

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Sentence Pair Modeling using
Deep Neural Network Sentence Encoders

딥 뉴럴 네트워크 기반의 문장 인코더를 이용한

문장 간 관계 모델링

BY

Jihun Choi

FEBRUARY 2020

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Ph.D. DISSERTATION

Sentence Pair Modeling using
Deep Neural Network Sentence Encoders

딥 뉴럴 네트워크 기반의 문장 인코더를 이용한

문장 간 관계 모델링

BY

Jihun Choi

FEBRUARY 2020

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Abstract

Sentence matching is a task of predicting the degree of match between two sentences.

Since high level of understanding natural language text is needed for a model to

identify the relationship between two sentences, it is an important component for

various natural language processing applications.

In this dissertation, we seek for the improvement of the sentence matching module

from the following three ingredients: sentence encoder, matching function, and semi-

supervised learning. To enhance a sentence encoder network which takes responsibility

of extracting useful features from a sentence, we propose two new sentence encoder ar-

chitectures: Gumbel Tree-LSTM and Cell-aware Stacked LSTM (CAS-LSTM). Gum-

bel Tree-LSTM is based on a recursive neural network (RvNN) architecture, however

unlike typical RvNN architectures it does not need a structured input. Instead, it

learns from data a parsing strategy that is optimized for a specific task. The latter,

CAS-LSTM, extends the stacked long short-term memory (LSTM) architecture by

introducing an additional forget gate for better handling of vertical information flow.

And then, as a new matching function, we present the element-wise bilinear sen-

tence matching (ElBiS) function. It aims to automatically find an aggregation scheme

that fuses two sentence representations into a single one suitable for a specific task.

From the fact that a sentence encoder is shared across inputs, we hypothesize and em-

pirically prove that considering only the element-wise bilinear interaction is sufficient

for comparing two sentence vectors. By restricting the interaction, we can largely re-

duce the number of required parameters compared with full bilinear pooling methods

without losing the advantage of automatically discovering useful aggregation schemes.

Finally, to facilitate semi-supervised training, i.e. to make use of both labeled

i

and unlabeled data in training, we propose the cross-sentence latent variable model

(CS-LVM). Its generative model assumes that a target sentence is generated from the

latent representation of a source sentence and the variable indicating the relationship

between the source and the target sentence. As it considers the two sentences in a

pair together in a single model, the training objectives are defined more naturally

than prior approaches based on the variational auto-encoder (VAE). We also define

semantic constraints that force the generator to generate semantically more plausible

sentences.

We believe that the improvements proposed in this dissertation would advance the

effectiveness of various natural language processing applications containing modeling

sentence pairs.

Keywords: sentence matching, sentence pair modeling, sentence encoder, matching

function, semi-supervised learning, deep neural network, deep generative model

Student Number: 2014-22694

ii

Contents

Abstract i

Chapter 1 Introduction 1

1.1 Sentence Matching . 1

1.2 Deep Neural Networks for Sentence Matching 2

1.3 Scope of the Dissertation . 4

Chapter 2 Background and Related Work 9

2.1 Sentence Encoders . 9

2.2 Matching Functions . 11

2.3 Semi-Supervised Training . 13

Chapter 3 Sentence Encoder: Gumbel Tree-LSTM 15

3.1 Motivation . 15

3.2 Preliminaries . 16

3.2.1 Recursive Neural Networks . 16

3.2.2 Training RvNNs without Tree Information 17

3.3 Model Description . 19

3.3.1 Tree-LSTM . 19

iii

3.3.2 Gumbel-Softmax . 20

3.3.3 Gumbel Tree-LSTM . 22

3.4 Implementation Details . 25

3.5 Experiments . 27

3.5.1 Natural Language Inference . 27

3.5.2 Sentiment Analysis . 32

3.5.3 Qualitative Analysis . 33

3.6 Summary . 36

Chapter 4 Sentence Encoder: Cell-aware Stacked LSTM 38

4.1 Motivation . 38

4.2 Related Work . 40

4.3 Model Description . 43

4.3.1 Stacked LSTMs . 43

4.3.2 Cell-aware Stacked LSTMs . 44

4.3.3 Sentence Encoders . 46

4.4 Experiments . 47

4.4.1 Natural Language Inference . 47

4.4.2 Paraphrase Identification . 50

4.4.3 Sentiment Classification . 52

4.4.4 Machine Translation . 53

4.4.5 Forget Gate Analysis . 55

4.4.6 Model Variations . 56

4.5 Summary . 59

Chapter 5 Matching Function: Element-wise Bilinear Sentence

Matching 60

5.1 Motivation . 60

iv

5.2 Proposed Method: ElBiS . 61

5.3 Experiments . 63

5.3.1 Natural language inference . 64

5.3.2 Paraphrase Identification . 66

5.4 Summary and Discussion . 68

Chapter 6 Semi-Supervised Training: Cross-Sentence Latent

Variable Model 70

6.1 Motivation . 70

6.2 Preliminaries . 71

6.2.1 Variational Auto-Encoders . 71

6.2.2 von Mises–Fisher Distribution 73

6.3 Proposed Framework: CS-LVM . 74

6.3.1 Cross-Sentence Latent Variable Model 75

6.3.2 Architecture . 78

6.3.3 Optimization . 79

6.4 Experiments . 84

6.4.1 Natural Language Inference . 84

6.4.2 Paraphrase Identification . 85

6.4.3 Ablation Study . 86

6.4.4 Generated Sentences . 88

6.4.5 Implementation Details . 89

6.5 Summary and Discussion . 90

Chapter 7 Conclusion 92

Appendix A Appendix 96

A.1 Sentences Generated from CS-LVM . 96

v

Bibliography 101

초록 128

vi

List of Figures

Figure 1.1 Illustration of the sentence encoder–based sentence matching

architecture . 5

Figure 3.1 Visualization of forward and backward computation path of

ST Gumbel-Softmax . 22

Figure 3.2 An example of the parent selection 24

Figure 3.3 Validation accuracies on the SNLI dataset during training . . 31

Figure 3.4 Tree structures built by models trained on SNLI and SST . . 37

Figure 4.1 Visualization of a plain stacked LSTM and a CAS-LSTM ar-

chitecture . 40

Figure 4.2 Schematic diagram of a CAS-LSTM block 45

Figure 4.3 Visualization of paths between cl−1t and clt 45

Figure 4.4 Results of forget gate analysis 57

Figure 5.1 Illustration of the ElBiS matching function 62

Figure 6.1 The overview of the entire CS-LVM framework 75

Figure 6.2 Illustration of the graphical models of CS-LVM 76

vii

List of Tables

Table 1.1 Example sentence pairs of some sentence matching tasks 3

Table 3.1 Results of SNLI experiments 30

Table 3.2 Results of SST experiments . 34

Table 3.3 Nearest neighbor sentences of query sentences 35

Table 4.1 Hyperparameters for SNLI models 49

Table 4.2 Hyperparameters for MultiNLI models 49

Table 4.3 Results of the models on the SNLI dataset 50

Table 4.4 Results of the models on the MultiNLI dataset 51

Table 4.5 Hyperparameters for Quora Question Pairs models 51

Table 4.6 Results of the models on the Quora Question Pairs dataset . . 52

Table 4.7 Hyperparameters for SST-2 models 54

Table 4.8 Hyperparameters for SST-5 models 54

Table 4.9 Results of the models on the SST dataset 55

Table 4.10 Results of the models on the IWSLT 2014 de-en dataset 55

Table 4.11 Results of model variants . 58

Table 5.1 Results on the SNLI datset using LSTM-based sentence encoders 66

viii

Table 5.2 Results on the SNLI dataset using Gumbel Tree-LSTM–based

sentence encoders . 66

Table 5.3 Results on the Quora Question Pairs dataset using LSTM-based

sentence encoders . 68

Table 6.1 Semi-supervised classification results on the SNLI dataset . . . 86

Table 6.2 Semi-supervised classification results on the Quora Question

Pairs dataset . 87

Table 6.3 Ablation study results . 87

Table 6.4 Selected samples generated from the model trained on the SNLI

dataset . 88

Table 6.5 Results of evaluation of generated artificial datasets 89

Table 6.6 Hyperparameters for the SNLI models 90

Table 6.7 Hyperparameters for the QQP models 90

Table A.1 Sentences generated from the CS-LVM model trained on the

SNLI dataset . 97

Table A.2 Sentences generated from the CS-LVM + Ry model trained on

the SNLI dataset . 98

Table A.3 Sentences generated from the CS-LVM + Rz model trained on

the SNLI dataset . 99

Table A.4 Sentences generated from the CS-LVM + Rµ model trained on

the SNLI dataset . 100

ix

Chapter 1

Introduction

1.1 Sentence Matching

One of the most prominent characteristics of natural language is that the same mean-

ing could be expressed by various forms (Dagan et al., 2005). This means that in most

cases a certain meaning can be related to multiple expressions and vice versa, making

it hard for a computer to comprehend natural language. At the same time, despite

its difficulty, a plethora of commercial applications or research problems require high

level of natural language understanding; these include virtual assistant, market anal-

ysis, automatic translation, question answering system, etc.

Among various subfields in natural language understanding, research on sentence

matching aims to predict the degree of match between two (or more) sentences. Iden-

tifying the relationship between two sentences, e.g. semantic similarity or entailment,

is deeply related to understanding the meaning of natural language, thus it is an

important ingredient for many natural language processing problems, and building a

high-performance sentence matching model plays a key role in enhancing quality of

1

systems for those problems.

For example, in natural language inference, a model has to predict whether a

hypothesis sentence could be inferred from a given premise sentence by performing

semantic inference (Dagan et al., 2005; Bowman et al., 2015). In paraphrase identi-

fication a model should compare meaning of two sentences and detect whether one

sentence is a paraphrase of the other (Dolan and Brockett, 2005; Xu et al., 2014),

i.e. a model needs to capture the variability of language. Answer sentence selection

requires measuring the conformance of each candidate answer sentence to a question

(Tan et al., 2016; Tymoshenko and Moschitti, 2018), and similarly text retrieval ac-

companies finding the most relevant text sequence given a query (Mitra and Craswell,

2017; Mitra et al., 2017). Machine comprehension (Rajpurkar et al., 2016) also con-

tains the process of matching a paragraph and a question to extract the best answer

span from the paragraph. Table 1.1 contains examples of some tasks that require the

sentence matching component.

1.2 Deep Neural Networks for Sentence Matching

Traditionally, since the tasks stated above have distinct characteristics, approaches to

those tasks have been based on manually extracting specific features inherent in each

task (Dagan et al., 2005; Lan and Xu, 2018). This means that, as other traditional

algorithms do, an algorithm built for a specific task requires domain-specific or task-

specific knowledge and thus could not be easily reused in other tasks.

Meanwhile, with recent advancements in deep neural networks and emergence

of large-scale datasets, methodologies based on deep learning have been permeating

almost every field of machine learning. Following the success demonstrated in com-

puter vision (Krizhevsky et al., 2012; Goodfellow et al., 2014; Kingma and Welling,

2014; He et al., 2016, inter alia), research on natural language understanding is also

2

Task Sentence A Sentence B Label

NLI Two boys jumping on a

trampoline.

There are two males. entailment

NLI A woman walking with

her umbrella.

A woman standing under

a scaffolding.

contradiction

PI How can I get better in

math?

What are some ways to

get better at maths?

paraphrase

PI How are organic com-

pounds digested?

What are organic com-

pounds?

not paraphrase

AS what bird family is the

owl

Owls are a group of birds

that belong to the order

Strigiformes, ...

answer

AS what bird family is the

owl

They are found in all re-

gions of the Earth except

Antarctica, ...

not answer

Table 1.1: Example sentence pairs of some sentence matching tasks. NLI: natural lan-

guage inference, taken from the SNLI dataset (Bowman et al., 2015). PI: paraphrase

identification, taken from the Quora Question Pairs dataset (Wang et al., 2017b). AS:

answer sentence selection, taken from the WikiQA dataset (Yang et al., 2015).

3

experiencing unprecedented progress and achievements thanks to sophisticated deep

learning algorithms and abundant data.

Recent deep neural network–based work on sentence matching could roughly be

categorized into two subclasses: i) methods that exploit inter-sentence features and

ii) methods based on sentence encoders. In the former, interaction between the two

sentences is allowed in obtaining the representation of each sentence. This includes

applying various types of the cross-sentence attention mechanism (Parikh et al., 2016;

Chen et al., 2017a; Kim et al., 2019a), dependent reading (Sha et al., 2016; Ghaeini

et al., 2018), and iterative answer refinement (Liu et al., 2018). These methods of-

ten outperform others that do not allow the inter-sentence interaction, due to more

aggressive and direct use of information between sentences.

By contrast, in the latter, i.e. sentence encoder–based methods, each sentence is

separately encoded by not seeing each other until the corresponding sentence repre-

sentation is computed. Then the two sentence vectors are aggregated by a matching

function, and finally fed into a classifier network to obtain the prediction. In other

words, it is based on the siamese network, which refers to a set of architectures

where an encoder is shared across multiple inputs and the encoded representations

are aggregated afterwards. Fig. 1.1 depicts the overall architecture of the sentence

encoder–based sentence matching method.

1.3 Scope of the Dissertation

Between the two classes of sentence matching methods described above, we address

the latter in this dissertation: the sentence encoder–based approach, for the following

reasons.

First of all, it is more general. Regardless of the characteristics of each task, the

overall structure is fixed to a siamese architecture (Fig. 1.1), thus an improvement

4

Sentence A Sentence B

va vb

φ(va,vb)

Feedforward

Softmax

y

Figure 1.1: Illustration of the sentence encoder–based sentence matching architecture.

va and vb indicate sentence representations encoded by a sentence encoder for sen-

tence A and B respectively, and φ(va,vb) is a matching function that aggregates va

and vb into a single vector to be used as input to a classifier MLP network.

5

proven on one task is likely to work on other tasks and can be adopted in a wide range

of work. This generality also conforms to the spirit of the PASCAL recognizing textual

entailment (RTE) challenge (Dagan et al., 2005), whose objective was to establish a

generic evaluation framework to compare systems for semantic inference.

Moreover, since each sentence is encoded separately, computing sentence vectors,

which is often the most time-consuming and resource-intensive stage in sentence

matching, could be done priorly, making this type of approach more efficient. This

characteristic could be beneficial in cases that involve comparing a query sentence

against sentences in a database, e.g. text retrieval. Also due to the property that an

encoder only consider a single sentence, it can be used as a general feature extractor

and can be used in transfer learning, as demonstrated by Conneau et al. (2017).

Specifically, we find room for improvement of the sentence encoder–based sentence

matching in three orthogonal directions: sentence encoder, matching function, and

semi-supervised training.

Sentence Encoders

A sentence encoder takes the role of reading and understanding each sentence. As

it is the only component that has access to input sentences, it greatly influences

the overall performance of sentence matching. In Ch. 3 and 4, we propose two new

sentence encoders: Gumbel Tree-LSTM (Choi et al., 2018b) and Cell-aware Stacked

LSTM (CAS-LSTM, Choi et al., 2019a).

Gumbel Tree-LSTM is a novel extension of a recursive neural network (RvNN)

architecture that removes the need of tree-structured inputs in training and inference.

It achieves the property by learning how to parse a sentence in a way that is most

effective for a certain task from unstructured (plain) text. At the inference time, it

then uses the learned strategy to parse and encode a sequence of words.

CAS-LSTM is a method of stacking multiple long short-term memory (LSTM)

6

layers. At each layer, it accepts as input not only the hidden states but also the mem-

ory cell states from the previous layer, by introducing an additional forget gate. Due

to the modification, a model could be trained more stably and accomplish improved

performance.

Matching Functions

Once the two sentences are encoded using a sentence encoder, the sentence represen-

tations should be aggregated into a single vector to be used as input to a classifier

network. We refer to a function that fuses two sentence vectors as matching function.

In Ch. 5, we propose the element-wise bilinear sentence matching function (ElBiS,

Choi et al., 2018a) that automatically finds a suitable matching scheme that maxi-

mizes the performance for a task.

The ElBiS algorithm is inspired by bilinear pooling methods suggested in the

literature of visual question answering (Fukui et al., 2016; Kim et al., 2017b; Yu et al.,

2017). However it exploits the fact that the two sentences are encoded using a shared

encoder (i.e. the siamese architecture, as shown in Fig. 1.1) and thus both sentence

vectors would lie in the identical or at least very similar semantic spaces, unlike the

case of visual question answering where the spaces of text and image representations

are clearly distinct. From this motivation, we assume that a certain dimension of one

sentence vector would share the same semantical meaning with the corresponding

dimension of the others, and consider the bilinear interaction only within values of

same dimension.

Semi-Supervised Training

There is another possibility of improvement in utilizing training data efficiently by

applying semi-supervised training, where a large amount of unlabeled data along

with a handful of labeled data are used in training a model. In Ch. 6, we propose the

7

cross-sentence latent variable model (CS-LVM, Choi et al., 2019b).

CS-LVM is a deep generative model (Kingma and Welling, 2014; Rezende et al.,

2014) that is specialized for sentence matching. The optimization objective for the

CS-LVM framework is extended to make use of unlabeled data, enabling the semi-

supervised training. As it is trained to generate a sentence that has a given relationship

with a source sentence, both sentences in a pair are utilized together and thus training

objectives are defined more naturally than other models that consider each sentence

separately (Zhao et al., 2018; Shen et al., 2018a).

8

Chapter 2

Background and Related Work

Throughout the dissertation, we try to address the sentence matching problem in three

orthogonal point of view: i) constructing a powerful sentence encoder, ii) designing

a better matching function, and iii) introducing semi-supervised training. In this

chapter, we will briefly see preliminaries related to the three components and review

prior work.

2.1 Sentence Encoders

Techniques for mapping natural language into a vector space have received a lot

of attention, due to their capability of representing ambiguous semantics of natural

language using dense vectors. Methods of learning word representations, e.g. word2vec

(Mikolov et al., 2013) or GloVe (Pennington et al., 2014), are relative well-studied

empirically and theoretically (Baroni et al., 2014; Levy and Goldberg, 2014), and some

of them became typical choices to consider when initializing word representations for

better performance at downstream tasks.

9

Whereas, research on sentence representation is still in active progress, and accord-

ingly various architecture—designed with different intuition and tailored for different

tasks—are being proposed.

Convolutional neural networks (CNNs, Kim, 2014; Kalchbrenner et al., 2014) uti-

lize local distribution of words to encode sentences, similar to n-gram models. To

handle variable-length inputs, a pooling operation is often applied over time, and

thus temporal dependencies longer than the size of a convolution window are ig-

nored, which limits the expressivity in exchange for the lightweight and parallelizable

computation.

Recurrent neural networks (RNNs, Graves, 2012; Dai and Le, 2015; Kiros et al.,

2015; Hill et al., 2016) encode sentences by reading words in sequential order. Among

several variants of the original RNN (Elman, 1990), gated recurrent architectures such

as long short-term memory (LSTM, Hochreiter and Schmidhuber, 1997) and gated

recurrent unit (GRU, Cho et al., 2014b) have been accepted as de-fact standard

choices for RNNs due to their capability of addressing the vanishing and exploding

gradient problem and considering long-term dependencies. Gated RNNs achieve these

properties by introducing additional gating units that learn to control the amount of

information to be transferred or forgotten (Goodfellow et al., 2016), and are proven to

work well without relying on complex optimization algorithms or careful initialization

(Sutskever, 2013).

At the same time, the common practice for further enhancing the expressive power

of RNNs is to stack multiple RNN layers, each of which has distinct parameter sets

(stacked RNN, Schmidhuber, 1992; El Hihi and Bengio, 1995). Stacked RNNs are

shown to work well due to increased depth (Pascanu et al., 2014) or their ability to

capture hierarchical time series (Hermans and Schrauwen, 2013) which are inherent

to the nature of the problem being modeled.

Recursive neural networks (RvNNs, Socher et al., 2011a; Irsoy and Cardie, 2014;

10

Bowman et al., 2016a) rely on structured input (e.g. parse tree) to encode sentences,

based on the intuition that there is significant semantics in the hierarchical structure

of words. It is also notable that RvNNs are generalization of RNNs, as linear chain

structures on which RNNs operate are equivalent to left- or right-skewed trees. Similar

to the fact that gated RNN like LSTM and GRU is widely used in practice, gated

RvNN architectures such as tree-LSTM (Tai et al., 2015; Zhu et al., 2015; Le and

Zuidema, 2015) and tree-GRU are also proposed.

Recently, self-attention–based architectures (or Transformer architectures, Vaswani

et al., 2017; Shen et al., 2018b), where CNN or RNN components are replaced by the

highly parallelizable attention mechanism, are also widely used in encoding sentences

(Shen et al., 2018b,c).

2.2 Matching Functions

The classifier network used in our setting of sentence matching takes two vectors from

each input sentence as input. This means that the two vectors should be aggregated

into a single vector before passed into a feedforward network, and the design of an

aggregation function, which we call matching function, is an important factor; if a

matching function does not sufficiently reflect the nature of a task then a model could

not perform well even with a sophisticated feedforward network since the input can

only give limited information to the network.

One might argue that the theoretical fact states that even a single-hidden layer

feedforward network can approximate any arbitrary function (Cybenko, 1989; Hornik,

1991), however despite the theory the space of network parameters is too large and

it is always helpful to narrow down the search space by directly giving information

about interaction between the two sentences to the subsequent network.

Ji and Eisenstein (2013) empirically proved that the use of element-wise multipli-

11

cation and absolute difference as a matching function substantially improves perfor-

mance on paraphrase identification, and Tai et al. (2015) applied the same matching

scheme to the semantic relatedness prediction task. Mou et al. (2016) showed that

using the element-wise multiplication and difference along with the concatenation of

sentence vectors yields a gain in performance in natural language inference, despite

the fact that some values are redundant and could be induced from another values;

for example the element-wise difference can be achieved via a simple linear trans-

formation from the values in the concatenated vector. Yogatama et al. (2017); Chen

et al. (2017b) used modified versions of the herustic matching function proposed by

Mou et al. (2016) in natural language inference.

There is some prior work on automatically discovering a matching function suit-

able for a certain task, though not directly related to sentence matching. Recursive

neural tensor network (RNTN, Socher et al., 2013) introduces a tensor multiplication

to compose two children vectors in tree-structured neural networks. Lin et al. (2015)

applied obtained a feature vector by applying outer product between outputs pro-

duced by passing an image through two CNNs. Wu et al. (2016); Krause et al. (2016)

proposed multiplicative RNN (and LSTM) architectures that exploit bilinear relation

between an input and the previous hidden state at each time step.

Also, there have been several works built for matching vectors from different

semantic spaces (i.e. matching heterogeneous vectors). Wu et al. (2013) used a bilinear

model to match queries and documents from different domains. Approximate bilinear

matching techniques such as multimodal compact bilinear pooling (MCB, Fukui et al.,

2016), low-rank bilinear pooling (MLB, Kim et al., 2017b), and factorized bilinear

pooling (MFB, Yu et al., 2017) are successfully applied in visual question answering

(VQA) tasks, outperforming previous heuristic feature functions (Xiong et al., 2016;

Agrawal et al., 2017). MCB approximates the full bilinear matching using Count

Sketch (Charikar et al., 2002) algorithm, and MLB and MFB decompose a third-order

12

tensor into multiple weight matrices. Multimodal Tucker fusion (MUTAN, Ben-younes

et al., 2017) uses Tucker decomposition to parameterize bilinear interactions.

2.3 Semi-Supervised Training

Another important research direction of machine learning is to learn from data effi-

ciently. Mitigating the data scarcity problem is exceptionally important in the era of

deep neural networks, as deep learning is believed to require abundant training data

to learn appropriate features and outperform classical models.

The most simple and straightforward way of addressing the issue would simply

gathering or constructing more labeled training data, however it is a time-consuming

and labor-intensive process and not always an available option. Semi-supervised learn-

ing aims to handle the problem by taking advantage of unlabeled data which is much

easier to collect (Chapelle et al., 2010). For example in sentence matching, possibly

related sentence pairs could be retrieved via simple heuristics such as word overlap.

These unlabeled data enable a supervised model to learn fairly well even from a small

amount of labeled data.

Semi-supervised text classification is an important subject and there exists much

previous research (Zhu et al., 2003; Nigam et al., 2006; Zhu, 2008, to name a few). No-

tably, deep probabilistic generative models (Kingma et al., 2014; Rezende et al., 2014)

are capable of learning from unlabeled data by applying techniques of probabilistic in-

ference e.g. marginalization. The work of Xu et al. (2017) applies the semi-supervised

variational auto-encoder (VAE, Kingma et al., 2014) to the single-sentence text clas-

sification problem. Zhao et al. (2018); Shen et al. (2018a) presented VAE models for

the semi-supervised sentence matching.

However, VAE models for sentence matching have some drawbacks that we will try

to address in this dissertation. Current VAE-based sentence matching models (Zhao

13

et al., 2018; Shen et al., 2018a) exploit the VAE component (more specifically, ap-

proximate inference model of the VAE) as a simple feature extractor, and the training

objective is merely a linear combination of the auto-encoding and the classifier objec-

tive. Thus the classifier network is updated only by labeled data, and it in turn means

that unsupervised training could not fully benefit from carefully designed probabilis-

tic inference (i.e. marginalization). This weakens the coupling between classifier and

VAE parameter, which might make the objectives for the two components compete

and make a model prone to degenerate.

Outside the research on deep generative models, Dai and Le (2015); Ramachan-

dran et al. (2017) train an encoder-decoder network on large external corpora and

fine-tune the learned encoder on a specific task. Also recently there have been re-

markable improvements in pre-trained language representations (Peters et al., 2018;

Radford et al., 2018; Devlin et al., 2018), where language models trained on extremely

large data brought a huge performance boost. Since these pre-trained language rep-

resentations act as a dynamic (or contextualized) weight initialization scheme from

which a model starts to learn, they could be used along with other semi-supervised

models e.g. VAE-based ones for further improvement.

14

Chapter 3

Sentence Encoder:
Gumbel Tree-LSTM

3.1 Motivation

Recursive neural networks (RvNNs) (Socher et al., 2011a; Irsoy and Cardie, 2014) use

structure information of a sentence—constituency-based parse trees or dependency-

based parse trees for example—in encoding a sentence, based on the intuition that

significant semantics lies in the hierarchical structure of words.

Although there is significant benefit in processing a sentence in a tree-structured

recursive manner, data annotated with parse trees could be expensive to prepare.

Furthermore, the optimal hierarchical composition of words might differ depending

on the properties of a task.

In this chapter, we propose Gumbel Tree-LSTM, which is a novel RvNN archi-

tecture that does not require structured data and learns to compose task-specific

tree structures without explicit guidance. Our Gumbel Tree-LSTM model is based on

tree-structured long short-term memory Tree-LSTM) architecture (Tai et al., 2015;

15

Zhu et al., 2015; Le and Zuidema, 2015), which is one of the most renowned variants

of RvNN.

To learn how to compose task-specific tree structures without depending on struc-

tured input, our model introduces composition query vector that measures validity

of a composition. Using validity scores computed by the composition query vector,

our model recursively selects compositions until only a single representation remains.

