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Abstract

Sehi L’Yi

Department of Computer Science and Engineering

College of Engineering | Seoul National University

The visual comparison is one of the fundamental tasks in information visu-

alization (InfoVis) that enables people to organize, evaluate, and combine

information fragmented in visualizations. For example, people perform vi-

sual comparison tasks to compare data over time, from different sources, or

with different analytic models. While the InfoVis community has focused on

understanding the effectiveness of different visualization designs for sup-

porting visual comparison tasks, it is still unclear how to design effective

comparative visualizations due to several limitations: (1) Empirical findings

and practical implications from those studies are fragmented, and (2) we

lack user studies that directly investigated the effectiveness of different visu-

alization designs for visual comparison.

In this dissertation,we present the results of three studies to build our knowl-

edge on how to support effective visual comparison to InfoVis novices—

general people who are not familiar with visual representations and visual

data exploration process. Identifying the major stages in the visualization

construction process where novices confront challenges with visual compar-

ison tasks, we explored two high-level comparison tasks with actual users:

comparing visual mapping (encoding barrier) and comparing information

(interpretation barrier) in visualizations. First, we conducted a systematical

literature review on research papers (N = 104) that focused on supporting

visual comparison tasks to gather and organize the practical insights that re-
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searchers gained in the wild. From this study, we offered implications for de-

signing comparative visualizations, such as actionable guidelines, as well as

the lucid categorization of comparative designs which can help researchers

explore the design space. In the second study, we performed a qualitative

user study (N = 24) to investigate how novices compare and understand

visual mapping suggested in a visual-encoding recommendation interface.

Based on the study, we present novices’ main challenges in using visual en-

coding recommendations and design implications as remedies. In the third

study, we conducted a design study in the area on bioinformatics to design

and implement a visual analytics tool, XCluSim, that helps users to compare

multiple clustering results. Case studieswith a bioinformatician showed that

our system enables analysts to easily evaluate the quality of a large number of

clustering results. Based on the results of three studies in this dissertation,

we suggest a future research agenda, such as designing recommendations

for visual comparison and distinguishing InfoVis novices from experts.

Keywords: Information Visualization; Comparative Analysis; Visual Com-

parison; InfoVis Novices; Literature Survey; User Study; Design Study

Student Number: 2013-23127
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Chapter 1

Introduction

1.1 Background and Motivation

During visual data explorationwith information visualization (InfoVis), com-

paring multiple visualizations is one of the fundamental tasks that enables

people to organize, evaluate, and combine information fragmented in visu-

alizations. For example, people perform visual comparison tasks to compare

data over time [2, 79, 118], from different source [10], or with different an-

alytic models [18, 66]. While the InfoVis community has focused on under-

standing the effectiveness of different visualization designs for supporting

visual comparison tasks [36, 37, 53, 81, 94, 106, 125], it is still unclear how

to design comparative visualizations because of several limitations. (1) In-

sights are fragmented. Empirical findings and practical implications from

these studies are fragmented in diverse domains and venues. For example,

research papers that presented novel visualization designs based on com-

parative layouts [37]—three primitive visualization arrangements that facili-

tate visual comparison tasks (i.e., juxtaposition, superposition, and explicit-

encoding)—are published tomore than 40 different venues (Chapter 3). This

sometimes caused inconsistencywhen researchers assessed the effectiveness

1



of different comparative layouts; contrary to common belief on the ineffec-

tiveness of juxtaposition [19, 24], user study results show that juxtaposition

can be more effective than other two comparative layouts for some certain

tasks [53, 94]. (2) We lack user study results. To assess the effectiveness of

different visualization designs, we need to empirically evaluate them with

actual users. However, we only find a few studies which directly investigated

the effectiveness of different visualization designs for visual comparison; we

found less than 10 research papers that conducted quantitative user studies

with the comparative layouts (Chapter 3).

When we consider InfoVis novices target users, supporting effective vi-

sual comparison becomes much more challenging. Here, we follow Gram-

mel et al.’s work [41] to define InfoVis novices: Novices are general people

who are not familiar with visual representations and visual data exploration

and can be any domain experts, such as bioinformaticians and system log

analysts. Previous results from controlled user studies [41, 54] identified

that InfoVis novices confront several barriers during visual data exploration.

Based on three main steps in the visual exploration process [17], Grammel

et al. [41] identified three barriers—data selection, encoding, and interpre-

tation barriers—where we find that the last two can directly affect novices

in performing visual comparison tasks. First, interpretation barrier chal-

lenges novices in understanding visual representations used in unfamiliar

visualizations. This barrier is related to typical comparison tasks [53, 81, 94,

118, 125] where people compare information conveyed in multiple visual-

izations. Second, encoding barrier makes novices difficult to imagine and

understand visual mapping operations, such as transforming numerical val-

ues to the length of bars or categorical values to distinguishable hues in bar

charts. This barrier can cause cognitive burden in selecting visual mapping

2



alternatives during constructing visualizations, for example, making novices

difficult to choose proper visual encoding suggested in visual-encoding recom-

mendation interfaces [141], such as Recommended Charts in Microsoft Excel

[32] and Show Me in Tableau [120].

In this dissertation, we present the results of three main studies to build

our knowledge on how to support effective visual comparison to InfoVis

novices. We employed three different approaches for individual studies to

broaden our understanding: (1) literature survey, (2) user study, and (2)

design study. In the first study, we conducted a systematical literature re-

view on research papers that focused on supporting visual comparison tasks

to gather and organize the insights that researchers gained in the wild. In the

second and third studies, we investigated the effectiveness of visualization

techniques with actual users and real-world problems. In these two studies,

we explored comparison tasks in two major stages of the visual exploration

process where novices usually confront challenges [41] and are directly re-

lated to comparison tasks: comparing visual mapping (encoding barrier)

and comparing information (interpretation barrier) in multiple visualiza-

tions. In the second study, we performed a qualitative user study (N = 24)

to investigate how novices compare and understand visual mapping in the

context of visualization recommendation. In the last study, we conducted a

design study in the area of bioinformatics to design and implement a visual

analytics tool that helps domain experts to interactively compare multiple

results of cluster analysis.

Thesis Statement Carefully designed visualizations and interfaces by un-

derstanding people’s abilities, challenges, and goals in visual data explo-
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ration can facilitate effective visual comparison, ultimately leading to a better

understanding of their complex data.

1.2 Research Questions and Approaches

The research questions that motivated this dissertation are the followings:

RQ1. How should we design visualizations to support InfoVis novices in

visual comparison tasks?

RQ2. How shouldwe help InfoVis novices in comparing and understanding

visual encoding in visualization recommendation?

RQ3. Howshouldwedesign a visual analytics system to help InfoVis novices

in comparing multiple analysis results?

To answer these research questions,we employed threemain approaches:

systematic literature survey, qualitative user study, and design study.

A1. Literature Survey: A systematical literature review on 104 papers that

employed three primitive visualization arrangements to support visual

comparison.

A2. User Study: A qualitative user study with InfoVis novices to investigate

how they compare visual-encoding recommendations.

A3. Design Study: A design and implementation of XCluSim, a visual ana-

lytics tool for comparing multiple clustering results.

4



Figure 1.1: The design space of comparative layouts observed in our literature survey.

1.2.1 Revisiting Comparative Layouts: Design Space, Guidelines,
and Future Directions

We present a systematic review on three comparative layouts—juxtaposition,

superposition, and explicit-encoding—which are information visualization (In-

foVis) layouts designed to support comparison tasks. In the last decade,

these layouts have served as fundamental idioms in many visualization sys-

tems to support visual comparison. However, we found that the layouts have

been used with inconsistent terms with confusion and the lessons and prac-

tical findings from previous studies are fragmented. We review 104 research

papers that employed comparative layouts to combine and systematize the

various insights researchers gained in the wild. Reflecting the diverse usage of

the layouts (Figure 1.1), we classify the three layouts into six lucid categories,

such as chart-wise and item-wise juxtaposition. We distill the advantages and

concerns of using each layout, as well as the approaches to overcome the

concerns. Combining our literature review and the results of eight papers
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Figure 1.2: The recommendation interface used in our user study for understanding how
InfoVis novices compare visual-encoding recommendations.

with quantitative user studies, we suggest six actionable guidelines for the

comparative layouts.

1.2.2 Understanding How InfoVis Novices Compare Visual Encoding
Recommendation

We investigate the effectiveness of three representation methods—preview,

animated transition, and textual description—in comparing andunderstand-

ing the visual-encoding recommendation. Most visualization recommenda-

tion systems predominantly rely on graphical previews to describe alterna-

tive visual encodings. However, since InfoVis novices are not familiar with

visual encoding and representations [41], novicesmight have difficulty com-

paring and understanding recommended visual encodings. We conducted

a qualitative user study using a think-aloud protocol with 24 participants

to explore the effectiveness of three representation methods for describing
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Figure 1.3: The interface of XCluSim, a visual analytics tool for comparing multiple clus-
tering results.

visualization recommendation. To conduct the user study, we design and

implemented a visual-encoding recommendation interface to alleviate over-

lap reduction in scatterplots (Figure 1.2). Our results show how multiple

representations cooperatively help users compare, understand, and choose

recommended visualizations, for example, by supporting their expect-and-

confirm process. Based on our study results, we discuss design implications

for visualization recommendation interfaces.

1.2.3 Designing XCluSim: a Visual Analytics System for Comparing
Multiple Clustering Results

Wepresent XCluSim (Figure 1.3), a visual analytics system that helps people

to interactively comparemultiple clustering results. In collaborationwith se-

nior researchers in a bioinformatics laboratory, we conducted a design study

to organize practical problems that data analysts confront in cluster analysis.
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To assist the identified problems, we designed and implemented XCluSim

based on Visual Information Seeking Mantra [114], allowing users to grasp

overall information about multiple clustering results, such as the similarity

between them, and to examine the small number of results in detail with two

detail views. Finally, we conducted two case studies with a bioinformatician

to evaluate the usefulness of XCluSim and found that XCluSim helped the

analyst to find a clustering result that clearly represents the biological rela-

tions of genes.

1.3 Dissertation Outline

The rest of this dissertation is divided into four chapters. Chapter 2 dis-

cusses previous studies that are relevant to the work of this dissertation,

including studies on information visualization techniques for supporting

visual comparison tasks and understanding InfoVis novices through user

studies. Chapter 3 illustrates the result of a systematical survey on research

papers that employed comparative layouts: three primitive visualization lay-

outs that support visual comparison tasks (i.e., juxtaposition, superposition,

and explicit-encoding). Chapter 4 proposes the result of a qualitative user

study with InfoVis novices to understand the effectiveness of three differ-

ent comparative layouts—juxtaposition, animated transition, and explicit-

encoding—invisual-encoding recommendation contexts. Chapter 5 presents

XCluSim, an interactive visual analytics tool for comparing multiple cluster-

ing results of bioinformatics data. Lastly, Chapter 6 concludes this disserta-

tion by proposing future research agenda.

8



Chapter 2

RelatedWork

2.1 Visual Comparison Tasks

The InfoVis community has focused on observing, identifying, and organiz-

ing visual analytic tasks in the real-world to design visualization systems

that better reflect the practical usage of information visualization. Amar et al.

[3] identified ten low-level tasks in information visualization systems, such

as computing derived value and finding extremum. While this categorization is

not specifically targeted for visual comparison, several tasks from this work

can be employed in visual comparison contexts. For example, Howorko et al.

[50] designed study tasks based on one of the low-level tasks (i.e., comput-

ing derived value) to evaluate the different designs of bar chart visualiza-

tions: single-attribute and overall-attribute comparisons. Gleicher [36] focused

on visual comparison and proposed six fundamental actions that people

perform, from low-level tasks (e.g., identify and measure) to high-level ones

(e.g., Contextualize), which have been influenced on designing more effec-

tive visualizations for comparison [118]. Recently, Jardine et al. [53] divided

comparison tasks into two categories—global and local comparison—which

showed different performance in terms of consistency by participants from
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controlled user studies [53, 94]. The global comparison refers to comparing

the overall characteristics of individual visualizations, such as examining the

correlation of individual bar charts. On the contrary, the local comparison

represents directly comparing visual elements, such as the length of two spe-

cific bars in bar charts. The authors found that people showed more incon-

sistent performance in global comparison tasks because of people’s different

perceptual heuristics for finding predefined relationships between visualiza-

tions. This dissertation employs these recent categorizations for visual com-

parison tasks [36, 53] to more systematically organize the performance of

visualization designs found in our literature survey (Chapter 3).

2.2 Visualization Designs for Comparison

Many researchers have build the knowledge on designing information vi-

sualizations that effectively support comparison tasks through user studies

[53, 77, 94, 106, 118] and literature surveys [36, 37]. For example, Ondov et al.

[94] compared the effectiveness of different arrangements, such as overlay-

ing and juxtaposing, for comparing a pair of bar, slope, and pie charts. Srini-

vasan et al. [118] focused on bar charts but with additional designs, such

as overlaying ’tick’ marks on top of a bar chart that represent subtraction

values between two charts. While most of the studies focused on static visu-

alizations, a few researchers introduced interactive designs in their studies,

such as map visualizations with magic lens [81] and heatmap visualizations

with interactive view replacements [125].

A body of pioneer studies for designing comparative visualizations is

conducted by Gleicher et al. [36, 37] which proposed diverse insights for

designing visualizations for comparison tasks, such as common design chal-
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Figure 2.1: Three primitive visualization arrangements to support visual comparison
tasks: (A) Juxtaposition, (B) Superposition, and (C) Explicit-Encoding.

lenges and their possible remedies, as well as design space of visual compar-

ison, through a literature survey. The three primitive visualization arrange-

ments to support visual comparison—juxtaposition, superposition, and explicit-

encoding—have inspired on designing novel visualization representations

and applications in the InfoVis community [4, 7, 9, 11, 14, 82, 137, 145, 151].

In Chapter 3, we based our literature review on the Gleicher et al.’s com-

parative layout to further develop our understanding of using the layouts to

support visual comparison tasks.

2.2.1 Gleicher et al.’s Comparative Layout

Throughout this dissertation, we will use the terms from Gleicher et al. [37]

to refer to comparative layouts: juxtaposition, superposition, and explicit-encoding.

The three designs describe the arrangement of two or more visualizations to

support comparison tasks. First, juxtaposition refers to placing visualizations

next to each other (Figure 3.2A). It is sometimes called spatial juxtaposition

to distinguish it from temporal juxtaposition, which temporally separates vi-

sualizations, for example, switching from one to another or using animated

transition. The superposition layout refers to placing visualizations on top

of each other, such as overlaying one bar chart on another (Figure 3.2B). Fi-

nally, explicit-encoding focuses on revealing the predefined relationship be-
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tween visualizations. For example, if the difference between two trends is of

interest, one can explicitly draw the difference on a bar chart with the two

trends (Figure 3.2C). Note that the explicit-encoding layout is not limited

to creating a new visualization with aggregated values but also includes vi-

sual elements overlaid on the original visualization (e.g., lines connecting

the corresponding points in two scatterplots [76]). Designers can also com-

bine the three layouts (i.e., hybrid layout), such as overlapping two node-link

diagrams (superposition) with the common edges and nodes highlighted

using a different color (explicit-encoding) [92].

2.3 Understanding InfoVis Novices

The InfoVis community has focused on understanding novices, people who

are not familiarwith visual representations, by performing various user stud-

ies. Using sketching [135] or tangible building blocks [51], researchers con-

ducted exploratory studies to understand how novices transform data into

visualizations. Smuts et al. [115] and Grammel and Storey [40] suggested

several guidelines for supporting novices in designing visualization tools

through user studies. Through an observation study, Grammel et al. [41]

identified three challenges novices confront during a visualization construc-

tion process: data selection, visual mapping, and interpretation barriers. Moti-

vated by Grammel et al.’s work, we presumed that novices might find it dif-

ficult to understand recommendations only with the most common repre-

sentation (i.e., a preview for the result visualization) because novices have

difficulties in interpreting visualizations (i.e., interpretation barrier). This dis-

sertation investigated twomore representationmethods (i.e., animated tran-
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sitions and textual descriptions) to explore how novices use recommenda-

tions with different representation methods.

Other studies compared visualization tools to understand how novices

construct visualizations with different interfaces. Méndez et al. [87] com-

pared novices’ visualization construction process in two different types of

interfaces: bottom-up approach (i.e., iVoLVER [88]) and top-down approach

(i.e., Tableau [120]). Jo et al. [54] compared three visualization tools (i.e.,

TouchPivot, PivotTable of Microsoft Excel [32], and Tableau [120]) through

controlled user studies and identified several hurdles for novices in the visu-

alization tools. We go a step further to broaden the understanding of InfoVis

novices with various recommendation representations through scatterplot

construction tasks.

2.4 Visualization Recommendation Interfaces

Depending on the purpose of recommendations, interfacesmayvary to some

degree, but overall, recent visualization systems tend to use similar recom-

mendation interfaces. In terms of layout, most systems use a gallery-based

layout either showing multiple recommendations at once for easy compar-

ison between alternatives [16, 25, 30, 32, 38, 58, 83, 108, 128, 131, 140, 142,

143] or a single recommendation while enabling easy exploration of alter-

natives [54, 111]. For representing individual recommendations, previews

hold a dominant position [30, 32, 38, 58, 131, 142, 143], while simple tex-

tual descriptions are sometimes used with the preview [25, 54, 83, 108, 111,

128, 140].We identified two types of previews in recommendation interfaces:

abstract thumbnails and actual visualization results. As thumbnail previews

provide abstract information about the recommended visualization, they are
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used to show chart types (e.g., ShowMe in Tableau [83]). Although abstract

thumbnails have a performance advantage for large data because they do

not require detailed chart rendering, actual visualization results tend to be

used for data-level and encoding-level recommendations (e.g., recommen-

dations for using different data fields in the same chart type) for providing

more detailed information.

