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Abstract

Machine Learning Approaches for

Decoding Information in

RNA Interactions and DNA sequences

Sangseon Lee

Department of Computer Science & Engineering

College of Engineering

Seoul National University

Phenotypic differences among organisms are mainly due to the difference in

genetic information. As a result of genetic information modification, an or-

ganism may evolve into a different species and patients with the same disease

may have different prognosis. This important biological information can be

observed in the form of various omics data using high throughput instrument

technologies such as sequencing instruments. However, interpretation of such

omics data is challenging since omics data is with very high dimensions but

with relatively small number of samples. Typically, the number of dimensions

is higher than the number of samples, which makes the interpretation of omics

data one of the most challenging machine learning problems.
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My doctoral study aims to develop new bioinformatics methods for decod-

ing information in these high dimensional data by utilizing machine learning

algorithms.

The first study is to analyze the difference in the amount of information

between different regions of the DNA sequence. To achieve the goal, a ranked-

based k-spectrum string kernel, RKSS kernel, is developed for comparative and

evolutionary comparison of various genomic region sequences among multiple

species. RKSS kernel extends the existing k-spectrum string kernel by utilizing

rank information of k-mers and landmarks of k-mers that represents a species.

By using a landmark as a reference point for comparison, the number of k-

mers needed to calculating sequence similarities is dramatically reduced. In the

experiments on three different genomic regions, RKSS kernel captured more

reliable distances between species according to genetic information contents

of the target region. Also, RKSS kernel was able to rearrange each region to

match a biological common insight.

The second study aims to efficiently decode complex genetic interactions

using biological networks and, then, to classify cancer subtypes by interpret-

ing biological functions. To achieve the goal, a pathway-based deep learn-

ing model using graph convolutional network and multi-attention based en-

semble (GCN+MAE) for cancer subtype classification is developed. In or-

der to efficiently reduce the relationships between genes using pathway in-

formation, GCN+MAE is designed as an explainable deep learning struc-

ture using graph convolutional network and attention mechanism. Extracted

pathway-level information of cancer subtypes is transported into gene-level

again by network propagation. In the experiments of five cancer data sets,

GCN+MAE showed better cancer subtype classification performances and

captured subtype-specific pathways and their biological functions.
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The third study is to identify sub-networks of a biological pathway. The

goal is to dissect a biological pathway into multiple sub-networks, each of which

is to be of a single functional unit. To achieve the goal, a condition-specific

sub-module detection method in a biological network, MIDAS (MIning Differ-

entially Activated Subpaths) is developed. From the pathway, edge activities

are measured by explicit gene expression and network topology. Using the

activities, differentially activated subpaths are explored by a statistical ap-

proach. Also, by extending this idea on graph convolutional network, different

sub-networks are highlighted by attention mechanisms. In the experiment with

breast cancer data, MIDAS and the deep learning model successfully decom-

posed gene-level features into sub-modules of single functions.

In summary, my doctoral study proposes new computational methods to

compare genomic DNA sequences as information contents, to model pathway-

based cancer subtype classifications and regulations, and to identify condition-

specific sub-modules among multiple cancer subtypes.

Keywords: High dimensional data, Biological prior knowledge, DNA sequence,

Gene expression, Machine learning

Student Number: 2014-21754
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Chapter 1

Introduction

Genetic information accumulates as organisms evolve. Interpreting the genetic

information is very important to help reveal the secrets of living things. Thanks

to advances in instrument technologies, genetic information has increased dra-

matically. Sequences of genomes, or DNA sequences, of many species are

now available and it is possible to compare genomes of species by compar-

ing genome sequences. In addition, RNA-sequencing technologies produced

condition-specific gene expression profiles. Interpreting gene expressions and

interactions can clarify the causes of external, physical, and pathological dif-

ferences among people. In my doctoral study, I developed machine learning

algorithms and methods to compare and interpret DNA sequences and gene

expression profiles. I used DNA sequence information to compare different

species and gene expression information to compare and stratify cancer pa-

tients in the form of cancer subtypes.
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1.1 Biological questions with genetic information

1.1.1 Biological Sequences

A genome is a DNA sequence that contains all the genetic information of an

organism. Depending on genetic information in the genome, phenotypes of or-

ganisms can be different and an organism may evolve to a new species. Thus,

interpreting the information from genome sequences can help understand dif-

ferences among species. However, decoding genomes is challenging due to the

huge size of a genome, 3.2 billion nucleotides in the human genome. A genome

is a sequence of nucleotides (Adenine, Cytosine, Guanine, and Thymine) with-

out grammatical structure such as words and sentences. However, a genome

consists of distinct structural components. A genome can be divided into genes

and non-genetic parts (Figure 1.1). A gene in the eukaryotic genome consists

of multiple components or subsequences such as exons that contain genetic

information and introns between exons. Additionally, non-genetic regions can

be divided into multiple components such as CpG islands, promoters, and en-

hancers. These non-genetics regions are known to be involved in regulating

expression of genes. Therefore, identifying differences among these genomics

regions is an essential task to interpret the genetic information of genome

sequences.

1.1.2 Gene expression

Gene expression information in a cell can represent activities of biological

functions in an organism. Depending on which functions are turned on, phe-

notypic differences, such as appearance and disease, are determined. Thus,

interpretation of gene expression data can be a clue to elucidate the unknown

factors of why people are different and suffer from lethal diseases. The main

challenge in analyzing gene expression data, however, is that genes perform
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Figure 1.1: Genome structure composed of various regions such as exon, intron,

or promoters.

biological functions through complex interactions among genes (Figure 1.2).

Understanding the biological phenomena is to solve puzzles of the complicated

genetic interactions. For example, abnormal expression of certain genes in a

tumor can result in unusual aggressive growth of tumor. Therefore, decoding

interactions of genes is an essential step to figure out the reason why organisms

are different biologically.

1.2 Formulating computational problems for the bi-

ological questions

1.2.1 Decoding biological sequences by k-mer vectors

Different regions of a genome have different biological functions due to differ-

ence in genetic information in DNA sequences. A common approach to inter-

preting the amount of information contained in DNA sequences is to utilize
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Figure 1.2: Regulation of biological phenomena through collaboration of mul-

tiple genes (from the Cancer Genome Anatomy Project (CGAP), Conceptual

Tour, July 21, 2000.).

information of DNA composition of the sequence. However, unlike a general

text sentence represented by a combination of words separated by spaces, a

DNA sequence is simply a continuous sequence of characters without any visual

structural components. Thus, decoding DNA sequence is a very challenging

task. Rather than decoding DNA sequences at the character level, k-mer based

methods have been developed for years. By measuring the frequency of each

k-mer while scanning the sequence into a set of overlapping substring (k-mer)

of length k, it is possible to extract characteristics of the sequence and express

the sequence in the form of a vector. Since the original sequence is divided

into k-mers, information of the sequence can be lost to some extent, but by

converting an encoded sequence into a vector, many existing computational

methods can be used.

However, it is still difficult to interpret information contained in DNA

sequence using k-mer vector. First of all, k-mer vector is high-dimensional
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data. Since there are four types of DNA bases, a total of 4k k-mers can be

detected along length of k. That is, the number of k-mers that can appear

in the sequence increases exponentially with length of k. If one sequence is

analyzed, k-mers that do not appear in the sequence may be excluded from

the analysis, but when analyzing multiple sequences at the same time, many

kinds of k-mers must be analyzed.

Moreover, the use of k-mer vectors is not easy. Figure 1.3 shows the result

of inferring the amount of information as Shannon entropy using the k-mer

vector of sequences belonging to the chimpanzee’s exon, intron and CpG is-

lands. Given that the larger Shannon entropy is, the smaller the amount of

genetic information is encoded, the Shannon entropy magnitude relationship

between exon and intron is consistent with biological knowledge and with pre-

vious entropy-based studies. However, the fact that the CpG island region has

the highest amount of genetic information (smallest Shannon entropy) is not

consistent with biological knowledge. Therefore, Shannon entropy is not an

appropriate method for interpreting the amount of information, and there is a

need for another method that can more accurately infer the difference in the

amount of genetic information of various parts of the genome.

The problem of interpreting genetic information from DNA sequences is

the method of inferring the amount of information using the characteristics

of a k-mer vector of one sequence, such as Shannon entropy, and measuring

the distance between two sequences to determine the amount of information

between sequences. The general formulation of the two methods is as follows.
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Figure 1.3: Shannon Entropy of three different region sequences with different

length of k-mer (Species: Chimpanzee) .

< Input >

x : a finite length of sequence with alphabet A

A : {A,C,G, T}

< Output :UNKNOWN >

I(x) : an information of sequence x OR

D(x, x′) : a distance between sequence x and x′

< Model >

Transform a x into k-mer vector space R4k ,

Define a metric I to measure an information of x OR

Define a distance measurement D to distinguish sequence x and x′

6



1.2.2 Interpretation of complex relationships between genes

Genes play function through complex interaction, thus a graph is widely used

to model gene interactions. In a graph G = (V,E), V is a set of genes, each

node in V has a real number representing gene expression quantity, and E is a

set of edges that represent interaction between genes. The advantage of using

a graph for the interpretation of gene interaction is that valuable biological

knowledge can be easily embedded into graphs. An example of a biological

network is the pathway database. KEGG pathway database (Kanehisa and

Goto, 2000) is the most widely used a graph database that consists of hun-

dred graphs, each of which represent well curated biological process. Another

example is protein-protein interaction (PPI) network where known gene in-

teractions are modeled as edges between two genes or proteins (Figure 1.4).

Thus, there have been numerous studies that use biological networks or graphs.

However, the main challenge in analyzing gene interaction graphs is the size

of graphs. A graph contains as many nodes as 20,000 genes and the number

of edges is typically over 100,000. Since a single patient is represented as a

graph, analysis of gene expression data from patients requires to analyze a set

of big graphs that correspond to the number of patients, typically hundreds to

thousands. Thus, interpretation of gene interactions under specific conditions,

e.g., cancer, is a problem of mining big graph data. The problem can be formu-

lated as a problem of classifying labels of graphs having the same topology but

different node values. In this case, in order to predict the label of the graph,

it is necessary to be able to extract the interaction between the specific genes

present on the graph, that is, the biological function. Then, a model can be

generated to classify cancer subtypes by using the extracted gene interaction

as a feature. The general formulation of this method is as follows.
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(a) Example of Pathway (b) Example of PPI

Figure 1.4: Example of biological network for representing gene interactions.

< Input >

G : a graph (pathway or PPI network), G = (V,E)

V : a set of genes, |V | = Number of genes ≃ 20, 000

E : a set of gene interactions

X : Input matrix of gene expression, X ∈ RN×|V |

< Output >

Y : Cancer subtype of given N samples

Y = {0, 1, 2, ..., c}N , c : number of classes

< Model >

Given a graph G and a input X,

Learn a model M to utilize high level information of pathways s.t

M(X) = X ′ ∈ RN×{m1(V ),m2(V ),...,mk(V )}

mk(V ) : kth gene interactions captured by model M and graph G

Build a classifier f to predict labels, f(M(X)) = Y ′

8



1.3 Three computational problems for the biological

questions

The common issue of the three biological questions in my doctoral research

that biological omics data such as DNA sequences and gene expression are

high dimensional data but of small number of samples. K-mers of a biological

sequence increase exponentially with the length of k, and features of gene

expression data increase exponentially with the interactions between genes.

Therefore, in order to address the biological questions by using the computer

approach, it is necessary to effectively reduce the features such as reducing

the number of k-mers or removing unnecessary gene interactions through the

biological network.

In order to analyze such high dimensional biological data on comparison of

species or patients, my doctoral study defines one problem related to DNA se-

quences and two problems related to gene expression analysis. 1) The problem

of inferring regional information differences in the genome using evolutionary

similarities of different species. 2) The problem of classifying cancer subtypes

by extracting and combining information from multiple biological networks.

3) The problem of classifying cancer subtypes by extracting subgraphs from

biological networks. Detailed problems and solutions for each problem are as

follows.

• Problem 1) Ranked k-spectrum kernel for comparative and evo-

lutionary comparison of DNA sequences (RKSS kernel) (Lee

et al., 2019b):

Challenges: As part of the study of interpreting the information en-

coded in the DNA sequence, studies have been conducted to determine

the distance between sequences based on the similarity of the sequences.
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Previous studies have proposed a string kernel based on k-mer vectors

and have been successfully used to compare biological sequences (Leslie

et al., 2001; Cuturi and Vert, 2005; Murray et al., 2017). However, when

the comparison extended to multiple genomes, the methods showed lim-

itations. The genome has several regions with different patterns of nu-

cleotide sequences, and the lengths of the sequences belonging to the

regions vary widely. There is also a case where a substring of a certain

length is repeated. Conventional k-mer vector-based string kernels are

vulnerable to sequences of various lengths and repeated substrings be-

cause they use all k-mers of length k as well as their actual occurrence

as feature values.

Approach: The Ranked k-spectrum string (RKSS) kernel addresses

this problem with two ideas. 1) To reduce the effects of repeated sub-

strings, the RKSS kernel uses k-mer’s rank information instead of the

actual frequency. 2) Assuming that several species evolved in differentia-

tion from one common ancestor, the RKSS kernel defines a set of k-mers

called landmark and uses it to compare species. Landmark is the highest

k-mers commonly detected in various species. It not only reduces the

high dimension of k-mer but also plays a role as a virtual common an-

cestor, and is a reference point for comparison between species. Based

on these features, the RKSS kernel calculates the similarity between

two sequences and uses it to determine the distance between sequences.

For the 10 mammalian genomes and three regions (exon, intron, CpG

islands), the RKSS kernel reproduces the phylogenetic tree more accu-

rately than the existing string kernel method. In addition, a space called

landmark space is defined by using several landmarks, and the order of

information contents between three regions within the space is measured
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in accordance with existing biological knowledge.

• Problem 2) Pathway-based cancer subtype classification and

interpretation by attention mechanism and network propaga-

tion (GCN+MAE) (Lee et al., 2019a):

Challenges: Pathway is a biological network that organizes the inter-

actions between genes in graph form and is a small graph that contains

only some genes that belong to a specific biological mechanism. Path-

ways can be used to efficiently analyze complex gene interactions and

to easily interpret results. However, existing pathways contain only a

few of the genes, one-third of human genes, resulting in unintended loss

of information. Conventional pathway analysis tools generate a single

value called pathway activity from gene expression levels, and models

using these values calculated from several pathways have shown poor

performance in the classification of cancer subtypes.

Approach: In order to effectively predict cancer subtypes using path-

way information, an interpretable deep learning model is proposed by

using graph convolutional networks and multiple attention mechanisms.

A graph convolutional network is used to capture gene patterns specif-

ically expressed for each pathway and to generate pathway information

vectors. The outputs of several graph convolution models are combined

into two levels of attention layers. As a result, it is possible to extract

pathways that are significant in predicting cancer subtypes. In addition,

the Pathway-PPI network is constructed to compensate for the missing

genes while simultaneously finding transcription factors that may con-

tribute to the regulation of the pathways. By analyzing this through a

network propagation algorithm, it is possible to detect subtype-specific

11



transcription factors and regulatory mechanisms. The model shows bet-

ter performance than previous methods using pathway activity in pre-

dicting cancer subtypes in five real cancer data.

• Problem 3) Detecting sub-modules in biological networks with

gene expression by statistical approach and graph convolutional

network (MIDAS) (Lee et al., 2017):

Challenges: Although pathway is a small graph of genes involved in

similar biological phenomena, pathway does not perform a single bio-

logical function. An apoptosis pathway, for example, consists of genes

that promote cell death and genes that inhibit cell death. In this way,

various biological functions exist in one pathway, and the interaction be-

tween genes involved in the same biological functions within the pathway

is called subpath. For this reason, the trend of pathway-based studies is

gradually shifting towards finding subpaths. However, the existing meth-

ods use the activity of gene interactions with statistical values, not actual

expression levels (Martini et al., 2012; Nam et al., 2014). There is also

a limitation in discovering only subpaths useful for distinguishing two

classes.

Approach: MIDAS features two ways to find subpaths from a path-

way. 1) It calculates the activity value between genes using the actual

gene expression and pathway topology. 2) It can be applied to three or

more class data by using statistical techniques. After finding a gene pair

with high activity, the subpath is expanded by greedy expansion. The ex-

tension of the subpath iterates until the classification score is lower than

the threshold, and the criterion is set to exponentially decaying as the it-

eration progresses. The application of MIDAS to breast cancer data has

12
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Figure 1.5: Computational challenges and solutions in DNA sequences and

gene expression data.

shown better performance in predicting cancer subtypes and predict-

ing patient survival than PATOME, a conventional subpath detection

tool. Since the usefulness of extracting subpaths from the pathway is

checked, extension MIDAS to a PPI network is performing as further

study. The further trial with graph convolutional networks and class ac-

tivation maps shows reasonably good performance in predicting cancer

subtypes. In addition, subtype-specific subnetworks are extracted.
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1.4 Outline of the thesis

Chapters 2,3, and 4 introduce independent studies related to machine learn-

ing algorithms of high dimensional data analysis for DNA sequence and gene

expression data. In Chapter 2, a ranked k-spectrum kernel, RKSS kernel aims

to successfully compare genomic sequences such as exon, intron, CpG island

on 10 mammalian species. Chapter 3 describes an explainable deep learning

method for pathway-based cancer subtype classification on five TCGA cancer

datasets. Chapter 4 proposes a method for identifying submodules in biological

networks; a pathway-based method named MIDAS, and PPI network based

graph convolutional networks with attention mechanisms.

