creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86t AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Metok ELIChH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aeles 212 LWS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Il
o

2

=19N3

=

)

9=

Md

AAA 2 E4= 8t 9 92
7|k i+ & 1 X atoltg

Random Walk-based Large Graph Mining
Exploiting Real-world Graph Properties

2020 2

1

1=

2020

Z7|4F i+ & 1 X atolig

Random Walk-based Large Graph Mining
Exploiting Real-world Graph Properties

N

2019 12

—

_CH

Abstract

Random Walk-based Large Graph
Mining Exploiting Real-world Graph
Properties

Jinhong Jung

Department of Computer Science & Engineering
College of Engineering

The Graduate School

Seoul National University

Numerous real-world relationships are represented as graphs such as social networks,
hyperlink networks, and protein interaction networks. Analyzing those networks
is important to understand the real-life phenomena. Among various graph analy-
sis techniques, random walk has been widely used in many applications with satis-
factory results. However, various real-world graphs are large and complicated with
diverse labels. Traditional random walk based methods require heavy computational
cost, and disregards those labels for performing random walks; thus, its utilization
has been limited in such large and complicated graphs.

In this thesis, T handle the technical challenges of mining large real-world graphs
based on random walk. Real-world graphs have distinct structural properties which
become a basis to increase the performance of the random walk in terms of speed

and quality. Based upon this idea, I develop fast, scalable, and exact methods for node

ranking using random walk in large-scale plain networks. I also design accurate mod-
els using random walks for node ranking and relational reasoning in labeled graphs
such as signed networks and knowledge bases.

Through extensive experiments on various real-world graphs, I demonstrate the
effectiveness of the methods and models proposed by this thesis. The proposed meth-
ods process 100 larger graphs, and require up to 130 less memory with up to 9x
faster speed compared to other existing methods, successfully scaling to billion-scale
graphs. Also, the proposed models substantially improve the predictive performance

of a variety of tasks in labeled graphs such as signed networks and knowledge bases.

Keywords : Graph Mining, Random Walk in Graphs, Random Walk with Restart
Models, Real-world Graph Properties, Large-scale Graphs, Signed Networks, Edge-
Labeled Graphs

Student Number : 2015-31053

ii

Contents

Abstract i
Contents L iii
Listof Figures viii
Listof Tables X
Chapter1 Overview 1
1.1 Motivation 1

1.2 Research Statement 4
1.2.1 Research Goals and Importance 4

1.2.2 Technical Challenges 6

1.23 Main Approaches Lo 7

1.24 Contributions 9

1.25 Overalllmpact 10

1.3 Thesis Organization 11
Chapter2 Background, 12
2.1 Definitions 12
21.1 NotationsonGraphs 12

2.1.2 Random Walk with Restart 13

22 RelatedWorks 15
2.21 Previous Methods for RWR in Plain Graphs 15

iii
:l-'; L I {

2.2.2 Ranking Models in Signed Networks 17

2.2.3 Relational Reasoning Models in Edge-labeled Graphs 19
Chapter 3 Fast and Scalable Ranking in Large-scale Plain Graphs . . 21
3.1 Introduction 21
3.2 Preliminaries 23
3.2.1 Iterative Methods forRWR 24
3.2.2 Preprocessing Methods for RWR 25
3.3 ProposedMethod 26
331 Overview 26

3.3.2 BePI-B: Exploiting Graph Characteristics for Node Reorder-
ing and Block Elimination 28

3.3.3 BePI-B: Incorporating an Iterative Method into Block Elimi-
nation L 32
3.3.4 BePI-S: Sparsifying the Schur Complement 34
3.3.5 BePI Preconditioning a Linear System for the Iterative Method 36
34 TheoreticalResults 39
341 Time Complexity, 39
3.42 Space Complexity 40
343 AccuracyBound oL 41
344 LemmasandProofs. 43
35 Experiments 48
3.5.1 Experimental Settings, 49
3.5.2 PreprocessingCost L. 51
353 QueryCosto 53
3.54 Scalability L 53

iv
2] 2 1T

3.5.5 Effects of Sparse Schur Complement and Preconditioning . . 54
3.5.6 Effects of the Hub SelectionRatio 57
357 ACCUracy 58
3.5.8 Comparison with the-State-of-the-Art Method 59
3.6 SUmMMAry e e e e e e e e 60
Chapter4 Personalized Ranking in Signed Graphs 61
4.1 Introduction 61
4.2 Problem Definition 65
43 ProposedMethod 65
43.1 Signed Random Walk with Restart Model 66

43.2 SRWR-ITER: Iterative Algorithm for Signed Random Walk with
Restart L 76

43.3 SRWR-PRE: Preprocessing Algorithm for Signed Random Walk
withRestart L 82
44 Experiments e 93
4.4.1 Experimental Settings 94
4.4.2 LinkPrediction Task 96
443 User Preference Preservation Task 99
444 Troll Identification Task 100
445 SignPredictionTask 104
44.6 Effectiveness of Balance Attenuation Factors. 109
447 Performance of SRWR-PRE 110
45 Summary e e e 113
Chapter 5 Relational Reasoning in Edge-labeled Graphs 114

v

5.1 Introduction 114

5.2 Preliminary 116

53 Proposed Method 118

5.3.1 Label Transition Observation 120

5.3.2 Learning Label Transition Probabilities 121

5.3.3 Multi-Labeled Random Walk with Restart 123

5.3.4 Formulation for MURWR. 125

53.5 Algorithmfor MURWR 127

5.4 Theoretical Results 131
5.4.1 Lemma for Solution of Label Transition Probabilities and Con-

vexity ... 131

5.4.2 Lemma for Recursive Equation of MURWR Score Matrix . . . 134

5.4.3 Lemma for Spectral Radius in Convergence Theorem 136

5.4.4 Lemma for Complexity Analysis 137

55 Experiment e 138

5.5.1 Experimental Settings 139

5.5.2 Relation Inference Task 140

5.5.3 Effects of Label Weights in MURWR 142

5.5.4 Effects of Restart Probability in MURWR 143

5.5.5 Convergence of MURWR 144

56 Summary 145

Chapter 6 Future Works 146

6.1 Fast and Accurate Pseudoinverse Computation 146

6.2 Fast and Scalable Signed Network Generation 147

6.3 Disk-based Algorithms for Random Walk 147

vi
2] 2 1T

Chapter7 Conclusion, 149

References 151
Appendix 166
A.1 Hub-and-Spoke Reordering Method 166
A.2 Time Complexity of Sparse Matrix Multiplication 167
A.3 Details of Preconditioned GMRES 167
A4 Detailed Description of Evaluation Metrics 170
A.4.1 LinkPrediction, 170

A.4.2 Troll Identification 171

A.5 Discussion on Relative Trustworthiness of SRWR 173
AbstractinKorean 176

vii
2] 2 1T

Figure 2.1.
Figure 3.1.
Figure 3.2.
Figure 3.3.

Figure 3.4.

Figure 3.5.
Figure 3.6.
Figure 3.7.
Figure 3.8.
Figure 3.9.
Figure 4.1.
Figure 4.2.

Figure 4.3.

Figure 4.4.
Figure 4.5.
Figure 4.6.
Figure 4.7.
Figure 4.8.

Figure 4.9.

List of Figures

Example of RWR 13
Performance of BEPI 22
Results of node reordering on the Slashdot dataset 27
Number of non-zeros of the Schur complement 34

Effect of the sparsification of the Schur complement and the

preconditioning Lo Lo 52
Scalability of BEPL L 53
Distribution of the eigenvalues of the Schur complements . . 56
Effects of the hub selectionratiok 57
Accuracy of BEPT Lo 58
Detailed comparison between BEPIand Bear 59

Example of the personalized node ranking problem in Problem 1 64
Examples of traditional random walks and signed random walks 66

Examples of how to interpret positive and negative scores of

SRWR . . 69
Examples of how r} and r; are defined in SRWR 71
Examples of balance attenuation factors 73
Result of node reordering on each signed network 87
Link prediction performance of SRWR 97
Performance on troll identification of SRWR 101

Performance of SRWR for the troll identification task through

various measurements 101

viii

Figure 4.10.

Figure 4.11.

Figure 4.12.

Figure 4.13.

Figure 5.1.
Figure 5.2.

Figure 5.3.

Figure 5.4.
Figure 5.5.
Figure 5.6.
Figure 5.7.

Figure A.1.

Performance of SRWR on sign prediction 104

Accuracy maps of SRWR according to balance attenuation

factorsPandy. 108
Effect of the balance attenuation factors of SRWR 109
Performance of SRWR-PRE 111
Limitation of a random surfer in traditional RWR 117
Examples of labeled walks and label transitive triangles. . . . 119

Example of how to obtain label transition observations from

label transitive relationships 121

Example of the formulation for the probability Rl(fl) 126

Effect of the label weightsin MURWR 143

Effect of the restart probability cin MURWR 144

Convergenceof MURWR 144

Node reordering based on hub-and-spoke method 166
ix

Table 1.1.
Table 3.1.
Table 3.2.
Table 3.3.
Table 3.4.
Table 3.5.
Table 4.1.
Table 4.2.
Table 4.3.
Table 4.4.
Table 4.5.
Table 4.6.

Table 4.7.

Table 5.1.
Table 5.2.
Table 5.3.

Table 5.4.

List of Tables

Various applications based on random walk techniques 3
Table of symbols used in Chapter3 24
Summary of real-world datasets 50
Number of non-zerosof S 55

Average number of iterations to compute r, by BEPI-S and BEPI 55
Statistics of the datasets used in Section3.5.8 59
Table of symbols used in Chapter4 63

Space complexity of each preprocessed matrix from Algorithm 7 92

Statistics of the datasets used in Chapter4 95
User preference preservation quality of SRWR 100
Troll predictionresults, . 103
Difference between SRWR and LOGIT on sign prediction 106

Total number of non-zeros (nnz;) in precomputed matrices for

each preprocessing method 111
Table of symbols used in Chapter5 117
Statistics of the datasets used in Chapter5 138
Performance of relation inference in terms of accuracy 141
Performance of relation inference in terms of F1-score 141

Chapter 1

Overview

1.1 Motivation

Graphs are fundamental data structures modeling any relationships between entities.
Each entity is abstractly represented as a node, and each of the related pair of nodes
is symbolized as an edge. Numerous real-world phenomena around us are naturally
modeled by graphs (or networks) [1]. For example, social networks from online so-
cial services such as Twitter [2] and Facebook [3] have been widely used to represent
friendships of people. Hyperlink networks [4] express connections between pages on
linked knowledge systems such as the Web or Wikipedia. Citation networks connect
a scholarly paper to other papers in its bibliography [5]. In bioinfometics, protein
networks [6] are used to represent various interactions between proteins. The hu-
man brain is also represented as a network of nerve cells [7]. Nature creates food
web networks where species are connected by links indicating which species feed on
which other species [8].

Graph mining has attracted considerable attention from diverse research fields
since it enables us to gain a better understanding of the complicated relationships
in the real world through analyzing their networks. On top of the insight into the
graphs, many researchers have developed beneficial applications and improved the
performance of their specific tasks based on graphs. For instance, social network anal-

ysis has revealed plenty of interesting knowledge on social events and human behav-

ior [9, 10, 11]. It has further led to the emergence of network science [12] which pro-
vides a solid theoretical background to understand various real-world networks. As
another example, web search engines such as Google [13] have improved their search
performance by utilizing hyperlink network analysis which reveals node importance
as a ranking score in graphs.

Random walk [14, 15] has been extensively studied and utilized as a simple but
powerful tool for looking into graph data. This technique aims to simulate a user
who randomly moves around nodes in a graph with a specific purpose (e.g., a web
surfer jumps from page to page on the Web in order to search target information),
thereby resulting in relevance or ranking scores between nodes. There are several
models on random walk in graphs such as HITS [16], SimRank [17], PageRank [13],
Random walk with Restart (RWR) [18], etc. Among those models, RWR has been
popular in academic fields as well as industrial areas because it is able to capture
node-to-node relevance scores personalized to a query node (due to this point, RWR
is called Personalized PageRank). Moreover, many works [19, 20] have empirically
shown that RWR has a good ability to account for the multi-faceted relationships (e.g.,
multiple connections, path lengths, node degrees, etc) between nodes and consider
the global topology of a network at the same time. Thus, RWR effectively obtains
personalized node relevance scores in graphs, and it has been extensively used for a
variety of applications. Table 1.1 lists well-known graph mining applications in which
RWR and its variants have been frequently used.

Even though the importance of such random walk models including RWR is be-
ing emphasized, the utilization of those models is limited for analyzing further large
and complicated real-world networks due to several technical obstacles. The main

limitation of the random walk based techniques is that they require enormous com-

Table 1.1: Various applications based on random walk techniques

Application | Brief Description | References
Node ranking Rank nodes §uch as web pages in order of a specific | [21, 13, 22]
importance in a graph [23, 24, 25]
. . Predict future links to be connected between [26, 27, 28]
Link prediction .
nodes in a graph [29, 30, 31]
. Suggest interesting items such as movie and music | [19, 18, 32]
Recommendation . . .
to a specific user in a user-item network [33, 34, 35]
. Extract meaningful subgraphs between two or [36, 20, 37]
Subgraph mining more nodes [38, 39, 40]
Anomalv detection Identify rare items, events or observations such as [41, 42, 43]
y web spams, anomalies, and bank frauds [44, 45, 46]
Community detection Detect groups of nodes having similar affiliations [47, 48, 49]
y different to the rest of a graph [50, 51, 52]

putational cost, especially in large graphs. Recent stunning advances in computing
and networking technologies have led to graphs of unprecedented size. For instance,
Wikipedia described that it comprises more than 40 millions articles in 2015'. Face-
book reported that it had about 2.41 billion monthly active users in 20192, As a result,
traditional methods fail to perform the random walk based analyses for very large
graphs in a reasonable time with restricted resources. Many researchers have made
great efforts to tackle this efficiency issue in large-scale graphs, and proposed various
types of methods such as exact [53, 13, 54], approximate [55, 56, 57, 58], and top-k
approaches [59, 60, 61, 62]. However, none of such previous methods satisfy all of the
desirable aspects such as speed, scalability, exactness, and Versatility3 when it comes
to the random walk computation in large graphs.

In addition to the computational problem, the traditional random walk models

Thttps:/ /en.wikipedia.org/wiki/Wikipedia

2https://newsroom.fb.com/company-info

3The top-k approach focuses on finding top-k relevant nodes under the random walk mechanism.
They emphasize the efficiency, but their versatility is limited because they cannot be applied to many
graph mining applications [48, 27, 50, 19, 26, 41, 37, 49] requiring the random walk scores of all nodes.

https://en.wikipedia.org/wiki/Wikipedia
https://newsroom.fb.com/company-info

have another limitation that no labels on nodes and edges are allowed in graphs.
The main reason is that the traditional random surfer does not consider such label
information when doing random walk. Due to this point, the classic models had to
ignore the label data although complicated relationships between nodes are modeled
by various labels in many real-world networks. For example, signed networks [63]
have been suggested to model trust relationships between people with positive and
negative edges. Knowledge bases [64] represent diverse predicates between subjects
and objects as edge labels. The problem is that this although label information plays
a key role in distinguishing unique characteristics of such networks, the traditional
models do not take into account labels at all. Thus, the use of the traditional random
walk and its quality are limited in such labeled networks. Although several random
walk based variants [65, 66, 67] have been proposed to utilize this label information,
most of them are based on heuristic techniques, and exhibit the unsatisfactory per-

formance for applications in those labeled networks.

1.2 Research Statement

This section describes the research statement which summarizes the research goals,

importance, technical challenges, main approaches, and contributions of this thesis.

1.2.1 Research Goals and Importance

I aim at devising fast, scalable, and exact methods and designing effective models for
random walk based mining on large real-world graphs through this research.

First of all, I focus on achieving all of speed, scalability, and exactness when
computing the random walk scores of RWR in very large graphs having billions of

edges on a single machine. It is not easy to handle the problem of fulfilling all of the

computational aspects in such billion-scale graphs where most previous methods had
to sacrifice at least one of them. For example, approximate approaches lose accuracy
to boost efficiency, and exact preprocessing methods suffer from a scalability issue in
large graphs due to the guarantee of exactness. How can we compute the RWR scores
quickly and exactly in billion-scale graphs, especially without borrowing the power
of multiple machines? What are other existing methods for RWR missing in terms of
such computational factors for processing large graphs?

Further, I address how to utilize edge labels with random walk in real-world net-
works. As described in Section 1.1, the label information is crucial as it represents the
nature of such labeled networks; thus, it should have been considered when doing
random walk in graphs. However, previous research works are insufficient for pro-
viding a clear solution for the problem, i.e., our understanding of random walk with
such labels was nascent. How can we utilize various labels involved in complicated
real-world networks with random walk for effective graph mining? What does the
label information mean for random walk in such labeled graphs?

Through this thesis, I concentrate on finding fundamental solutions of the above
questions to pursue the research goal. It is significantly important to accomplish this
goal since the methods derived from this research will enable researchers and practi-
tioners to efficiently analyze large real-world graphs that previous approaches could
not process within restricted resources. This research will also lead to allowing devel-
opers to build their novel, beneficial, and high-quality applications which effectively
utilize label data contained in real-world graphs. Furthermore, I aim at establishing
theoretical backgrounds on the approaches taken by this thesis, and hope these to

pave the way for future research on random walk in graphs and graph mining.

1.2.2 Technical Challenges

The technical challenges that this thesis needs to address are categorized as follows.

Computational Performance Improvement. The main challenge is how to
reduce the enormous cost incurred by the RWR computation in large-scale graphs.
More specifically, it is extremely challenging to balance between speed, scalability,
and exactness for computing RWR scores if a graph has billions of nodes and edges.
The RWR model aims to obtain the random walk scores of all nodes w.r.t. a given
query node in a graph (it is often called single-source RWR [68]). If a user gives a
different query node, a method needs to repeat the RWR computation for the given
query node where the computational burden for each query node cannot be ignored.
Also, it is infeasible to store all precomputed scores for each query node, especially in
billion-scale graphs, since this approach requires O(n?) space where n is the number
of nodes. Thus, a desirable method should compute the RWR scores quickly using
less memory usage without loss of accuracy whenever a query node is given.