In contrast, textual descriptions are used to provide additional informa-

tion such as chart types (e.g., Bar Chart) [16, 30, 32, 38], data fields used in

recommended visualizations (e.g., "IMDB Rating vs Rotten Tomatoes Rat-

ing") [58, 131, 142, 143], or more details about when to use a specific type of

visualization [32] orwhat it is [142, 143]. Based on an exploratory studywith

InfoVis novices, Grammel et al. [41] claim that, to help users better under-

stand recommendations, more in-depth explanations about the recommen-

dations should be provided, including the advantages and disadvantages

of using them. However, the effectiveness of textual descriptions in novices’

visualization construction process has not been previously explored. In our

study, we examined the effectiveness of three different representation meth-

ods for recommendations including the in-depth textual descriptions sug-

gested by Grammel et al.

2.5 Comparative Visualizations for Cluster Analysis

Visualizations for Multi-dimensional Categorical Data

Sincemultiple clustering results can be treated asmulti-dimensional categor-

ical datasets, they can be visualized using various visualization techniques

corresponding to the specific data types. These techniques include Parallel

Sets [13] and Parallel Coordinate Plot [52]. Lots of prior work on the vi-
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sual comparison of multiple clustering results employed these techniques

[28, 43, 72, 74, 75, 98, 112, 150], but we focus our discussion on the ones that

are most relevant to us in terms of utilizing ribbon-like bands to represent

concordance/discordance among multiple clustering results.

In iGPSe [28], to visually compare clustering results of two different ex-

pression data types (i.e. gene expression and micro-RNAs expression), two-

dimensional axes were juxtaposed, allowing for the use of parallel sets. By

observing the flow of ribbon-like bands, users were easily able to see which

items were shared between a pair of clusters from two different clustering

results. HCE [112] also juxtaposed a pair of hierarchical clustering results

in parallel to enable comparison tasks with the two results. In contrast to

iGPSe, HCE used a partitioned heatmap instead of a simple node to show

the details of each data item. To reveal the relations between items in a pair

of heatmaps, matching items were connected with straight lines. However,

these two visual analytics tools only supported the comparison of a pair of

clustering results.Moreover, because they used connectivity between related

items, it was often the case that there were too many crossing lines with a

large dataset.

CComViz [150] alleviated the line crossing problem while focusing on

the comparison tasks of more than two clustering results. In their work, mul-

tiple clustering results were visualized with a parallel coordinate plot: clus-

tering results as dimensions, clusters as vertical positions in each dimension,

and items as lines. Users could grasp the overall distribution of items across

multiple clustering results by tracking the flow of lines crossing multiple di-

mensions. Similar representations were used in [43], but CComViz devised

an algorithm for rearranging clusters and their members to minimize visual

clutter between each dimension. Matchmaker [74] also utilized the parallel
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coordinate plot, but to show raw data simultaneously, partitioned heatmaps

were shown in dimensional axes. The items in each dimension were rear-

ranged by their average values so that heatmaps clearly showed the pat-

terns of their raw data. Unlike the case of CComViz, in this case, partitioned

heatmaps used a bundling strategy to maintain the position of each item

in a dimension. This reduced line crossings between adjacent dimensions.

Although this method generated a clearer overview of the distributions of

items, it had some drawbacks. First of all, the flows of inner lines were in-

visible unless users explicitly highlighted the lines. Secondly, since the lines

were bundled, the width of a band may not have accurately conveyed the

number of the items belonging to the band.

CComViz and Matchmaker were probably most relevant to XCluSim.

They depended on a linear ordering of dimensions (or clustering results),

which made it difficult to do the all-pairs comparison with a large number

of clustering results at once. For example, as the authors said, Matchmaker

only enabled users to compare, atmost, six clustering results simultaneously,

even with the limited linear ordering of dimensions. Since the same dataset

can yield a large number of different clustering results, it is necessary to pro-

vide amore scalableway of comparing them. In XCluSim,we present diverse

overviews to help in comparison tasks with many clustering results.

Visualizations Using Similarity Measures

There are a few approaches to visualize measured similarity values between

clusters (or items) in different clustering results instead of explicitly visu-

alizing shared items among multiple clustering results. Sharko et al. [113]

utilized a color-coded similarity matrix view to show the stability between

items or clusters across different clustering results. Similarities were mea-
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sured by counting howmany times each pair of itemswas clustered together

or how many items each pair of clusters shared. Kothur et al. [64] used bar

charts arranged in a matrix layout to show similarity values between a pair

of clusters. However, these two works were restricted to comparing a pair of

clustering results since they both used a matrix layout.

iGPSe [28] used Silhouette Plot [104] to help compare a pair of clustering

results. Each item got a standardized dissimilarity value ranging from -1 to

1. This value represented dissimilarity in such a way that, when a value was

close to 1, its average dissimilarity from all other items in the same cluster

was much smaller than the maximum average dissimilarity from all items in

another cluster.When the valuewas close to -1, themeaning of the valuewas

reversed. By representing these similarity values between clustering results

using a bar chart, users were able to assess the relative quality of clustering

results.

These previousworks using similaritymeasures allowed for comparisons

of only a small number of clustering results. However, it is clear that, by ab-

stracting detailed differences to simpler similarity measures, the visual com-

parison could be rendered more scalable. In our work, we used a graph lay-

out and a dendrogram to show similarity overviews in a more scalable way.

Color Encoding for Cluster Similarity

Color is a powerful visual cue for representing a cluster membership. It is

used in many visualization techniques, including parallel coordinate plot

[113, 150] and scatterplot [5, 49, 55], to discriminate clusters while reveal-

ing trends in raw data. Similar efforts exist in the visualizations of multiple

clustering results. For example, when using the parallel sets view, a few dis-
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tinct colors are used to encode each cluster to discriminate it from others [28,

150].

However, if there are clusters from different clustering results that share

the same members, it is not desirable to encode them in distinct colors since

it may mislead a user into thinking that those clusters are different. More-

over, when the number of clusters increases, it is hard to color-code clusters

differently, because it is hard to discriminate between more than 10 colors.

A useful color encoding strategy is Tree Colors [123], which was devised

for tree-structured data to represent similarities between nodes. A part of

the parent’s hue range is recursively assigned to its child nodes. As a result,

nodeswith the same parent have similar colors, while those that are less sim-

ilar have different colors. Moreover, this color scheme reflects the level of a

node by using differentially encoded chroma and luminance at each level.

If the similarities between clusters from multiple clustering results can be

represented as a tree structure, Tree Colors may be well-suited to represent

similarity among them. In XCluSim, we used this color scheme to color-code

clusters after building a hierarchical structure by running a hierarchical ag-

glomerative clustering (HAC) [29] with all clusters.
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Chapter 3

Comparative Layouts Revisited:
Design Space, Guidelines, and
Future Directions

This chapter introduces the results of a literature survey on research papers

(N = 104) that employed three comparative layouts: juxtaposition, superpo-

sition, and explicit-encoding.

3.1 Introduction

A decade ago, Gleicher et al. [37] suggested three primitive information vi-

sualization (InfoVis) layouts that support comparison tasks—juxtaposition,

superposition, and explicit-encoding—based on their literature survey on 104

research papers. These layouts has served as fundamental idioms for design-

ing comparative visualizations in diverse areas such as radiology [116], biol-

ogy [129], and geology [1]. In addition, the layouts have been also popular

in academia, as shown in the rapid growth of the number of papers citing

the comparative layouts (Figure 3.1).
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To develop a better understanding of comparative layouts, researchers

have also attempted to study the effectiveness of the three layouts by con-

ducting user studies and extending the layouts to specific domains. Gleicher

et al. [37] initially discussed the potential strength andweakness of the com-

parative layouts in terms of scalability, cognitive cost, and task performance,

followed by many user studies in the human–computer interaction (HCI)

field [53, 79, 81, 92, 94, 106, 109, 118, 125]. Ondov et al. [94], for example,

compared the variants of juxtaposition and superposition, such as using ad-

jacent,mirrored, and animated arrangements, in identifyingmax change and

correlation between two visualizations.

However, we find the lessons and practical findings from those previous

studies fragmented, sometimes even with inconsistent terms. For example,

we encounter several visualizations techniques (e.g., variants of bar charts or

heatmaps) that are inconsistently regarded as either juxtaposition or super-

position [2, 61, 94, 106, 118, 148].Moreover, contrary to the general consensus

that superposition is more effective for small difference [19, 24, 45], recent

Figure 3.1: A stacked bar chart showing the historical distribution of 359 publications
which cited comparative layouts suggested by Gleicher et al. [37]. This data is based on
Google Scholar on September 9, 2019.
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studies show that juxtaposition can be more effective for some tasks, such as

comparing global characteristics between two bar charts [53, 94].

We present a systematic review on three comparative layoutswith 104 re-

search papers that employed the layouts. The focus of our study is to combine

and systematize the insights gained in the wild, for example, during a visu-

alization design process in collaboration with data analysts or in evaluation

with actual users. To give implications in amore systematic and preciseman-

ner, we first alleviate the unambiguous boundaries between comparative lay-

outs using lucid classification (e.g., chart-wise and item-wise juxtaposition).We

explore the comparative layouts in diverse aspects, such as the advantages

and concerns of using them in real-world scenarios and the researchers’ ap-

proaches to overcome the concerns. Combining our literature review and the

results of eight papers with quantitative user studies, we suggest six action-

able guidelines for the comparative layouts. Finally, we propose a web-based

interactive visual exploration tool to support designers in exploring the de-

sign space of the layouts. The contribution of this chapter is threefold:

1. We perform a systematic review on 104 research papers to better un-

derstand the comparative layouts in the wild.

2. We offer implications for using the comparative layouts as well as per-

forming future research.

3. We propose a lucid classification of the comparative layouts with a

web-based interactive tool for exploring the design space.

3.2 Literature Review

We reviewed 104 research papers that employed the comparative layouts to

expand our understanding of the layouts.
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3.2.1 Method

First, we looked into all the 354 publications that cited thework of Gleicher et

al. [37] using Google Scholar. We then excluded irrelevant papers using the

following criteria: (1) paperswhich do not explicitly use the comparative lay-

outs or do not present any discussions about them (e.g., some papers men-

tioned the comparative layouts only to provide high-level contexts of com-

parative visualization in introduction), (2) duplicate publications (e.g., the-

sis papers), and (3) papers written in languages other than English. Lastly,

we excluded (4) papers which mainly focusing on scientific visualization

(e.g., 3D blood flow simulation [129]) to stick to the original focus of the

comparative layouts [37], that is information visualization (InfoVis). After

the filtering process, we obtained a set of 104 selected publications.

We surveyed the following factors from the selected papers, which were

the factors discussed in previous papers [36, 37]:

• The type of visualizations placed using the layouts

• The number of visualizations to compare at once [36]

• How each of the comparative layouts [37] is used

• How researchers describe the advantages and concerns of using each

layout

• Researchers’ approaches to overcome the concerns

For more in-depth inspection of the papers with quantitative user stud-

ies, we additionally collected study conditions such as the comparative lay-

outs used for independent variables, study tasks, and the number of partic-

ipants.
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To avoid ambiguity in collecting the usage of the comparative layouts,

we mainly based our data collection on the authors’ justifications described

in the papers. Even though visualizations are placed adjacently as many

general visualization systems support, we have not regarded this as using a

comparative layout unless the authors explicitly stated because it is unclear

whether the layout is used for visual comparison. We have not also consid-

ered the cases where the different visualization types are placed using the

comparative layouts because comparison tasks are most likely to be taken

with the same visualizations. One typical example in our review is the differ-

ence (explicit-encoding) overlaid on top of a grouped bar chart (juxtaposi-

tion) [118] (Figure 3.2H). In this case, consistent to the authors’ explanation,

we did not consider it as using an additional superposition layout between

the juxtaposed bar chart (Figure 3.2F) and the explicit-encoding chart (Fig-

ure 3.2C), because these two charts are not arranged for comparing the two.

3.3 Comparative Layouts in TheWild

Overall, we found 197 visualization layouts from 104 papers (about 1.9 lay-

outs per paper). The most widely used layout is juxtaposition (75), while

superposition (38) and explicit-encoding (35) are used frequently as well.

We also found 41 layouts that used multiple layouts at once (i.e., hybrid

layout). The most widely used visualization types include bar charts (39),

heatmaps (33), node-link diagrams (30), line charts (19),map visualizations

(15), and scatterplots (12). Of the papers, eight papers presented quantita-

tive user studies using the comparative layouts as independent variables in

comparison tasks. The 104 papers have been published at 45 venues (Table
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3.1); the majority of papers were from IEEE Transactions on Visualization

and Computer Graphics (TVCG) (32), Computer Graphics Forum (CGF)

(11), and ACM CHI Conference on Human Factors in Computing Systems

(CHI) (7).

3.3.1 Classifying Comparison Tasks in User Studies

For amore comprehensive examination of the eight papers with quantitative

user studies, we classified the comparison tasks (total 36 tasks) in amore de-

tailed manner (Table 3.4). Following Gleicher et al.’s task categorization for

visual comparison [36], we classified taskswith different user actions, where

two of the actionswere the primary focus across the papers: identify (all eight

papers) andmeasure (2). Further,we categorized the study tasks by the target

of comparison, that is chart (3) and item (all eight papers) because we find

that these two types of tasks are quite distinguishable in terms of how peo-

ple perform visual comparison. A similar categorization is also suggested in

a very recent work [53]. Chart-wise tasks refer to comparing the overall char-

acteristics of individual visualizations, such as comparing the correlation of

each bar chart. In contrast, item-wise tasks refer to comparing between visual

items, such as comparing bars in two bar charts. The main characteristic of

Venue Papers

TVCG 32
CGF 11
CHI 7
PacificVis 4
IV 4

[45 other venues]
total 106

Table 3.1: The distribution of our target papers by venues.
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item-wise tasks compared to chart-wise ones is that peoplemust link the cor-

responding visual elements between visualizations before actually compar-

ing them (e.g., finding bars of the same category in two distant bar charts)

unless a system explicitly highlights them. On the other hand, chart-wise

tasks require more global perspectives that people seem to use more diverse

perceptual heuristics in taking the comparison tasks [53].

3.3.2 Same Layout Is Called Di�erently

We found inconsistency in the use of the terms when referring to the three

comparative layouts in the research papers. The most popular alias for jux-

taposition was side-by-side [82, 137, 145]), followed by small multiples [10,

48, 133] especially for a grid arrangement to compare more than two vi-

sualizations at once. Ming et al. [89] called juxtaposition separation in that

juxtaposition is used to separate visualizations spatially or temporally. Sim-

ilarly, superposition was named superimposition [9, 14, 151] and overlaying

[10, 57, 137]. Schmidt et al. [109] and Tominski et al. [125] called superpo-

sition blending and shine-through, respectively, in that they overlap two semi-

transparent visualizations. People sometimes called explicit-encoding direct

encoding [124] to emphasize that predefined relationships between visualiza-

tions are “directly” computed and represented. Schmidt et al. [109] used the

term aggregation since explicit-encoding frequently derives aggregated val-

ues such as the difference between the categories in two bars charts [118].

Since explicit-encoding shows abstract values instead of raw data, Maries et

al. [84] used a term abstraction. In contrast, Zaman et al. [144] termed explicit-

encoding additive encoding, emphasizing that people generally use additional

visual elements to represent the connection between two visualizations (e.g.,

lines connecting pairs of visual marks between two visualizations).
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We also found that the same arrangement of visualizations is often called

differently. One common case is to call a chart with juxtaposed visual marks

(e.g., a grouped bar chart; Figure 3.2F) either juxtaposition or superposition.

For example, Srinivasan et al. [118] called a grouped bar chart the juxtapo-

sition layout in that the chart places bars side by side. In contrast, Ondov

et al. [94] treated the same chart as a superposition layout, considering the

chart as multiple bar charts overlaid with different offsets. Similar problems

occur in the case of matrix visualizations [2, 148]. Temporal juxtaposition,

animated transition betweenmultiple charts, is sometimes considered as su-

perposition in that it shows multiple visualizations [61, 106]. Superposition

and explicit-encoding are also ambiguous for specific visualization designs.

For example, in the casewhere two node-link diagrams are shown in a single

view with common edges and nodes highlighted, one can consider it either

as a single union node-link diagram with explicit-encoding [106] or as su-

perposition of two node-link diagrams with explicit-encoding [92].

Layout #
Arrangement of
Juxtaposition #

chart-wise juxtaposition 63 (89) adjacent 64
item-wise juxtaposition 17 (24) stacked 26
superposition 32 (49) grid 17
explicit-encoding 33 (70) mirrored 11
animated transition 6 (6) diagonal 5
hybrid 40 – free-form 4
total 191 – others 3

Table 3.2: A summary of comparative layouts from 106 papers. The layouts were classi-
fied into five categories and one extra category (hybrid) for designs that combined lay-
outs from two or more categories (e.g., chart-wise juxtaposition and explicit-encoding).
The number of hybrid layouts was broken down into the five categories and summed up
for each category (numbers in parentheses).
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3.3.3 Lucid Classification of Comparative Layouts

To more systematically organize the insights gained in the literature review

and provide implications for the comparative layouts in a more precise man-

ner without confusion, we found it is necessary to alleviate the ambiguous

boundaries between comparative layouts. We propose to classify the three

comparative layouts into five categories: (1) chart-wise juxtaposition, (2)

item-wise juxtaposition, (3) animated transition, (4) superposition, and (5)

explicit-encoding and an extra hybrid category. Table 3.2 shows the overall

distribution of each category observed in our target papers.