Chapter 5 summarizes the studies with my contributions in biological se-

quence and pathway-based gene expression based analyses. The thesis is con-

cluded by an appendix of the bibliography of the cited references.
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Chapter 2

Ranked k-spectrum kernel for
comparative and evolutionary
comparison of DNA sequences

A genome consists of distinct regions such as exon, intron, and CpG island,

and each region has different biological functions. One way to interpret this

genomic information is to measure the information contents of regions. Among

the various methods for measuring information, an efficient way can be used for

various regions of the genome sequence is to extract the characteristics of se-

quences based on k-mers. This study transforms a genomic sequence into a fix-

length k-mer representation vector and devises a new computational method

that focuses on the characteristics of genomic sequences and comparisons be-

tween different species. Based on two experiments using 10 mammalian species

with exon, intron, and CpG island sequences, this analysis suggests that the

relational order, exon > CpG island > intron, in terms of evolutionary infor-

mation contents.
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2.1 Motivation

Biological molecules in the cell such as DNA or proteins are commonly rep-

resented as sequences. For this reason, the biological functions of DNA or

proteins have been investigated by comparing and characterizing biological

sequences. Thus, biological sequence analysis has been at the heart of bioin-

formatics research (Durbin et al., 1998). Due to the recent development of

high throughput sequencing techniques and accordingly the increasing num-

ber of genome sequencing projects, sequence analysis methods have become

even more important, and they have been extensively used for investigating

important research topics.

Smith-Waterman (Smith and BEYER, 1976) and BLAST (Altschul et al.,

1990; Gish and States, 1993) have been successfully used to compute the sim-

ilarity of sequences for a long time since the methods were introduced to the

biology community. Then, a number of alignment-based methods have been de-

veloped for investigating important questions in biology. For detecting distant

homologous relationships between proteins, the multiple sequence alignment

of protein sequences was utilized with a profile hidden Markov model (profile

HMM) (Söding, 2004). For prediction of transcription-factor target sites in the

promoter regions, the phylogenetic footprinting approach used the information

of orthologous sequences (Berezikov et al., 2004). In addition, in an attempt

to investigate evolutionary processes, there have been comparative researches

based on RNA sequencing of multiple species (Perry et al., 2012).

Alignment-based methods, although successfully used in many applica-

tions, are not computationally efficient to handle a large number of sequences

that are generated by high throughput sequencing technologies. In addition,

the methods provide information encoded in a sequence only in terms of

alignment, in other words, information relative to a reference sequence. Thus,
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there have been efforts to develop alignment-free based methods (Vinga and

Almeida, 2003; Vinga, 2007, 2014; Bonham-Carter et al., 2013). Basically,

these methods are based on the frequency vector of k-length contiguous sub-

strings called as k-mers. Once the k-mer vectors or discrete distributions are

obtained from sequences, a similarity between the two sequences is measured

in various ways like Euclidean distance methods (Blaisdell, 1986), cosine sim-

ilarity (Stuart et al., 2002), Kullback-Leibler discrepancy (Wu et al., 2001;

Das et al., 2018), and methods of revising distance from evolutionary models

(Allman et al., 2017).

2.1.1 String kernel for sequence comparison

String kernel-based methods were originally proposed for classification of text

documents using support vector machines (SVMs) (Watkins, 1999; Haussler,

1999; Lodhi et al., 2002). When input data are strings, and I have their rep-

resentations on a Euclidean space Rd, I can calculate the string similarities

using kernel functions and obtain the distance information in the space as-

sociated with the kernel. When input data are string and can be represented

on a Euclidean space Rd, string similarities and distances can be measured

by using string kernel functions. For the biological sequence analysis, one of

the earliest applications of the string kernel was the k-spectrum kernel for the

protein sequence classification using SVM (Leslie et al., 2001). In that study,

protein sequences were projected into a k-mer feature space and similarity was

measured by the inner product in that space.

Since then, various string kernels using a k-mer frequency vectors have

been developed. To reflect the fact that biological sequences of same func-

tionalities can be altered over time, resulting in substitutions, deletions, and

insertions, m-mismatch and k-spectrum kernels using mismatch trees were

developed (Leslie et al., 2004). In a similar manner, weighted degree kernels
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were designed, summing up string kernels with different k-mers (Smola and

Vishwanathan, 2003; Rätsch et al., 2005; Ben-Hur et al., 2008) because the

similarity measure may be affected by the value of k. Meanwhile, there are

string kernel methods that utilize other data structures. For example, the

hash table and Shannon entropy were used for the weighted sum of hashed k-

mers (Murray et al., 2017). Various statistical/evolutionary background mod-

els also adapted to measure sequence similarities, including D2static (Forêt

et al., 2009; Song et al., 2013), Jukes and Cantor 1969 model (JC69) (Allman

et al., 2017), and a scoring matrix such as BLOSUM (Nojoomi and Koehl,

2017a,b). Accordingly, string kernels have been actively studied, and the in-

formation that the aforementioned methods have commonly used is the k-mer

frequency vector to obtain the string similarities.

A different kernel-based approach to sequence comparison is to utilize an

implicit representation of the sequence. As an example, the mutual information

kernel (Seeger, 2002) measured the similarity of two sequences with probabilis-

tic models, which need a strong assumption on the prior in the model. This

type of kernels were implemented by various methods such as Markov chain

process based context-tree model (Cuturi and Vert, 2005), profile HMM (Fong

et al., 2014), and Kullback-Leibler relative entropy (Ulitsky et al., 2006). An-

other example of the string kernel using implicit representation is the align-

ment kernel. To mimic the score of Smith-Waterman algorithm (Smith and

BEYER, 1976) when comparing two sequences, a local alignment kernel was

designed with the appropriate mathematical basis (Saigo et al., 2004). This

local alignment string kernel was expanded by considering all possible align-

ments of k-mers with ignoring gaps (Shen et al., 2014).
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2.1.2 Approach: RKSS kernel

Many string kernel methods have been developed since Leslie’s k-spectrum

string kernel. However, existing kernel methods have limitations in explanatory

power for comparative and evolutionary comparison of multiple species. To

perform the comparative and evolutionary study of multiple genomes, the

k-spectrum kernel produces a pairwise distance of two genomes. Combining

many pairwise distances is not straightforward. More seriously, the k-spectrum

kernel is sensitive to over-represented k-mers from repeats or gene duplications

as shown in Section 2.2.2. Meanwhile, the alignment-based kernels require

the sequence alignment information, and they have two serious limitations.

First, obtaining alignment information requires a huge amount of computation

time for a large number of sequences. Second, the alignment information is

relative to each other and combining numerous alignments of a large number

of sequences is a very complicated task. Therefore, new string kernel method

is needed for comparative and evolutionary comparison of multiple species.

In this study, a novel ranked k-spectrum string (RKSS) kernel is proposed

that can be used to construct phylogenetic trees and perform the compar-

ison of exon, intron, and CpG island sequences. The basic idea is to select

k-mer strings with respect to (a) reference point(s), or landmark(s). For the

phylogenetic construction, a single landmark of k-mers that are common to

the genomes is utilized in comparison. Then, a distance between two genomes

is defined by proposed kernel method for comparing two constructed k-mer

vectors according to a single landmark. For comparison of exons, intron, and

CpG island sequences, three landmarks for exons, intron, and CpG island se-

quences are created on each species and distances between a pair of sequences

are defined in terms of distance to the landmarks of all species.

In the literature, the reference or landmark-based analysis has been used

for a number of sequence analysis tasks. Chae et. al. (Chae et al., 2013) used
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a set of common k-mer strings in CpG island sequences to construct phy-

logenetic trees of 10 mammalian genomes and performed machine learning

analysis. Middleton et. al. (Middleton and Kim, 2014) utilized 1,973 RNA

family covariance models from the Rfam database (Burge et al., 2012) to de-

fine a new distance metric between RNA sequences. Using this distance met-

ric, RNA structure motifs were identified without an additional process for

sequences like alignment or folding. More recently, a k-mer based clustering

method (Steinegger and Söding, 2018) that used reference sequences for defin-

ing and merging clusters has been proposed. My contribution in this study is

to define ranked k-spectrum string kernel, RKSS kernel, for comparative and

evolutionary sequence comparison using landmark (or reference) set of k-mer

strings.
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[Problem Definition of this study]

Given genomic regions RG = {exon, intron, CpG island} and 10 mam-

malian species MS, |MS| = 10

< Input >

Xms
rg : a set of finite length sequences belonging to rg ∈ RG and ms ∈MS

A : {A,C,G, T}, character set of sequences

< Output >

Relative information content of RG when comparing MS

< Model >

Transform Xms
rg into a k-mer vector space R4k ,

Define a kernel K to measure similarities between

two sequences x and x′

Using the kernel K, compute similarities among MS

on a specific region rg

Based the similarities of MS on each region rg,

measure relative information contents of RG in evolutionary context

2.2 Methods

In this section, proposed methods for construction of the RKSS kernel and fea-

ture spaces are described. Also, a workflow is explained for applications of the

RKSS kernel to the comparative and evolutionary analysis of 10 mammalian

genomes: constructing phylogenetic trees and comparison of exons, introns,

and CpG islands. The overview of this study is illustrated in Figure 2.1.
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Figure 2.1: The workflow of ranked k-spectrum string kernel approach. (a)

The step-wise calculation of ranked k-spectrum string kernel. For given input

sequence set, k-mer frequencies are counted on each sequence. From that, a com-

mon k-mer template is extracted and used for the construction of rank feature

map. Using the rank feature map, each sequence is mapped into k-spectral fea-

ture space and similarity between two points are measured by the kernel distance

metric. (b) Example of reconstructing phylogenetic tree using a single landmark.

A single k-mer template, a landmark, is used to measure pair-wise distances be-

tween species. (c) Example of using multiple landmarks. To distinguish sequences

belonging to three genomic regions (exon, intron, CpG island), multiple k-mer

sets with the rank profiles (multiple landmarks) construct a new feature space.

Each input sequence is mapped into the space and similarity between sequences

is computed according to their respective distances to all landmarks.
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2.2.1 Mapping biological sequences to k-mer space: the k-spectrum

string kernel

Before introducing a ranked string kernel for comparative and evolutionary

sequence comparison, to help the reader understand, I explain what a string

kernel is and how it defines the similarity and distance between two sequences.

The kernel method is a similarity function over a pair of data points in the

input space that implicitly transforms data into a new feature space and com-

putes the inner products in that space. This approach also called kernel trick,

is often used to classify non-linear data as linear discriminators (ex. Gaussian

kernel).

The simplest and most successful way of constructing feature space for the

biological sequences is the use of a set of k-length contiguous subsequences

called k-mers. It is a concept similar to the bag-of-words model in natural

language processing. On the input space X of all finite length sequences of

characters from an alphabet A, |A| = l (l = 4 for DNA sequences), a feature

map Φk from X to Rlk is defined as (Leslie et al., 2001):

Φk(x) = (ϕα(x))α∈Ak (2.1)

where α denotes all possible subsequences of length k in the sequence x ∈ X

and ϕα(x) is the number of times α occurs in x.

Using a feature map (Equation 2.1), input sequence x is implicitly trans-

formed into the vector of Rlk . Each coordinate of a vector is indexed by a

k-mer α and capture the frequency of α in x. Therefore, without building a

complex model such as multiple sequence alignment or profile HMM, spectrum

information of sequences can be extracted as a form of vectors in the ”k-mer

feature space”. Then, the k-spectrum kernel, the similarity of two sequences x

and y, is measured in the k-mer feature space using the inner product (Leslie

et al., 2001).
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Kk(x, y) = ⟨Φk(x),Φk(y)⟩ (2.2)

The k-spectrum kernel measures similarity by co-occurring k-mers in the

data. The similarity value increases as two sequences x and y contain more

common k-mers.

Based on the k-spectrum kernel, distance is defined as (Leslie et al., 2004):

K̃k(x, y) =
Kk(x, y)√

Kk(x, x)
√

Kk(y, y)

Dk(x, y) =

√
K̃k(x, x) + K̃k(y, y)− 2K̃k(x, y)

(2.3)

between two sequences x and y. Although this similarity method is less

accurate or effective than BLAST (Altschul et al., 1990; Gish and States,

1993) or Smith-Waterman (Smith and BEYER, 1976), it does not require

sequence alignments, so it is inexpensive and allows comparison of variable

length sequences. For this reason, the k-spectrum kernel has been extended in

various ways: weighted sum of k-spectrum kernel with different k (Smola and

Vishwanathan, 2003), considering m-mismatches when counting occurrences

of k-mers (Leslie et al., 2004), combination of count vector and statistical

background models (Song et al., 2013; Allman et al., 2017), a weighted sum

of hashed k-mers by information contents (Murray et al., 2017).

2.2.2 The ranked k-spectrum string kernel with a landmark

Here, I introduce the ranked k-spectrum string (RKSS) kernel. It is an exten-

sion of the k-spectrum string kernel. Keeping advantages of the string kernel,

two features are added for comparative and evolutionary comparison:

• Build and use a common k-mers template to encapsulate information of

a common ancestry and
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Figure 2.2: The efficiency of rank information on genome-scale sequence analy-

sis. (a) Frequency vector of k-mer from a sequence encapsulates the information

in the original sequence. But when dealing with a large-scale genome sequence,

frequency of particular k-mer can spike due to repetitive elements or copy num-

ber variations. Thus, the distribution of k-mer count takes a long-tail distri-

bution form. (b) If frequencies of particular k-mers are abnormally high (ex.

pink-color/the fifth k-mer panel), rank information can more accurately cap-

ture subtle distance differences between genomes. For example, consider four

sequences (SEQ1 to 4) with a depicted true relationship. In the heatmap rep-

resentation of frequency of k-mers, in the case of using count directly (upper

heatmap), the pink-color k-mer panel (the fifth k-mer)’s frequency is unexpect-

edly high and does not reflect the subtle distance difference between SEQ2, 3,

and 4. On the other hand, when rank information is used (lower heatmap), the

bias problem of count is removed, and the relationship between the SEQs is more

accurately detected.
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• Use of correlation in ranks of k-mers instead of occurrence counts

Differences of the conventional k-spectrum string kernel and the proposed

RKSS kernel are illustrated in Figure 2.2(b) and (c).

The RKSS kernel is defined as follows:

KRank
k (x, y) = RC(Φcommon

k (x),Φcommon
k (y)) (2.4)

where Φcommon
k is a feature map on the common template or landmark of k-

mers and RC is the Kendall tau rank correlation. It measures a concordance

of each rank pair between two sequences. As the number of concordant rank

pairs increases, the value of the ranked kernel increases.

Using the RKSS kernel (Equation 2.4), a kernel distance is defined within

two sequences x and y as:

K̃Rank
k (x, y) =

1 + KRank
k (x, y)

2

dist(x, y) =

√
K̃Rank

k (x, x) + K̃Rank
k (y, y)− 2K̃Rank

k (x, y))

=
√

1−KRank
k (x, y)

(2.5)

where K̃Rank
k (x, x) = 1 with self-similarity property. Using the kernel distance,

a pairwise distance between sequences or genomes is calculated.

The reason for using a common template or landmark is to capture differ-

ences among genome sequences. As mentioned earlier, the string kernel is a

technique for extracting information contained in a biological sequence by an

alignment-free manner. This is obviously inexpensive than an alignment-based

approach. However, this technique has difficulty in capturing functional, struc-

tural and/or evolutionary relationships between sequences while alignments

methods can easily handle these relationships. To overcome this problem, a

landmark is utilized for the kernel.

Comparison of the RKSS kernel and the spectrum kernel: To further sup-

port the power of RKSS kernel for comparative and evolutionary comparison,
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an additional experiment were performed to compare the distance between

genomes using the RKSS kernel and the spectrum kernel. Four genomes such

as human, chimp, mouse, and rat were compared. The goal of the test was

to see how well four genomes were separated when distances among the four

genomes were computed using the RKSS kernel and the spectrum kernel. To

compute distance using the RKSS kernel, a similarity between two genomes

was computed by Kendall rank correlation and it was converted to a distance

by the kernel method (Equation 2.5). Likewise, to compute distance using the

spectrum kernel, a similarity between two genomes was computed by the inner

product and it was converted to a distance by the kernel method (Equation

2.3). The results of pairwise genome similarity using the RKSS kernel and

the spectrum kernel were summarized in Figure 2.3. As shown in the figure,

similarities between two distant groups become bigger when the Kendall rank

correlation was used. This means that difference in pairwise genome distances

measured by the RKSS kernel gets bigger than the spectrum kernel. This ex-

periment supports that the RKSS kernel is more effective than the spectrum

kernel for comparative and evolutionary genome comparison.

In order to demonstrate efficiency of the RKSS kernel in comparative and

evolutionary studies, two application studies were designed by using the RKSS

kernel with the single(multiple) landmark(s) concept.

2.2.3 Single landmark-based reconstruction of phylogenetic tree

The first application is the reconstruction of a phylogenetic tree with a single

landmark (Figure 2.1(b)). The main question in this experiment is to model

the evolution times between species on genome sequence level, which contains

repetitive elements or copy number variations. This problem may be addressed

by the single landmark that it represents a hidden common ancestor of all

species and pair-wise similarities between species are determined by the land-
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(a) Similarity by RKSS kernel (b) Similarity by Spectrum kernel
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Figure 2.3: Similarity comparison of (a) the RKSS kernel and (b) the spectrum

kernel. Four species with two groups (Chimp and Human vs Mouse and Rat)

were analyzed for comparison of two kernel methods. The 6-mer distributions

were represented at diagonal part of the figure. Target genome region was exon.