We use Straight-Through (ST) Gumbel-Softmax estimator (Jang et al., 2017; Maddi-

son et al., 2017) to sample compositions in the training phase. ST Gumbel-Softmax

estimator relaxes the discrete sampling operation to be continuous in the backward

pass, thus our model can be trained via the standard backpropagation. Also, since the

computation is performed layer-wise, our model is easy to implement and naturally

supports batched computation.

The contributions of our work are as follows. Firstly, We designed a novel sentence

encoder architecture that learns to compose task-specific trees from plain text data.

Also, We showed from experiments that the proposed architecture outperforms or is

competitive to state-of-the-art models. We also observed that our model converges

faster than others. Finally, we saw that our model significantly outperforms previous

RvNN works trained on parse trees in all conducted experiments, from which we

hypothesize that syntactic parse tree may not be the best structure for every task

and the optimal structure could differ per task.

3.2 Preliminaries

3.2.1 Recursive Neural Networks

Recursive neural networks (RvNNs) (Socher et al., 2011a; Irsoy and Cardie, 2014) use

structure information of a sentence—constituency-based parse trees or dependency-

based parse trees for example—in encoding a sentence, based on the intuition that

16

significant semantics lies in the hierarchical structure of words.

Socher et al. (2011a) proposed the recursive auto-encoder architecture that com-

poses two children nodes in a binary tree using a feedforward neural network. To

enhance the compositionality between constituents, Socher et al. (2012) designed the

matrix-vector RvNN architecture that maintains both a matrix and a vector for each

constituent and defines the composition process as a matrix-vector product. From

similar motivation, Socher et al. (2013) modeled the composition as a tensor product

and reduced the number of required parameters by a large margin compared to the

matrix-vector RvNN architecture.

Analogous to the trend that recurrent neural network (RNN) architectures armed

with a gating mechanism became the de-facto standard, e.g. long short-term memory

(LSTM, Hochreiter and Schmidhuber, 1997) and gated recurrent unit (GRU, Cho

et al., 2014b), Tai et al. (2015); Zhu et al. (2015); Le and Zuidema (2015) proposed

tree-structured LSTM architectures (tree-LSTMs) that computes the representation

of a parent constituent using LSTM-like gating functions. Along with the exemplars

described, several variants of RvNN have also been suggested (Hashimoto et al., 2013;

Dong et al., 2014; Qian et al., 2015; Liu et al., 2017; Teng and Zhang, 2017; Wang

et al., 2017a; Huang et al., 2017; Kim et al., 2019b, to name a few).

3.2.2 Training RvNNs without Tree Information

Although there is significant benefit in processing a sentence in a tree-structured

recursive manner, data annotated with parse trees could be expensive to prepare.

Furthermore, the optimal hierarchical composition of words might differ depending

on the properties of a task. To address the drawbacks, several works that aim to

learn hierarchical latent structure of text by recursively composing words into sen-

tence representation, without assuming that tree information is given in the training

dataset.

17

To the best of our knowledge, gated recursive convolutional neural network (gr-

Conv, Cho et al., 2014a) is the first model of its kind and was used as an encoder

for neural machine translation. The grConv architecture uses gating mechanism to

control the information flow from children to parent. grConv and its variants are also

applied to sentence classification tasks (Chen et al., 2015; Zhao et al., 2015). Neural

tree indexer (NTI, Munkhdalai and Yu, 2017b) utilizes soft hierarchical structures by

using tree-LSTM instead of grConv.

Although models that operate with soft structures are naturally capable of being

trained via backpropagation, the structures predicted by them are ambiguous and thus

it is hard to interpret them. CYK Tree-LSTM (Maillard et al., 2017, 2019) resolves

the ambiguity while maintaining the soft property by introducing the concept of the

CYK parsing algorithm (Cocke and Schwartz, 1970; Younger, 1967; Kasami, 1965).

Though their model reduces the ambiguity by explicitly representing a node as a

weighted sum of all candidate compositions, it is memory intensive since the number

of candidates linearly increases by depth.

On the other hand, there exists some previous work that maintains the discreteness

of tree composition processes, instead of relying on the soft hierarchical structure. The

architecture proposed by Socher et al. (2011b) greedily selects two adjacent nodes

whose reconstruction error is the smallest and merges them into the parent. In their

work, to guide a model to learn a meaningful parsing strategy, reconstruction error

is used along with the classification loss and the L-BFGS (Liu and Nocedal, 1989)

algorithm over the complete training data is used in training.

Yogatama et al. (2017) introduce reinforcement learning to achieve the desired ef-

fect of discretization. They show that REINFORCE (Williams, 1992) algorithm can

be used in estimating gradients to learn a tree composition function minimizing clas-

sification error. However, slow convergence due to the reinforcement learnign setting

is one of its drawbacks, according to the authors.

18

In research areas outside the RvNN, compositionality in a vector space also has

been a longstanding subject (Plate, 1995; Mitchell and Lapata, 2010; Grefenstette

and Sadrzadeh, 2011; Zanzotto and Dell’Arciprete, 2012, to list but a few). And

more recently, there exists work aiming to learn hierarchical latent structure from

unstructured data (Kim et al., 2017c; Chung et al., 2017).

3.3 Model Description

Our proposed architecture is built based on the tree-structured long short-term mem-

ory architecture. We introduce several additional components into the tree-LSTM

architecture to allow model to dynamically compose tree structures in a bottom-up

manner and to effectively encode a sentence into a vector. In the following, we describe

the components of our Gumbel Tree-LSTM model in detail.

3.3.1 Tree-LSTM

Tree-structured long short-term memory network (tree-LSTM, Tai et al., 2015; Zhu

et al., 2015; Le and Zuidema, 2015) is an elegent variant of RvNN, where it controls

information flow from from children to parent using similar mechanism to the LSTM

(Hochreiter and Schmidhuber, 1997). Tree-LSTM introduces cell state in computing a

parent representation, which assists each cell to capture distant vertical dependencies.

The following are formulae that our model uses to compute parent representation

from its children:

i

fl

fr

o

g

=

σ

σ

σ

σ

tanh

Wcomp

hl

hr

+ bcomp

 (3.1)

19

cp = fl � cl + fr � cr + i� g (3.2)

hp = o� tanh(cp), (3.3)

where Wcomp ∈ R5Dh×2Dh bcomp ∈ R2Dh , and � is the element-wise product. Note

that our formulation is akin to that of SPINN (Bowman et al., 2016a), but our version

does not include the tracking LSTM. Instead, our model can apply an LSTM to leaf

nodes, which we will soon describe.

3.3.2 Gumbel-Softmax

Gumbel-Softmax (Jang et al., 2017) (or Concrete distribution, Maddison et al., 2017)

is a method of utilizing discrete random variables in a network. Since it approximates

one-hot vectors sampled from a categorical distribution by making them continuous,

gradients of model parameters can be calculated using the reparameterization trick

and the standard backpropagation. Gumbel-Softmax is known to have an advantage

over score-function-based gradient estimators such as REINFORCE (Williams, 1992)

which suffer from high variance and slow convergence (Jang et al., 2017).

Gumbel-Softmax distribution is motivated by Gumbel-Max trick (Maddison et al.,

2014), an algorithm for sampling from a categorical distribution. Consider a k-dimensional

categorical distribution whose class probabilities p1, . . . , pk are defined in terms of un-

normalized log probabilities π1, . . . , πk:

pi =
exp(log(πi))∑k
j=1 exp(log(πj))

. (3.4)

Then a one-hot sample z = (z1, . . . , zk) ∈ Rk from the distribution can be easily

drawn by the following equations:

zi =

1 i = argmaxj(log(πj) + gj)

0 otherwise
(3.5)

20

gi = − log(− log(ui)) (3.6)

ui ∼ U(0, 1), (3.7)

where U(a, b) is the uniform distribution whose minimum and maximum value is a

and b respectively. Here, gi ∼ Gumbel(0, 1), namely Gumbel noise, perturbs each

log(πi) term so that taking argmax becomes equivalent to drawing a sample weighted

on p1, . . . , pk.

In Gumbel-Softmax, the discontinuous argmax function of Gumbel-Max trick is

replaced by the differentiable softmax function. That is, given unnormalized prob-

abilities π1, . . . , πk, and Gumbel noises g1, . . . , gk ∼ Gumbel(0, 1), a sample y =

(y1, . . . , yk) from the Gumbel-Softmax distribution is drawn by

yi =
exp((log(πi) + gi)/τ)

∑k
j=1 exp((log(πj) + gj)/τ)

, (3.8)

where τ is a temperature parameter; as τ diminishes to zero, a sample from the

Gumbel-Softmax distribution becomes cold and resembles the one-hot sample.

Straight-Through (ST) Gumbel-Softmax estimator (Jang et al., 2017), whose

name reminds of Straight-Through estimator (STE) (Bengio et al., 2013), is a discrete

version of the continuous Gumbel-Softmax estimator. Similar to the STE, it main-

tains sparsity by taking different paths in the forward and backward propagation.

Obviously ST estimators are biased, however they perform well in practice, according

to several previous works (Chung et al., 2017; Gu et al., 2018) and our own result.

In the forward pass, it discretizes a continuous probability vector y sampled

from the Gumbel-Softmax distribution into the one-hot vector yST = (yST1 , . . . , ySTk),

where

ySTi =

1 i = argmaxj yj

0 otherwise
. (3.9)

21

s1 s2 · · · sk

Gumbel-Softmax

argmax

t

(a) Forward

s1 s2 · · · sk

Gumbel-Softmax

t

(b) Backward

Figure 3.1: Visualization of forward and backward computation path of ST Gumbel-

Softmax. In the forward pass, a model can maintain sparseness due to argmax oper-

ation. In the backward pass, since there is no discrete operation, the error signal can

backpropagate.

And in the backward pass it simply uses the continuous y, thus the error signal is still

able to backpropagate. See Fig. 3.1 for the visualization of the forward and backward

pass.

ST Gumbel-Softmax estimator is useful when a model needs to utilize discrete

values directly, for example in the case that a model alters its computation path

based on samples drawn from a categorical distribution.

3.3.3 Gumbel Tree-LSTM

In our Gumbel Tree-LSTM model, an input sentence composed of N words is repre-

sented as a sequence of word vectors (x1, . . . ,xN), where xi ∈ RDx . Our basic model

applies an affine transformation to each xi to obtain the initial hidden and cell state:

r1i =

h

1
i

c1i

 = Wleafxi + bleaf , (3.10)

22

which we call leaf transformation. In Eq. 3.10, Wleaf ∈ R2Dh×Dx and bleaf ∈ R2Dh .

Note that we denote the representation of i-th node at t-th layer as rti =
[
ht
i; c

t
i

]
.

Assume that t-th layer consists of Mt node representations: (rt1, . . . , r
t
Mt

). If two

adjacent nodes, say rti and rti+1, are selected to be merged, then Eqs. 3.1–3.3 are

applied by assuming [hl; cl] = rti and [hr; cr] = rti+1 to obtain the parent represen-

tation [hp; cp] = rt+1
i . Node representations which are not selected are copied to the

corresponding positions at layer t+1. In other words, the (t+1)-th layer is composed

of Mt+1 = Mt − 1 representations (rt+1
1 , . . . , rtMt+1

), where

rt+1
j =

rtj j < i

Tree-LSTM
(
rtj , r

t
j+1

)
j = i

rtj+1 j > i

. (3.11)

This procedure is repeated until the model reaches N -th layer and only a single node

is left. It is notable that the property of selecting the best node pair at each stage

resembles that of the easy-first parsing (Goldberg and Elhadad, 2010).

Parent selection

Since information about the tree structure of an input is not given to the model,

a special mechanism is needed for the model to learn to compose task-specific tree

structures in an end-to-end manner. We now describe the mechanism for building up

the tree structure from an unstructured sentence.

First, our model introduces the trainable composition query vector q ∈ RDh . The

composition query vector measures how valid a representation is. Specifically, the

validity score of a representation r = [h; c] is defined by q · h.

At layer t, the model computes candidates for the parent representations using

Eqs. 3.1–3.3: (r̃t+1
1 , . . . , r̃t+1

Mt+1
). Then, it calculates the validity score of each candidate

23

the cat sat on Layer t+ 1

the cat cat sat sat on

the cat sat on Layer t

q

v1 = 0.5 v2 = 0.1 v3 = 0.4

Figure 3.2: An example of the parent selection. At layer t (the bottom layer), the

model computes parent candidates (the middle layer). Then the validity score of each

candidate is computed using the query vector q (denoted as v1, v2, v3). In the training

time, the model samples a parent node among candidates weighted on v1, v2, v3, using

ST Gumbel-Softmax estimator, and in the testing time the model selects the candidate

with the highest validity. At layer t + 1 (the top layer), the representation of the

selected candidate (‘the cat’) is used as a parent, and the rest are copied from those

of layer t (‘sat’, ‘on’). Best viewed in color.

and normalize it so that
∑Mt+1

i=1 vi = 1:

vi =
exp(q · h̃t+1

i)
∑Mt+1

j=1 exp(q · h̃t+1
j)

. (3.12)

In the training phase, the model samples a parent from candidates weighted on

vi, using the ST Gumbel-Softmax estimator described above. Since the continuous

Gumbel-Softmax function is used in the backward pass, the error backpropagation

signal safely passes through the sampling operation, hence the model is able to learn to

construct the task-specific tree structures that minimize the loss by backpropagation.

In the validation (or testing) phase, the model simply selects the parent which

maximizes the validity score.

An example of the parent selection is depicted in Fig. 3.2

24

LSTM-based leaf transformation

The basic leaf transformation using an affine transformation (Eq. 3.10) does not con-

sider information about the entire sentence of an input and thus the parent selection

is performed based only on local information.

SPINN (Bowman et al., 2016a) addresses this issue by using the tracking LSTM

which sequentially reads input words. The tracking LSTM makes the SPINN model

hybrid, where the model takes advantage of both tree-structured composition and

sequential reading. However, the tracking LSTM is not applicable to our model, since

our model does not use shift-reduce parsing or maintain a stack.

In the tracking LSTM’s stead, our model applies an LSTM on input representa-

tions to give information about previous words to each leaf node:

r1i =

h

1
i

c1i

 = LSTM(xi,h

1
i−1, c

1
i−1), (3.13)

where h1
0 = c10 = ~0.

From the experimental results, we validate that the LSTM applied to leaf nodes

has a substantial gain over the basic leaf transformation function.

3.4 Implementation Details

Implementation-wise, we used multiple mask matrices in implementing the proposed

Gumbel Tree-LSTM model. Using the mask matrices, Eq. 3.11 can be rewritten as

the following single equation:

rt+1
1:Mt+1

= Ml � rt1:Mt−1 + Mr � rt2:Mt
+ Mp � r̃t+1

1:Mt+1
. (3.14)

In the above equation, Ml,Mr,Mp ∈ RDh×Mt+1 , and rt1:L ∈ RDh×L is a matrix whose

columns are rt1, . . . , r
t
L ∈ RDh .

25

The mask matrices are defined by the following equations.

Ml =
[
ml · · · ml

]>
(3.15)

Mr =
[
mr · · · mr

]>
(3.16)

Mp =
[
mp · · · mp

]>
(3.17)

ml = 1− cumsum(ȳ1:Mt+1) (3.18)

mr =
[
0 cumsum(ȳ1:Mt+1−1)

]>
(3.19)

mp = ȳ1:Mt+1 (3.20)

Here, cumsum(c) is a function that takes a vector c = [c1, . . . , ck]> and outputs a

vector d = [d1, . . . , dk]> s.t. di =
∑i

j=1 cj . ȳ1:Mt+1 ∈ RMt+1 is a vector which will be

defined below, and 1 ∈ RMt+1 is a vector whose values are all ones.

In the forward pass, ȳ1:Mt+1 is defined by a one-hot vector yST
1:Mt+1

, which is sam-

pled from the categorical distribution of validity scores (v1, . . . , vMt+1) using Gumbel-

Max trick.

ySTi =

1 i = argmaxj

(
q · h̃t+1

j + gj

)

0 otherwise
(3.21)

gi = − log(− log(ui + ε) + ε) (3.22)

ui ∼ U(0, 1) (3.23)

Note that ε = 10−20 is added when calculating gi for numerical stability.

In the backward pass, instead of the one-hot version, the continuous vector y1:Mt+1

obtained from Gumbel-Softmax is used as ȳ1:Mt+1 . Note that the Gumbel noise sam-

ples g1, . . . , gMt+1 drawn in the forward pass are reused in the backward pass (i.e.

noise values are not re-sampled in the backward pass).

26

In typical deep learning libraries supporting automatic differentiation such as

PyTorch (Paszke et al., 2017) and TensorFlow (Abadi et al., 2016), this discrepancy

between forward and backward pass can be implemented as

ȳ1:Mt+1 = detach(yST
1:Mt+1

− y1:Mt+1) + y1:Mt+1 , (3.24)

where detach(·) is the special function that prevents error from backpropagating

through its input.

3.5 Experiments

We evaluate performance of the proposed Gumbel Tree-LSTM model on two tasks:

natural language inference and sentiment analysis. The implementation is made pub-

licly available.1

3.5.1 Natural Language Inference

Natural language inference (NLI) is a task of predicting the relationship between

two sentences (hypothesis and premise). In the Stanford Natural Language Inference

(SNLI) dataset (Bowman et al., 2015), which we use for NLI experiments, a relation-

ship is either contradiction, entailment, or neutral. For a model to correctly predict

the relationship between two sentences, it should encode semantics of sentences accu-

rately, thus the task has been used as one of standard tasks for evaluating the quality

of sentence representations.

The SNLI dataset is composed of about 550,000 sentences, each of which is binary-

parsed. However, since our model operate on plain text, we do not use the parse tree

information in both training and testing. The classifier architecture used in our SNLI

experiments is similar to the ones used in Mou et al. (2016); Chen et al. (2017b).

Given the premise sentence vector (hpre) and the hypothesis sentence vector (hhyp)
1https://github.com/jihunchoi/unsupervised-treelstm

27

https://github.com/jihunchoi/unsupervised-treelstm

which are encoded by the proposed Gumbel Tree-LSTM model, the probability of

relationship r ∈ {entailment, contradiction, neutral} is computed by the following

equations:

p(r|hpre,hhyp) = softmax(Wr
clfa + br

clf) (3.25)

a = Φ(f) (3.26)

f =

hpre

hhyp

∣∣hpre − hhyp
∣∣

hpre � hhyp

, (3.27)

where Wr
clf ∈ R1×Dc , br

clf ∈ R1, and Φ is a multi-layer perceptron (MLP) with the

rectified linear unit (ReLU) activation function.

The composition query vector is initialized by sampling from Gaussian distri-

bution N (0, 0.012). The last linear transformation that outputs the unnormalized

log probability for each class is initialized by sampling from uniform distribution

U(−0.005, 0.005). All other parameters are initialized following the scheme proposed

by He et al. (2015). We used Adam optimizer (Kingma and Ba, 2015) with default

hyperparameters and halved learning rate if there is no improvement in accuracy for

one epoch. The size of mini-batch is set to 128 in all experiments. The temperature

parameter τ of Gumbel-Softmax is set to 1.0, and we did not find that temperature

annealing improves performance.

For 100D experiments (where Dx = Dh = 100), we use a single-hidden layer MLP

with 200 hidden units (i.e. Dc = 200. The word vectors are initialized with GloVe

(Pennington et al., 2014) 100D pretrained vectors2 and fine-tuned during training.

For 300D experiments (where Dx = Dh = 300), we set the number of hidden units

of a single-hidden layer MLP to 1024 (Dc = 1024) and added batch normalization

2http://nlp.stanford.edu/data/glove.6B.zip

28

http://nlp.stanford.edu/data/glove.6B.zip

layers (Ioffe and Szegedy, 2015) followed by dropout (Srivastava et al., 2014) with

probability 0.1 to the input and the output of the MLP. We also apply dropout on

the word vectors with probability 0.1. Similar to 100D experiments, we initialize the

word embedding matrix with GloVe 300D pretrained vectors3, however we do not

update the word representations during training.

Since our model converges relatively fast, it is possible to train a model of larger

size in a reasonable time. In the 600D experiment, we set Dx = 300, Dh = 600, and

an MLP with three hidden layers (Dc = 1024) is used. The dropout probability is set

to 0.2 and word embeddings are not updated during training.

The results of SNLI experiments are summarized in Table 3.1. First, we can

see that LSTM-based leaf transformation has a clear advantage over the affine-

transformation-based one. It improves the performance substantially and also leads

to faster convergence.

Secondly, comparing ours with other models, we find that our 100D and 300D

model outperform all other models of similar numbers of parameters. Our 600D model

achieves the accuracy of 86.0%, which is comparable to that of the state-of-the-art

model (Nie and Bansal, 2017), while using far less parameters.

It is also worth noting that our models converge much faster than other models.

All of our models converged within a few hours on a machine with NVIDIA Titan Xp

GPU. Note that the models of Yogatama et al. (2017); Maillard et al. (2017), which

share the same objective of learning task-specific tree structures as ours, are hard

to be evaluated in 300D or 600D settings, due to slow convergence or large memory

consumption.

We also plot validation accuracies of various models during first 5 training epochs

in Fig. 3.3, and validate that our models converge significantly faster than others, not

only in terms of total training time but also in the number of iterations.

3http://nlp.stanford.edu/data/glove.840B.300d.zip

29

http://nlp.stanford.edu/data/glove.840B.300d.zip

M
od

el
A

ccu
racy

(%
)

#
P
aram

s
T

im
e

(h
ou

rs)
100D

Latent
Syntax

T
ree-LST

M
(Y

ogatam
a
et

al.,2017)
80.5

500k
72–96 ∗

100D
C
Y
K

T
ree-LST

M
(M

aillard
et

al.,2017)
81.6

231k
240 ∗

100D
G
um

belT
ree-LST

M
,w

ithout
Leaf

LST
M

(O
urs)

81.8
202k

0.7
100D

G
um

belT
ree-LST

M
(O

urs)
82.6

262k
0.6

300D
LST

M
(B

ow
m
an

et
al.,2016a)

80.6
3.0M

4 †

300D
SP

IN
N

(B
ow

m
an

et
al.,2016a)

83.2
3.7M

67 †

300D
N
SE

(M
unkhdalaiand

Y
u,2017a)

84.6
3.0M

26 †

300D
G
um

belT
ree-LST

M
,w

ithout
Leaf

LST
M

(O
urs)

84.4
2.3M

3.1
300D

G
um

belT
ree-LST

M
(O

urs)
85.6

2.9M
1.6

600D
(300+

300)
G
ated-A

ttention
B
iLST

M
(C

hen
et

al.,2017b)
85.5

11.6M
8.5 †

512–1024–2048D
Shortcut-Stacked

B
iLST

M
(N

ie
and

B
ansal,2017)

86.1
140.2M

3.8 †‡

600D
G
um

belT
ree-LST

M
(O

urs)
86.0

10.3M
3.4

T
able

3.1:
R
esults

of
SN

LI
experim

ents.
T
he

above
tw

o
sections

group
m
odels

of
sim

ilar
num

bers
of

param
eters.

T
he

bottom
section

contains
results

of
state-of-the-art

m
odels.

W
ord

em
bedding

param
eters

are
not

included
in

the
num

ber
of

param
eters.∗:

values
reported

in
the

original
papers.†:

values
estim

ated
from

per-epoch
training

tim
e
on

the
sam

e
m
achine

our
m
odels

trained
on.‡:cuD

N
N

library
is

used
in

R
N
N

com
putation.

30

0 1 2 3 4 5

0.6

0.7

0.8

0.9

Training Epoch

V
al
id
at
io
n
A
cc
u
ra
cy

100D Ours
300D Ours
100D CYK
300D SPINN
300D NSE

Figure 3.3: Validation accuracies on the SNLI dataset during training. 100D CYK:
100-dimensional unsupervised Tree-LSTM (Maillard et al., 2017). 300D SPINN: 300-
dimensional SPINN-PI (Bowman et al., 2016a). 300D NSE: 300-dimensional NSE
(Munkhdalai and Yu, 2017a). Our models and 300D NSE are trained with batch size
128. 100D CYK and 300D SPINN are trained with batch size 16 and 32 respectively,
as in the original papers. We observed that our models still converge faster than
others when a smaller batch size (16 or 32) is used.

31

3.5.2 Sentiment Analysis

To evaluate the performance of our model in single-sentence classification, we con-

ducted experiments on Stanford Sentiment Treebank (SST) (Socher et al., 2013)

dataset. In the SST dataset, each sentence is represented as a binary parse tree,

and each subtree of a parse tree is annotated with the corresponding sentiment score.

Following the experimental setting of previous works, we use all subtrees and their

labels for training, and only the root labels are used for evaluation.

The classifier has a similar architecture to SNLI experiments. Specifically, for

a sentence embedding h, the probability for the sentence to be predicted as label

s ∈ {0, 1} (in the binary setting, SST-2) or s ∈ {1, 2, 3, 4, 5} (in the fine-grained

setting, SST-5) is computed as follows:

p(s|h) = softmax(Ws
clfa + bs

clf) (3.28)

a = Φ(h), (3.29)

where Ws
clf ∈ R1×Dc , bs

clf ∈ R1, and Φ is a single-hidden layer MLP with the ReLU

activation function. Note that subtrees labeled as neutral are ignored in the binary

setting in both training and evaluation.

The composition query vector is initialized by sampling from Gaussian distri-

bution N (0, 0.012). The last linear transformation that outputs the unnormalized

log probability for each class is initialized by sampling from uniform distribution

U(−0.002, 0.002). All other parameters are initialized following the scheme proposed

by He et al. (2015).

We trained our SST-2 model with hyperparameters Dx = 300, Dh = 300, Dc =

300. The word vectors are initialized with GloVe 300D pretrained vectors and fine-

tuned during training. We apply dropout (p = 0.5) on the output of the word embed-

ding layer and the input and the output of the MLP layer. The size of mini-batches

32

is set to 32, and Adadelta (Zeiler, 2012) optimizer with default hyperparameters is

used for optimization. We halved learning rate if there is no improvement in accuracy

for two epochs.

For our SST-5 model, hyperparameters are set toDx = 300,Dh = 300,Dc = 1024.

Similar to the SST-2 model, we optimize the model using Adadelta optimizer with

batch size 64 and apply dropout with p = 0.5.

Table 3.2 summarizes the results of SST experiments. Our SST-2 model outper-

forms all other models substantially except byte-mLSTM (Radford et al., 2017), where

a byte-level language model trained on the large product review dataset is used to

obtain sentence representations.

We also see that the performance of our SST-5 model is on par with that of the

current state-of-the-art model (McCann et al., 2017), which is pretrained on large

parallel datasets and uses character n-gram embeddings alongside word embeddings,

even though our model does not utilize external resources other than GloVe vectors

and only uses word-level representations. The authors of (McCann et al., 2017) stated

that utilizing pretraining and character n-gram embeddings improves validation ac-

curacy by 2.8% (SST-2) or 1.7% (SST-5).

In addition, from the fact that our models substantially outperform all other

RvNN-based models, we conjecture that task-specific tree structures built by our

model help encode sentences into vectors more efficiently than constituency-based or

dependency-based parse trees do.

3.5.3 Qualitative Analysis

We conduct a set of experiments to observe various properties of our trained models.

