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Abstract 

Enhanced Electrical Properties of 

Polythiophene-based Organic Field-Effect 

Transistors by Molecular Doping  

via Solid-State Diffusion 
 

Youngrok Kim 

Department of Physics and Astronomy 

Seoul National University 
 

Organic semiconductors (OSCs) have been widely studied due to their merits such 

as mechanical flexibility, solution processability, and large-area fabrication. Based on these 

merits, organic electronic devices, including organic light-emitting diodes, solar cells, 

sensors, memory and field effect transistors, have been widely investigated. In these 

organic electronic devices, downscaling and high-speed operation are essential for practical 

applications. However, a high contact resistance which arises from the Schottky contact 

between metal electrodes and OSCs fundamentally limits the device performance. In 

silicon-based semiconductor devices, selective ion implantation doping technique under 

the electrodes is widely used to enhance charge injection properties, and similar approach 

can be applied in OSCs to resolve the contact resistance issue. Recently, various contact 

doping methods have been reported as an effective way to reduce the contact resistance in 

organic electronic devices. However, the contact doping has not been explored extensively 

in organic field effect transistors (OFETs) due to the dopant diffusion problem which 

significantly degrades the device stability by damaging the ON/OFF switching 

performance. 

In this thesis, firstly I demonstrated a selective contact doping of 2,3,5,6-tetrafluoro-
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7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) by solid-state diffusion in poly 2,5-bis(3-

hexadecylthiophen-2-yl) thieno [3,2-b] thiophene (PBTTT) to enhance carrier injection 

properties in bottom-gate PBTTT OFETs. In this development, I investigated the effect of 

post-doping treatments on diffusion of F4-TCNQ molecules by using the experimental data 

and a numerical simulation based on a modified Fick’s diffusion equation. Furthermore, 

the application of the doping technique to the low-voltage operation of PBTTT OFETs with 

high-k gate dielectrics demonstrated a potential for designing scalable and low-power 

organic devices by utilizing doping of conjugated polymers.  

However, in spite of introducing post-doping treatments in order to confine the doped 

regions at the source-drain contact regions of OFETs, the dopant diffusion problem could 

not be resolved completely. Regarding this issue, I improved the stability of the contact 

doping method by selectively incorporating tetracyanoquinodimethane (TCNQ) as 

“dopant-blockade molecules” in PBTTT film in order to suppress the diffusion of the 

dopant molecules. The dopant-blockade molecules were carefully chosen such that they are 

electrically inactive and they readily locate themselves in the diffusion paths of the dopants 

within the active channel of the OFETs. This technique effectively constructed barriers 

against the motion of dopant molecules in the potential diffusion sites by filling them with 

the dopant-blockade molecules. Therefore, the dopant-blockade method will maximize the 

potential of OFETs by employing the contact doping method as a promising route towards 

resolving the contact resistance problem. 

 

Keywords: Organic field effect transistors, dopant molecule, contact doping, solid-state 

diffusion, charge injection, charge transfer, dopant-blockade 
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Chapter 1. Introduction 

1.1. Brief introduction of organic electronics 

The advantages of these organic semiconductors (OSCs) include mechanical 

flexibility, solution processability, and tunable material functionalities by molecular-

design.[1-13] Based on these advantages, organic electronic devices, including organic light-

emitting diodes (OLED), solar cells, sensors, memory and organic field effect transistors 

(OFETs), have been widely investigated. Solution processability and mechanical flexibility 

could lead to printing fabrication process. There have been two major printing methods; 

inkjet and roll-to-roll gravure printing.[14-17] In the ink-jet printing method, the electronic 

devices have made by an ink-jet printer which uses semiconducting and conducting inks as 

Ink-jet printing Gravure printing

(a) (c)

(b)

(d)

Figure 1.1 Examples of printing methods. (a) Ink-jet printing of OSCs. Reproduced from 

Ref.[17] (b) Demonstration of all-inkjet-printed organic inverter. Reproduced from 

Ref.[16] (c) Concept of gravure printing. Reproduced from Ref.[15] (d) Large-area 

processing by roll-to-roll gravure printing. Reproduced from Ref. [14] 
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shown in Figure 1.1a and 1.1b.[16,17] By the ink-jet printing method, the organic electronic 

device with complex structure could be fabricated at low temperature. On the other hand, 

in the gravure printing method, electronic circuits have been drawn as a newspaper as 

shown in the figure 1.1c and d on flexible substrates which are introduced between 

rolls.[14,15] Electronic circuits could be produced in large areas with high throughput at low 

temperature by gravure printing method. 