Chart-wise and Item-wise Juxtaposition

To reflect the diverse variants of juxtaposition layouts, we suggest two sub-

categories for juxtapositionwith six different ways of arrangements.We clas-

sified original juxtaposition into chart-wise and item-wise juxtaposition,

distinguishing the type of targets that are arranged using juxtaposition (i.e.,

chart or visual elements). For example, placing two bar charts side by side

(i.e., concatenating two bar charts) is chart-wise juxtaposition (Figure 3.2A),

while arranging bars next to each other (i.e., grouped bar charts) is item-wise

juxtaposition (Figure 3.2F). In chart-wise and item-wise juxtaposition, we

discovered six differentways of arranging visualizations or visual elements—

adjacent, stacked, grid,mirrored, diagonal, and free-form (Table 3.2)—where three

terms are brought from the recent study [94] (i.e., adjacent, stacked, and

mirrored). For example, adjacent and stacked arrangements refer to plac-

ing charts or visual elements in a horizontal and vertical axis, respectively,

constructing either a grouped or a stacked bar chart in the item-wise ver-

sion (Figures 3.2F and 3.2G). In our survey, several matrix-like visualiza-

tions useddiagonal arrangements for chart-wise and item-wise juxtaposition
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layouts (Figures 3.2I and 3.2K). The free-form arrangements are supported

when people can interactively rearrange the visualizations without any re-

strictions. Themirrored arrangement is placing visualizations symmetrically

(Figure 3.2E), which can be used with another arrangement where the adja-

cent arrangement is most frequently used with the mirrored layout.

Superposition refers to designs that combine multiple visualizations into

one visualization with a unified coordinate system. In contrast to chart-wise

or item-wise juxtaposition, visual elements can overlap in superposition (e.g.,

nodes and links can overlap if two node-link diagrams are superposed [2]).

While juxtaposition and superposition refer to static designs, the animated

transition category refers to the designs that use the temporal transition from

one chart to another to highlight the difference between multiple charts. The

transition usually takes place on the same visualization space, showing a sin-

gle chart at a time that distinguishes animated transition from juxtaposition

or superposition. Explicit-encoding refers to the use of extra visual elements

that help comparison. For example, one can draw lines between two scatter-

plots to connect the corresponding points [57]) or highlight common edges

or nodes between two network diagrams with a different color [92]. Note

that explicit-encoding can be used without juxtaposition or superposition;

for example, if the difference between two bar charts is of interest, one can

draw a separate bar chart that only shows the difference without the original

bars (Figure 3.2C).

In practice, two layouts from different categories can be used together,

which refers to hybrid layout. For example, to help people more easily find

the related bars in juxtaposed bar charts, systems can highlight them using

a different color (explicit-encoding) upon user interaction (Figure 3.2D). A

separate visualization that is constructed using explicit-encoding can be also
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overlaid on top of juxtaposed bar charts (Figure 3.2H), to support accessing

both the difference and the original information. Highlighting common or

unique visual elements in superposed node-link diagrams also belongs to

this layout.

3.3.4 Advantages and Concerns of Using Each Layout

In this section, we reflect on the advantages and concerns of using each lay-

out suggested in the papers to develop our understanding of the comparative

layouts in the real-world scenarios (Table 3.3). As we were able to find only

a few discussions of item-wise juxtaposition, we discuss item-wise juxtapo-

sition in the later section.

Chart-wise Juxtaposition

The advantage of chart-wise juxtaposition mainly stems from its character-

istic that it does not significantly change the original visualization [22, 79,

81, 84], which is sometimes the main reason for choosing chart-wise juxta-

position over other layouts [84]. Another related advantage is its ability to

support separate analyses of individual visualizations [22, 97, 106], which is

an important factor for professional analysts in network analysis [106]. Re-

searchers also advocate its applicability to any visualizations [6] or its sim-

plicity in implementation: “[Juxtaposition is] simple, even trivial” [9].When

two visualizations are juxtaposed and mirrored, it is known that the human

perception system effectively recognizes the symmetry between two visual

representations [127] which facilitates comparison between the two. A re-

cent work [94] provided practical evidence that juxtaposing two charts in a

mirror manner was more efficient than using animated transition or item-

wise juxtaposition for comparing the correlation of individual bar charts.
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Paper Layout Arrangement N Study Task Visualization

Jardine et al. [53] juxtaposition (chart),
juxtaposition (item),
animated transition

adjacent, stacked,
adjacent + mirrored

104
(MTurk)

identify chart
(MaxMean,
MaxRange)

bar chart

Liu and Shen [79] juxtaposition (chart) adjacent,
adjacent + mirrored,
diagonal + mirrored

28 identify item
(IsChanged),
general task

matrix

Lobo et al. [81] juxtaposition (chart),
superposition,
interactive designs

adjacent 15 identify item
(IsChanged,
Unique)

map

Naragino and Misue [92] juxtaposition (chart),
superposition,
juxtaposition (chart)
+ explicit-encoding,
superposition
+ explicit-encoding

adjacent 18 identify item
(Common,
IsChanged,
Unique),
measure item
(Delta)

node-link

Ondov et al. [94] juxtaposition (chart),
juxtaposition (item),
superposition,
animated transition

adjacent, stacked,
adjacent + mirrored

200
(MTurk)

identify chart
(MaxCorrelation),
identify item
(MaxDelta)

bar chart,
donut chart,
line chart

Sambasivan et al. [106] juxtaposition (chart),
animated transition,
superposition
+ explicit-encoding

adjacent 26 identify chart
(Delta),
identify item
(MaxDelta, IsChanged)

node-link

Schmidt et al. [109] juxtaposition (chart),
superposition
+ explicit-encoding

grid 11 identify item
(Common, Delta,
MaxDelta)

image

Srinivasan et al. [118] juxtaposition (item),
explicit-encoding,
juxtaposition (item)
+ explicit-encoding,
single chart
+ explicit-encoding

adjacent 74 identify item
(Unique,
MaxDelta),
measure item
(Delta),
general task

bar chart

Table 3.4:A summary of eight paperswith quantitative user studies in comparison tasks.

On the other hand, six studies have commonly claimed that the key con-

cern of chart-wise juxtaposition is its limited scalability [37, 81, 109, 118, 134,

149]. For example, it is challenging to juxtapose a large number of visualiza-

tions simultaneously since the screen space is limited; as an extreme case, it

is sometimes impossible to place even two visualizations at the same time in

a mobile environment [149]. Another concern regarding chart-wise juxtapo-

sition lies in its effectiveness in comparison. Tominski et al. [125] described

this problem as “eyes have to move from one part to the other part,” which

consequently leads people to rely on the mental image of the first part to
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compare it with the other part. In this sense, chart-wise juxtaposition has

been criticized for such cognitive cost [79, 92, 93, 125] and considered as the

least effective layout for comparison tasks compared with other layouts [2,

6, 24].

Specifically, researchers claimed that the subtle difference between jux-

taposed visualizations is especially difficult to recognize [24, 94, 117, 137]:

“Spot the difference games, in which observers try to detect small changes

..., illustrate the difficulty of [comparing between two regions]” [94]. Com-

paring complex visualizations (e.g., two node-link diagrams) is also claimed

to be inefficient [57, 148] since people have to temporally remember a compli-

cated representation. Another concern on chart-wise juxtaposition is that it is

difficult to couple the corresponding visual elements from two distant visu-

alizations [22, 45, 80, 122]. For example, Correll et al. [22] found that people

often make mistakes when identifying relevant cells in two heatmaps with

chart-wise juxtaposition. Emphasizing this issue, Lobo et al. [80] claimed

that chart-wise juxtaposition can be effective “only if objects can easily be

matched.”Many researchers also added that, to be effective, designers should

carefully optimize the consistency between visualizations [14, 27, 57, 61],

such as using the same range for the axes in chart-wise juxtaposition or plac-

ing relevant visual elements in the same logical position in juxtaposed node-

link diagrams.

Superposition

Superposition has been advocated for supporting comparison tasks [2, 56,

92, 93, 106], allowing a “quick and easy” comparison [23]. Subtle difference,

which is challenging to recognize in chart-wise juxtaposition, can be visu-

ally salient in superposition [19, 24, 45] because target visual elements are
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arranged closely. Wang et al. [137] argued that superposition is “especially

usefulwhen the spatial location is a key component of the comparison,” such

as in geographical visualizations. The key concern on superposition is visual

interference, that is, visual elements being overlapped challenge people in

interpreting visualizations, which can lead to a scalability issue [61, 79, 92,

125, 133, 134, 149]. For example, Viola et al. [132] mentioned the complexity

of this concern: “[T]he display of several data attributes quickly leads to vi-

sual clutter. There is thus no general methodology on how to design effective

integrated multi-attribute visualizations.” In this context, Caruso et al. [19]

asserted that superposition can be useful only when target visualizations are

similar enough. A qualitative study by Tominski et al. [125] showed that it

is hard to compare two superposed heatmaps because of the blended color

of each cell.

Explicit-Encoding

The main advantage of explicit-encoding is that it allows direct access to the

predefined relationship [93, 124, 148]: “[T]he viewer does not need to make

amental comparison or find the difference, as it has already been calculated”

[93]. For this reason, explicit-encoding can be used for designswhere visual-

izing subtle difference is of importance [65]. Its second advantage is the scal-

ability in terms of the number of target visualizations since it usually focuses

only on showing the predefined relationships without showing the origi-

nal visualization. For example, in a mobile environment, explicit-encoding

can be more effective than juxtaposition or superposition [149] since the

screen space is limited. Based onuser studies, researchers also found explicit-

encoding is useful when overlaid with other layouts (i.e., hybrid layouts).

The hybrid layouts allowed a faster and more accurate comparison between
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node-link diagrams [92] andweremore preferred by people [118] compared

with using a single layout.

However, it can be ineffective if people can only see a specific relation-

ship without the original information: “Ideally, we would like to see the en-

tire dataset without missing any detail, but explicit-encoding concedes this

design goal ... in favor of others” [61]. This seems a considerable drawback

as data analysts described in a research paper [27] did not like such informa-

tion abstraction: “[D]ue to information loss, scientists were not comfortable

with the idea of smoothing by computation of average.”

A relevant problemof explicit-encoding is called decontextualization, which

involves losing contexts of data in visual representations: “The user sees

the result of a comparison but cannot interpret it without additional visu-

alization of the original data. This increases the complexity of the visual-

ization” [134]. Another concern for explicit-encoding is its unfamiliarity. A

studywith treemap visualizations [77] showed that people occasionallymis-

interpreted a novel textual representation that encodes the direction of value

changes. Similarly, participants from another study had difficulties in inter-

preting explicitly encoded differences (Figure 3.2F), and they rated explicit-

encoding least effective comparedwith item-wise juxtaposition or hybrid de-

signs [118].

Animated Transition

Animated transition is especially useful for recognizing a small local differ-

ence between two visualizations, as it outperformed item-wise and chart-

wise juxtaposition in finding the maximum difference between a pair of bar

charts or donut charts [94]. Because animated transition shows visualiza-

tions separately in time, it allows people to take independent analyses [106].
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However, the drawback of animated transition is that people cannot see tar-

get visualizations at once [61, 118], which is known to be less effective than

comparing concurrently visible representations [91] especiallywhen the num-

ber of target visualizations increases. Moreover, animation requires constant

attention and interaction (e.g., switching between views repeatedly) [2, 94,

148], which “may increase the time requirement” [2]. The performance of

animated transition on comparison tasks is controversial; while animated

transition showed outstanding performance in a study [94] with an item-

wise task, it resulted in inaccurate comparison even with confusion with

node-link diagrams [106]. Similarly, experts who used animated scatterplots

to see multiple t-SNE results mentioned that watching animated transition

was cognitively challenging: “[T]racking the nodes in an animated manner

requires a mental map comparison, which is demanding ...” [76].

3.3.5 Trade-o�s between Comparative Layouts

To assist designers in selecting comparative layouts, we suggest more prac-

tical design implications with trade-offs between the four most frequently

used layouts—chart-wise juxtaposition (CJ), item-wise juxtaposition (IJ),

superposition (S), and explicit-encoding (E)—in terms of fourmain themes:

scalability, effectiveness in recognizing a relationship, familiarity, and sup-

porting other types of tasks. We present a general consensus made by re-

searchers in the effectiveness of each layout in the parentheses next to the

names of each theme, where “T (L1 > L2)” represents that the L1 layout is

commonly said to be better than the L2 layout in terms of the T theme, and

≈ represents that their effectiveness depends on situations.

Scalability (E > CJ ≈ IJ ≈ S). Explicit-encoding is commonly regarded as

the most scalable layout for the increasing number of target visualizations
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because it focuses only on a specific relationship. This seems a strong advan-

tage for explicit-encoding since the other three layouts are commonly com-

plained about because of their limited scalability. For this reason, explicit-

encoding was favored by researchers when dealing with small screen space

or a large number of visualizations. However, the scalability of the rest seems

to depend on other factors such as screen space availability and visual repre-

sentation complexity, leading to the consideration between space efficiency

and visual interference.

Effectiveness in Recognizing a Relationship (E > S ≈ IJ ≈ CJ). Researchers

commonly claimed that recognizing a specific relationship is most effective

with explicit-encoding because it directly calculates and represents the rela-

tionship for people. Between the rest, though the general consensus is that

shorter distance between comparison targets ismore effective,we found chart-

wise juxtaposition is sometimes more effective in chart-wise tasks compared

with item-wise juxtaposition [53, 94]. Therefore, their effectivenessmay split

depending on what relationship people are dealing with.

Familiarity (CJ> IJ≈ S>E). Although itmay depend on the visualization

types used, chart-wise juxtaposition seems to provide the most familiar vi-

sualization to people because it does not require any significantmodification

to individual visualizations. Between item-wise juxtaposition and superpo-

sition, neither seems to entirely outperform the other as we find both the

familiar and unfamiliar examples for each layout: Grouped bar charts and

multi-class scatterplots can be considered as familiar visualizations of us-

ing item-wise juxtaposition and superposition, respectively,while variants of

heatmaps [148] and node-link diagrams [2] as the unfamiliar ones. Explicit-

encoding is likely to provide the least familiar outcomes because it frequently
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employs novel visual representationswith data aggregation,which is known

to be unfamiliar to InfoVis novices [41].

Supporting Other Types of Tasks (J > IJ > S > E). Because visual analytics

involves performing a series of multiple tasks, the importance of supporting

other types of tasks, as well as comparison tasks, is emphasized by many

researchers. The consensus in this respect is that explicit-encoding is least

effective since it generally eliminates the original visualizations. On the other

hand, chart-wise juxtaposition is commonly claimed to support general tasks

the best by separately showing individual visualizations. Among the two,

because of the visual interference in superposition, item-wise juxtaposition

is likely to provide more effective support for the general tasks [106].

3.3.6 Approaches to Overcome the Concerns

To develop deeper insights of the comparative layouts with diverse design

options, we discuss researchers’ previous attempts to overcome the concerns

of each layout.

Chart-wise Juxtaposition

We found four main approaches for chart-wise juxtaposition to overcome its

limited scalability and ineffectiveness in comparison tasks.

Using Hybrid Layout. Explicit-encoding is frequently used to complement

chart-wise juxtaposition [22, 45, 61, 65, 133]. We identified two major pur-

poses of this approach: (1) assisting to couple the corresponding visual el-

ements and (2) improving the effectiveness in the recognition of difference.

For example, egoComp [78] used lines connecting visual elements in multi-

ple visualizations “to decrease the user’s memory cost.” Heimerl et al. [45]

suggested explicitly showing bin boundaries in multi-class scatterplots to
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“[h]elpwithmapping bins across different plots.” To address the difficulty in

comparing a large number of heatmap visualizations in chart-wise adjacent

arrangements, BayesPiles [133] allowed people to select a reference heatmap

to temporally color-encode differences (i.e., subtraction values) in the rest of

the matrices. Results from user studies [92, 118] support the effectiveness

of a hybrid layout, as using explicit-encoding overlays with chart-wise and

item-wise juxtaposition in bar charts and node-link diagrams showed better

performance compared with solely relying on the juxtaposition layouts.

ShorteningDistance. Juxtaposing visualizations or visual elements as close

as possible is one of the simplest but effective methods. A body of studies

showed empirical evidence that comparison is easier when visual represen-

tations are closer together [70, 99, 121]. We identified four studies that ex-

plicitly mentioned using similar approaches [15, 118, 124, 125]: “When the

two stimuli are far away from each other, the subject has to frequently move

the eyes to switch the focus. Therefore, ... we have placed the stimuli as close

to each other as possible” [15]. With user interaction, Tominski et al. [125]

allowed people to crop and bring the rectangular part of a visualization close

to the area to which they want to compare it. We also found two studies that

used item-wise juxtaposition for this purpose; for example, Srinivasan et al.

[118] “opted to use a grouped bar chart instead of a concatenated bar chart

(bar charts with chart-wise juxtaposition) since comparisons are likely to be

more accurate with no distracting bars in between corresponding values.”

In a geographical visualization, CompaRing [124] brings a few regions of

comparison candidates near a reference region upon user selection. Study

results support the effectiveness of item-wise juxtaposition [92, 94, 106] in

enhancing comparison performance in terms of time and accuracy, especially

in item-wise comparison tasks.
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Maintaining Consistency.Gleicher et al. [37] mentioned the importance of

maintaining the consistency of visual properties in chart-wise juxtaposition

to minimize cognitive burden. This is relevant to consistency management

in multiple coordinated views [100], such as determining whether to use

shared or independent data domains and ranges on the screen for individ-

ual visual channels (e.g., color, size, and the x and y axes). Likewise, Kim et

al. [61]mentioned, “[Keeping visualizations consistent] seems to be particu-

larly useful for juxtaposition because they provide a common context to link

the data instances ...” Examples include arranging categories in the same or-

der between heatmaps [146] or using a constant height for all visualizations

[46].We also found that almost all studies that employed chart-wise juxtapo-

sition used this approach by using a constant color scheme [124], size [125],

or the x and y axes [145].