First, to see how well the model encodes sentences with similar meaning or syntax

into close vectors, we find nearest neighbors of a query sentence. Second, to validate

that the trained composition functions are non-trivial and task-specific, we visualize

33

M
od

el
S
S
T

-2
(%

)
S
S
T

-5
(%

)
D
M
N

(K
um

ar
et

al.,2016)
88.6

52.1
N
SE

(M
unkhdalaiand

Y
u,2017a)

89.7
52.8

byte-m
LST

M
(R

adford
et

al.,2017)
91.8

52.9
B
C
N
+
C
har+

C
oV

e
(M

cC
ann

et
al.,2017)

90.3
53.7

R
N
T
N

(Socher
et

al.,2013)
85.4

45.7
C
onstituency

T
ree-LST

M
(T

aiet
al.,2015)

88.0
51.0

N
T
I-SLST

M
-LST

M
(M

unkhdalaiand
Y
u,2017b)

89.3
53.1

Latent
Syntax

T
ree-LST

M
(Y

ogatam
a
et

al.,2017)
86.5

–
C
onstituency

T
ree-LST

M
+

R
ecurrent

D
ropout

(Looks
et

al.,2017)
89.4

52.3
G
um

belT
ree-LST

M
(O

urs)
90.7

53.7

T
able

3.2:
R
esults

of
SST

experim
ents.

T
he

bottom
section

contains
results

of
R
vN

N
-based

m
odels.

U
nderlined

score
indicates

the
best

am
ong

R
vN

N
-based

m
odels.

34

sunshine is on a man
’s face .

a girl is staring at a
dog .

the woman is wearing
boots .

1 a man is walking on sun-
shine .

the woman is looking at
a dog .

the girl is wearing shoes

2 a guy is in a hot , sunny
place

a girl takes a photo of a
dog .

a person is wearing boots
.

3 a man is working in the
sun .

a girl is petting her dog . the woman is wearing
jeans .

4 it is sunny . a man is taking a picture
of a dog , while a woman
watches .

a woman wearing sun-
glasses .

5 a man enjoys the sun
coming through the win-
dow .

a woman is playing with
her dog .

the woman is wearing a
vest .

Table 3.3: Nearest neighbor sentences of query sentences. Each query sentence is
unseen in the dataset.

trees composed by SNLI and SST model given identical sentence.

Nearest neighbors

We encode sentences in the test split of SNLI dataset using the trained 300D model

and find nearest neighbors given a query sentence. Table 3.3 presents five nearest

neighbors for each selected query sentence. In finding nearest neighbors, cosine dis-

tance is used as metric. The result shows that our model effectively maps similar

sentences into vectors close to each other; the neighboring sentences are similar to a

query sentence not only in terms of word overlap, but also in semantics. For example

in the second column, the nearest sentence is ‘the woman is looking at a dog’, whose

meaning is almost same as the query sentence. We can also see that other neighbors

partially share semantics with the query sentence.

Tree examples

Fig. 3.4 show that two models (300D SNLI and SST-2) generate different tree struc-

tures given an identical sentence. In Fig. 3.4a and 3.4b, the SNLI model groups the

35

phrase ‘i love this’ first, while the SST model groups ‘this very much’ first. Fig. 3.4c

and 3.4d present how differently the two models process a sentence containing rel-

ative pronoun ‘which’. It is intriguing that the models compose visually plausible

tree structures, where the sentence is divided into two phrases by relative pronoun,

even though they are trained without explicit parse trees. We hypothesize that these

examples demonstrate that each model generates a distinct tree structure based on

semantic properties of the task and learns non-trivial tree composition scheme.

3.6 Summary

We proposed Gumbel Tree-LSTM, a novel Tree-LSTM-based architecture that learns

to compose task-specific tree structures. Our model introduces the composition query

vector to compute validity of the candidate parents and selects the appropriate parent

according to validity scores. In training time, the model samples the parent from

candidates using ST Gumbel-Softmax estimator, hence it is able to be trained by

standard backpropagation while maintaining its property of discretely determining

the computation path in forward propagation.

From experiments, we validate that our model outperforms all other RvNN mod-

els and is competitive to state-of-the-art models, and also observed that our model

converges faster than other complex models. The result poses an important ques-

tion: what is the optimal input structure for RvNN? We empirically showed that the

optimal structure might differ per task, and investigating task-specific latent tree

structures could be an interesting future research direction.

36

i love this very much .

(a) SNLI

i love this very much .

(b) SST

this is the song which i love the most .

(c) SNLI

this is the song which i love the most .

(d) SST

Figure 3.4: Tree structures built by models trained on SNLI and SST.

37

Chapter 4

Sentence Encoder:
Cell-aware Stacked LSTM

4.1 Motivation

In the field of natural language processing (NLP), one of the most prevalent neural

approaches to obtaining sentence representations is to use recurrent neural networks

(RNNs), where words in a sentence are processed in a sequential and recurrent man-

ner. Along with their intuitive design, RNNs have shown outstanding performance

across various NLP tasks e.g. language modeling (Mikolov et al., 2010; Graves, 2013),

machine translation (Cho et al., 2014c; Sutskever et al., 2014; Bahdanau et al., 2015),

text classification (Zhou et al., 2015; Tang et al., 2015), and parsing (Kiperwasser

and Goldberg, 2016; Dyer et al., 2016).

As reviewed in Ch. 2, gated RNNs such as long short-term memory (LSTM,

Hochreiter and Schmidhuber, 1997) and gated recurrent unit (GRU, Cho et al., 2014b)

are currently accepted as standard choices for RNNs due to the ease of training

and their expressivity. Also, to further boost performance, the technique of stacking

38

multiple RNN layers (Schmidhuber, 1992; El Hihi and Bengio, 1995), where the hidden

states of a layer are fed as input to the next layer, is widely used.

However the typical setting of stacking RNNs might hinder the possibility of more

sophisticated structures since the information from lower layers is simply treated as

input to the next layer, rather than as another class of state that participates in core

RNN computations. Especially for gated RNNs such as LSTMs and GRUs, this means

that the vertical layer-to-layer connections cannot fully benefit from the carefully

constructed gating mechanism used in temporal transitions.

From this motivation, we study a method of constructing multi-layer LSTMs

where memory cell states from the previous layer are used in controlling the ver-

tical information flow. This architecture utilizes states from the left and the lower

context equally in computation of the new state, thus the information from lower

layers is elaborately filtered and reflected through a soft gating mechanism. The

proposed architecture is easy-to-implement, effective, and can replace conventional

stacked LSTMs without much modification of the overall architecture.

We call the proposed architecture Cell-aware Stacked LSTM, or CAS-LSTM, and

evaluate it on multiple benchmark tasks: natural language inference, paraphrase iden-

tification, sentiment classification, and machine translation. From experiments we

show that the CAS-LSTMs consistently outperform typical stacked LSTMs, opening

the possibility of performance improvement of architectures based on stacked LSTMs.

See Fig. 4.1 for the comparison between a plain stacked LSTM and the proposed CAS-

LSTM architecture.

Our contribution is summarized as follows. Firstly, we bring the idea of utilizing

states coming from multiple directions to construction of stacked LSTM and apply

the idea to the research of sentence representation learning. There is some prior work

addressing the idea of incorporating more than one type of state (Graves et al., 2007;

Kalchbrenner et al., 2016; Zhang et al., 2016b), however to the best of our knowledge

39

hl
t−1, cl

t−1

hl−1
t

(a) Plain stacked LSTM

hl
t−1, cl

t−1

hl−1
t , cl−1

t

(b) Cell-aware stacked LSTM

Figure 4.1: Visualization of a plain stacked LSTM and a CAS-LSTM architecture.

The red nodes indicate the blocks whose cell states directly affect the cell state clt.

there is little work on applying the idea to modeling sentences for better understanding

of natural language text.

Secondly, we conduct extensive evaluation of the proposed method and empirically

prove its effectiveness. The CAS-LSTM architecture provides consistent performance

gains over the stacked LSTM in all benchmark tasks: natural language inference, para-

phrase identification, sentiment classification, and machine translation. Especially in

SNLI, SST-2, and Quora Question Pairs datasets, our models outperform or at least

are on par with the state-of-the-art models. We also conduct thorough qualitative

analysis to understand the dynamics of the suggested approach.

4.2 Related Work

In this section, we summarize prior work related to the proposed method. We group

the previous work that motivated our work into three classes: i) enhancing interaction

between vertical layers, ii) RNN architectures that accepts latticed data, and iii) tree-

structured RNNs.

40

Stacked Recurrent Neural Networks

There is some prior work on methods of stacking RNNs beyond the plain stacked

RNNs (Schmidhuber, 1992; El Hihi and Bengio, 1995). Residual LSTMs (Kim et al.,

2017a; Tran et al., 2017) add residual connections between the hidden states computed

at each LSTM layer, and shortcut-stacked LSTMs (Nie and Bansal, 2017) concatenate

hidden states from all previous layers to make the backpropagation path short. In

our method, the lower context is aggregated via a gating mechanism, and we believe

it modulates the amount of information to be transmitted in a more efficient and

effective way than vector addition or concatenation. Also, compared to concatenation,

our method does not significantly increase the number of parameters.1

Highway LSTMs (Zhang et al., 2016b) and depth-gated LSTMs (Yao et al., 2015)

are similar to our proposed models in that they use cell states from the previous layer,

and they are successfully applied to the field of automatic speech recognition and

language modeling. However in contrast to CAS-LSTM, where the additional forget

gate aggregates the previous layer states and thus contexts from the left and below

participate in computation equitably, in Highway LSTMs and depth-gated LSTMs

the states from the previous time step are not considered in computing vertical gates.

Multidimensional Recurrent Neural Networks

There is another line of research that aims to extend RNNs to operate with multidi-

mensional inputs. Grid LSTMs (Kalchbrenner et al., 2016) are a general n-dimensional

LSTM architecture that accepts n sets of hidden and cell states as input and yields

n sets of states as output, in contrast to our architecture, which emits a single set of

states. In their work, the authors utilize 2D and 3D Grid LSTMs in character-level

language modeling and machine translation respectively and achieve performance im-
1The l-th layer of a typical stacked LSTM requires (dl−1 + dl + 1)× 4dl parameters, and the l-th

layer of a shortcut-stacked LSTM requires (
∑l−1

k=0 dk + dl + 1) × 4dl parameters. CAS-LSTM uses
(dl−1 + dl + 1)× 5dl parameters at the l-th (l > 1) layer.

41

provement. Multidimensional RNNs (Graves et al., 2007; Graves and Schmidhuber,

2008) have similar formulation to ours, except that they reflect cell states via simple

summation and weights for all columns (vertical layers in our case) are tied. However

they are only employed to model multidimensional data such as images of handwritten

text with RNNs, rather than stacking RNN layers for modeling sequential data. From

this view, CAS-LSTM could be interpreted as an extension of two-dimensional LSTM

architecture that accepts a 2D input {hl
t}T,Lt=1,l=0 where hl

t represents the hidden state

at time t and layer l.

Tree-structured Recurrent Neural Networks

The idea of having multiple states is also related to tree-structured RNNs (Goller

and Kuchler, 1996; Socher et al., 2011a). Among them, tree-structured LSTMs (tree-

LSTMs) (Tai et al., 2015; Zhu et al., 2015; Le and Zuidema, 2015) are similar to ours

in that they use both hidden and cell states of children nodes. In tree-LSTMs, states

of children nodes are regarded as input, and they participate in computing the states

of a parent node equally through weight-shared or weight-unshared projection. From

this perspective, each CAS-LSTM layer can be seen as a binary tree-LSTM where

the structures it operates on are fixed to right-branching trees.

Indeed, our work is motivated by the recent analysis (Williams et al., 2018a; Shi

et al., 2018) on latent tree learning models (Yogatama et al., 2017; Choi et al., 2018b)

which has shown that tree-LSTM models outperform the sequential LSTM models

even when the resulting parsing strategy generates strictly left- or right-branching

parses, where a tree-LSTM model should read words in the manner identical to a se-

quential LSTM model. We argue that the active use of cell state in computation could

be one reason of these counter-intuitive results and empirically prove the hypothesis

in this work.

42

4.3 Model Description

In this section, we give the detailed formulation of architectures used in experiments.

4.3.1 Stacked LSTMs

While there exist various versions of LSTM formulation, in this work we use the

following, the most common variant:

ilt = σ(Wl
ih

l−1
t + Ul

ih
l
t−1 + bl

i) (4.1)

f lt = σ(Wl
fh

l−1
t + Ul

fh
l
t−1 + bl

f) (4.2)

c̃lt = tanh(Wl
ch

l−1
t + Ul

ch
l
t−1 + bl

c) (4.3)

olt = σ(Wl
oh

l−1
t + Ul

oh
l
t−1 + bl

o) (4.4)

clt = ilt � c̃lt + f lt � clt−1 (4.5)

hl
t = olt � tanh(clt), (4.6)

where t ∈ {1, · · · , T} and l ∈ {1, · · · , L}. Wl
· ∈ Rdl×dl−1 , Ul

· ∈ Rdl×dl , bl
· ∈ Rdl

are trainable parameters, and σ(·) and tanh(·) are the sigmoid and the hyperbolic

tangent function respectively. Also we assume that h0
t = xt ∈ Rd0 where xt is the t-th

element of an input sequence.

The input gate ilt and the forget gate f lt control the amount of information trans-

mitted from c̃lt and clt−1, the candidate cell state and the previous cell state, to the

new cell state clt. Similarly the output gate olt soft-selects which portion of the cell

state clt is to be used in the final hidden state.

We can clearly see that the cell states clt−1, c̃
l
t, clt play a crucial role in forming

horizontal recurrence. However the current formulation does not consider the cell state

from (l − 1)-th layer (cl−1t) in computation and thus the lower context is reflected

only through the rudimentary way, hindering the possibility of controlling vertical

information flow.

43

4.3.2 Cell-aware Stacked LSTMs

Now we extend the stacked LSTM formulation defined above to address the problem

noted in the previous subsection. To enhance the interaction between layers in a way

similar to how LSTMs keep and forget the information from the previous time step,

we introduce the additional forget gate gl
t that determines whether to accept or ignore

the signals coming from the previous layer.

The proposed Cell-aware Stacked LSTM (CAS-LSTM) architecture is defined as

follows:

ilt = σ(Wl
ih

l−1
t + Ul

ih
l
t−1 + bl

i) (4.7)

f lt = σ(Wl
fh

l−1
t + Ul

fh
l
t−1 + bl

f) (4.8)

gl
t = σ(Wl

gh
l−1
t + Ul

gh
l
t−1 + bl

g) (4.9)

c̃lt = tanh(Wl
ch

l−1
t + Ul

ch
l
t−1 + bl

c) (4.10)

olt = σ(Wl
oh

l−1
t + Ul

oh
l
t−1 + bl

o) (4.11)

clt = ilt � c̃lt + (1− λ)� f lt � clt−1 + λ� gl
t � cl−1t (4.12)

hl
t = olt � tanh(clt), (4.13)

where l > 1 and dl = dl−1. λ can either be a vector of constants or parameters. When

l = 1, the equations defined in the previous subsection are used. Therefore, it can be

said that each non-bottom layer of CAS-LSTM accepts two sets of hidden and cell

states—one from the left context and the other from the below context. The left and

the below context participate in computation with the equivalent procedure so that

the information from lower layers can be efficiently propagated. Fig. 4.1 compares

CAS-LSTM to the conventional stacked LSTM architecture, and Fig. 4.2 depicts the

computation flow of the CAS-LSTM.

We argue that considering cl−1t in computation is beneficial for the following

reasons. First, contrary to hl−1
t , cl−1t contains information which is not filtered by

44

hl−1
t

hl
t−1

cl
t−1

σ σ tanh σ

cl−1
t

σ

tanh

+ +

hl
t

cl
t1 − λ

λ

Figure 4.2: Schematic diagram of a CAS-LSTM block.

cl−1
t

ol−1
t

hl−1
t il

t

c̃l
t

gl
t

cl
t

Figure 4.3: Visualization of paths between cl−1t and clt. In CAS-LSTM, the direct
connection between cl−1t and clt exists (denoted as red dashed lines).

ol−1t . Thus a model that directly uses cl−1t does not rely solely on ol−1t for extracting

information, due to the fact that it has access to the raw information cl−1t , as in

temporal connections. In other words, ol−1t no longer has to take all responsibility for

selecting useful features for both horizontal and vertical transitions, and the burden

of selecting information is shared with gl
t.

Another advantage of using the cl−1t lies in the fact that it directly connects cl−1t

and clt. This direct connection could help and stabilize training, since the terminal

error signals can be easily backpropagated to the model parameters by the shortened

propagation path. Fig. 4.3 illustrates paths between the two cell states.

Regarding λ, we find experimentally that there is little difference between having

it be a constant and a trainable vector bounded in (0, 1), and we practically find that

45

setting λi = 0.5 works well across multiple experiments. We also experimented with

the architecture without λ i.e. two cell states are combined by unweighted summation

similar to multidimensional RNNs (Graves and Schmidhuber, 2008), and found that

it leads to performance degradation and unstable convergence, likely due to mismatch

in the range of cell state values between layers ((−2, 2) for the first layer and (−3, 3)

for the others). Experimental results on various λ are presented in §4.4.6.

4.3.3 Sentence Encoders

For text classification tasks, a variable-length sentence should be represented as a

fixed-length vector. We describe the sentence encoder architectures used in experi-

ments in this subsection.

First, we assume that a sequence of T one-hot word vectors is given as input:

(w1, · · · ,wT), wt ∈ R|V | where V is the vocabulary set. The words are projected

to corresponding word representations: X = (x1, · · · ,xT) where xt = E>wt ∈ Rd0 ,

E ∈ R|V |×d0 . Then X is fed to a L-layer CAS-LSTM model, resulting in the repre-

sentations H = (hL
1 , · · · ,hL

T) ∈ RT×dL . The encoded sentence representation s ∈ RdL

is computed by max-pooling H over time as in the work of Conneau et al. (2017).

Similar to their results, from preliminary experiments we found that the max-pooling

performs consistently better than the mean-pooling and the last-pooling.

For better modeling of semantics, a bidirectional CAS-LSTM network may also be

used. In the bidirectional case, the representations obtained by left-to-right reading

H = (hL
1 , · · · ,hL

T) ∈ RT×dL and those by right-to-left reading Ĥ = (ĥL
1 , · · · , ĥL

T) ∈
RT×dL are concatenated and max-pooled to yield the sentence representation s ∈
R2dL . We call this bidirectional architecture Bi-CAS-LSTM in experiments.

To predict the final task-specific label, we apply a task-specific feature extraction

function φ to the sentence representation(s) and feed the extracted features to a

classifier network. For the classifier network, a multi-layer perceptron (MLP) with

46

the ReLU activation followed by the linear projection and the softmax function is

used:

P (y|X) = softmax(WcMLP(φ(·))), (4.14)

where Wc ∈ R|L|×dh , |L| is the number of label classes, and dh the dimension of the

MLP output.

4.4 Experiments

We evaluate our method on three benchmark tasks on sentence encoding: natural

language inference (NLI), paraphrase identification (PI), and sentiment classification.

To further demonstrate the general applicability of our method on text generation, we

also evaluate the proposed method on machine translation. In addition, we conduct

analysis on gate values model variations for the understanding of the architecture.

For the NLI and PI tasks, there exists architectures specializing in sentence pair

classification. However in this work we confine our model to the architecture that

encodes each sentence using a shared encoder without any inter-sentence interaction,

in order to focus on the effectiveness of the architectures in extracting semantics. But

note that the applicability of CAS-LSTM is not limited to sentence encoder–based

approaches.

For all experiments, weight matrices for recurrent connections are initialized ac-

cording to the orthogonal initialization scheme (Saxe et al., 2014). All other weight

matrices are initialized using the scheme proposed by He et al. (2015), except the

weights for the last fully-connect layer which are initialized by sampling from the

uniform distribution U(−0.005, 0.005). Bias vectors are initialized to zero.

4.4.1 Natural Language Inference

For the evaluation of performance of the proposed method on the NLI task, SNLI

(Bowman et al., 2015) and MultiNLI (Williams et al., 2018b) datasets are used.

47

The objective of both datasets is to predict the relationship between a premise and

a hypothesis sentence: entailment, contradiction, and neutral. SNLI and MultiNLI

datasets are composed of about 570k and 430k premise-hypothesis pairs respectively.

GloVe pretrained word embeddings2 (Pennington et al., 2014) are used and remain

fixed during training. The dimension of encoder states (dl) is set to 300 and a 1024D

MLP with one or two hidden layers is used. Adam optimizer (Kingma and Ba, 2015)

is used for training, and the learning rate is annealed according to cosine schedule

(Loshchilov and Hutter, 2017) with the initial learning rate of 0.001. For all models,

we added the L2 norm of the parameters to the classification loss with the factor

of 0.002. The dimensions of encoder states and MLP hidden layers are set to 300

and 1024 respectively. Batch normalization (Ioffe and Szegedy, 2015) and dropout

(Srivastava et al., 2014) is applied to the word embeddings and the MLP layers.

Dropout is also applied to word embeddings, and we denote the drop probability

of word embeddings by pw and that of MLP input and layer outputs by pc. The

maximum length of each sentence is 35 for SNLI and 55 for MultiNLI experiments,

and words beyond the sentence boundary are discarded. Each minibatch is composed

of 128 data samples. Table 4.1 and 4.2 list hyperparameters used in the SNLI and

MultiNLI experiments.

The features used as input to the MLP classifier are extracted by the following

equation:

φ(s1, s2) = s1 ⊕ s2 ⊕ |s1 − s2| ⊕ (s1 � s2), (4.15)

where ⊕ is the vector concatenation operator.

Table 4.3 and 4.4 contain results of the models on SNLI and MultiNLI datasets.

Along with other state-of-the-art models, the tables include several stacked LSTM–

based models to facilitate comparison of our work with prior related work. Liu et al.

(2016); Chen et al. (2017b, 2018a) adopt advanced pooling algorithms motivated by
2https://nlp.stanford.edu/projects/glove/

48

https://nlp.stanford.edu/projects/glove/

M
od

el
#

E
n
co

d
er

L
ay

er
s

B
id

ir
ec

ti
on

al
#

M
L
P

L
ay

er
s

p
w

p
c

2-
la
ye
r
C
A
S-
LS

T
M

2
1

0.
10

0.
10

2-
la
ye
r
B
i-C

A
S-
LS

T
M

2
X

2
0.
15

0.
15

3-
la
ye
r
C
A
S-
LS

T
M

3
2

0.
15

0.
20

3-
la
ye
r
B
i-C

A
S-
LS

T
M

3
X

2
0.
15

0.
15

T
ab

le
4.
1:

H
yp

er
pa

ra
m
et
er
s
fo
r
SN

LI
m
od

el
s.

M
od

el
#

E
n
co

d
er

L
ay

er
s

B
id

ir
ec

ti
on

al
#

M
L
P

L
ay

er
s

p
w

p
c

L
2

w
ei

gh
t

2-
la
ye
r
C
A
S-
LS

T
M

2
1

0.
10

0.
10

0.
00
25

2-
la
ye
r
B
i-C

A
S-
LS

T
M

2
X

2
0.
15

0.
20

0.
00
20

3-
la
ye
r
C
A
S-
LS

T
M

3
2

0.
10

0.
15

0.
00
25

3-
la
ye
r
B
i-C

A
S-
LS

T
M

3
X

2
0.
15

0.
20

0.
00
20

T
ab

le
4.
2:

H
yp

er
pa

ra
m
et
er
s
fo
r
M
ul
ti
N
LI

m
od

el
s.

49

Model Acc. (%) # Params
300D LSTM (Bowman et al., 2016a) 80.6 3.0M
300D TBCNN (Mou et al., 2016) 82.1 3.5M
300D SPINN-PI (Bowman et al., 2016a) 83.2 3.7M
600D BiLSTM + intra-attention (Liu et al., 2016) 84.2 2.8M
4096D BiLSTM + max-pooling (Conneau et al., 2017) 84.5 40M
300D BiLSTM + gated pooling (Chen et al., 2017b) 85.5 12M
300D Gumbel Tree-LSTM (Choi et al., 2018b) 85.6 2.9M
600D Shortcut stacked BiLSTM (Nie and Bansal, 2017) 86.1 140M
300D Reinforced self-attention network (Shen et al., 2018c) 86.3 3.1M
600D BiLSTM + generalized pooling (Chen et al., 2018a) 86.6 65M
300D 2-layer CAS-LSTM (ours) 86.4 2.9M
300D 2-layer Bi-CAS-LSTM (ours) 86.8 6.8M
300D 3-layer CAS-LSTM (ours) 86.4 4.8M
300D 3-layer Bi-CAS-LSTM (ours) 87.0 8.6M

Table 4.3: Results of the models on the SNLI dataset.

the attention mechanism to obtain a fixed-length sentence vector. Nie and Bansal

(2017) use the concatenation of all outputs from previous layers as input to the next

layer.

In SNLI, our best model achieves the accuracy of 87.0%, which is the new state-of-

the-art among the sentence encoder–based models, with relatively fewer parameters.

Similarly in MultiNLI, our models match the accuracy of state-of-the-art models

in both in-domain (matched) and cross-domain (mismatched) test sets. Note that

only the GloVe word vectors are used as word representations, as opposed to some

models that introduce character-level features. It is also notable that our proposed

architecture does not restrict the selection of pooling method; the performance could

further be improved by replacing max-pooling with other advanced algorithms e.g.

intra-sentence attention (Liu et al., 2016) and generalized pooling (Chen et al., 2018a).

4.4.2 Paraphrase Identification

We use Quora Question Pairs dataset (Wang et al., 2017b) in evaluating the perfor-

mance of our method on the PI task. The dataset consists of over 400k question pairs,

and each pair is annotated with whether the two sentences are paraphrase of each

50

Model In (%) Cross (%) # Params
CBOW (Williams et al., 2018b) 64.8 64.5 -
BiLSTM (Williams et al., 2018b) 66.9 66.9 -
Shortcut stacked BiLSTM (Nie and Bansal, 2017)∗ 74.6 73.6 140M
BiLSTM + gated pooling (Chen et al., 2017b) 73.5 73.6 12M
BiLSTM + generalized pooling (Chen et al., 2018a) 73.8 74.0 18M∗∗

2-layer CAS-LSTM (ours) 74.0 73.3 2.9M
2-layer Bi-CAS-LSTM (ours) 74.6 73.7 6.8M
3-layer CAS-LSTM (ours) 73.8 73.1 4.8M
3-layer Bi-CAS-LSTM (ours) 74.2 73.4 8.6M

Table 4.4: Results of the models on the MultiNLI dataset. ‘In’ and ‘Cross’ repre-
sent accuracy calculated from the matched and mismatched test set respectively. ∗:
SNLI dataset is used as additional training data. ∗∗: computed from hyperparameters
provided by the authors.

Model # Encoder Layers Bidirectional # MLP Layers pw pc

CAS-LSTM 2 1 0.10 0.10
Bi-CAS-LSTM 2 X 1 0.15 0.20

Table 4.5: Hyperparameters for Quora Question Pairs models.

other or not.

Similarly to the NLI experiments, GloVe pretrained vectors, 300D encoders, and

1024D MLP are used. The number of CAS-LSTM layers is fixed to 2 in PI experi-

ments, and all models use the L2 weight of 0.002. Two sentence vectors are aggregated

using the following equation and fed as input to the classifier.

φ(s1, s2) = |s1 − s2| ⊕ (s1 � s2) (4.16)

The hyperparameters used are lised in Table 4.5.

