodes and slows

down the execution. By running the workload multiple times with different αs, we

found the minimum iteration time of 52.9s at α = 0.3. Harmony achieves a 44.3s iter-

ation time automatically, which is 16.3% shorter than the manually discovered value in

the baseline. The difference comes from the fact that Harmony can dynamically adjust

the ratio using different ratios for each job.

In our main experiment in §4.4.3, the average value of α is 0.34 and has a maxi-

mum of 1 and a minimum of 0.11. For only three job groups made by the scheduler

has a job with α value 1. To relieve the memory pressure, Harmony automatically en-
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ables spill/reload of model data for those jobs. Though the model data spill/reload is

activated just a few times, we confirm that it successfully prevents critical failures (e.g.

OOM errors) from occurring.

4.5 Discussion

Regrouping costs: We have tried to minimize the overhead caused by regrouping,

and the overhead is trivial compared to the actual job execution in our experiments. In

future work, we may estimate the cost and the benefit from the regrouping and decide

whether to apply the new decision or not. To achieve this, we can use convergence

prediction techniques introduced in works like SLAQ [65] to predict the time for the

job completions, which will make the present scheduling decision sub-optimal.

Execution of small number of jobs: As shown in the evaluations, Harmony is less

effective with a smaller number of jobs. In order to reduce such cases, we could use

convergence prediction techniques [65] to balance out the workloads so that sufficient

numbers of jobs finish at a similar time. Otherwise, we could use a hybrid approach

with asynchronous training. When we encounter a case where the number of jobs is

not enough to multiplex, we could switch to asynchronous training mode to utilize the

idle resources.

Fault tolerance: Harmony tries to prevent failures of an individual job from af-

fecting other co-located jobs. For example, the shared runtime catches all exceptions

and handles them to prevent the system from crashing. However, a machine/process

failure (e.g., OOM) may have an impact on all co-located jobs. Although each job

could recover by restarting from its latest checkpoint, we may share memory across

the jobs, which may be a bit tricky to use, but more safe from cascading failures in

future work.

4.6 Related Work

Schedulers specialized for multiple ML jobs: While many organizations actively

use general-purpose schedulers (e.g., DRF scheduler [24], Hadoop fair and capac-
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ity scheduler [63]) for scheduling ML jobs in production [5, 17, 33], many recent

researches have introduced scheduling solutions specialized to ML workloads. Op-

timus [45] minimizes the training time of multiple DL/ML jobs in GPU/CPU servers

based on online “resource-performance models”. Oasis [3] focuses on maximizing pa-

rameter server-side utilization using online algorithm for scheduling jobs and allocat-

ing resources for ML jobs. SLAQ [65] dynamically schedules resources between jobs

to maximize system-wide quality improvement based on quality prediction model,

but they neglect network-intensive workloads, causing inefficiency in using network

resources. Dorm [50] dynamically partitions a cluster and allocates resource partitions

to jobs for resource efficiency and fairness. Tiresias [25] schedules DL jobs focusing

on characteristics of unpredictable execution time and all-or-nothing execution model.

All of the above works have greatly improved the cluster performance, but none of

them considers co-location of multiple jobs into the same resource unit. As a result,

Harmony can be used in complementary to the above systems, and vice versa.

Schedulers co-locating multiple jobs: Recently, Gandiva [58] has been suggested

to support co-location of DL jobs into the same GPU with its ‘packing’ mechanism,

but its main goal is in providing early feedback for hyper-parameter searching. Unlike

Harmony, Gandiva treats each job as black-box and do not coordinate and control the

task executions in workers, and results in interferences and limited performance gain

or loss in some cases. Harmony focuses on improving the utilization of both the CPU

and network resources for multiple co-located ML jobs by coordinating task execu-

tions in a fine-grained manner. Zhang et al. [66] solves the resource under-utilization

problem in datacenters by co-locating batch jobs and latency-sensitive jobs. They har-

vest spare CPU cycles and disk spaces from latency-sensitive jobs, which typically

over-provision resources, and run batch jobs with lower priority. Unlike Harmony,

they handle two different types of workloads that have different schedule priorities.