To avoid such tremendous cost, many researchers have exploited approximate or
top-k approaches. However, the accuracy sacrificed by the approximate methods [55,
56, 57, 58] is not sufficient considering their computational improvement, and signifi-
cantly degrades the quality of applications using RWR. The top-k approach [59, 60, 61,
62] focuses on finding top-k relevant nodes under the RWR model; thus, it is limited
to use this approach in many graph mining applications [48, 27, 50, 19, 26, 41, 37, 49]
requiring all nodes’ scores. There are also noticeable works [69, 70, 71, 72] to increase
the scalability of the RWR computation with the guarantee of exactness borrowing
the power of distributed systems. However, most distributed methods have focused
on fitting existing algorithms to distributed systems, i.e., they optimized the I/O costs

of power iteration, one of traditional iterative methods for RWR, so that a distributed

system scales to large graphs based on the algorithm. Hence, in this thesis, one pri-
mary goal is to devise novel algorithms for faster and more scalable computation for
exact RWR scores under a single machine so that our algorithms can be extended to
distributed machines as future work.

Label Data Utilization. Another challenge is how to build random walk mod-
els which effectively exploits the label data involved in real-world graphs. Many rela-
tionships between nodes are represented as labels on edges where such networks are
called edge-labeled graphs. In this thesis, categorical labels are considered since such
categorical labels can be interpreted as a specific sense in the input network’s domain.
For instance, signed networks allow an edge to have a positive or negative label (or
sign) as trust relationship. Knowledge bases let an edge have a verb connecting two
entities where the verb is represented as one of multiple labels. Although the ran-
dom walk techniques including RWR well capture relevance scores between nodes
in plain graphs, it is not obvious how the label data should be reflected into random
walks in such edge-labeled graphs. In this thesis, I will first deliberate how the labels
should be interpreted when its comes to node relevance scores measured by random
walk models in edge-labeled graphs. Based on this concept, I will design novel mod-
els providing a solution on how a random surfer should treat such labels during its

random walk.

1.2.3 Main Approaches

I describe the main approaches of this thesis to tackle the aforementioned technical
challenges.
Exploiting Real-world Graph Properties. One of the main approaches used

in this thesis is to exploit distinct properties inherent in real-world graphs. Most pre-

vious methods have focused on improving the computational performance and the
quality of the random walk without carefully investigating graph data. As a result,
those existing methods have limitations in dramatically improving the performance
of random walk, especially in large-scale and complicated graphs. To make a break-
through, I notice most real-world graphs have distinct structural properties com-
monly appeared according to their domain. For example, real-world graphs are scale-
free, i.e., their degree distributions are highly skewed following a power-law [73].
In real-world signed networks, certain types of signed triangles dominate those net-
works, i.e, balanced triangles are more likely to be created than unbalanced ones [74,
75] (see details in Chapter 4). Our previous works [54, 76] have shown that such
scale-free property is helpful for reducing computational cost of operations based on
adjacency matrices of real-world graphs. Thus, I utilize various unique and structural
properties of real-world graphs to form a basis of solutions for boosting the perfor-
mance in terms of speed and quality of random walk.

Numerical Computation Methods. Most computations about random walk
in graphs are mathematically represented by operations related to adjacency matri-
ces of the graphs. Thus, it is important to understand and utilize efficient numerical
computation methods in order to accelerate the speed on the computations on ran-
dom walk, especially when we use a single machine. To efficiently process large-scale
graphs, I combine the approach exploiting real-world graph properties and various
numerical computation methods from simple operations such as sparse matrix-vector
multiplication to advanced operations such as preconditioned Krylov iterative linear
solver [77, 78, 79].

Linear Algebra and Stochastic Process. In order to make random walk based

models computable, mathematical theories such as linear algebra and stochastic pro-

cess are necessary because operations on graphs lead to matrix computations, and
the behavior of random walks is described by a Markov chain in stochastic process
(i.e., it guarantees the random walk distribution becomes stable as the number of ran-
dom walks goes to infinity). In this thesis, I aim to design new random walks based
models exploiting edge labels; thus, such theories are used to mathematically formal-
ize the concepts and equations of the novel models and guarantee their convergence

behavior in labeled real-world graphs.

1.2.4 Contributions

I provide a brief summary of the main contributions resulted from this dissertation
as follows:

« Fast and Scalable Ranking in Large-scale Plain Graphs (Chapter 3). First,

I propose BEPI for random walk based ranking on billion-scale graphs by ex-

ploiting real-world graphs structures and taking the advantage of both pre-

processing and iterative approaches. BEPI processes 100x larger graphs, and

requires up to 130X less memory space than other preprocessing methods. In

the query phase, BEPI computes node ranking scores up to 9x faster than ex-

isting methods.

« Personalized Ranking in Signed Networks (Chapter 4). Second, I propose
SRWR for personalized ranking in signed networks by introducing a signed
random surfer with balance theory describing signed triangle patterns in real-
world signed networks. SRWR achieves the best accuracy for link prediction,
predicts trolls 4x more accurately, and shows a satisfactory performance for
inferring missing signs of edges compared to other competitors. I also develop

SRWR-PRE for fast ranking in signed networks by exploiting real-world graph

structures in a preprocessing manner. SRWR-PRE preprocesses a signed net-
work 4.5% faster and requires 11 less memory space than other preprocess-
ing methods; furthermore, SRWR-PRE computes SRWR scores up to 14 x faster

than other methods in the query phase.

+ Relational Reasoning in Edge-labeled Graphs (Chapter 5). Finally, I de-
sign a random walk based model MURWR for accurate relation reasoning in
edge-labeled graphs. I introduce a labeled random surfer, and learn appropriate
rules on changing the surfer’s label from an input graphs for effective reason-
ing. MURWR provides the most accurate performance for relation inference in

diverse edge-labeled graphs compared to its competitors.

1.2.5 Overall Impact

My research outcomes have potential impacts on academia and industrial worlds as
the followings:
« Computational Improvement. My approaches significantly improve the com-
putational performance of various graph mining tasks based on random walk

in terms of speed, space, and scalability.

« Effective Analysis. My novel models are beneficial for researchers to effec-
tively analyze complex graphs such as signed networks and knowledge base,
inducing various applications.

I made most of the algorithms developed throughout this thesis open to the
public for reproducibility and the benefit of the community. In addition, this research
achieved the following results:

+ The work [80] was awarded the silver prize of Samsung Humantech Paper

Award, one of the most prestigious paper awards in Korea.

10

+ The researches [80, 22, 76, 81] were supported by Global Ph.D. Fellowship Pro-

gram of National Research Foundation and NAVER Ph.D. Fellowship.

« This research results in 2 domestic patent applications and 2 registered domes-

tic patents related to the proposed methods [80, 22, 81].

1.3 Thesis Organization

The rest of this thesis proposal is organized as follows. The background on several
concepts and the survey of previous works related to this thesis are provided in Chap-
ter 2. In Chapter 3, I present the fast and scalable algorithm BEPI for random walk
based ranking in large-scale graphs. In Chapter 4, I first describe the novel model
SRWR for personalized ranking and its iterative method, and show the fast method for
computing SRWR in signed social networks. In Chapter 5, I propose our new model
MURWR based on random walk for relational reasoning in edge-labeled graphs. After

discussing future work in Chapter 6, I conclude in Chapter 7.

11

Chapter 2

Background

In this chapter, I introduce concepts and notations on graphs and Random Walk with
Restart (RWR), which are used throughout this dissertation, and describe previous

works related to this research.

2.1 Definitions

This section describes the definition and mathematical notations for graphs and RWR.

2.1.1 Notations on Graphs

I describe the definitions of graphs used throughout this thesis. Definition 2.1 defines
a plain graph without any labels, which is mainly used in Chapter 3. Definition 2.2
describes signed networks having two edge labels, which is handled in Chapter 4
Edge-labeled networks having K edge labels is defined in Definition 2.3 which is used

in Chapter 5.

Definition 2.1 (Plain Graph and Adjacency Matrix). A plain graph G = (V,E) isa
pair of the two set V of nodes and the set E of edges where an edge (u,v) represents a
connection between nodes u andv. The adjacency matrix A of G is a sparse matrix such

that A, is 1 if there is an edge from u tov, and O otherwise. |

Definition 2.2 (Signed Graph and Signed Adjacency Matrix). A signed graph G =
(V,E*) consists of V of nodes and the set E* of signed edges. A signed edge (u,v) is

associated with a positive or negative sign, ie., (u,v,+) or (u,v,—), respectively. The

12

node | score |rank

u, | 0287 | 1

u, | 0171 | 2

us | 0068 | 6

u, | 0124 | 3

us | 0124 | 4

Ug 0.054 7

uy 0.054 8

ug | 0118 | 5

Figure 2.1: Example of RWR. In the example, the query node is u; and RWR scores w.r.t.
uy are presented in the table. The RWR scores are utilized for personalized ranking or link
recommendation for u;.

signed adjacency matrix A of G is a sparse matrix such that A, is +1 (or —1) if there

is a positive (or negative) edge (u,v), and O otherwise. |

Definition 2.3 (Edge-labeled Graph and Labeled Adjacency Matrix). An edge-labeled
graph G = (V,E,L) consists of the set V of nodes, the set E of directed edges, and the
set L of edge labels. Let L = {l,,--- ,Ix} where I is k-th label, and K is the number of
edge labels. For each edge u — v € E such that u,v € V, the edge is associated with an
edge labell,,, € L. The labeled adjacency matrix A of G is a sparse matrix such that A,,

is Iy, if there is an I, -labeled edge from u to v, and O otherwise. []

2.1.2 Random Walk with Restart

Given a graph G, a query node s, and a restart probability ¢, random walk with restart
(RWR) [82] measures proximity scores r between the query node s and each node
on the graph. RWR leverages the proximities by allowing a random surfer to move
around the graph. Suppose that a random surfer starts at node s, and takes one of the

following actions at each node:

13

+ Random Walk. The surfer randomly moves to one of the neighbors from the

current node with probability 1 —c.

+ Restart. The surfer goes back to the query node s with probability c.

The proximity or the RWR score between a node u and the query node s is the
steady-state probability that the surfer is at node u after performing RWR starting
from node s. If the proximity is high, we consider that nodes u and s are highly related,
e.g., they are close friends in a social network. Thus, RWR provides relevance scores
between the query node s and each node, and it is utilized as a personalized ranking
for the query node s [82].

For example, suppose u; is the query node as shown in Figure 2.1. The RWR
scores w.r.t. u; are presented in the table of the figure, and the scores are used for the
personalized ranking for u;. Also, we are able to recommend to friends for u; based
on the scores. The RWR score of ug is higher than that of ug because ug is highly
correlated to u; by the connections with u4 and us. Thus, ug will be recommended to
uy rather than ug would based on the RWR scores.

RWR scores for all nodes w.r.t. the query node s are represented as an RWR score

vector r which is defined by the following recursive equation [13, 82] :

r=(1-c)ATr+cq (2.1)

where A is the row-normalized adjacency matrix of the graph G, and q is the starting
vector whose entry that corresponds to the node s is set to 1, and others to 0. From
Equation (2.1), we obtain the following linear equation:

I—(1—-c)AT)r=cq < Hr=cq (2.2)

14

where H =1 — (1 — ¢)A™. Note that q is an RWR query, and r is the result corre-
sponding to the query. q is determined by the query node s, and r is distinct for each
RWR query. RWR is a special case of Topic-specific PageRank which sets multiple

seed nodes in the starting vector q while RWR sets only one seed node [13, 21].

2.2 Related Works

In this section, I survey existing research works related to random walk-based graph

mining.

2.2.1 Previous Methods for RWR in Plain Graphs

I review previous works on the RWR computation from two perspectives: 1) iterative
methods, 2) preprocessing methods, and 3) approximate and top-k methods. The iter-
ative and preprocessing methods focus on computing exact single-source RWR scores
of all nodes w.r.t. a given query node. The approximate methods compute approxi-
mate single-source RWR scores, and top-k methods aim at finding top-k relevance
nodes in order of RWR scores approximately or exactly.

Iterative methods for RWR. The most well-known method is power itera-
tion [13] which repeatedly updates the RWR score vector in Equation (2.1). The power
iteration method aims at finding the eigenvector corresponding to the largest eigen-
value of the Google matrix derived from Equation (2.1). Krylov subspace methods [79]
are also used to compute the solution of a linear system shown in Equation (2.2).
These methods iterate a procedure to search the solution in the Krylov subspace.
Since the matrix H is non-singular and non-symmetric [83], any Krylov subspace
method, such as GMRES [53], which handles a non-symmetric matrix, can be applied

to Equation (2.2). While these iterative methods do not require preprocessing, they

15

have expensive query cost especially when there are lots of queries, since the whole
iterations need to be repeated for each query.

Preprocessing methods for RWR. The query speed of RWR can be accelerated
significantly by precomputing the inverse of H of Equation (2.2). However, matrix
inversion does not scale up for large graphs, as it involves a dense matrix that is too
large to fit in memory. To tackle this problem, alternative preprocessing methods have
been developed. Tong et al. [82] proposed NB_LIN, which decomposes the adjacency
matrix using a low-rank approximation in the preprocessing phase, and approximates
H~! from the decomposed matrices in the query phase. Fujiwara et al. applied LU
decomposition [60] and QR decomposition [84] to the adjacency matrix to obtain
sparser matrices to use in place of H™!. Prior to applying LU decomposition [60],
they reordered H based on the degree of nodes and the community structure to make
L~! and U™! sparse. Bear [54, 76] preprocesses the adjacency matrix by exploiting
node reordering and block elimination techniques. While all of these methods made
performance improvements over previous approaches, they suffer from the scalability
problem when it comes to billion-scale graphs.

Approximate and top-k methods for RWR. Iterative and preprocessing ap-
proaches often fail to scale up for real-world applications due to high computational
cost. Several approximate methods have been developed to overcome this problem.
Observing that the relevance scores are highly skewed, and real-world graphs often
exhibit a block-wise structure, Sun et al. [41] proposed an approximate algorithm that
performs RWR only on the partition containing the seed node, while setting the rele-
vance score of other nodes outside the partition to 0. Building on similar observations,
Tong et al. [82] proposed approximate algorithms, B_LIN and its derivatives, in which

they applied a low-rank approximation to the cross-partition links using eigenvalue

16

decomposition. Gleich et al. [55] proposed methods that apply RWR only to a part of
the graph, which is determined adaptively in the query phase. Andersen et al. [48]
presented an algorithm for local graph partitioning problem that computes PageRank
vectors approximately. Fast-PPR, a Monte Carlo-based method proposed by Lofgren
et al. [57], estimates the single pair PPR (Personalized PageRank) between a start
node and a target node by employing a bi-directional scheme. Bahmani et al. [85]
developed a fast MapReduce algorithm based on Monte Carlo simulation for approx-
imating PPR scores. To compute PPR approximately, Xie et al. [58] used a model
reduction approach where solutions are projected to a low dimensional space. Also,
several works have been proposed to focus on the k most relevant nodes w.r.t. a seed
node instead of calculating the RWR scores of every node. K-dash, a top-k method
proposed by Fujiwara et al. [60], computes the RWR scores of top-k nodes by exploit-
ing precomputed sparse matrices and pruning strategies. Wu et al. [61] proposed Fast
Local Search (FLOS) which finds top-k relevant nodes in terms of various measures
including RWR. However, approximate and top-k computation for RWR scores are in-
sufficient for many data mining applications [86, 48, 18, 27, 87, 82, 88] which require

accurate RWR scores for any pair of nodes.

2.2.2 Ranking Models in Signed Networks

I review related works on random walk and ranking models in signed networks,
which are categorized as follows: 1) ranking in signed networks, and 2) applications
of ranking in signed networks.

Ranking in signed networks. Many researchers have made great efforts to
design global node rankings in signed networks. Kunegis et al. [63] presented Signed

spectral Ranking (SR) that heuristically computes PageRank scores based on a signed

17

adjacency matrix. Wu et al. [66] proposed Troll-Trust model (TR-TR) which is a vari-
ant of PageRank. In the algorithm, the trustworthiness of an individual user is mod-
eled as a probability that represents the underlying ranking values. Shahriari et al. [65]
suggested Modified PageRank (MPR), which computes PageRank in a positive sub-
graph and a negative subgraph separately, and subtracts negative PageRank scores
from positive ones. Although the idea of MPR is easily applicable to other personal-
ized ranking models such as RWR by computing ranking scores on the positive and
negative subgraphs, this results in many disconnections between nodes. Note that all
those models mainly focus on global node rankings, and they do not consider com-
plex relationships between negative and positive edges such as friend-of-enemy or
enemy-of-friend.

Applications of ranking in signed networks. Many applications in signed
social networks such as link prediction, troll detection, and sign prediction have been
studied in many literatures. Song et al. [89] proposed GAUC (Generalized AUC) to
measure the quality of link prediction in signed networks where the link prediction
task is to predict nodes which will be positively or negatively linked by a node in
the future. They devised a matrix factorization based method GAUC-OPT which ap-
proximately maximizes GAUC for link prediction. Kunegis et al. [63] analyzed the
Slashdot dataset from the perspective of troll detection, and proposed Negative Rank
(NR) as a variant of PageRank for detecting trolls who behave abnormally in the social
network. Leskovec et al. [90] proposed LOGIT which is specially designed for sign
prediction classifying the sign between two arbitrary nodes. They exploited a logis-
tic classifier trained by node and edge features such as node degrees and common
neighbors between those two nodes. Guha et al. [91] also studied sign prediction,

and devised TRUST measuring trustworthiness between two source and target nodes

18

by propagating trust and distrust from the source node to the target node.

2.2.3 Relational Reasoning Models in Edge-labeled Graphs

I review related works on random walk and relational reasoning in edge-labeled
graphs as follows: 1) random walk on heterogeneous networks, and 2) relation in-
ference in edge-labeled graphs.

Random walk on heterogeneous networks. RWR has received much atten-
tion and has been applied to many graph mining tasks. However, RWR has a lim-
itation on predicting the relation between two nodes in edge-labeled graphs since
it does not consider edge labels for its relevance. Several techniques [23, 33] have
been proposed to compute RWR in heterogeneous networks. These methods focus
on how to determine the weights of edges by exploiting attributes in the networks,
and then construct a transition matrix with the weights to compute RWR. However,
they also cannot infer the relation between the nodes in edge-labeled graphs because
they produce only one relevance score between two nodes, similarly to RWR. For
relation inference, we need to obtain K relevance scores for edge labels between two
nodes if a graph has K edge labels. Many researchers have recently made great ef-
forts to apply RWR for relevance between nodes in signed networks, a special type
of edge-labeled graphs, represented by positive (trust) and negative (distrust) edges.
Modified RWR (MRWR) [65] computes RWR as trust and distrust scores in positive
and negative subgraphs, respectively. Although the idea is applicable to edge-labeled
graphs by computing RWR on each subgraph containing only a specific edge label,
this leads to many disconnections between nodes; thus, MRWR is unable to exploit
meaningful patterns from multi-hop paths.