Based on the similarity between distant species, the RKSS kernel captured the

relatively subtle distance across species better than the spectrum kernel.

mark. To elucidate relationships between 10 mammalian species, three types

of sequences are utilized such as exon, intron, and CpG island sequences.

In addition to the RKSS kernel, the conventional k-spectrum string kernel

is used for comparison in this phylogenetic tree reconstruction experiment. In

case of RKSS kernel, a common k-mer template of 10 species, single landmark,

is built by frequencies of all k-mers among all species. Then, pair-wise sim-

ilarities and distances of species are calculated by Equation 2.4 and 2.5. On

the other hand, the k-spectrum string kernel measures similarities between

species pair-wisely by using all k-mers frequency vectors and Equation 2.2.

The distance matrix is generated using those similarities by Equation 2.3.

Then, a neighbor joining (NJ) algorithm (Saitou and Nei, 1987) is used to

reconstruct phylogenetic trees using distance matrices from two string kernel

methods. NJ is a method of a distance-based tree structure that can eliminate
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errors that may occur with Unweighted Pair Group Method using Arithmetic

Average (UPGMA) method. While UPGMA looks for nearby nodes based on

distance, NJ tries to find a neighbor set that minimizes overall tree length

along with it. Especially, it is known that NJ makes a reasonable tree nearer

the evolutionary distance.

2.2.4 Multiple landmark-based distance comparison of exons,

introns, CpG islands

For the second application to show the usefulness of RKSS kernel, a com-

parative analysis is performed among genomic regions such as exons, introns,

and CpG islands. The main question in this experiment is to compare exons,

introns, and CpG islands in terms of distances, which can show reveal simi-

larities between these three regions in a biological context. This investigation

is possible since all three types of sequences are mapped into a single feature

space. For this comparative study of 10 mammalian genomes, three landmarks

for exons, introns, and CpG islands for each genome are constructed.

This approach is inspired by the work in (Middleton and Kim, 2014). In

the study, authors performed clustering of RNA structures without folding or

alignment. The core of this approach is to calculate relative distances between

two sequences on a feature space. RNA family covariance models (Rfam CMs)

were obtained from the Rfam database (Burge et al., 2012) and the distances

between input sequences and Rfam CMs were calculated. Then, a new feature

space was constructed by assigning each dimension as Rfam CM. More specif-

ically, a sequence x has changed to a vector in a new feature space, in which

the coordinate index by Rfam CM will be the distance between Rfam CM

and x. Rfam CMs used in this process are defined as ”landmark” and RNA

structure clustering is performed using distances between input sequences on

the newly defined landmark space.
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Figure 2.1(c) shows the illustration of how to construct the landmark space

for three genomic regions and details of the method are explained step by step

below.

1. Input: the species set S and all three genomic regions (exon, intron, and

CpG island)

2. Find the common k-mer template among the species by RKSS kernel in

each of the three regions.

3. Using the common template of each region, obtain a rank vector of each

region of each species and name it landmark of the region in the species.

The landmark space L ⊂ R3|S| is constructed by those landmarks (The

number of dimension = The number of landmarks = The number of

genomic regions × The number of species).

4. Given a sequence x, measure a similarity with the landmarks by RKSS

kernel (Equation 2.4) and calculate a kernel distance by Equation 2.5.

5. The sequence x is transformed into a vector of landmark space as follows:

for each landmark l, the coordinate indexed by l will be a kernel distance

between a landmark l and a sequence x as described in step 4.

The following analyses are performed on the constructed landmark space. 1)

Whether three regions in the landmark space are distinguished. 2) What is the

correlation between landmarks 3) Whether it is possible to assign a correct

region to a given unknown sequence.

2.2.5 Sequence Data for analysis

From the UCSC Genome Browser database (Kent et al., 2002), sequences of

three regions (exon, intron, and CpG island) in 10 mammalians were down-

loaded using table browser program in the UCSC and utilized for the analysis.
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Table 2.1: The List of 10 mammalian species. In the UCSC Genome Browser,

the sequence data of three genomic regions were downloaded from the genome

assembly corresponding to each data version. The number of sequences varies

depending on the species and region

Species Data version exon intron CpG island

Chimp CSAC 2.1.4/panTro4 2,105 1,988 28,310

Cow Bos taurus UMD 3.1.1/bosTau8 13,638 13,221 37,226

Dog Broad CanFam3.1/canFam3 1,718 1,578 48,192

Human GRCh38/hg38 56,198 68,294 30,477

Marmoset WuGSC 3.2/calJac3 219 217 32,732

Mouse GRCm38/mm10 32,889 34,180 16,023

Opossum Broad/monDom5 351 227 22,441

Pig SGSC Sscrofa10.2/susScr3 4,921 4,464 43,643

Rat RGSC 6.0/rn6 18,218 16,384 18,218

Rheus BCM Mmul 8.0.1/rheMac8 5,832 5,418 30,560

Table 2.1 shows 10 mammalian reference genomes and their versions from

sequences are taken.

2.3 Results

2.3.1 Reconstruction of phylogenetic tree on the exons, in-

trons, and CpG islands

The goal of this experiment was how well each of exons, introns, and CpG

islands could construct phylogenetic trees when RKSS kernels were used. Se-

quences from the three regions on the genomes were collected as described in

Table 2.1 and reconstructed phylogenetic trees respectively. Three regions se-

lected for analysis are very widely distributed on the genome, and the sequence
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Table 2.2: List of the mitochondria gene of 10 mammalian species. Those

genes are used for reconstruction of reference phylogenetic tree for compari-

son of the RKSS kernel and the k-spectrum string kernel. Data can be down-

loaded in the URL as form of “https://www.ncbi.nlm.gov/nuccore/<GenBank

Accession>/<GeneBank Accession>”

Species GenBank Accession

Chimp X93335.1

Cow AF492351.1

Dog AY729880.1

Human V00662.1

Marmoset NC 021941.1

Mouse NC 005089.1

Opossum Z29573.1

Pig AF486855.1

Rat X14848.1

Rheus AY612638.1

lengths and numbers are very different. For these reasons, it was difficult to

distinguish species and reconstruct phylogenetic trees using alignment-based

approaches. Since methods that could be used in this situation are alignment-

free methodologies, k-spectrum string kernel, which was the most similar to

RKSS kernel and was a basis of the string kernel method, was used for com-

parison of reconstructing power of phylogenetic trees.

For a better comparison of two kernels, an additional ground truth-like

phylogenetic tree was built from mitochondrial genomes that were more con-

served and refined than above three regions (van de Sande, 2012; Li et al., 2013;

Zubaer et al., 2018). To construct a phylogenetic tree of 10 mammalians, the
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mitochondria genomes of all species were collected (Table 2.2). CLUSTALW

(Larkin et al., 2007), a multiple sequence alignment tool, was used to further

clarify the inter-species comparative analysis from the collected sequences.

After pair-wise distances were calculated, the tree was reconstructed by the

neighbor joining algorithm.

Figure 2.4 showed the phylogenetic trees of three regions reconstructed

by two kernel methods as well as the mitochondrial genome tree (MT tree).

All trees were drawn by online phylogenetic tree visualization tool (PhyIO

(Robinson et al., 2016)). Both of kernel methods used k-mers of length 6.

More specifically, Figure 2.4(b) to (d) were phylogenetic trees reconstructed

by RKSS kernel method using top 100 common 6-mers of each region as one

landmark; exon, CpG island, and intron respectively. As the same order, Figure

2.4(e) to (g) were phylogenetic trees reconstructed by the k-spectrum kernel

method. Unlike the RKSS kernel method, this method used all possible 6-mers,

i.e., 4,096 k-mers, to measure pair-wise distances between species.

As a reference tree for comparison, three notable groups were spotted in

the phylogenetic tree from mitochondrial sequences. The first group (names

as MT1; red group) contained Human, Chimp and Rhesus. The second group

(names as MT2; yellow group) contained Mouse and Rat. The last group

(names as MT3; green group) contained Pig, Cow, and Dog. These formations

have also been reported in previous studies (Miller et al., 2007; Huising et al.,

2006; Sequencing et al., 2014). When comparing the reconstruction results of

the two kernel methods, these three groups were used as the main criteria.

Let start with comparisons of two kernel methods on the exon region (Fig-

ure 2.4(b) and Figure 2.4(e)). Results showed that the two kernel trees are

similar to the MT tree. In both kernel methods, all three MT groups are well

clustered. However, subtle differences could be found. First, in the case of

the spectrum kernel, cluster formation of Pig, Cow, and Dog was consistent
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Figure 2.4: Comparison of phylogenetic tress of two kernel methods. (a) Phylo-

genetic tree of the mitochondria gene tree. It is generated from result of multiple

sequence alignment by CLUSTALW. Overall structure of tree is consistent with

previous studies. (b)-(d) Phylogenetic trees of RKSS kernel method on exon,

CpG island, and intron, respectively. Length of k-mer is 6 and top 100 common

6-mers across 10 species are selected as one landmark on each region. (e)-(g)

Phylogenetic trees of the k-spectrum string kernel method on exon, CpG island,

and intron, respectively. Length of the k-mer is 6.
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with the MT3 group. However, the relationship between Human, Chimp, and

Rhesus was not properly reflected with MT1 group. When comparing DNA

sequences, Human and Chimp showed 98% to 99% similarity, while Human

and Rhesus showed 93% similarity. Based on these points, it was reasonable

to assume that Human and Chimp were the most similar, and followed by

Rhesus, as shown in the MT tree. This relationship was correctly captured by

RKSS kernel, but not by the spectrum kernel. One more notable difference

was the clustering order of MT groups. In case of RKSS kernel, as shown in

Figure 2.4(a) and (b), all MT groups were correctly clustered with proper or-

der. It was also consistent with previous studies (Miller et al., 2007; Huising

et al., 2006; Sequencing et al., 2014). However, the k-spectrum kernel failed

to reconstruct this formation and shows the cluster of MT2 group and MT3

group. Considering these points, the exon tree created by RKSS kernel was

well created and better than those of the k-spectrum kernel.

Similar comparisons were performed on the CpG island and intron region.

Two kernel methods reconstructed the same tree of CpG island (Figure 2.4(c)

and (f)). This result was interesting in a sense that RKSS kernel only uti-

lized 100 k-mers with a single landmark, whereas k-spectrum kernel utilized

all possible k-mers. This indicated that even one landmark information used

as a reference point between the species was enough in calculating pair-wise

distances of species. Although the tree made with CpG island had poor per-

formance compared to the tree constructed from the exon region, the overall

form was still quite reasonable in the biological sense. This suggested that the

CpG island also contains evolutionary information that could be utilized in

distinguishing the species (Chae et al., 2013).

In the case of intron trees (Figure 2.4(d) and (g)), two trees looked totally

different and also were dissimilar with the general tree patterns of exon and

CpG island. In the case of RKSS kernel tree (Figure 2.4(d)), species belonging
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to MT1 and MT2 group were well clustered. But species of MT3 group were

broken and clustered with other species. In addition, Opossum interfered with

MT1 and MT2 groups. On the other hand, the intron tree generated by the

spectrum kernel looked pretty good except for the binding position of Opos-

sum and composition of MT groups. On close inspection, however, the tree did

not make sense with respect to evolutionary time modeling. While other five

trees preserved the divergence time of each species relatively well correspond-

ing to common knowledge on phylogeny, this tree failed in reproducing such

evolutionary time as primate group was determined to be closest to a hidden

common ancestor. This pattern was obviously different from results from other

trees and was in conflict with common knowledge on evolution. Thus, it was

premature for us to conclusively compare intron trees from two methods and

to tell which result was better.

As shown in Figure 2.4, RKSS kernel succeed in capturing evolutionary

information relatively well compared to the widely used k-spectrum kernel.

This pattern was also observed in additional experiments of phylogenetic tree

reconstructions that were performed with different k-mers and top common

k-mers (k = [3, 4, 5] and topN = [64, 100, 200, 500, 1000]). Furthermore, the

RKSS kernel reconstructed more reliable trees than other distance methods

such as Euclidean distance and Jensen-Shannon divergence (Figure 2.5). From

those experiments and frequency distribution of common k-mers, a long-tail

like distribution, 3-mer or 6-mer were recommended for the RKSS kernel,

which can reflect biological knowledge such as codon and dicodon. Also, in

the case of the number of common k-mers, it would be better to look at the

frequency distribution of the common k-mer to select the number that can

reflect the characteristics of the data with respect to the number of features.

On the other hand, during the performance comparison of the two kernels

in three regions, it was found that interesting property about exons, introns,
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Figure 2.5: Phylogenetic tree comparison on 6-mer with Euclidean distance

and Jensen-Shannon divergence. ((a) Phylogenetic tree of the mitochondria gene

tree. It is generated from result of multiple sequence alignment by CLUSTALW.

Overall structure of tree is consistent with previous studies. (b)-(d) Phylogenetic

trees of RKSS kernel method on exon, CpG island, and intron, respectively. (e)-

(g) Phylogenetic trees of the k-spectrum string kernel method. (h)-(j) Phyloge-

netic trees of the Euclidean distance method. (k)-(m) Phylogenetic trees of the

Jensen-Shannon divergence method. 37



and CpG islands in terms of evolutionary information content. Investigation

of the trees generated by RKSS kernels, the exon tree was most similar to the

MT tree, followed by the CpG island tree and the intron tree. This indicated

that there was a lot of evolutionary information in the exon region, whereas

the intron region had a relatively small amount of information. Considering

that the reconstruction performance of the CpG island tree was between those

of the exon tree and the intron tree, it could be expected that the amount of

evolutionary information in the three regions was in the order of exon > CpG

island > intron.

2.3.2 Landmark space captures the characteristics of three ge-

nomic regions

In the previous section, the RKSS kernel of exons had enough information to

reconstruct the phylogenetic tree of MT sequences well while the RKSS kernel

of introns did have relatively small information to reconstruct the phylogenetic

tree. CpG islands stood in between exons and introns in terms of the ranked

k-spectrum feature space. In this experiment, exons, introns, and CpG islands

were put into different feature spaces with respect to one landmark k-mers.

Thus, in this section, I performed an experiment where all exons, introns, and

CpG islands were put into a single space rather than separate feature spaces.

The goal of this experiment was to compare exons, introns, and CpG islands

in terms of kernel distances.

To achieve this goal, multiple landmarks were used and a new feature space

(named as landmark space) was constructed through the process mentioned

in Section 2.2.4. A total of 30 landmarks were generated from 10 mammalian

species and three genomic regions (exon, intron, and CpG island). If one land-

mark aimed to capture evolutionary information of the region and identify

pair-wise distances between species, multiple landmarks were used to cap-
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ture the characteristics of exons, introns, and CpG islands commonly found

in species. More specifically, it elucidated hypothesis about genomic or evo-

lutionary information content in the exon, intron, and CpG island that was

found in phylogenetic tree reconstruction experiment: exon > CpG island >

intron.

Based on the hypothesis, if a sequence contained a lot of genetic infor-

mation, the sequence was close to the landmarks of exon family and might

be located farthest away from the intron landmarks. Observations of this ob-

jective could be applied similarly to other regions too. To demonstrate the

hypothesis on the landmark space, a information theoretic concordance test

on rank was performed (Figure 2.6). For that, a template rank vector was

made; for example, coordinates of the exon-based landmarks had high ranks,

those of the CpG island-based landmarks had intermediate ranks, and those

of the intron-based landmarks had low ranks. In a similar manner, when a se-

quence was mapped to the landmark space, each coordinate of a feature vector

of the sequence was indexed by RKSS kernel distance between the sequence

and each landmark. In detail, the kernel distance between sequence and land-

mark was calculated using the feature map and the rank profile of landmark

by Equation 2.4 and 2.5.

Figure 2.7 showed the concordance test results of 6-mer landmarks with

10 mammalian species. Sequences of each region were individually mapped to

the landmark space and concordance tests were performed. Average values of

concordance with the hypothesis by region were represented as a bar plot. As

shown in Figure 2.7, except for Opossum, average values of concordance with

the hypothesis in the other nine species showed this ordering: exon > CpG

island > intron.

As expected, exon sequences showed the highest concordance, indicating

that genomic information of exon sequences was higher than those in the other
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Figure 2.6: Example of how to measure the concordance value of each sequence

on the landmark space. Given a query sequence that does not know which ge-

nomic region it belongs to, it was mapped on the landmark space. Each coordi-

nate was indexed by the RKSS kernel distance (Equation 2.5) between a query

sequence and the corresponding landmark. These distances were converted into

the rank which smaller distances had higher ranks (ascending order). Finally,

based on the rank concept, the information theoretic concordance was calcu-

lated between a query sequence rank vector and the rank template of hypothesis

to be verified.

two regions. The amount of information contained in the other two sequences

was also considered to agree with the hypothesis. This observation was also

demonstrated in experiments with different ks (k=[3, 4, 5]).