The advantage of tunable material functionalities have been suitable properties for 

optoelectronic device application. Relying on this advantage, organic solar cells have been 

extensively studied and, recently, the organic solar cell which recorded more than 16% 

efficiency has been reported.[18-24] But above all, this advantage of OSCs has been 

especially evident in OLEDs.[25-32] By controlling the optoelectric properties of OSCs, high 

level of color reproduction could be realized, and OLED display is now fully 

commercialized. 

 

1.2. Contact resistance problem in organic semiconductors 

If it is possible advancing the performance of OFETs to keep pace with the 

industrial success of OLEDs, OFETs could be potentially applied as switching and driving 

transistors in demonstrating the fully-flexible organic display panels.[33,34] In this 

application, to meet technological demands of display panels, the development of 

downscaling and high-speed operation of OFETs has been an essential bottleneck. However, 

the contact resistance problem arising between OSCs and metal electrodes has been one of 

the dominant obstacles for using OFETs because the high contact resistance which 

increases the operation voltage of transistors fundamentally limits the device performance 

of OFET as a switching transistor.[35-37] To overcome this problem, there have been various 
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approaches, including self-assembled monolayer treatment on electrodes and introducing 

charge injection layers.[38-44] At the start, I looked at how the established silicon metal-

oxide-semiconductor field-effect transistor (MOSFET) technology solved this problem. In 

MOSFET fabrication, the contact doping by ion implantation technique has been widely 

used before the metal electrode deposition. This technique decreases the contact resistance 

by reducing the carrier depletion width at the interface between metal electrodes and 

semiconductors. Today, for silicon MOSFET industry, ion implantation doping technique 

has become an essential process in the fabrication of an integrated circuit. 

 

1.3. Contact doping via solid-state diffusion 

For introducing the dopant implantation technique in OCSs, I needed to find a 

proper material combination enabling a high carrier concentration, high conductivity, and 

controllability similar to silicon-boron and silicon-phosphorus combinations. Recently, 

solid-state diffusion phenomenon and its physical properties was reported with the 

combination of PBTTT and F4-TCNQ; PBTTT as an organic semiconductor and F4-TCNQ 

as a dopant molecule.[45] This materials combination exhibited various advantages in 

application for organic transistors; a high conductivity up to 200 S/cm, high carrier 

concentration up to 3.3 × 1020 cm-3 and doped-region controllability. Therefore, this 

combination was a strong candidate to utilize the contact-doping technique for resolving 

the contact resistance issue in OFETs. For implementing the contact-doping technique, one 

of the most difficult challenges has lied in confining the doped regions away from the 

channel regions of OFETs (i.e. in localized regions at the source-drain contacts only). The 

diffusion problem usually leads to undesirable degradation in the switching performance 

of devices, and therefore the device stability reduces over time.[46,47] To resolve the dopant 
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diffusion problem in the contact-doping technique, three kinds of approaches were 

developed in this thesis; the surface etching treatment, incorporation of a passivation layer 

and the “dopant-blockade” method. 

 

1.4. Outline of this thesis 

This thesis mainly focuses on the electrical properties and operational stability of 

the doped-contact PBTTT OFETs. In chapter 2, I discuss the development of the contact-

doping technique via solid-state diffusion and the analysis of the device properties of the 

doped-contact PBTTT OFETs by experimental data and numerical simulation. In chapter 

3, I suggest the incorporation of dopant-blockade molecules which could not change the 

electrical properties of PBTTT OFETs to enhance the device stability by suppressing the 

dopant diffusion. Finally, chapter 4 summaries this study.  
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Chapter 2. Enhanced Charge Injection Properties of 

Organic Field Effect Transistor by Molecular Implantation 

Doping 

 

Organic semiconductors (OSCs) have been widely studied due to their merits such 

as mechanical flexibility, solution processability, and large-area fabrication. However, 

OSCs devices still have to overcome contact resistance issues for better performances. To 

improve the contact properties of OSCs, there have been several methods reported, 

including interface treatment by self-assembled monolayers and introducing charge 

injection layers. However, because of the Schottky contact at the metal-OSC interfaces, a 

non-ideal transfer curve feature often appears in the low drain voltage region. Here, I 

demonstrated a selective contact doping of 2,3,5,6-tetrafluoro-7,7,8,8-

tetracyanoquinodimethane (F4-TCNQ) by solid-state diffusion in poly 2,5-bis(3-

hexadecylthiophen-2-yl) thieno [3,2-b] thiophene (PBTTT) to enhance carrier injection in 

bottom-gate PBTTT organic field effect transistors (OFETs). Furthermore, I have 

investigated the effect of post-doping treatment on diffusion of F4-TCNQ molecules in order 

to improve the device stability. In addition, the application of the doping technique to the 

low-voltage operation of PBTTT OFETs with high-k gate dielectrics demonstrated a 

potential for designing scalable and low-power organic devices by utilizing doping of 

conjugated polymers. 