Relation inference in edge-labeled graphs. Two major approaches on re-

19

lation inference for multiple edge labels are classified into path feature model and
translation based model. Path Ranking Algorithm (PRA) [67] is commonly used as a
path feature model in heterogeneous networks. PRA extracts paths connecting two
nodes, and exploits a random surfer to measure path probabilities which are used
as features when predicting their relation. PRA, however, requires explicit path enu-
meration which becomes computationally problematic when it comes to long paths.
Although the authors presented heuristic pruning techniques, PRA’s inference has
still been restricted to short paths since the path enumeration essentially has an ex-
ponential complexity to path length. Translation based models such as TransE [92]
and TransR [93] have been widely utilized due to its simplicity and effectiveness for
modeling relational data. They formulate the relation between two nodes as a transla-
tion between the corresponding node embeddings. However, those models consider
only one directed edge at a time in training; hence, their reasoning is likely to miss

the information provided by multi-hop paths between them.

20

Chapter 3

Fast and Scalable Ranking in Large-scale

Plain Graphs

3.1 Introduction

Identifying node-to-node proximity in a graph is a fundamental tool for various graph
mining applications, and has been recognized as an important research problem in the
data mining community [94, 95, 60, 61]. Random walk with restart (RWR) provides a
good relevance score, taking into account the global network structure [19] and the
multi-faceted relationship between nodes [20] in a graph. RWR has been successfully
utilized in many graph mining tasks including ranking [82], recommendation [96],
link prediction [27], question and answering [97], and community detection [48, 50,
49)].

Existing methods for scalable computation of RWR scores can be classified into
two categories: iterative approaches and preprocessing approaches. Iterative meth-
ods, such as power iteration [13], compute an RWR score by repeatedly updating it
until convergence. While they require much less memory space compared to prepro-
cessing methods, they are slow in the query phase because matrix-vector multiplica-
tions should be performed each time for a different query node. This makes iterative
methods not fast enough for billion-scale graphs.

On the other hand, preprocessing methods compute RWR scores using precom-

puted intermediate matrices. Since preprocessed matrices need to be computed just

21

>

10 BePI 10 BePI 4 BePI
— 5 Bear — Bear — 10" HaMRES P
g10 LU [] 105 LU 3 Power 3
ki) 2 & 10° f| Bear *
210% [3679x o 4 2 0 2 %
£ 210 130x E 10 oy 1
10° E 77 % 10 o
§1o2 g 10° é 0
3 £ = 10 %
S, 1 (7] 102 © 4 10x.
=10 = = 10 I
O S 4, &, A G, % A L S e A
R s %, e, i, Ty Ry 20, 1, e, iy, 1 o o i %, 1. oy o
% o, U % %, AT S, A N
(a) Preprocessing time (b) Memory space for (c) Query time

preprocessed data

Figure 3.1: Performance of BEPI. (a) and (b) compare the preprocessing time, and the mem-
ory space for preprocessed data, respectively, among preprocessing methods; (c) compares the
query time among all tested methods. Bars are omitted if the corresponding experiments run
out of memory or time (more than 24 hours). (a) In the preprocessing phase, BEPI is the fastest
and the most scalable among all preprocessing methods. Only BEPI successfully preprocesses
billion-scale graphs such as Twitter and Friendster datasets. (b) BEPI uses the least amount of
space for preprocessed data across all the datasets. Only BEPI preprocesses all the datasets,
whereas Bear and LU decomposition fail except for the two smallest ones. (c) In the query
phase, BEPI computes RWR scores faster than other competitors over all datasets. Details on
these experiments are presented in Section 3.5.

once, and then can be reused, they are fast in the query phase, especially when they
should serve many query nodes. However, existing preprocessing approaches have
high memory requirements in common, due to the space for the preprocessed matri-
ces, which makes it difficult to scale them up to billion-scale real-world graphs such
as Twitter or Friendster datasets (see Table 3.2).

In this work, we propose BEPI (Best of Preprocessing and Iteartive approaches
for RWR), a fast, memory-efficient, and scalable method for computing RWR on
billion-scale graphs. BEPI addresses the challenges faced by previous approaches by
combining the best of both preprocessing and iterative methods. BEPI uses a block
elimination approach, which is a preprocessing method, to achieve fast query time.
BePI incorporates an iterative method within the block elimination to decrease mem-
ory requirements by avoiding expensive matrix inversion. The performance of BEPI
is further enhanced via matrix sparsification and preconditioning. Through extensive

experiments with various real-world graphs, we demonstrate the superiority of BEPI

22

over existing methods as shown in Figure 3.1. The main contributions of this paper
are the followings:

+ Algorithm. We propose BEP], a fast, memory-efficient, and scalable algorithm

for computing RWR on billion-scale graphs. BEPI efficiently computes RWR

scores based on precomputed matrices by exploiting an iterative method, re-

ducing the number of non-zeros of a matrix, and applying a preconditioner.

« Analysis. We give theoretical guarantees of the accuracy of BEPI. We also
analyze the time and the space complexities of BEPI, and show that the com-

plexities are smaller than those of the state-of-the art method.

« Experiment. BEPI processes 100X larger graphs and requires 130 x less mem-
ory space than existing preprocessing methods. Moreover, BEPI provides near
linear scalability in terms of preprocessing and query cost. BEPI computes RWR
scores up to 9x faster than existing iterative methods.

The code of our method BEPI and datasets used in the paper are available at
https://datalab.snu.ac.kr/bepi. The rest of the paper is organized as follows. In Sec-
tion 3.2, we give preliminaries on the definition and algorithms of RWR. We describe
our proposed method BEPI in Section 3.3. After presenting our experimental results

in Section 3.5, we summarize this work in Section 3.6.

3.2 Preliminaries

In this section, we present the preliminaries on two different approaches for RWR,
iterative methods and preprocessing methods. Symbols used in the paper are sum-

marized in Table 3.1.

23

https://datalab.snu.ac.kr/bepi

Table 3.1: Table of symbols used in Chapter 3

Symbol Definition

G
n

m
ni
n
n3
ni;

b

E:bl:? :?;Dm»ﬁm
(=9 =

T

1

S
L, Uy
L, 0,

q,q;
r,r;

Al

input graph

number of nodes in G

number of edges in G

number of spokes in G

number of hubs in G

number of deadends in G

number of nodes in the ith diagonal block of Hyy

number of diagonal blocks in Hy;

seed node (=query node)

restart probability

hub selection ratio in the hub-and-spoke reordering method [98]
error tolerance

(n x n) adjacency matrix of G

adjacency matrix containing edges

from non-deadend nodes to non-deadend nodes

adjacency matrix containing edges from non-deadend nodes to deadend nodes
n x n) row-normalized adjacency matrix of G
nxn)H=I—(1-c)AT

n; X n;j) (i, j)-th partition of H

ny X ny) Schur complement of Hyy

n1 X np) LU factors of Hyy

ny X ny) incomplete LU factors of S

n x 1) starting vector, and (n; x 1) i-th partition of q, respectively
n x 1) relevance vector, and (n; x 1) i-th partition of r, respectively
number of non-zero entries of a matrix A

NN N N N N N N

3.2.1 Iterative Methods for RWR

Iterative methods update the RWR score vector r iteratively. The most well-known

method is the power iteration method [13] which repeatedly updates r as follows:

r) — (1—c)ATr() 1 ¢q

where r() denotes the vector r at the i-th iteration. The repetition continues until r

has converged (i.e., |[r —ri~1)||, < g). The vector r is guaranteed to converge to a

unique solution if 0 < ¢ < 1 [83]. Krylov subspace methods [79] are also used to com-

24

pute the solution of a linear system shown in Equation (2.2). These methods iterate a
procedure to search the solution in the Krylov subspace. Since the matrix H is non-
singular and non-symmetric [83], any Krylov subspace method, such as GMRES [53],
which handles a non-symmetric matrix, can be applied to Equation (2.2). While these
iterative methods do not require preprocessing, they have expensive query cost es-
pecially when there are lots of queries, since the whole iterations need to be repeated

for each query.

3.2.2 Preprocessing Methods for RWR

Many real-world applications require RWR scores of any pair of nodes, e.g., scores be-
tween two arbitrary users in social networks. Hence, quickly computing RWR queries
is important and useful for real-world applications. Preprocessing methods directly
calculate r based on precomputed results to accelerate the query speed. One naive

approach is to compute H™! as follows:

r:cH’lq.

Once H™! is obtained in the preprocessing phase, r can be computed efficiently
in the query phase. However, obtaining H™! is impractical for large graphs because
inverting the matrix is very time-consuming and H™! is too dense to fit into mem-
ory. Several preprocessing methods were proposed to alleviate the problem about
H~!. Fujiwara et al. [60] proposed to use matrix factorizations such as QR or LU fac-
torization to replace H™! (e.g., H! = U~'L~! if H is LU factorized). They reordered
H based on nodes’ degrees and community structures to make the inverses of factors
sparse. Shin et al. [54] developed a block elimination approach called Bear which ex-

ploits a node reordering technique [98] to concentrate non-zeros of H, and uses block

25

elimination [99] to compute the solution. While these preprocessing methods com-
pute RWR queries quickly based on precomputed results, they have scalability issues
for processing very large graphs because they require heavy computational cost and
large memory space caused by matrix inversion inside the preprocessing phase. That
is, matrix inversion requires O(n?) time and O(n?) space where n is the dimension of
a matrix to be processed. Under those complexities, if n is greater than a million, it
is infeasible to complete a preprocessing phase based on matrix inversion and store

preprocessed data.

3.3 Proposed Method

In this section, we describe our proposed method BEPI for fast, memory-efficient, and

scalable RWR computation.

3.3.1 Overview

Preprocessing methods process relatively large graphs, and compute RWR scores
quickly. However, they cannot handle very large graphs due to their high memory re-
quirement. On the other hand, iterative methods scale to very large graphs, but show
slow query speed. In this paper, our purpose is to devise a fast and scalable algorithm
by taking the advantages of both preprocessing methods and iterative methods.

We present a basic version of our method BEPI-B, and two optimized versions:
BEPI-S and BEPI. BEPI-B reorders nodes based on the characteristics of real-world
graphs and adopts block elimination as a preprocessing method to reduce query time.
Moreover, BEPI-B exploits an iterative method within the block elimination approach
to process very large graphs. BEPI-S further improves the performance of the iterative

method by sparsifying a matrix in terms of running time and memory requirement.

26

Han ’ 1
(a) Original matrix H (b) Deadend reordering (c) Hub-and-spoke (d) Deadend and
reordering hub-and-spoke reordering

Figure 3.2: Results of node reordering on the Slashdot dataset. (a) is the original matrix
H before node reordering. (b) and (c) are H reordered by deadend reordering and hub-and-
spoke reordering, respectively. (d) is H reordered by the hub-and-spoke reordering method
on top of the result of the deadend reordering method. BEPI computes RWR scores on the
reordered matrix H in (d). H;; in (d) is a block diagonal matrix.

On top of that, BEPI-B accelerates the query speed by applying a preconditioner to the

iterative method. The main ideas of our proposed method are summarized as follows:

+ BEPI-B: exploiting graph characteristics to reorder nodes and apply block
elimination (Section 3.3.2), and incorporating an iterative method into block

elimination to increase the scalability of RWR computation (Section 3.3.3).

+ BEPI-S: sparsifying the Schur complement to improve the performance of

the iterative method (Section 3.3.4).

« BEPI: preconditioning a linear system to make the iterative method con-

verge faster (Section 3.3.5).

BEPI comprises two phases: the preprocessing phase and the query phase. In
the preprocessing phase (Algorithm 3), BEPI precomputes several matrices which are
required by the query phase. In the query phase (Algorithm 4), BEPI computes RWR
scores for each query by exploiting the precomputed matrices. Note that the prepro-
cessing phase is run once, and the query phase is run for each seed node. To exploit
sparsity of graphs, we save all matrices in a sparse matrix format such as compressed

column storage [100] which stores only non-zero entries and their locations.
27

Ralks L

o

3.3.2 BePI-B: Exploiting Graph Characteristics for Node Re-

ordering and Block Elimination

BEPI-B first reorders H=1— (1 — C);\T based upon real-world graph characteristics,
and applies block elimination for efficient RWR computation. Previous works [101,
54, 84] have shown that node reordering methods reduce computational cost of op-
erations based on adjacency matrices of real-world graphs. For further improvement,
we propose to mix node reordering strategies based on two graph characteristics: 1)
deadends, and 2) hub-and-spoke structure. After reordering nodes, we apply block

elimination as a preprocessing method to reduce query cost.

3.3.2.1 Node Reordering Based on Deadends and Hub-and-
Spoke Structure

Deadends. Deadends are nodes having no out-going edges. Many deadends are pro-
duced from various sources such as a page containing only a file or an image in real-
world graphs (see Table 3.2). Deadends have been used to improve the performance
of graph operations [101]. In this paper, we reorder nodes based on deadends for ef-
ficient RWR computation. Suppose that an adjacency matrix A is reordered so that

non-deadends and deadends are separated as follows:

where Ay, is a submatrix containing edges from non-deadend nodes to non-deadend

nodes, and A4 is a submatrix containing edges from non-deadend nodes to deadend

28

nodes. Then, Equation (2.2) is represented as follows:

H,, 0| |r, qn
Hr=cq & =c

Hy, I [rq q4

where Hy, = I— (1 —¢)AT, and Hy, = —(1 —)AL, Figure 3.2(b) presents the ex-
ample of H reordered by the deadend reordering approach. The partitioned solutions

ry and ry are obtained from the following equations:

Hynrn = cqn (3-1)

rq=cqq — Hdnrn (3'2)

Note that the dimension and the number of non-zeros of H,, are smaller than
those of H. The partitioned solution ry is easily computed if we have r,. Hence, the
deadend reordering approach enables to obtain RWR scores by solving the linear
system in Equation (3.1) which is smaller than the original one in Equation (2.2).
One naive method for computing Equation (3.1) is to invert Hyy, ie., r, = H_!qy.
However, obtaining H,,,! is infeasible in very large graphs because its dimension is
still too large to invert. To efficiently solve the linear system in Equation (3.1), we
introduce another reordering technique based on the hub-and-spoke structure on
top of the deadend reordering approach.

Hub-and-spoke structure. Most real-world graphs have the hub-and-spoke
structure meaning they follow power-law degree distribution with few hubs (very
high degree nodes) and majority of spokes (low degree nodes) [73]. The structure
is exploited to concentrate entries of an adjacency matrix by reordering nodes as

shown in Figure 3.2(c). The reordered matrix based on the hub-and-spoke structure

29

has improved the performance of operations on graphs [54]. We use the hub-and-
spoke structure to efficiently solve Equation (3.1). Any reordering method based on
the hub-and-spoke structure can be utilized for the purpose; in this paper, we use
SlashBurn [98] because it shows the best performance in concentrating entries of an
adjacency matrix (more details in Appendix A.1).

We reorder nodes of the submatrix A,, using the hub-and-spoke reordering
method so that the reordered matrix contains a large but easy-to-invert submatrix
such as a block diagonal one as shown in Figure 3.2(c). After reordered by the dead-

end approach and the hub-and-spoke reordering method, H is partitioned as follows:

H;; Hp 0
H, 0
H= g H21 H22 0 (33)
Hy, 1
Hi; Hz 1
. iy Hi Hp . . .
where Hy,;, is partitioned to ,and Hy, is partitioned to [H31 H32} . Fig-
Hy; Hpx

ure 3.2(d) illustrates the example of the reordered matrix H in Equation (3.3). Let n;
be the number of spokes, 1, be the number of hubs (see Appendix A.1), and n3 be
the number of deadends. n; and n; are determined by the hub-and-spoke reordering
method, and n3 is computed by the deadend reordering method. H;; is an n; X n;
matrix, and Hy; is an ny X np matrix. Hsy is an n3 X n1 matrix, and Hs, is an n3 X np
matrix. Note that Hy; is block diagonal as shown in Figure 3.2(d) since H,, has the
same sparsity pattern as that of the reordered matrix Al except for the diagonal en-

tries, and the upper left part of the reordered matrix AT is a block diagonal matrix.

30

3.3.2.2 Block Elimination

By plugging Equation (3.3) into Hr = cq, the linear system is represented as follows:

Hiy Hip 0] [y qi
H;i Hz I |r3 q3

The partitioned linear system in Equation (3.4) is solved by applying block elimi-

nation [99]. That is, the RWR solution vector r is obtained from the following lemma:

Lemma 3.1 (Block Elimination [99, 54]). The linear system in Equation (3.4) is solved

by block elimination, and the solution r is represented as follows:

r| H,/ (cqi —Hjoro)
r=|r| = |S7!(cqy — Hy (Hy{ (cqr))) (3.5)
r3 cqz —Hzir; —Haors

where S = Hy — H21HfllH12 is the Schur complement of Hy|. Note that the dimension

of S is ny X ny where ny is the number of hubs.
Proof. See Section 3.4.4.2. O

If all matrices in Equation (3.5) are precomputed, the RWR score vector r is effi-
ciently calculated, i.e., only matrix vector multiplications are required for the query

computation.

31

3.3.3 BePI-B: Incorporating an Iterative Method into Block

Elimination

BEPI-B incorporates an iterative method within the block elimination to compute

RWR on very large graphs. Based on the block elimination approach, the RWR vector

r = [ry,r2,1r3]" is obtained by solving the following linear systems:

Hry =cq; —Hjor (3.6)
Sr; = cqy — Hp (Hfl1 (C(]])) (3.7)
r3 = cqz — H3r; — Harp (3.8)

where S is the Schur complement of Hj. Note that those equations are derived from
Equation (3.5). r3 is easily obtained from r; and r, based on Equation (3.8). r; is also
easily computed if we have ry, because Hj; is block diagonal and consists of small
blocks; hence, Hj; is easy-to-invert (i.e., r; = Hfll (cq; —Hjary)). However, on very
large graphs, inverting the Schur complement S is infeasible because the dimension
of S is large (see Table 3.2). Hence, computing r in Equation (3.7) with S~! is imprac-
tical on billion-scale graphs. Our solution for this problem is to exploit an iterative
method to solve the linear system w.r.t. r>. This approach enables to avoid matrix in-
version; consequently, the preprocessing time and the storage cost for S~! are elim-
inated. In the preprocessing phase, BEPI-B precomputes several matrices required in
Equations (3.6), (3.7), and (3.8). In the query phase, BEPI-B computes those equations
for a given seed node based on the precomputed matrices.

BEPI-B: Preprocessing phase (Algorithm 1). BEPI-B first reorders the adja-
cency matrix A using the deadend reordering technique (line 1). Then, BEPI-B per-

mutes the adjacency matrix Ay, using the hub-and-spoke reordering method (details

32

Algorithm 1: Preprocessing phase in BEPI-B and BEPI-S

Input: graph: G, restart probability: ¢
Output: precomputed matrices: Ll_l, Ul_l, S, Hi,, Hy;, H3; and H3,.