The results showed the hypothesis about genomic information contents

of exon, intron, and CpG island. Understanding what makes the differences

in information contents between the three regions was important. Also, it

was worth to figure out the reason for the weird pattern of exon sequences in

Opossum. In order to address these questions, correlations between landmarks
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Figure 2.7: Concordance test for the three region and 10 species with the 6-mer

landmark space. For each sequence mapped to the landmark space, a concor-

dance test with the following hypothesis was established: Order of Information

contents belonging to the region was exon > CpG island > intron. Concordance

was tested with the information theoretic concordance test between the template

rank vector of the hypothesis and the landmark space vector of the sequence.

The average concordance value of each region was expressed in a bar graph. In

the nine species except for Opossum, the concordance order was consistent with

the hypothesis.

were analyzed on two k-mers, 3-mer and 6-mer, because the two k-mer formed

biologically important codon and dicodon, respectively. Figure 2.8 and 2.9

showed the heatmap of the correlation between the values of each landmark

dimension when the exon, CpG island, and intron sequences of Chimp were

mapped to landmark space. In Figure 2.8, the same features were observed, no

matter where the sequence of any region was mapped. The exon landmark and

CpG island landmarks showed a positive correlation. The intron landmarks,

on the other hand, showed a negative correlation with the other two regions,

especially strongly negative correlation with CpG island landmarks. These
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features were consistent with the fact that the value of the exon region and

the value of the CpG island region in the concordance test performed in the

landmark consisting of 3-mer did not differ greatly.

In the case of k=6, the patterns of correlation relations were slightly

changed in Figure 2.9. In both cases of mapping the exon sequence to the

CpG island sequence, the correlation between landmarks between different re-

gions had weakened against to result of k=3. In addition, patterns of heatmap

were very similar when mapping the exon sequences and the CpG island se-

quences. From these properties, it was possible to interpret the reason why

the differences of concordance values were in-creased in all species (by the re-

duced correlation between exon landmarks and CpG island landmarks). This

was because dicodon contains larger amounts of information than the codon,

RKSS kernel could capture the difference in the amount of information hidden

in the different k-mers.
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Figure 2.8: The heatmap of correlation between landmarks when the Chimp

sequences were mapped into the 3-mer landmark space. The heatmap was sym-

metric and the order of columns(rows) was exon, CpG island, intron landmarks

and each species were sorted as the alphabet order. (a) The result of correlation

between landmarks when Chimp exon sequences were mapped. Landmarks in

each region showed a strong positive correlation only with each other, and there

was little positive/negative correlation with CpG island landmarks/intron land-

marks. (b) The result of correlation between landmarks when Chimp CpG island

sequences were mapped. The pattern similar to (a) was observed. (c) The result

of correlation between landmarks when Chimp intron sequences were mapped.

Weak negative correlations between intron landmarks and exon landmarks, as

well as strong negative correlations with CpG island landmarks, were observed.
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Figure 2.9: The heatmap of correlation between landmarks when the Chimp

sequences were mapped into the 6-mer landmark space. (a) The result of correla-

tion between landmarks when Chimp exon sequences were mapped. Landmarks

in each region showed a strong positive correlation only with each other, and

there was little or no correlation between landmarks in other regions. (b) The

result of correlation between landmarks when Chimp CpG island sequences were

mapped. The pattern similar to (a) was observed. (c) The result of correlation

between landmarks when Chimp intron sequences were mapped. Weak positive

correlations between intron landmarks and exon landmarks, as well as weak

negative correlations with CpG island landmarks, were observed.
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On the other hand, there were some anomalies common in Figure 2.8 and

2.9. It showed the opposite correlation with other landmarks, the cause of

which was Opossum exon landmark (high-righted in the figures by green lines).

Looking at the correlation values, the Opossum exon landmark seemed to show

a weak correlation with other exons. However, there was a stronger positive

correlation with intron landmarks. It also had a negative correlation with CpG

island landmarks. Based on this, the exon sequences of Opossum might have

k-mer distributions close to the intron sequences. This indicated that why the

value of the exon in the concordance test was low.

2.3.3 Cross-evaluation of the landmark-based feature space

To confirm robustness of the landmark space, a further experiment was per-

formed if the landmark space could produce the same results in Section 2.3.2

when sequences in the unknown region were given as inputs. If the landmark

space correctly reflected characteristics of exons, introns, and CpG islands, re-

gional differences will be identified even for unknown sequences. Experiments

were conducted in a cross-validation-like manner where one of the species was

selected as test data. Other species were used for constructing the landmark

space.

The experiment showed the concordant test of cross-evaluation of the land-

mark space in the same manner. As a result of concordance test, comparison

of information contents in exons, introns, and CpG islands matched well with

the previous result: exon > CpG island > intron. Frankly, compared to Figure

2.7, the concordance values were slightly decreased. However, the patterns of

values were consistent with the hypothesis. It implied that a landmark space

properly captured the characteristics of exons, intron, and CpG islands.
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Chapter 3

Pathway-based cancer subtype
classification and interpretation
by attention mechanism and
network propagation

Genes perform biological functions through interactions with other genes. An

effective way to analyze complex genetic interactions is to use biological net-

works. The most widely used knowledge of biological networks is biological

pathways such as Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kane-

hisa and Goto, 2000). KEGG consists of hundred small networks, each of which

is designed to represent distinct biological process. In this study, I study the

interaction between genes by using pathway information and develop a model

for predicting cancer subtype. By extracting information from each pathway

and generating an interpretable level of results in which pathways are useful,

biological phenomena specific to cancer subtypes can be analyzed.
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3.1 Motivation

Biological systems are too complex to understand as a whole. For this reason,

biological systems are dissected to small subsystems that can be easily under-

stood. The most widely used subsystems are biological pathway databases that

are curated for years and these pathway databases such as KEGG (Kanehisa

and Goto, 2000) are widely used to analyze transcriptome data.

Cancer subtypes are often classified based on gene expression profiles.

For example, breast cancer is well characterized in terms of subtypes that

are widely used for clinical applications (Grimm et al., 2014; Hwang et al.,

2019). However, cancer subtype classification based on gene expression pro-

files showed poor stability on independent datasets (Kim et al., 2012; Alcaraz

et al., 2017). Furthermore, it does not provide insightful biological information

such as subtype-specific activations of certain pathways (Gatza et al., 2010;

Segura-Lepe et al., 2019). Thus, pathway-based cancer subtype classification

is desirable since pathways can be an effective way to generate landscape of

molecular functions of an organism as a collection of biological knowledge

(Viswanathan et al., 2008). While pathway databases contain static informa-

tion in general, mapping transcriptome data to the pathways can enhance their

usefulness by explaining the dynamics of cancer in terms of biological functions

(Schadt et al., 2005; Kunz et al., 2019). Another view on why pathway-based

cancer subtype classification is useful can be explained in terms of the number

of dimensions or variables since the dimensionality from genes to pathways

is two orders of magnitude smaller (20000 vs. 300), resulting in better inter-

pretability on the feature space (Glaab et al., 2010; Gatza et al., 2010; Su

et al., 2009). However, there is a serious issue when pathways are used for

cancer subtype classification. Only a fraction, 1/3 in the case of human, is

included in biological pathways and use of pathways is limited in predictive
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power for subtype classification, compared to use of the entire transcriptome.

Thus, the main research question here is:

How can pathways be used effectively for cancer subtype

classification?

Most of pathway analysis tools are developed to measure pathway activation

levels (Lim et al., 2018). Given that each pathway is modeled as a single value

of representing the activation status of the pathway, combining these values

for the entire biological system is not straightforward, often resulting in poor

performances of cancer subtype classification (Lim et al., 2018).

In this study, a deep learning approach is proposed to investigate three

important research questions.

1. How can accuracies be improved in predicting cancer subtypes using

transcriptome data in terms of pathways?

2. How different are pathway interactions among cancer subtypes?

3. Why are gene expression profiles different among cancer subtypes?

To begin with modeling individual pathway, an effective computational

method that can consider interactions among genes is needed. Due to recent

advances in deep learning, graph convolutional network (GCN) can handle

these interactions instead of traditional pathway analysis tools (Defferrard

et al., 2016; Kipf and Welling, 2017). Aggregation of node features (= gene ex-

pression levels in this study) on the graph are performed in various ways such

as spectral graph convolution (Dhillon et al., 2007; Defferrard et al., 2016),

layer-wise propagation (Kipf and Welling, 2017), diffusion process (Atwood

and Towsley, 2016; Monti et al., 2017), graph embedding for sparse connec-

tions between nodes (Kong and Yu, 2018). Like convolutional neural network

(CNN), GCN can capture localized patterns in data, and unlike CNN, it can
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be used for non-grid structured data such as graph. For these reasons, GCN

has been successfully used in protein-protein interaction (PPI) network for

the prediction of breast cancer subtype and drug side effect (Rhee et al., 2018;

Zitnik et al., 2018).

Given a GCN model for each pathway, interactions between pathways can

be considered as a network of pathways by combining several hundred pathway

models again. For example, a condition-specific pathway network can be built

from transcriptome data (Moon et al., 2017) and GCN can be used again for

combining several hundred pathway models. However, GCN is a deep learning

model which is black-box model that cannot explain which input features are

important and why the model performs well (Castelvecchi, 2016). To open up

the black-box model, attention mechanism is frequently used (Vaswani et al.,

2017). The attention mechanism helps identify features that make the models

achieve better performances (Choi et al., 2016; Zheng et al., 2017).

Another important question is how to explain the differences between gene

expressions and interactions among subtypes in terms of pathways. The ques-

tion then is how different biological functions among cancer subtypes by ex-

tending pathway-level information to gene-level (Jo et al. (2016)). In this re-

gard, network propagation is also widely used in the network analysis for bi-

ological interpretation (Pearson, 1905; Cowen et al., 2017). For example, net-

work propagation has been successful in aggregating mutation profiles on the

molecular interaction networks to detect significant gene modules (Leiserson

et al., 2015; Hofree et al., 2013; Zhang et al., 2018).

In this study, an explainable deep learning model (Gunning, 2017) is pro-

posed for cancer subtype classification and pathway modeling. The model con-

sists of three steps (Figure 3.1). To begin with, a pathway model is generated

for each of the pathways by GCN to utilize biological prior knowledge. Then,

multiple GCN pathway models are integrated into a single model by multi-
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attention based ensemble (MAE). The MAE model consists of two-level at-

tentions to capture complex pathway combinations of cancer data. Finally, to

show how different subtypes are in terms of biological functions, I propose a

network propagation method with permutation-based normalization for iden-

tification of TFs that influence gene expressions and pathways. In the following

sections, Section 3.2 explains detailed implementation of the model. In Section

3.3, the power of the model is demonstrated in experiments with five cancer

data sets.

[Problem Definition of this study]

Given a set of pathways i = 1, 2, ...,m and gene expression data X with N

patients

< Input >

Gi : a graph of pathway, Gi = (Vi, Ei)

Vi & Ei : a set of genes and interactions in the pathway Gi

Xi : a gene expression matrix, X ∈ RN×|Vi|

< Output >

Y : Cancer subtype of given N patients, Y = {0, 1, 2, ..., c}N ,

c : number of classes

< Model >

Extract pathway information on each pathway i

using graph convolutional network (GCN)

Combine the results of GCN by multi-attention based ensemble (MAE)

Predict cancer subtype Y ′ using MAE model
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Figure 3.1: The workflow of the proposed pathway-based cancer subtype clas-

sification model. Given (a) gene expression data and pathway set, the proposed

model consists of three major parts. (b) Using graph convolutional networks

(GCNs), each GCN pathway model captures localized gene expression patterns.

Then, multilayer perceptron (MLP) is followed by GCN to encode extracted

gene-level information into pathway level. (c) Multi-attention based ensemble

(MAE) combines the outputs of GCN pathway models. To consider heterogene-

ity of cancer, two attention layers named pathway-level and ensemble-level are

utilized. (d) To identify transcription factors (TFs) related to highlighted path-

ways from (c), network propagation on a pathway-PPI network is performed.

To avoid that propagation is over-fitted on the high degree nodes, permutation-

based normalization of TFs is considered.
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3.2 Methods

3.2.1 Encoding biological prior knowledge using Graph Con-

volutional Network

Given a pathway p as prior knowledge, a graph Gp = (V p, Ep) is determined,

where V p is a set of nodes representing genes and Ep is a set of edges represent-

ing molecular interactions between genes in the pathway p. Gene expression

profile from RNA-seq is mapped to nodes V p that are represented as a vector

Xp
i = (xpi,1, x

p
i,2, ..., x

p
i,mp

), where i is an index for each patient and mp is the

number of genes in the pathway p (mp = |V p|).

To capture localized gene expression patterns in Gp, a spectral convolu-

tional approach is applied on the Laplacian matrix Lp = Dp − Ap of a graph

(Bruna et al., 2013; Defferrard et al., 2016). Here, Dp is a weighted degree

matrix of Gp and Ap is an adjacency matrix of Gp. Based on an eigenvalue

decomposition of a graph Laplacian matrix Lp = UΛUT |p, the spectral con-

volutional operator is defined as

Lp
spectral = Ugθ(Λ)UTX|p (3.1)

where gθ(Λ)|p is a polynomial convolution filter that is applied on the diagonal

matrix Λp.

gθ(Λ)|p =
K−1∑
k=0

θkΛk|p (3.2)

gθ(Λ)|p is represented as a K-order polynomial function that works as a

convolution filters reaching K-hop neighbors. This way, the spectral convo-

lutional operator (Equation 3.1) can capture localized expression patterns in

K-hop neighbor nodes in a graph. Despite this advantage, it is difficult to

use a polynomial convolution filter as is since it takes O(n2) time to calculate

the polynomial filter. In a recent study (Hammond et al., 2011), an approx-

imated polynomial function called Chebyshev expansion is proposed. Using
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the Chebyshev polynomial approximation, the spectral convolutional filter is

re-defined as

Lp
spectral ≈ U [

K−1∑
k=0

θ′kTk(Λ̃)]UTX|p (3.3)

where Tk(x) = 2xTk−1(x) − Tk−2(x) with T0 = 1 and T1 = x, and Λ̃ =

2Λ/λmax − Imp .

The above filter is used as a convolutional filter. Then, extracted patterns

are pooled with neighboring nodes using the Graclus algorithm. Empirically,

it is found that max pooling performed better than average pooling for the

pathway models, thus a max pooling is used for reducing genes. After con-

volution and pooling, gene expression profiles are dimensionally reduced into

pathway level vectors. In turn, these vectors are given to a MLP and then they

concerted to subtype-wise probability vectors.

The entire structure of GCN pathway models is shown in Figure 3.2. To

deal with high-dimension low sample characteristics, over 20,000 dimensions

of genes and typically less than 1,000 samples, of transcriptome data, dropout

and shallow networks for GCN and MLP are used to avoid over-fitting. Cross-

entropy loss is used as a cost function.

3.2.2 Re-producing comprehensive biological process by Multi-

Attention based Ensemble

As described in Section 3.2.1, a GCN pathway model is built for each pathway.

Using these GCN pathway models, gene expression profile Xi for each patient

is converted into P number of encoded vectors hp(Xi) (as shown in Figure 3.2)

, where p = 1, 2, ... , P (= total number of pathways). To combine encoded vec-

tors of hundred pathways, attention mechanism is used. Each encoded vector

hp(Xi) ∈ Rd, where d corresponds to the number of cancer subtypes, is con-

catenated, resulting in a large matrix form h(Xi) ∈ RP×d. Attention scores are

calculated on the concatenated matrix h(Xi) and attention-based combination
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Figure 3.2: Structure of GCN pathway model. It consists of a graph convolu-

tional network that extracts gene expression information using pathway topology

and a multilayer perceptron (MLP) that encodes the information. To prevent

over-fitting, shallow layers with batch normalization and dropout are adopted.

of pathway vectors h̃(Xi) is generated below as in Equation 3.4.

W ∈ Rd×a, b ∈ Ra, u ∈ Ra

Y = tanh(h(Xi)W + b) ∈ RP×a

α = Softmax(Y u) ∈ RP

h̃(Xi)j =
P∑

k=1

hk(Xi)jαk

where h̃(Xi) ∈ Rd

(3.4)

Our multi-attention based ensemble (MAE) model operates at two hierar-

chical levels (Figure 3.1(c)): pathway-level attention and ensemble-level atten-

tion. The basic mechanism for the pathway-level attention is the same as in

Equation 3.4, but multiple attention mechanisms are used to capture various

combinations of pathway encoded vectors. Each attention mechanism gener-

ates h̃(Xi)|l ∈ Rd, where l is l-th attention mechanism. As an ensemble-level

attention, multiple pathway-level attention encoded vectors are concatenated,

resulting in a form of h̃MGD(Xi) = (h̃(Xi)|1; h̃(Xi)|2; ...; h̃(Xi)|L)
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∈ RL×d, where L is the number of pathway-level attention. Then, as in Equa-

tion 3.4, an ensemble-level attention vector h̃fin(Xi) ∈ Rd is computed. After

the MAE step, h̃fin(Xi) is used as input to two-layer fully connected MLP

for the cancer subtype classification. Cross-entropy loss is used as an objective

function.

3.2.3 Linking pathways and transcription factors by network

propagation with permutation-based normalization

My approach of combining hundred pathways using multi-attention models

does provide some insights on how pathways interact differentially among can-

cer subtypes. Investigation on the difference in gene interaction among sub-

types is much more complicated because the number of genes is almost two

orders of magnitude larger than the number of pathways. Here, I propose an

effective approach of investigating gene interactions using transcriptome data

by linking pathways and TFs using network propagation with permutation-

based normalization.