The results on the Quora Question Pairs dataset are summarized in Table 4.6.

Again we can see that our models outperform other models, especially compared to

conventional LSTM–based models. Also note that Multi-Perspective LSTM (Wang

et al., 2017b), LSTM + ElBiS (Choi et al., 2018a), and REGMAPR (BASE+REG)

(Brahma, 2018) in Table 4.6 are approaches that focus on designing a more sophisti-

cated function for aggregating two sentence vectors, and their aggregation functions

51

Model Acc. (%)
CNN (Wang et al., 2017b) 79.6
LSTM (Wang et al., 2017b) 82.6
Multi-Perspective LSTM (Wang et al., 2017b) 83.2
LSTM + ElBiS (Choi et al., 2018a) 87.3
REGMAPR (BASE+REG) (Brahma, 2018) 88.0
CAS-LSTM (ours) 88.4
Bi-CAS-LSTM (ours) 88.6

Table 4.6: Results of the models on the Quora Question Pairs dataset.

could be also applied to our work for further improvement.

4.4.3 Sentiment Classification

In evaluating sentiment classification performance, the Stanford Sentiment Treebank

(SST) (Socher et al., 2013) is used. It consists of about 12,000 binary-parsed sentences

where constituents (phrases) of each parse tree are annotated with a sentiment label

(very positive, positive, neutral, negative, very negative). Following the convention of

prior work, all phrases and their labels are used in training but only the sentence-level

data are used in evaluation.

In evaluation we consider two settings, namely SST-2 and SST-5, the two differ-

ing only in their level of granularity with regard to labels. In SST-2, data samples

annotated with ‘neutral’ are ignored from training and evaluation. The two posi-

tive labels (very positive, positive) are considered as the same label, and similarly

for the two negative labels. As a result 98,794/872/1,821 data samples are used in

training/validation/test, and the task is considered as a binary classification prob-

lem. In SST-5, all 318,582/1,101/2,210 data samples are used and the task is a 5-class

classification problem.

Since the task is a single-sentence classification problem, we use the sentence

representation itself as input to the classifier. We use 300D GloVe vectors, 2-layer 150D

or 300D encoders, and a 300D MLP classifier for the models, however unlike previous

52

experiments we tune the word embeddings during training. Models are trained using

ADADELTA algorithm (Zeiler, 2012) instead of Adam. Table 4.7 and 4.8 contain the

hyperparameter configurations used for SST-2 and SST-5 experiments.

The results on SST are listed in Table 4.9. Our models clearly outperform plain

LSTM- and BiLSTM-based models, and are competitive to other state-of-the-art

models, without utilizing parse tree information.

4.4.4 Machine Translation

We use the IWSLT 2014 machine evaluation campaign dataset (Cettolo et al., 2014) in

machine translation experiments. We used the fairseq library (Gehring et al., 2017)

for experiments. Moses tokenizer3 is used for word tokenization and the byte pair

encoding (Sennrich et al., 2016) is applied to confine the size of the vocabulary set

up to 10,000. The lstm_wiseman_iwslt_de_en configuration is used as the base

architecture, and we implemented the CAS-LSTM counterpart. We set the number

of LSTM layers to 2 and selected the dropout probability p from {0.1, 0.2, 0.3}, and
set p = 0.1 for the base architecture and p = 0.2 for the CAS-LSTM architecture.

Similar to Wiseman and Rush (2016), a 2-layer 256D sequence-to-sequence LSTM

model with the attentional decoder is used as baseline, and we replace the encoder and

the decoder network with the proposed architecture for the evaluation of performance

improvement. For decoding, beam search with B = 10 is used. For fair comparison,

we tune hyperparameters for all models based on the performance on the validation

dataset and train the same model for five times with different random seeds. Also,

to cancel out the increased number of parameters, we experiment with the 247D

CAS-LSTM model which has the roughly same number of parameters as the baseline

model (8.2M).

3https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/
tokenizer.perl

53

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl

M
od

el
#

E
n
cod

er
L
ayers

B
id

ir.
E
n
cod

er
D

im
.

M
L
P

H
id

d
en

D
im

.
p
w

p
c

L
2

w
eight

C
A
S-LST

M
2

300
300

0.5
0.5

0.010
B
i-C

A
S-LST

M
2

X
150

300
0.5

0.5
0.005

T
able

4.7:H
yperparam

eters
for

SST
-2

m
odels.

M
od

el
#

E
n
cod

er
L
ayers

B
id

ir.
E
n
cod

er
D

im
.

M
L
P

H
id

d
en

D
im

.
p
w

p
c

L
2

w
eight

C
A
S-LST

M
2

300
300

0.4
0.4

0.005
B
i-C

A
S-LST

M
2

X
300

300
0.5

0.5
0.005

T
able

4.8:H
yperparam

eters
for

SST
-5

m
odels.

54

Model SST-2 (%) SST-5 (%)
Recursive Neural Tensor Network (Socher et al., 2013) 85.4 45.7
2-layer LSTM (Tai et al., 2015) 86.3 46.0
2-layer BiLSTM (Tai et al., 2015) 87.2 48.5
Constituency Tree-LSTM (Tai et al., 2015) 88.0 51.0
Constituency Tree-LSTM + Recurrent Dropout (Looks et al., 2017) 89.4 52.3
byte mLSTM (Radford et al., 2017)∗ 91.8 52.9
Gumbel Tree-LSTM (Choi et al., 2018b) 90.7 53.7
BCN + Char + ELMo (Peters et al., 2018)∗ - 54.7
2-layer CAS-LSTM (ours) 91.1 53.0
2-layer Bi-CAS-LSTM (ours) 91.3 53.6

Table 4.9: Results of the models on the SST dataset. ∗: models pretrained on large
external corpora are used.

Model BLEU
256D LSTM 28.1 ± 0.22
256D CAS-LSTM 28.8 ± 0.04∗
247D CAS-LSTM 28.7 ± 0.07∗

Table 4.10: Results of the models on the IWSLT 2014 de-en dataset. ∗: p < 0.0005
(one-tailed paired t-test).

From Table 4.10, we can see that the CAS-LSTM models bring significant perfor-

mance gains over the baseline model.

4.4.5 Forget Gate Analysis

To inspect the effect of the additional forget gate, we investigate how the values of

vertical forget gates are distributed. We sample 1,000 random sentences from the

development set of the SNLI dataset, and use the 3-layer CAS-LSTM model trained

on the SNLI dataset to compute gate values.

If all values from a vertical forget gate gl
t were to be 0, this would mean that

the introduction of the additional forget gate is meaningless and the model would

reduce to a plain stacked LSTM. On the contrary if all values were 1, meaning that

the vertical forget gates were always open, it would be impossible to say that the

information is modulated effectively.

Fig. 4.4a and 4.4b represent histograms of the vertical forget gate values from the

55

second and the third layer. From the figures we can validate that the trained model

does not fall into the degenerate case where vertical forget gates are ignored. Also

the figures show that the values are right-skewed, which we conjecture to be a result

of focusing more on a strong interaction between adjacent layers.

To further verify that the gate values are diverse enough within each time step,

we compute the distribution of the range of values per time step, R(gl
t) = maxi g

l
t,i−

mini g
l
t,i, where gl

t = [glt,1, · · · , glt,dl]
>. We plot the histograms in Fig. 4.4c and 4.4d.

From the figures we see that the vertical forget gate controls the amount of informa-

tion flow effectively, making diverse decisions of retaining or discarding signals across

dimensions.

Finally, to investigate the argument presented in §4.3 that the additional forget

gate helps the previous output gate with reducing the burden of extracting all needed

information, we inspect the distribution of the values from |gl
t−ol−1t |. This distribution

indicates how differently the vertical forget gate and the previous output gate select

information from cl−1t . From Fig. 4.4e and 4.4f we can see that the two gates make

fairly different decisions, from which we demonstrate that the direct path between

cl−1t and clt enables a model to utilize signals overlooked by ol−1t .

4.4.6 Model Variations

In this subsection, we see the influence of each component of a model on performance

by removing or replacing its components. the SNLI dataset is used for experiments,

and the best performing configuration is used as a baseline for modifications. We

consider the following variants: (i) models with different λ, (ii) models without λ,

and (iii) models that integrate lower contexts via peephole connections.

Variant (iii) calculates and applies the forget gate gl
t which takes charge of in-

tegrating lower contexts via the equations below, following the work of Zhang et al.

56

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

(a) g2i

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

(b) g3i

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

(c) R(g2
·)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

(d) R(g3
·)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

(e) |g2i − o1i |
0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

(f) |g3i − o2i |

Figure 4.4: Results of forget gate analysis. (a), (b): Histograms of vertical forget gate
values. (c), (d): Histograms of the ranges of vertical forget gate per time step. (e),
(f): Histograms of the absolute difference between the previous output gate and the
current vertical forget gate values.

57

Model Acc. (%) ∆

Bi-CAS-LSTM (baseline) 87.0
(i) Diverse λ
(a) λi = 0.25 86.8 -0.2
(b) λi = 0.75 86.8 -0.2
(c) Trainable λ 86.9 -0.1

(ii) No λ 86.6 -0.4
(iii) Integration through peepholes 86.5 -0.5

Table 4.11: Results of model variants.

(2016b):

gl
t = σ(Wl

gh
l−1
t + pl

g1 � clt−1 + pl
g2 � cl−1t + bl

g) (4.17)

clt = ilt � c̃lt + f lt � clt−1 + gl
t � cl−1t , (4.18)

where pl
· ∈ Rdl represent peephole weight vectors that take cell states into account.

We can see that the computation formulae of f lt and gl
t are not consistent, in that

hl
t−1 does not participate in computing gl

t−1, and that the left and the below context

are reflected in gl
t−1 only via element-wise multiplications which do not consider

the interaction among dimensions. By contrast, ours uses the analogous formulae in

calculating f lt and gl
t, considers hl

t−1 in calculating gl
t, and introduces the scaling

factor λ.

Table 4.11 summarizes the results of model variants. From the results of baseline

and (i), we validate that the selection of λ does not significantly affect performance

but introducing λ is beneficial (baseline vs. (ii)) possibly due to its effect on nor-

malizing information from multiple sources, as mentioned in §4.3. Also, from the

comparison between baseline and (iii), we show that the proposed way of combining

the left and the lower contexts leads to better modeling of sentence representations

than that of Zhang et al. (2016b).

58

4.5 Summary

We proposed a method of stacking multiple LSTM layers for modeling sentences,

dubbed CAS-LSTM. It uses not only hidden states but also cell states from the pre-

vious layer, for the purpose of controlling the vertical information flow in a more

elaborate way. We evaluated the proposed method on various benchmark tasks: nat-

ural language inference, paraphrase identification, and sentiment classification. Our

models outperformed plain LSTM-based models in all experiments and were compet-

itive other state-of-the-art models. The proposed architecture can replace any stacked

LSTM only under one weak restriction—the size of states should be identical across

all layers.

59

Chapter 5

Matching Function:
Element-wise Bilinear Sentence
Matching

5.1 Motivation

When we build a neural network model predicting the relationship between two sen-

tences, the most general and intuitive approach is to use a siamese architecture,

where sentence vectors obtained from a shared encoder is given as input to a classi-

fier network. For a model to predict the relationship correctly, along with obtaining

appropriate sentence vectors, forming an input that contains information useful for

predicting the relationship by comparing the two sentence vectors is also of great im-

portance, since the classifier should infer the relationship from the given aggregated

input.

The most naïve method is to simply concatenate the two vectors and delegate the

role of extracting features to subsequent network components. However, despite the

theoretical fact that even a single-hidden layer feedforward network can approximate

60

any arbitrary functions (Cybenko, 1989; Hornik, 1991), the space of network parame-

ters is too broad, and it is always helpful to narrow down the search space by directly

giving information about interaction to the classifier network, as empirically proven

in a plethora of previous works (Ji and Eisenstein, 2013; Mou et al., 2016).

As an answer to this problem, we propose a matching function which learns from

data to fuse two sentence vectors and extract suitable features. Unlike bilinear pool-

ing methods designed for matching vectors from heterogeneous domain (e.g. image

and text), our proposed method focuses on element-wise bilinear interaction between

vectors rather than inter-dimensional interaction.

In Ch. 2, we reviewed some prior work on fusing multiple vectors using a tensor

multiplication or bilinear pooling, however to the best of our knowledge there exists

little work on a method that adaptively learns to extract features from two sentence

vectors encoded by a shared encoder.

5.2 Proposed Method: ElBiS

As pointed out by previous works on sentence matching (Ji and Eisenstein, 2013; Mou

et al., 2016), heuristic matching functions bring substantial gain in performance over

the simple concatenation of sentence vectors. However, we believe that there could

be other important interaction that simple heuristics miss, and the optimal heuristic

could differ from task to task. In this section, we propose a general matching function

that learns to extract compact and effective element-wise features from data.

Let a = (a1, · · · , ad) ∈ Rd and b = (b1, · · · , bd) ∈ Rd be sentence vectors obtained

from a encoder network.1 And let us define G ∈ Rd×3 as a matrix constructed by

stacking three vectors a,b, ~1 ∈ Rd where ~1 is the vector of all ones, and denote the

i-th row of G by gi.

1Throughout this chapter, we assume a d-dimensional vector is equivalent to the corresponding
d× 1 matrix.

61

ad bd 1

. .
.

a2 b2 1a1 b1 1

g>
i

. .
.

Wi

ad

bd

1

. .
.

a2

b2

1

a1

b1

1

gi

=

rd

...

r2

r1

r

φ

Figure 5.1: Illustration of the ElBiS matching function.

Then the result of applying our proposed matching function, r = (r1, · · · , rd) ∈
Rd, is defined by

ri = φ
(
g>i Wigi

)
, (5.1)

where Wi ∈ R3×3, i ∈ {1, · · · , d} is a matrix of trainable parameters and φ(·) an

activation function (tanh in our experiments).

Due to the use of bilinear form, it can model every quadratic relation between

ai and bi, i.e. can represent every linear combination of {a2i , b2i , aibi, ai, bi, 1}. This
means that the proposed method is able to express frequently used element-wise

heuristics such as element-wise sum, multiplication, subtraction, etc., in addition to

other possible relations.2 Fig. 5.1 depicts the computation of the ElBiS matching

function.

The current formulation can only represent a single quadratic relation per dimen-

sion, so to consider multiple types of element-wise interaction, we can repeat the same

process for M times. That is, for each gi, we get M scalar outputs (r1i , · · · , rMi) by

applying Eq. 5.1 using a set of separate weight matrices (W1
i , · · · ,WM

i):

rmi = φ
(
g>i W

m
i gi

)
. (5.2)

2Though a bilinear form cannot represent the absolute difference between inputs, note that (ai −
bi)

2 = a2
i − 2aibi + b2i can alternatively used as a commutative difference function. Yogatama et al.

(2017) use this quadratic form instead of the absolute difference.

62

Implementation-wise, we vertically stack G for M times to construct G̃ ∈ RMd×3,

and use each row g̃i as input to Eq. 5.1. Consequently, the resulting output r becomes

a Md-dimensional vector:

ri = φ
(
g̃>i Wig̃i

)
, (5.3)

where Wi ∈ R3×3, i ∈ {1, · · · ,Md}. Eq. 5.1 is the special case of Eq. 5.2 and 5.3

where M = 1. We call our proposed element-wise bilinear matching function ElBiS

(element-wise bilinear sentence matching function).

Note that our element-wise matching requires only M × 3 × 3 × d parameters,

the number of which is substantially less than that of full bilinear matching, Md3.

For example, in the case of d = 300 and Md = 1200 (the frequently used set of

hyperparameters in NLI), the full bilinear matching needs 108 million parameters,

while the element-wise matching needs only 10,800 parameters.

Why element-wise? In the scenario we are focusing on, sentence vectors are com-

puted from a siamese network, and thus it can be said that the vectors are in the same

(or very similar) semantic space. Therefore, the effect of considering interdimensional

interaction is less significant than that of multimodal pooling (e.g. matching a text

and a image vector obtained from different encoders), so we decided to model more

powerful interaction within the same dimension instead. We also would like to remark

that our preliminary experiments, where MFB (Yu et al., 2017) or MLB (Kim et al.,

2017b) was adopted as matching function, were not successful and did not improve

performance.

5.3 Experiments

We evalute our proposed ElBiS model on the natural language inference and para-

phrase identification task.

63

5.3.1 Natural language inference

Natural language inference (NLI, Bowman et al., 2015), also called recognizing textual

entailment (RTE, Dagan et al., 2005), is a task whose objective is to predict the

relationship between a premise and a hypothesis sentence. We conduct experiments

using Stanford Natural Language Inference Corpus (SNLI, Bowman et al., 2015), one

of the most famous dataset for the NLI task. The SNLI dataset consists of roughly

570k premise-hypothesis pairs, each of which is annotated with a label (entailment,

contradiction, or neutral).

For sentence encoder, we choose the encoder based on long short-term memory

(LSTM, Hochreiter and Schmidhuber, 1997) architecture as a baseline model, which

is similar to that of Bowman et al. (2015) and Bowman et al. (2016a). It consists of

a single layer unidirectional LSTM network that reads a sentence from left to right,

and the last hidden state is used as the sentence vector. We also conduct experiments

using a more elaborated encoder model, Gumbel Tree-LSTM (Choi et al., 2018b). As

a classifier network, we use an MLP with a single hidden layer. In baseline experiments

with heuristic matching, we use the heuristic features proposed by Mou et al. (2016)

and adopted in many works on the NLI task:

r =

a

b

a− b

a� b

, (5.4)

where a and b are encoded sentence vectors.

For all experiments, we used the Adam (Kingma and Ba, 2015) optimizer with

a learning rate 0.001 and halved the learning rate when there is no improvement in

accuracy for one epoch. Each model is trained for 10 epochs, and the checkpoint with

the highest validation accuracy is chosen as the final model. Sentences longer than 25

64

words are trimmed to have the maximum length of 25 words, and batch size of 64 is

used for training.

We set the dimensionality of sentence vectors to 300. 300-dimensional GloVe (Pen-

nington et al., 2014) vectors trained on 840 billion tokens3 were used as word em-

beddings and not updated during training. The number of hidden units of the single-

hidden layer MLP is set to 1024.

Dropout (Srivastava et al., 2014) is applied to word embeddings and the input and

the output of the MLP. The dropout probability is selected from {0.10, 0.15, 0.20}.
Batch normalization (Ioffe and Szegedy, 2015) is applied to the input and the output

of the MLP.

Recurrent weight matrices are orthogonally initialized (Saxe et al., 2014), and the

final linear projection matrix is initialized by sampling from the uniform distribution

U(−0.005, 0.005). All other weights are initialized following the scheme of He et al.

(2015).

Table 5.1 and 5.2 contain results on the SNLI task. We can see that models

that adopt the proposed ElBiS matching function extract powerful features leading

to a performance gain, while keeping similar or less number of parameters. Also,

though not directly related to our main contribution, we found that, with elaborated

initialization and regularization, simple LSTMmodels (even the one with the heuristic

matching function) achieve competitive performance with those of state-of-the-art

models.4

It is also notable that increasing M , the number of repetition of ElBiS algorithm,

does not always improve performance. We conjecture that this occurs due to over-

parameterization, by which a model learns characteristics or patterns that do not

related to the nature of the NLI problem but only appear in a training data. We

3http://nlp.stanford.edu/data/glove.840B.300d.zip
4https://nlp.stanford.edu/projects/snli

65

http://nlp.stanford.edu/data/glove.840B.300d.zip
https://nlp.stanford.edu/projects/snli

Matching Fn. # Params. Acc. (%)
Concat 1.34M 81.6
Heuristic 1.96M 83.9
ElBiS (M = 1) 1.04M 84.4
ElBiS (M = 2) 1.35M 84.5
ElBiS (M = 3) 1.66M 85.0
ElBiS (M = 4) 1.97M 84.6

Table 5.1: Results on the SNLI dataset using LSTM-based sentence encoders.

Matching Fn. # Params. Acc. (%)
Concat 2.25M 82.4
Heuristic 2.86M 84.6
ElBiS (M = 1) 1.94M 84.8
ElBiS (M = 2) 2.25M 85.6
ElBiS (M = 3) 2.56M 85.9
ElBiS (M = 4) 2.87M 85.6

Table 5.2: Results on the SNLI dataset using Gumbel Tree-LSTM–based sentence
encoders.

applied several regularization techniques such as dropout and adding a L2 penalty

term, however we still experienced a similar result.

5.3.2 Paraphrase Identification

Another popular task on identifying relationship between a sentence pair is para-

phrase identification (PI). The objective of the PI task is to predict whether a given

sentence pair has the same meaning or not. In other words, a PI model should cap-

ture the variability of natural language, where the same meaning could have multiple

expressions. Thus to correctly identify the paraphrase relationship, an input to a

classifier should contain the semantic similarity and difference between sentences.

For evaluation of paraphrase identification, we use Quora Question Pairs dataset5.

The dataset contains 400k question pairs, each of which is annotated with a label

indicating whether questions of a pair have the same meaning. To our knowledge, the

5https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs

66

https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs

Quora dataset is the largest available dataset of paraphrase identification. We used

the same training, development, test splits as the ones used in Wang et al. (2017b).

For baseline experiments with heuristic matching, we used the function proposed

by Ji and Eisenstein (2013), which is shown by the authors to be effective in match-

ing vectors in latent space compared to simple concatenation. It is composed of the

element-wise product and absolute difference between two vectors:

r =

 a� b

|a− b|

 , (5.5)

where a and b are encoded sentence vectors.

We used the same architecture and training procedures as NLI experiments, except

the final projection matrix and the heuristic matching function. Also, we found that

the PI task is more sensitive to hyperparameters than NLI, so we apply different

dropout probabilities to the encoder network and to the classifier network. Both

values are selected from {0.10, 0.15, 0.20}. Each model is trained for 15 epochs, and

the checkpoint with the highest validation accuracy is chosen as the final model.

The results on the PI task is listed in Table 5.3. Again we can see that the

models armed with the ElBiS matching function discover parsimonious and effective

interaction between vectors.

Though the proposed ElBiS matching function brought performance gain com-

pared to the concatenation and the heuristic matching function, the differences were

not as large as SNLI experiments. We speculate that it is due to the additional inher-

ent trait of the PI task: a matching function should have the commutative property,

i.e. if sentence a is a paraphrase of b, then b must also be a paraphrase of a. The

heuristic function used is designed to reflect this property, while the ElBiS function

has to find out the property automatically from data. Imposing a restriction of com-

mutativeness on the proposed function might help discovering a suitable aggregation

67

Matching Fn. # Params. Acc. (%)
Concat 1.34M 85.0
Heuristic 1.34M 87.0
ElBiS (M = 1) 1.04M 86.7
ElBiS (M = 2) 1.35M 87.3
ElBiS (M = 3) 1.66M 87.1

Table 5.3: Results on the Quora Question Pairs dataset using LSTM-based sentence
encoders.

scheme, however from the results we observed that it can still learn to extract appro-

priate features without any prior knowledge about the task.

5.4 Summary and Discussion

In this chapter, we proposed ElBiS, a general method of fusing information from two

sentence vectors. Our method does not rely on heuristic knowledge constructed for a

specific task, and adaptively learns from data the element-wise connections between

vectors from data. From experiments, we demonstrated that the proposed method

outperforms or matches the performance of commonly used concatenation-based or

heuristic-based feature functions, while maintaining the fused representation compact.

Although the main focus of this work is about sentence matching, the notion

of element-wise bilinear interaction could be applied beyond sentence matching. For

example, many models that specialize in NLI have components where the heuristic

matching function is used, e.g. in computing intra-sentence or inter-sentence attention

weights. It could be interesting future work to replace these components with our

proposed matching function.

One of the main drawback of our proposed method is that, due to its improved

expressiveness, it makes a model overfit easily. When evaluated on small datasets such

as Sentences Involving Compositional Knowledge dataset (SICK, Marelli et al., 2014)

and Microsoft Research Paraphrase Corpus (MSRP, Dolan and Brockett, 2005), we

68

observed performance degradation, partly due to overfitting. Similarly, we observed

that increasing the number of interaction types M does not guarantee consistent

performance gain. In preliminary experiments we attempted to use typical regular-

ization techniques such as dropout and L2 penalty, however it does not help mitigate

the overfitting. Considering our objective—obtaining a compact and parsimonious

aggregation scheme, we conjecture that the problem could be alleviated by applying

regularization techniques that control the sparsity of interaction e.g. L1 penalty. For

better understanding of learned weights, block-sparse regularization techniques e.g.

L2,1 norm could also be adopted, and we think it would be an intriguing future work

direction.

69

Chapter 6

Semi-Supervised Training:
Cross-Sentence Latent Variable
Model

6.1 Motivation

With the emergence of large-scale corpora, end-to-end deep learning models are

achieving remarkable results on text sequence matching; these include architectures

that are linguistically motivated (Bowman et al., 2016a; Chen et al., 2017b), that in-

troduce external knowledge (Chen et al., 2018b), and that use attention mechanisms

(Parikh et al., 2016; Shen et al., 2018b).

However, despite the success of deep neural networks in natural language pro-

cessing, the fact that they require abundant training data might be problematic, as

constructing labeled data is a time-consuming and labor-intensive process. To mit-

igate the data scarcity problem, several semi-supervised learning paradigms, that

take advantage of unlabeled data when only some of the data examples are labeled

(Chapelle et al., 2010), are proposed. These unlabeled data are much easier to collect,

70

thus utilizing them could be a good option; for example in sentence matching possibly

related sentences pairs could be retrieved from a database of text via simple heuristics

such as word overlap.

In this chapter, we propose a cross-sentence latent variable model for semi-supervised

sentence matching. The proposed framework is based on deep probabilistic generative

models (Kingma and Welling, 2014; Rezende et al., 2014) and is extended to make

use of unlabeled data. As it is trained to generate a sentence that has a given rela-

tionship with a source sentence, both sentences in a pair are utilized together, and

thus training objectives are defined more naturally than other models that consider

each sentence separately (Zhao et al., 2018; Shen et al., 2018a). To further regular-

ize the model to generate more plausible and diverse sentences, we define semantic

constraints and use them for fine-tuning.

6.2 Preliminaries

6.2.1 Variational Auto-Encoders

Variational auto-encoder (VAE, Kingma and Welling, 2014) is a deep generative

model for modeling the data distribution pθ(x). It assumes that a data point x is

generated by the following random process: (1) z is sampled from p(z) and (2) x is

generated from pθ(x|z).

Thus the natural training objective would be to directly maximize the marginal

log-likelihood log pθ(x) = log
∫
z pθ(x|z)p(z)dz. However it is intractable to compute

the marginal log-likelihood without using simplifying assumption such as mean-field

approximation (Blei et al., 2017). Therefore the following variational lower bound −L
is used as a surrogate objective:

− L(θ,φ;x) = −DKL(qφ(z|x)‖p(z)) + Eqφ(z|x) [log pθ(x|z)] , (6.1)

where qφ(z|x) is a variational approximation to the unknown pθ(z|x), and DKL(q‖p)

71

is the Kullback-Leibler (KL) divergence between q and p. Maximizing the surro-

gate objective −L is proven to minimize DKL(qφ(z|x)‖pθ(z|x)), and it can also be

seen as maximizing the expected data log-likelihood with respect to qφ while using

DKL(qφ(z|x)‖pθ(z)) as a regularization term.