1: reorder A using the deadend reordering approach
2: reorder A,, using the hub-and-spoke reordering method with the following hub
selection ratio &:
(BEPI-B only) select k which makes n; small
(BEPI-S only) select k which minimizes |S|
compute A, and H=1— (1 —¢)A”
partition H into H;;,H;»,Hy1,Hy,, H3y, and H3,
decompose Hj; into L and U; using LU decomposition and compute Lfl and Ufl
compute the Schur complement of Hyj, S = Hy — Hy (U, ' (L, (Hy)))

7: return L;l, Ufl, S, Hj,, Hy;, H3y, and H3p

Algorithm 2: Query phase in BEPI-B and BePI-S

Input: seed node: s, restart probability: ¢, error tolerance: €, precomputed matrices: Ll_l,
U, ', S, Hp, Hyy, H3y, and Hi,
Output: relevance vector: r

create q whose sth entry is 1 and the others are 0
partition q into qi, q2, and q3
~ 1y -1
compute §» = cqo —Hy (U7 (L "cqy)
solve Sry = @ using an iterative method and the error tolerance €
compute r; = Ufl (Lfl (cqi —Hjprp))
compute r3 = cq3 — Hz;ri — H3orp
create r by concatenating ry, rp, and r3

8: return r

in Appendix A.1) so that the reordered matrix contains a large block diagonal matrix
as seen in Figure 3.2(c) (line 2). Notice that when we permute A, the rows of A4 also
need to be permuted according to the permutation produced by the hub-and-spoke
reordering method. In BEPI-B, we choose a hub selection ratio k which makes the
dimension of the Schur complement 7, small enough in order to concentrate entries
of A,y as much as possible. Then, BEPI-B computes and partitions H (lines 3 and 4).
When we compute Hl_ll, we invert the LU factors of H;; since this approach is more
efficient in terms of time and space than directly inverting H;; as suggested in [60, 54]

(line 5). BEPI-B finally computes the Schur complement of Hj; (line 6).

33

x10° x10% x10

73 14 6
10 R J& o]
6 . & [Hy,| 12 i
8 88 HaH HG @ [C 0
25 2 @10 \ A
X > >
24 g6 Ss §3
53 5, B ©
[[e [[
£2 € oo™ 2, S2
S E] S S
z z 2 z z,
1 2
0 0 0)] S . VO
01 02 03 04 05 01 02 03 04 05 0.2 0.4 0.6 0.2 0.4 0.6
Hub selection ratio (k) Hub selection ratio (k) Hub selection ratio (k) Hub selection ratio (k)
(a) Slashdot (b) Wikipedia (c) Flickr (d) WikiLink

Figure 3.3: Number of non-zeros of the Schur complement |S| with different hub selec-
tion ratio k on the Slashdot, the Wikipedia, the Flickr, and the WikiLink datasets. The figures
show the trade-off problem for selecting k. If we select large k, then |S| decreases compared to
small k. However, if we choose too large k (e.g., when k is greater than 0.3 in the sub-figures),
then |S| increases. We set k between 0.2 and 0.3 since those constants decrease |S| enough
(see Table 3.2).

BEPI-B: Query phase (Algorithm 2). In the query phase, BEPI-B computes
the RWR score vector r for a given seed node s based on the precomputed matrices.
The vector q denotes the length-n starting vector whose entry at the index of the
seed node s is 1 and otherwise 0. It is partitioned into the length-n; vector q;, the
length-ny vector qp, and the length-n3 vector q3 (lines 1 and 2). BEPI-B first solves
the linear system w.r.t. r, in Equation (3.7) using an iterative method (lines 3 and 4).
Then, BEPI-B computes r; and r3 (lines 5 and 6).

Since S is non-symmetric and invertible [102], any iterative methods for a non-
symmetric matrix can be used; in this paper, we use GMRES since it is the state-of-the-
art method in terms of efficiency and accuracy. GMRES repeats an iteration procedure
until the relative residual is less than an error tolerance € (i.e., || |Sr§i) —@l2/||G2[2 <

€ where rg) indicates r, at the i-th iteration of GMRES).

3.3.4 BePI-S: Sparsifying the Schur Complement

We present BEPI-S which improves on BEPI-B by decreasing the number of non-zero

entries of the Schur complement S used by the iterative procedure in BEPI-B. Since

34

the time complexity of iterative methods depends on the number of non-zeros of the
matrix, this approach saves time for solving the linear system on S. Also, decreasing
non-zero entries of S reduces the storage cost for S. By the definition of S (i.e., S =
H,, — H21H1_11H12), the entries of S are determined by Hj, and H21H1_11H12. Thus,

the number of non-zeros of S is roughly bounded as follows:
S| < [Hao| + [HoiHy ' Hyo

where |A| is the number of non-zeros of the matrix A. To decrease the number of
non-zeros of S, BEPI-S sets a hub selection ratio £k which minimizes the number of
non-zeros of S. If we increase &, the hub-and-spoke reordering method selects more
hubs at each step; therefore, n; increases, and n; decreases (i.e., n —n3 = n; +ny). In

Hy H'H), |

H,

other words, |Hp; | increases while [Hj ,and |Hy; | decrease; thus,

5

is also reduced. The point is that, with a suitable choice of k, |S| decreases since
|Hy,| slightly increases while [HaH;'Hjy| is significantly reduced. Note that this
is a trade-off problem between the number of entries of Hyy and that of Hy; HﬁlH]z.

If we set k too large, then although [HaH ' Hy2| decreases a lot, |Hp;| also increases

a lot; therefore, |S| becomes large. Figure 3.3 illustrates the trade-off problem on real-
world graphs.

BEPI-S: Preprocessing phase (Algorithm 1). BEPI-S precomputes the matri-
ces demanded in the query phase on top of BEPI-B. First of all, BEPI-S reorders A
and A, using the deadend and the hub-and-spoke reordering methods similarly to
BePI-B (line 1 and 2). However, when BEPI-S reorders A,, using the hub-and-spoke

reordering method, we set a hub selection ratio kX which minimizes the number of

non-zeros of the Schur complement S (line 2). We empirically select k as 0.2 or 0.3

35

which makes the Schur complement sparse enough, as presented in Figure 3.3 and
Table 3.2. As we will discuss in Section 3.5.5, BEPI-S accelerates preprocessing speed
by up to 10x and saves memory space by up to 5x compared to BEPI-B.

BEPI-S: Query phase (Algorithm 2). BEPI-S computes RWR scores for a given
seed node based on the precomputed matrices. Note that the query phase of BEPI-S is
the same as that of BEPI-B. However, the query speed of BePI-S is faster than that of
BEPI-B because BEPI-S decreases the number of non-zeros of the Schur complement
used in the iterative method (line 4). As we will see in Section 3.5.5, BEPI-S leads to

up to 5x performance improvement in terms of query speed compared to BEPI-B.

3.3.5 BePI: Preconditioning a Linear System for the Itera-
tive Method

Our final method BePI improves BEPI-S by exploiting a preconditioner [103] to en-
hance the speed of the iterative method in the query phase. The main purpose of pre-
conditioning is to modify a linear system so that iterative methods converge faster.
More specifically, preconditioning decreases the condition number of the matrix to
be solved and makes the eigenvalues of the modified system to form a tighter cluster
away from the origin. The small condition number and the tight eigenvalue distri-
bution are the main criteria for fast convergence [53, 78]. A standard approach is to
use a non-singular matrix M as a preconditioner. With M, a linear system Ax = b is
preconditioned to M~' Ax = M~'b. Notice that the solution of the original system is
the same as that of the preconditioned system.

BEPI exploits a preconditioner to make convergence faster when solving the
linear system of S in Equation (3.7) using an iterative method. Among various pre-

conditioning techniques such as incomplete LU decomposition (ILU) [79] or Sparse

36

Approximate Inverse (SPAI) [104], we choose ILU as a preconditioner because ILU
factors are easily computed and effective for preconditioning. The incomplete LU de-
composition of a matrix A is a sparse approximation of the LU factors of the matrix,
ie, A ~ LU. The ILU factors, L. and U, have the same sparsity pattern as the lower
and upper triangular parts of A, respectively.

The linear system, Sr, = @, in Equation (3.7) is preconditioned with the ILU
factors of S as follows:

0, 'L, '8, =0, 'L, ' (3.9)

where S ~ 1,0, and § = cq» — Hy, (Hfl1 (cqq)). Then, an iterative method finds the
solution r; of the preconditioned system in Equation (3.9). However, it is difficult to
explicitly construct the preconditioned system due to the inversion of the ILU factors.
Instead of directly obtaining ﬁg l'and I:g ! many preconditioned iterative methods,
such as preconditioned GMRES [77], involve a procedure which iteratively precondi-
tions the original system by taking advantage of triangular matrix, L, and U,, without
explicitly constructing the preconditioned system and inverting the preconditioner
(see more details in Appendix A.2). We exploit a preconditioned iterative method to
solve the preconditioned system in Equation (3.9) with the preconditioner.

BEPI: Preprocessing phase (Algorithm 3). BEPI precomputes the matrices
required for computing RWR scores in the query phase. When BEPI reorders nodes
using the hub-and-spoke reordering method, BEPI also chooses the hub selection ratio
k which minimizes the number of non-zeros of the Schur complement S as in BePI-
S (line 2). After reordering nodes, BEPI computes H and the Schur complement S
(lines 3~6). Then, BEPI calculates the ILU factors of S, L, and U (line 7) to obtain
a preconditioner for the iterative method in the query phase. Note that the storage

cost of L, and U, is the same as that of S, since L, and U, follow the same sparsity

37

Algorithm 3: Preprocessing phase in BEPI

Input: graph: G, restart probability: ¢
Output: precomputed matrices: Ll_l, Ul_l, S, L,, Uy, Hpp, Hyy, H3; and Hj).
1: reorder A using the deadend reordering approach
2: reorder A,, using the hub-and-spoke reordering method with a hub selection ratio &
which minimizes |S]
compute A, and H=1— (1 —¢)AT
partition H into Hy;,Hj2,Ho1,Hyy, H3y, and H3p
decompose Hj; into L and U using LU decomposition and compute Lf] and Uf'
compute the Schur complement of Hy; ,~S = H,, — Hy; (Uf1 (LII (Hy2)))
compute incomplete LU factors of S >~ L,U,

return L', U, S, Ly, Ua, Hip, Hyy, Hay, and Hap

Algorithm 4: Query phase in BEPI

Input: seed node: s, restart probability: ¢, error tolerance: €, precomputed matrices: Lfl,
Uy S, Ly, Uz, Hio, Hoy, Hyp, and Hap
Output: relevance vector: r

1: create q whose sth entry is 1 and the others are 0

2: partition q into q, q, and q3

3: compute ¢y = cqa —Hp; (Ul_1 (Ll_lcql)

4: solve the preconditioned system ﬁ; ! E; ISr, = ﬁ; ! fg '§, using a preconditioned
iterative method with I, and Us, and the error tolerance €

compute r; = U, (L (cqi — Hyarz))

6: compute r3 = cqz —Hzr; —Hzor,

7: create r by concatenating ri, rz, and r3

ol

8: return r

pattern of S.

BEPIL: Query phase (Algorithm 4). In the query phase, BEPI computes Equa-
tions (3.6), (3.7), and (3.8) to obtain the RWR score vector r w.r.t. a seed node s based
on the matrices precomputed by Algorithm 3. BEPI first sets the starting vector q
for given seed node s (lines 1 and 2). Then, BEPI solves the preconditioned system in
Equation (3.9) using an iterative method such as preconditioned GMRES (see details
in Appendix A.2) with the preconditioner L, and U, (lines 3 and 4). After obtain-
ing rp, BEPI computes r; and r3 (lines 5 and 6). As we will see in Section 3.5.5, the

preconditioner accelerates query speed by up to 4x compared to BEPI-S.

38

3.4 Theoretical Results

We analyze the time and space complexities of BEPI. Moreover, we analyze the ac-
curacy bound of BEPI, since BEPI exploits an iterative method. Note that all matrices
are saved in a sparse matrix format such as compressed column storage [100] which
contains only non-zero entries and their locations, and all sparse matrix operations
such as sparse matrix vector multiplication only consider non-zero entries to exploit

such sparsity.

3.4.1 Time Complexity
We provide proofs for the time complexity of BEPL

Theorem 3.1. The preprocessing phase of BEPI takes
O([na/(kx 1) (m~+1logl)+ "7 n3;+m S0 nd,+|S|+min(n3ns, nom)) wherel =

ny +ny and k is the hub selection ratio of the hub-and-spoke reordering method.

Proof. Computing Lfl, Ufl, and S after doing the hub-and-spoke reordering method
takes O([ny/(kx1)](m+1logl)+ Zﬁ;l n34ny Z?:l n?.+min(n3ny,nym)) [54] where
I =ny+ny and [ny/(k x n)| indicates the number of iterations of SlashBurn. Since
incomplete LU decomposition for a sparse matrix A takes O(|A|) [79], it takes O(|S|)

to compute L, and U,.]

According to Theorem 3.1, the preprocessing cost of BEPI mainly depends on the
number of iterations of the reordering method and the computations related to the
Schur complement. Note that since the number of iterations of the hub-and-spoke
reordering method [98] and S| are reduced as k increases, the preprocessing cost de-
creases as in Figures 3.4(a) and 3.7. Also, Theorem 3.1 indicates that the preprocessing

cost of BEPI is much smaller than that of Bear, the state-of-the-art block elimination

39

approach, since BEPI demands O(|S|) and Bear requires O(n3) (i.e., [S| < n3) while

other factors are the same in both methods.

Theorem 3.2. The query phase of BEPI takes O(Zle n3.+min(nyny,m)+min(ninz,m) -+

min(nynz,m) + T|S|) where T is the number of iterations.

Proof. Since it takes O(3%_, n?,+min(n;na,m)) to compute §, = cqz —Hy, (H,} (cq1))
[54], and solving a sparse linear system Ax = b with an iterative method takes O(T'|A|)
where T is the number of iterations [53], it takes O(Y7_, n?, 4+ min(nyny,m) +T|S))
to solve the linear system of S. Note that the time complexity for computing r; is the

same as that of q,. For r3, it takes O(min(nyn3,m) + min(nanz, m)). O

Theorem 3.2 implies that the query cost of BEPI mainly depends on the number
of iterations T and |S|. Since |S| and T are reduced by the sparsification of the Schur
complement and the preconditioner, respectively, the query cost of BEPI decreases

compared to those of BEPI-B and BEPI-S.

3.4.2 Space Complexity

We provide a proof for the space complexity of BEPL

Theorem 3.3. BePI requires O(3.7_, n3,+min(nyny, m) +min(nn3, m) +min(nyn3, m) +
IS|) memory space for preprocessed matrices: L', Uy, S, Lo, Uz, Hya, Hpy, Hay, and
Ha;.

Proof. It requires O(min(niny,m)) memory space for Hj, and Hj, and 0(2?:1 n3.)
memory space for L ! and U; ! [54]. Also, it requires O (min(nyn3,m) +min(nynz,m))

memory space for H3; and Hzsj. Since the space cost for incomplete LU factors is the

same as that of the given sparse matrix, it requires O(|S|) for S, L, and U,. O

40

Theorem 3.3 indicates that the space cost of BEPI mainly depends on O(|S|)
because the number of non-zeros of S is larger than those of other matrices except
for the incomplete LU factors of S. Note that BEPI demands much smaller memory
space than the state-of-the-art method Bear because the space cost of Bear mainly

depends on O(n3); i.e., |S| < n3. Also, through sparsifying the Schur complement S,

the space costs of BEPI and BEPI-S decrease compared to that of BEPI-B which is the

basic version without sparsifying S.

3.4.3 Accuracy Bound

We analyze the accuracy bound of the RWR score vector r computed by BEPI Since
r consists of ry, rp, and r3, and r| and r3 are computed after r, we first analyze the
bound of r in Lemma 3.2, that of r; in Lemma 3.3, and that of r3 in Lemma 3.4. Then,

we conclude the bound of r in Theorem 3.4 using these lemmas.

Lemma 3.2 (Accuracy Bound of r»). Let r; be the true solution of the linear system

Sty = » where §» = cqo — Hy (H} (cq1)), and rgk) be the solution computed by BEPI

after the relative residual becomes less than a given tolerance € at the k-th iteration.

« (k) [[G2]]2
r2 r2 HZ S Gmin(s)

Then,

€ where G,in(S) is the smallest singular value of S.
Proof. See Section 3.4.4.3. O

Lemma 3.3 (Accuracy Bound of ry). Let r] be the true solution of the linear system

Hir; = q; where Q1 = cq1 — Hjorp, and rgk) be the solution oanrgk) = (]gk) where

(k) (k) |z]2 |G2]2

~ k H k

d, =cq—Hjpr; . Then, ||r] —rg)\ 5 < %Hr; —rg)Hz < o1)G (8] € where
Omin(A) is the smallest singular value of a matrix A.

Proof. See Section 3.4.4.4. O

41

Lemma 3.4 (Accuracy Bound of r3). Let r; be the true solution of the equation r3 =

(k) k)

cqz — Hzir] — Ha,r3, and r3k be the solution ofrgk) =cq3 — H31r(1 — ngrgk). Then,

k k k
5 — 57112 < 1 H I — e)2+ [Hall2 5 — x5
Proof. See Section 3.4.4.5. O

Theorem 3.4 (Accuracy Bound of BEPI). Letr* be the true solution of the linear system

T
Hr = cq, and r®) be the solution r*) = [rgk),rgk),rgk)} where rgk) is the solution of

Sr> = o computed by BEPI after the residual becomes less than the error tolerance € at

the k-th iteration, rgk) is the solution olelrgk) =cq|— H12rgk), and rgk) is the solution of

_ (k) _ |[Hill2
Hszor, . Leta.= Sin(H11)" Then,

k)

r* —r®)||, is bounded as follows:

r3=cq;— H311‘§

I — 0|, < <\/(0‘HH31||2+ [Hso]2)” + 02+ 1> <l|q'2(|S2)&

Proof. By the definition of L2-norm, ||r* —r(¥)||3 is represented as follows:

2
r*l‘—rgk)
L I S | R R R R R L B
—rVl3=1r;—r, = i =2+ ey =y 2 4 fes — 5712
rﬁ—rgk) 5

Then, by Lemma 3.4, it is bounded as follows:

k)2 k)2 k)2 2 k)2
e — @13 <|les = e 3+ 1es — e 13+ 8 3 e —)13

2 k)2 k k
[H2 3115 — £33 + 21 1 o[z] — a5 — 012

k H k k
i =l < s s — Yl = alirs — x> where o =

From Lemma 3.3,

42

[[Ha] |2
Gmin(Hll)

. Hence, the bound is represented as follows:
* * k
e = e < e — 313 (o + 1+ 02 [Hiat |3+ [Hlsz 3+ 200 Hay 2] Bz)
* k
=[5 = xf113 (o + 1+ (@ Hat [+ | Hzz]2)*)

By Lemma 3.2, ||r} — rgk) Il < %8; thus, the above inequality is written as:

- 2
) q2]i2
e =203 < (o + 1+ (0| Hay [+ [Hzal]2)°) <<s|ys>€> |

Finally, the bound of ||r* — r(® |2 is represented in the following inequality:

e — 1], < (\/(Otllell2+||H32||2)2+0°2+1> Gll2 .
Gmin(s)

O]

According to Theorem 3.4, the accuracy of BEPI is bounded by the norms and
the smallest singular values of the input matrices and the error tolerance €. Also,
Theorem 3.4 indicates that BEPI guarantees ||[r* — r(¥)||; < &7 where €7 is the target
accuracy if we set the error tolerance to € satisfying the following inequality:

Gmin(s)
~ T-
1a2|]2

-1
0<e< (\/(OC||H31H2+ HH32||2)2+0L2+ 1>

3.4.4 Lemmas and Proofs

We describe the lemmas and proofs used in the above theoretical results.