Filter. The number of items or visualizations being compared simulta-

neously is known to determine the difficulty in comparison tasks [36]. For

example, CompaRing [124] automatically selects a few number of compari-

son targets to reduce the complexity, and Zaman et al. [144] proposed “sub-

tractive encoding,” which removes common nodes and edges from network

visualizations to highlight the differences.

Superposition

We discuss two approaches to alleviate the main drawback of superposition,

visual interference.

Using Clutter Reduction Methods. To manage the visual interference, clut-

ter reduction methods can be employed, which can be categorized into Ellis

et al.’s taxonomy of clutter reduction techniques based on literature survey

[31]. For example, Dasgupta et al. [27] aggregated multiple lines as a band
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to prevent them from being a “spaghetti plot.” Many studies controlled the

transparency [125] or size [2] of visual elements, while filtering visual el-

ements [144] is also a popular method. Other methods include jittering or

adding offsets along axes in line charts [26] and node-link diagrams [92].

Using Hybrid Layout. Although not commonly suggested, complement-

ing superposition using explicit-encoding seems promising to overcome the

visual interference and further enhance its performance in comparison tasks.

For example, inspired by natural behaviors with printed papers, one study

[125] allowed people to peek at the summary of occluded regions through a

folding interaction and found that this kind of explicit-encoding on demand

complements the weakness of superposition. Similarly, VAICo [109] used

explicit-encoding in superposed images to summarize and show the clus-

ters of inconstant regions with user interactions. Another result shows that

highlighting common or unique nodes and edges in superposed node-link

diagrams outperformed a single layout with few exceptions [92] and were

preferred by professionals [106].

Approaches for Other Layouts

In explicit-encoding, researchers usedhybrid layouts to complement theweak-

nesses of explicit-encoding (i.e., decontextualization andunfamiliarity).One

study [85] discussed this issue and suggested using additional layouts as a

remedy: “To avoid decontextualization using only explicit-encoding ..., we

also use juxtaposition.” A similar approach was evaluated in a study [118]

that using a single explicit-encoding chart showed least preference by the

unfamiliarity, but when used with an item-wise juxtaposed visualization,

the preference became the best compared to other variants of bar charts. For

animated transition, the use of staged changes between spatial locations is
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advocated, as the animation often confused people when transition between

two visualizations with a large amount of difference took place [106].

3.3.7 Comparative Layout Explorer

To better help designers more systematically explore the design options of

comparative layouts with interactive examples (Table 3.2), we designed and

implemented a web-based interactive visual exploration tool, Comparative

Layout Explorer (Figure 3.3). The system shows diverse designs that are ob-

served in the literature review (Figure 3.3A). People can interactively change

the layout in heatmaps, bar charts, and scatterplots based on a compara-

tive layout specification (Figure 3.3B left), which is designed to specify the

comparative layouts. Based on the specification, people can select one of

three comparative layouts (i.e., juxtaposition, superposition, and explicit-

encoding) and determine the diverse ways of arranging visualizations in

juxtaposition: the unit of comparison targets (i.e., chart or visual element),

different arrangements (i.e., adjacent, stacked, diagonal, animated), and the

use of mirrored arrangements. Because visual consistency and visual inter-

ference are important factors for the comparative layouts according to our

survey results, we allow users to configure them, such as using shared, in-

dependent, or distinct color palette for individual juxtaposed bar charts or

using the different size of cells in superposed heatmaps.

3.4 Discussion

We offer practical implications for comparative layouts by suggesting action-

able guidelines and revealing promising directions for future research. To or-

ganize the insights in a more systematical and precise manner, we reviewed

and analyzed the 104 target papers, as well as the eight papers with quan-
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Figure 3.3: An interactive visual exploration tool for exploring the design space of the
comparative layouts.
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titative user studies (Table 3.4), using our classifications of the comparative

layouts (e.g., chart-wise and item-wise juxtaposition) and study tasks (e.g.,

local and global comparison tasks).

3.4.1 Guidelines for Comparative Layouts

We suggest six actionable design implications for the comparative layouts.

Use item-wise juxtaposition for item-wise comparison

When looking into the studies with item-wise tasks [92, 94, 106, 118] (i.e.,

comparing visual elements in visualizations) chart-wise juxtaposition has

never outperformed any other layouts in terms of accuracy, and it has barely

outperformed in performance time. Considering the diverse factors used

in the studies (e.g., visualization types, stimuli complexity, data size and

amount of difference), these consistent results give a very strong implica-

tion that if detecting local differences is the main task, designers must alter-

natively use the item-wise juxtaposition. This implication align with other

existing studies [70, 99, 121], but we confirm it again in the context of com-

parative layouts by categorizing tasks in terms of comparison targets (i.e.,

chart and visual elements).

If chart-wise juxtaposition is inevitable, provide landmarks

In the study results for item-wise tasks [81, 92, 94, 106, 118], we found a

few exceptions where chart-wise juxtaposition showed comparable results

to that of item-wise juxtaposition or superposition. The first case is when

target visual elements are highlighted to people (explicit-encoding) so that

people did not have to manually link them [92]. The second case is when

dealing with geographical visualizations of showing dense regions so that
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some kinds of landmarks already existed, for example, buildings and roads,

which people can use when identifying the corresponding visual elements

[81]. Therefore, it is desirable to provide landmarks using grid or reference

lines or further using explicit-encoding for highlighting to enhance the per-

formance to some extent; however, please note that providing landmarks in

the chart-wise juxtaposition did not made dramatic performance improve-

ments to outperform item-wise juxtaposition and superposition.

Avoid blending colors for superposition

According to an observation study, using superposition in heatmap visual-

izations resulted in less effective comparison because people had difficulty

distinguishing the blended color of cells [125]. Consistent to the observation,

we found only a few examples of using superposition for heatmaps. To pre-

vent the blending problem, designers can use one of six alternative methods

that we discovered in our review. For comparing a pair of heatmaps, first,

designers can simply use glyph visualizations [125], such as encoding the

radius of circles rather than their color. Second, if two quantitative values are

orthogonal (e.g., value anduncertainty), designers can consider using differ-

ent color channels, such as, hue and saturation, following a successful design

in uncertainty visualization [22]. Third, superposing heatmaps with differ-

ent cell sizes can be an effective design for comparison tasks as several studies

showed [2, 148] (Figure 3.2L). Fourth, instead of superposition, variants of

item-wise juxtaposition can be used with stacked or diagonal arrangements

[2, 148] (Figures 3.2J and 3.2K). Lastly, when the number of visualizations

become larger, weaving techniques [45] or using explicit-encoding to reveal

accurate difference in chart-wise juxtaposed heatmaps [133] can be used.
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Avoid solely using explicit-encoding

Explicit-encoding seems to be the most delicate layout, which has strong ad-

vantages and strong weaknesses at the same time. Although its effective-

ness in recognizing the predefined relationship was advocated by many re-

searchers, others also suggest strong drawback. One strong drawback is the

unfamiliarity, which can affect InfoVis novices in learning and interpreting

visualizations [41]. Explicit-encoding is commonly received low preference

to InfoVis novices [106, 118] and often showed poor performance by the un-

familiarity [77].Moreover, by the decontextualization, it is often criticized by

professionals in the real-world scenarios [27, 106], which reflects the weight

of drawbacks that explicit-encoding has. As many researchers gave strong

reasons for using explicit-encoding in their paper (e.g., perceptual advan-

tages [133] or scalability [149]), we think explicit-encoding should be used

when its advantages are certain and surpass its diverse shortcomings. One

such example would be using explicit-encoding for alleviating perceptual

distortions in superposed line charts such as Playfair’s charts [126].

When explicit-encoding is necessary, use a hybrid layout

According to our review, hybrid layouts seem to well complement the disad-

vantages that a single layout has. Using it was the common approach for in-

dividual comparative layouts to overcome their weaknesses, and the hybrid

layoutwas one of themost frequently used layout in our target papers.More-

over, all the user studies (four out of eight) that used hybrid layouts showed

some kinds of superior performancewith the layouts comparedwith a single

layout, such as effectiveness in detecting and measuring local changes [92,

106, 109], high preference [106, 118], and better scalability [109]. The only

user study [118] that compared explicit-encoding with and without another
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layout well explain the ability of the hybrid layout for complementing other

layouts: Although solely using explicit-encoding (Figure 3.2C)was least pre-

ferred by people, using it with familiar visualizations (Figure 3.2H) made

it most preferred while showed the best performance with the comparable

results with independent explicit encoding. Therefore, we think that to pro-

tect the comparative visualizations from the strong weaknesses that explicit-

encoding have, designers should consider using other layouts together.

Refrain from using animation for large di�erence

One study showed that animated transition showed best performance for

detecting small difference in item-wise comparison, outperforming all other

layouts (i.e., chart-wise and item-wise juxtaposition) [94]. However, its per-

formance seems very sensitive to tasks, visualization types, and visual com-

plexity. For example, in chart-wise tasks such as identifying max correlation

[94] and structural change [92], the performance became weaker. Moreover,

large amount of changes between two node-link diagrams [106] confused

people, leading to poor task performance in accuracy. As a remedy, design-

ers can consider using staged animation [44], which was helpful for large

changes. However, we still identify many unexplored areas for animated

transition in visual comparison tasks (e.g., task types, visual representations,

and data complexity). As animated transition showed relatively large perfor-

mance variations across different designs, designers should use animated

transition with care and refrain from using it for detecting large difference.
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3.4.2 Promising Directions for Future Research

Researching Human Factors in Chart-wise Comparison

As we lack empirical results for the performance of chart-wise comparison

tasks (two out of eight papers), exploring the comparative layouts with di-

verse chart-wise tasks seems a promising direction to expand our under-

standing about the layouts.Whenwe looked into the study resultswith item-

wise comparison tasks,wewere able to find relatively consistent results among

the comparative layouts. However, it seems that for chart-wise tasks, the

task performance is much more sensitive. For example, as the authors well

demonstrated, usingmirrored and adjacent chart-wise juxtaposition showed

best performance in correlation tasks [94], but, for comparing mean of indi-

vidual visualizations [53], stacked arrangement showed best performance.

As recentwork suggested [53], different perceptual heuristics seem to greatly

influence the performance, resulting in varying performance by target rela-

tionships (e.g., correlation, range, mean) or visual representations (e.g., bars

or lines).

Investigating the E�ectiveness with Varying Di�erence

In our review, one of the factors that researchers most frequently discussed

for their designs was the amount of difference in terms of size or complexity.

For example, chart-wise juxtaposition is generally regarded as least effective

for detecting a small difference because of the longer distance between visual

elements. However, recent study results [53, 94] suggested that the perfor-

mance might depend on what kinds of small difference users are dealing

with, either a global or a local difference, as chart-wise juxtaposition per-

formed better than item-wised juxtaposition for a certain task. As we find
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none of user studies in our survey directly confirmed these aspects by vary-

ing size or complexity of difference, it looks worth-exploring research topic

for the comparative layouts.

Investigating the Scalability of Comparative Layouts

Most user studies (seven out of eight) focused only on one-to-one compari-

son. However, in the real world, more than two visualizations are frequently

compared together [36]. In research papers, juxtaposition and superposition

are considered to suffer from the limited scalability, compared to explicit-

encoding [61, 81, 125, 133, 134, 149]. Therefore, although an independent

use of explicit-encoding showed worst performance for comparing only the

small number of visualizations in a study [118], it might show opposite re-

sults when the number of visualizations increases to some extent. To develop

a better understanding of the comparative layouts in the real world, it seems

promising to investigate the ability of the comparative layouts in terms of

scalability.

3.5 Summary

In this chapter, we presented a systematic review of 104 research papers

to better understand the three comparative layouts for visual comparison:

juxtaposition, superposition, and explicit-encoding. Combining and system-

atizing the insights previously gained in the wild, we offered implications of

using the comparative layouts as well as performing future work. We ex-

plored the diverse aspects of the comparative layouts, including the advan-

tages and concerns of each layout, the approaches to overcome the concerns,

and the trade-offs between them. Based on eight papers with quantitative
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user studies, we proposed six actionable guidelines. Finally, we revealed the

unexplored research area to present promising future directions.
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Chapter 4

Understanding How InfoVis
Novices Compare Visual
Encoding Recommendation

This chapter1 presents the result of a qualitative user study (N=18) using

a think-aloud protocol with InfoVis novices to understand the effectiveness

of graphical previews, animated transitions, and textual descriptions for de-

scribing visual encoding recommendation.

4.1 Motivation

The InfoVis community is payingmore attention to non-expert userswho are

unfamiliar with either visual representations or visualization construction

processes. Among the most prominent research and development efforts in

this regard is visual encoding recommendations [141] for InfoVis novices.

RecommendedCharts inMicrosoft Excel [32] and ShowMe in Tableau [120]

are typical examples of visualization interfaces for recommending visual en-

1The preliminary version of Chapter 4 was published as a journal article [68] in Computer
Graphics Forum of Wiley Online Library and also presented in EuroVis 2019.
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coding alternatives based on user-selected data fields. With the recent evo-

lution of data analysis techniques such as machine learning and deep learn-

ing, recommendation models can become even more effective, for example,

by using the ranked effectiveness of visual encodings from visual perception

experiments [90].

In contrast to the actively researched analytic side of visualization recom-

mendations, research on user interface designs for more effective and under-

standable depictions about the suggested visual mappings has received rel-

atively less attention in the InfoVis community. Most recommendation sys-

tems predominantly rely on graphical previews to describe alternative visual

encodings [30, 32, 38, 58, 131, 142, 143]. However, because InfoVis novices

are known to have difficulties in understanding visual encoding and rep-

resentations in general [41], we cannot expect novices to fully understand

suggested visual encodings with the graphical previews. Misunderstanding

the suggestions might hider novices from producing the visual encodings

they envision. To facilitate novices’ learning about new visual encodings,

Grammel et al. [41] suggested using in-depth textual descriptions to explain

about visual encodings such as the advantages and disadvantages of using

new visual encodings. However, the effectiveness of such alternative meth-

ods for describing the recommended visual encodings (e.g., in-depth textual

descriptions) have not been explored in previous studies.

As an initial step toward understanding the effectiveness of different rep-

resentationmethods for visualization recommendations,we conducted a qual-

itative user study with InfoVis novices under scatterplot construction tasks.

By reviewing studies related to visualization recommendations and Info-

Vis novices, we came up with three primary representations: previews, an-

imated transitions, and textual descriptions. We then designed a prototype
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of a recommendation interface for the user study using three representation

methods. Through the user study (N=18), we found that although previews

remained the most preferred representations, novices still relied on textual

representations. Our findings also illustrate that combining multiple repre-

sentations can help users better understand the recommendations by sup-

porting them expect and confirm about the behaviors of recommendations.

Based on the findings, we present implications for designing interfaces for

effective visualization recommendations for novices.

4.2 Interface

We designed a recommendation interface for our user study to understand

how novices understand and choose suggested visual encodings with differ-

ent representation methods during the visualization construction process.

To more efficiently identify the effects of different representation meth-

ods, we encouraged participants to actively use recommendationswithin the

limited time of the user study. For this purpose, we assumed scenarios in

which users perform goal-oriented visual analysis tasks [41] with recom-

mendations in our prototype assisting them to accomplish sub-goals to com-

plete the main goal.

4.2.1 Visualization Goals

We defined the participants’ main goal as constructing scatterplots to com-

plete major scatterplot-specific analysis tasks [107]. The reasons for using

the scatterplot visualization are that the scatterplot is one of the most fa-

miliar visualizations to novices [71] and that it has been widely adopted in

visual exploration and recommendation systems [25, 120, 143]. We defined

the users’ sub-goals as alleviating over-plotting problems in scatterplots, as
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overdrawing in visualizations is one of the most well-known problems in

the InfoVis community and is frequently addressed in InfoVis literature for

novices [34]. We designed a recommendation interface for supporting the

sub-goals (clutter reduction), and the main goals (scatterplot tasks) were

provided as the main tasks in our study (i.e., participants had to use recom-

mendations to complete their tasks in the study).

4.2.2 Recommendations

We designed seven scatterplot clutter reduction strategies for visualization

recommendations in our prototype by referring to the clutter reduction tax-

onomies [31, 34] (Figure 4.1): (B) Filter By Category: remove points of no in-

terests; (C) Change Point Opacity: change the level of opacity to see through

the overlapped area; (D) Change Point Size: re-size points to reduce the over-

lapped area; (E) Represent Points Using Outlines: remove fill color of points

to reduce the overlapped area; (F) Aggregate Points To Mean Position: show

mean values of each category to reduce the number of points in the display;

(G) Separate Graph By Category: divide graphs to reduce the number of points

per scatterplot; and (H) Represent Density of Points Using Color: show density

by binned area rather than displaying individual points.

4.2.3 Representation Methods for Recommendations

By reviewing studies related to recommendation systems [143] and InfoVis

novices [41, 44, 105], we designed three representation methods to describe

each of the seven recommendations to support novices in understanding rec-

ommendations and their usefulness: Preview, Animated Transition, and Tex-

tual Description.

54



Fi
gu
re
4.
1:
Th
e
se
ve
n
ty
pe
so
fr
ec
om

m
en
da
tio
ns
(B
-H
)i
n
ou
rr
ec
om

m
en
da
tio
n
in
te
rfa
ce
fo
ra
lle
vi
at
in
g
ov
er
-p
lo
tt
in
g
pr
ob
le
m
si
n
th
e

(A
)s
pe
ci
fie
d
sc
at
te
rp
lo
ts
.

55



Figure 4.2: Three representation methods for a visualization recommendation: (A) Pre-
view, (B) Animated Transition onmouse hover, and (C1-4) Textual Description.