VAEs are successfully applied in modeling various data: including image (Pu et al.,

2016; Gulrajani et al., 2017), music (Roberts et al., 2018), and text (Miao et al., 2016;

Bowman et al., 2016b). The VAE framework can also be extended to constructing

conditional generative models (Sohn et al., 2015) or learning from semi-supervised

data (Kingma et al., 2014; Xu et al., 2017).

VAEs for Text Pair Modeling

The most simple approach to modeling text pairs using the VAE framework is to

consider two text sequences separately (Zhao et al., 2018; Shen et al., 2018a). That is, a

generator is trained to reconstruct a single input sequence rather than integrating both

sequences, and the two latent representations encoded from a variational posterior

are given to a classifier network. When label information is not available, only the

reconstruction objective is used for training. This means that the classifier parameters

are not updated in the unsupervised setting, and thus the interaction between the

variational posterior (or encoder) and the classifier could be restricted.

Though not directly related to the problem we tackle, there exists some prior work

on cross-sentence generating latent variable models (LVMs). Shen et al. (2017) intro-

duce a similar data generation assumption to ours and apply the idea to unaligned

style transfer and natural language generation. Zhang et al. (2016a); Serban et al.

(2017) use latent variable models for machine translation and dialogue generation.

Deudon (2018) build a sentence-reformulating deep generative model whose objec-

tive is to measure the semantic similarity between a sentence pair. However their

work cannot be applied to a multi-class classification problem, and the generative

72

objective is only used in pre-training, not considering the joint optimization of the

generative and the discriminative objective. To the best of our knowledge, our work

is the first work on introducing the concept of cross-sentence generating LVM to the

semi-supervised text matching problem.

6.2.2 von Mises–Fisher Distribution

Since the advent of deep generative models with variational inference, the typical

choice for prior and variational posterior distribution has been the Gaussian, likely

due to its well-studied properties and easiness of reparameterization. However it often

leads a model to face the posterior collapse problem where a model ignores latent

variables by pushing the KL divergence term to zero (Chen et al., 2017c; van den

Oord et al., 2017), especially in text generation models where powerful decoders are

used (Bowman et al., 2016b; Yang et al., 2017).

Various techniques are proposed to mitigate this problem: including KL cost an-

nealing (Bowman et al., 2016b), weakening decoders (Yang et al., 2017), skip con-

nection (Dieng et al., 2019), using different objectives (Alemi et al., 2018), and using

alternative distributions (Guu et al., 2018). In this work, we take the last approach

by utilizing a von Mises–Fisher (vMF) distribution.

A vMF distribution is a probability distribution on the (d − 1)-sphere, therefore

samples are compared according to their directions, reminiscent of the cosine simi-

larity. It has two parameters—mean direction µ ∈ Rd and concentration κ ∈ R. The

probability density function (pdf) of vMF(µ, κ) is defined by

f(x;µ, κ) = Cm(κ) exp(κµ>x), (6.2)

where

Cm(κ) =
κm/2−1

(2π)m/2Im/2−1(κ)

and Iv(κ) is the modified Bessel function of the first kind at order v.

73

The KL divergence between a vMF distribution vMF(µ, κ) and the hyperspherical

uniform distribution U(Sm−1) = vMF(·, 0) can be derived analytically:

DKL(vMF(µ, κ)‖vMF(·, 0)) = logCm(κ)− log
Γ(m/2)

2πm/2
+ κ

Im/2(κ)

Im/2−1(κ)
. (6.3)

Note that the KL divergence does not depend on µ, thus the KL divergence is a

constant if κ is fixed. Intuitively, this is because the hyperspherical uniform distri-

bution has equal probability density at every point on the unit hypersphere, and

DKL(vMF(µ, κ)‖vMF(·, 0)) should not be changed under rotations. Therefore when

vMF(µ, κ) with fixed κ and vMF(·, 0) are used as posterior and prior, the posterior

collapse does not occur inherently.

A sample from a vMF distribution is drawn from the acceptance-rejection scheme

presented in Algorithm 1 of Davidson et al. (2018). In their algorithm, a stochastic

variable obtained from the acceptance-rejection sampling does not depend on µ, thus

the sampling process can be rewritten as a deterministic function that accepts the

stochastic variable as input (i.e. reparameterization trick).

To the best of our knowledge, Guu et al. (2018) were the first to use vMF as

posterior and prior for VAEs, and Xu and Durrett (2018) empirically proved the

effectiveness of vMF-VAE in natural language generation. Davidson et al. (2018)

generalized the vMF-VAE and proposed the reparameterization trick for vMF.

6.3 Proposed Framework: CS-LVM

In this section, we describe the proposed framework in detail. We formally define

the cross-sentence latent variable model (CS-LVM) and describe the optimization

objectives. We also introduce semantic constraints to keep learned representations in

a semantically plausible region. Fig. 6.1 illustrates the entire framework.

74

xs qφ zs pθ xt

y

qψ

Figure 6.1: The overview of the entire CS-LVM framework. Blue dashed lines indicate

semantic constraints.

6.3.1 Cross-Sentence Latent Variable Model

Though the auto-encoding frameworks described in §6.2.1 have intriguing properties,

it may hinder the possibility of training an encoder to extract rich features for text

pair modeling, due to the fact that the generative modeling process is confined within

a single sequence. Therefore the interaction between a generative model and a dis-

criminative classifier is restricted, since the two sequences are separately modeled and

the pair-wise information is only considered through the classifier network.

Our proposed CS-LVM addresses this problem by cross-sentence generation of text

given a text pair and its label. As the sentences in a pair are directly related within

a generative model, the training objectives are defined in a more principled way than

VAE-based semi-supervised text matching frameworks. Notably it also mimics the

dataset construction process of some corpora: a worker generates a target text given

a label and a source text (e.g. Bowman et al., 2015; Williams et al., 2018b).

Given a pair (x1,x2), let xs, xt ∈ {x1,x2} be a source and a target sequence

respectively. Then we assume xt is generated according to the following process (see

Fig. 6.2a):

1. a latent variable zs that contains the content of a source sequence is sampled

from p(zs),

75

zs xt

y

pθ
(x t|zs

, y
)

(a) Generation model

zsxs xt

y qψ
(y|x

s
,x t)

q
ψ (y|x

s ,x
t)

qφ(zs|xs)

(b) Recognition model

Figure 6.2: Illustration of the graphical models of CS-LVM. (a) the generative process

of the output xt; (b) the approximate inference of zs and the discriminative classifier

for y.

2. a variable y that determines the relationship between a target and the source

sequence is sampled from p(y),

3. xt is generated from a conditional distribution pθ(xt|zs, y).

In the above process, the class label y is treated as a hidden variable in the unsuper-

vised case and an observed variable in the supervised case.

Accordingly, when the label information is available, the optimization objective

for a generative model is the marginal log-likelihood of the observed variables xt and

y:

log pθ(xt, y) = log

∫
pθ(xt, zs, y)dzs = log

∫
pθ(xt|zs, y)p(zs)p(y)dzs. (6.4)

To address the intractability of computing the true objective, we derive the lower

bound of Eq. 6.4.

Let qθ(zs|·) be a distribution that has the same support with p(zs). Then the KL

76

divergence between qθ(zs|·) and pθ(zs|xt, y) can be written as

DKL(qφ(zs|·)‖pθ(zs|xt, y))

=

∫
qφ(zs|·) log

qφ(zs|·)
pθ(zs|xt, y)

dzs

=

∫
qφ(zs|·) log

pθ(xt, y)qφ(zs|·)
pθ(xt|zs, y)p(zs)p(y)

dzs

= log pθ(xt, y) +DKL(qφ(zs|·)‖p(zs))

− Eqφ(zs|·)[log pθ(xt|zs, y)]− log p(y)

≥ 0.

(6.5)

From the inequality above we obtain the lower bound of log pθ(xt, y) as follows:

log pθ(xt, y) ≥ −DKL(qφ(zs|xs)‖p(zs)) + log p(y)

+ Eqφ(zs|xs)[log pθ(xt|y, zs)], (6.6)

where qφ(zs|xs) is a variational approximation of the posterior pθ(zs|xt, y).

Though Eq. 6.6 holds for any qφ having the same support with p(zs), we choose

this form of variational posterior from the following motivation: since xs is related

to xt by the label information y, xs would have an influence on the space of zs in a

similar way to (xt, y). Due to this particular choice of qφ, zs depends only on xs and

is independent of the label information possibly permeated in xt. In other words, this

design induces qφ to extract the features needed for controlling the semantics only

from xs, while preventing qφ from encoding other biases.

To extend the objective to the unsupervised setup, we marginalize out y from Eq.

6.6 using a classifier distribution. We will provide more detailed explanation of the

optimization objectives in §6.3.3.

77

6.3.2 Architecture

Now we describe the architectures we used for constructing CS-LVM. We first encode

a source sequence into a fixed-length representation using a recurrent neural network

(RNN): genc(xs) = ms. From ms we obtain a variational approximate distribution

qφ(zs|xs) = gcode(ms) and sample a latent representation zs ∼ qφ(zs|xs). In our

experiments, a long short-term memory (LSTM) recurrent network and a feed-forward

network are used as genc and gcode respectively. From the fact that the mean direction

parameter µs of vMF(µs, κ) should be a unit vector, gcode additionally normalizes the

output of the feed-forward network to be ‖gcode(ms)‖2 = 1.

Then we generate the target sequence xt from zs and y. Similarly to the encoder

network, we use an LSTM for a decoder, thus the distribution is factorized as follows:

pθ(xt|y, zs) =

Nxt+1∏

i=1

pθ(wt,i|wt,<i, y, zs), (6.7)

where xt = (xt,1, . . . , xt,Nxt
) and wt,0 = <s>, wt,Nxt+1 = </s> are special tokens

indicating the start and the end of a sequence.

We project the word index wt,i and label index y into embedding spaces to obtain

the word embedding wt,i and label embedding y. Then to construct an input for

i-th time step, vt, we concatenate the i-th target word embedding wt,i, the label

embedding y, and the latent representation zs altogether:

vi = [wt,i;y; zs]. (6.8)

Thus pθ(wt,i|wt,<i, zs, y) is computed from i-th state si of the decoder RNN:

pθ(wt,i|wt,<i, y, zs) = softmax(gout(si)) (6.9)

si = gdeci (vi, si−1), (6.10)

where gout is a feed-forward network and gdeci is the state transition function of the

decoder LSTM at i-th time step.

78

For a discriminative classifier network we follow the siamese architecture. xs and

xt are fed to a shared LSTM network fenc to obtain sentence vectors h1 = fenc(xs)

and h2 = fenc(xt). Then h1 and h2 are combined by the function ffuse to form a

single fused vector, and the fused representation is given to a feed-forward network

fdisc to infer the relationship:

qψ(y|x1,x2) = softmax(fdisc(ffuse(h1,h2))). (6.11)

To learn from data more efficiently and to reduce the number of trainable pa-

rameters, we tie the weights for two encoders—for the generative model and the

discriminative classifier; i.e. genc = fenc. This mitigates the problem that only source

sequences are used for training genc and enhances the interaction between the genera-

tive model and the classifier. We will see from experiments that tying encoder weights

improves performance and stabilizes optimization (§6.4.3).

6.3.3 Optimization

In this subsection we describe how the entire model is optimized. We first define

optimization objectives for supervised and unsupervised training, and then introduce

constraints to regularize the model to generate sequences with intended semantic

characteristics. The entire optimization procedure is summarized in Algorithm 1.

Supervised Objective

In the supervised setting, a data sample is assumed to contain label information:

(x1,x2, y) ∈ Xl. Without loss of generality let us assume (xs,xt) = (x1,x2).1 Since

y is an observed variable in this case, we can directly use Eq. 6.6 in training. From

1The relationship between a source and a target may either be unidirectional, bidirectional, or
reflexive, depending on the characteristics of a task. For some experiments we additionally used
swapped data examples, (xs,xt) = (x2,x1), for training. We explain more on this in §6.4.

79

Algorithm 1 Training procedure of CS-LVM.

Input: Labeled dataset Xl,

Unlabeled dataset Xu,

Model parameters θ,φ,ψ

1: procedure Train(Xl,Xu,θ,φ,ψ)

2: repeat

3: Sample (xl,s,xl,t, yl) ∼ Xl

4: Sample (xu,s,xu,t) ∼ Xu

5: Compute Ll(θ,φ,ψ;xl,s,xl,t, yl) by (6.14)

6: Compute Lu(θ,φ,ψ;xu,s,xu,t) by (6.18)

7: Update θ,φ,ψ by gradient descent on Ll + Lu

8: until stop criterion is met

9: procedure FineTune(Xl,Xu,θ,φ,ψ)

10: repeat

11: Update θ,φ,ψ following line 3–7

12: Update θ by gradient descent on (6.20–6.23)

13: until stop criterion is met

Eqs. 6.6 and 6.7, the objective for the generative model is defined by:2

−Lgenl (θ,φ;xs,xt, y) = log pθ(xt|y, zs) + log p(y)−DKL(qφ(zs|xs)‖p(zs)), (6.12)

where zs ∼ qφ(zs|xs) and p(y), p(zs) are prior distributions of y, zs. Considering that

we assume p(y) to be a fixed uniform distribution of labels, the log p(y) term can be

ignored in training: ‖∇θ,φ log p(y)‖2 = 0.

For training, the typical teacher forcing method is used; i.e. ground-truth words

are used as input words. We use vMF(gcode(ms), κ) (κ: hyperparameter) for the vari-

ational posterior qφ(zs|xs) and vMF(·, 0) for the prior p(zs).

2Note that we define all objectives L, R as minimization objectives to avoid confusion.

80

The discriminator objective is defined as a conventional maximum likelihood:

− Ldiscl (ψ;xs,xt, y) = log qψ(y|xs,xt). (6.13)

Finally, the two objectives are combined to construct the objective for supervised

training:

Ll(θ,φ,ψ;xs,xt, y) = Lgenl + λLdiscl , (6.14)

where λ is a hyperparameter.

Unsupervised Objective

In this case, the model does not have an access to label information; a data point

is represented by (xs,xt) ∈ Xu and thus y is a hidden variable. To facilitate the

unsupervised training, we marginalize y out as below and derive the lower bound:

log pθ(xt) = log
∑

y

∫
pθ(xt, zs, y)dzs

= logEqφ,ψ(y,zs|xs,xt)

[
pθ(xt|zs, y)p(zs)p(y)

qφ,ψ(y, zs|xs,xt)

]

≥ Eqφ,ψ(y,zs|xs,xt)

[
log

pθ(xt|zs, y)p(zs)p(y)

qφ,ψ(y, zs|xs,xt)

]
.

(6.15)

And from the assumption presented in the graphical model (Fig. 6.2b),

qφ,ψ(y, zs|xs,xt) = qφ(zs|xs)qψ(y|xs,xt). (6.16)

From Eq. 6.16,

Eqφ,ψ(y,zs|xs,xt)

[
log

pθ(xt|zs, y)p(zs)p(y)

qφ,ψ(y, zs|xs,xt)

]

= Eqψ

[
Eqφ

[
log

pθ(xt|zs, y)p(zs)p(y)

qφ(zs|xs)

]]
− Eqψ [log qψ(y|xs,xt)]

= Eqψ

[
−Lgenl (θ,φ;xs,xt, y)

]
+H(qψ(y|xs,xt)).

(6.17)

Finally we obtain the following lower bound for log pθ(xt):

Lu(θ,φ,ψ;xs,xt) = −H(qψ(y|xs,xt)) + Eqψ(y|xs,xt)

[
Lgenl (θ,φ;xs,xt, y)

]
. (6.18)

81

Here the second expectation term can be computed either by enumeration or sam-

pling, and we used the former as the datasets we used have relatively small label sets

(2 or 3) and it is known to yield better results than sampling (Xu et al., 2017). We

will compare the two methods in §6.4.3.

To sum up, at every training iteration, given a labeled and unlabeled data sample

(xl,s,xl,t, yl), (xu,s,xu,t), we optimize the following objective.

L = Ll(θ,φ,ψ;xl,s,xl,t, yl) + Lu(θ,φ,ψ;xu,s,xu,t) (6.19)

Fine-Tuning with Semantic Constraints

Since the generator is trained via maximum likelihood training which considers all

words in a sentence equivalently, the label information may not be reflected enough in

generation owing to high-frequency words. For example in natural language inference,

the word occurrences of the following three hypothesis sentences highly overlap, but

they should have different relation with the premise.3

• P: A man is cutting metal with a tool .

• H1: A man is cutting metal .

• H2: A man is cutting metal with the wrong tool .

• H3: A man is cutting metal with his mind .

Thus for some data points, the strategy that only predicts words that overlap across

hypotheses could receive a fairly high score, which might weaken the integration of

y into the generator. To mitigate this, we fine-tune the trained generator using the

following semantic constraint:

−Ry(θ;xs,xt) = log qψ(ỹ|xs, x̃t), (6.20)

3Examples are taken from the development split of the SNLI dataset, pair ID
4904199439.jpg#2r1e, 4904199439.jpg#2r1n, 4904199439.jpg#2r1c.

82

where ỹ ∼ p(y), zs ∼ qφ(zs|xs), and x̃t = argmaxxt
pθ(xt|ỹ, zs). This constraint

enforces the sequence x̃t generated by conditioning on ỹ and zs to actually have the

relationship ỹ with xs.

We also introduce a constraint on z that keeps the distributions of z̃t (the latent

content variable obtained by encoding the generated sequence x̃t) and zs close:

−Rz(θ;xs,xt) = log qφ(zt = z̃t|xt), (6.21)

where z̃t ∼ qφ(z̃t|x̃t). In other words, it pushes the generated sequence x̃t to be in

a similar semantic space with the ground-truth target sequence xt. Consequently, it

can help alleviate the generator collapse problem where a generator produces only a

handful of simple neutral patterns independent of the input sequence, by relating z̃t

to zt.4

From similar motivation, we also add an additional constraint that encourages

the generated sentences originating from different source sentences to be dissimilar.

To reflect this, we define the following minibatch-level constraint that penalizes the

mean direction vectors encoded from the generated sentences for being too close:

−Rµ(θ;B) = EB[d(µt
(i), µ̄t)], (6.22)

where we denote values related to i-th sample of a minibatch B using superscript:

�(i). In the above, µ(i)
t = gcode(genc(x̃

(i)
t)), µ̄t =

∑|B|
i=1µ

(i)
t /|B|, and d(·, ·) is a distance

measure between vectors. The mean direction vector µ of vMF(µ, κ) is on a unit

hypersphere, so we use the cosine distance: d(µ1,µ2) = 1− 〈µ1,µ2〉.
As the sequence generation process is not differentiable, the gradients from the

semantic constraints cannot propagate to the generator parameters. To relax the dis-

creteness, we use the Gumbel-Softmax reparameterization (Jang et al., 2017; Maddi-

son et al., 2017). Using the Gumbel-Softmax trick, we obtain a continuous probability
4The basic assumption behind this constraint is that a source and a target sequence are associated

in a certain aspect, and it generally holds in most of the available pair classification datasets e.g.
SNLI, SICK, SciTail, QQP, MRPC.

83

vector that approximates a sample from the categorical distribution of words at each

step, and use the probability vector to compute the expected word embedding for the

subsequent step.

When multiple constraints are used, they are combined using the homoscedastic

uncertainty weighting (Kendall et al., 2018):5

R =
1

σ21
Ry +

1

σ22
Rz +

1

σ23
Rµ + log σ1 + log σ2 + log σ3, (6.23)

where σ1, σ2, σ3 are trainable scalar parameters. Also note that all constraints are

unsupervised, where label information is not required.

6.4 Experiments

We evaluate the proposed model on two semi-supervised tasks: natural language in-

ference and paraphrase identification. We also implement a strong baseline that has

a similar architecture to LSTM-VAE (Shen et al., 2018a) but uses vMF distribution

for prior and posterior, named LSTM-vMF-VAE. To further explore the proposed

model, we conduct extensive qualitative analyses.

6.4.1 Natural Language Inference

Natural language inference (NLI) is a task of predicting the relationship given a

premise and a hypothesis sentence. We use Stanford Natural Language Inference

(SNLI, Bowman et al., 2015) dataset for experiments. It consists of roughly 570k

premise-hypothesis pairs, and each pair has one of the following labels: entailment,

neutral, and contradiction. Considering the asymmetry in some label classes and for

conformance with the dataset generation process, we use premise and hypothesis

sentence as source and target respectively: (xs,xt) = (xpre,xhyp).

5Though the weighting scheme is originally derived from the case of a Gaussian likelihood, Kendall
et al. (2018); Xiong et al. (2018); Hu et al. (2018) successfully applied it in weighting various losses
e.g. cross-entropy loss, L1 loss, and reinforcement learning objectives.

84

Following the work of Zhao et al. (2018); Shen et al. (2018a), we consider scenarios

where 28k, 59k, and 120k labeled data samples are available. Also, for fair comparison

with the prior work, we set the size of a word vocabulary set to 20,000 and do not

utilize pre-trained word embeddings such as GloVe (Pennington et al., 2014).

To combine the representations of a premise and a hypothesis and to construct

an input to fdisc, we use the following heuristic-based fusion proposed by Mou et al.

(2016):

ffuse(hpre,hhyp) = [hpre;hhyp; |hpre − hhyp|;hpre � hhyp] , (6.24)

where [a;b] indicates concatenation of vectors a, b and � is the element-wise product.

Table 6.1 summarizes the result of experiments. We can clearly see that the pro-

posed CS-LVM architecture substantially outperforms other models based on auto-

encoding. Also, the semantic constraints brought additional boost in performance,

achieving the new state of the art in semi-supervised classification of the SNLI dataset.

When all training data are used as labeled data (≈ 550k), CS-LVM also improves per-

formance by achieving accuracy of 82.8%, compared to the supervised LSTM (81.5%),

LSTM-AE (81.6%), LSTM-VAE (80.8%), DeConv-VAE (80.9%).

6.4.2 Paraphrase Identification

Paraphrase identification (PI) is a task whose objective is to infer whether two sen-

tences have the same semantics. We use the Quora Question Pairs dataset (QQP,

Wang et al., 2017b) for experiments. QQP consists of over 400k sentence pairs each

of which has label information indicating whether the sentences in a pair paraphrase

each other or not. We experiment for the cases where the number of labeled data is 1k,

5k, 10k, and 25k, and set the vocabulary size to 10,000, following Shen et al. (2018a).

Unlike auto-encoding–based models that treat sentences in a pair equivalently, the

CS-LVM processes them asymmetrically for its cross-sentence generating property.

This property is useful when some relationships are asymmetric (e.g. NLI), however

85

Model 28k 59k 120k
LSTM(a) 57.9 62.5 65.9
CNN(b) 58.7 62.7 65.6
LSTM-AE(a) 59.9 64.6 68.5
LSTM-ADAE(a) 62.5 66.8 70.9
DeConv-AE(b) 62.1 65.5 68.7
LSTM-VAE(b) 64.7 67.5 71.1
DeConv-VAE(b) 67.2 69.3 72.2
LSTM-vMF-VAE (ours) 65.6 68.7 71.1
CS-LVM (ours) 68.4 73.5 76.9

+Ry 70.0 74.5 77.4
+Rz 69.2 73.9 77.6
+Rµ 69.1 74.0 77.6
+Ry,Rz,Rµ 69.6 74.1 77.4

Table 6.1: Semi-supervised classification results on the SNLI dataset. (a) Zhao et al.
(2018); (b) Shen et al. (2018a).

the paraphrase relationship is bidirectional, so that we also use swapped text pairs in

training. To fuse sentence representations, the following symmetric function is used,

as in Ji and Eisenstein (2013):

ffuse(h1,h2) = [h1 + h2; |h1 − h2|]. (6.25)

The result of experiments on QQP is summarized in Table 6.2. Again, the proposed

CS-LVM consistently outperforms other supervised and semi-supervised models by

a large margin, setting the new state-of-the-art result on the QQP dataset with the

semi-supervised setting.

6.4.3 Ablation Study

To assess the effect of each element, we experiment with model variants where some

of the components are removed. Specifically, we conduct an ablation study for the

following variants: (i) without cross-sentence generation (i.e. auto-encoding setup), (ii)

replacing the vMF distribution with Gaussian, (iii) computing the expectation term

of Eq. 6.18 by sampling, and (iv) without encoder weight sharing (i.e. fenc 6= genc).

86

Model 1k 5k 10k 25k
CNN(a) 56.3 59.2 63.8 68.9
LSTM-AE(a) 59.3 63.8 67.2 70.9
DeConv-AE(a) 60.2 65.1 67.7 71.6
LSTM-VAE(a) 62.9 67.6 69.0 72.4
DeConv-VAE(a) 65.1 69.4 70.5 73.7
LSTM-vMF-VAE (ours) 65.0 69.9 72.1 74.9
CS-LVM (ours) 66.5 71.1 74.6 76.9

+Ry 66.4 70.8 74.5 77.5
+Rz 66.5 71.3 74.8 77.1
+Rµ 66.4 71.2 74.9 77.4
+Ry,Rz,Rµ 66.3 71.3 74.7 77.6

Table 6.2: Semi-supervised classification results on the Quora Question Pairs dataset.
(a) Shen et al. (2018a).

Model 28k 59k 120k
CS-LVM 68.4 73.5 76.9
(i) without CS 65.6 68.7 71.1
(ii) Gaussian 66.9 72.0 74.9
(iii) sampling 68.0 72.9 76.5
(iv) fenc 6= genc 63.3 69.1 74.7

Table 6.3: Ablation study results.

SNLI dataset is used for the model ablation experiments, and trained models are not

fine-tuned in order to focus only on the efficacy of each model component.

Results of ablation study are presented in Table 6.3. As expected, the cross-

sentence generation is the most critical factor for the performance, except for the 28k

setting where the encoder weight tying brought the biggest gain. In 59k and 120k

settings, all other variants that maintain the cross-generating property outperform

the VAE-based models (see (ii), (iii), (iv)).

Replacing a vMF with a Gaussian does not severely harm the accuracy, however it

requires the additional process of finding a KL cost annealing rate. When sampling is

used instead of enumeration for computing Eq. 6.18, about 1.2x speedup is observed

in exchange for slight performance degradation, and thus sampling could be a good

87

Input Entailment Neutral Contradiction
two girls play with
bubbles near a boat
dock .

two girls are out-
side .

the girls are
friends .

two girls are
swimming in the
ocean .

a classroom full of
men, with the teacher
up front .

a group of boys
are indoors .

the teacher is
teaching the
students .

the students are
at home sleeping
.

a dune buggy traveling
on sand .

the vehicle is
moving .

the vehicle is red
.

a man is riding a
bike .

Table 6.4: Selected samples generated from the model trained on the SNLI dataset.

option in the case that the number of label classes is large.

Finally, as mentioned in §6.3.2, variants whose encoder weights are untied do not

work well. We conjecture this is because genc receives the error signal only from a

source sentence and could not fully benefit from both sentences. The fact that the

performance degradation is larger when the number of labeled data is small also

agrees with our hypothesis, since unlabeled data affect the classifier encoder only by

the entropy term when encoder weights are not shared.

6.4.4 Generated Sentences

We give examples of generated sentences, to validate that the proposed model learns

to generate text having desired properties. From Table 6.4, we can see that sentences

generated from the identical input sentence properly reflect the label information

given. More generated examples are presented in §A.1.