3.4.4.1 Proof of Inverse Inequality

Lemma 3.5. For Ax = b, if a matrix A is invertible, then [|A7"||;!||x||2 < ||Ax][>.

43

Proof. Since A is invertible, ||x|| is bounded as follows:

Ix]|2 = A~ Ax]|2 < A7 2| Ax][2.
Hence, [|A~"|I;"|[x[]2 < [|Ax]].. [

3.4.4.2 Proof of Lemma 3.1

Proof. The partitioned linear system in Equation (3.4) is represented using Equa-

tions (3.1) and (3.2) as follows:

Hy; Hp| |y qi
=c (3.10)

Hy; Hxp| |2 q2
r3 = cqz — H3ir; — Hzrp

Equation (3.10) is split into two equations:

Hr; +Hjr; =cq (3.11)

Hyir) + Hpr = cqp (3.12)
Then, r; is obtained from Equation (3.11) as follows:

Hiiri +Hpr; = cq) = Hyjrp = cq) —Hyor

=TI = Hl_ll (qu — lel‘z).

44

If we plug the above equation of r; into Equation (3.12), then it is represented as

follows:

Hoir) +Hprs = cq2

= Hy (H; | (cqi —Hjar2)) + Hoory = cqo

= Hy (Hj ' (cq1)) + (Hy — Hy Hi Hp)r = cqp
= Sr; = cq; —Hy (Hl_l1 (cqp))

=1=S(cqp—Hy (H] (cq)))

where S = Hy, — H21H1_11 H,;. Note that Hand Hy; is invertible if 0 < ¢ < 1 since they

are strictly diagonally dominant; S is invertible because H is invertible [102]. O

3.4.4.3 Proof of Lemma 3.2

Proof. Since we use GMRES to solve the linear system of S, we first analyze the ac-

curacy bound of GMRES. Since GMRES stops the iteration when the relative residual

k -
ISty a2

@n =& the inequality is written as follows:

k ~ ~ k % ~ % k ~
1SEY) — a2 < €][Gal[2 = ||StS) —SK3 || < €]|al[2 = [1S(r5 —r$) |2 < el |@a|l2

Note that H and H;; are invertible because those matrices are diagonally dominant;

this fact implies that S is invertible [102], and we are able to apply Lemma 3.5 to the

45

last equation as follows:

Ai=111x _(k « _(k ~
17115 11 = eS| < 118 (e —)2 < €|l
=11 _(k ~
= IS5 116 — 0|2 < €[]

k _ ~
= |5 =3[l <el|S " [|2/[@al]

(k)

Since ||S7!||2 = Gmin(S) 7! [105], ||ry” — 132 is bounded as follows:

- 1G22
s =l < "2 e
where G,,i,(S) is the smallest singular value of S. O

3.4.4.4 Proof of Lemma 3.3

Proof. Since Hlll‘ylK =cqq —lel’; and Hlll‘gk) =cqq —lel‘g{), HH“I’T —Hlll‘gk)Hz is

represented as follows:

[y —Hy el = |leqi — Hiors —cqi +Hprl ||,
% k
= |[Hiors — Hiord) ||

% k
= [Hio(c5 =) |2

Since L2-norm is a sub-multiplicative norm [105], ||H2(r} — rék)) |2 < [[Hizl|2|r5 —

rgk) ||2. Hence |[Hjr} — Hllrgk) ||2 is bounded as follows:

[Hyr, —HyelY | < [[Hoo o) e =02

46

By Lemma 3.5, (|[Hy |1)~'[|rf —r{"]l2 < [[Hii(r] —)] |2. =] is
bounded as follows:
(e =2 < (1B o] [25 = 157
—r2 H < (‘5"3’3‘(2)8 and |[H!||2 = Gpin(Hi1) ™! [105]. Therefore,
|[r] — rgk) ||2 is bounded as follows:
NG |[Hiz[2]|G2]]2
ri—r < .
” ! ! ||2 - Gmin(Hll)Gmin(S)
O

3.4.4.5 Proof of Lemma 3.4

Proof. From the triangular inequality and the submultiplicative property of L2-norm,

it is represented as follows:

% k % % k k
e — e |12 = | —Hir] — Haors + Hy el + Haorl |
= || Hz (r} —rg ")+ Hay(r} _rz N
< ||H3:(r} *rl N]l2 + [(x5 *l‘z S

k k
< M1l = e o + [Haa |5 — 52

47

3.5 Experiments

In this section, we evaluate the performance of our method BEePI, and compare it to
other existing methods for computing RWR scores. We aim to answer the following

questions from the experiments:
« Q1. Preprocessing cost (Section 3.5.2). How much memory space do BEPI
and other methods require for their preprocessed results? How long does this

preprocessing phase take?

« Q2. Query cost (Section 3.5.3). How quickly does BEPI respond to an RWR

query compared to other methods?

+ Q3. Scalability (Section 3.5.4). How well does BEPI scale up compared to

other methods?

« Q4. Effectiveness of the optimizations (Section 3.5.5). How effective are
the sparsification of the Schur complement (Section 3.3.4) and the precondi-

tioning (Section 3.3.5) in terms of preprocessing and query cost?

« Q5. Effects of the hub selection ratio & (Section 3.5.6). How does the hub
selection ratio k in Algorithm 3 affect the performance of BEPI in terms of

running time and memory requirement?

+ Q6. Accuracy (Section 3.5.7). Does BEPI produce the exact result for the RWR

computation compared to other methods?

+ Q7. Detailed comparison to Bear (Section 3.5.8). How much does BEPI im-
prove the computational performance for RWR compared to Bear, the state-of-

the-art method?

48

3.5.1 Experimental Settings

Machine. All experiments are conducted on a workstation with a single CPU Intel(R)
Xeon(R) CPU E7540 @ 2.00GHz and 500GB memory.

Methods. We compare our methods with power iteration, LU decomposition, a
Krylov subspace method (GMRES), and Bear, all of which are described in Section 3.2.
We evaluate our approach using three different versions:

« BEPI-B is the basic version without the sparsification of the Schur complement

and the preconditioner.

« BEPI-S exploits only the sparsification of the Schur complement without the

preconditioner.

« BEPI uses both the sparsification of the Schur complement and the precondi-
tioner.

Approximate methods are excluded from the experiments since all the aforemen-
tioned methods including our methods compute exact RWR scores. All these methods
are implemented in C++ and Eigen' which is an open source C++ numerical linear
algebra package.

Parameters. We set the restart probability c to 0.05 as in the previous works [82,
54]. For Bear and BEPI-B, we set k of the hub-and-spoke reordering method to 0.001
as in the previous work [54]. For BEPI-S and BEPI, we set k of the hub-and-spoke
reordering method differently for each dataset as described in Table 3.2 to make the
Schur complement sparse. For larger graphs, 0.2 is usually used for k. The error tol-
erance € for power iteration, GMRES, and our method is set to 10~°. We set the time

limit for preprocessing to 24 hours.

http://eigen.tuxfamily.org/

49

http://eigen.tuxfamily.org/

89T 6£T Tl | 080 ‘¥ TT | 080 #¥¥ C1 | 811°999°€E | 811°999°¢H | 0T0 | 698 LYT 98S T | 99%‘61€ 89 | IdIspuSLLY
676 '8¥S'T | TIE 1091 | T98°SLIO | 696°190°FCT | 61+ LT6°CE | 0T'0 | T8I SOE 89T ‘1 | 0€T TSI ¥ PPIML
S8S 61 61V V1T | ¥86°S0S‘T | €00°T90°8 | 8E€F'0L9°8 | 0T0 | 0S¥ 'OFT'OPE | LOO96T‘TT | HUITR{IM
6£T €SS L86°8E9°T | 16TOST'T | SHE'SSOT | IH#0'8ET‘E | 0€°0 | 16€°SLY 89 [LS‘L¥8'Y | [BWINO[3AT]
L1¥°09¢ 706 ‘88¢ 88¢€°STT 900°%SS‘T | OCTI'LILT | 0T0 | LIOOFI ‘€€ $T6°T0E‘T DI
6S1°1C 968 ‘8L 988 ‘0% 98G°CI¢ 966 ‘L¥€ 0T0 | LIE V8T ¢E 1¥9°Sly npreq
€90 790°%C T1s'91 L8TTL LEL 6L STO | TLY'LTY'T TIE°001 erpadnim
0TS ‘ee 089°¢€I 8TL L 0T6°1¢ TL8LE 0£'0 | 18S°SIS 0TI 6L jopyse[s
S-1dad S-Idad

50

‘Id2g Jo ¥ey} Se awres Y} 2Ie §-[Jag JO Tu Jey} 2Jo0N WIngyse[s ur [00°(03 ¥ 39S am ‘g-1dag
10 'SPUSpPEap JO IdqUINU Y} SI i pue ‘sqny Jo Idquinu Y} ST Zu ‘sayjods Jo requunu ot st Tu ‘[Jag pue S-[Jdg I0] pasn wIngyse[s ur
OI7eI UOT}OR[3S N[Y} ST Y pue ‘sa8pa JO IdqUINU 3} ST U/ ‘SIPOU JO IOQUINU O} ST U IYM $}IseJep PLIOM-[edl Jo Arewrwung :7°¢ A[qeL,

Data. The graph data used in our experiments are summarized in Table 3.2. Each
dataset is briefly described as follows:

« Slashdot?. This is the social network in the technology news site Slashdot.
« Wikipedia®. This is the small network between articles of the English Wikipedia.

« Baidu®. This is the hyperlink network between articles of the Chinese online

encyclopedia Baidu.
« Flickr®. This is the friendship network of Flickr users.

« LiveJournal®. Nodes are users of LiveJournal, and directed edges represent

friendships.
« WikiLink’. This network consists of the wiki-links of the English Wikipedia.

« Twitter®. This is the follower network from Twitter, containing 1.4 billion di-

rected follow edges between 41 million Twitter users.

« Friendster’. This is the friendship network of the online social site Friendster.

3.5.2 Preprocessing Cost

We examine the cost of the preprocessing phase of BEPI in terms of preprocessing
time and memory space for preprocessed data. We compare our method with Bear and
LU decomposition, the best preprocessing methods. Preprocessing time is measured

in wall-clock time, and it includes the time taken for SlashBurn in BePI and Bear.

2http://dai-labor.de/IRML/datasets
Shttp://konect.uni-koblenz.de/networks/link-dynamic-simplewiki
“http://zhishi.me
Shttp://socialnetworks.mpi-sws.org/data-wosn2008.html
®http://snap.stanford.edu/data/soc-LiveJournal1.html
"http://dumps.wikimedia.org/
8http://an.kaist.ac.kr/traces/WWW2010.html
“https://archive.org/details/friendster-dataset-201107

51

http://dai-labor.de/IRML/datasets
http://konect.uni-koblenz.de/networks/link-dynamic-simplewiki
http://zhishi.me
http://socialnetworks.mpi-sws.org/data-wosn2008.html
http://snap.stanford.edu/data/soc-LiveJournal1.html
http://dumps.wikimedia.org/
http://an.kaist.ac.kr/traces/WWW2010.html
https://archive.org/details/friendster-dataset-201107

Bepis 6 Bepis A 12
. - - —~ - 12x 1.2x
S 10* | Coert o || o [LBert ST S 10° | [Caer otz | :
8 10 8 X
o 10° L ox o 10° a [L§
£ 4x I 210" ax £% £ I
5 10 o LI 3 L g 10 5T I
R Af I gm s L £ 100 & Rl
3.0l BL 3102 S, o012 Pl
= 10 = 1.4x = 10
48
107! 1ot L ie B 102 -
S L & A & RO S L &, A & RN S L . A & R
é&éo% %@ 9/% //o*’ /‘,s"o%@/ %)7@»0&”0 49‘%0%@7@ 6/% //%“ /Le%%ﬁ(/ l%(@»,/s”tr {9%:2 " e,% //%“ /b@"o%b(/' L‘?)’@»,/s”o
o % gy RN o % sy %, o % gy K %%,
(a) Effect on preprocessing (b) Effect on space for (c) Effect on query time
time preprocessed data

Figure 3.4: Effect of the sparsification of the Schur complement and the precondi-
tioning. In these figures, bars are omitted in case the corresponding experiments run out of
memory. In terms of the effect of the sparsification of the Schur complement, (a) and (b) show
that the preprocessing cost is reduced: BEPI-S is up to 10x faster than BEPI-B, and BEPI-S re-
quires up to 5x less memory space than BEPI-B. Moreover, (c) presents that the query time is
also decreased: BEPI-S is up to 5 x faster than BEPI-B in the query phase. In terms of the effect
of the preconditioning, the preprocessing cost of BEPI is slightly larger than that of BEPI-S as
seen in (a) and (b) due to the additional operation for incomplete LU factors. However, BEPI
is up to 4 faster than BEPI-S in the query phase thanks to the effect of the preconditioning
as shown in (c).

Figures 3.1(a) and 3.1(b) show the preprocessing time and the memory space usage of
preprocessed data. Note that only BEPI successfully performs the preprocessing phase
for all the datasets, while other methods fail because their memory requirements are
high, or they run out of time. As seen in Figure 3.1(a), BEPI requires the least amount
of time, which is less than about 2 hours for all the datasets. For the Slashdot dataset,
which is the smallest dataset, BEPI is 3,679 x faster than Bear. For other datasets,
Bear and LU decomposition fail to show the results (they took more than 24 hours).
To compare memory efficiency, we measure how much memory each method requires
for the preprocessed matrices. As seen in Figure 3.1(b), BEPI requires the least amount
of space for preprocessed matrices. BEPI requires up to 130 x less memory space than
other competitors in all the datasets, which indicates the superiority of our method

in terms of scalability compared to other preprocessing methods.

52

10° 10* 10°

5
8 o g, 100x . 10?
5
£ 10° 210 & 10!
= 100x 2 2 A
g 10 < > 2 102 E 10° gt
2 > > 4 BePlI
g " BePI 8101 2 BePl 5" B?_aur
5 el 3 oS e (<IN
g 10 6 BeP! 2 o Boar 1072 GMRES
o 10 B LU 100 LU 10° Power
10° 107 108 10° 107 108 10° 107 108
Number of edges Number of edges Number of edges
(a) Preprocessing time (b) Space for preprocessed data (c) Query time

Figure 3.5: Scalability of BEPI compared to other methods on the WikiLink dataset. (a),
(b), and (c) show the scalability of the three methods in terms of the number of edges. o.0.t.
stands for out of time (more than 24 hours). BEPI shows up to 100X better scalability than
existing preprocessing methods, and scales well with regard to the size of graphs. Also, BEPI
provides near linear scalability in terms of preprocessing and query cost.

3.5.3 OQuery Cost

We compare BEPI with other methods in terms of query cost. We compare our method
with power iteration, GMRES, Bear, and LU decomposition. We measure the average
query time for 30 random seed nodes.

As presented in Figure 3.1(c), only BEPI and iterative methods successfully com-
pute RWR scores on all the datasets, and BEPI outperforms competitors for large
graphs. For the Baidu dataset, BEPI is up to 9x faster than GMRES, which is the sec-
ond best one. For the largest Friendster dataset, BEPI is 3 x faster than GMRES. Com-
pared to power iteration, BEPI is 19 and 10X faster for the Baidu and the Friendster

datasets, respectively.

3.5.4 Scalability

We compare the scalability of BEPI against existing methods, in terms of the number
of edges. For the WikiLink dataset, we extract the principal submatrices, which are
the upper left part of the adjacency matrix, of different lengths so that the number of

edges of each matrix is different. For each submatrix, we preprocess the matrix using

53

BEPI, Bear, and LU decomposition. Then, we compute RWR scores using BePI, Bear,
LU decomposition, power iteration, and GMRES. We measure preprocessing time,
memory usage and average query time for 30 randomly selected seed nodes.

Figure 3.5 presents that BEPI shows a good scalability with respect to the num-
ber of edges, while other preprocessing methods fail to scale up. As shown in Fig-
ures 3.5(a) and 3.5(b), BEPI processes 100x larger graph, while using less memory
space than other preprocessing methods. Also, the slope of the fitted line for BEPI is
1.01 in Figure 3.5(a), 0.99 in Figure 3.5(b), and 1.1 in Figure 3.5(c). These results in-
dicate that BEPI provides near linear scalability in terms of preprocessing and query

cost.

3.5.5 Effects of Sparse Schur Complement and Precondi-

tioning
3.5.5.1 Effects on Preprocessing Phase

We examine the effects of the sparsification of the Schur complement (Section 3.3.4)
and the preconditioning (Section 3.3.5) in the preprocessing phase of BEPL. We mea-
sure the preprocessing time and the space for preprocessed data required by BEPI,
BEPI-S, and BePI-B for each dataset.

To investigate the effect of the sparsification of the Schur complement, we first
compare BEPI-B with BEPI-S in terms of the preprocessing time and the memory
space. For preprocessing time, Figure 3.4(a) shows that BEPI-S is up to 10 faster than
BEPI-B. For memory space, Figure 3.4(b) presents that BEPI-S requires up to 5x less
memory space than BEPI-B. Table 3.3 summarizes the reduction of non-zero entries
of the Schur complement after applying the sparsification of the Schur complement.

For all datasets, the number of non-zero entries of S decreases by the sparsification.