Network propagation is typically done by performing random walks on

a network. A random work starts with seed nodes that are pre-selected and

the seeds have certain amount of information to be propagated. However,

performing a random walk on a long path will dilute the information too

much, especially when hub nodes with many edges are involved. To avoid this

dilution problem, a random walk with restart algorithm (Köhler et al., 2008)

is used. The random walk with restart is calculated as below:

p(t+1) = (1− r)Wp(t) + rp(0) (3.5)

where W is a column-wise normalized weighted adjacency matrix of a network

and p(t) is a vector that contains the propagated values of each node at time

step t. The seed vector p(0) is a normalized vector of initial values and r is a

restart parameter.
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When performing the network propagation, constructing network topology

and selecting seeds are two most important issues. In the case of the network

topology, biological prior knowledge and gene expression data are utilized (Fig-

ure 3.3(a)). Based on a PPI from BIOGRID database (Stark et al., 2006), an

absolute value of Pearson’s correlation is mapped on each edge in the network.

To link pathways and the weighted PPI, pathway nodes are added in the net-

work. Edges between a pathway node and genes in the pathway are also added

with constant weight 1. On the pathway-PPI network, seed nodes are selected

as the pathway nodes and values are assigned by attention weights from the

GCN pathway models with multi-attention.

As a result of network propagation, all nodes in a network has propagated

values. The propagated values are determined by not only the initial values of

seed nodes but also the topology of a network. For example, if a node has a

high degree, it may have a larger propagated value than other nodes regard-

less of seed values. To address this problem, a null distribution of propagated

values is computed by a permutation based approach (Figure 3.3(b)). Given

pathway attention weights of patient samples, a pathway attention weight is

randomly selected from the samples on each pathway and a new random pa-

tient is generated. By repeating this procedure 1,000 times and performing

network propagation on the random patient samples, a permutation-based

network propagation values are generated. From the permutation result, each

node in the network is ranked in terms of propagated values and a mean per-

mutation rank is computed by averaging the ranks of all random patients. On

a real patient, each node is transformed into ranks which are normalized by

the mean permutation rank. Remember that the goal in this step is linking

highlighted pathways and TFs. TFs that were curated in the literature (Lam-

bert et al., 2018) are used and ranked as a result of network propagation and

normalization.
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Figure 3.3: Construction of pathway-PPI network and Permutation-based nor-

malization. (a) Using pathways and PPI network from BIOGRID, a pathway-

PPI network is constructed. A single pathway node is connected with multiple

genes that belong to the pathway with a constant weight 1. In addition, to re-

flect transcriptome profiles of given data, absolute values of Pearson’s correlation

are mapped on the edges of the PPI network. (b) To address the property that

network propagation is vulnerable to high degree nodes, permutation-based nor-

malization is designed. From real patient attention matrix, a random pathway

attention weights vector is extracted. By repeating 1,000 times, a set of random

patients is generated and network propagation is performed on the data. In a

real patient, a rank of node i is normalized by average rank of node i on the

random patients.
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3.3 Results

3.3.1 Pathway database and cancer data set

As pathway information, the KEGG pathway database is used(Kanehisa and

Goto, 2000). Since the goal is to construct a pathway-based model of transcrip-

tome, some pathways were excluded that are not directly relevant. Specifically,

pathways related to drug development were removed. Pathways that are phys-

ical clusters of genes were also excluded from the analysis. In addition, path-

ways with less than five genes were excluded since deep learning models of

these small pathways are not feasible. As a result, 287 pathways were used for

modeling cancer subtypes. In total, 5,515 genes were included in the 287 path-

ways, thus the 5,515 genes were used for our analysis. Graph representations

of the pathways were extracted using KEGGgraph (Zhang and Wiemann, 2009)

library in R.

The Cancer Genome Atlas (TCGA) RNA-seq data sets were used as gene

expression profiles. RNA-seq data sets were downloaded from Firebrowse

(http://firebrowse.org/). Five cancers with subtypes defined, BLCA, BRCA,

COAD, PRAD, and STAD, were analyzed. Subtype information for these can-

cer data sets except BRCA was from the original research papers of each cancer

type. In the case of BRCA, the original article (Network et al., 2012) classified

subtypes based on microarray data and the number of samples were small since

it was one of the early TCGA papers. Thus, BRCA subtypes were re-generated

by the PAM50 classification method (Parker et al., 2009) on log2-transformed

RNA-seq data. Detailed information about cancer data sets are described in

Table 3.1 .
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Table 3.1: List of cancer data set with subtypes. The number assigned to each

subtype represents the number of samples in that subtype. Subtypes with few

assigned samples have been removed from the analysis

Cancer Total Subtypes Source

BLCA 408

Basal squamous (142), Luminal (26),

Luminal infiltrated (78), Luminal papillary (142),

Neuronal

*

BRCA 1097
Basal (230), Her2 (161), LumA (318),

LumB (298), Normal-like (90)
**

COAD 245
CMS1 (39), CMS2 (78), CMS3 (37),

CMS4 (68), NOLBL (23)
*

PRAD 317
ERG (152), ETV1 (28), ETV4 (14),

SPOP (37), other (86)
*

STAD 277 CIN (138), EBV (25), GS (54), MSI (60) *

BLCA: Bladder Urothelial Carcinoma, BRCA: Breast invasive carcinoma,

COAD: Colorectal adenocarcinoma, PRAD: Prostate adenocarcinoma,

STAD: Stomach adenocarcinoma

* Sources of data set: BLCA (Robertsonet al.(2017)), COAD (Guinneyet

al.(2015)),PRAD (Abeshouseet al.(2015)), STAD (Networket al.(2014))

** The subtypes of breast cancer samples were classified using RNA-seq data

and

PAM50 as mentioned in the Section 2.4 in the main script.
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3.3.2 Evaluation of individual GCN pathway models

Before constructing one unified model of transcriptome data, each pathway

was modeled as a component. Experiments were performed to see how well

each GCN model classified cancer subtypes. Hyper-parameters of each GCN

model were determined in 3-fold cross-validation (CV) within training data.

Classification performances were measured in terms of weighted F1 score with

10-fold CV (Table 3.2).

The average classification accuracies were 76.39% for BLCA, 66.91% for

BRCA, 71.54% for COAD, 70.12% for PRAD, and 78.13% for STAD. There

was a huge variation of performances. For example, in the case of BLCA, the

maximum value was 90.98% whereas the worst-case value was 46.78%. Because

these pathways reflect only a small part of the biological process, some of

these pathways were highly correlated with cancer subtypes, but some did

not. However, no pathways were commonly singled out in achieving the best

performances in all five cancers. Thus, the goal of combining all pathways in

one model is well supported by these experiments.

3.3.3 Performance of ensemble of GCN pathway models with

multi-attention

Effectiveness of the multi-attention based ensemble model of GCN

pathway models

The first performance evaluation is to see how accurate it can be and how

much performance gain can be achieved by combining all pathway models

into one model with multi-attention. Hyper-parameters for the MAE model

were determined in the same manner as described in Section 3.3.2.

Performance gain of attention mechanism: By combining all GCN

pathway models to single GCN+MAE models, the performance gain was sig-

60



Table 3.2: Statistics of GCN pathway model performance by the 10-fold cross

validation. For all pathways used as input, weighted f1 scores were computed

and summarized over 10-fold split results. The maximum, minimum, mean, and

standard deviation values were summarized to give a brief overview of the total

results

Cancer Maximum Minimum Average (Std)

BLCA 90.98 46.97 76.39 (±8.89)

BRCA 82.72 41.32 66.91 (±9.10)

COAD 82.79 45.16 71.54 (±7.89)

PRAD 86.13 45.14 70.12 (±8.54)

STAD 90.79 51.64 78.13 (±8.23)

nificant (Table 3.3). In COAD data, the GCN+MAE model with 11 attentions

showed the best F1 score of 87.01% with 4.22% improvement over the best

of single GCN pathway model. The other cancer data except STAD were also

achieved over 2.7% improvements. Besides, ensemble of multi-attentions no-

tably affected the performance gain. Most of the GCN+MAE models were

showed over 2.0% performance gain than single attention without an ensem-

ble level attention (GCN+Single Att). Even with the GCN+Single Att mod-

els, the performances were also better than single GCN pathway model. The

performance gains were smaller than 1.0% in three cancers, but over 2.0% per-

formance gains were also observed in the other cancers (BRCA and COAD).

Thus, these experiments show the effectiveness of attention mechanisms that

combine hundred pathway models.

Comparison with existing methods: The GCN+MAE model was com-

pared with other classification methods: SAS (Lim et al., 2016), the pathway
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Table 3.3: Performance comparison of models. The proposed model

(GCN+MAE) was compared with other models including the GCN pathway

model. The ensemble models using attention mechanism showed better perfor-

mance than the other classifiers. ”GCN + MAE (best)” indicated how many

attention mechanisms were used in parentheses. In the parentheses of ”GCN

best”, the ID of the pathway showing the performance was described

BLCA BRCA COAD PRAD STAD

GCN+MAE

(best)

93.74

(9-Att)

85.52

(14-Att)

87.01

(11-Att)

89.62

(9-Att)

91.49

(7-Att)

GCN+MAE

(#class-Att)
93.48 85.22 86.25 88.52 90.8

GCN+

*Single Att
91.08 85.03 84.97 86.55 90.96

GCN best
90.98

(hsa04151)

82.72

(hsa05206)

82.79

(hsa04151)

86.13

(hsa05200)

90.79

(hsa04151)

†SAS+SVM 81.51 74.41 77.54 79.25 76.08

SAS+RF 79.12 73.54 69.44 67.02 67.00

SAS+MLP 83.27 48.51 76.40 77.52 76.82

‡RAW+SVM 89.18 82.62 78.41 82.58 86.39

RAW+RF 79.83 77.11 74.69 68.36 76.17

* Instead of multi-attention, the GCN pathway models are combined with

single attention mechanism

† The pathway activity inference tool from (Lim et al., 2016)

‡ 20,531 genes are used as input features

hsa04151: PI3K-Akt singnaling pathway

hsa05206: MicroRNAs in cancer

hsa05200: Pathways in cancer

62



85.52

85.03

82.72

82.62

81.70

81.38

74.41

75.61

80.13

79.81

72.33

69.98

77.54

73.16

76.07

79.00

81.70

77.11

78.78

78.59

73.54

67.35

72.09

69.22

67.27

67.22

65.64

63.06

65.57

74.39

71.90

60 65 70 75 80 85 90

GCN+MAE

GCN+Sinlge Att

GCN best

RAW

Hallmark

MAD

SAS

CORG

DART

GSVAdif

GSVAmax

IndividPath

LLR

PADOG

PathAct

PLAGE

ssGSEA

F1 score

BRCA

Random Forest
SVM
GCN based

Figure 3.4: Cancer subtype classification performance comparison on BRCA

data. Including my GCN+MAE model, classification performance tests were

performed on 11 pathway activity inference tools and three gene-level based fea-

tures (all genes, cancer hallmark genes, or top median absolute deviation genes).

The GCN+MAE model outperformed other methods. Interestingly, gene-level

classifiers showed good classification performance than classifiers using pathway

activity inference tools.

activity inference tool, and RAW that used all available 20,531 gene expres-

sion. The results are summarized in Table 3.3. A recent study (Lim et al.,

2018) compared 13 pathway activity inference tools and SAS showed reason-

ably good performances on various tests including cancer subtype classifica-

tion. Thus, SAS was chosen for performance comparison. As pointed out in

the study (Lim et al., 2018), a large portion, about 2/3, of gene expression

information is lost. Thus, RAW were also chosen to compare classification per-

formances when “all” genes are used. To classify cancer subtypes with SAS

and RAW, support vector machine (SVM) and random forest (RF) were used
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as classifiers. In addition, pathway activities measured by SAS were trained

by MLP classifier. In the experiments of comparing GCN+MAE model with

SAS and RAW classifiers, the GCN+MAE model performed significantly bet-

ter, at least above 2.9%, than both SAS and RAW classifiers. For example, in

the case of COAD, SAS+SVM achieved best performance at 77.54%, which

was significantly lower than the GCN model (82.79%) and the GCN+MAE

model (87.01%). In fact, performance of the SAS classifier was worse than the

RAW classifier, which showed that information loss of genes in pathways is

substantial. To further explore the relationships between the pathway activity

inference tools and gene-level gene sets, I tested 10 additional pathway infer-

ence tools and another gene set of cancer hallmarks (Hanahan and Weinberg

(2011)) (Figure 3.4; other cancers are not shown). Interestingly, in these exper-

iments, the gene-level classification models performed better than the pathway

activity inference tool based models. These experimental results suggest that

proper modeling and aggregation of pathway information is important for the

pathway-based modeling of transcriptome data.

Highlighted pathways in breast cancer: Until now, the usefulness of

GCN+MAE model was analyzed in terms of classification performances. Fur-

thermore, it was also investigated that how pathway attention weights were dif-

ferent across subtypes(Figure 3.5 for BRCA data). Pathway attention weights

for each patient were determined by a weighted sum of pathway-level attention

vectors, and these weights were extracted from the ensemble-level attention

vector. For BRCA, the GCN+MAE model was able to highlight pathways

that are known to be important in breast cancer. For example, the highlighted

pathways were PI3k-Akt signaling (hsa04151) (Paplomata and O’Regan, 2014)

and MAPK signaling (hsa04010) pathways (Santen et al., 2002). Overall, pa-

tients were well clustered in the heatmap of attention weights in Figure 3.5.

64



Subtype
Normalized

attention weight

0
0.2
0.4
0.6

1
0.8

Normal-like
LumB
LumA
Her2
Basal

PI3k-Akt signaling (hsa04151)
Breast Cancer (hsa05224)
MAPK signaling (hsa04010)
Ras signaling (hsa04014)...

P
a

th
w

a
y

Patient

Figure 3.5: Heatmap of the attention weight of GCN+MAE model on BRCA

data. On the BRCA data, pathway attention weights of each patient were ex-

tracted from the best GCN+MAE model in Table 3.3. To better visualization,

the whole attention weights were divided at 90th percentile, and values of higher

than 1 were forced to 1. Patients and pathways were then reorganized by simi-

larity measure using the manhattan distance and ward D.2 clustering.

In particular, patients of Basal subtype formed a distinct cluster, which could

explain aggressiveness of Basal subtype breast cancer in terms of dysregulated

or over-activated pathways.

Effects of the number of multi-attention mechanism

Note that multi-attention were used, thus the number of attentions used to

combine pathways would result in performance differences. Thus, I investigated

how the classification performance varied concerning the number of attentions.

As shown in Figure 3.6 for BRCA data, multiple attention based ensemble

models outperformed the single GCN pathway model for all cancer data sets,

except STAD cancer data. Performance differences, when different numbers of

attentions were used, were less than 1% in most cases.
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Figure 3.6: Performance of GCN+MAE according to the number of attention

mechanisms on BRCA. The x-axis of the figure represented the number of at-

tentions from single attention to 15 attentions. The y-axis represented weighted

f1 score. The top line was for GCN+MAE and the bottom-straight line was

for a single GCN pathway model’s best result. Red stars indicated the best

classification result point. All results in the figure were calculated in 10-fold

cross-validation tests.

Another experiment was clustering analysis of patients. Interestingly, the

optimal number of attentions was quite similar to the number of patient clus-

ters. Since input to the GCN+MAE model was a combination of outputs of

GCN pathway models, outputs of GCN pathway models were concatenated

into a single vector to represent a patient. Then, X-Means clustering was

performed on the concatenated vectors. The number of clusters was quite sim-

ilar to the number of attentions, which could be an explanation of why the

GCN+MAE model achieved good performances in subtype classification.
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Figure 3.7: GO biological processes (BP) enriched in each subtype of BRCA.

To find biological functions of top-ranked TFs by network propagation with

permutation-based normalization, GO enrichment tests were performed using

target genes of different number of those TFs from 5 to 25. Among those tests,

consistently detected GO BP were illustrated as Venn diagram and listed as

tables. The number of detected GO BP were denoted in the parentheses. Similar

to the clinical prognosis, almost same GO BPs were observed in LumA and

normal-like subtypes, and the other three subtypes showed also similar results.

Unlike other subtypes, Basal subtype contained unique four GO BP terms that

were related to aggressiveness and metastasis of cancer.

3.3.4 Identification of TFs as regulator of pathways and GO

term analysis of TF target genes

Subtype-specific TFs: Multi-attention mechanisms produce which path-

ways are highlight while making prediction of cancer subtypes. Though some of

top 25 highlighted pathways were relatively different among cancer subtypes,

most of them were overlapped significantly. Thus, highlighted pathways were

not successful in explaining differences in biological functions among cancer

subtypes. For this reason, further investigation were performed to focus on dif-
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ferences of biological functions among subtypes as described in Section 3.2.3.

By normalized rank from network propagation analysis with permutation-

based normalization, TFs were ranked by the propagation scores and a ma-

jority of ranks were common in each of 10-fold cross-validation experiments.

While the TFs in the top 25 highlighted pathways were overlapped among sub-

types, TFs that were selected by the network propagation were quite distinct

among subtypes.