Preview

Preview, the most widely used method to represent visualization recom-

mendations in existing tools [16, 25, 30, 32, 38, 58, 83, 108, 128, 131, 140,

142, 143] (Figure 4.2A), shows the visualization result where the suggested

visual mapping is applied over the current visualization. By showing the

suggested visualization result in advance, users might easily presume and

compare the usefulness of recommendations as illustrated by Grammel et

al. [41]. Between two types of previews, we used actual visualization results

rather than thumbnails because our recommendations are data- or encoding-

level suggestions, which require detailed representations.
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Animated Transition

While Preview shows the result visualization as a static image, Animated

Transition (Figure 4.2B) connects the gap between the current visualization

and Preview by showing smooth transitions. According to previous work

[44, 105], animated transitions allowed novices to better understand new vi-

sual mappings. Since InfoVis novices often confront visual mapping and in-

terpretation barriers [41] in the visualization construction process, Animated

Transition might further help users understand the behavior of new visual

mappings in recommendations.

For the relatively large difference between the current visualization and

Preview (i.e., Aggregate Points To Mean Position in Figure 4.1F), we used a

staged transition [44] to help users follow the changes: Points are first col-

ored by a default nominal field and then moved to mean positions of their

categories.

Textual Description

According to Grammel et al. [41], providing explanations about recommen-

dations is important to give deeper insight. Such explanations include what

the recommendation is about, as in [143]; why it is important; and what ad-

vantages and disadvantages there are. We generated the four types of descrip-

tions in our interface (Figure 4.2C1-4). For the advantages and disadvan-

tages, we generated descriptions based on four major criteria referring to a

clutter reduction taxonomy [31]: can show point color, can show overlap density,

can show outlier, and is scalable to large data.

Because the readability of textual descriptionswould affect InfoVis novices’

ability to understand them, we constructed and revised the textual descrip-

tions with care to make them readable to novices. We extracted explanations
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about each recommendation in the literature [31, 34] and then conducted a

two-hour discussion session with an InfoVis novice to create novice-friendly

expressions. During this in-person interview, we reviewed four types of tex-

tual descriptions (i.e., what, why, advantages, and disadvantages) of seven rec-

ommendations sentence by sentence. The text we created was targeted to

users rather than designers because we assumed that novices are more likely

to view themselves as users; for example, we used “Can see point color” rather

than “Can show point color.” In addition, we clarified ambiguous expressions

(e.g., “Not scalable to large data” had been changed to “Not appropriate when

too many points overlap”). We then assessed the readability of the text de-

scriptions in a pilot study (section 4.2.5) before the main study.

4.2.4 Interface

We implemented our recommendation interface on PoleStar [143], an open-

source visualization tool that allows users to construct visualizations based

on a Cartesian coordinate system. The main reason for using the system is

that it uses a shelf-configuration interface [39], which is one of the most

widely used interfaces in existing tools such as Tableau [120], Polaris [119],

and PivotTable inMicrosoft Excel [32]. By using the familiar interface, we ex-

pected usersmight easily learn about the tool within a short training session.

As we focused on constructing scatterplots, we modified PoleStar to support

only scatterplots. Moreover, to encourage participants to actively use recom-

mendations, some visual encoding features in the modified PoleStar, such

as separating graphs or filtering, were hidden from PoleStar and supported

only in the recommendation panels.

The overall interface of modified PoleStar with the recommendation in-

terface is shown in Figure 4.3. The data panel shows a list of data fields (Fig-
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Figure 4.4: Configuration interfaces for recommendations: (A) toggle button for Repre-
sent Points Using Outlines and Represent Density of Points Using Color, (B) nominal field
picker for Aggregate Points To Mean Position and Separate Graph By Category, (C) cate-
gory picker for Filter By Category, and (D) slider bar for Change Point Size and Change
Point Opacity.

ure 4.3A), and users can connect the fields to visual properties (e.g., x/y

axis or color) in the encoding panel (Figure 4.3B). The specified view in the

middle (Figure 4.3C) shows the visualization that is defined in the encoding

panel. To facilitate comparison of the visualizations users construct, we en-

abled users to pin their visualizations to the bottom of the window (Figure

4.3D) by clicking on the Pin button.

The recommendation panel in the right-most area (Figure 4.3E) shows

the seven recommendations in a gallery-style layout [41] for easy compar-

ison between alternatives. In each recommendation, Preview and Textual

Description are shown as static representations, while Animated Transition

is displayed upon mouse hover on Preview. Users can apply the suggested

visual mappings to the specified view after they adjust parameters (e.g.,

change the level of opacity for Change Point Opacity or select a data field
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and categories for Filter By Category, Figure 4.4C-D). For the recommenda-

tions that do not support adjustable parameters (e.g., Represent Density of

Points Using Color), the interface shows simple toggle buttons to apply rec-

ommended visual mappings over the specified view (Figure 4.4A).

4.2.5 Pilot Study

We conducted a pilot studywith six participants to evaluate the feasibility of

the recommendation interface and the study design. The participants used

the interface for about half an hour to solve six questions related to major

scatterplot tasks [107]. After the pilot study,we improved the interface based

on the participants’ feedback. Firstly, we highlighted keywords in the Textual

Description using font weight to improve readability (e.g., “Can see point

color”); we did not use other highlighting methods with better pop-out ef-

fects such as a yellow background or larger font [105] because we assumed

that such methods would distract users during the visualization construc-

tion process. Secondly, we changed the trigger method for Animated Tran-

sition. We initially had placed a Play button for the transition in each rec-

ommendation so that users could see the transition on demand. However,

users occasionally forgot about the existence of Animated Transition during

cognitively challenging tasks in the study. As we wanted to see the effects of

Animated Transition during the study, we instead chose to display animated

transitions when users hover the mouse over Preview. Thirdly, we empiri-

cally chose the duration of the animated transition considering participants’

feedback: one second long for each staged transition, consistent with previ-

ous design guidelines (e.g., [103]). Finally, Animated Transitionwas initially

positioned on top of the specified view but moved to the recommendation
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panel because some participants commented that it being placed far from

Preview and Textual Descriptions somewhat confused them.

4.3 User Study

To better understand how InfoVis novices use visualization recommenda-

tions during a visualization construction process, we conducted a qualitative

study on our recommendation prototype using a think-aloud protocol.

4.3.1 Participants

We recruited 24 participants (10 females), ages 18 to 33 years, from a univer-

sity. They were self-reported to use visualization tools 4.2 times per month

on average. The most frequently used visualization tool was Microsoft Ex-

cel [32] (21 participants), while a few participants also used R [101], Origin

[95], MATLAB [86], and Tableau [120]. Most participants (21 participants)

reported to have no prior knowledge about information visualization; only

three participants were aware of InfoVis from lectures related to statistics

tools (e.g., R or MATLAB) at university or at work. Participants received

about $10 for their participation.

4.3.2 Interface

Participants used one of three combinations of representation methods in

our qualitative user study. Three combinations of representations were de-

signed to provide different levels of information about recommendations:

(1) Preview + Title (PT, Figure 4.5A), (2) PT + Animated Transition (PTA,

Figure 4.5B), and (3) PTA + remaining Textual Description (PTAT, Figure

4.5C). The main reason for providing Title (i.e., Textual Description about
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Figure4.5:Three combinations of representationmethodsused inour study: (A) Preview
+ Title (PT), (B) PT + Animated Transition (PTA), and (C) PTA + remaining Textual Descrip-
tion (PTAT).

what) for all conditions was that most of the encoding-level recommenda-

tions (e.g., [142, 143]) use previewswith simple titles, possibly because novices

are unlikely to fully understand the small difference between the specified

view and Preview.

The layout of the modified PoleStar was fixed across all participants, and

the width of recommendation panels was 410 px. We limited the space of

the recommendation panels to reflect common recommendation interfaces

that show only a few recommendations at once, making users interact with

scroll views (e.g., [58, 142, 143]). In the study layout, only two recommenda-

tionswere visible for the PTAT condition (all methods together), while other

conditions showed an additional recommendation (i.e., three recommenda-

tions).We randomly ordered seven recommendations across all participants

to prevent order effects.
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4.3.3 Tasks and Datasets

We designed six questions (Table 4.1) based on scatterplot-related visual-

ization tasks [107], which are constructed by surveying scatterplot-specific

analysis scenarios in InfoVis literature, and are frequently employed in con-

trolled user studies as study tasks (e.g., [20, 62]). Each question was de-

signed to reflect either a browsing-related task or an aggregate-level task

[107] (i.e., Q1 andQ6 are browsing-related taskswhileQ2-Q5 are aggregated-

level tasks). We had not considered object-centric tasks because they are less

related to over-plotting problems.

When visualizing the prepared dataset with scatterplots, over-plotting

problems made it difficult to answer four of the questions (all questions ex-

cept Q1 and Q3) without alleviating the problems. Therefore, the partici-

pants had to use the recommendation interface to answer the questions.

For a training session, we prepared an SAT score dataset that consisted

of scores and grades of 143 students in five subjects and some demographic

data (i.e., gender, region, education level). For the main task, we used a

movie dataset [142] that contained classifications of 746 movies (e.g., genre,

creative type,MPAArating, anddistributor) and their budgets,worldwide/US

gross, playtimes, review scores and the number of votes.

4.3.4 Procedure

After signing a consent form and completing a pre-study questionnaire, par-

ticipants were introduced to the overall procedure and the task for about five

minutes. Because the focus of our study is to explore how participants un-

derstand and use unfamiliar recommendations instead of unfamiliar visual-

izations themselves, participants were also introduced to a scatterplot visu-

alization to make them get familiar with it. They then had a training session
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during which they were introduced to the interface and practiced construct-

ing scatterplots using the interface to answer six practice questions based on

the SAT score dataset. The participants had to understand about the seven

recommendations onlywith the given interface; the experimenter did not ex-

plain any about the recommendations. By answering the practice questions,

the participants became familiar with their tasks. After the training session,

participants were asked to complete the main task in which they used the in-

terface to construct scatterplots based on the movies dataset [142] to answer

six questions (Table 4.1). Participants were asked to construct scatterplots

that clearly show the answers to the questions by using the recommendation

panel. After they constructed each scatterplot, they pinned the scatterplot,

answered to the question, and moved on to the next question. Participants

repeated this process until they answered the last question. We recorded the

screen during the practice andmain tasks. Upon answering all the questions,

they were asked to complete a questionnaire that included an assessment of

how much (7-point scale) each representation was helpful for understand-

ing the recommendations and the reasons for thinking that each of them

is useful or not (e.g., participants in the PTAT condition assessed all three

representation methods). Then, we asked participants to think aloud about

their visualization construction process by watching the recorded video be-

fore conducting an open-ended interview. Participants were allowed to rest

at any time during the study. The entire study procedure took about 45 min-

utes on average per participant.
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4.4 Findings

Participants produced diverse scatterplot designs using different recommen-

dations, more than four different designs per question (Figure 4.6). Of 144

scatterplots (24 participants x 6 questions), 35 scatterplots were constructed

without using any recommendations, mostly for Q1 and Q3; 89 scatterplots

were generated using only one recommendation; and the rest (20 scatter-

plots) were constructed using two or more recommendations together. In all

cases, recommendations were used to alleviate the over-plotting problems

in the scatterplots, except one participant (P12PTAT) who used Change Point

Size to make the outlier more visually salient by increasing the size (Figure

4.6 Q3-Outline+Size and Q5-Filter+Size).

4.4.1 Poor Design Decisions

Of 144 answers to the questions, two of them were incorrect: P13PT reported

to have read the category name incorrectly in the color legend (Figure 4.6

Q4-Aggregate), and P20PTAT did not use Filter By Category because she did not

understand it well, making it difficult for her to answer Question 5 (Figure

4.6 Q5-None). We further discuss such challenges for understanding recom-

mendations in subsection 4.4.3. Although the rest of the scatterplot designs

derived correct answers, we identified several poor design decisions. For ex-

ample, the goal of Question 3 was to clearly show the outlier in the scatter-

plots, but some participants (8 of 24 participants) either reduced the size or

opacity of points or used density plots, which unintentionally led to mak-

ing the outlier hard to notice (Figure 4.6 Q3-Change Point Opacity, Q3-Change

Point Size, and Q3-Represent Density of Points Using Color). Three participants

made similar poor decisions in Q5 (i.e., Figure 4.6 Q5-Filter+Opacity andQ5-
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Filter+Separate+Size). Of all 10 participants (8 for Q3 and 2 for Q5), only one

used the PTAT condition, possibly because the Textual Description about ad-

vantages and disadvantages contained explanations about the outlier (e.g.,

“Hard to find a point placed far away from others” in Change Point Opacity).

4.4.2 Role of Preview, Animated Transition, and Text

Themost common representationmethod–Preview–was reported to bemost

useful when understanding and selecting recommendations (5.9 out of 7)

and identified as the most intuitive: “I was able to understand recommenda-

tions at a glance by Preview” (P5PTA). On the contrary, Animated Transition

was less helpful than Preview on average (3.9 out of 7) but still useful for

understanding recommendations when the difference between the specific

view and Preview is relatively large (e.g., Aggregate Points To Mean Position

and Separate Graph By Category): “[Animated Transition] was not essential but

helpful when understanding large changes.” (P18PTA). Although Preview was

the most intuitive representation for most participants, a few (12.5%) said

that they preferred textual descriptions. One said that “[advantages and dis-

advantages] give insight about recommendations.” (P17PTAT). This is consistent

with the study result: Participants who read advantages and disadvantages

(i.e., PTAT condition) barely used Change Point Opacity, Change Point Size,

or Represent Density of Points Using Color when they had to make the out-

lier noticeable in Q2 and Q5. Some participants provided other reasons for

preferring Textual Description: They found it hard to compare differences

between previews. We might interpret this tendency by interpretation barrier

[41], where novices are likely to confront difficulties in interpreting visual-

izations. Because of the barrier, some participants seemed to intensively rely

on Textual Description. For example, to solve Question 2, some reported that
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they used density plots rather than Change Point Opacity simply because the

title or the advantage description contained “density.” This seems to be the

one of the main reasons why Represent Density of Points Using Colorwas used

much more than Change Point Opacity, as illustrated in Figure 4.6 Q2 (i.e., 16

times for the density plots and five for the other).

Although participants preferred a specific representation of the three

methods, most reported to have used multiple methods together, as they

expected and confirmed the behavior of suggested visual mappings to more

clearly understand them. For example, they sawapreview and then expected

the behavior of the recommendation. Whenever they had not clearly under-

stood about the recommendation, they saw textual descriptions or animated

transitions to confirm their hypothesis.

4.4.3 Challenges For Understanding Recommendations

The biggest challenges participants confronted in understanding recommen-

dations was identifying the difference between pairs of visualizations. This

includes distinguishing 1) between the specified view and Preview and 2)

between recommendations themselves. For example, P20PTAT did not use

Filter ByCategory in the study.During the interview, he said he hadnot clearly

understood the recommendation because the difference between the speci-

fied view and Preview was subtle (Figure 4.1A and B). He had not tried to

understand the recommendation clearly, and this led to never using it. Simi-

larly, P12PTAT reported that whenever the previewswere not distinguishable,

he did not use them. Animated Transition seemed not to show the difference

clearly as P20PTAT said, “Fun to see, but the [visual change] of Animated Transi-

tion was subtle.”
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Distinguishing between recommendations themselves also includes com-

paring textual descriptions. P6PTAT and P12PTAT, for example, said theymis-

takenly thought that Filter By Category and Separate Graph By Category are the

same because they contained the same keyword (i.e., category, Figure 4.1B

and G). Moreover, P6PTAT and P20PTAT said it was hard to compare the de-

scriptions of advantages and disadvantages between recommendations be-

cause some sentences are redundantly placed across a few recommendations

(e.g., “Can easily distinguish the density levels of points”, Figure 4.1C and

H).

4.4.4 Learning By Doing

Six participants reported that playing with configurable parameters of rec-

ommendations (e.g., re-sizing points by a slider bar in Figure 4.4) in addi-

tion to using the three representation methods helped them understand the

recommendations (i.e., learning-by-doing [67]). For example, P10PTAT said he

better understand Change Point Opacitywhen he adjusted the level of opacity

using the slider bar (Figure 4D): “[The] difference [between the specified view

and Preview for Change Point Opacity] was subtle, but I understood [Change Point

Opacity] by adjusting it.” Similarly, the behavior of Filter By Category was not

initially clear to some participants because the changes between the speci-

fied view and Preview were subtle for them. However, they reported that

once they adjusted and applied the recommendation, they clearly under-

stood what it does: “Once I configure [...], I understand it clearly” (P21PT).

4.4.5 E�ects of Recommendation Order

Figure 4.7 shows the number of times participants chose recommendations

by their order during the task. Note that the seven recommendations were
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randomly ordered for each participant. As can intuitively be expected, the

last one was least frequently selected: “I haven’t seen the density plot (the last

one) when using the system” (P11PTA). The reason for such a trend seems to be

that the participants regarded the later ones as less important; as P9PTAT said,

“I felt that recommendations on the bottom are less effective than the first few ones. So

perhaps I skipped using the last one.” Interestingly, the number of times partic-

ipants selected recommendations in the middle (i.e., 4th and 5th) dropped

to some degree. P12PTAT gave a possible reason for this tendency: “I think

I occasionally skipped recommendations on the middle. Perhaps it is because pre-

views looked similar to each other to me when scrolling down.” According to the

feedback, making the differences more visually salient might address the

problem of missing recommendations in the middle while scrolling down.

4.4.6 Personal Criteria for Selecting Recommendations

We were also interested in the criteria that participants have in their minds

when selecting recommendations. Knowing the users’ diverse criteria, de-

signers might consider users’ needs when designing recommendation sys-

tems. Because their task was constructing visualizations that best illustrate

Figure 4.7: The number of times recommendations were chosen by their order during
the task.
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answers to the questions, all participants tried to select recommendations

that make the visualization perceptually better. However, they still had op-

tions to chose between recommendations that provide similar information

(e.g., density plot orChange Point Opacity to see the density of the overlapped

area). The most frequent criterion was an aesthetic perspective (35.5% par-

ticipants) followed by familiarity (12.5%). Twoparticipants used recommen-

dations that weremore familiar to them,while one participant wanted to use

unfamiliar recommendations on purpose: “I tried to use recommendations that

I have never used before like [density plots]. I wanted to learn new visualizations”

(P15PTA). Another participant said he used recommendations that support

adjustable parameters: He used Change Point Opacity rather than Represent

Points UsingOutlines because the former supports changing the level of opac-

ity, while the latter did not support such an adjustable parameter.