54

Table 3.3: Number of non-zeros of S computed by our methods. Note that the number of
non-zeros of S decreases by the sparsification of the Schur complement. BEPI-B runs out of
time (more than 24 hours) when computing S for the Friendster dataset, while BEPI-S and

BEPI successfully compute it.

dataset A: (|S| in BEPI-B) Bo(l‘-sllll;ll’ll? :)PI (IXE;;)
Slashdot 664,686 353,559 1.9%
Wikipedia 844,983 626,887 1.3x
Baidu 23,136,773 2,359,563 9.8x
Flickr 113,842,305 29,990,289 3.8%
LiveJournal 417,551,300 83,070,865 5.0x
WikiLink 555,468,477 377,197,963 1.5x%
Twitter 8,494,161,448 1,640,399,051 5.2x
Friendster o.0.t. 2,018,006,285 —

Table 3.4: Average number of iterations to compute r; by BEPI-S and BEPI. After pre-
conditioning, the number of iterations for solving the linear system of S decreases.

A: B: .

dataset (# iterations (# iterations IX;;)

in BEPI-S) in BEPI) (A/B)
Slashdot 432 6.6 6.5%
Wikipedia 52.4 13.1 4.0x
Baidu 42.6 14.9 2.9%
Flickr 44.2 11.3 3.9x%
LiveJournal 49.1 16.2 3.0x
WikiLink 70.2 16.5 4.3x%
Twitter 60.3 18.7 3.2x
Friendster 24.2 10.5 2.3x

Especially, BEPI-S reduces the number of non-zeros of S by 9.8 x than BEPI-B for the
Baidu dataset. BEPI-B runs out of time when computing S for the largest Friendster
dataset.

Compared to BePI-S, BEPI uses slightly more memory space as seen in Fig-
ure 3.4(b). In addition, the preprocessing phase of BEePI takes slightly longer than
that of BEPI-S. The reason is that BEPI computes the incomplete LU factors of S, L,
and Uy, in the preprocessing phase, while BEPI-S does not. However, the gap between

them is small in terms of the preprocessing time and the memory space; furthermore,

55

x10°

o 03 o 05 25
= BePIS 2 BePl-S = BePI-S
202 BePl g BePl g Bepl
@ I} S
=] k= x =
® 0.1 . © °
§ & x § e X x <
5 0 —— 5 0 %..mm« -~ 50 Womesncma XK
§ E § ¢ 5
201 o o
> = >
© © ©
£ £ IS
5 0.2 5 £
Eos Eos : £
T 12 1.4 1.6 1.8 2 A 1.2 1.4 1.6 1.8 2 - 12 14 1.6 1.8 2
Real part of an eigenvalue Real part of an eigenvalue Real part of an eigenvalue
(a) Slashdot (b) Wikipedia (c) Baidu

Figure 3.6: Distribution of the top-200 eigenvalues of the preconditioned Schur com-
plement (blue 0’s) and the original Schur complement (red x’s). X-axis and y-axis rep-
resent the real part and the imaginary part of an eigenvalue, respectively. Results from three
different datasets, Slashdot, Wikipedia, and Baidu, show that the dispersion of eigenvalue
distribution becomes much smaller when the Schur complement is preconditioned.

BEPI achieves faster query time thanks to the incomplete LU factors, which we de-

scribe in the following subsection.

3.5.5.2 Effects on Query Phase

We investigate the effects of the sparsification of the Schur complement and the pre-
conditioner on the query phase of our method. To evaluate the effects, we generate 30
random seeds, and measure the average query time using BEPI, BEPI-S, and BEPI-B.
Figure 3.4(c) compares these methods in terms of query time.

We first compare BEPI-B and BEPI-S to see the effect of the sparsification of the
Schur complement. According to the result shown in Figure 3.4(c), BEPI-S is up to 5x
faster than BEPI-B. This speedup is due to the reduction in the number of non-zeros
of S by the sparsification of the Schur Complement as described in Table 3.2.

For analyzing the effect of preconditioning, we compare BEPI-S and BePI. BEPI
is up to 4x faster than BEPI-S as shown in Figure 3.4(c). Applying the preconditioner
reduces the number of iterations for computing r;, as summarized in Table 3.4. This
faster convergence is closely related to the tighter clustering of eigenvalues of the

preconditioned Schur complement [53]. Figure 3.6 shows that the eigenvalues in BEPI

56

(N

; @
°

N
(sec)
3

8

S

3000

5, 4
8 Fg _) o —
8 g
2eb Z30" 0.5 g 80 % g°®
= 2 T F 600 2000 T g
24 25 £ o / 2 4 £
7} 7
g | g z W g w00 Z1000] gt
& 51000)
521 5% 3™ g 200 s | K R
< 2 s g
£ 15 0 £ o = 20000
02 04 06 02 04 06 02 04 06 02 04 06 02 04 06 02 04 06
Hub selection ratio (k) Hub selection ratio (k) Hub selection ratio (k) Hub selection ratio (k) Hub selection ratio (k) Hub selection ratio (k)
(a) Slashdot (b) Baidu
g100 ‘ 5000 30 G400 _15000; 20
g 800 < 4000 3 £ 3000 = 3
= & 5. = 210000 2150
2, 600f g 220 2 g 2
< 400 £3000 Fis %2000‘ 3 E X(}
2 g 2 2 4 ' 5000 2100 ¢
8 200 £2000 g1 51000' £ g
<3 <3
© =100 saoal g © b= 5
o 02 04 06 02 04 06 02 04 06 o 02 04 06 02 04 06 02 04 06
Hub selection ratio (k) Hub selection ratio (k) Hub selection ratio (k) Hub selection ratio (k) Hub selection ratio (k) Hub selection ratio (k)
(c) Flickr (d) LiveJournal
Preprocessing time Space for preprocessed data Query time —¢—

Figure 3.7: Effects of the hub selection ratio k in Algorithm 3. According to results,
preprocessing time and memory usage of BEPI decrease as k increases. Especially, when k
is small (e.g., k = 0.001), preprocessing time and memory consumption are high. The query
speed of BEPI is the fastest when £ is around 0.2 ~ 0.3 as shown in the figures.

form a tight cluster, while those in BEPI-S do not. In sum, BEPIis up to 13 x faster than
BEePI-B in the query phase, which indicates that the query cost is effectively reduced

with the sparsification of the Schur complement and the preconditioner.

3.5.6 Effects of the Hub Selection Ratio

We investigate the effects of the hub selection ratio k (Algorithm 3) on the perfor-
mance of our method BEPI. We measure preprocessing time, memory space of pre-
processed data, and query time of BEPI varying k on the Slashdot, the Baidu, the
Flickr, and the LiveJournal datasets. As shown in Figure 3.7, the performance of BEPI
in terms of preprocessing time and memory usage becomes improved as k increases.
In particular, BEPI requires high preprocessing time and memory space when k is
very small (e.g., kK = 0.001). In terms of query time, BEPI shows the best performance
when £ is from 0.2 through 0.3 as presented in Figure 3.7. There are two reasons for

these effects. First, if we set a large k in Algorithm 3, then the running time of the

57

10%;
4%, BePI
- £+ Power
10-5 GMRES| 1
S
5107107 1
€
£ 4975 1
(q\V]
—
10*20 L 4
-25 L L L L
102
0BEST 59 100 150 200 250

Number of iterations

Figure 3.8: Accuracy of BEPI according to the number of iterations. BEPI achieves the high-
est accuracy and the fastest convergence compared to other iterative methods.

hub-and-spoke reordering method decreases because the number of iterations of the
reordering method is reduced. Also, as described in Section 3.3.4 and Table 3.3, the
number of non-zeros of the Schur complement decreases as k increases from 0; thus,
the memory usage is reduced. However, setting too large k is not good for query time
because the number of non-zeros and the dimension of the Schur complement be-

come large. As shown in Figure 3.7, when k is around 0.2, it provides a good trade-off

between preprocessing time, memory usage, and query time.

3.5.7 Accuracy

We investigate the accuracy of each iterative method compared to exact RWR solu-
tions r* = cH™!q. We perform this experiment on a small social network, the Physi-
cians dataset °, with 241 nodes and 1,098 edges in order to compute H™!. We select
100 seed nodes randomly, and measure average L2-norm errors between exact RWR
solutions r* and results rY) from each method with € = 10~ after i-th iterations (i.e.,
the errors are measured by computing ||[r* —r(?||,). As seen in Figure 3.8, our method

BEePI shows the best performance in terms of accuracy compared to other iterative

Ohttp://moreno.ss.uci.edu/data.html#ckm

58

 http://moreno.ss.uci.edu/data.html#ckm

Table 3.5: Statistics of the datasets used in Section 3.5.8.

Dataset ‘ Node Edge Description
Gnutella! 62,586 147,892 Peer-to-peer network
HepPH1 34,546 421,578 Coauthorship network
Facebook! 46,952 876,993 Social network
Digg! 279,630 1,731,653 Social network

! http://konect.uni-koblenz.de/

— .4 —~ 4 S 10

& 107 reepy @ 10 %B P 3 10 15 Bl

;8, 3 Bgar] \EJ Bgar :“”i Bzar

10 3 |

® o} 10 ®

'g 10? T A2 g 1

x 10 =1 107 ¢ ~ 10

8 10 > 3

S0} g 10 S

G 2 .0 S .52

= 10 = 10 =10

X O 5o 300% OS50
% S00300, . S00300, 9, . 00300,
’@//Q &Qéof @%,0& &éof 49/{9'0’9 5’605/9{-
(a) Preprocessing time (b) Space for preprocessed data (c) Query time

Figure 3.9: Detailed comparison between BEPI and Bear. Our method BEPI significantly
outperforms Bear, the state-of-the-art preprocessing method [54], in terms of preprocessing
time and memory usage as shown in (a) and (b), and shows faster query speed as in (c).

methods. Furthermore, BEPI converges rapidly with higher accuracy, while power it-
eration and GMRES converge slowly. Note that BEPI is an exact method which can
make the error smaller than any given error tolerance. As shown in Figure 3.8, the
error of our method monotonically decreases and finally becomes smaller than the
given error tolerance, which is also the property of the iterative method that we ex-

ploit [53].

3.5.8 Comparison with the-State-of-the-Art Method

We compare our method with Bear, the-state-of-the-art preprocessing method [54].
Since Bear suffers from the scalability issue in very large graphs as described in Sec-
tion 3.5, we perform this experiment on relatively small graphs that Bear performs
the preprocessing phase successfully. The datasets used in this experiments are sum-

marized in Table 3.5. As shown in Figure 3.9, BEPI significantly outperforms Bear in

59

terms of preprocessing time, memory usage, and query time.

3.6 Summary

In this work, we propose BEPI, a fast, memory-efficient, and scalable algorithm for
random walk with restart computation on billion-scale graphs. BEPI takes the ad-
vantages of both preprocessing methods and iterative methods by incorporating an
iterative method within a block elimination approach. Furthermore, BEPI improves
the performance by decreasing the number of non-zeros of a matrix and applying
a preconditioner. Consequently, BEPI achieves a better scalability as well as faster
query time than existing methods. We give theoretical analysis on the accuracy and
complexities of BEPL Also, we experimentally show that BEPI processes up to 100x
larger graph, and requires up to 130x less memory space than other preprocessing
methods. In the query phase, BEPI computes RWR scores 9x faster than other exist-
ing methods in large graphs which other preprocessing methods fail to process, due

to running out of memory or time.

60

Chapter 4

Personalized Ranking in Signed Graphs

4.1 Introduction

How can we obtain personalized rankings for users in signed social networks? Many
social networks have allowed users to express their trust or distrust to other users.
For example, in online social networks such as Slashdot [63], a user is explicitly able
to mark other users as friends or foes. The users are represented as nodes, and the
expressions are represented as positive and negative edges in graphs which are called
signed networks [106]. Ranking nodes in signed networks has received much interest
from data mining community to reveal trust and distrust between users [63] inducing
many useful applications such as link prediction [89], anomaly detection [63], sign
prediction [90], and community detection [107] in signed networks.

Traditional ranking models, however, do not provide satisfactory node rank-
ings in signed networks. Existing random walk based ranking models such as PageR-
ank [13] and Random Walk with Restart [37, 54, 76, 80, 108, 109] assume only positive
edges; thus, they are inappropriate in the signed networks containing negative edges.
Many researchers have proposed heuristics on the classical methods to make them
computable in signed networks [63, 65]. However, those heuristic methods still have
room to improve in terms of ranking quality since they do not consider complex so-
cial relationships such as friend-of-enemy or enemy-of-friend in their rankings as

shown in Figure 4.2. In addition, most existing ranking models in signed networks

61

focus only on a global node ranking, although personalized rankings are more desir-
able for individuals in many contexts such as recommendation. Also, the fast ranking
computation is important for the computational performance of applications.

In this work, we propose SIGNED RANDOM WALK WITH RESTART (SRWR), a novel
model for effective personalized node rankings in signed networks. The main idea
of SRWR is to introduce a sign into a random surfer in order to let the surfer con-
sider negative edges based on structural balance theory [74, 90]. Consequently, our
model considers complex edge relationships, and makes random walks interpretable
in signed networks. We devise SRWR-ITER, an iterative method which naturally fol-
lows the definition of SRWR, and iteratively update SRWR scores until convergence.
Furthermore, we propose SRWR-PRE, a preprocessing method for computing SRWR
scores quickly which is useful for various applications in signed networks. Through
extensive experiments, we demonstrate that our proposed approach offers improved
performance for personalized rankings compared to alternative methods in signed

social networks. Our main contributions are as follows:

« Novel ranking model. We propose SIGNED RANDOM WALK WITH RESTART
(SRWR), a novel model for personalized rankings in signed networks (Defini-
tion 4.1). We show that our model is a generalized version of RWR working on

both signed and unsigned networks (Property 3).

+ Algorithm. We propose SRWR-ITER and SRWR-PRE for computing SRWR scores.
SRWR-ITER is an iterative algorithm which naturally follows the definition of
SRWR (Algorithm 6). SRWR-PRE is a preprocessing method which employs a
node reordering technique and block elimination to accelerate SRWR compu-

tation speed (Algorithms 7 and 8).

+ Experiment. We show that SRWR achieves higher accuracy for link predic-

62

Table 4.1: Table of symbols used in Chapter 4. Boldface capital letters, such as A, represent

matrices. Boldface small letters, such as r, represent vectors.

Symbol Definition
G=(V,E) signed input graph
A% set of nodes in G
E set of signed edges in G
n number of nodes in G
ny number of spokes in G
ny number of hubs in G

AT AR

N-) Ex ?'fl >

-
+

-

H]

T
|H|ij=Tij
S| St
qi, Pi- ;.

number of edges in G

seed node (= query node, source node)

restart probability

error tolerance

set of in-neighbors to nodes u

set of out-neighbors from nodes u

(n x n) signed adjacency matrix of G
(n x n) absolute adjacency matrix of G
(n x n) out-degree matrix of |A[, D; = 3, |Al;;
(n X n) semi-row normalized matrix of A
(n X n) positive semi-row normalized matrix of A
(n X n) negative semi-row normalized matrix of A

(n x n) absolute row-normalized matrix of |A]

(n x 1) starting vector (= s-th unit vector)

(n x 1) positive score vector

(n x 1) negative score vector

(n x 1) trustworthiness score vector, e.g., r =r" —r~
(nx1)p=r"+r"

(oo [=11l

(nxnm) T=1—(1—c)(yAL — BAT)

(ni xnj) (l]) -th partition of [H| or T

(n2 x ny) Schur complement of [HJ,; or Ty

(n; x 1) i-th partition of ¢, p or r™

n
nx
nXx

63

Rank | Node | T Tore e | e
1st A 0.2500 0.2500 0.0000
2nd E 0.1487 0.1687 0.0200
3rd D 0.0703 0.1416 0.0713
4th C -0.0549 0.0200 0.0750
5th B -0.1465 0.0534 0.1999
Input: a signed network Output: the trustworthiness score vector r
& seed node A w.r.t. the seed node

Figure 4.1: Example of the personalized node ranking problem in Problem 1. Given
a signed network and a seed node (in this example, node A is the seed node), our goal is to
compute the trustworthiness score vector r w.r.t. the seed node. Our proposed model SRWR
(see Definition 4.1 in Section 4.3) aims to compute r based on the positive and negative score
vectorsrT andr,ie,r=r" —r-.

tion (Figure 4.7), predicts trolls 4 x more accurately (Figure 4.9), and provides a
good performance for sign prediction compared to other ranking models (Fig-
ure 4.10). In terms of efficiency, SRWR-PRE preprocesses signed networks up
to 4.5x faster, and requires 11x less memory space than baseline preprocess-
ing methods. Furthermore, SRWR-PRE computes SRWR scores up to 14 x faster

than other methods including SRWR-ITER (Figure 4.13).

The code of our method and datasets used in this paper are available at http:
//datalab.snu.ac.kr/srwrpre. The rest of this paper is organized as follows. We first
introduce the formal definition of the personalized ranking problem in signed net-
works at Section 4.2. In Section 4.3, we describe our proposed model and algorithms
for computing personalized rankings. After presenting experimental results in Sec-
tion 4.4, we summarize this work in Section 4.5. Table 4.1 lists the symbols used in

this chapter.

64

http://datalab.snu.ac.kr/srwrpre
http://datalab.snu.ac.kr/srwrpre

4.2 Problem Definition

We define the personalized ranking problem in signed networks as follows:

Problem 1 (Personalized Node Ranking in Signed Networks).
e Input: a signed network G = (V,E) and a seed node s where V is the set of nodes,

and E is the set of signed edges.

e Output: a trustworthiness score vector r € R" of all other nodes for seed node s

to rank those nodes w.r.t. seed node s. []

In signed social networks, users are represented as nodes, and trust or distrust
relations between users are represented as positive or negative edges. When a user
u considers that a user v is trustworthy, a positive edge u — v is formed. On the
contrary, a negative edge u — v is formed when u distrusts v. Given those signed
edges between nodes and a seed node s, the personalized ranking problem is to rank
all other nodes w.r.t. seed node s in the order of trustworthiness scores represented
by r where r, indicates how much seed node s should trust node u as depicted in
Figure 4.1. If the score r, is high, then s is likely to trust u. Otherwise, s is likely to

distrust u.

4.3 Proposed Method

We propose SIGNED RANDOM WALK wITH RESTART (SRWR), a novel ranking model for
signed networks in Section 4.3.1. Then we first develop an iterative algorithm SRWR-
ITER for computing SRWR scores w.r.t. a seed node in Section 4.3.2, and then propose
a preprocessing algorithm SRWR-PRE to accelerate SRWR computation speed in Sec-

tion 4.3.3.