Top 25 TFs in each subtype of cancers were selected based on the network

propagation. For example, in the case of BRCA, different TFs were selected

in each of subtypes. Nuclear hormone receptor-related TFs such as NR1D1,

NR1H4, RORA, RORB, RORC were ranked high in Basal subtype. On the

other hand, tumor suppressor genes such as TP53, FOXO4 ranked top in Lu-

minal A subtype. Then, target genes of these top-ranked TFs were determined

from a curated database (Han et al., 2017), and then biological functions of

these target genes were identified by GO term analysis by Enrichr (Kuleshov

et al., 2016). Remember that about 2/3 genes, including many TFs, are not

included in the KEGG pathway database. The analysis scheme below is an ef-

fective way to investigate differences in biological functions of cancer subtypes

from subtype-specific pathways:

subtype-specific pathways → TFs → biological functions

Subtype-specific biological functions: Enriched GO biological processes

(GO BP) of target genes of TFs were analyzed, varying the number of top TFs

from 5 to 25 in a step of 5. Then, consistently detected GO BP terms regardless

of the number of TFs were collected as subtype-specific biological functions

(Figure 3.7 for BRCA) GO BPs enriched in each subtype were represented as

Venn diagram using InteractiVenn (Heberle et al., 2015). As shown in Fig-

ure 3.7, GO BP terms enriched in Basal subtype are most distinct compared
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to GO BP terms enriched in other subtypes, which could be a good expla-

nation on why Basal subtype is most aggressive. On the other hand, LumA

and Normal-like subtypes shared almost the same GO BP terms including

positive regulation of nucleic acid-template transcription (GO:1903508) and

positive regulation of gene expression (GO:0010628), which also explains bet-

ter prognosis of LumA compared to other subtypes. In addition, three sub-

types, such as Her2, LumB, and Basal, shared cellular response to cytokine

stimulus (GO:0071345) that was known as important factors of breast cancer

development and metastasis (Esquivel-Velázquez et al., 2015; Eichbaum et al.,

2011).

GO BP terms that were enriched only in Basal subtype could explain its

aggressive phenotype. Positive regulation of cell proliferation (GO:0008284)

and negative regulation of apoptotic process were closely related to cancer cell

proliferation and they were known as one of the hallmarks of cancer (Hana-

han and Weinberg, 2011). Basal subtype cancer had a high rate of prolifera-

tion than other subtypes. This dysregulated cell proliferation resulted in worse

prognosis and treatment options are difficult to choose for patients (Castelvec-

chi, 2016; Cakir et al., 2012). Two more enriched GO BP terms were inflam-

matory response (GO:0006954) and positive regulation of cytokine production

(GO:0001819). Cytokines were a family of proteins related to immune systems.

Inflammation and escape of immune destruction were also members of hall-

marks of cancer (Hanahan and Weinberg, 2011). Many studies reported that

Basal subtype breast cancer exhibited differential expression of inflammation

related genes and stronger immunogenicity than the other breast cancer sub-

types (Liu et al., 2018; Hartman et al., 2013). For these reasons, inflammatory

related cytokines were considered to be immunotherapeutic targets of Basal

or triple-negative breast cancer (Kim et al., 2015; Fabre et al., 2018).
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Chapter 4

Detecting sub-modules in
biological networks with gene
expression by statistical approach
and graph convolutional network

In the previous study, I used biological pathways as single units. A biological

pathway is to represent a distinct biological process. However, a pathway can

contain multiple biological functions. Thus, to investigate biological mecha-

nisms under specific conditions, e.g., cancer, it is sometimes necessary to dis-

sect a pathway into a set of smaller units, each of which can represent a single

biological function. To address this issue, an algorithm is needed to determine

functionally coherent subgraphs of activated genes.

4.1 Motivation

The advent of high throughput technologies for transcriptome profiling, such as

microarrays or RNA-Seq, has changed the paradigm of transcriptome analysis

from the gene-centric research to the genome wide investigation of a biological
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mechanism (Luo et al., 2010; Jin et al., 2014). The most widely used analysis

technique is to determine a list of differentially expressed genes (DEGs). This

approach can be useful to find genes that play important roles between control

and treated conditions, e.g., disease and healthy patients. However, the DEG-

based analysis has serious limitations. For example, consider transcriptome

data for investigating disease conditions. Disease is not caused by an abnormal

activity of a single gene but complex perturbation involving many genes is

the cause and result of a disease (Barabási et al., 2011). Investigation on

biological mechanisms underlying difference in transcriptomic abundance of

a number of genes is challenging (Khatri et al., 2012). To overcome these

limitations, the pathway based approach has emerged and routinely used to

derive informative biological insights from transcriptome data (Khatri et al.,

2012; Luo et al., 2009; Kelder et al., 2010; Garćıa-Campos et al., 2015). A

biological pathway is a graph representation showing how genes interact based

on the literature information and experimental validations. The most well

known pathway database is KEGG(Kanehisa and Goto, 2000) and there are

several well curated pathway databases such as REACTOME (Croft et al.,

2010), NDEx (Pratt et al., 2015), and PANTHER (Mi et al., 2013).

4.1.1 Pathway based analysis of transcriptome data

To investigate which pathway is activated and suppressed, gene expression in-

formation from transcriptome data should be mapped to nodes or genes of the

pathway. Since genes are inter-connected in complex ways, sophisticated bioin-

formatics methods are needed to investigate activation or suppression status of

a pathway. Bioinformatics methods to analyze pathway activation or suppres-

sion status can be categorized into three groups: over-representation analysis

(ORA), functional class scoring (FCS), and pathway topology (PT) (Khatri

et al., 2012). ORA statistically measures how much fraction of genes in the
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specific pathway are included in a gene set, e.g., a set of DEGs. Perturbed path-

ways are selected in terms of the statistical significance that is calculated by

Fisher exact test or chi-square test (Zeeberg et al., 2003; Bindea et al., 2009).

ORA does not consider the gene expression quantity information by treating

all DEGs are equally, thus ORA often fails to characterize differences between

phenotypes in terms of gene expression and pathway activation/suppresion.

The second generation pathway analysis method, FCS, is based on the fact

that biological mechanisms are affected by not only large changes in few genes

but also many functionally related genes with weak transcription level. To ag-

gregate effect of all genes in a pathway, FCS methods defines a score of each

gene based on the statistical significance. Then a score of pathway activation

and suppression is defined by simply aggregating scores of each gene in the

pathway. Statistical significance of the aggregated score is tested against null

hypothesis that the pathway gene set is associated with phenotypes no more

than the genes not in the pathway (competitive) or the gene set is differen-

tially expressed between phenotypes (self-contained). The most widely used

FCS methods are gene set enrichment analysis (GSEA) (Subramanian et al.,

2005) and Pathifier (Drier et al., 2013). GSEA determines whether a set of

genes (e.g., pathways) are statistically different between two phenotypes by

measuring whether those genes are randomly distributed or located in the top

or bottom of a list of genes (e.g, list of DEG). While GSEA measures the

difference between phenotype groups, Pathifier calculates the pathway score

individually. Using principal component analysis (PCA) and principal curve

that captures the variations in whole sample, gene-level information is changed

to a single pathway-level score.

Like ORA methods, a major issue with FCS methods is that these methods

do not consider topological information of pathways such as interaction be-

tween genes and gene regulation information. To address this issue, a new class
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of pathway analysis methods, PT, emerged. The main difference between FCS

and PT is use of topology information when gene-level scores are measured.

The well known PT methods are SPIA (Tarca et al., 2009) and PARADIGM

(Vaske et al., 2010). SPIA determines significant pathways based on two types

of evidences. One is a significance score generated by ORA. The other is the

perturbation score of pathway by propagating expression changes between two

phenotypes via topological structures of pathway. PARADIGM infers activity

of a specific pathway in a sample-level using a factor graph that is constructed

from pathway. PARADIGM is designed to handle multi omis data (gene ex-

pression, methylation, copy number variation) and utilizes a belief propagation

algorithm.

There is another major challenge in measuring pathway activities. Path-

way is designed to capture series of molecular interactions that change state

of a cell or produce certain chemicals. Thus a pathway consists of multiple

biological functions, not a single homogenous function. To handle this prob-

lem, it is necessary to divide a pathway into multiple sub-pathways each of

which has a single biological function. Overbeek et al. (Overbeek et al., 2005)

pioneered to use this concept by defining and using subsystems to annotate

genomes. Since then, subsytem/subpathway based approaches are used to de-

duce more accurate and sensitive biological interpretations. Chang, Jeffrey

T. et al. (Chang et al., 2009) used an approach to deconstruct a pathway

into modules so that each module can have a single molecular function and

also can model complex, non-linear relationship among genes in the pathway.

In addition, clustering approaches are also used to decompose pathway into

functional modules. Barabási et al. (Barabási et al., 2011) used a network

clustering method to identify drug target biomarkers considering functional

relationship among nearby genes. A recent study (Lim et al., 2016) devel-

oped a new method of decomposing a pathway into functional sub-pathways
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using clusters obtained from the protein interaction network. This method de-

fined and used an edge activity score that considers explicit gene expression

information from RNA-seq and network centrality information of each gene.

Recently, a number of different approaches has been developed to measure

activity of sub-pathways, rather than a whole pathway. Sub-pathway activity

measurement tools are designed to identify activated subpaths between two

phenotypes: PATHOME (Nam et al., 2014), TEAK (Judeh et al., 2013), and

MinePath (Koumakis et al., 2016).

4.1.2 Challenges and Summary of Approach

Although there has been a significant development in measuring pathway or

sub-pathway activities over the years, several technical challenges remain to

be resolved.

Challenge 1: Use of explicit gene expression information Existing

pathway methods are designed for microarray data and they do not utilize

explicit gene expression information from RNA-seq that is known to produce

more accurate gene expression information (Wang et al., 2009). Some meth-

ods are designed to handle microarry data only since the analysis method

assumes some specific distributions to determine subpaths, e.g., a bayesian

network based subpath identification method (Judeh et al., 2013). Most of

existing methods convert gene expression into correlation between two genes

or binary notation (up-regulated / down-regulated), thus not using explicit

gene expression quantity.

Challenge 2: Measuring activity of subpath consisting of multiple

nodes or edges Determining subpaths that exhibit differential activities in

different phenotypes requires to handle multiple genes (nodes) or edges. Map-

ping gene expression information to the corresponding gene in the pathway
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is not very helpful in determining subpaths since no topological information

is considered. Some existing methods measures activities of edges but this is

mostly done by correlation analysis which is not additive. Not being additive

is a serious hurdle in determining subpaths.

Challenge 3: Multi-class differential subpath activity to determine

condition specific subpath activity Recently, transcriptome data is used

to compare multiple, more than two, phenotypes. This trend is expected to

continue in an increasing way since transcriptome information from RNA-seq

allows us to compare arbitrary number of phenotypes. Traditional approaches

using the concept of up/down regulation is not extensible to multiple-class

comparisons.

Challenge 4: Determining differential subpath activity using bulk

cell sequencing data Sequencing requires a good quantity of RNA suffi-

cient for sequencing experiments. Increasingly, RNA are obtained from a bulk

of cells that consist of cells of different types. In this case, determining differ-

ential subpath activity is even more challenging since extending subpath by

adding nodes (genes) or edges requires rigorous criteria.
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In this study, a software package, MIDAS, was designed and implemented

that considers all of the four issues above. Below I briefly summarized the

strategy to address the issues.

1. MIDAS utilized explicit gene expression quantity information from RNA-

seq.

2. An edge activation measurement technique (Lim et al., 2016) was ex-

tended for determining subpaths with differential activities. See Section

4.2.2 for details.

3. The multi-class issue was considered in a statistical approach. See Section

4.2.3 for details.

4. MIDAS used a greedy subpath extension method with exponentially

increasing criteria. See Section 4.2.3 for details.

Although MIDAS considered the four issues mentioned above, there are

drawbacks that are not considered. MIDAS overlooked the fact that one gene

belongs to several pathways. This is because pathways are the result of parti-

tioning the entire biological system for ease of interpretation. To improve this,

I designed to follow up on MIDAS using PPI network which is bigger network

than pathway.

A graph convolutional network is used to draw significant features from the

PPI network, taking into account gene expression and gene interactions. Graph

convolutional operations exist for both spectral and non-spectral approach. In

the second study, spectral graph convolution (Defferrard et al., 2016) was

used because pathways are small networks. In this study, rather than utilizing

Fourier operation and approximation step on huge network, a non-spectral

method was used (Kipf and Welling, 2017). When selecting features related
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Figure 4.1: The workflow of MIDAS. From user-given RNA-seq gene expression

profiles and target pathway set, differentially activated subpaths among classes

are determined.

to gene interactions with graph convolution, multi-hop convolution operation

was performed by considering long range interaction between genes.

Additionally, the class activation map (CAM) approach was used to extract

subnetworks that are important for classifying subtypes on networks (Zhou

et al., 2016). CAM is a technique used for image classification problems. When

classifying a class, it is a technique that indicates what part of the image a

model focuses and predicts the class. Using this, it is possible to investigate

which subnetwork is closely related to the class on the network. By using

the CAM method, 78% 85% of the performance is obtained in the subtype

classification problem of breast cancer data, and the subnetwork is extracted

according to the subtype.
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[Problem Definition of this study]

Given a set of pathways i = 1, 2, ...,m or a PPI network and gene expression

data X with N patients

< Input >

Gi : a graph of pathway of PPI network, Gi = (Vi, Ei)

Vi & Ei : a set of genes and interactions in the pathway Gi

Xi : a gene expression matrix, X ∈ RN×|Vi|

< Output >

Y : Cancer subtype of given N patients, Y = {0, 1, 2, ..., c}N ,

c : number of classes

< Model >

Extract subpaths in the pathway i or in the PPI network

by statistical or GCN approach

Using the subpaths as features, built a classifier f

to predict cancer subtype Y ′

4.2 Methods

The overview of the method is illustrated in Figure 4.1. Pathway information

is obtained by KEGG database (Kanehisa and Goto, 2000).

• Input : RNA-seq gene expression data with multi class, target KEGG

pathway sets to be analyzed

• Parameters : Start threshold, Increase moment, Permutation p-value cut-

off

• Output : Differentially activated subpaths prioritized by the permutation

test
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With an input of RNA-seq and target pathways, differentially activated sub-

paths are determined in four steps. Each of the target pathways is converted

into a directed graph. Then gene expression profiles are mapped into the graph

and edge activities are measured. Differentially activated subpaths among

classes are constructed by a greedy seed and extension method with the ex-

ponential decaying threshold. Finally, subpaths are prioritized by the permu-

tation test. Details of each step are in the following subsections.

4.2.1 Convert single KEGG pathway to directed graph

Each target pathway is converted to directed graph with preserving entry

information and edge regulation information by a R package, KEGGgraph

(Zhang and Wiemann, 2009). Entry in a KEGG pathway may contain several

genes having similar biological functions, rather than a single gene. In addi-

tion, complex of entries, that work together such as CDKs (Cyclin-dependent

kinase) and Cyclins in Cell cycle, are denoted as a group entry. These entries

and group entries are used as graph node to reflect curated information from

KEGG database (Kanehisa and Goto, 2000). In case of regulation, only acti-

vation or inhibition edges are used for further analysis like SPIA (Tarca et al.,

2009). For example, “binding” or “dissociation” are excluded during graph

construction.

4.2.2 Calculate edge activity for each sample

The activation status of edge in the constructed graph is measured for each

sample. Biologically, genes interact with nearby genes and activity is deter-

mined by considering these interactions rather than by a single transcriptional

abundance. To consider topological importance and expression levels of genes,

the Lim et al.’s approach was extended (Lim et al., 2016). The method in

(Lim et al., 2016) measured edge activity on a undirected protein-protein in-
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teraction (PPI) network. In this study, graph edge has two type of regulation

information: activation and inhibition. For the activation type edge, the same

measurement in (Lim et al., 2016) is used. However, for the inhibition type

edge, inhibitory mechanism is reflected in the measurement as below.

• “Activation” type edge A → B:

Acte = 1
2 ×

{ce(A)×expr(A) + ce(B)×expr(B)}2
expr(A) + expr(B)

• “Inhibition” type edge A −| B:

Acte = 1
2 ×

{ce(A)×expr(A) + ce(B)×(max expr(B)− expr(B))}2
expr(A) + (max expr(B)− expr(B))

where

– ce(A) : closeness centrality of node A

– expr(A) : average gene expression of node A (Many genes are in-

cluded in a single node)

– max expr(A) : maximum average gene expression of node A in the

whole samples.

ce(A) is closeness centrality of node A in the target pathway graph. Be-

cause the pathway graph contains gene interaction information and signaling

mechanisms, closeness centrality represents topological importance of the node

in the target pathway graph. It is used in calculation of edge activity to give

more weights to the gene that regulates several genes in the pathway.

4.2.3 Mining differentially activated subpath among classes

The goal is to determine subpaths with different activities across phenotypes.

This problem is computationally intensive since it is needed to consider all

possible pairs of genes in a pathway. In addition, each candidate subpath

should be tested if the subpath has phenotypically different. Thus a greedy

seed-and-extension algorithm was designed and implemented. As mentioned
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in Introduction, the pathway is composed of several biological processes. Thus

determining differentially activated subpath is not an easy task. A reasonable

search strategy is needed to explore the huge search space. Thus greedy seed

& expansion technique with exponential decaying threshold was implemented

. To begin with, subpath activity is defined as an average of activity value of

edges belonging to the subpath. Then, distributions of subpath activities are

created for each class, and the distribution difference among the classes is mea-

sured with statistical test, “kruskal-wallis test”. To avoid incorrect extension,

the algorithm enforces a very stringent criteria with exponentially decaying

threshold values as the subpath gets longer. Default value of Start threshold

is 0.05 and Increase moment is empirically determined according to class num-

ber and sample size. The subpath determination algorithm works as below.