Further, to quantitatively measure the quality of generated sentences, we construct

artificial datasets, where each premise and label in the SNLI development set is used

as input to our trained generator and generated hypotheses are collected. Then we

prepare a LSTM classifier that is trained on the original SNLI dataset as a surrogate

for the ideal classifier, and use it for measuring the quality of generated datasets.6 We

also compute the diversity of the generated hypotheses using the metrics proposed
6The accuracy of the trained classifier on the original development set is 81.7%.

88

Dataset Acc. distinct-1 distinct-2
CS-LVM 76.5 .0128 .0441

+Ry 81.9 .0135 .0479
+Rz 79.0 .0140 .0492
+Rµ 77.5 .0141 .0488

Table 6.5: Results of evaluation of generated artificial datasets. distinct-1 and distinct-
2 compute the ratio of the number of unique unigrams or bigrams to that of the total
generated tokens (Li et al., 2016).

by Li et al. (2016), to verify the effect of diversity-promoting semantic constraints.

Results of the evaluation on the artificial datasets are presented in Table 6.5.

The classifier trained on the original dataset predicts the generated data fairly well,

from which we verify that the generated sentences contain desired semantics. Also, as

expected, fine-tuning with Ry increases the classification accuracy by a large margin,

while Rz and Rµ enhance diversity.

6.4.5 Implementation Details

We used PyTorch7 and AllenNLP8 libraries for implementation. The default weight

initialization scheme of the AllenNLP library is used unless explicitly stated.

For all CS-LVM experiments, the size of word embeddings and hidden dimensions

of LSTMs are set to 300, and the size of label embeddings is 50. gcode is implemented

as a linear projection of the last hidden state of the encoder LSTM followed by

normalization. gout is a linear projection followed by the softmax function, and we

reuse the word embeddings as its weight matrix (Press and Wolf, 2017; Inan et al.,

2017). The discriminative classifier is a feedforward network with single hidden layer

and the ReLU activation function, and the hidden dimension is set to 1200. We

apply dropout on word embeddings and the classifier with probabilities pw and pc

respectively.

7https://pytorch.org/
8https://allennlp.org/

89

https://pytorch.org/
https://allennlp.org/

Model κ λ pw pc

28k 150 0.8 0.75 0.1
59k 100 1.0 0.75 0.1
120k 120 0.8 0.50 0.1

Table 6.6: Hyperparameters for the SNLI models.

Model κ λ pw pc

1k 100 0.8 0.50 0.2
5k 120 0.5 0.75 0.2
10k 150 0.5 0.75 0.1
25k 100 0.5 0.75 0.1

Table 6.7: Hyperparameters for the QQP models.

When multiple semantic constraints are used, to make uncertainty weights be

always positive and be optimized stably, we instead use log σ2i as model parameter,

as in Kendall et al. (2018). Each log σ2i is initialized with zero. The temperature

parameter of the Gumbel-Softmax is linearly annealed using the following schedule:

τ(t) = max(0.1, 1.0− rt), (6.26)

where r = 10−4 is the annealing rate and t is the training step.

Adam optimizer (Kingma and Ba, 2015) with learning rate γ = 10−3 is used for

all experiments, except for 1k QQP experiments where stochastic gradient descent

optimizer is used. When fine-tuning the model, we set γ to 10−4. For other hyperpa-

rameters, we follow the configuration suggested by the authors. Best hyperparameter

configurations found for SNLI and QQP datasets are presented in Tables 6.6 and 6.7.

For generating sentences, beam search with the beam size B = 10 is used, and

length normalization (Wu et al., 2016) is applied with α = 0.7.

6.5 Summary and Discussion

In this chapter, we proposed a cross-sentence latent variable model (CS-LVM) for

semi-supervised text sequence matching. Given a pair of text sequences and the cor-

90

responding label, it uses one of the sequences and the label as input and generates

the other sequence. Due to the use of cross-sentence generation, the generative model

and the discriminative classifier interacts more strongly, and from experiments we

empirically proved that the CS-LVM outperforms other models by a large margin.

We also defined multiple semantic constraints to further regularize the model, and

observed that fine-tuning with them gives additional increase in performance.

For future work, generating more realistic text and use the generated text in other

tasks e.g. data augmentation and addressing adversarial attack, would be intriguing

directions of research. Although the current model makes fairly plausible sentences,

it tends to prefer relatively short and safe sentences, as the main goal of the training

is to accurately predict the relationship between sentences. We expect the model

could perform more natural generation via applying recent advancements on deep

generative models.

91

Chapter 7

Conclusion

In this dissertation, we explored methods of improving the performance of sentence

matching based on deep neural network sentence encoders. We have sought for room

for improvement in three orthogonal directions: i) constructing a sentence encoder

architecture capable of better extracting semantics from natural language text, ii)

designing a matching function that automatically learns a suitable aggregation scheme

from data, and iii) utilizing text pairs without label information in semi-supervised

training.

Ch. 3 and 4 are on improving sentence encoders. In Ch. 3, we proposed a Gumbel

Tree-LSTM architecture that learns the parsing strategy maximizing the task perfor-

mance from data composed of sentences without structure information. As inducing

a tree structure is composed of a series of discrete sampling operations, we used the

straight-through version of the Gumbel-Softmax estimator to facilitate training. From

experiments, we examined that the proposed architecture outperforms other recursive

neural network models, without relying on a predefined strategy e.g. constituency-

based or dependency-based parsing. We also saw that models optimized on different

92

tasks have distinct parsing strategies, proving our hypothesis that an optimal strategy

would differ from task to task.

Though the work on finding an optimal parsing strategy for a specific task is

originally started from constructing a powerful sentence encoder, it has contributed

to some work on unsupervised grammar induction. Williams et al. (2018a); Htut

et al. (2018) examined Gumbel Tree-LSTM models trained on various dataset and

compared the resulting parsing strategies. Li et al. (2019) introduced an imitation

learning approach into training the Gumbel Tree-LSTMmodel and achieved improved

performance on unsupervised grammar induction.

In Ch. 4, we suggested a method of stacking multiple long short-term memory

(LSTM) layers. We observed that the typical setting of stacking LSTM layers where

only the hidden states from a previous layer is fed as input to the next layer might not

fully benefit from the carefully designed gating mechanism of the LSTM architecture,

and proposed the Cell-aware Stacked LSTM (CAS-LSTM) architecture that utilizes

both hidden and memory cell states from a previous layer. We saw from experiments

that the CAS-LSTM architecture brings performance gains on various tasks. We

also conducted qualitative analyses to validate arguments on advantages of using the

additional vertical forget gate.

Since the applicability of sentence encoders is not confined to the case of sentence

matching, we expect that our architectures—Gumbel Tree-LSTM and CAS-LSTM—

would generally help understanding a natural language sentence and extracting useful

features for a given task.

In Ch. 5, the element-wise bilinear sentence matching (ElBiS) algorithm is pre-

sented. Inspired by prior work on heuristic element-wise matching functions and the

hypothesis that sentence representations obtained by a shared encoder would lie in

similar semantic spaces, we proposed considering bilinear interaction element-wise,

which greatly reduces the number of required parameters compared against full bi-

93

linear pooling methods. By automatically learning an optimal element-wise feature

extraction scheme for a given task, it lessens the need of expert knowledge in making

a sentence matching model. We showed that the ElBiS algorithm is capable of find-

ing a suitable matching function automatically from data, outperforming matching

functions based on heuristics.

Ch. 6 is about utilizing unsupervised data along with supervised data (i.e. semi-

supervised training) for sentence matching. We proposed a cross-sentence latent vari-

able model (CS-LVM), which is a deep generative model that considers both sentences

in a pair within a single model. It assumes that a target sentence is generated from a

latent representation of a source sentence. We also designed semantic constraints to

make the model to generate more semantically plausible sentences. Unlike previous ap-

proaches based on variational auto-encoders (VAEs), the optimization objectives for

our model are defined in a more natural and probabilistic way. We empirically proved

that the proposed CS-LVM outperforms strong baselines and previous VAE-based

models given the same amount of labeled data, and that it also produces sentences

that have meaningful relationship with a source sentence given. Since the proposed

CS-LVM framework is a general and integrated method of modeling sentence pairs,

we expect that it could be adopted in various cases for better modeling of sentence

pairs.

As comparing two sentences is an important ingredient for building various nat-

ural language understanding systems, we believe that the methods discussed in this

dissertation would improve the effectiveness of numerous applications. We also want

to note again that the three types of improvements do not overlap with each other.

That is, advancements in one direction does not prevent the entire model from ap-

plying methods in other directions; for example we can use one or more methods

proposed in this dissertation at the same time for better performance. We can also

integrate recently proposed sophisticated sentence encoders e.g. Transformer or pre-

94

trained language models like ELMo and BERT together with our matching function

or semi-supervised training framework.

95

Appendix A

Appendix

A.1 Sentences Generated from CS-LVM

Generated sentences are presented in Tables A.1–A.4. Though almost all generated

hypotheses are realistic, we see that they lack diversity and fail to encode label infor-

mation in some cases. For example, the phrase ‘is/are sleeping’ appears in generated

sentences frequently when conditioned on the ‘contradiction’ label, likely because gen-

erating a set of simple patterns could be a shortcut to the objective. In Table 6.5,

we verified from experiments that adding constraints helps enhancing accuracy and

diversity, however a model is still relatively in favor of generating ‘easy’ sentences.

We conjecture that the problem has its root in the fact that the primary objective of

our model is to correctly classify the input, not to generate diverse outputs.

96

In
p
u
t

E
nt

ai
lm

en
t

N
eu

tr
al

C
on

tr
ad

ic
ti

on

lit
tl
e

ki
ds

en
jo
y

sp
ri
nk

le
rs

by

ru
nn

in
g
th
ro
ug

h
th
em

ou
td
oo

rs

.

ki
ds

ar
e
ru
nn

in
g
.

th
e
ch
ild

re
n
ar
e
si
bl
in
gs

.
th
e
ch
ild

re
n

ar
e
pl
ay
in
g

vi
de
o
ga
m
es

.

bl
ur
ry

pe
op

le
w
al
ki
ng

in
th
e
ci
ty

at
ni
gh

t
.

pe
op

le
ar
e

w
al
ki
ng

ou
t-

si
de

.

th
e
pe

op
le

ar
e
go
in
g

to

w
or
k
.

th
e
pe

op
le

ar
e
in
si
de

.

a
w
om

an
si
ts

in
a
ch
ai
r
un

de
r
a

tr
ee

an
d
pl
ay
s
an

ac
ou

st
ic

gu
it
ar

.

a
w
om

an
is
pl
ay

in
g
an

in
-

st
ru
m
en
t
.

th
e
w
om

an
is

a
m
us
ic
ia
n

.

a
w
om

an
is

pl
ay
in
g

th
e

flu
te

.

th
re
e
m
en

co
nv

er
se

in
a
cr
ow

d
.

th
re
e
m
en

ar
e
ta
lk
in
g
.

th
e
m
en

ar
e
ta
lk
in
g
.

th
e
m
en

ar
e
sl
ee
pi
ng

.

a
w
om

an
in

a
ye
llo

w
sh
ir
t
se
at
ed

at
a
ta
bl
e
.

a
w
om

an
is

si
tt
in
g
.

a
w
om

an
is

si
tt
in
g

at
a

ta
bl
e
.

th
e
w
om

an
is

st
an

di
ng

.

a
w
om

an
hu

gs
a
flu

ffy
w
hi
te

do
g

.

a
w
om

an
is
ho

ld
in
g
a
do

g

.

a
w
om

an
is

w
it
h
he
r
do

g

.

a
w
om

an
is

sl
ee
pi
ng

.

a
cr
ow

d
of

pe
op

le
in

co
lo
rf
ul

dr
es
se
s
.

pe
op

le
in

co
st
um

es
th
e
pe

op
le
ar
e
in

a
pa

ra
de

.

th
e
pe

op
le

ar
e
si
tt
in
g
in

a
ci
rc
le

.

a
cl
ow

n
m
ak

in
g
a
ba

llo
on

an
im

al

fo
r
a
pr
et
ty

la
dy

.

a
cl
ow

n
is

en
te
rt
ai
ni
ng

a

cr
ow

d
.

th
e
cl
ow

n
is

en
te
rt
ai
ni
ng

a
cr
ow

d
.

th
e
cl
ow

n
is

sl
ee
pi
ng

.

T
ab

le
A
.1
:S

en
te
nc
es

ge
ne
ra
te
d
fr
om

th
e
C
S-
LV

M
m
od

el
tr
ai
ne
d
on

th
e
SN

LI
da

ta
se
t.
Fa

ilu
re

ca
se
s
ar
e
de
no

te
d
by

st
ri
ke
th
ro
ug

h
te
xt
.

97

In
p
u
t

E
ntailm

ent
N

eu
tral

C
ontrad

iction

little
kids

enjoy
sprinklers

by

running
through

them
outdoors

.

kids
are

playing
outside

.
the

kids
are

playing
in

the
w
ater

.

the
kids

are
sleeping

.

blurry
people

w
alking

in
the

city

at
night

.

people
are

w
alking

.
the

people
are

w
alking

to

w
ork

.

the
people

are
inside

.

a
w
om

an
sits

in
a
chair

under
a

tree
and

plays
an

acoustic
guitar

.

a
w
om

an
is
playing

m
usic

.

the
w
om

an
is

a
m
usician

.

a
w
om

an
is

sleeping
.

three
m
en

converse
in

a
crow

d
.

three
m
en

are
talking

.
three

m
en

are
talking

about
politics

.

the
m
en

are
sleeping

.

a
w
om

an
in

a
yellow

shirt
seated

at
a
table

.

a
w
om

an
is

sitting
.

a
tallhum

an
sitting

.
the

w
om

an
is

standing
.

a
w
om

an
hugs

a
fluffy

w
hite

dog

.

a
w
om

an
is
holding

a
dog

.

the
dog

belongs
to

the

w
om

an
.

the
dog

is
black

.

a
crow

d
of

people
in

colorful

dresses
.

people
in

costum
es

the
people

are
in

a
parade

.

the
people

are
sleeping

.

a
clow

n
m
aking

a
balloon

anim
al

for
a
pretty

lady
.

a
clow

n
is

perform
ing

.
the

clow
n
is

entertaining

a
crow

d
.

the
clow

n
is

sleeping
.

T
able

A
.2:

Sentences
generated

from
the

C
S-LV

M
+
R

y
m
odel

trained
on

the
SN

LI
dataset.

N
ote

that
failed

exam
ples

in
T
able

A
.1

are
corrected

due
to

the
use

ofR
y.

98

In
p
u
t

E
nt

ai
lm

en
t

N
eu

tr
al

C
on

tr
ad

ic
ti

on

lit
tl
e

ki
ds

en
jo
y

sp
ri
nk

le
rs

by

ru
nn

in
g
th
ro
ug

h
th
em

ou
td
oo

rs

.

ki
ds

ar
e
pl
ay
in
g
in

w
at
er

.

th
e
ki
ds

ar
e
ha

vi
ng

fu
n
.

th
e
ki
ds

ar
e
sl
ee
pi
ng

.

bl
ur
ry

pe
op

le
w
al
ki
ng

in
th
e
ci
ty

at
ni
gh

t
.

pe
op

le
ar
e
w
al
ki
ng

.
th
e
pe

op
le

ar
e
w
al
ki
ng

to

w
or
k
.

th
e
pe

op
le

ar
e
in
si
de

.

a
w
om

an
si
ts

in
a
ch
ai
r
un

de
r
a

tr
ee

an
d
pl
ay
s
an

ac
ou

st
ic

gu
it
ar

.

a
w
om

an
is
pl
ay

in
g
an

in
-

st
ru
m
en
t
.

th
e
w
om

an
is

a
m
us
ic
ia
n

.

a
w
om

an
is

pl
ay
in
g

th
e

dr
um

s
.

th
re
e
m
en

co
nv

er
se

in
a
cr
ow

d
.

th
re
e
m
en

ar
e
ta
lk
in
g
.

th
re
e

m
en

ar
e

ta
lk
in
g

ab
ou

t
po

lit
ic
s
.

th
e
m
en

ar
e
sl
ee
pi
ng

.

a
w
om

an
in

a
ye
llo

w
sh
ir
t
se
at
ed

at
a
ta
bl
e
.

a
w
om

an
is

si
tt
in
g
.

a
w
om

an
is

si
tt
in
g

at
a

ta
bl
e
.

th
e
w
om

an
is

st
an

di
ng

a
w
om

an
hu

gs
a
flu

ffy
w
hi
te

do
g

.

a
w
om

an
is
ho

ld
in
g
a
do

g

.

a
w
om

an
is

pl
ay

in
g
w
it
h

he
r
do

g
.

a
w
om

an
is

sl
ee
pi
ng

.

a
cr
ow

d
of

pe
op

le
in

co
lo
rf
ul

dr
es
se
s
.

pe
op

le
ar
e

w
ea
ri
ng

co
s-

tu
m
es

.

th
e
pe

op
le
ar
e
in

a
pa

ra
de

.

th
e

pe
op

le
ar
e

si
tt
in
g

do
w
n
.

a
cl
ow

n
m
ak

in
g
a
ba

llo
on

an
im

al

fo
r
a
pr
et
ty

la
dy

.

a
cl
ow

n
pe

rf
or
m
s
.

th
e
cl
ow

n
is

a
cl
ow

n
.

th
e
cl
ow

n
is

sl
ee
pi
ng

.

T
ab

le
A
.3
:
Se
nt
en
ce
s
ge
ne
ra
te
d
fr
om

th
e
C
S-
LV

M
+
R

z
m
od

el
tr
ai
ne
d
on

th
e
SN

LI
da

ta
se
t.

Fa
ilu

re
ca
se
s
ar
e

de
no

te
d
by

st
ri
ke
th
ro
ug

h
te
xt
.

99

In
p
u
t

E
ntailm

ent
N

eu
tral

C
ontrad

iction

little
kids

enjoy
sprinklers

by

running
through

them
outdoors

.

kids
are

playing
outside

.
the

kids
are

having
fun

.
the

kids
are

sleeping
.

blurry
people

w
alking

in
the

city

at
night

.

people
are

w
alking

.
the

people
are

w
alking

to

w
ork

.

the
people

are
inside

.

a
w
om

an
sits

in
a
chair

under
a

tree
and

plays
an

acoustic
guitar

.

a
w
om

an
is
playing

an
in-

strum
ent

.

the
w
om

an
is

a
m
usician

.

a
w
om

an
is

playing
the

piano
.

three
m
en

converse
in

a
crow

d
.

three
m
en

are
talking

.
three

m
en

are
talking

about
politics

.

the
m
en

are
sleeping

.

a
w
om

an
in

a
yellow

shirt
seated

at
a
table

.

a
w
om

an
is

sitting
.

a
w
om

an
is

sitting
at

a

table
.

the
w
om

an
is

standing

a
w
om

an
hugs

a
fluffy

w
hite

dog

.

a
w
om

an
is
holding

a
dog

.

the
dog

belongs
to

the

w
om

an
.

a
w
om

an
is

petting
a
cat

.

a
crow

d
of

people
in

colorful

dresses
.

people
are

dressed
up

.
the

people
are

in
a
parade

.

the
people

are
sitting

dow
n
.

a
clow

n
m
aking

a
balloon

anim
al

for
a
pretty

lady
.

a
clow

n
is

blow
ing

bubbles
.

the
clow

n
is

a
clow

n
.

the
clow

n
is

sleeping
.

T
able

A
.4:

Sentences
generated

from
the

C
S-LV

M
+
R
µ
m
odel

trained
on

the
SN

LI
dataset.

Failure
cases

are

denoted
by

strikethrough
text.

100

Bibliography

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath

Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit

Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and

Xiaoqiang Zheng. 2016. Tensorflow: A system for large-scale machine learning. In

12th USENIX Symposium on Operating Systems Design and Implementation, pages

265–283.

Aishwarya Agrawal, Jiasen Lu, Stanislaw Antol, Margaret Mitchell, C. Lawrence Zit-

nick, Devi Parikh, and Dhruv Batra. 2017. VQA: Visual question answering. In-

ternational Journal of Computer Vision, 123(1):4–31.

Alexander Alemi, Ben Poole, Ian Fischer, Joshua Dillon, Rif A. Saurous, and Kevin

Murphy. 2018. Fixing a broken ELBO. In Proceedings of the 35th International

Conference on Machine Learning, pages 159–168.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine

translation by jointly learning to align and translate. In International Conference

on Learning Representations.

Marco Baroni, Georgiana Dinu, and Germán Kruszewski. 2014. Don’t count, pre-

101

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://doi.org/10.1007/s11263-016-0966-6
http://proceedings.mlr.press/v80/alemi18a.html
https://arxiv.org/abs/1409.0473v7
https://arxiv.org/abs/1409.0473v7
https://doi.org/10.3115/v1/P14-1023
https://doi.org/10.3115/v1/P14-1023

dict! a systematic comparison of context-counting vs. context-predicting semantic

vectors. In Proceedings of the 52nd Annual Meeting of the Association for Compu-

tational Linguistics (Volume 1: Long Papers), pages 238–247.

Hedi Ben-younes, Remi Cadene, Matthieu Cord, and Nicolas Thome. 2017. MUTAN:

Multimodal tucker fusion for visual question answering. In Proceedings of 2017

IEEE International Conference on Computer Vision, pages 2612–2620.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 2013. Estimating or propa-

gating gradients through stochastic neurons for conditional computation. Comput-

ing Research Repository, arXiv:1308.3432. Version 1.

David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. 2017. Variational infer-

ence: A review for statisticians. Journal of the American Statistical Association,

112(518):859–877.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning.

2015. A large annotated corpus for learning natural language inference. In Proceed-

ings of the 2015 Conference on Empirical Methods in Natural Language Processing,

pages 632–642.

Samuel R. Bowman, Jon Gauthier, Abhinav Rastogi, Raghav Gupta, Christopher D.

Manning, and Christopher Potts. 2016a. A fast unified model for parsing and sen-

tence understanding. In Proceedings of the 54th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), pages 1466–1477.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz, and

Samy Bengio. 2016b. Generating sentences from a continuous space. In Proceedings

of The 20th SIGNLL Conference on Computational Natural Language Learning,

pages 10–21.

102

https://doi.org/10.3115/v1/P14-1023
https://doi.org/10.3115/v1/P14-1023
https://doi.org/10.3115/v1/P14-1023
http://openaccess.thecvf.com/content_ICCV_2017/papers/Ben-younes_MUTAN_Multimodal_Tucker_ICCV_2017_paper.pdf
http://openaccess.thecvf.com/content_ICCV_2017/papers/Ben-younes_MUTAN_Multimodal_Tucker_ICCV_2017_paper.pdf
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/P16-1139
https://doi.org/10.18653/v1/P16-1139
http://www.aclweb.org/anthology/K16-1002

Siddhartha Brahma. 2018. REGMAPR - a recipe for textual matching. Computing

Research Repository, arXiv:1808.04343. Verxion 1.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa Bentivogli, and Marcello Fed-

erico. 2014. Report on the 11th IWSLT evaluation campaign. In Proceedings of the

International Workshop on Spoken Language Translation, pages 2–17.

Olivier Chapelle, Bernhard Schlkopf, and Alexander Zien. 2010. Semi-Supervised

Learning, 1st edition. The MIT Press.

Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding frequent

items in data streams. In International Colloquium on Automata, Languages, and

Programming, pages 693–703. Springer.

Qian Chen, Zhen-Hua Ling, and Xiaodan Zhu. 2018a. Enhancing sentence embedding

with generalized pooling. In Proceedings of the 27th International Conference on

Computational Linguistics, pages 1815–1826.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Diana Inkpen, and Si Wei. 2018b. Neural

natural language inference models enhanced with external knowledge. In Proceed-

ings of the 56th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 2406–2417.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang, and Diana Inkpen.

2017a. Enhanced LSTM for natural language inference. In Proceedings of the 55th

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), pages 1657–1668.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang, and Diana Inkpen.

2017b. Recurrent neural network-based sentence encoder with gated attention for

103

https://arxiv.org/abs/1808.04343v1
http://project.eu-bridge.eu/downloads/CettoloIWSLT2014.pdf
https://link.springer.com/chapter/10.1007/3-540-45465-9_59
https://link.springer.com/chapter/10.1007/3-540-45465-9_59
https://www.aclweb.org/anthology/C18-1154
https://www.aclweb.org/anthology/C18-1154
http://www.aclweb.org/anthology/P18-1224
http://www.aclweb.org/anthology/P18-1224
https://doi.org/10.18653/v1/P17-1152
https://doi.org/10.18653/v1/W17-5307
https://doi.org/10.18653/v1/W17-5307

natural language inference. In Proceedings of the 2nd Workshop on Evaluating

Vector Space Representations for NLP, pages 36–40.

Xi Chen, Diederik P. Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John

Schulman, Ilya Sutskever, and Pieter Abbeel. 2017c. Variational lossy autoencoder.

In International Conference on Learning Representations.

Xinchi Chen, Xipeng Qiu, Chenxi Zhu, Shiyu Wu, and Xuanjing Huang. 2015. Sen-

tence modeling with gated recursive neural network. In Proceedings of the 2015

Conference on Empirical Methods in Natural Language Processing, pages 793–798.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio.

2014a. On the properties of neural machine translation: Encoder–decoder ap-

proaches. In Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and

Structure in Statistical Translation, pages 103–111.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. 2014b. Learning phrase represen-

tations using RNN encoder–decoder for statistical machine translation. In Proceed-

ings of the 2014 Conference on Empirical Methods in Natural Language Processing

(EMNLP), pages 1724–1734.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. 2014c. Learning phrase represen-

tations using RNN encoder–decoder for statistical machine translation. In Proceed-

ings of the 2014 Conference on Empirical Methods in Natural Language Processing

(EMNLP), pages 1724–1734.

Jihun Choi, Taeuk Kim, and Sang-goo Lee. 2018a. Element-wise bilinear interaction

for sentence matching. In Proceedings of the Seventh Joint Conference on Lexical

and Computational Semantics, pages 107–112.

104

https://doi.org/10.18653/v1/W17-5307
https://doi.org/10.18653/v1/W17-5307
https://arxiv.org/abs/1611.02731v2
https://doi.org/10.18653/v1/D15-1092
https://doi.org/10.18653/v1/D15-1092
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
http://www.aclweb.org/anthology/D14-1179
http://www.aclweb.org/anthology/D14-1179
https://doi.org/10.18653/v1/S18-2012
https://doi.org/10.18653/v1/S18-2012

Jihun Choi, Taeuk Kim, and Sang-goo Lee. 2019a. Cell-aware stacked LSTMs for

modeling sentences. In Proceedings of The Eleventh Asian Conference on Machine

Learning, pages 1172–1187.

Jihun Choi, Taeuk Kim, and Sang-goo Lee. 2019b. A cross-sentence latent variable

model for semi-supervised text sequence matching. In Proceedings of the 57th

Annual Meeting of the Association for Computational Linguistics, pages 4747–4761.

Jihun Choi, Kang Min Yoo, and Sang-goo Lee. 2018b. Learning to compose task-

specific tree structures. In Thirty-Second AAAI Conference on Artificial Intelli-

gence, pages 5094–5101.

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. 2017. Hierarchical multiscale re-

current neural networks. In International Conference on Learning Representations.