Optimus [45] also considers co-location of multiple workers and servers in a machine

and handles communication overhead between them. However, it assumes isolation

of resources within a machine (e.g., container) between the co-located workers and
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servers.

Dynamic resource scheduling for ML: Instead of using static allocation of re-

sources [30, 52], recent works introduce resource elasticity in distributed ML frame-

works. Optimus [45] dynamically reallocates resources between jobs or between work-

ers and servers, Gandiva [58] dynamically migrates jobs between GPUs for less inter-

ference, or between GPU and CPU for time-slicing, and Dorm [50] dynamically parti-

tions resources to isolated jobs to increase the resource utilization. Litz [46] and Pro-

teus [28] migrate jobs in execution between reliable instances and transient instances,

for better cost efficiency in cloud environment. Similarly, Harmony dynamically mi-

grates jobs and reallocates resources for better performance. The difference is that

Harmony designs scheduling algorithm and job migration protocol to be simple but

effective for multiple co-located jobs to minimize regrouping overhead.

Performance modeling: For performance modeling, SLAQ [65] and Optimus [45]

predicts runtime performance and ML job convergence in an online manner. Similar to

Harmony, Optimus captures high-level computation and communication patterns for

prediction, but its model is completely different from Harmony because of the isolated

resource environment (e.g., container) without resource sharing nor contention be-

tween the jobs. Gandiva [58] lacks a clear performance model of co-located (packed)

jobs, as the interference makes the performance unpredictable. Morpheus [35] and

Zhang et al. [66] use historical information of repetitive jobs for modeling. For ac-

curate modeling, Morpheus focuses on mitigating performance unpredictability, like

Harmony, but only for periodic workloads using recurring reservations. Harmony, on

the other hand, provides analytical performance model and uses online metrics without

requiring historical job information, making the system resilient to new ML applica-

tions.

MonoTask [44] simulates executions of Spark jobs using the MonoTask abstrac-

tion, which is similar to subtask abstraction of Harmony. But their main goal is to

predict and find a way to improve the performance and the expected value of im-

provement (e.g., 10% shorter JCT by replacing HDDs to SSDs or by changing system
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configuration). Also, MonoTask does not cover multi-job situations, and is designed

for Spark, which does not support PS-style communications. On the other hand, Har-

mony models the performance of multiple co-located PS jobs and finally improves the

performance with several multi-job optimized techniques.

4.7 Summary

Harmony is a scheduling framework optimized for multiple PS ML jobs to improve

cluster resource utilization. Harmony co-locates ML jobs and coordinates them to

share resources effectively by minimizing contention of co-located jobs with subtask

execution model, where each subtask uses specific types of resources intensively. To

co-locate jobs that have complementary resource use, Harmony dynamically groups

jobs based on the performance model with runtime-collected metrics, adapting to

changing pool of jobs. In addition, Harmony alleviates the memory pressure incurred

by the increased number of co-located ML jobs with dynamic data reloading. Our ex-

periments show that Harmony outperforms existing scheduling approaches and is scal-

able enough to schedule large-scale workloads. Harmony is open-sourced and publicly

available at https://github.com/snuspl/harmony.
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Chapter 5

Conclusion

5.1 Summary

We have presented two different solutions for improving the performance of distributed

machine learning in a cluster environment. Both solutions build an analytical perfor-

mance model and dynamically reconfigure the system to maximize the performance.

Specifically, they find the best system configuration or scheduling decision based on

the performance model with runtime metrics and dynamically applies it to the system

with minimal overhead. The difference is that Cruise focuses on resource configura-

tion and workload partitioning in a single-job, rather Harmony schedules resources

and tasks for multiple jobs in a shared cluster. Evaluations show that these two works

successfully enable automatic resource-efficient execution of PS ML systems, freeing

users from manual settings.