65

A A A £ £ K
OO0 66—
A & A £ £
o -0 e+
A _ A, A A _ A, X
O O —0 66— —0
A A A& £ R
[N\ ONN - / !
(a) Traditional random walks (b) Signed random walks

Figure 4.2: Examples of traditional random walks and signed random walks. Each
case represents 1) friend’s friend, 2) friend’s enemy, 3) enemy’s friend, or 4) enemy’s enemy
from the top. A random surfer has either a positive (blue) or a negative (red) sign on each
node in Figure 4.2(b). When the signed surfer traverses a negative edge, she changes her sign
from positive to negative or vice versa.

4.3.1 Signed Random Walk with Restart Model

As discussed in Section 4.1, complicated relationships of signed edges are the main
obstacles for providing effective rankings in signed networks. Most existing works on
signed networks have not focused on personalized rankings. In this work, our goal is
to design a novel ranking model which resolves those problems in signed networks.
The main ideas of our model are as follows:

« We introduce a signed random surfer. The sign of the surfer is either positive

or negative, which means favorable or adversarial to a node, respectively.

+ When the random surfer encounters a negative edge, she changes her sign from

positive to negative, or vice versa. Otherwise, she keeps her sign.

« We introduce balance attenuation factors into the surfer to consider the uncer-
tainty for friendship of enemies.

There are four cases according to the signs of edges as shown in Figure 4.2: 1)

friend’s friend, 2) friend’s enemy, 3) enemy’s friend, and 4) enemy’s enemy. Suppose

a random surfer starts at node s toward node ¢. A traditional surfer just moves along

66

the edges without considering signs as seen in Figure 4.2(a) since there is no way
to consider the signs on the edges. Hence, classical models cannot distinguish those
edge relationships during her walks. For instance, the model considers that node s
and node ¢ are friends for the second case (friend’s enemy), even though node ¢ are
more likely to be an enemy w.r.t. node s.

On the contrary, our model in Figure 4.2(b) has a signed random surfer who
considers those complex edge relationships. If the random surfer starting at node s
with a positive sign encounters a negative edge, she flips her sign from positive to
negative, or vice versa. Our model distinguishes whether node ¢ is the friend of node
s or not according to her sign at node 7. As shown in Figure 4.2(b), the results for
all cases from our model are consistent with structural balance theory [74]. Thus,
introducing a signed random surfer enables our model to discriminate those edge
relationships.

Trust or distrust relationships between a specific node s and other nodes are re-
vealed as the surfer is allowed to move around a signed network starting from node
s. If the positive surfer visits a certain node # many times, then node u is trustable
for node s. On the other hand, if the negative surfer visits node # many times, then
node s is not likely to trust node u. Thus, rankings are obtained by revealing a degree
of trust or distrust between people based on the signed random walks. Here, we for-
mally define our model on signed networks in Definition 4.1. Note that Definition 4.1

involves the concept of restart which provides personalized rankings w.r.t. a user.

Definition 4.1 (Signed Random Walk with Restart). A signed random surfer has a
sign, which is either positive or negative. At the beginning, the surfer starts with + sign
from a seed node s because she trusts s. Suppose the surfer is currently at node u, and c

is the restart probability of the surfer. Then, she takes one of the following actions:

67

e Action 1: Signed Random Walk. The surfer randomly moves to one of the neigh-
bors from node u with probability 1 — c. The surfer flips her sign if she encounters

a negative edge. Otherwise, she keeps her sign.

e Action 2: Restart. The surfer goes back to the seed node s with probability c. Her

sign should become + at the seed node s because she trusts s.]

We measure two probabilities on each node through SIGNED RANDOM WALK
WITH RESTART (SRWR) starting from the seed node s. The two probabilities are rep-
resented as follows:

« r) = P(u,+): the probability that the positive surfer visits node u after SRWR

from seed node s.

« r,, = P(u,—): the probability that the negative surfer visits node u after SRWR
from seed node s.

Note that r) (or r;) corresponds to a ratio of how many times the positive (or
negative) surfer visits node u during SRWR. If the positive surfer visits node u much
more than the negative one, then s is likely to trust u. Otherwise, s is likely to distrust
u. In other words, s would consider u as a positive node if r}} is greater than r;,. On
the contrary, s would treat u as a negative one if r,, is greater than r; . Based on this
intuition, we define the relative trustworthiness score r, = r;’ —r;, between s and u.
For all nodes, r is a positive score vector and r™ is a negative score vector of SRWR.
Then, the trustworthiness score vector for SRWR is represented as r = r* —r~, the
output of Problem 1. Many researchers have dealt with trust and distrust between
nodes through such representation for trustworthiness [63, 65, 110, 91]. Especially,
the interpretation of the resulting values from r, = r;; —r,, is consistent with what
Kunegis et al. said as follows:

« “The resulting popularity (based on trustworthiness) measure admits both posi-

68

0 1 0o 1
]+ T+ rt 1+
-

n 0 1 F3n 0 1
ﬂ ﬂ r* I+ ﬂ r__+
- - -
(a) A trustful case (b) A neutral case (c) A distrustful case

Figure 4.3: Examples of how to interpret positive and negative scores of SRWR be-
tween nodes s and u. The bars on node u depict how many the signed surfer visits that node,
indicating positive and negative scores between s and u. (a) and (c) represent trustful and
distrustful cases between those nodes: s is likely to trust u in (a), and s is likely to distrust u in
(c). However, if the those scores are similar as in (b), it is difficult for node s to decide whether
to trust node u or not. Hence, s is likely to be neutral about node u in (b).

tive and negative values, and represents a measure of popularity in the network,
with positive edges corresponding to a positive endorsement and negative edges to
negative endorsements. This interpretation is consistent with the semantics of the
friend’ and ‘foe’ relationships [63].”

Note that from the viewpoint of measure theory, the relative trustworthiness r,
is also an acceptable measure as signed measure [111] if we consider r;” and r; as non-
negative measures (i.e., rj > 0andr, > 0). We discuss this in detail in Appendix A.5.

Discussion on positive and negative SRWR scores. We explain how to in-
terpret positive and negative SRWR scores using an example in Figure 4.3. Suppose
the signed surfer starts at node s, and performs SRWR to measure the trustworthi-
ness between nodes s and u. Note that the trustworthiness score depends on which
signed surfer stays at node u more frequently. Then, there would be three cases de-
pending on the link structure between s and u as shown in Figure 4.3. For the case

in Figure 4.3(a), s is likely to trust u since the positive surfer visits ¥ much more than

69

the negative surfer through paths from s to u (i.e., the positive score is larger than
the negative one at u). For the opposite case in Figure 4.3(c), s is likely to distrust
u because the negative surfer frequently visits u. However, if those scores on u are
similar as shown in Figure 4.3(b), then it is hard for s to determine whether to trust
u or not. In this case s is likely to be neutral about node u. Thus, the trustworthiness
score r, of the trustful case is high (and positive in SRWR), and that of the distrustful
case is low (and negative in SRWR). For the neutral case, the score would be in the
middle (and around zero between —1 and 1 in SRWR).

Connection to balance theory. According to balance theory [74, 112], Fig-
ure 4.3(a) and 4.3(c) are balanced networks because the graphs are divided into two
sets of users with mutual antagonism between the sets. For example, the set of nodes
{vi,v2,s} and the other set of nodes {w,w,,u} in Figure 4.3(c) are connected with
negative edges, and nodes in each set are positively connected. In the balanced net-
works, each node has either a positive score or a negative one. Because the signed
surfer changes her sign walking negative edges linking the two groups, the positive
surfer stays and walks only in one group and the negative surfer stays and walks
only in the other group. However, Figure 4.3(b) is an unbalanced network because
it cannot be divided into two sets that are negatively connected each other. Hence,
positive and negative surfers visits the same node, i.e., each node has both positive
and negative scores. In this case, the trustworthiness score on a node is determined
by which signed surfer visits the node more frequently, which is represented by the

difference between positive and negative scores.

70

4.3.1.1

We formulate the probability vectors, r* and r~, following SIGNED RANDOM WALK
wITH RESTART. First, we explain how to define r* and r~ using the example shown
in Figure 4.4. In the example, we label a (sign, transition probability) pair on each
edge. For instance, the transition probability for the positive edge from node i to
node u is 1/3 because node i has 3 outgoing edges. This edge is denoted by (+,1/3).
Other pairs of signs and transition probabilities are also similarly defined. In order
that the random surfer has a positive sign on node u at time ¢ + 1, a positive surfer
on one of #’s neighbor at time r must move to node u through a positive edge, or a
negative surfer must move through a negative edge according to the signed random

walk action in Definition 4.1. Considering the restart action of the surfer with the

(= 1/2)
rit+1)

rE(t)
i (0)

(a) An example of a positive
probability, r;} (t +1)

Figure 4.4: Examples of how r),

Formulation for Signed Random Walk with Restart

+

(=1/2)

T (0
(0

ry(t+1)

(b) An example of a negative
probability, r, (f+1)

and r, are defined in SRWR.

probability c, r}} (+ 1) in Figure 4.4(a) is represented as follows:

r (t)

I‘; (l‘) r]: (t)

r;(t+1)—(1—c)(o

+

71

2+2

) +cl(u=s)

where 1(u = s) is 1 if u is the seed node s and 0 otherwise. In Figure 4.4(b), r,, (t + 1)

is defined similarly as follows:

_ rt r
r,(+1)=1-c) (r‘f) + ’2(0 + ,j;r))

Note that we do not add the restarting score c1(u = s) to r; (r + 1) in this case
because the surfer’s sign must become positive when she goes back to the seed node

s. The recursive equations of our model are defined as follows:

rf=(1-c) Z Z +cl(u=s)
veﬁ+? ?

r, =(1-c¢) Z Z

veﬁ Rﬁ e‘ﬁ*

where ﬁ,- is the set of in-neighbors of node i, and ﬁ,- is the set of out-neighbors
of node i. Superscripts of ﬁ,- or ﬁ,- indicate signs of edges between node i and its
neighbors (e.g., ﬁf indicates the set of positively connected in-neighbors of node i).
We need to introduce several symbols related to an adjacency matrix A to vectorize

Equation (4.1).

Definition 4.2 (Signed adjacency matrix). The signed adjacency matrix A of G is a
matrix such that A, is positive or negative when there is a positive or a negative edge

from node u to node v respectively, and zero otherwise. |

Definition 4.3 (Semi-row normalized matrix). Let |A| be the absolute adjacency ma-
trix of A, and D be the out-degree diagonal matrix of |A| (i.e, Di = >_;|Al;j). Then

semi-row normalized matrix of A isA =D~ 'A. |

Definition 4.4 (Positive or negative semi-row normalized matrix). The positive semi-

72

- b= 8 650
° °u !

(a) The surfer’s sign at node ¢ is positive with) The surfer’s sign at node 7 is negative
B (balanced case) with 1 — 3 (unbalanced case)

¥ K, A £ _ K, K
O—0 @O0

(c) The surfer’s sign at node ¢ is negative (d) The surfer’s sign at node ¢ is positive with
with v (balanced case) 1 — v (unbalanced case)

Figure 4.5: Examples of balance attenuation factors. (a) and (b) represent the uncertainty
for “the enemy of my enemy is my friend” with probability B, and (c) and (d) represent the
uncertainty for “the friend of my enemy is my enemy” with probability .

row normalized matrix Ay contains only positive values in the semi-row normalized
matrix A. The negative semi-row normalized matrix A_ contains absolute values of

negative elements in A. In other words, A=A, —A_, and |A|=A +A _. [|

Based on Definitions 4.3 and 4.4, Equation (4.1) is represented as follows:

r' =(1-c¢) (AIr* —H&Tr’) +cq
(4.2)
r =(1—c¢) (Ajr* +Alr’>

where (is a vector whose sth element is 1 and all other elements are 0.

4.3.1.2 Balance Attenuation Factors

The signed surfer measures positive and negative scores of nodes w.r.t. a seed node
in terms of trust and distrust according to edge relationships as discussed in Sec-
tion 4.3.1. Our model in Definition 4.1 strongly supports the four cases between nodes
in Figure 4.2(b) where those cases represent strong balance theory [75, 74]. How-

ever, recent works [113] have argued that the strong balance theory is unsatisfactory

73

for fully supporting real-world signed networks, since unbalanced relationships fre-
quently appear. Thus, this limitation would be naturally inherent in our model. To al-
leviate this limitation, many researchers have studied weak balance theory [114, 113]
which generalizes the strong balance theory by allowing several unbalanced cases
such as “the enemy of my enemy is my enemy”. Similarly, we adopt the generaliza-
tion strategy of the weak balance theory to make our model flexible on unbalanced
networks through dealing with both balanced and unbalanced cases.

We consider that the relationship of enemies of a seed user is uncertain since
the user cannot believe the information provided by her enemies. We reflect the un-
certainty of the relationship of those enemies into our ranking model by introducing
stochastic parameters, B and v, called balance attenuation factors. Note that we as-
sume that the positive and negative relationship of friends of the seed user is reliable
since the user trusts her friends. 3 is a parameter for the uncertainty of "the enemy of
my enemy is my friend”, and 7 is for “the friend of my enemy is my enemy.” We first
explain B using the fourth case (enemy’s enemy) in Figure 4.2(b). Suppose a surfer
with a positive sign starts at node s toward node ¢ and encounters two consecutive
negative edges. Based on strong balance theory, her sign becomes negative at the
intermediate node m and positive at node ¢ in Figure 4.5(a). However, some people
might think that the enemy of my enemy is my enemy as shown in Figure 4.5(b). In
this case, her sign will be negative at nodes m and ¢. To consider this uncertainty, we
introduce a parameter 3 so that if the negative surfer at node m encounters a negative
edge, her sign becomes positive with probability B or negative with 1 — 3 at node ¢.
The other parameter Y is also interpreted similarly to 3. When the negative surfer at
node m encounters a positive edge, her sign will be negative with probability y or

positive with 1 —1 at node ¢ as in Figures 4.5(c) and 4.5(d). SRWR with the balance

74

attenuation factors is represented as follows:

rt=(1-¢) (Aw FBATr +(1 _ymr—) +oq
(4.3)
r=(1—c) (Ajﬁ AT+ (1 s)Ajf)

Discussion on other balance attenuation factors. Note that other parame-
ters for the uncertainties of “enemy of friend” and "friend of friend” could be easily
adopted into our model. However, we do not reflect those parameters on our model
with the following reasons:

« As described in this subsection, we assume that the positive and negative rela-
tionship of friends of a seed user is reliable and stable. If the seed user’s friends
distrust a user, then she is unlikely to believe the user since the user trusts her

friends.

« Introducing the additional parameters could improve the performance of ap-
plications in signed networks, but it increases the complexity of our model
considering too many uncertain cases. We consider that introducing 3 and 7y
achieves a good trade-off between the model complexity and the performance
of each application as shown in Section 4.4.

Discussion on the initial sign. In Definition 4.1, we initialize the signed surfer
as positive when she restarts at a seed node s. One might consider that our model is
easily extendable to probabilistically initializing the signed surfer as negative for the
restart action. Let p denote the probability of being the positive surfer for the restart
action. Then, the extended version is established by changing cq to (¢ x p)q in the
first equation and adding (¢ x (1 — p))q into the second equation of equation (4.3).
However, we do not consider such case with the following reason:

« Ifthe negative surfer starts at s, the surfer becomes positive at nodes negatively

75

connected from s and negative at those positively connected from s. This im-
plies that the surfer recognizes the friends of s as enemies and the enemies of
s as friends. Thus, it is hard to interpret the scores measured by the negative

initial surfer in terms of trustworthiness for s based on balance theory.

4.3.2 SRWR-ITER: Iterative Algorithm for Signed Random
Walk with Restart

We present an iterative algorithm SRWR-ITER for computing SRWR scores based on
Equation (4.3). Note that the solution of a linear system with recursive structure is
typically and efficiently obtained via an iterative manner such as power iteration
and Jacobi method [115]. We also adopt such iterative strategy to solve the recursive
equations in Equation (4.3). We describe how SRWR-ITER obtains the trustworthiness
SRWR score vector r given a signed network and a seed node in Algorithms 5 and 6.
Moreover, we prove that the iterative approach in SRWR-ITER converges, and returns
a unique solution for the seed node in Theorem 4.1 of Section 4.3.2.2.

Normalization phase (Algorithm 5). Our proposed algorithm first computes

the out-degree diagonal matrix D of |A|, which is the absolute adjacency matrix of
A (line 1). Then, the algorithm computes the semi-row normalized matrix A using D
(line 2). We split A into two matrices: the positive semi-row normalized matrix (A,)
and the negative semi-row normalized matrix (A_) (line 3) satisfying A=A, —A_.

Iteration phase (Algorithm 6). Our algorithm computes the SRWR score vec-
torsr™ and r~ for the seed node s with the balance attenuation factors (f and y) in the
iteration phase. We set q to s-th unit vector, and initialize r* to q and r~ to 0 (lines

1 and 2). Our algorithm iteratively computes Equation (4.3) (lines 4 and 5). We con-

catenate r* and r~ vertically (line 6) into h. We then compute the error 8 between

76

Algorithm 5: Normalization phase of SRWR-ITER
Input: signed adjacency matrix: A
Output: positive semi-row normalized matrix: A |, and negative semi-row normalized
matrix: A_
: compute out-degree matrix D of |A

1 D =37 Al
2: compute semi-row normalized matrix, A = D~'A.
3: split A into A} and A_ suchthat A=A —A_
4

: return A, and A_

h and h’ which is the result in the previous iteration (line 7). We update h into h’
for the next iteration (line 8). The iteration stops when the error 8 is smaller than a
threshold € (line 9). We finally return the trustworthiness score vector r used for the

personalized ranking w.r.t. s by computing r = r* —r~ (lines 10 and 11).

4.3.2.1 Space and Time Complexities of SRWR-ITER

Lemma 4.1 (Space and Time Complexities of SRWR-ITER). Letn and m denote
the number of nodes and edges of a signed network, respectively. Then, the space com-
plexity of Algorithm 6 is O(n+ m). The time complexity of Algorithm 6 is O(T (n+m))
where the number T of iterations islog, .5, c is the restart probability, and € is an error

tolerance.

Proof. The space complexity for A, and A_ is O(m) if we exploit a sparse matrix
format such as compressed column storage to save the matrices. We need O(n) for
SRWR score vectors r™ and r~. Thus, the space complexity is O(n+m). One iteration
in Algorithm 6 takes O(n + m) time due to sparse matrix vector multiplications and
vector additions where the time complexity of a sparse matrix vector multiplication
is linear to the number of non-zeros of a matrix [100]. Hence, the total time complex-
ity is O(T (n+m)) where the number T of iterations is log; .5 which is proved in

Lemma 4.2. O

77

Algorithm 6: Iteration phase of SRWR-ITER

Input: positive semi-row normalized matrix: A ;, and negative semi-row normalized
matrix: A_, and seed node: s, restart probability: ¢, balance attenuation factors: B and ¥,
and error tolerance: €.