4.5 Discussion

4.5.1 Design Implications

Based on our findings, we propose three implications for improving the de-

sign of recommendation interfaces in visualization tools.

Highlight Subtle Di�erences

When providing recommendations, each recommendation should be distin-

guishable from the others in terms of graphical previews and textual de-

scriptions (e.g., titles), and each recommendation should also be distinguish-

able from the specified view. When differences are subtle, novices might

have a hard time understanding the behaviors of the recommendations or

might miss some of them while using the recommendation interfaces. One
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method to avoid subtle differences might be making the difference clearer to

novices using additional visualization techniques. Using the animated tran-

sition could be one option, but in our study, some participants still found it

hard to see the visual changes in transitions when the differences are rela-

tively small (e.g., Represent Points By Outline). We used one second for each

staged transition, consistent with previous design guidelines [103], but de-

signers should consider increasing the duration to make animated transi-

tionsmore noticeable. Moreover, several other techniques would be useful to

further make the changes clearer, such as emphasizing the differences using

annotation methods [102] or extending visualization techniques for visual

comparison [37] to recommendation interfaces. If additional techniques can-

not be used, aggregating recommendations by their visual similaritieswould

be another possible method (e.g., clustering recommendations as in [143]).

Use Multiple Representations Together

Recommendation interfaces should combinemultiple representations to sup-

port the novices’ expect-and-confirm process. Since novices often experience

interpretation barriers [41], a single representation would not be enough for

them to clearly understand the recommendations. In such situations, seeing

another representation helped usersmore clearly understand unfamiliar rec-

ommendations. For example, in MS Excel 2016 [32], recommended visual-

izations are provided with thumbnail previews. However, users might find

it hard to distinguish between recommendations such as between Stacked

Bar and 100% Stacked Bar only with the preview. Our findings suggest that

recommendation interfaces should at least provide previewswith clear titles

unless rendering the actual chart is not feasible within given resources. Al-

though previews are the most intuitive representations, novices still prefer
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textual descriptions because novices sometimes do not feel confident about

what they have understood by previews.

Support Learning By Doing

The learning-by-doing approach [67], which is known to be useful for learn-

ing parallel coordinate plots, was also useful for understanding the behavior

of recommendations during the visual construction process. Therefore, we

believe visualization recommendation interfaces must support the learning-

by-doing approach by giving users the opportunity to play with recommen-

dations. In our recommendation interface, we showed adjustable interfaces

(e.g., a slider bar) after users pressed a button. Possibly because of this, one

participant misunderstood a recommendation and had no chance to try it.

Hence, it might be more effective to make adjustable interfaces visible to

users together with other representation methods (e.g., Preview), regarding

the adjustable interface as one of the representation methods for describing

recommendations.

4.5.2 Limitations and Future Work

Our controlled user study had several limitations in terms of external valid-

ity. First, we limited the users’ visualization tasks to scatterplot clutter re-

ductions to make the study analysis more efficient. To extend our findings to

a more general visualization construction process, it would be necessary to

explore representation methods with different visualizations and tasks. Sec-

ond, our study prototype provided a limited number of recommendations.

However, the number of recommendations can become larger in the real-

world, which complicates the generation process of textual descriptions. In

our study, we manually constructed the textual descriptions with care be-
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cause the readability can disturb novices in the cognitively challenging tasks

of the visualization construction process. State-of-the-art natural language

generation (NLG) techniques [33] might help generate the descriptions in a

more efficient manner, but the readability should be carefully assessed. Con-

structing NLG models for textual descriptions in recommendations would

be a promising research direction.

We believe evaluating recommendation forms in terms of task time and

accuracy is an equally promising research direction. In our study, we did not

evaluate them in terms of the quantitative aspects because we wanted to let

the participants use recommendations for enough time during the visualiza-

tion construction tasks. We thought if participants construct visualizations

with the time pressure, they might end up using only first few recommen-

dations without sufficiently thinking about their visual encodings or ignor-

ing to use some of the representations (e.g., textual descriptions or animated

transition), which are the cases we tried to prevent for understanding the us-

age of each representation/recommendation. We leave the quantitative eval-

uation as a separate future study.

In the future, it would also be interesting to design and evaluate visual-

ization techniques for emphasizing subtle differences between visualizations

or illustrating the causality of visual changes. Analyzing novices’ behaviors

related to recommendation systems based on gaze patternswould be equally

promising to explore. Additionally, it would be also interesting to determine

the effect of other combinations of representation methods, such as using

only textual descriptions or preview without animated transitions, or even

additional representation methods we had not used.
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4.6 Summary

In this chapter, we performed a qualitative user study to broaden the un-

derstanding of the behavior of InfoVis novices when using recommenda-

tion systems to perform scatterplot clutter reduction tasks. We designed a

recommendation interface using three primary representation methods—

Preview, Animated Transition, and Textual Description—and found that dif-

ferent representations individually and cooperatively help users understand

and choose recommended visualizations. Based on the study results, we pre-

sented three design implications for designing more efficient visualization

recommendation interfaces for InfoVis novices.
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Chapter 5

Designing XCluSim: a Visual
Analytics System for Comparing
Multiple Clustering Results

This chapter1 introduces XCluSim, a visual analytics system that supports

data analysts to compare multiple clustering results.

5.1 Motivation

Since Eisen lab’s Cluster and TreeView [29] popularized cluster analyses and

visualizations of microarray data, cluster analysis has been widely used in

the bioinformatics community. As genetic probing technologies rapidly im-

prove in capacity and accuracy (e.g., Next Generation Sequencing), clus-

ter analysis is playing an even more important role in the descriptive mod-

eling (segmentation or partitioning) of the large data produced by high-

throughput probing technologies. Though cluster analysis has become a rou-

1The preliminary version of Chapter 5 was published as a journal article [69] in BMC Bioin-
formatics and also presented in BioVis 2015.
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tine analytic task for bioinformatics research, it is still arduous for a researcher

to quantify the quality of a clustering method’s clustering results.

There have been a few attempts to develop objectivemeasures for cluster-

ing quality assessment; however, in most practical research projects, deter-

mining the quality of a clustering result is subjective and application-specific

[112]. To make things even more challenging, there are a large number of

clustering methods, which could generate diverse clustering results. More-

over, even an individual clustering algorithm could end up with different

results depending on the clustering parameters.

Since there is no generally accepted objective metric for selecting the best

clustering method and its parameters for a given dataset, researchers of-

ten have to run multiple clustering algorithms and compare different results

while examining the concordance anddiscordance among them. Such a com-

parison task with multiple clustering results for a large dataset is cognitively

demanding and laborious.

In this chapter, we present XCluSim, a visual analytics tool that enables

users to interactively compare multiple clustering results and explore indi-

vidual clustering results using dedicated visualizations.

5.2 Task Analysis and Design Goals

When performing a cluster analysis with a gene expression dataset, bioin-

formaticians typically follow an iterative analytics process: (1) they filter out

unnecessary genes from the dataset for more focused analysis; (2) they run

a clustering algorithmwith the selected genes; and (3) they validate clusters

in the clustering result to determine whether genes are clustered properly

in the biological context. When the quality of the clustering result is not sat-
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isfactory at the validation stage, they often have to return to previous steps

and run the same clustering algorithm with different parameters or run a

different clustering algorithm.

Years of close collaboration with bioinformaticians have revealed to us

that they often faced challenges in this iterative analytics process. First of all,

there is no flexible analytics environment that supports them through the

iterative process while providing diverse clustering algorithms and keeping

track of their exploration history (i.e., the sequence of the clustering algo-

rithms and parameter settings). Moreover, it is challenging for them to ef-

fectively compare different clustering results generated during multiple it-

erations while investigating the quality of the results at diverse levels (i.e.,

clustering results level, cluster level, and gene level).

To address these challenges in the iterative process of cluster analysis, we

set the following design goals for our visual analytics tool:

• To facilitate scalable visual comparison of many clustering results at

diverse levels;

• To support the generation of diverse clustering results;

• To promote understanding of the characteristics of each clustering al-

gorithm and its parameters in results;

• To provide dedicated visualizations effective for different types of in-

dividual clustering results.

5.3 XCluSim

WedesignedXCluSimbased on the visual information seekingmantra [114]—

overview first, zoom and filter, and details-on-demand—to better support scalable
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visual comparison. Since each combination of different clustering algorithms

and their parameters may yield different clustering results, it is inevitable

from those many clustering results to (1) see their overall similarity first,

(2) choose a subset of them, and then (3) perform detail comparisons and

explore individual clustering results.

XCluSim provides as many clustering options as possible by implement-

ing famous clustering algorithms and linking the clustering algorithms avail-

able inWeka [42]. It also keeps track of clustering options that users try dur-

ing the analysis process.

In the following subsections, we introduce visualization techniques and

user interactions for comparison tasks. They include overview, filtering/selection,

and detail view. Then we present visualization techniques that help users to

explore individual clustering results. For better comprehension of the visu-

alization components in XCluSim, we first describe a color encoding strategy

for clusters, which we consistently apply to every visualization component

of XCluSim prior to explaining each visualization.

5.3.1 Color Encoding of Clusters Using Tree Colors

Tohelp users identify similarities amongmultiple clustering results,we color-

code each cluster based on Tree Colors [123], which provides a color-coding

scheme for tree-structured data. We first hierarchically cluster all clusters

from every clustering result usingHAC. The correlation coefficient is used as

the similarity measure between a pair of clusters as in [150]. This maintains

consistency in the use of the cluster similarity measure in XCluSim, which

is also used for rearranging bands (i.e., clusters) in the enhanced parallel

sets view (see the Enhanced parallel sets view section). In the resulting tree-

structured cluster hierarchy, we assign an appropriate color to each cluster
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based on the Tree Colors color-coding scheme so that similar clusters have

similar colors.

This color encoding helps users intuitively assess the similarity of clus-

ters. For example, in Figure 5.1D (the enhanced parallel sets view),① and

② have very similar colors while① and③ do not, which means that① and

② share most items while① and③ barely share any item. This color-coding

scheme is consistently applied to overviews, detail views, and every visual-

ization for individual clustering results.

5.3.2 Overview of All Clustering Results

Parameter Information View

XCluSim provides an overview of parameters for all clustering results in

the parameter information view (Figure 5.1A, 5.2A). This view is vertically

divided into subsections, each of which corresponds to an individual clus-

tering algorithm (e.g., “K-means clustering”). Inside each subsection, there

are multiple bar charts arranged in a matrix layout. Each bar chart shows

the number of clustering results generated by the corresponding algorithm

with the corresponding parameter setting. For example, in Figure 5.1, the pa-

rameter information view is divided into more than four subsections (some

subsections are hidden under the scroll view) since a user made clustering

results using algorithms such as HAC, self-organizing map (SOM) cluster-

ing, K-means clustering, and expectation-maximization (EM) clustering. As

shown in Figure 5.1, the bar in the left bottom cell of K-means clustering

is taller than any bars shown in any clustering algorithms, indicating that

the K-means clustering algorithm with a distance measure of Euclidean dis-

tance and with 9 as the number of clusters is the one mostly used (Figure

5.1). We note here that bioinformaticians often run a clustering algorithm
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multiple times even with the same parameter setting when the algorithm

(e.g., K-means) works non-deterministically. For more details on clustering

parameters, the user can also look into the visualization of individual clus-

tering results.

To help users determinewhich results to select for detailed analysis, XCluSim

provides scalable similarity overviews both at the cluster level and at the

clustering result level using a force-directed layout (FDL) and a dendrogram

view. In the next two sections, we present details of these two overviews.

Force-directed Layout (FDL) Overview

In the FDL overview, overall similarity relations among multiple clustering

results are visualized in a force-directed layout, where more similar results

are placed closer together and connected with thicker edges (Figure 5.1B.

5.2B). The similarity metric for calculating distances between nodes is F-

measure [130], which is the harmonic mean of the precision and recall mea-

sure. Each of the precision and recall measures for the two clustering results

is calculated by dividing the number of agreed pairs of items by the number

of all pairs of items belonging to a clustering result. An agreed pair refers to

two items that “agree” to be clustered together in both clustering results.

Since the FDL overview uses physical distance to visually encode simi-

larity between clusters, it has a perceptual advantage in revealing similarity

relations among them. In addition, a pie chart is embedded in each node

to enable users to visually estimate the number of clusters and their sizes.

Since the global color encoding scheme also helps users to grasp similarities

among clusters, users can estimatewhich clusters remain stable across differ-

ent clustering results. For the scalability of the FDL overview, nodes become

smaller as more results are added to the view. Moreover, an edge between
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two clusters is displayed only when the similarity between the clusters ex-

ceeds a predetermined similarity threshold.

Dendrogram Overview

The overall similarity relations are also visualized in the dendrogramoverview

(Figure 5.1C, 5.2C) after running a HACwith all clustering results (i.e., each

row or node represents a result). As in the FDL overview, we use the F-

measure as the distance measure between a pair of results. However, the

visual representation and its purpose are different from the FDL overview.

While the FDL overview intuitively shows similarities using physical dis-

tance, the dendrogram overview uses a more familiar clustering visualiza-

tion component (i.e., a dendrogram) to represent similarities between clus-

tering results. Moreover, the dendrogram overview is more space-efficient

so that users can see clustering results and cluster distributions more clearly

without occlusion.

5.3.3 Visualization for Comparing Selected Clustering Results

When users identify clustering results of their interests in the overview of

all results, they want to select them and perform more in-depth compari-

son with them. In the next two subsections, we introduce visualizations for

comparing the selected clustering results: the enhanced parallel sets view

and the tabular list view. When a user selects a result either in the FDL or

dendrogram overviews, the selected result is added to the enhanced paral-

lel sets view for more in-depth comparison. The tabular list view, located on

the rightmost side of XCluSim, enables users to access detailed information

of the selected clustering results with each result in a separate tab.
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Enhanced Parallel Sets View

To visualize the concordance and discordance of multiple clustering results

in more detail, we utilized parallel sets [13]. We enhanced the parallel sets

for effective clustering result comparison by designing more appropriate in-

teractions and revealing more relevant information, that is a stable group

(explained in detail later in this section). In the parallel sets view (Figure

5.1D, 5.3), each horizontal row of stacked bars represents a clustering result.

A tiny gap is placed between each bar to assist users to correctly perceive a

single cluster since adjacent bars can occasionally have similar colors when

the Tree Colors scheme is used. Rows are arranged in such a way that the

distance between adjacent rows encodes the dissimilarity between the corre-

sponding clustering results. Each horizontal bar in a row represents a clus-

ter in the corresponding result. We define a stable group of items as a set

of items that are clustered together through all selected clustering results. A

stable group is represented as a ribbon-like band across all rows. Since the

parallel sets view only enables comparisons based on a linear ordering of re-

sults, users can interactively switch any two rows by dragging one over the

other. When the vertical order of the rows is changed, all rows are replaced

accordingly to reflect the similarity between new adjacent clustering results.

The aggregated band representation for links connecting items in a sta-

ble group significantly reduces visual clutter compared to the use of a single

line representation to connect individual items. Thewidth of a band is an im-

portant visual cue that encodes important information about a stable group

(i.e., its size) in XCluSim. Users can easily recognize the largest groups of

items that are clustered together across multiple clustering results as they

spot thick bands.Moreover, users can visually estimate the stability of a clus-

ter by looking at the width of each stable group in it. For example, since the
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average width of stable groups in① is bigger than② in Figure 5.3A, a user

can infer that① is a more stable cluster than②. Cluster-similarity based on

the color-coding of bars (i.e., clusters) helps to facilitate the comparison of

multiple clustering results.

However, the aggregation method could still suffer from clutter due to

band-crossings. We applied a rearrangement algorithm [150] to address this

issue. To provide more flexible user interaction depending on a user’s need,

we divided the algorithm into two rearrangement features: rearranging clus-

ters (i.e., bar rearrangement) and rearranging their members (i.e., band re-

arrangement). These features can be evoked by pressing on the button at

the bottom of the enhanced parallel sets view (Figure 5.1D). When a user

uses any of these two features, a smooth animated transition is supported

to reduce the cognitive burden that accompanies users’ attempts to trace the

movement of bands or bars.

XCluSimprovidesmore user interactions to overcome the cluttering prob-

lem. First of all, users can alleviate the visual clutter in the region of interest

by rearranging the bars in a row. This involves dragging them horizontally.

After manually rearranging bars (i.e., clusters), users can employ the band

rearrangement feature to reduce the visual clutter of bands across multiple

rows due to the current manual arrangement of bars in the row. Secondly,

there is a band filtering feature similar to that in [113]. The stable group his-

togram at the bottom of Figure 5.3C shows the distribution of bands by size.

There are two blue filtering bars on both sides. Users can filter out bands that

are too small or too big from the parallel sets view by adjusting the position

of the filtering bars. Finally, when the mouse pointer hovers over a cluster, it

highlights the bands, allowing the clusters to show their flows across other
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clustering results clearly (Figure 5.3B). This can be helpful when a user is

especially interested in stable groups that belong to a specific cluster.

The perception of a stable group’s size could be distorted by a line width

illusion [47]. Such an illusion causes humans to perceive the line width in-

correctly at slanted angles. This distortion may disrupt the task of band size

comparison. In order to prevent it, we adopt the common angle plot [47]

idea (Figure 5.3C). By comparing the straight, vertical parts of bands, users

can compare the sizes of the stable groups more accurately. However, since

the common angle plot represents a single line as three connected straight

lines, it may generate more clutter and occlusions. Thus, it is better to use

this feature when only a small number of bands are displayed in the parallel

sets view.