[Input]: RNA-seq Gene expression Data D, Pathway graph G, Start threshold,

Increase moment

1. Calculate edge activity on each edege e ∈ in G per each sample in D.

2. Perfom kruskal-wallis test on each edge e, i.e., size 1 (= two nodes)

subpath.

3. Seed Selection: Select the most significant edge in the graph as cur-

rent subpath SP, i.e., Seed. In addition, set the threshold δ to the

Start threshold value.

4. Expansion Step-1: Search neighbor edge set NE of the current subpath

SP (initially, it is seed). For each edge e in the NE, create a temporary

new subpath TP by adding e to the current subpath SP, and generate

a statistical statistic through the kruskal wallis test. Select the edge e∗

that produces the best kruskal wallis statistic value.
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- Expansion candidate edge e∗ = arg max
e∈NE

KW (TP),TP← SP + e

5. Expansion Step-2: Expand current subpath SP by adding the edge

e∗ selected from Step3 if the significance of the new subpath calculated

from the statistical test is less than the given threshold δ (initially, it is

same as Start threshold).

- Expanded new subpath SP ← SP + e∗, if p− value(SP + e∗) < δ

6. Expansion Step-3: If the expansion is successful, the given threshold

δ becomes tight by exponential decaying. Multiply the threshold by an

amount Increase moment to construct a tight new threshold and return

to Step 4. Else, remove the current subpath from the graph.

- Exponentially decaying new threshold δ ← δ ∗ Increase moment

7. Repeat Step 3 to 6 until no edges remain in the graph.

[Output] : Differentially activated subpaths

4.2.4 Prioritizing subpaths by the permutation test

Once, differentially activated subpaths are determined, significance of sub-

paths is measured by a permutation test to reflect intra and inter pathway

relationship. For each pathway, a permutation p-value is calculated by gener-

ating a distribution of random subpaths of the same size by creating a null

distribution for each size. For example, a subpath of size k, Sk, K edges are

randomly selected from the pathway and then a random subpath activity is

constructed to calculate the Kruskal-Wallis statistics. This operation is repated

10,000 times to create a null distribution for size k. A permuation p-value of

Sk is measured by Equation 4.1.
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Permutation p− value(Sk) =

∑
ski ∈Sk I(kw(ski ) ≤ kw(Sk))

10, 000
(4.1)

• kw(Sk)) : Kruskal-Wallis statistic of given size k subpath

• Sk : null distribution of size k subpath

4.2.5 Extension: graph convolutional network and class acti-

vation map

From the second and third study, GCN+MAE and MIDAS, the usefulness

of the pathway is tested. However, pathway databases contain only a small

part of entire genes and information of most genes are lost. A protein-protein

interaction (PPI) network, rather than pathways, contains almost genes of the

living organisms. To utilize a large network information and focus on specific

nodes in the network, i.e., important genes, a graph convolutional network and

class activation map (Zhou et al., 2016) approach is performed for extension

of MIDAS method.

For a given graph G = (V,E), an adjacency matrix A is determined. An

operation of graph convolution of an input X and a weight matrix W is fol-

lowed the widely used graph convolutional framework (Kipf and Welling, 2017)

like below.

f(X,A) = σ(D̂− 1
2 ÂD̂− 1

2XW ) (4.2)

with Â = A + I, where I is the identity matrix and D̂ is the diagonal node

degree matrix of Â.

A single graph convolutional operation by Equation 4.2 aggregates infor-

mation of first neighbor nodes. On the biological network, multiple genes in-

teract with each other and form a sub-network with second, third, or more

neighbor nodes and range of interacting neighbor nodes are different on each
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node. To reflect these properties, attention-based aggregation of multi-hop

graph convolution is used for the model. As Equation 4.2, a l + 1-th hop is

determined by a result of l-th graph convolution layer like below.

H(l+1) = σ(D̂− 1
2 ÂD̂− 1

2 (H(0) + H(l))W (l+1)) (4.3)

with H(0) = X and when l = 0, H(l) term is ignored. Convolutional results of

H(l), l = 1, 2, ..., k are aggregated by attention mechanism.

HAtt
i =

k∑
l=1

αlH
(l)
i

where H
(l)
i is a feature of node i in l-th convolutional layer and αl is computed

by an attention mechanism like Equation 3.4.

A classifier for prediction of breast cancer subtypes is built by class acti-

vation map approach. Using a final graph convolutional unit of Equation 4.2,

a channel of each node is transported into class number of filters. On each

class filter, global average pooling (GAP) is performed and results of GAP are

passed into the final softmax layer to predict classes.

4.3 Results

To utilize the tool into biological data, breast cancer is selected as test data.

Breast cancer is the most prevalent cancer in women worldwide (Stewart et al.,

2016). Breast cancer is a disease that has been studied for decades and it is

well-classified as clinically important five molecular subtypes (Basal, Her2, Lu-

minal A, Luminal B, Normal-like) by the PAM50 gene set (Parker et al., 2009;

Dai et al., 2015). In addition, the tumor is of a heterogeneous cell population,

thus breast cancer may be best to show the utility in terms of the biological

and clinical significance of subpaths determined by MIDAS.

Normalized gene expression profiles (Level 3) from RNA-seq data of breast

invasive carcinoma were downloaded from TCGA Research Network:
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Table 4.1: Pathway set used in analysis. From KEGG database, 10 pathways

related to breast cancer are curated

KEGG

pathway

ID

Name Reference

hsa04010 MAPK signaling pathway
(Menendez et al., 2005; Mao et al., 2010)

(Mirzoeva et al., 2009)

hsa04014 Ras signaling pathway (Lo et al., 2004)

hsa04110 Cell cycle (Biswas et al., 2000; Porter et al., 1997)

hsa04151 PI3K-Akt signaling pathway (Berns et al., 2007; Tokunaga et al., 2006)

hsa04210 Apoptosis (Abedin et al., 2007)

hsa04310 Wnt signaling pathway
(Li et al., 2003; Howe and Brown, 2004)

(Schlange et al., 2007; Katoh and Katoh, 2007)

hsa04390 Hippo signaling pathway (Chen et al., 2012; Lai et al., 2011)

hsa04550
Signaling pathways regulating

pluripotency of stem cells

(Wang et al., 2011; Katoh and Katoh, 2007)

(Hennessy et al., 2009; Yang et al., 2013)

hsa04668 TNF signaling pathway (Stuelten et al., 2005)

hsa04915 Estrogen signaling pathway
(Osborne et al., 2005; Thomas et al., 2005)

(Massarweh et al., 2008)

http://cancergenome.nih.gov/ and ten breast related pathways were se-

lected as shown in Table 4.1. The parameter values were set as follows (Start threshold:

0.05, Increase moment: 1e-15, Permutation p-value cut-off: 0.1). Graphical im-

ages of pathway graph is generated using KEGGParser (Nersisyan et al., 2014)

in Cytoscape (Shannon et al., 2003)

The utility of MIDAS was demonstrated in four ways. The 36 subtype

specific subpaths that MIDAS are well supported in the literature in Section

4.3.1.Subsequently, these subpaths have a good discriminant power for cancer

subtype classification in Section 4.3.2 and also have a prognostic power in
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terms of survival analysis in Section 4.3.3. Finally, performances of MIDAS

are compared with a recent subpath prediction method, PATHOME (Nam

et al., 2014) in Section 4.3.4.

4.3.1 Identifying 36 subtype specific subpaths in breast cancer

From breast cancer gene expression data with five subtypes and 10 target

KEGG pathways, 36 subpaths were determined as summarized in Table 4.2.

Apoptosis (8 subpaths), PI3K-Akt signaling pathway (6 subpaths), cell cycle

(4 subpaths), MAPK signaling pathway (4 subpaths), RAS signaling path-

way (3 subpaths), TNF RAS signaling pathway (3 subpaths) showed signif-

icant subtype specific pathway activities. In cancer vs. normal, differential

activities in these pathways is obvious but identifying pathway activity dif-

ferences in breast cancer subtypes is not trivial. In terms of subpath length,

the longest one was of 14 genes and the average length was about 6 genes

(6.19). Average subpath activities among breast subtypes are illustrated in

Figure 4.2(a). The ranks left outside the heatmap are subpath ranks and the

color map right outside the heatmap indicates which pathway each subpath

are derived from. Subpath activities were prominent in aggressive basal sub-

type samples and in normal samples, which is quite intuitive since 10 target

pathways were selected based on the relevance to cancer. Most important in-

formation from this RNA-seq analysis is that MIDAS were successful in deter-

mining subpaths that have distinct activities in five subtypes. In this section,

subpath activities in two pathways, cell cycle and apoptosis, are discussed.

Figure 4.2(b) and (c) shows subpath activities in Apoptosis (hsa04210) and

Cell cycle (hsa04110), respectively. In Apoptosis (hsa04210), eight subpaths

were differentially activated from rank4 (highest rank) to rank31 (lowest rank).

Those subpaths are associated with caspase related regulation process (Kumar,

2007), pro/anti-apoptotic function induced by BCL2-family (Czabotar et al.,
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Table 4.2: Pathway Membership & Size information about significant sub-

paths. (a) contains how many subpaths are extracted from specific pathway.

(b) contains occurrence information of significant subpath with certain num-

ber of nodes. Pathway information is described here: hsa04010/MAPK signaling

pathway, hsa04014/Ras signaling pathway, hsa04110/Cell cycle, hsa04151/PI3K-

Akt signaling pathway, hsa04210/Apoptosis, hsa04310/Wnt signaling pathway,

hsa04390/Hippo signaling pathway. hsa04550/Signaling pathways regulating

pluripotency of stem cells, hsa04668/TNF signaling pathway, hsa04915/Estrogen

signaling pathway

(a) Pathway Membership information

Pathway # of Subpaths

MAPK signaling pathway 4

Ras signaling pathway 3

Cell cycle 4

PI3K-Akt signaling pathway 6

Apoptosis 8

Wnt signaling pathway 4

Hippo signaling pathway 1

Signaling pathways regulating

pluripotency of stem cells
1

TNF signaling pathway 3

Estrogen signaling pathway 2

(b) Subpaths size information

# of Nodes # of Subpaths

1 4

2 1

3 1

5 6

6 10

7 4

8 4

9 2

10 1

11 2

14 1
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2014), pro-apoptotic genes like TP53 and FAS (Papaliagkas et al., 2007), and

so on. In the meanwhile, in case of Cell cycle (hsa04110), four subpaths were

differentially activated from rank 1 (highest rank) to rank29 (lowest rank).

Most of those subpaths are related with Cyclin and CDK complexes that are

important to regulate cell cycle phase transition such as G1/S phase or G2/M

phase (Keyomarsi et al., 2002; Michalides et al., 2002; Casimiro et al., 2012).

Mitosis related metaphase/anaphase transition process is also differentially

activated (Bharadwaj and Yu, 2004). In summary, the subpaths of the two

pathways were successful in explaining subtypes that were different in terms

of cell growth and cell death.

4.3.2 Subpath activities have a good discrimination power for

cancer subtype classification

In breast cancer, the molecular subtype classification is important because

the subtypes have different disease characteristics and clinical outcomes (Dai

et al., 2015; Sotiriou et al., 2003; Reis-Filho and Pusztai, 2011). To test the

classification power of differentially activated subpaths, a random forest al-

gorithm is used in a 10-fold cross validation scheme. Expression profiles were

divided into 10 subsets while preserving the subtype ratio. Differentially ac-

tivated subpaths were determined using the train data and activities of these

subpaths were used as features to generate a random forest classification model

which was used to predict subtypes of samples in the test data. In the 10-fold

cross validation test, the average classification accuracy was 78.41%. To com-

pare the predictive power of subpaths, another 10-fold cross validation using

random forest was performed using all genes (> 20,000 gene). In this case, the

average classification accuracy was 79.44%. While the accuracies of two classi-

fication tests were similar, the number of genes used for classification was very

different. Differentially activated subpaths contained only 221 entries and 478
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Figure 4.2: Average subpath activity among breast cancer subtypes and Sub-

paths result. (a) average subpath activity is coded as color heatmap. Red color

denotes higher subpath activity and white denotes lower subpath activity. (b)

and (c) are results where differentially activated subpaths are located. Those

subpaths are decoded as rainbow color scheme and edge widths according to

their rank. The higher rank subpath is more thicker and red side color. (b) is

result of Apoptosis (hsa04210). (c) is result of Cell cycle (hsa04110).

89



0 1000 2000 3000 4000 5000 6000 7000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Cluster1 
Cluster2 
p = 0.0332

(b)

(a)

S
u

rv
iv

a
l 
P

ro
b

a
b

ili
ty

Time
0 1000 2000 3000 4000 5000 6000 7000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Cluster1
Cluster2 

p = 0.00982

Time

S
u

rv
iv

a
l 
P

ro
b

a
b

ili
ty

(b)

0 1000 2000 3000 4000 5000 6000 7000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Cluster1 
Cluster2 

p = 0.000696

S
u

rv
iv

a
l 
P

ro
b

a
b

ili
ty

Time
(c)

Figure 4.3: Survival analysis using differentially activated subpaths with differ-

ent clustering algorithms. Using differentially activated subpaths as features and

different clustering algorithms, clustering and survival analysis are performed

10times for each algorithms. Median p-value result is used as representative re-

sult. (a)-(c) show survival analysis results of different clustering algorithms. (a)

K-means clustering. (b) robust sparse k-means clustering (RSKC). (c) hierar-

chical clustering. All of analysis results show statistically significant difference

between two groups.

genes (about 2.3%). This shows that the algorithm, MIDAS, was successful

in selecting a small number of core genes that can be used to explain cancer

subtypes, without sacrificing classification accuracies.

4.3.3 Subpath activities have a good prognostic power for sur-

vival outcomes

Another experiment in terms of prognostic power was performed to show the

utility of the subpaths. To predict survival outcome, it is necessary to di-

vide samples into distinct groups. Using subpath activities, all samples were
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divided into two groups. Three different clustering algorithms were used to

eliminate the potential bias by different clustering methods. Three different

clustering methods were a standard k-means clustering algorithm, a robust

k-means clustering (RSKC), and a hierarchical clustering algorithm. RSKC is

a variation of the k-means clustering that is designed for data that have noise

variables or outlier samples (Kondo et al., 2016). The hierarchical clustering

were performed with the euclidean distance and the ward.D2 agglomeration

method. To divide samples into good/bad prognostic groups, all of the clus-

tering methods produced two representative clusters. P-value is calculated by

a log-rank test. Clustering results may be different due to the k-means seed or

the agglomeration order, so all tests were repeated 10 times and the median

p-values were shown in Figure 4.3. All survival analysis results were statisti-

cally significant at the level of p-value of 0.05: k-means clustering (p=0.032),

RSKC (p=0.00982), hierarchical clustering (p=0.000696). Table 4.3 summa-

rizes ratios of samples in each subtypes in two clusters. In case of Cluster1

(the good prognostic group), more samples in less aggressive breast cancer

subtypes were included than Cluster2 (the bad prognostic group). Especially,

in the k-means and the hierarchical clustering results, over 90% of samples in

Cluster1 were those in less aggressive breast cancer subtypes. In the mean-

while, RSKC showed a good prognostic result probably because samples with

aggressive breast cancer subtypes, e.g., basal, and normal samples, were di-

vided well into one of the two clusters.

4.3.4 Comparison with an existing tool, PATHOME

Performance of MIDAS was compared with PATHOME (Nam et al., 2014).

PATHOME is a method for detecting differentially expressed subpaths from

KEGG pathway. PATHOME uses template subpaths that are generated by

DFS (Depth First Search) from a start node (ex. genes in the membrane) to
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Table 4.3: The rate at which the subtype is divided into clusters from Sur-

vival analysis. This is the result of summarizing how many percent of each

subtype is included into clusters obtained from survival analysis with different

clustering algorithms. Cluster1 is good-prognostic cluster and Cluster2 is bad-

prognostic cluster. (a) K-means clustering, (b) Robust sparse K-means clustering

(RSKC) (c) hierarchical clustering. In the Cluster1, less aggressive subtypes such

as LumA and Normal are included more than Cluster2. In addition, the ratio of

aggressive subtypes belonging to Cluster2 is higher than that of less aggressive

subtypes

(a) k-means clustering

Subtype Cluster1 Cluster2

Basal 54.63% 45.37%

Her2 51.28% 48.72%

LumA 91.05% 8.95%

LumB 59.86% 40.14%

Normal 95.51% 4.49%

(b) RSKC

Subtype Cluster1 Cluster2

Basal 23.79% 76.21%

Her2 21.79% 78.21%

LumA 69.01% 30.99%

LumB 29.59% 70.41%

Normal 86.52% 13.48%

(c) hierarchical clustering

Subtype Cluster1 Cluster2

Basal 77.97% 22.03%

Her2 76.28% 23.72%

LumA 95.53% 4.47%

LumB 82.99% 17.01%

Normal 97.75% 2.25%
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an end node (ex. final product). Candidate subpaths are selected from the

template subpaths by checking concordance between edge regulation infor-

mation and correlation of two genes consisting of the edge. Then, statistical

significance of a subpath is measured based the concordance edge’s correla-

tion value using the Fisher transformation. PATHOME is designed for two

class (tumor vs normal) data. For the comparison with MIDAS, I performed

the analysis again in two class, four cancer subtypes as one group vs. normal.