Output: trustworthiness SRWR score vector: r

1: set the starting vector q from the seed node s
2 setrt =q,r" =0,andh’ = [r";r|
3: repeat

4t (1-o)Alrt +BAIr + (1-yAlr) +cq

50 1 (1-¢)(Alrt +yALr +(1-B)A)

6: concatenate r* and r~ into h = [r*;r]"

7: compute the error between h and h’ ,0=|h—H|

8: update h’ + h for the next iteration

9: until d < ¢

10: computer =r" —r~

11: return r

4.3.2.2 Theoretical Analysis of Iterative Algorithm and Signed
Random Walk with Restart

We theoretically analyze the iterative algorithm SRWR-ITER and the properties of
Signed Random Walk with Restart.

Convergence Analysis of SRWR-ITER. We show that the iteration in Algo-
rithm 6 converges to the solution of a linear system as described in the following

theorem.

Theorem 4.1 (Convergence of SRWR-ITER). Supposeh = [r*;r~|" and q; = [q;0]".

Then the iteration forh in Algorithm 6 converges to the solutionh = c(I— (1 —c)BT) g,

[T BAT+(1-pAl
where BT = ~+ P E Y)~+.
AT (1-B)AT+4A]

Proof. Equation (4.3) is represented as follows:

rt Al BAT+(1—pAT| [rt q "
=(1—c) + PA-H-mA, +c| | @h=(1—-c)B h+cq,

r AT (1-BAT+yAl| |r~

78

N Al BAT+(1—-ypAT r-
where BT = . + P (~ Y . * ,h= ,and q; = q . Thus, the iteration
AT (1-B)AT +9A] r 0
in Algorithm 6 is written as in the following equation:

h® = (1—¢)BTh*D 4 ¢q,

= ((1 - c)1~3T)2h(k_2> + ((1 —¢)BT +I) cqs

=~

:<(1_C)BT)kh<0>+ ._1 ((1—0)1~3T)j cds

Il
o

The spectral radius p((1 —¢)B") = (1 —¢) < 1 when 0 < ¢ < 1 since B' is a col-
umn stochastic matrix and its largest eigenvalue is 1 [115]. Therefore, limy_,o.((1 —

¢)BT)*h(® = 0 and lim;_...h¥) converges as follows:

>~

lim h®) =0+ lim 3 ((1 —c)fsT>j cq, = c (I— (1- c)ﬁT)_l a@.

k—ro0 k—ro0

Il
<

J
In the above equation, > 7 o((1 — c)BT)/ is a geometric series of the matrix (1 —
¢)B', and the series converges to (I— (1 —¢)B')~! since the spectral radius of (1 —
¢)BT is less than one. Note that the inverse matrix is a non-negative matrix whose
entries are positive or zero because the matrix is the sum of non-negative matrices
(e, D7 o((1— ¢)BT)/). Hence, each entry of h is non-negative (i.e., h, > 0 for any
node u). O

Error analysis of SRWR-ITER. We show that the error of SRWR-ITER mono-

tonically decrease over iterations using the following lemma.
Lemma 4.2 (Error analysis of SRWR-ITER). Suppose h = [r*:r"]", and h¥) is the

79

result of k-th iteration in SRWR-ITER. Let 8%) denote the error |hY) —h*=1||\. Then
8®) < 2(1 —¢)X, and the estimated number T of iterations for convergence is log, .5

where € is an error tolerance, and c is the restart probability.

Proof. According to Equation (4.4), 8 is represented as follows:

) 1%~ By = (1=)[BT (0D ~hO-2)
< (1=)[BT 1 [h¢Y —h-2)

— (1= n*) = h2))y = (1 -)5

Note that |B"||; = 1 since B is column stochastic as described in Theorem 4.1.
Hence, 8% < (1—¢)8%2) <. < (1 —¢)*8(V). Since 81 =||h() —h(@|; < ||h(D]|; +-
[h@; =2, 8% < 2(1 — ¢)*. Note that when 8%) < ¢, the iteration of SRWR-ITER is
terminated. Thus, for k <log,_. %, the iteration is terminated, and the number T of

iterations for convergence is estimated at log; . 5. O

Properties of SRWR. We discuss the properties of our ranking model SRWR to
answer the following questions: 1) Is the resulting SRWR score vector a probability
distribution (Property 1)? 2) Is the signed random surfer able to visit all nodes in
a network which is strongly connected (Property 2)? and 3) Does SRWR work on

unsigned networks as well (Property 3)?

Property 1. Consider the recursive equationp = (1 —c¢)|A|"p+cq wherep =r* +r-

and |A|" is a column stochastic matrix. Then 1'p =3, p; = 1.

Proof. By multiplying both sides by 1T, the equation is represented as follows:

p=(1-¢c)A"p+cqe1'p=(1-c)1T|A|"p+cl'q

80

Note that 17|A|" = (JA|1)", and |A| is a row stochastic matrix; thus, (|A[1)T =17,

Hence, the above equation is represented as follows:
1'p=(1-c)1"TA|"p+cl'qe1'p=(1-c)1"p+ce1'p=1

This indicates that the resulting SRWR scores follow a probability distribution. [

Property 2. Suppose a signed network is strongly connected. Then, all entries of v + 1~

are positive (i.e,r" +r~ >0).

Proof. Let r* +r~ be p. By summing the recursive equations on r™ and r™ in Equa-

tion (4.3), p is represented as follows:
p=(1-c)(Alp+ATp) +cqp=(1-c)A|p+cqep=Gp

where |A| = A, +A_ by Definition4.3,G = (1—¢)|A| " +cql",and 1"p=>",p; =1
by Property 1. Note that the graph represented by G is also strongly connected since
the graph of |A| has the same topology with the original graph which is strongly
connected. Moreover, the graph represented by G has a self-loop at the seed node s
due to cql'. Thus, G is irreducible and aperiodic. Hence, all entries of p = r* 41~

are positive according to Perron-Frobenius theorem [83]. O

Note that r} (or r,) indicates that the stationary probability of the positive (or
negative) surfer visits node u after performing SRWR starting from a seed node. Ac-
cording to Property 2, r} +r; for an arbitrary node u is always positive if a given
signed network is strongly connected. That is, the signed random surfer is able to

visit node u with probability r;” +r; which is always greater than zero.

81

Property 3. The result of SRWR on networks containing only positive edges is the same

as that of RWR.

Proof. A = A and A_ = 0, because the adjacency matrix A only contains pos-
itive edges. Also, r~ = 0, at the beginning time of Algorithm 6. Equation (4.3) is

represented as follows:

r* = (1=¢) (AT +BOpcn x Ot + (1= Y)AT0,1) +cq

r=(1—c) (om 1 YA 0t 4 (1 — B)0psn X o,m)

Therefore, r~ = 0,x; and r* = (1 —¢)ATr* + cq. The equation of r is exactly the

same as that of RWR. O

This implies that our model SRWR is a generalized version of RWR working on

both unsigned and signed networks in the following property.

4.3.3 SRWR-PRE: Preprocessing Algorithm for Signed Ran-
dom Walk with Restart

We propose SRWR-PRE, a preprocessing algorithm to quickly compute SRWR scores.
The iterative approach SRWR-ITER in Algorithm 6 requires multiple matrix-vector
multiplications to compute SRWR scores whenever seed node s changes; thus the
iterative method is not fast enough when we require SRWR scores for any pair of
nodes in large-scale signed networks. Our goal is to directly compute SRWR scores
from precomputed intermediate data without iterations. We exploit the following
ideas for our preprocessing method:

« The positive and negative SRWR score vectors r and r™~ are obtained by solv-

ing linear systems (Section 4.3.3.1).

82

+ The adjacency matrix of real-world graphs is permuted so that it contains a
large but easy-to-invert block diagonal matrix as shown in Figure 4.6 (Sec-

tion 4.3.3.2).

« The block elimination approach efficiently solves a linear system on a matrix if
it has an easy-to-invert sub-matrix (Section 4.3.3.3).

Our preprocessing method comprises two phases: preprocessing phase (Algo-
rithm 7) and query phase (Algorithm 8). The preprocessing phase preprocesses a
given signed adjacency matrix into several sub-matrices required in the query phase
to compute SRWR scores w.r.t. seed node s. Note that the preprocessing phase is per-
formed once, and the query phase is run for each seed node. The starting vector q in
Equation (4.3) is called an SRWR query, and r* and r™ are the results corresponding
to the query q. The query vector q is determined by the seed node s, and r* and r~
are distinct for each SRWR query. To exploit sparsity of graphs, we save all matrices
in a sparse matrix format such as compressed column storage [100] which stores only

non-zero entries and their locations.

4.3.3.1 Formulation of Signed Random Walk with Restart

as Linear Systems

We first represent linear systems related to r* and r™. Let p be the sum of r™ and r™

(i.e, p=r" +r7). Then, p is the solution of the following linear system:

Hlp=cq&p=cH 'q (4.5)

83

where [H| =I1— (1 —¢)|A|" and |A| = A, 4+ A_. The proof of Equation (4.5) is pre-

sented in Lemma 4.3. The linear system for r™ is given by the following equation:
Tr = (1-0ATper =(1-c) (T/(ATp)) (4.6)

where T =1— (1 —c)(YAL —BAT), and yand P are balance attenuation factors. The-
orem 4.2 shows the proof of Equation (4.6). Based on the aforementioned linear sys-
tems in Equations (4.5) and (4.6), r~ and r for a given seed node s are computed as

follows:
1. Set a query vector q whose s-th element is 1 and all other elements are 0.
2. Solve the linear system in Equation (4.5) to obtain the solution p.
3. Compute r~ by solving the linear system in Equation (4.6).
4. Computert =p—r".

H =1-(1-¢)A|" and |A|=A, +A_.

Lemma 4.3. Suppose thatp =r" 41",

Then, p is the solution of the following linear system:

Hp=cq<p=cH 'q

Proof. According to the result in Property 2, the recursive equation for p is repre-

sented as follows:

p=(1-0c)A|"p+cq

where |A| = A +A_ is the row-normalized matrix of |A|. The linear system for p is

84

represented by moving (1 —¢)|A|"p to the left side as follows:

(1= (1-)IAI") p=cq = Hp = cq
where [H| is I — (1 —c)|A|". Note that [H| is invertible when 0 < ¢ < 1 because it is
strictly diagonally dominant [116]. Hence, p = ¢|H| 'q. O

Theorem 4.2. The SRWR score vectorst' and r~ from Equation (4.3) are represented

as follows:
rt = p—r
r =(1-c¢) (T_l (Ajp))

wherep =c[H|'q, T=1—(1—c¢) (YAL —BAT), andy and B are balance attenuation

factors which are between 0 and 1 (i.e., 0 <7y, < 1).

Proof. Note that r~ = (1 —¢)(ALr" +yAlr™ + (1 —B)A r™) by Equation (4.3), and
r* =p—r~ according to Lemma 4.3. The equation for r™ is represented by plugging

r* =p—r" asfollows:

r=(1—c) (Afp—z&fr* AT+ (1— B)Afr*) =

r=(1-c) (YAI - 3AI) r+(1-c)Alp

We move (1 —c)(YAL —BAT)r~ to the left side; then, the above equation is repre-

sented as follows:

(1_ (1-c)(yAT — BAT)) r=(-cApeTr =(1-cAp

85

where T is I— (1 —c¢)(YAL — BAT). Note that the matrix T is strictly diagonally
dominant when 0 < ¢ < 1 and 0 < v, < 1; thus, T is invertible. Hence, r~ = (1 —

¢)(T~'(ATp)). rt is obtained by computing r* =p—r~. O

One naive approach (Inversion) for SRWR score vectors r™ and r~ based on
the linear systems in Equations (4.5) and (4.6) is to precompute the inverse of the
matrices |H| and T. However, this approach is impractical for large-scale graphs since
inverting a matrix requires O(n®) time and O(n?) space where 7 is the dimensions
of the matrix. Another approach (LU) is to obtain the inverse of LU factors of |H|
and T after reordering the matrices in the order of node degrees as suggested in [60]
(le.p=c(Uy' (Ly'q));r™ = (1—¢)(U ' (L' (ATp))) where [H|~' = U, 'L, ! and
T !'= U;,l L;,l). Although LU is more efficient than Inversion in terms of time and
space as shown in Figure 4.13, LU still has a performance issue due to O(n?) time
and O(n?) space complexities. On the other hand, our preprocessing method SRWR-
PrE is faster and more memory efficient than Inversion and LU as we will see in

Section 4.4.7.

4.3.3.2 Node Reordering based on Hub-and-Spoke Structure

SRWR-PRE permutes the matrices |H| and T using a reordering technique based on
hub-and-spoke structure. Previous works [54, 80] have exploited the reordering tech-
nique to reduce computational cost of graph operations in real-world graphs. We also
adopt the node reordering based on hub-and-spoke structure to efficiently solve the
linear systems in Equations (4.5) and (4.6).

The hub-and-spoke structure indicates that most real-world graphs follow power-
law degree distribution with few hubs (very high degree nodes) and majority of

spokes (low degree nodes). The structure has been utilized to concentrate entries

86

[H]

(a) Original matrix [H| in the (b) Original matrix [H| in the
Wikipedia dataset Slashdot dataset

(c) Original matrix |H| in the
Epinions dataset

|H|11 |H|12 |H|11) |H|12 IHlll |H|12

[H|24 [HI, 1:1P% Hlz [Hlyg [Hl2,

(d) Reordered matrix |H| in the (e) Reordered matrix |H| in the (f) Reordered matrix |H| in the

Wikipedia dataset Slashdot dataset Epinions dataset

Figure 4.6: Result of node reordering on each signed network. (a), (b), and (c) are the
original matrix |H| before node reordering in the Wikipedia, the Slashdot, and the Epinions
datasets, respectively. (d), (e) and (f) present [H| reordered by the hub-and-spoke method.

Note that T is also reordered equivalently to |H| since they have the same sparsity pattern.
[H|,, and T are block diagonal.

87

of an adjacency matrix by reordering nodes as shown in Figure 4.6. Any reordering
method based on the hub-and-spoke structure can be utilized for the purpose; in this
paper, we use SlashBurn [98, 117] as a hub-and-spoke reordering method because it
shows the best performance in concentrating entries of an adjacency matrix (see the
details in Appendix A.1).

We reorder nodes of the signed adjacency matrix A so that reordered matrix
contains a large but easy-to-invert submatrix such as block diagonal matrix as shown
in Figure 4.6. We then compute [H| =1— (1 —¢)(AL +AT) and T=T— (1 —c)(yAL -

BAT). Note that |H| and T have the same sparsity pattern as the reordered adjacency

matrix AT except for the diagonal part. Hence, |[H| and T are partitioned as follows:

H H T Ti2
H| = H[,, [H]}, T=) (4.7)
H|,, [H]y, Ty Txn

Let n; and ny denote the number of spokes and hubs, respectively (see the details

in Appendix A.1). Then |H|,, and T are n; x n matrices, |H|,, and T, are n; x ny

matrices, [H|,, and T, are np X n| matrices, and |H|,, and Ty, are ny x np matrices.

The linear systems for |[H| and T in Equations (4.5) and (4.6) are represented as follows:

Hl, H,| (e fa
Hip— cq & H|,;, [H}, . 48)
_‘H|21 ‘H‘zz P2 q2
_T11 Tip| |, t
Tr =(1-ote " =0-0) (4.9)
_T21 T22 1’5 t2

where t = ATp is an n x 1 vector.

88

4.3.3.3 Block Elimination for Solving Linear Systems

The solutions of the partitioned linear systems in Equations (4.8) and (4.9) are ob-

tained by the following equations:

p— | 1 _ |H|1_11 (cqi — [H]},p2) (4.10)
p2| [c(S (a2~ H, (H[(@)
- i _ T (1-c)ts = Tiary) (411)
] L=y (=T (T (1))

where S = [H|,, — [H|,, IH|,'[H|,, is the Schur complement of [H|,, and St =
Ty — Tlefllle is the Schur complement of T;;. Equations (4.10) and (4.11) are de-
rived by applying block elimination described in Lemma 4.4 to the partitioned linear
systems in Equations (4.8) and (4.9), respectively. Note that the sub-matrices [H|,
and Ty; are invertible when 0 < ¢ < 1 and 0 < 7, < 1 since they are strictly diag-
onally dominant. If all matrices in Equations (4.10) and (4.11) are precomputed, then
the SRWR score vectors r™ and r~ are efficiently and directly computed from the

precomputed matrices.

Lemma 4.4 (Block Elimination [99]). Suppose a linear system Ax = b is partitioned

as follows:

Ay An| |x b,

where Ay and Ayy are square matrices. If the sub-matrix A1y is invertible, then the

89

Algorithm 7: Preprocessing phase of SRWR-PRE

Input: signed adjacency matrix: A, restart probability: ¢, balance attenuation factors:

B andy

Output: preprocessed matrices from |H| and T, negative semi-row normalized matrix A _

—_
I

R A A >

reorder A using the hub-and-spoke reordering method [98, 117]

compute Ay and A_ from A using Algorithm 5

compute [H| and T, i.e, [H =1— (1 —¢)|A|" and T=1— (1 —c)(yA] —BAT)
partition |H| into [H|,,, [H|,5, |H|,;, |H]5,, and compute |H\1_11

partition T into Ty, T2, T21, T2z, and compute T7;

compute the Schur complement of [H|y, i.e., Sjg = [H|5, — [H|,, H|,'[H],,
compute the Schur complement of Ty, i.e., ST =Ty — T21T1_11T12

compute the inverse of LU factors of S|H‘, ie., SEI = U‘}_II‘LFHI‘

compute the inverse of LU factors of S, i.e., S-fl = U-}lL-f1

return preprocessed matrices from |H|: L\;*II’ Uf};‘, H|f11, H|,,, and [H|,,

preprocessed matrices from T: L{l, Urfl, Tfll, Ty, and Ty,
negative semi-row normalized matrix A_

solution X is represented as follows:

X1 Al_ll (bl —A12X2)
X = =
X2 S™ (b2 — A1 (A} (b1)))
where S = Ay — AzlAfllAlz is the Schur complement of A;. []

Lemma 4.4 implies that a partitioned linear system is efficiently solved if it con-

tains an easy-to-invert sub-matrix and the dimension of the Schur complement is

small. Note that inverting H;| and Ty is trivial because they are block diagonal ma-

trices as shown in Figure 4.6. Also, the dimension of S‘H‘ and St is n, where n, is the

number of hubs and most real-world graphs have a small number of hubs compared

to the number of nodes (see Table 4.3).

Preprocessing phase (Algo