Tabular List View

Users can access detailed information concerning the selected clustering re-

sults with each result in a separate tab in the tabular list view (Figure 5.4).

The tabular view provides detailed information in two different modes: the

group-by mode and the heatmap mode. In the group-by mode, users can

see the data grouped by stable groups or by clusters. A group is represented

by a representative item in a single row with the number of group members

between parentheses. Moreover, there is a line graph glyph in each row to

show the overall average pattern of the corresponding group. In the heatmap

mode, the tabular list view shows numerical details with each cell color-

coded according to its value. There is a text search field on the top of the

tabular list view so that users can directly access specific items. A user can

export a selected subset of data (e.g., a specific stable group) as a CSV text

file for further analysis.
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XCluSim provides brushing and linking among all visualization compo-

nents. Thus, the tabular list view is coordinated with all visualization com-

ponents in XCluSim. Thus, whenever a user selects a group of items in any

visualization, they are highlighted in the tabular list view to help the user ac-

cess detailed information about them. In addition, when the mouse pointer

hovers over an item in a component, it highlights the item in white-blue

color, and all related items on the other components are also highlighted.

This could lead to additional meaningful insights. For example, hovering a

mouse pointer over the title of a specific algorithm in the parameter infor-

mation view results in the highlighting of all related clustering results in

overviews and detail views (Figure 5.1). As a consequence, users are able

to understand that K-means clustering can produce totally different cluster-

ing results depending on the clustering parameters chosen (e.g., compare

“K-means clustering(10)” to “K-means clustering(11)” in the dendrogram

overview in Figure 5.1).

Interactive Data Manipulation

Simple file formats such as comma-separated values (CSV) and tab-delimited

text are used for XCluSim. XCluSim enables researchers to interactively ma-

nipulate the input dataset when loading it, prior to clustering it 5.5). Users

can generate a ratio value by selecting two columns from the original dataset.

XCluSim provides filters such as a range filter and RPKM threshold adjust-

ment. It also provides features for calculating fold changes.

5.3.4 Visualization for Individual Clustering Results

Tomake XCluSim amore general visual analytics tool for comparing cluster-

ing results, we try to provide a wide variety of clustering algorithms. First of
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Figure 5.5: Interactive manipulation of input data supported in XCluSim: derive a new
column (ratio, fold change), change color mapping, filter items using a range filter and
RPKM adjustment.

all, we implement frequently-used clustering algorithms in XCluSim. These

includeHierarchical Agglomerative Clustering [29], SOM clustering [63], K-

means clustering, and OPTICS clustering [8]. Moreover, all clustering algo-

rithms fromWeka [42] are also available in XCluSim. Users can also import

any clustering results made by any other clustering algorithms that are not

available in XCluSim.

Taxonomy of Visualization Techniques for Visualizing Clustering Results

Different clustering algorithms work on different principles. For example,

there are three major categories of clustering algorithms: hierarchical, parti-

tional, and density-based. Clustering algorithms in different categories need
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different visualization techniques to effectively visualize their clustering re-

sults.

To suggest effective visualizations for each category of clustering algo-

rithms, we first surveyed visual encoding techniques for visualizing the clus-

tering results of various algorithms (Table. 1). Sedlmair et al. presented a

related taxonomy of factors in visual cluster separation [110]. They eval-

uated the effect of each factor on visual cluster separation in scatterplots.

Building upon this work, we consider the appropriateness of visual encod-

ing techniques in representing the characteristics of each type of clustering

algorithm. To broaden the perspective of our taxonomy, we further catego-

rize the visual encoding techniques in terms ofGestalt principles of grouping

[139]: similarity, proximity, connectedness, and enclosure.

Similarity: The similarity principle is the one most commonly used in

cluster visualization. It helps users to perceive cluster membership by em-

ploying similar colors, shapes, or sizes. Among them, color is the most fre-

quently used visual cue.However, using color as themain visual cuemay not

scalewell because the use of human color perception to discriminate between

classes is limited to a number of colors. Thus, it is often used in conjunction

with visual cues such as in reachability plot [42] and silhouettes plot [28].

Proximity: This principle facilitates the perception of clustermembership

by placing related items closer together. For example, in the silhouettes plot

[104], bars belonging to the same cluster are placed next to each other. How-

ever, this principle is not used alone. It is typically used together with other

visual cues. For example, the partitioned heatmap sometimes puts gaps be-

tween clusters to show their boundaries clearly [72, 74, 75, 112].

Connectedness: The connectedness principle helps users to identify groups

by connecting related items using a visual artifact such as a line. Line connec-
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tion is one of the most powerful visual cues among the Gestalt principles of

grouping. However, it can confuse users when there are too many lines in a

single view. The connectedness principle is especially used with hierarchical

clustering results since hierarchy structures can best be demonstrated with

line connections. For example, HCE [112], Matchmaker [74], and others use

this principle to represent clusters in dendrograms.

Enclosure: The enclosure principle is adopted particularly when draw-

ing a closed boundary containing items belonging to a cluster. For exam-

ple, when a dataset contains spatial information, all items of a cluster are

shown on a color-coded region with a solid boundary [64, 96]. Another typ-

ical technique based on this principle is the partitioned heatmap [72, 75]. It

is a powerful way to display raw data while clearly specifying the boundary

surrounding the members of each cluster.

In addition to these four Gestalt principles of grouping, there are some

attempts to use abstract representations (such as glyphs or special shapes)

for clusters without showing any individual items in clusters. The cluster

graph [136] uses an abstract representation of a circular node for a cluster.

Clusters derived from SOMclustering results are visualized in a hive-shaped

grid view while each item is abstracted as a node [63]. As these attempts do

not allow for the visualization of individual items, they are not a good fit for

the classification based on Gestalt principles.

After reviewing and categorizing visual encoding techniques for visu-

alizing clustering results, we selected visualization techniques appropriate

for visualizing each of the three main kinds of clustering algorithms: hierar-

chical clustering, partitional clustering, and density-based clustering. In the

next three subsections, we describe the visualization techniques in detail.
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Visualization Technique for Hierarchical Clustering

WevisualizedHACresultswith the combination of a dendrogramandheatmap

visualization (Figure 5.6a),where users could interactively compress/expand,

flip, and swap sub-trees. The batch compression of sub-trees using the min-

imum similarity bar [112] is also possible. By adjusting the position of the

similarity bar, users can dynamically determine the clusters. There is a com-

pact bird’s-eye overview using heatmap [73] in the left-most part which is

tightly coupled with the dendrogram. By dragging a black-bordered rectan-

gle that represents the current viewport (see the black rectangle in the top-

left of Figure 5.6a) in the heatmap overview, users can efficiently navigate

through the dendrogram+heatmap view.

Visualization Technique for Partitional Method

Partitional clustering results other than SOM clustering (e.g. K-means clus-

tering, EM clustering, farthest first clustering, etc.), and all imported results

are visualized in a force-directed layout (Figure 5.6b), where each cluster is

represented as a rectangle whose size is proportional to the cluster size. The

force between nodes is determined by the similarity between members of

each cluster so that similar clusters are closely positioned and have thicker

links between them. To show an overview of a cluster, XCluSim also visual-

izes the average pattern of all members of the cluster in a line chart, which

is shown as a glyph in the cluster’s node. XCluSim also supports semantic

zooming to enable users to explore clusters in more detail. When a cluster

is zoomed into, more details of its members are dynamically visualized in a

parallel coordinates plot.

SOM clustering results are visualized using the typical hive-shaped vi-

sualization (Figure 5.6c), where each hexagonal cell represents a cluster. In
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XCluSim, the background intensity of each cell represents the size of the cor-

responding cluster. As a visual summary of each cluster, XCluSim presents

the average pattern of the cluster members in a line chart within each hexag-

onal cell. XCluSim also supports semantic zooming. Users can zoom into a

cluster by double-clicking on the corresponding cell and look at the details

of their members in a parallel coordinates plot in the same way they would

in a force-directed layout.

Visualization Technique for Density-based Method

Density-based clustering algorithms calculate a kind of density-related in-

formation for each item during the clustering process. For example, OPTICS

[8] calculates the reachability distance for each item. We believe that users

can more intuitively understand a density-based clustering result when the

density-related information is revealed. Therefore, a bar-chart-like visualiza-

tion, with each item arranged on the horizontal axis and the density-related

information on the vertical axis, can effectively visualize density-based clus-

tering results. The conventional reachability plot for OPTICS is a typical ex-

ample. In XCluSim, we enhance the plot for better cluster identification and

for the improved examination of details (Figure 5.6d). To clearly show the

position of each cluster, XCluSim places a horizontal bar from the start to

the end positions of the cluster right below the reachability plot. The par-

allel coordinates plot at the bottom shows more details of cluster members.

These two plots support brushing and linking between the cluster members.

For example, when a mouse pointer hovers over a cluster in the reachability

plot, the lines for the members of the cluster are highlighted in the parallel

coordinates plot.
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5.3.5 Implementation

XCluSim was developed using Java Standard Edition 7 (Java SE 7), which

enables it to run on any platform with JRE version 1.7 or higher. We used

the Piccolo 2D framework to implement visualization components and in-

teractions.Weka’s clustering algorithmswere integrated into XCluSim using

Weka SDK 3.6 [42].

5.4 Case Study

To evaluate the efficacy of XCluSim, we conducted two case studies with

our collaborator in a major bioinformatics research laboratory. He is a senior

research engineer and has years of experience in genome and transcriptome

analyses.

5.4.1 Elucidating the Role of Ferroxidase in Cryptococcus
Neoformans Var. Grubii H99 (Case Study 1)

This study was carried out in his laboratory for 80 minutes. Pre- and post-

study interviews were conducted for 10 minutes each. The participant used

XCluSim for 50 minutes after a 10-minute tutorial. We used a dataset con-

taining normalized expression levels of 6,980 genes belonging to the Cryp-

tococcus neoformans var. grubii H99 strain. The dataset had been prepared

for his previous work [60].

His task was to elucidate the role of ferroxidase (cfo1) by knocking it

out. He was interested in finding a meaningful set of genes whose expres-

sion would be influenced and in identifying the affected pathways. For the

task, he tried to see the effect of fluconazole on two different strains: the wild

type of Cryptococcus neoformans var. grubii H99 and the cfo1 mutant of the
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same strain. In the dataset, each gene has four expression levels: two differ-

ent strains, each cultured in two conditions (i.e., wild-type strain and cfo1

mutant with and without fluconazole treatment).

When he loaded the data, hemade four newdata columns of ratio values,

including the wild-type strain with fluconazole versus the wild-type strain

without fluconazole treatment (WT+F/WT-F) and the cfo1 mutant with flu-

conazole versus the cfo1mutant without fluconazole treatment (MT+F/MT-

F). Subsequently, he adjusted the RPKM threshold andused log fold changes

to filter out less interesting genes for more efficient analysis.

After data pre-processing, XCluSim showed the results of three cluster-

ing algorithms (i.e., HAC, SOM clustering, K-means clustering) in three in-

dependent views. Since hewasmost familiarwith dendrogram and heatmap

visualization, he examined the HAC results first. He was interested in genes

that were highly expressed with fluconazole treatment. Among them, he

found the gene named Erg11 (CNAG_00040). He said that this gene was

reported to be associated with azole resistance.

Next, he tried to seewhich geneswere stably grouped together across dif-

ferent clustering results. He tried to load as many clustering results as pos-

sible to see the differences between them. The parameter information view

provided himwith a good overview of all clustering results (clustering algo-

rithms and their parameters). Hewas able to make diverse clustering results

without generating any duplicate results.

After generating 15 different clustering results, he selected four diverse

results from the FDL overview to find out which genes were clustered to-

gether with Erg11. However, he recognized that the stable groups were ex-

cessively thin because of the result named “FarthestFirst(6).” This had to do

with the fact that it was the most dissimilar result to other selected cluster-
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ing results (Figure 5.1). So he removed that result from the parallel sets view.

Then he selected a more similar one named “KMeans Clustering(4)” (Fig-

ure 5.3A). He subsequently accessed the stable group with Erg11 directly,

utilizing the search feature in the tabular list view. He was able to confirm

that 17 other genes belonged to the stable group. After validating the mem-

bers of the stable group with an enrichment analysis, he found that most of

them (10 out of 18) belonged to the ergosterol biosynthetic pathway.

Once he had selected the stable group in the tabular list view, hewas able

to efficiently inspect the flow of the group across different clustering results

in the enhanced parallel sets view (Figure 5.3B). While he looked into the

flow of the stable group across all rows (the rightmost highlighted-band in

Figure 5.3B), he also noticed that the clustering result from “KMeans Clus-

tering(4)” had the tightest cluster, which included the stable group. How-

ever, there were no more genes outside the stable group in the cluster that

belonged to the ergosterol pathway.

Then he tried to find the best algorithm and those of its parameters that

gave the tightest cluster containing genes belonging to the ergosterol path-

way. Since “KMeans Clustering(4)” had previously been the best clustering

result among the selected results, he ran K-means clustering algorithmswith

different parameters to arrive at similar results. He then inserted three of the

most similar results in the parallel sets view (Figure 5.3C). Again, he high-

lighted a stable group with Erg1 (the band indicated with a red arrow in

Figure 5.3C). By checking the flow of the stable group crossing each result,

he recognized that “KMeans Clustering(14)” gave the tightest cluster. This

led to the conclusion that K-means clusteringwith the corresponding param-

eter configurations (i.e., Euclidean distance as the distance metric and 9 as
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the number of clusters) was the best result for the given dataset among all

the results.

5.4.2 Finding a Clustering Result that Clearly Represents Biological
Relations (Case Study 2)

A second case studywas subsequently carried out with the same participant

in his laboratory. The study was conducted for 150 minutes on a different

day. Since the participant was already familiar with XCluSim, we skipped

the tutorial. In the study, he relied on the gene expression profiles of 169

genes in Escherichia coli, which used a DNAmicroarray [59]. In the dataset,

each gene contained 19 expression levels in order to investigate the effects

of the perturbations on tryptophan metabolism. The expressions were mea-

sured under the following conditions: wild type growth with and without

tryptophan (five conditions), wild type growth with and without trypto-

phan starvation (nine conditions), and the growth of wild type and a trp

repressor mutant (five conditions).

Through the case study, the participant wanted to find a clustering result

that clearly reflected biological relations in tryptophan metabolism. In the

original paper [59], the authors used HAC to cluster the 169 gene expres-

sion profiles measured in the 19 conditions. It was indicated in the paper

that genes showing similar expression responses did not necessarily fall into

the same cluster. One example included the genes associated with aromatic

amino acid metabolism.

He first wanted to see if the optimal algorithm and its parameters in the

previous case study would work for another dataset. To determine this, he

produced 11 clustering results in XCluSim, including the result produced us-

ing previous optimal settings: K-means clusteringwith Euclidean distance as
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the distance metric and 9 as the number of clusters. He validated each clus-

ter in the result (“KMeans Clustering(6)” in Figure 5.7A) through an enrich-

ment analysis using theDAVIDwebsite (http://david.abcc.ncifcrf.gov/). Af-

ter validating each cluster, he concluded thatmost of the clusterswere grouped

well in the sense that they represented biological relations in pathways.How-

ever, he recognized two problems in the result. First of all, a cluster that had

both Arg and Art regulons also contained a gene named tnaA that was con-

sidered to be noise. This was because tnaA showed a different expression

pattern and was not highly related to other cluster members in biological

terms. Secondly, one gene from the fli operon, fliS, fell into a different clus-

ter from the other genes in the same operon while they had homogeneous

expression patterns.

By utilizing visualizations in XCluSim, he wanted to find the clustering

result that properly represented biological relations as “KMeans Cluster-

ing(6)” while the two problems were revisited. For this intended task, he

selected all the similar results from the FDL overview: “KMeans Cluster-

ing(5),” “KMeans Clustering(8),” and “KMeans Clustering.” Then he ac-

cessed the stable groups that contained tnaA and the Arg/Art regulon. He

easily recognized that genes in both the Arg and Art regulons fell into the

same stable group while tnaA was not stably clustered with them. The re-

sults, which separately clustered tnaA from the Arg and Art regulons, were

“KMeans Clustering(5)” and “KMeans Clustering(8).” Similarly, by check-

ing the flow of stable groups in each horizontal row, he easily recognized

that two clustering results that used the correlation coefficient as a distance

metric clustered two stable groups together: one with the fli operon and the

other with fliS. The two results were “KMeans Clustering(5)” and “KMeans

Clustering.” As a consequence, “KMeans Clustering(5),” using the correla-
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tion coefficient as the distance metric and 13 as the number of clusters, was

the most satisfying result for the dataset.

Additionally, our participant gained insight by seeing a stable group in

XCluSim.Genes in the trp operon (i.e., trpE, trpD, trpC, trpB, and trpA)were

stably clustered together with yciF through the four different results (see the

highlighted stable group in Figure 5.7A). Since yciF was assigned to a puta-

tive function, he said that the gene might be closely related to tryptophan

synthase as a trp operon.

After he found the best result, he compared it with a clustering result

provided in the original work [59] to see if his result better represented bio-

logical relations (Figure 5.7B). The clustering result presented in the paper

had been prepared prior to the study and was imported to XCluSim for vi-

sual comparisons. After comparing two results, he found that some of the

genes involved in aromatic amino acid metabolism, aroF, tyrA, aroL, and

aroP, were clustered together in our best result while only three of them fell

into the same cluster in their original result. Moreover, their result did not

cluster fliS with the other fli operon. These results suggested that the authors

of the original work [59] could have generatedmore biologicallymeaningful

results if they had used XCluSim in the first place.