John Cocke and Jacob T. Schwartz. 1970. Programming languages and their com-

pilers: Preliminary notes. Technical report, Courant Institute of Mathematical

Science.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc Barrault, and Antoine Bordes.

2017. Supervised learning of universal sentence representations from natural lan-

guage inference data. In Proceedings of the 2017 Conference on Empirical Methods

in Natural Language Processing, pages 670–680.

George Cybenko. 1989. Approximation by superpositions of a sigmoidal function.

Mathematics of Control, Signals and Systems, 2(4):303–314.

Ido Dagan, Oren Glickman, and Bernardo Magnini. 2005. The pascal recognising

textual entailment challenge. In Machine Learning Challenges Workshop, pages

177–190.

105

http://proceedings.mlr.press/v101/choi19a.html
http://proceedings.mlr.press/v101/choi19a.html
https://doi.org/10.18653/v1/P19-1469
https://doi.org/10.18653/v1/P19-1469
https://arxiv.org/abs/1707.02786v4
https://arxiv.org/abs/1707.02786v4
https://arxiv.org/abs/1609.01704v7
https://arxiv.org/abs/1609.01704v7
http://www.softwarepreservation.org/projects/FORTRAN/CockeSchwartz_ProgLangCompilers.pdf
http://www.softwarepreservation.org/projects/FORTRAN/CockeSchwartz_ProgLangCompilers.pdf
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.1007/BF02551274
http://u.cs.biu.ac.il/~dagan/publications/RTEChallenge.pdf
http://u.cs.biu.ac.il/~dagan/publications/RTEChallenge.pdf

Andrew M Dai and Quoc V Le. 2015. Semi-supervised sequence learning. In Advances

in Neural Information Processing Systems 28, pages 3079–3087.

Tim R. Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M. Tomczak.

2018. Hyperspherical variational auto-encoders. In Proceedings of the Thirty-Fourth

Conference on Uncertainty in Artificial Intelligence, pages 856–865.

Michel Deudon. 2018. Learning semantic similarity in a continuous space. In Advances

in Neural Information Processing Systems 31, pages 986–997.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:

Pre-training of deep bidirectional transformers for language understanding. Com-

puting Research Repository, arXiv:1810.04805. Version 1.

Adji B. Dieng, Yoon Kim, Alexander M. Rush, and David M. Blei. 2019. Avoiding

latent variable collapse with generative skip models. In Proceedings of Machine

Learning Research, pages 2397–2405.

William B. Dolan and Chris Brockett. 2005. Automatically constructing a corpus

of sentential paraphrases. In Proceedings of the Third International Workshop on

Paraphrasing, pages 9–16.

Li Dong, Furu Wei, Ming Zhou, and Ke Xu. 2014. Adaptive multi-compositionality for

recursive neural models with applications to sentiment analysis. In Twenty-Eighth

AAAI Conference on Artificial Intelligence, pages 1537–1543.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A. Smith. 2016. Re-

current neural network grammars. In Proceedings of the 2016 Conference of the

North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, pages 199–209.

106

http://papers.nips.cc/paper/5949-semi-supervised-sequence-learning.pdf
https://arxiv.org/abs/1804.00891v2
http://papers.nips.cc/paper/7377-learning-semantic-similarity-in-a-continuous-space.pdf
https://arxiv.org/abs/1810.04805v1
https://arxiv.org/abs/1810.04805v1
http://proceedings.mlr.press/v89/dieng19a.html
http://proceedings.mlr.press/v89/dieng19a.html
http://www.aclweb.org/anthology/I05-5002
http://www.aclweb.org/anthology/I05-5002
https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8148
https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8148
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/N16-1024

Salah El Hihi and Yoshua Bengio. 1995. Hierarchical recurrent neural networks for

long-term dependencies. In Advances in Neural Information Processing Systems 8,

pages 493–499.

Jeffrey L. Elman. 1990. Finding structure in time. Cognitive Science, 14(2):179–211.

Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor Darrell, and

Marcus Rohrbach. 2016. Multimodal compact bilinear pooling for visual question

answering and visual grounding. In Proceedings of the 2016 Conference on Empir-

ical Methods in Natural Language Processing, pages 457–468.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin.

2017. Convolutional sequence to sequence learning. In Proceedings of the 34th

International Conference on Machine Learning, pages 1243–1252.

Reza Ghaeini, Sadid A. Hasan, Vivek Datla, Joey Liu, Kathy Lee, Ashequl Qadir,

Yuan Ling, Aaditya Prakash, Xiaoli Fern, and Oladimeji Farri. 2018. DR-BiLSTM:

Dependent reading bidirectional LSTM for natural language inference. In Proceed-

ings of the 2018 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 1 (Long Pa-

pers), pages 1460–1469.

Yoav Goldberg and Michael Elhadad. 2010. An efficient algorithm for easy-first non-

directional dependency parsing. In Human Language Technologies: The 2010 An-

nual Conference of the North American Chapter of the Association for Computa-

tional Linguistics, pages 742–750.

Christoph Goller and Andreas Kuchler. 1996. Learning task-dependent distributed

representations by backpropagation through structure. In Proceedings of Interna-

tional Conference on Neural Networks, pages 347–352.

107

http://papers.nips.cc/paper/1102-hierarchical-recurrent-neural-networks-for-long-term-dependencies.pdf
http://papers.nips.cc/paper/1102-hierarchical-recurrent-neural-networks-for-long-term-dependencies.pdf
https://crl.ucsd.edu/~elman/Papers/fsit.pdf
https://doi.org/10.18653/v1/D16-1044
https://doi.org/10.18653/v1/D16-1044
http://proceedings.mlr.press/v70/gehring17a.html
https://doi.org/10.18653/v1/N18-1132
https://doi.org/10.18653/v1/N18-1132
https://www.aclweb.org/anthology/N10-1115
https://www.aclweb.org/anthology/N10-1115
https://ieeexplore.ieee.org/document/548916
https://ieeexplore.ieee.org/document/548916

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning . MIT

Press.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial

nets. In Advances in Neural Information Processing Systems 27, pages 2672–2680.

Alex Graves. 2012. Supervised sequence labelling. In Supervised Sequence Labelling

with Recurrent Neural Networks, pages 5–13.

Alex Graves. 2013. Generating sequences with recurrent neural networks. Computing

Research Repository, arXiv:1308.0850. Version 5.

Alex Graves, Santiago Fernández, and Jürgen Schmidhuber. 2007. Multi-dimensional

recurrent neural networks. In Proceedings of the 17th International Conference on

Artificial Neural Networks, pages 549–558.

Alex Graves and Jürgen Schmidhuber. 2008. Offline handwriting recognition with

multidimensional recurrent neural networks. In Advances in Neural Information

Processing Systems 21, pages 545–552.

Edward Grefenstette and Mehrnoosh Sadrzadeh. 2011. Experimental support for

a categorical compositional distributional model of meaning. In Proceedings of

the 2011 Conference on Empirical Methods in Natural Language Processing, pages

1394–1404.

Jiatao Gu, Daniel Jiwoong Im, and Victor O. K. Li. 2018. Neural machine translation

with Gumbel-Greedy decoding. In Thirty-Second AAAI Conference on Artificial

Intelligence, pages 5125–5132.

Ishaan Gulrajani, Kundan Kumar, Faruk Ahmed, Adrien Ali Taiga, Francesco Visin,

108

http://www.deeplearningbook.org/
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://doi.org/10.1007/978-3-642-24797-2_2
https://arxiv.org/abs/1308.0850v5
https://arxiv.org/abs/0705.2011v1
https://arxiv.org/abs/0705.2011v1
http://papers.nips.cc/paper/3449-offline-handwriting-recognition-with-multidimensional-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/3449-offline-handwriting-recognition-with-multidimensional-recurrent-neural-networks.pdf
https://www.aclweb.org/anthology/D11-1129
https://www.aclweb.org/anthology/D11-1129
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17299
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17299

David Vazquez, and Aaron Courville. 2017. PixelVAE: A latent variable model for

natural images. In International Conference on Learning Representations.

Kelvin Guu, Tatsunori B. Hashimoto, Yonatan Oren, and Percy Liang. 2018. Gen-

erating sentences by editing prototypes. Transactions of the Association for Com-

putational Linguistics, 6:437–450.

Kazuma Hashimoto, Makoto Miwa, Yoshimasa Tsuruoka, and Takashi Chikayama.

2013. Simple customization of recursive neural networks for semantic relation clas-

sification. In Proceedings of the 2013 Conference on Empirical Methods in Natural

Language Processing, pages 1372–1376.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep into

rectifiers: Surpassing human-level performance on ImageNet classification. In Pro-

ceedings of 2015 IEEE International Conference on Computer Vision, pages 1026–

1034.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In 2016 IEEE Conference on Computer Vision and

Pattern Recognition.

Michiel Hermans and Benjamin Schrauwen. 2013. Training and analysing deep recur-

rent neural networks. In Advances in Neural Information Processing Systems 26,

pages 190–198.

Felix Hill, Kyunghyun Cho, and Anna Korhonen. 2016. Learning distributed repre-

sentations of sentences from unlabelled data. In Proceedings of the 2016 Conference

of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, pages 1367–1377.

109

https://arxiv.org/abs/1611.05013v1
https://arxiv.org/abs/1611.05013v1
http://aclweb.org/anthology/Q18-1031
http://aclweb.org/anthology/Q18-1031
https://www.aclweb.org/anthology/D13-1137
https://www.aclweb.org/anthology/D13-1137
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
http://papers.nips.cc/paper/5166-training-and-analysing-deep-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/5166-training-and-analysing-deep-recurrent-neural-networks.pdf
https://doi.org/10.18653/v1/N16-1162
https://doi.org/10.18653/v1/N16-1162

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural

Computation, 9(8):1735–1780.

Kurt Hornik. 1991. Approximation capabilities of multilayer feedforward networks.

Neural Networks, 4(2):251–257.

Phu Mon Htut, Kyunghyun Cho, and Samuel Bowman. 2018. Grammar induction

with neural language models: An unusual replication. In Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing, pages 4998–

5003.

Minghao Hu, Yuxing Peng, Zhen Huang, Xipeng Qiu, Furu Wei, and Ming Zhou. 2018.

Reinforced mnemonic reader for machine reading comprehension. In Proceedings of

the Twenty-Seventh International Joint Conference on Artificial Intelligence, pages

4099–4106.

Minlie Huang, Qiao Qian, and Xiaoyan Zhu. 2017. Encoding syntactic knowledge

in neural networks for sentiment classification. ACM Transactions on Information

Systems, 35(3):26:1–26:27.

Hakan Inan, Khashayar Khosravi, and Richard Socher. 2017. Tying word vectors

and word classifiers: A loss framework for language modeling. In International

Conference on Learning Representations.

Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In Proceedings of the 32nd

International Conference on Machine Learning, pages 448–456.

Ozan Irsoy and Claire Cardie. 2014. Deep recursive neural networks for composition-

ality in language. In Advances in Neural Information Processing Systems 27, pages

2096–2104.

110

https://www.bioinf.jku.at/publications/older/2604.pdf
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.18653/v1/D18-1544
https://doi.org/10.18653/v1/D18-1544
https://doi.org/10.24963/ijcai.2018/570
https://doi.org/10.1145/3052770
https://doi.org/10.1145/3052770
https://arxiv.org/abs/1611.01462v3
https://arxiv.org/abs/1611.01462v3
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
http://papers.nips.cc/paper/5551-deep-recursive-neural-networks-for-compositionality-in-language.pdf
http://papers.nips.cc/paper/5551-deep-recursive-neural-networks-for-compositionality-in-language.pdf

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical reparameterization with

Gumbel-Softmax. In International Conference on Learning Representations.

Yangfeng Ji and Jacob Eisenstein. 2013. Discriminative improvements to distribu-

tional sentence similarity. In Proceedings of the 2013 Conference on Empirical

Methods in Natural Language Processing, pages 891–896.

Nal Kalchbrenner, Ivo Danihelka, and Alex Graves. 2016. Grid long short-term mem-

ory. In International Conference on Learning Representations.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. 2014. A convolutional

neural network for modelling sentences. In Proceedings of the 52nd Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers), pages

655–665.

Tadao Kasami. 1965. An efficient recognition and syntax analysis algorithm for

context-free languages. Technical Report 65-758, Air Force Cambridge Research

Laboratory.

Alex Kendall, Yarin Gal, and Roberto Cipolla. 2018. Multi-task learning using un-

certainty to weigh losses for scene geometry and semantics. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 7482–7491.

Jaeyoung Kim, Mostafa El-Khamy, and Jungwon Lee. 2017a. Residual LSTM: Design

of a deep recurrent architecture for distant speech recognition. In 18th Annual

Conference of the International Speech Communication Association, pages 1591–

1595.

Jin-Hwa Kim, Kyoung-Woon On, Woosang Lim, Jeonghee Kim, Jung-Woo Ha, and

Byoung-Tak Zhang. 2017b. Hadamard product for low-rank bilinear pooling. In

International Conference on Learning Representations.

111

https://arxiv.org/abs/1611.01144v5
https://arxiv.org/abs/1611.01144v5
https://www.aclweb.org/anthology/D13-1090
https://www.aclweb.org/anthology/D13-1090
https://arxiv.org/abs/1507.01526v2
https://arxiv.org/abs/1507.01526v2
https://doi.org/10.3115/v1/P14-1062
https://doi.org/10.3115/v1/P14-1062
http://hdl.handle.net/2142/74304
http://hdl.handle.net/2142/74304
http://openaccess.thecvf.com/content_cvpr_2018/html/Kendall_Multi-Task_Learning_Using_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Kendall_Multi-Task_Learning_Using_CVPR_2018_paper.html
https://arxiv.org/abs/1701.03360v3
https://arxiv.org/abs/1701.03360v3
https://arxiv.org/abs/1610.04325v4

Seonhoon Kim, Inho Kang, and Nojun Kwak. 2019a. Semantic sentence matching

with densely-connected recurrent and co-attentive information. In Proceedings of

the AAAI Conference on Artificial Intelligence, pages 6586–6593.

Taeuk Kim, Jihun Choi, Daniel Edmiston, Sanghwan Bae, and Sang-goo Lee. 2019b.

Dynamic compositionality in recursive neural networks with structure-aware tag

representations. In Thirty-Third AAAI Conference on Artificial Intelligence, pages

6594–6601.

Yoon Kim. 2014. Convolutional neural networks for sentence classification. In Proceed-

ings of the 2014 Conference on Empirical Methods in Natural Language Processing,

pages 1746–1751.

Yoon Kim, Carl Denton, Luong Hoang, and Alexander M. Rush. 2017c. Structured

attention networks. In International Conference on Learning Representations.

Diederik P. Kingma and Jimmy Lei Ba. 2015. Adam: A method for stochastic opti-

mization. In International Conference on Learning Representations.

Diederik P. Kingma and Max Welling. 2014. Auto-encoding variational Bayes. In

International Conference on Learning Representations.

Durk P. Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. 2014.

Semi-supervised learning with deep generative models. In Advances in Neural In-

formation Processing Systems 27, pages 3581–3589.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple and accurate dependency

parsing using bidirectional LSTM feature representations. Transactions of the As-

sociation for Computational Linguistics, 4:313–327.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun,

112

https://www.aaai.org/ojs/index.php/AAAI/article/view/4627
https://www.aaai.org/ojs/index.php/AAAI/article/view/4627
https://arxiv.org/abs/1809.02286v2
https://arxiv.org/abs/1809.02286v2
https://doi.org/10.3115/v1/D14-1181
https://arxiv.org/abs/1702.00887v3
https://arxiv.org/abs/1702.00887v3
https://arxiv.org/abs/1412.6980v9
https://arxiv.org/abs/1412.6980v9
https://arxiv.org/abs/1312.6114v10
http://papers.nips.cc/paper/5352-semi-supervised-learning-with-deep-generative-models.pdf
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1162/tacl_a_00101

Antonio Torralba, and Sanja Fidler. 2015. Skip-thought vectors. In Advances in

Neural Information Processing Systems 28, pages 3294–3302.

Ben Krause, Liang Lu, Iain Murray, and Steve Renals. 2016. Multiplicative LSTM for

sequence modelling. Computing Research Repository, arXiv:1609.07959. Version 3.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classifica-

tion with deep convolutional neural networks. In Advances in Neural Information

Processing Systems 25, pages 1097–1105.

Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan

Gulrajani, Victor Zhong, Romain Paulus, and Richard Socher. 2016. Ask me any-

thing: Dynamic memory networks for natural language processing. In Proceedings

of The 33rd International Conference on Machine Learning, pages 1378–1387.

Wuwei Lan and Wei Xu. 2018. Neural network models for paraphrase identification,

semantic textual similarity, natural language inference, and question answering.

In Proceedings of the 27th International Conference on Computational Linguistics,

pages 3890–3902.

Phong Le and Willem Zuidema. 2015. Compositional distributional semantics with

long short term memory. In Proceedings of the Fourth Joint Conference on Lexical

and Computational Semantics, pages 10–19.

Omer Levy and Yoav Goldberg. 2014. Neural word embedding as implicit matrix

factorization. In Advances in Neural Information Processing Systems 27, pages

2177–2185.

Bowen Li, Lili Mou, and Frank Keller. 2019. An imitation learning approach to

unsupervised parsing. In Proceedings of the 57th Annual Meeting of the Association

for Computational Linguistics, pages 3485–3492.

113

http://papers.nips.cc/paper/5950-skip-thought-vectors.pdf
https://arxiv.org/abs/1609.07959v3
https://arxiv.org/abs/1609.07959v3
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://proceedings.mlr.press/v48/kumar16.html
http://proceedings.mlr.press/v48/kumar16.html
https://www.aclweb.org/anthology/C18-1328
https://www.aclweb.org/anthology/C18-1328
https://doi.org/10.18653/v1/S15-1002
https://doi.org/10.18653/v1/S15-1002
http://papers.nips.cc/paper/5477-neural-word-embedding-as-implicit-matrix-factorization.pdf
http://papers.nips.cc/paper/5477-neural-word-embedding-as-implicit-matrix-factorization.pdf
https://doi.org/10.18653/v1/P19-1338
https://doi.org/10.18653/v1/P19-1338

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. 2016. A

diversity-promoting objective function for neural conversation models. In Pro-

ceedings of the 2016 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, pages 110–119.

Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. 2015. Bilinear CNN mod-

els for fine-grained visual recognition. In Proceedings of 2015 IEEE International

Conference on Computer Vision.

Dong C. Liu and Jorge Nocedal. 1989. On the limited memory bfgs method for large

scale optimization. Mathematical Programming, 45(1):503–528.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2017. Dynamic compositional neural

networks over tree structure. In Proceedings of the Twenty-Sixth International Joint

Conference on Artificial Intelligence, pages 4054–4060.

Xiaodong Liu, Kevin Duh, and Jianfeng Gao. 2018. Stochastic answer networks

for natural language inference. Computing Research Repository, arXiv:1804.07888.

Version 2.

Yang Liu, Chengjie Sun, Lei Lin, and XiaolongWang. 2016. Learning natural language

inference using bidirectional LSTMmodel and inner-attention. Computing Research

Repository, arXiv:1605.09090. Version 1.

Moshe Looks, Marcello Herreshoff, DeLesley Hutchins, and Peter Norvig. 2017. Deep

learning with dynamic computation graphs. In International Conference on Learn-

ing Representations.

Ilya Loshchilov and Frank Hutter. 2017. SGDR: Stochastic gradient descent with

warm restarts. In International Conference on Learning Representations.

114

http://www.aclweb.org/anthology/N16-1014
http://www.aclweb.org/anthology/N16-1014
http://openaccess.thecvf.com/content_iccv_2015/papers/Lin_Bilinear_CNN_Models_ICCV_2015_paper.pdf
http://openaccess.thecvf.com/content_iccv_2015/papers/Lin_Bilinear_CNN_Models_ICCV_2015_paper.pdf
https://doi.org/10.1007/BF01589116
https://doi.org/10.1007/BF01589116
https://doi.org/10.24963/ijcai.2017/566
https://doi.org/10.24963/ijcai.2017/566
https://arxiv.org/abs/1804.07888v2
https://arxiv.org/abs/1804.07888v2
https://arxiv.org/abs/1605.09090v1
https://arxiv.org/abs/1605.09090v1
https://arxiv.org/abs/1702.02181v2
https://arxiv.org/abs/1702.02181v2
https://arxiv.org/abs/1608.03983v5
https://arxiv.org/abs/1608.03983v5

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. 2017. The concrete distribution:

A continuous relaxation of discrete random variables. In International Conference

on Learning Representations.

Chris J Maddison, Daniel Tarlow, and Tom Minka. 2014. A∗ sampling. In Advances

in Neural Information Processing Systems 27, pages 3086–3094.

Jean Maillard, Stephen Clark, and Dani Yogatama. 2017. Jointly learning sen-

tence embeddings and syntax with unsupervised Tree-LSTMs. Computing Research

Repository, arXiv:1705.09189. Version 1.

Jean Maillard, Stephen Clark, and Dani Yogatama. 2019. Jointly learning sentence

embeddings and syntax with unsupervised Tree-LSTMs. Natural Language Engi-

neering, 25(4):433–449.

Marco Marelli, Luisa Bentivogli, Marco Baroni, Raffaella Bernardi, Stefano Menini,

and Roberto Zamparelli. 2014. SemEval-2014 task 1: Evaluation of compositional

distributional semantic models on full sentences through semantic relatedness and

textual entailment. In Proceedings of the 8th International Workshop on Semantic

Evaluation, pages 1–8.

Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. 2017. Learned

in translation: Contextualized word vectors. In Advances in Neural Information

Processing Systems 30, pages 6294–6305.

Yishu Miao, Lei Yu, and Phil Blunsom. 2016. Neural variational inference for text pro-

cessing. In Proceedings of The 33rd International Conference on Machine Learning,

pages 1727–1736.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khu-

danpur. 2010. Recurrent neural network based language model. In 11th Annual

115

https://arxiv.org/abs/1611.00712v3
https://arxiv.org/abs/1611.00712v3
http://papers.nips.cc/paper/5449-a-sampling.pdf
https://arxiv.org/abs/1705.09189v1
https://arxiv.org/abs/1705.09189v1
https://doi.org/10.1017/S1351324919000184
https://doi.org/10.1017/S1351324919000184
http://www.aclweb.org/anthology/S14-2001
http://www.aclweb.org/anthology/S14-2001
http://www.aclweb.org/anthology/S14-2001
http://papers.nips.cc/paper/7209-learned-in-translation-contextualized-word-vectors.pdf
http://papers.nips.cc/paper/7209-learned-in-translation-contextualized-word-vectors.pdf
http://proceedings.mlr.press/v48/miao16.html
http://proceedings.mlr.press/v48/miao16.html
https://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf

Conference of the International Speech Communication Association, pages 1045–

1048.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. 2013.

Distributed representations of words and phrases and their compositionality. In

Advances in Neural Information Processing Systems 26, pages 3111–3119.

Jeff Mitchell and Mirella Lapata. 2010. Composition in distributional models of

semantics. Cognitive Science, 34(8):1388–1429.

Bhaskar Mitra and Nick Craswell. 2017. Neural models for information retrieval.

Computing Research Repository, arXiv:1705.01509. Version 1.

Bhaskar Mitra, Fernando Diaz, and Nick Craswell. 2017. Learning to match using

local and distributed representations of text for web search. In Proceedings of the

26th International Conference on World Wide Web, pages 1291–1299.

Lili Mou, Rui Men, Ge Li, Yan Xu, Lu Zhang, Rui Yan, and Zhi Jin. 2016. Natural

language inference by tree-based convolution and heuristic matching. In Proceed-

ings of the 54th Annual Meeting of the Association for Computational Linguistics

(Volume 2: Short Papers), pages 130–136.

Tsendsuren Munkhdalai and Hong Yu. 2017a. Neural semantic encoders. In Pro-

ceedings of the 15th Conference of the European Chapter of the Association for

Computational Linguistics: Volume 1, Long Papers, pages 397–407.

Tsendsuren Munkhdalai and Hong Yu. 2017b. Neural tree indexers for text under-

standing. In Proceedings of the 15th Conference of the European Chapter of the

Association for Computational Linguistics: Volume 1, Long Papers, pages 11–21.

Yixin Nie and Mohit Bansal. 2017. Shortcut-stacked sentence encoders for multi-

116

http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://doi.org/10.1111/j.1551-6709.2010.01106.x
https://doi.org/10.1111/j.1551-6709.2010.01106.x
https://arxiv.org/abs/1705.01509v1
https://arxiv.org/abs/1610.08136v1
https://arxiv.org/abs/1610.08136v1
https://doi.org/10.18653/v1/P16-2022
https://doi.org/10.18653/v1/P16-2022
https://www.aclweb.org/anthology/E17-1038
https://www.aclweb.org/anthology/E17-1002
https://www.aclweb.org/anthology/E17-1002
https://doi.org/10.18653/v1/W17-5308
https://doi.org/10.18653/v1/W17-5308

domain inference. In Proceedings of the 2nd Workshop on Evaluating Vector Space

Representations for NLP, pages 41–45.

Kamal Nigam, Andrew McCallum, and Tom Mitchell. 2006. Semi-supervised text

classification using EM. Semi-Supervised Learning, pages 33–56.

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. 2017. Neural discrete

representation learning. In Advances in Neural Information Processing Systems 30,

pages 6306–6315.

Ankur Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. 2016. A decom-

posable attention model for natural language inference. In Proceedings of the 2016

Conference on Empirical Methods in Natural Language Processing, pages 2249–

2255.

Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. 2014. How to

construct deep recurrent neural networks. In International Conference on Learning

Representations.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.

2017. Automatic differentiation in PyTorch. In NIPS Autodiff Workshop.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global

vectors for word representation. In Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing, pages 1532–1543.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,

Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word representa-

tions. In Proceedings of the 2018 Conference of the North American Chapter of the

117

https://doi.org/10.18653/v1/W17-5308
https://doi.org/10.18653/v1/W17-5308
https://people.cs.umass.edu/~mccallum/papers/semisup-em.pdf
https://people.cs.umass.edu/~mccallum/papers/semisup-em.pdf
http://papers.nips.cc/paper/7210-neural-discrete-representation-learning.pdf
http://papers.nips.cc/paper/7210-neural-discrete-representation-learning.pdf
https://aclweb.org/anthology/D16-1244
https://aclweb.org/anthology/D16-1244
https://arxiv.org/abs/1312.6026v5
https://arxiv.org/abs/1312.6026v5
https://openreview.net/forum?id=BJJsrmfCZ
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202

Association for Computational Linguistics: Human Language Technologies, Volume

1 (Long Papers), pages 2227–2237.

Tony A. Plate. 1995. Holographic reduced representations. IEEE Transactions on

Neural networks, 6(3):623–641.

Ofir Press and Lior Wolf. 2017. Using the output embedding to improve language

models. In Proceedings of the 15th Conference of the European Chapter of the

Association for Computational Linguistics: Volume 2, Short Papers, pages 157–

163.

Yunchen Pu, Zhe Gan, Ricardo Henao, Xin Yuan, Chunyuan Li, Andrew Stevens,

and Lawrence Carin. 2016. Variational autoencoder for deep learning of images,

labels and captions. In Advances in Neural Information Processing Systems 29,

pages 2352–2360.