 

2.1. Introduction 

Organic semiconductors (OSCs), widely applied as electronic devices such as 

organic light-emitting diodes, solar cells, memories and organic field effect transistors 

(OFETs), have various advantages including mechanical flexibility, low-cost, solution-

processed fabrication and tunable material functionalities by molecular-design compared 

to silicon-based materials.[1-13] However, the contact resistance problem arising between 
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organic materials and metal electrodes has been one of the dominant obstacles for adopting 

organic semiconducting devices instead of silicon-based devices. Diverse attempts, for 

instance, self-assembled monolayer (SAM) treatment on metal electrodes,[14-19] inserting a 

charge injection layer between organic semiconductor and metals,[20-27] choice of metals for 

better injection properties,[28-29] adopting carbon-based conductor like graphene as 

electrodes,[30] have been introduced to improve carrier injection across typically a non-

ohmic contact. Especially, considering large operation voltages required for OFETs, 

improving contact properties of organic/metal interface is an essential step for practical 

applications of OSCs. 

Contact doping is one of the most effective technique to reduce contact resistance 

and has been widely employed in silicon-based devices and recently in OSCs to reduce the 

contact resistance.[31-36] In order to avoid undesirable OFF currents it needs to be performed 

selectively, i.e., in localized regions at the source-drain contacts only and not in the channel 

region. The doped regions have been usually confined to the top surface of the organic 

semiconductor film by depositing a small amount of dopants on the top of the organic film 

by thermal evaporation. As a result, the position of the gate dielectrics was normally 

restricted to the top side of devices (i.e. FETs in a top-gate structure) in order to enhance 

the charge injection from metal electrodes to the accumulation layer formed on the top 

surface of the polymer.[31-32] Recently, the combination of poly(2,5-bis(3-

tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT) and 2,3,5,6-tetrafluoro-7,7,8,8-

tetracyanoquinodimethane (F4-TCNQ) as host and dopant material, respectively, has 

produced a highly conducting polymer that has been studied as a candidate for a synthetic 

metal and high power-factor thermoelectric material.[37-41] Interestingly, this combination 

achieved an efficient bulk-doping of PBTTT by solid-state diffusion which implied that the 
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F4-TCNQ dopant molecules diffused into the PBTTT film all the way down to the interface 

between the PBTTT film and the SiO2/Si substrate.[39] Moreover, the PBTTT film doped 

by solid-state diffusion exhibits a high conductivity of around 200 S/cm which would be 

applicable for selective contact doping for FETs. 

One of the main challenges in utilizing selective molecular doping in organic 

optoelectronic devices has been the diffusion problem of dopant molecules in the host 

materials, which has reduced the device stability.[42-47] The dopant diffusion will especially 

be significant if one adopts selective bulk-doping on the contact regions of OFETs due to 

a large dopant concentration gradient of dopant molecules between the doped regions and 

active channel (non-doped) regions. To this date, there has been a relatively small number 

of studies that have directly investigated the diffusion problems within the selectively 

contact-doped OFETs.[32] In this chapter, the bulk-doping technique of PBTTT by solid-

state diffusion of F4-TCNQ was employed to provide highly conducting paths in order to 

enhance the charge injection in PBTTT OFETs in a bottom-gate structure. This technique 

is akin to an ion implantation doping technique employed in the silicon industry; hence the 

name, “molecular implantation doping”. I investigated and further improved the stability 

of the PBTTT OFETs by characterizing the effect of post-doping treatments on the dopant 

diffusion into the active channel. Moreover, I demonstrated that introducing the molecular 

implantation doping technique to the PBTTT OFETs with high-k gate dielectrics enabled a 

low-voltage operation, with improved charge injection properties. 
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2.2. Experiments 

2.2.1. Device fabrication process 

Figure 2.1a and b show the fabrication process of PBTTT OFETs with F4-TCNQ 

doping on the contact regions of the devices and molecular structures of the used materials, 

respectively. SiO2/Si substrates were cleaned using de-ionized water, isopropanol and 

acetone for 10 min in each cleaning solvent by sonication in an ultrasonic bath. Then, the 

electrodes consisting of Au (30 nm-thick)/Ti (2 nm-thick) were deposited with shadow 

masks on the substrates by using an electron-beam evaporator with a deposition rate of 0.5 

Å /s at a pressure of ~10-7 torr. After further cleaning with an oxygen plasma etching (50 W 

for 2 min) to optimize the surface properties, the substrates were transferred immediately 

to a nitrogen atmosphere glove box and were immersed in a prepared octyltrichlorosilane 