5.5 Discussion

During the case studies,we receivedpositive subjective feedback onXCluSim

from the participant. He especially liked the ability to identify stable groups

across multiple clustering results. Moreover, he was satisfied that he could

select and run diverse clustering algorithms and interactively compare them

by adding/removing a clustering result to/from the enhanced parallel sets
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view. He could quickly shift his attention to a more interesting set of results

for more in-depth comparison. However, he also pointed out the limitations

of XCluSim. Since filtering sets of itemswas only available at the datamanip-

ulation step, he said it would be helpful to allow users to interactively filter

raw data in the visualization components as well.

We color-coded each cluster consistently across the whole system using

the Tree Colors scheme after building a hierarchical structure of all clusters

frommultiple clustering results.With the help of this color coding, overviews

became even more useful in XCluSim.While the color encoding was applied

for a specific purpose in this work (i.e., for the visualization of clusters), we

think it can also be applied to parallel sets applications in amore general and

scalable way. For example, instead of distinguishing only a small number of

categories while visualizing a categorical dataset, it might be possible to dis-

tinguish many more nodes in the parallel sets once a hierarchical structure

of the nodes has been built in a similar manner to the one we employed in

XCluSim.

We provided a taxonomy of visualization techniques for visualizing clus-

tering results based on the Gestalt principle of grouping and the types of

clustering algorithms. The design space defined by this taxonomy can help

researchers to make design decisions for clustering results visualization. By

thinking about visualization techniques in terms of the Gestalt principle,

researchers can come up with better visual encoding without overlooking

important features. For example, since the graph layout is used to visualize

cluster memberships by color-coding each item [5, 28], one can also utilize

the enclosure principle, such as GMap [35] and BubbleSets [21], to represent

their membership more clearly.
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5.5.1 Limitations and Future Work

At present, when a clustering algorithm does not assign all items to clusters,

all un-clustered items are treated as a single cluster in XCluSim. OPTICS and

DBSCAN clustering algorithms can give rise to results of this kind. XCluSim

treats un-clustered items as a group of less interesting items as if it were a

special cluster. Otherwise, it could make a huge number of stable groups

since each un-clustered item will become a single stable group. This would

make it hard for users to gain insight from visualizations. In the future, we

plan to improve XCluSim to resolve this problem. For example, we can rep-

resent these kinds of groups with different textures in the parallel sets view

to distinguish them from other normal clusters.

In this chapter, we concentrated mostly on supporting comparison tasks

based on the concordance/discordance of multiple clustering results. How-

ever, since bioinformaticians’ cluster analysis is highly integrated with the

validation stage, it would also be valuable to provide a visual representation

of cluster validity measures (e.g., internal cluster validity indices). For ex-

ample, the grayscale intensity of each band (i.e., stable group) in the parallel

sets view, which currently represents the size of a stable group, can be uti-

lized to represent its internal validity measures. In such a case, stable groups

provided by XCluSim will become more reliable information.

5.6 Summary

In this chapter, we presented XCluSim, a visual analytics tool that enables

users to compare multiple clustering results. XCluSim provides three differ-

ent overviews to help users grasp their overall similarity relationships in a

more scalable and flexible way. Moreover, the enhanced parallel sets view
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enables users to detect differences among select clustering results evenmore

clearly by using improved user interactions. We conducted case studies to

evaluate the usefulness of XCluSim, and the participants gave positive feed-

back.
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Chapter 6

Future Research Agenda

This chapter suggests the agenda for future research build upon this disser-

tation, such as designing visual comparison recommendations, understand-

ing the perception of subtle difference in visualizations, and distinguishing

InfoVis novices from experts.

6.0.1 Recommendation for Visual Comparison

Although visualization recommendation has been considered as one of the

key supportive techniques for InfoVis novices, we still lack a recommen-

dation system that specifically supports visual comparison tasks between

multiple visualizations. In this dissertation, we have built the fundamental

knowledge on how to design visual comparison recommendation in two as-

pects: (recommendation model) we have organized the usefulness of in-

dividual comparative layouts in diverse analysis contexts based on 104 re-

search papers including eight papers with quantitative user studies in Chap-

ter 3, and (recommendation interface) we have identified implications for

designing understandable recommendation interface for novices based on

the result of a qualitative user study (N = 24) in Chapter 4. We believe this
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knowledge can potentially be helpful tools for designing a visualization rec-

ommendation interface that supports visual comparison tasks. In the future,

we will study on designing recommendation systems that support effective

visual comparison to assist novices in organizing their insights gained from

exploring individual visualizations during the visual exploration process.

A promising recommendation in this area would be suggesting visualiza-

tion layouts (e.g., juxtaposition or superposition) depending on visualiza-

tion types, complexity, and tasks.

6.0.2 Understanding the Perception of Subtle Di�erence

In the future, it seems promising to further understand the effectiveness of

individual comparative layouts in a wide range of study factors, such as vi-

sualization types and primitive visual channels (e.g., length in bar charts) to

show the difference. For example, for local comparison tasks (e.g., compar-

ing the length of bars), animated transition showed the best performance

compared with chart-wise and item-wise juxtaposition [94]. Interestingly,

however, from our user study in Chapter 4, participants commented that

animated transition has not sufficiently showen the difference between vi-

sualizations. These contrary results can be explained by different study set-

tings. Firstly, the amount of difference (e.g., SSIM [138]) in pairs of visual-

izations was different. For example, the recommendation for changing point

size in a scatterplot with the small number of points would have made the

animated transition harder to be noticed in our study. Secondly, visualiza-

tion types in the two studies were different as well: scatterplots in our study

and bar chart, line chart, and pie chart in the Ondov et al.’s work [94]. Lastly,

primitive visual channels (e.g., color, length, and size) that were involved in

the predefined difference between pairs of visualizations were also different.
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In our study, diverse visual channels were varied, including color (Change

Point Opacity) and size (Change Point Size). In contrast, Ondov et al. [94]

used main visual channels in individual visualizations, such as length for

bar chart and angle for slope chart and pie chart, which do not overlap with

ours. One of promising future research would be investigating the effective-

ness of animated transition for showing different visual channels between

visualizations.

6.0.3 Distinguishing InfoVis Novices from Experts

When we understand the difference between novices and experts in terms

of their ability in visual analytics (e.g., perception of visual difference) and

are able to predict the expertise level of people based on their behavior pat-

terns, we can provide more personalized and effective visualization designs

that can complement their skills. In this dissertation, we identified diverse

challenges that novices confront, which can be further studied to compare

such challenges with experts. In Chapter 3, we were able to identify diverse

novices’ challenges in the real-world in literature, such as difficulty in using

novel visual representations [77, 106, 118]. Through an observation study

in Chapter 4, we empirically found their hurdles in using visual-encoding

recommendations, such as recognizing subtle difference. In the future, we

will focus on understanding and modeling people’s diverging ability in vi-

sual analytics through observation studies. One promising study would be

modeling just-noticeable difference (JND) for pairs of visualization in these

two groups through user studies by employing deep features as perceptual

metrics [147].
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Chapter 7

Conclusion

In this dissertation, we presented the result of three studies to further build

our understanding ondesigning information visualization (InfoVis) for novices:

general people who are not familiar with visual representations and visual

data exploration process. In Chapter 3, we presented the result of a literature

survey on research papers that suggested novel comparative visualizations.

Based on the result, we offered practical implications, such as actionable

guidelines for using comparative layouts, as well as the lucid categorization

of visualization designs for visual comparison. Identifying the major stages

in the visualization construction process [17] where novices confront chal-

lenges with visual comparison tasks, we visited twomain tasks—comparing

visual mapping (encoding barrier) and comparing information (interpre-

tation barrier)—with actual users in Chapter 4 and 5, respectively. Chapter

4 showed that people still rely on textual descriptions to compare the ap-

propriateness of visual encoding suggestions. Moreover, we suggested im-

plications for designing visualization recommendation interfaces that better

help novices to compare and understand recommendations. In Chapter 5,

we designed and implemented XCluSim, an interactive visual analytics tool
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for comparing multiple clustering results. Case studies with a bioinformati-

cian showed that XCluSim enabled the analyst to easily evaluate the qual-

ity of clustering results, making him allowed to come up with a better re-

sult, more clearly reflecting biological relations, comparedwith the previous

study [59].
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국문초록

시각적 비교는 정보 시각화를 이용한 핵심적인 데이터 분석 과정 중 하나로

써,분산되어있는정보들을사람들이서로정리,평가,병합할수있도록돕는다.

예를 들어, 사람들은 시간의 흐름에 따른 데이터의 변화를 보거나, 서로 다른 출

처의 데이터를 비교하거나, 같은 데이터를 여러 분석 모델들을 이용해 평가하기

위해 시각적 비교 과업을 흔히 수행하게 된다. 효과적인 시각화 디자인을 위한

여러 연구가 정보 시각화 분야에서 이루어지고 있는 반면, 어떤 디자인을 통해

효과적으로 시각적 비교를 지원할 수 있는지에 대한 이해는 다음의 제약들로 인

해아직까지불분명하다. (1)경험적통찰들과실용적설계지침들이파편화되어

있으며 (2) 비교 시각화를 지원하는 방법을 이해하기 위한 사용자 실험의 수가

여전히제한적이다.

본논문에서는시각화초심자들에게효과적으로시각적비교를지원하기위한

정보시각화디자인방법을더깊이이해하기위해서일련의세연구를진행하고

이에대한결과를제시한다.특별히,시각화초심자들이시각적비교를할때어려

움을경험할수있는두주요시각화단계를확인함으로써,본연구에서는시각적

인코딩 비교 (인코딩 장벽) 및 정보 비교 (해석 장벽) 과업들에 초점을 맞춘다.

첫째,비교시각화디자인을제시한문헌들(N = 104)을체계적으로조사및분석

함으로써시각화연구자들이사용자실험과시각화설계과정을통해얻은실용적

통찰들을정리하였다.이문헌조사를기반으로비교시각화설계에대한지침들을

정립하고,비교시각화를위한디자인공간을더깊이이해하고탐색하는데도움

을줄수있는시각화분류및예시들을제공한다.둘째,초심자들이시각화추천

인터페이스에서어떻게새로운시각적인코딩들을서로비교하고사용하는지에

대한이해를돕기위해사용자실험(N = 24)을수행하였다.이실험의결과를기

반으로, 초심자들의 주요 어려움들과 이들을 해결하기 위한 디자인 지침들을 제
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시한다. 셋째, 생명정보학자가 시각적으로 다수 개의 클러스터링 결과들을 비교

및분석할수있도록도와주는시각화시스템, XCluSim을디자인하고구현하는

디자인스터디를수행하였다.사례연구를통해실제로생명정보학자가XCluSim

을이용하여많은클러스터링결과들을쉽게비교및평가할수있다는것을보였

다.마지막으로,이세연구결과들을기반으로비교시각화분야에서유망한향후

연구들을제시한다.

주요어: 정보 시각화; 비교 분석; 시각적 비교; 시각화 초심자; 문헌 조사; 사용자

실험;설계연구

학번: 2013-23127
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6년반이라는긴기간동안저의서울대학교컴퓨터공학부에서의경험은헤아

릴 수 없는 감사의 시간이었습니다. 공학도로서 필요한 수많은 지식을 쌓을 수

있었던 배움의 시간이었음과 동시에 다양한 일들을 접하고 맡아볼 수 있었던 훈

련의시간이었습니다.또한,저의부족한부분들을채워주는여러은인을만날수

있었던감사의시간이기도합니다.이글을통해제가대학원에입학하고졸업하

기까지함께해주신분들에게제한적이게나마감사하는마음을전하고자합니다.

누구보다도저의지도교수님이신서진욱교수님께가장큰감사를드립니다.학

생들을열정적으로지도해주시고사려깊게챙겨주시는지도교수님을만난것은

저에게이루말할수없는복이었습니다.교수님께서저를믿고받아주신덕분에

제가바라던분야의연구를시작할수있었고,교수님의따뜻한배려와인내로인

해 연구자로서 부족했던 제가 계속 성장할 수 있었습니다. 또한, 학업에 대해서

뿐만 아니라 삶에 대한 진심 어린 조언과 가르침을 주심으로 제가 많은 것들을

배우고 졸업할 수 있었습니다. 저도 언젠가는 교수님을 본받아 진실된 마음으로

학생들을지도해주는훌륭한스승이되길소망해봅니다.저와여러연구를함께

하셨던김보형교수님께도큰감사를드립니다.논문쓰는법과연구방향설정에

대한 교수님의 꼼꼼한 지도 덕분에 연구를 어떻게 수행해야 하는지에 대해 배울

수있었습니다.

많은시간을저와동고동락한연구실분들에게도감사의마음을전합니다.먼

저,함께연구하며저의부족함을채워주신공저자분들에게감사를표합니다.연

구실선배이신KyleKoh형은대학원초반에저와연구프로젝트를같이하며열정

적으로저를지도해주셨고,이때의경험이제가연구를하는데중요한밑바탕이

되었습니다. 조재민은 저의 연구실 동료이자 기숙사 룸메이트로서 오랜 시간을

함께밀접하게지내며연구내외적으로정말많은것들을배울수있게해주었고,
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여러방면에서값진도움을주었으며,함께즐거운추억들도많이쌓았습니다.신

동화와는긴기간연구과제에함께참여하며슬픔과기쁨을같이했고,힘든일이

있을 때 서로 의지하며 취미생활도 공유하며 즐거운 시간을 보냈습니다. 이제는

미국에서 연구하고 있을 장유리와는 대학원의 처음과 끝을 함께 연구하며 많은

연구얘기들을나눌수있었습니다.

저와대학원생활을함께해준연구실분들에게도감사를드립니다.제가연구

실에잘적응할수있도록도와주신이형민형,온화한카리스마를가지고조언을

주시던송현주형,함께유럽에서자전거를타며좋은추억을만든정대경형,초기

연구실세팅에도움을준고봉경,같이운동하며체력의중요성을일깨워준박헌

진형,육아중에도단기간만에연구실적을내고졸업하신멋진최고은누나,같이

미국서부여행을하며즐겁게지낸전재호,항상연구실에서묵묵히연구하시던

모습이큰자극이되었던유승훈형,동갑내기동네친구로서함께연구실을오가

며재밌는대화를나눈김영호,일본에서늦은저녁까지학회발표준비에도움을

준 김이은, 항상 밝고 유쾌함을 잃지 않는 황정민, 연구실에서 새로운 연구 분야

를개척하고졸업한김원재,노련함이돋보이는민구봉형,취미생활을공유하며

재밌는 대화를 나눈 이용석 형, 적극적으로 발표 및 연구에 대한 건설적인 의견

을공유해준한구현,연구실짝꿍으로써연구얘기를편히나눌수있어서좋았던

채한주 형, 연구실에서 맡은 일들을 항상 꼼꼼하게 진행하던 점을 본받고 싶은

복진욱,산책하며인생얘기를나눌수있어서좋았던김영택형,긴기간연구실

을이끌어가게될김재영,연구실분위기를한껏밝게만들어준재간둥이김준회,

조용히 그러나 정석적으로 연구를 수행하며 좋은 실적을 내고 졸업하는 김민지,

연구와삶에대한뜨거운열정을본받고싶은최길웅,바쁜와중에도기꺼이영어

대화연습에도움을준DungHo,연구를위해필요한새로운지식들을금방배우

고써먹는박관모,앞으로연구실을이끌어갈시각화연구자정석원,엄청난개발

결과들을짧은시간안에만들어내는점이놀라운안단테,연구에대한열정을보

이며성실히노력하는모습이보기좋은고형권,이모든분들덕분에저의대학원

생활이즐거웠고,더불어제가많은것들을배우며성장할수있었습니다.
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우리가족들에게도감사의마음을전합니다.저에대한가족들의변함없는지

지와 후원을 통해 제가 힘들고 어려울 때에도 꿋꿋이 연구를 이어갈 수 있었습

니다.우선저의부모님께가장깊은감사를드립니다.두분의전폭적인신앙적,

재정적지원을통해제가편안한마음으로대학원생활에집중할수있었습니다.

또한, 제가 어떤 상황에 있던지 ‘할 수 있다’는 자신감을 잃지 않을 수 있었던 것

은 두 분께서 항상 저를 위해 열심히 기도해주신다는 사실을 제가 잘 알고 있기

때문입니다. 이제는 물리학도로서 연구를 하는 저의 동생, 이철희에게도 고마움

을표합니다.동생의지속적인응원을통해자신감을잃지않았고,이따금재밌는

시간을함께보내며순간의힘든일들을잊을수있었습니다.

저의새로운부모님이신장인장모님께도깊은감사를전합니다.항상저를반

갑게맞아주시는두분덕분에외로울수있는대학원생활이풍요로울수있었습

니다. 저의 상황들을 세심하게 신경 써 주시고 물심양면으로 지원해주심에 여러

바쁜 일정들을 평안하고 건강히 소화할 수 있었습니다. 저의 처제와 동서, 이윤

혜와 신재식에게도 감사의 뜻을 표합니다. 바쁜 상황에서도 서슴없이 도와주고

진심으로 응원해주는 두 분 덕분에 대학원을 마무리하는 기간 동안 마음이 든든

할 수 있었습니다. 지켜보는 것만으로도 마음의 위로가 되어준 귀여운 두 조카,

신주담과신윤아에게도고마움을표합니다.

마지막으로 저의 사랑하는 아내, 이지혜에게 감사의 마음을 전합니다. 광야와

같은 대학원 생활에서 그녀를 만난 것은 하나님께서 제게 주신 선물이었습니다.

그녀는저의긴대학원생활을가까이에서함께해주며,같이즐거운시간을보내

며힘든일들을잊게해준저의가장친한친구이자,지겨울수도있는저의각종

고민거리를 진실되게 들어주고 고민해준 참된 조언자이며, 저를 위해 열심히 기

도해주는믿음의동반자였습니다.

2019년 12월

이세희올림
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