In addition, there is a difference in generating pathway graphs. Since PATH-

OME considers only a linear path from a start node to an end node, i.e., with

a constraint on graph topology, all genes are considered as separate nodes in

the pathway graph. However, MIDAS considers arbitrary subpaths including

those with non-linear topology, thus an original node in each KEGG pathway

is a single node in the pathway graph. To handle this topological difference

in two pathway graphs, the pathway graphs generated by MIDAS were used .

Significance of subpath in terms of subpath length was set to 3.

93



Table 4.4: Subpath mining results of two methods. The number of sub-

paths determined by the two methods. The pathway that has at least

one subpath is denoted as detected pathway. In 10 pathways, MIDAS pre-

dict 34 subpaths and PATHOME predict 13 subpaths. Pathway informa-

tion is described here: hsa04010/MAPK signaling pathway, hsa04014/Ras sig-

naling pathway, hsa04110/Cell cycle, hsa04151/PI3K-Akt signaling pathway,

hsa04210/Apoptosis, hsa04310/Wnt signaling pathway, hsa04390/Hippo signal-

ing pathway. hsa04550/Signaling pathways regulating pluripotency of stem cells,

hsa04668/TNF signaling pathway, hsa04915/Estrogen signaling pathway

KEGG pathway

ID

Detected pathway # of Subpaths

MIDAS PATHOME MIDAS PATHOME

MAPK signaling pathway O X 3 -

Ras signaling pathway O O 5 4

Cell cycle O X 5 -

PI3K-Akt signaling pathway O O 4 5

Apoptosis O X 3 -

Wnt signaling pathway O O 4 3

Hippo signaling pathway O O 1 1

Signaling pathways regulating

pluripotency of stem cells
O X 4 -

TNF signaling pathway O X 3 -

Estrogen signaling pathway O O 2 1
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Figure 4.4: Comparison result on PI3K-Akt signaling pathway (hsa04151). This

is merged subpaths from two methods. Subpaths extracted by PATHOME are

denoted as skyblue node and concordance edges are represented as thicker edges

(ex. AKT3 −| GSK3β). Four subapths extracted from MIDAS also illustrated

on each color: rank3 (red), rank6 (orange), rank23 (blue), rank33 (pink).
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Differentially activated subpaths predicted by the two methods are sum-

marized in Table 4.4. Among the 10 target pathways, five pathways were com-

monly predicted by the two methods. Among the common five pathways, sub-

paths of PI3K-Akt signalling pathway are illustrated in Figure 4.4. Subpaths

selected by MIDAS is shown in color, and subpaths selected by PATHOME

is indicated by thick edges. Although AKT3 related subpaths are commonly

determined by the two methods, there is a good difference in the number of

subpaths predicted and also in the number of genes in the subpaths. In terms of

the number of subpaths of the common five pathways, 16 subpaths were deter-

mined by MIDAS and 14 subpaths by PATHOME. In terms of the number of

genes in the subpaths, MIDAS included 310 genes while PATHOME included

83 genes. Although the number of subpaths determined by each method is no

big difference, the number of genes included in the subpath were quite large.

The reason why there is a big difference in the number of genes is because 14

subpaths determined by PATHOME shared many genes due to the linearity

constraints of subpath topology. Also, due to the seed & expansion technique

with exponential decaying threshold, MIDAS determined long length of sub-

paths than PATHOME: average length (MIDAS: 5.75 vs. PATHOME: 3.71)

and longest length (MIDAS: 13 vs. PATHOME 5).

For all 10 pathways, MIDAS determines more subpaths than PATHOME:

34 subpaths vs. 14 subpaths. Some of subpaths detected by only MIDAS can be

false positives, but they can be clues of understanding biological mechanisms.

An example of pathways that were not detected by PATHOME is Cell Cycle

pathway that is very well known to be important in cancer progressions. In

the Cell Cycle pathway, major regulators of cell cycle progression are CDKs.

For example, CDK4 interacts with many other genes, e.g. P21, RB, INK4A

and 9 more genes (Keyomarsi et al., 2002; Michalides et al., 2002). Complex

interaction mechanisms of these genes may be the reason why PATHOME
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Figure 4.5: Survival analysis results of two methods. This is survival analysis

results of two methods. (a) is survival plot of MIDAS and (b) is those of PATH-

OME. The statistical significance of both results are measured by log rank test

from survival group generated using robust sparse K-means clustering (RSKC).

Those tests are performed 10 times and median result is shown.

failed to determine cell cycle subpaths due to the linear decomposition of

pathway.

To compare the prognostic power of subpaths determined by the two meth-

ods, survival analysis was performed as in Section 4.3.3. Survival tests was

performed 10 times with robust sparse K-means clustering (RSKC) and the

survival curves are shown in Figure 4.5. The prognosis result by MIDAS was

statistically significant at the level of p-value 0.05 while the result by PATH-

OME was not.
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4.3.5 Extension: detection of subnetwork on PPI network

The biological networks used in this analysis adopted from a database called

pathway commons (Cerami et al., 2010). Pathway Commons is a database that

collects not only various PPI network databases such as BIOGRID, BIND, and

REACTOME, but also information on pathway databases such as KEGG and

PANTHER. The database includes regulatory networks, molecular interac-

tions, signaling pathways, and more. The network is filtered with genes whose

gene expression is measured using breast cancer transcriptome data and can-

cer hallmark gene set which are known to be markers of cancers (Hanahan and

Weinberg, 2011), resulting in an undirected network consisting of 4,214 nodes

(= genes) and 202,926 edges (= gene interactions).

Cancer subtype prediction experiments are conducted with the entire data

divided by train:validation:test = 8:1:1. Through repeated experiments, the

model shows reasonable classification result ranging of 78.29% to 85.39% based

on weighted F1-score. This is better than MIDAS, but it is worse than the

GCN+MAE model. In addition, there is a performance difference of about 7%

between the lowest and highest performances, indicating that there is still a lot

of work to be done. On the other hand, the GCN + MAE model uses a variety

of pathways for ease of interpretation, so it takes a long time to learn several

pathways individually. However, the current model has the advantage that the

learning time can be significantly reduced because the features are selected on

one large network. In addition, the classification performance deteriorates as

abandon the fully connected layer to use CAM. This point is also observed in

the original paper of CAM, and this point will be improved by referring to

other studies such as grad-cam (Selvaraju et al., 2017).

The figure 4.6 shows subnetwork extracted from patients belonging to each

subtype. After obtaining the activation score of each node in the last CAM

layer of the model, the top 10% genes are selected. The subnetworks are com-
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Figure 4.6: Subnetwork extracted from one patient belonging to each subtype

by graph convolutional network and class activation map For each subtype, a

subnetwork is extracted using the score of the class activation map. The ex-

tracted subnetwork is clustered through the GLay clustering algorithm consid-

ering the community structure.

posed by extracting the edges to be connected with the nodes in the original

network. Then GLay, a clustering algorithm that takes into account commu-

nity structures (Su et al., 2010), is utilized to show interaction modules of the

subnetworks. In the figure, three subtypes, Basal, Her2, and Normal-like, are

grouped into one, and LumA and LumB are grouped into the other. The for-

mer group is clustered with most of the genes connected, while the latter group

has a large number of genes separated from each other. This is because the

former group has many interactions, that is, the genes with many edges to be

selected, while the latter group seems to have selected many genes that func-

tion individually. This seems to be because the model selected the usefulness

based on the node rather than the edge.
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Table 4.5: Number of genes overlapping in each subnetwork

Basal Her2 LumA LumB Normal-like

Basal - 30 4 6 113

Her2 30 - 0 59 98

LumA 4 0 - 26 57

LumB 6 59 26 - 0

Normal-like 113 98 57 0 -

To determine how overlapping the subnetworks of each subtype are, the

number of nodes that appear in common was measured in Table4.5. LumA,

which is known to have the best prognosis, showes the most overlap with

Normal-like among the remaining subtypes. This is consistent with the fact

that the two subtypes have the best prognosis. On the other hand, the odds

are that the second most prognosis is Normal-like, and the most malignant

overlaps with Basal and Her2. To address this abnormal observation, further

analyses will be needed to check the hypothesis that the worst prognosis is

due to abnormal expression of many normally functioning genes.

Because these subnetworks are post-processed by the activation score of

the CAM layer, the entire network is actually used in the model during a

classification task. Also, since the model doesnot utilize pooling layers, it does

not use all the genes but only genes related to cancers. To improve this, I will

devise a way of pooling considering the edge of the network, and consider the

method that the subnetwork is automatically extracted as the result of the

model.
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Chapter 5

Conclusions

In my doctoral study, I proposed methods to interpret genome sequence and

RNA interaction as below.

1. a new string kernel method for comparative and evolutionary comparison

of DNA sequences that extends the existing k-spectrum string kernel by

utilizing rank information and a landmark concept

2. an explainable deep learning model with graph convolutional network

and attention mechanism for pathway based cancer regulation and a

network propagation based bridging gaps between pathway-levels and

gene-levels

3. a statistical approach and graph convolutional network method for iden-

tifying sub-modules on biological network

In the first study, I proposed the ranked k-spectrum string kernel for com-

parative and evolutionary sequence comparison. The method was based on k-

mer frequency ranks and utilized correlations between these ranks to measure
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the similarity of two sequences. The effectiveness of RKSS kernel was demon-

strated through two experiments with the landmark concept. The phylogenetic

tree constructed with the RKSS kernel of one landmark captured evolution-

ary information relatively well compared to the tree constructed with the k-

spectrum string kernel. As the second experiment, a novel landmark space was

built using the RKSS kernel with multiple landmarks. This space effectively

represented the genetic properties of the three genomic regions with differ-

ent characteristics. From two experiments, the relationship across information

contents in exons, introns, and CpG islands was found. In terms of evolution-

ary information, the order of three regions was like that: exon > CpG island

> intron. In the second study, for cancer subtype prediction using pathways,

I proposed an explainable ensemble of deep pathway models. Using GCN and

multi-attention, the model captured localized gene expression patterns and ag-

gregated information spread out various pathways. On the TCGA five cancer

data, the proposed method outperformed the existing pathway activity infer-

ence methods and single GCN models. In addition, unlike other methods, the

proposed model used the multi-attention to obtain a list of pathways that can

effectively classify and explain the characteristics of cancer subtypes from the

deep learning model. Biological functions of these pathways were identified by

connecting pathways and TFs by network propagation algorithm. In the final

study, I designed and implemented an algorithm that determines phenotype

specific subpaths and their activities. MIDAS utilized gene expression quantity

information explicitly for edge activities and used a scoring scheme to mea-

sure subpath activities so that activities of multiple edges can be combined

more effectively than traditional correlation-based methods. In an extensive

experiment, MIDAS was successful in explaining biological mechanisms of five

breast cancer subtypes. However, MIDAS did not consider the fact that a gene

can belong to multiple pathways and pathways can interact with each other.
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To address this issue and extend the second study, a graph convolutional net-

work model with class activation mapping like approach on a huge biological

network was designed. Although the study has not yet shown performance

beyond the existing methods, it offered the possibility to extract biologically

significant information beyond the limitations of the pathways. In conclusion,

I developed one sequence similarity measurement for DNA sequences and two

machine learning algorithms for gene expression data with biological networks.

The three algorithms reduced the high dimensional features of each data to a

reasonable number of features with minimizing the loss of information through

biological prior knowledge.
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Söding, J. (2004). Protein homology detection by hmm–hmm comparison.

Bioinformatics, 21(7), 951–960.

Song, K., Ren, J., Reinert, G., Deng, M., Waterman, M. S., and Sun, F. (2013).

New developments of alignment-free sequence comparison: measures, statis-

tics and next-generation sequencing. Briefings in bioinformatics, 15(3),

343–353.

Sotiriou, C., Neo, S.-Y., McShane, L. M., Korn, E. L., Long, P. M., Jazaeri,

A., Martiat, P., Fox, S. B., Harris, A. L., and Liu, E. T. (2003). Breast

cancer classification and prognosis based on gene expression profiles from a

population-based study. Proceedings of the National Academy of Sciences,

100(18), 10393–10398.

Stark, C., Breitkreutz, B.-J., Reguly, T., Boucher, L., Breitkreutz, A., and

Tyers, M. (2006). Biogrid: a general repository for interaction datasets.

Nucleic acids research, 34(suppl 1), D535–D539.
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국문초록

생물체 간 표현형의 차이는 각 개체의 유전적 정보 차이로부터 기인한다. 유전

적 정보의 변화에 따라서, 각 생물체는 서로 다른 종으로 진화하기도 하고, 같은

병에 걸린 환자라도 서로 다른 예후를 보이기도 한다. 이처럼 중요한 생물학적

정보는 대용량 시퀀싱 분석 기법 등을 통해 다양한 오믹스 데이터로 측정된다.

그러나,오믹스데이터는고차원특징및소규모표본데이터이기때문에,오믹스

데이터로부터 생물학적 정보를 해석하는 것은 매우 어려운 문제이다. 일반적으

로,데이터특징의개수가샘플의개수보다많을때,오믹스데이터의해석을가장

난해한 기계학습 문제들 중 하나로 만듭니다.

본 박사학위 논문은 기계학습 기법을 활용하여 고차원적인 생물학적 데이터

로부터 생물학적 정보를 추출하기 위한 새로운 생물정보학 방법들을 고안하는

것을 목표로 한다.

첫 번째 연구는 DNA 서열을 활용하여 종 간 비교와 동시에 DNA 서열상에

있는 다양한 지역에 담긴 생물학적 정보를 유전적 관점에서 해석해보고자 하였

다.이를위해,순위기반 k 단어문자열비교방법, RKSS커널을개발하여다양한

게놈 상의 지역에서 여러 종 간 비교 실험을 수행하였다. RKSS 커널은 기존의 k

단어 문자열 커널을 확장한 것으로, k 길이 단어의 순위 정보와 종 간 공통점을

표현하는 비교기준점 개념을 활용하였다. k 단어 문자열 커널은 k의 길이에 따라

단어 수가 급증하지만, 비교기준점은 극소수의 단어로 이루어져 있으므로 서열

간 유사도를 계산하는 데 필요한 계산량을 효율적으로 줄일 수 있다. 게놈 상의

세 지역에 대해서 실험을 진행한 결과, RKSS 커널은 기존의 커널에 비해 종 간

유사도및차이를효율적으로계산할수있었다.또한, RKSS커널은실험에사용

된 생물학적 지역에 포함된 생물학적 정보량 차이를 생물학적 지식과 부합되는

순서로 비교할 수 있었다.
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두번째연구는생물학적네트워크를통해복잡하게얽힌유전자상호작용간

정보를 해석하여, 더 나아가 생물학적 기능 해석을 통해 암의 아형을 분류하고자

하였다. 이를 위해, 그래프 컨볼루션 네트워크와 어텐션 메커니즘을 활용하여 패

스웨이 기반 해석 가능한 암 아형 분류 모델(GCN+MAE)을 고안하였다. 그래프

컨볼루션네트워크를통해서생물학적사전지식인패스웨이정보를학습하여복

잡한 유전자 상호작용 정보를 효율적으로 다루었다. 또한, 여러 패스웨이 정보를

어텐션 메커니즘을 통해 해석 가능한 수준으로 병합하였다. 마지막으로, 학습한

패스웨이 레벨 정보를 보다 복잡하고 다양한 유전자 레벨로 효율적으로 전달하

기 위해서 네트워크 전파 알고리즘을 활용하였다. 다섯 개의 암 데이터에 대해

GCN+MAE 모델을 적용한 결과, 기존의 암 아형 분류 모델들보다 나은 성능을

보였으며 암 아형 특이적인 패스웨이 및 생물학적 기능을 발굴할 수 있었다.

세번째연구는패스웨이로부터서브패스웨이/네트워크를찾기위한연구다.

패스웨이나 생물학적 네트워크에 단일 생물학적 기능이 아니라 다양한 생물학적

기능이 포함되어 있음에 주목하였다. 단일 기능을 지닌 유전자 조합을 찾기 위

해서 생물학적 네트워크상에서 조건 특이적인 유전자 모듈을 찾고자 하였으며

MIDAS라는 도구를 개발하였다. 패스웨이로부터 유전자 상호작용 간 활성도를

유전자발현량과네트워크구조를통해계산하였다.계산된활성도들을활용하여

다중 클래스에서 서로 다르게 활성화된 서브 패스들을 통계적 기법에 기반하여

발굴하였다. 또한, 어텐션 메커니즘과 그래프 컨볼루션 네트워크를 통해서 해당

연구를패스웨이보다더큰생물학적네트워크에확장하려고시도하였다.유방암

데이터에 대해 실험을 진행한 결과, MIDAS와 딥러닝 모델을 다중 클래스에서

차이가 나는 유전자 모듈을 효과적으로 추출할 수 있었다.

결론적으로,본박사학위논문은 DNA서열에담긴진화적정보량비교,패스

웨이기반암아형분류,조건특이적인유전자모듈발굴을위한새로운기계학습

기법을 제안하였다.

주요어: 고차원 데이터, 생물학적 사전지식, DNA 서열, 유전자 발현량, 기계학습
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