5.2 Future Work

5.2.1 Other Communication Architecture Support

In this dissertation, we have focused on PS architecture, which is one of the popular

architectures of distributed ML training. However, our approaches in Cruise and Har-
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mony are not fundamentally limited to PS architecture and we can extend our work to

other communication architectures such as All-Reduce. Both PS and All-Reduce ar-

chitectures are widely used by many recent distributed ML frameworks, because both

architectures have their own strengths [37].

5.2.2 Deep Learning & GPU Resource Support

Our works have focused on classical ML applications, and does not cover DL applica-

tions, which are widely used especially for language modeling and image recognition

workloads. Though DL is one of the categories of ML, extending our work to DL

requires non-trivial works due to its special characteristics. First, DL models consist

of multiple layers and repeat forward/backward passes. We need to analyze such ex-

ecution of DL training and build a performance model, which is more complicated

than classical ML models. Second, DL workloads are typically trained with acceler-

ators like GPU. Especially Harmony needs a mechanism for sharing GPU resources

between multiple jobs in a fine-grained manner.
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History-based harvesting of spare cycles and storage in large-scale datacenters.

In OSDI, pages 755–770, 2016.

80



요약

기계 학습 시스템은 데이터에 숨겨진 의미를 뽑아내기 위해 널리 사용되고 있다.

데이터셋의 크기와 모델의 복잡도가 어느때보다 커짐에 따라 효율적인 분산 기계

학습 시스템을 위한 많은 노력들이 이루어지고 있다. 파라미터 서버 방식은 거대

한 스케일의 데이터와 복잡한 모델을 지원하기 위한 유명한 방법들 중 하나이다.

이 방식에서, 학습 작업은 분산 워커와 서버들로 구성되고, 워커들은 할당된 입력

데이터로부터반복적으로그레디언트를계산하여서버들에보관된글로벌모델파

라미터들을업데이트한다.

파라미터서버시스템의성능을향상시키기위해,이논문에서는자동적으로자

원효율성과시스템성능을최적화하는두가지의해법을제안한다.첫번째해법은,

파라미터시스템에서분산기계학습을수행시에자원설정및워크로드분배를자

동화하는것이다.최고의설정을찾기위해우리는온라인메트릭을사용하는비용

모델을 기반으로 하는 Optimizer를 만들었다. Optimizer의 결정을 효율적으로 적

용하기 위해, 우리는 런타임을 동적 재설정을 최소의 오버헤드로 백그라운드에서

수행하도록디자인했다.

두번째 해법은 공유 클러스터 상황에서 여러 개의 기계 학습 작업의 세부 작업

과자원의스케쥴링을최적화한것이다.구체적으로,우리는세부작업들을세밀한

단위로수행함으로써자원경쟁을억제하고,서로를보완하는자원사용패턴을보

이는작업들을같은자원에함께위치시켜자원활용율을끌어올렸다.함께위치한

작업들의메모리압력을경감시키기위해우리는동적으로데이터를디스크로내렸

다가다시메모리로읽어오는기능을지원함과동시에,디스크와메모리간의데이터

비율을상황에맞게시스템이자동으로맞추도록하였다.

위의 해법들을 실체화하기 위해, 실제 동작하는 시스템을 만들었다. 두가지의

해법을 하나의 시스템에 구현함으로써, 동적으로 작업을 머신 간에 옮기고 자원을

재할당할수있는런타임을공유한다.해당솔루션들의효과를보여주기위해,이시

스템을많이사용되는기계학습어플리케이션으로실험하였고기존시스템들대비
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뛰어난성능향상을보여주었다.

주요어:기계학습,분산트레이닝,파라미터서버,비용기반성능모델링,동적최적

화,작업/자원스케쥴링
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