Qiao Qian, Bo Tian, Minlie Huang, Yang Liu, Xuan Zhu, and Xiaoyan Zhu. 2015.

Learning tag embeddings and tag-specific composition functions in recursive neu-

ral network. In Proceedings of the 53rd Annual Meeting of the Association for

Computational Linguistics and the 7th International Joint Conference on Natural

Language Processing (Volume 1: Long Papers), pages 1365–1374.

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever. 2017. Learning to gen-

erate reviews and discovering sentiment. Computing Research Repository,

arXiv:1704.01444. Version 2.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improv-

ing language understanding by generative pre-training. Technical report, OpenAI.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. SQuAD:

100,000+ questions for machine comprehension of text. In Proceedings of the 2016

118

https://doi.org/10.1109/72.377968
http://www.aclweb.org/anthology/E17-2025
http://www.aclweb.org/anthology/E17-2025
http://papers.nips.cc/paper/6528-variational-autoencoder-for-deep-learning-of-images-labels-and-captions.pdf
http://papers.nips.cc/paper/6528-variational-autoencoder-for-deep-learning-of-images-labels-and-captions.pdf
https://doi.org/10.3115/v1/P15-1132
https://doi.org/10.3115/v1/P15-1132
https://arxiv.org/abs/1704.01444v2
https://arxiv.org/abs/1704.01444v2
https://blog.openai.com/language-unsupervised/
https://blog.openai.com/language-unsupervised/
https://aclweb.org/anthology/D16-1264
https://aclweb.org/anthology/D16-1264

Conference on Empirical Methods in Natural Language Processing, pages 2383–

2392.

Prajit Ramachandran, Peter Liu, and Quoc Le. 2017. Unsupervised pretraining for

sequence to sequence learning. In Proceedings of the 2017 Conference on Empirical

Methods in Natural Language Processing, pages 383–391.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. 2014. Stochastic

backpropagation and approximate inference in deep generative models. In Proceed-

ings of the 31st International Conference on Machine Learning, pages 1278–1286.

Adam Roberts, Jesse Engel, Colin Raffel, Curtis Hawthorne, and Douglas Eck. 2018.

A hierarchical latent vector model for learning long-term structure in music. In

Proceedings of the 35th International Conference on Machine Learning, pages 4364–

4373.

Andrew M. Saxe, James L. McClelland, and Surya Ganguli. 2014. Exact solutions to

the nonlinear dynamics of learning in deep linear neural networks. In International

Conference on Learning Representations.

Jürgen Schmidhuber. 1992. Learning complex, extended sequences using the principle

of history compression. Neural Computation, 4(2):234–242.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation

of rare words with subword units. In Proceedings of the 54th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), pages 1715–

1725.

Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe, Laurent Charlin, Joelle Pineau,

Aaron Courville, and Yoshua Bengio. 2017. A hierarchical latent variable encoder-

119

https://www.aclweb.org/anthology/D17-1039
https://www.aclweb.org/anthology/D17-1039
http://proceedings.mlr.press/v32/rezende14.html
http://proceedings.mlr.press/v32/rezende14.html
http://proceedings.mlr.press/v80/roberts18a.html
https://arxiv.org/abs/1312.6120v3
https://arxiv.org/abs/1312.6120v3
https://doi.org/10.1162/neco.1992.4.2.234
https://doi.org/10.1162/neco.1992.4.2.234
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://arxiv.org/abs/1605.06069v3
https://arxiv.org/abs/1605.06069v3

decoder model for generating dialogues. In Proceedings of the Thirty-First AAAI

Conference on Artificial Intelligence, pages 3295–3301.

Lei Sha, Baobao Chang, Zhifang Sui, and Sujian Li. 2016. Reading and thinking:

Re-read LSTM unit for textual entailment recognition. In Proceedings of COLING

2016, the 26th International Conference on Computational Linguistics: Technical

Papers, pages 2870–2879.

Dinghan Shen, Yizhe Zhang, Ricardo Henao, Qinliang Su, and Lawrence Carin. 2018a.

Deconvolutional latent-variable model for text sequence matching. In Thirty-Second

AAAI Conference on Artificial Intelligence, pages 5438–5445.

Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, Shirui Pan, and Chengqi Zhang.

2018b. DiSAN: Directional self-attention network for RNN/CNN-free language

understanding. In Thirty-Second AAAI Conference on Artificial Intelligence, pages

5446–5455.

Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, Sen Wang, and Chengqi Zhang.

2018c. Reinforced self-attention network: a hybrid of hard and soft attention for

sequence modeling. In Proceedings of the Twenty-Seventh International Joint Con-

ference on Artificial Intelligence, pages 4345–4352.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2017. Style transfer

from non-parallel text by cross-alignment. In Advances in Neural Information

Processing Systems 30, pages 6830–6841.

Haoyue Shi, Hao Zhou, Jiaze Chen, and Lei Li. 2018. On tree-based neural sentence

modeling. In Proceedings of the 2018 Conference on Empirical Methods in Natural

Language Processing, pages 4631–4641.

Richard Socher, Brody Huval, Christopher D. Manning, and Andrew Y. Ng. 2012.

120

https://arxiv.org/abs/1605.06069v3
https://arxiv.org/abs/1605.06069v3
https://www.aclweb.org/anthology/C16-1270
https://www.aclweb.org/anthology/C16-1270
https://arxiv.org/abs/1709.07109v3
https://arxiv.org/abs/1709.04696v3
https://arxiv.org/abs/1709.04696v3
https://doi.org/10.24963/ijcai.2018/604
https://doi.org/10.24963/ijcai.2018/604
http://papers.nips.cc/paper/7259-style-transfer-from-non-parallel-text-by-cross-alignment.pdf
http://papers.nips.cc/paper/7259-style-transfer-from-non-parallel-text-by-cross-alignment.pdf
https://doi.org/10.18653/v1/D18-1492
https://doi.org/10.18653/v1/D18-1492

Semantic compositionality through recursive matrix-vector spaces. In Proceedings

of the 2012 Joint Conference on Empirical Methods in Natural Language Processing

and Computational Natural Language Learning, pages 1201–1211.

Richard Socher, Cliff Chiung-Yu Lin, Andrew Y. Ng, and Christopher D. Manning.

2011a. Parsing natural scenes and natural language with recursive neural networks.

In Proceedings of the 28th International Conference on International Conference

on Machine Learning, pages 129–136.

Richard Socher, Jeffrey Pennington, Eric H. Huang, Andrew Y. Ng, and Christo-

pher D. Manning. 2011b. Semi-supervised recursive autoencoders for predicting

sentiment distributions. In Proceedings of the 2011 Conference on Empirical Meth-

ods in Natural Language Processing, pages 151–161.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning,

Andrew Ng, and Christopher Potts. 2013. Recursive deep models for semantic

compositionality over a sentiment treebank. In Proceedings of the 2013 Conference

on Empirical Methods in Natural Language Processing, pages 1631–1642.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. 2015. Learning structured output

representation using deep conditional generative models. In Advances in Neural

Information Processing Systems 28, pages 3483–3491.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. Dropout: A simple way to prevent neural networks from

overfitting. Journal of Machine Learning Research, 15:1929–1958.

Ilya Sutskever. 2013. Training recurrent neural networks. Ph.D. thesis, University of

Toronto.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning

121

https://www.aclweb.org/anthology/D12-1110
https://ai.stanford.edu/~ang/papers/icml11-ParsingWithRecursiveNeuralNetworks.pdf
https://www.aclweb.org/anthology/D11-1014
https://www.aclweb.org/anthology/D11-1014
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models.pdf
http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models.pdf
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

with neural networks. In Advances in Neural Information Processing Systems 27,

pages 3104–3112.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved se-

mantic representations from tree-structured long short-term memory networks. In

Proceedings of the 53rd Annual Meeting of the Association for Computational Lin-

guistics and the 7th International Joint Conference on Natural Language Processing

(Volume 1: Long Papers), pages 1556–1566.

Ming Tan, Cicero dos Santos, Bing Xiang, and Bowen Zhou. 2016. Improved repre-

sentation learning for question answer matching. In Proceedings of the 54th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),

pages 464–473.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Document modeling with gated recurrent

neural network for sentiment classification. In Proceedings of the 2015 Conference

on Empirical Methods in Natural Language Processing, pages 1422–1432.

Zhiyang Teng and Yue Zhang. 2017. Head-lexicalized bidirectional tree LSTMs.

Transactions of the Association for Computational Linguistics, 5:163–177.

Quan Tran, Andrew MacKinlay, and Antonio Jimeno Yepes. 2017. Named entity

recognition with stack residual LSTM and trainable bias decoding. In Proceedings of

the Eighth International Joint Conference on Natural Language Processing (Volume

1: Long Papers), pages 566–575.

Kateryna Tymoshenko and Alessandro Moschitti. 2018. Cross-pair text represen-

tations for answer sentence selection. In Proceedings of the 2018 Conference on

Empirical Methods in Natural Language Processing, pages 2162–2173.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

122

http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.3115/v1/P15-1150
http://www.aclweb.org/anthology/P16-1044
http://www.aclweb.org/anthology/P16-1044
https://doi.org/10.18653/v1/D15-1167
https://doi.org/10.18653/v1/D15-1167
https://doi.org/10.1162/tacl_a_00053
https://www.aclweb.org/anthology/I17-1057
https://www.aclweb.org/anthology/I17-1057
http://www.aclweb.org/anthology/D18-1240
http://www.aclweb.org/anthology/D18-1240

Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In

Advances in Neural Information Processing Systems 30, pages 5998–6008.

Yizhong Wang, Sujian Li, Jingfeng Yang, Xu Sun, and Houfeng Wang. 2017a. Tag-

enhanced tree-structured neural networks for implicit discourse relation classifi-

cation. In Proceedings of the Eighth International Joint Conference on Natural

Language Processing (Volume 1: Long Papers), pages 496–505.

Zhiguo Wang, Wael Hamza, and Radu Florian. 2017b. Bilateral multi-perspective

matching for natural language sentences. In Proceedings of the Twenty-Sixth In-

ternational Joint Conference on Artificial Intelligence, pages 4144–4150.

Adina Williams, Andrew Drozdov, and Samuel R. Bowman. 2018a. Do latent tree

learning models identify meaningful structure in sentences? Transactions of the

Association for Computational Linguistics, 6:253–267.

Adina Williams, Nikita Nangia, and Samuel Bowman. 2018b. A broad-coverage chal-

lenge corpus for sentence understanding through inference. In Proceedings of the

2018 Conference of the North American Chapter of the Association for Computa-

tional Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages

1112–1122.

Ronald J. Williams. 1992. Simple statistical gradient-following algorithms for con-

nectionist reinforcement learning. Machine Learning, 8(3-4):229–256.

SamWiseman and Alexander M. Rush. 2016. Sequence-to-sequence learning as beam-

search optimization. In Proceedings of the 2016 Conference on Empirical Methods

in Natural Language Processing, pages 1296–1306.

Wei Wu, Zhengdong Lu, and Hang Li. 2013. Learning bilinear model for matching

queries and documents. Journal of Machine Learning Research, 14:2519–2548.

123

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://www.aclweb.org/anthology/I17-1050
https://www.aclweb.org/anthology/I17-1050
https://www.aclweb.org/anthology/I17-1050
https://doi.org/10.24963/ijcai.2017/579
https://doi.org/10.24963/ijcai.2017/579
https://doi.org/10.1162/tacl_a_00019
https://doi.org/10.1162/tacl_a_00019
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/D16-1137
https://doi.org/10.18653/v1/D16-1137
http://jmlr.org/papers/v14/wu13a.html
http://jmlr.org/papers/v14/wu13a.html

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff

Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan

Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George

Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex

Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. 2016.

Google’s neural machine translation system: Bridging the gap between human and

machine translation. Computing Research Repository, arXiv:1609.08144. Version

2.

Yuhuai Wu, Saizheng Zhang, Ying Zhang, Yoshua Bengio, and Ruslan R Salakhut-

dinov. 2016. On multiplicative integration with recurrent neural networks. In

Advances in Neural Information Processing Systems 29, pages 2856–2864.

Caiming Xiong, Stephen Merity, and Richard Socher. 2016. Dynamic memory net-

works for visual and textual question answering. In Proceedings of the 33rd Inter-

national Conference on Machine Learning, pages 2397–2406.

Caiming Xiong, Victor Zhong, and Richard Socher. 2018. DCN+: Mixed objective

and deep residual coattention for question answering. In International Conference

on Learning Representations, pages 770–778.

Jiacheng Xu and Greg Durrett. 2018. Spherical latent spaces for stable variational

autoencoders. In Proceedings of the 2018 Conference on Empirical Methods in

Natural Language Processing, pages 4503–4513.

Wei Xu, Alan Ritter, Chris Callison-Burch, William B. Dolan, and Yangfeng Ji. 2014.

Extracting lexically divergent paraphrases from Twitter. Transactions of the As-

sociation for Computational Linguistics, 2:435–448.

124

https://arxiv.org/abs/1609.08144v2
https://arxiv.org/abs/1609.08144v2
http://papers.nips.cc/paper/6215-on-multiplicative-integration-with-recurrent-neural-networks.pdf
http://proceedings.mlr.press/v48/xiong16.html
http://proceedings.mlr.press/v48/xiong16.html
https://arxiv.org/abs/1711.00106v2
https://arxiv.org/abs/1711.00106v2
http://www.aclweb.org/anthology/D18-1480
http://www.aclweb.org/anthology/D18-1480
https://doi.org/10.1162/tacl_a_00194

Weidi Xu, Haoze Sun, Chao Deng, and Ying Tan. 2017. Variational autoencoder

for semi-supervised text classification. In Proceedings of the Thirty-First AAAI

Conference on Artificial Intelligence, pages 3358–3364.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015. WikiQA: A challenge dataset

for open-domain question answering. In Proceedings of the 2015 Conference on

Empirical Methods in Natural Language Processing, pages 2013–2018.

Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and Taylor Berg-Kirkpatrick. 2017.

Improved variational autoencoders for text modeling using dilated convolutions.

In Proceedings of the 34th International Conference on Machine Learning, pages

3881–3890.

Kaisheng Yao, Trevor Cohn, Katerina Vylomova, Kevin Duh, and Chris Dyer. 2015.

Depth-gated LSTM. Computing Research Repository, arXiv:1508.03790. Version

4.

Dani Yogatama, Phil Blunsom, Chris Dyer, Edward Grefenstette, and Wang Ling.

2017. Learning to compose words into sentences with reinforcement learning. In

International Conference on Learning Representations.

Daniel H. Younger. 1967. Recognition and parsing of context-free languages in time

n3. Information and Control, 10(2):189–208.

Zhou Yu, Jun Yu, Jianping Fan, and Dacheng Tao. 2017. Multi-modal factorized bilin-

ear pooling with co-attention learning for visual question answering. In Proceedings

of 2017 IEEE International Conference on Computer Vision, pages 1821–1830.

Fabio Massimo Zanzotto and Lorenzo Dell’Arciprete. 2012. Distributed tree kernels.

In Proceedings of the 29th International Conference on Machine Learning.

125

https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14299
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14299
https://doi.org/10.18653/v1/D15-1237
https://doi.org/10.18653/v1/D15-1237
http://proceedings.mlr.press/v70/yang17d/yang17d.pdf
https://arxiv.org/abs/1508.03790v4
https://openreview.net/forum?id=Skvgqgqxe
https://doi.org/10.1016/S0019-9958(67)80007-X
https://doi.org/10.1016/S0019-9958(67)80007-X
http://openaccess.thecvf.com/content_ICCV_2017/papers/Yu_Multi-Modal_Factorized_Bilinear_ICCV_2017_paper.pdf
http://openaccess.thecvf.com/content_ICCV_2017/papers/Yu_Multi-Modal_Factorized_Bilinear_ICCV_2017_paper.pdf
https://arxiv.org/abs/1206.4607v1

Matthew D. Zeiler. 2012. ADADELTA: An adaptive learning rate method. Computing

Research Repository, arXiv:1212.5701. Version 1.

Biao Zhang, Deyi Xiong, Jinsong Su, Hong Duan, and Min Zhang. 2016a. Variational

neural machine translation. In Proceedings of the 2016 Conference on Empirical

Methods in Natural Language Processing, pages 521–530.

Yu Zhang, Guoguo Chen, Dong Yu, Kaisheng Yaco, Sanjeev Khudanpur, and James

Glass. 2016b. Highway long short-term memory RNNs for distant speech recog-

nition. In 2016 IEEE International Conference on Acoustics, Speech and Signal

Processing, pages 5755–5759.

Han Zhao, Zhengdong Lu, and Pascal Poupart. 2015. Self-adaptive hierarchical sen-

tence model. In Proceedings of the Twenty-Fourth International Joint Conference

on Artificial Intelligence, pages 4069–4076.

Junbo Zhao, Yoon Kim, Kelly Zhang, Alexander Rush, and Yann LeCun. 2018. Ad-

versarially regularized autoencoders. In Proceedings of the 35th International Con-

ference on Machine Learning, pages 5902–5911.

Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and Francis Lau. 2015. A C-LSTM neural

network for text classification. Computing Research Repository, arXiv:1511.08630.

Version 2.

Xiaodan Zhu, Parinaz Sobihani, and Hongyu Guo. 2015. Long short-term memory

over recursive structures. In Proceedings of the 32nd International Conference on

Machine Learning, pages 1604–1612.

Xiaojin Zhu. 2008. Semi-supervised learning literature survey. Technical report,

Department of Computer Sciences, University of Wisconsin-Madison.

126

https://arxiv.org/abs/1212.5701v1
https://doi.org/10.18653/v1/D16-1050
https://doi.org/10.18653/v1/D16-1050
https://arxiv.org/abs/1510.08983v2
https://arxiv.org/abs/1510.08983v2
https://arxiv.org/abs/1504.05070v2
https://arxiv.org/abs/1504.05070v2
http://proceedings.mlr.press/v80/zhao18b.html
http://proceedings.mlr.press/v80/zhao18b.html
https://arxiv.org/abs/1511.08630v2
https://arxiv.org/abs/1511.08630v2
http://proceedings.mlr.press/v37/zhub15.html
http://proceedings.mlr.press/v37/zhub15.html
http://pages.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf

Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. 2003. Semi-supervised learning

using gaussian fields and harmonic functions. In Proceedings of the Twentieth

International Conference on International Conference on Machine Learning, pages

912–919.

127

https://www.aaai.org/Papers/ICML/2003/ICML03-118.pdf
https://www.aaai.org/Papers/ICML/2003/ICML03-118.pdf

초록

문장 매칭이란 두 문장 간 의미적으로 일치하는 정도를 예측하는 문제이다. 어떤 모델이

두 문장 사이의 관계를 효과적으로 밝혀내기 위해서는 높은 수준의 자연어 텍스트 이해

능력이 필요하기 때문에, 문장 매칭은 다양한 자연어 처리 응용의 성능에 중요한 영향을

미친다.

본 학위 논문에서는 문장 인코더, 매칭 함수, 준지도 학습이라는 세 가지 측면에서

문장매칭의성능개선을모색한다.문장인코더란문장으로부터유용한특질들을추출하

는 역할을 하는 구성 요소로, 본 논문에서는 문장 인코더의 성능 향상을 위하여 Gumbel

Tree-LSTM과 Cell-aware Stacked LSTM이라는 두 개의 새로운 아키텍처를 제안한다.

Gumbel Tree-LSTM은 재귀적 뉴럴 네트워크(recursive neural network) 구조에 기반

한 아키텍처이다. 구조 정보가 포함된 데이터를 입력으로 사용하던 기존의 재귀적 뉴럴

네트워크 모델과 달리, Gumbel Tree-LSTM은 구조가 없는 데이터로부터 특정 문제에

대한 성능을 최대화하는 파싱 전략을 학습한다. Cell-aware Stacked LSTM은 LSTM 구

조를 개선한 아키텍처로, 여러 LSTM 레이어를 중첩하여 사용할 때 망각 게이트(forget

gate)를 추가적으로 도입하여 수직 방향의 정보 흐름을 더 효율적으로 제어할 수 있도록

한다.

한편, 새로운 매칭 함수로서 우리는 요소별 쌍선형 문장 매칭(element-wise bilinear

sentence matching, ElBiS) 함수를 제안한다. ElBiS 알고리즘은 특정 문제를 해결하는

데에 적합한 방식으로 두 문장 표현을 하나의 벡터로 합치는 방법을 자동으로 찾는 것을

목적으로 한다. 문장 표현을 얻을 때에 서로 같은 문장 인코더를 사용한다는 사실로부터

우리는 벡터의 각 요소 간 쌍선형(bilinear) 상호 작용만을 고려하여도 두 문장 벡터 간

비교를 충분히 잘 수행할 수 있다는 가설을 수립하고 이를 실험적으로 검증한다. 상호

작용의범위를제한함으로써,자동으로유용한병합방법을찾는다는이점을유지하면서

모든 상호 작용을 고려하는 쌍선형 풀링 방법에 비해 필요한 파라미터의 수를 크게 줄일

128

수 있다.

마지막으로, 학습 시 레이블이 있는 데이터와 레이블이 없는 데이터를 함께 사용하

는 준지도 학습을 위해 우리는 교차 문장 잠재 변수 모델(cross-sentence latent variable

model, CS-LVM)을 제안한다. CS-LVM의 생성 모델은 출처 문장(source sentence)의

잠재 표현 및 출처 문장과 목표 문장(target sentence) 간의 관계를 나타내는 변수로부터

목표 문장이 생성된다고 가정한다. CS-LVM에서는 두 문장이 하나의 모델 안에서 모두

고려되기때문에,학습에사용되는목적함수가더자연스럽게정의된다.또한,우리는생

성모델의파라미터가더의미적으로적합한문장을생성하도록유도하기위하여일련의

의미 제약들을 정의한다.

본 학위 논문에서 제안된 개선 방안들은 문장 매칭 과정을 포함하는 다양한 자연어

처리 응용의 효용성을 높일 것으로 기대된다.

주요어: 문장 매칭, 문장 간 관계 모델링, 문장 인코더, 매칭 함수, 준지도 학습, 심층

신경망, 심층 생성 모델

학번: 2014-22694

129

	Chapter 1 Introduction
	1.1 Sentence Matching
	1.2 Deep Neural Networks for Sentence Matching
	1.3 Scope of the Dissertation

	Chapter 2 Background and Related Work
	2.1 Sentence Encoders
	2.2 Matching Functions
	2.3 Semi-Supervised Training

	Chapter 3 Sentence Encoder: Gumbel Tree-LSTM
	3.1 Motivation
	3.2 Preliminaries
	3.2.1 Recursive Neural Networks
	3.2.2 Training RvNNs without Tree Information

	3.3 Model Description
	3.3.1 Tree-LSTM
	3.3.2 Gumbel-Softmax
	3.3.3 Gumbel Tree-LSTM

	3.4 Implementation Details
	3.5 Experiments
	3.5.1 Natural Language Inference
	3.5.2 Sentiment Analysis
	3.5.3 Qualitative Analysis

	3.6 Summary

	Chapter 4 Sentence Encoder: Cell-aware Stacked LSTM
	4.1 Motivation
	4.2 Related Work
	4.3 Model Description
	4.3.1 Stacked LSTMs
	4.3.2 Cell-aware Stacked LSTMs
	4.3.3 Sentence Encoders

	4.4 Experiments
	4.4.1 Natural Language Inference
	4.4.2 Paraphrase Identification
	4.4.3 Sentiment Classification
	4.4.4 Machine Translation
	4.4.5 Forget Gate Analysis
	4.4.6 Model Variations

	4.5 Summary

	Chapter 5 Matching Function: Element-wise Bilinear Sentence Matching
	5.1 Motivation
	5.2 Proposed Method: ElBiS
	5.3 Experiments
	5.3.1 Natural language inference
	5.3.2 Paraphrase Identification

	5.4 Summary and Discussion

	Chapter 6 Semi-Supervised Training: Cross-Sentence Latent Variable Model
	6.1 Motivation
	6.2 Preliminaries
	6.2.1 Variational Auto-Encoders
	6.2.2 von MisesFisher Distribution

	6.3 Proposed Framework: CS-LVM
	6.3.1 Cross-Sentence Latent Variable Model
	6.3.2 Architecture
	6.3.3 Optimization

	6.4 Experiments
	6.4.1 Natural Language Inference
	6.4.2 Paraphrase Identification
	6.4.3 Ablation Study
	6.4.4 Generated Sentences
	6.4.5 Implementation Details

	6.5 Summary and Discussion

	Chapter 7 Conclusion
	Appendix A Appendix
	A.1 Sentences Generated from CS-LVM

<startpage>16
Chapter 1 Introduction 1
 1.1 Sentence Matching 1
 1.2 Deep Neural Networks for Sentence Matching 2
 1.3 Scope of the Dissertation 4
Chapter 2 Background and Related Work 9
 2.1 Sentence Encoders 9
 2.2 Matching Functions 11
 2.3 Semi-Supervised Training 13
Chapter 3 Sentence Encoder: Gumbel Tree-LSTM 15
 3.1 Motivation 15
 3.2 Preliminaries 16
 3.2.1 Recursive Neural Networks 16
 3.2.2 Training RvNNs without Tree Information 17
 3.3 Model Description 19
 3.3.1 Tree-LSTM 19
 3.3.2 Gumbel-Softmax 20
 3.3.3 Gumbel Tree-LSTM 22
 3.4 Implementation Details 25
 3.5 Experiments 27
 3.5.1 Natural Language Inference 27
 3.5.2 Sentiment Analysis 32
 3.5.3 Qualitative Analysis 33
 3.6 Summary 36
Chapter 4 Sentence Encoder: Cell-aware Stacked LSTM 38
 4.1 Motivation 38
 4.2 Related Work 40
 4.3 Model Description 43
 4.3.1 Stacked LSTMs 43
 4.3.2 Cell-aware Stacked LSTMs 44
 4.3.3 Sentence Encoders 46
 4.4 Experiments 47
 4.4.1 Natural Language Inference 47
 4.4.2 Paraphrase Identification 50
 4.4.3 Sentiment Classification 52
 4.4.4 Machine Translation 53
 4.4.5 Forget Gate Analysis 55
 4.4.6 Model Variations 56
 4.5 Summary 59
Chapter 5 Matching Function: Element-wise Bilinear Sentence Matching 60
 5.1 Motivation 60
 5.2 Proposed Method: ElBiS 61
 5.3 Experiments 63
 5.3.1 Natural language inference 64
 5.3.2 Paraphrase Identification 66
 5.4 Summary and Discussion 68
Chapter 6 Semi-Supervised Training: Cross-Sentence Latent Variable Model 70
 6.1 Motivation 70
 6.2 Preliminaries 71
 6.2.1 Variational Auto-Encoders 71
 6.2.2 von MisesFisher Distribution 73
 6.3 Proposed Framework: CS-LVM 74
 6.3.1 Cross-Sentence Latent Variable Model 75
 6.3.2 Architecture 78
 6.3.3 Optimization 79
 6.4 Experiments 84
 6.4.1 Natural Language Inference 84
 6.4.2 Paraphrase Identification 85
 6.4.3 Ablation Study 86
 6.4.4 Generated Sentences 88
 6.4.5 Implementation Details 89
 6.5 Summary and Discussion 90
Chapter 7 Conclusion 92
Appendix A Appendix 96
 A.1 Sentences Generated from CS-LVM 96
</body>