(OTS, Sigma-Aldrich) solution (30 mM in anhydrous toluene (Sigma-Aldrich)) for ~12 

hours to form the saturated coverage of OTS self-assembled monolayers (SAMs) on the 

SiO2 surfaces.[48] At the end of the OTS SAM treatment, the substrates were transferred out 

from the glove box while being immersed in anhydrous toluene. The substrates were 

cleaned in toluene, isopropanol, acetone and toluene again by sonication for 10 min in each 

(a) (b)

PBTTT

P++ Si

SiO2

P++ Si

SiO2

Au Au

P++ Si

SiO2

Au Au

OTS

P++ Si

SiO2

Au Au
PBTTT

P++ Si

SiO2

Au Au

F4-TCNQ

PBTTT

P++ Si

SiO2

Au Au

Wafer cleaning Electrode deposition OTS SAM Formation

PBTTT layer depositionF4-TCNQ depositionSurface etching

F4-TCNQ

F4-TCNQ

PBTTT OTS

CH2(CH2)12CH3

CH2(CH2)12CH3

n

Figure 2.1 (a) Schematic images of the device fabrication process. The dark green regions 

in the bottom-middle image represent neutral F4-TCNQ molecules and the bright green 

regions in the last two steps represent the doped PBTTT. (b) Molecular structures of 

PBTTT, F4-TCNQ, OTS. 
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solvent to remove residual OTS molecules on the SiO2 surfaces. To evaporate the residual 

cleaning solvents, the substrates were stocked in a vacuum chamber for ~2 hours. Figure 

2.2a and b show the water droplets on both the pristine and OTS SAM treated SiO2 

substrates. The measured contact angle was changed from 65.4° to 97.9° after the OTS 

SAM treatment.[48] The polymer semiconductor solution was prepared as poly[2,5-bis(3-

tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT, Sigma-Aldrich) in anhydrous 

1,2-dichlorobenzene (DCB, Sigma-Aldrich) solution (9 mg mL-1). Before spin-coating, the 

PBTTT solution was heated at 110 °C to form uniform PBTTT films. The PBTTT films 

were spin-coated at 1500 rpm for 45 s in the N2-filled glove box, followed by annealing at 

180 °C for 20 min, and then the films were cooled down to room temperature slowly. Figure 

2.2c shows the atomic force microscopy (AFM) image of the PBTTT films deposited on 

the OTS SAM treated SiO2, displaying clear terrace structures with 2 nm steps.[48-51]  

Then, the dopant material, F4-TCNQ, was thermally evaporated directly onto the 

selected region of PBTTT layer with a nominal thickness of 10 nm by shadow masks with 

a deposition rate of 0.51.5 Å /s at a pressure of ~10-6 torr as depicted in Figure 2.1a. The 

dopant molecules diffuse into the PBTTT film, creating a decaying depth-profile of the 

dopant distribution.[39] Therefore, it was crucial to optimize the amount of dopants so that I 

(a) (b) (c)

Figure 2.2 A water droplet on (a) a pristine SiO2 substrate and (b) an OTS SAM treated 

SiO2 substrate. (c) AFM image of the PBTTT film deposited on the OTS SAM treated SiO2 

substrate. 
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can still achieve a good conductivity at the regions near the contact electrodes to enhance 

charge injection, while suppressing the dopant diffusion near the top surface. The doped 

regions of the PBTTT film appear more transparent as shown in the marked regions with 

arrows in the right image of Figure 2.3.  

When the dopant deposition was finished, the surface of the PBTTT films were 

immediately by argon plasma etching (50 W for 1 s) to minimize diffusion of the dopant 

which caused a rise of the off-current of the OFET (defined as the minimum current value 

during the gate bias sweeps). The etching process was done because I anticipated the 

diffusion of the dopant into the channel to be mainly caused by the neutral dopant 

molecules which did not undergo charge transfer with PBTTT. It was suggested from the 

previous research that the etching rate of F4-TCNQ molecules was much faster than that of 

PBTTT and the neutral dopant molecules mainly remained near the surface of the PBTTT 

film.[39] Therefore, I inferred that the etching process reduced the neutral dopant 

concentration near the top surface of the doped regions of the PBTTT films. From the 

transmission electron microscopy (TEM) cross-section image and energy dispersive 

spectrometer (EDS) element analysis, I found that the thickness of the PBTTT film was 

~30 nm by tracing the sulfur signals. Figure 2.4 shows a transmission electron microscopy 

200 μm0.5 cm

Figure 2.3 Optical images of the selectively-doped PBTTTT transistors. The black 

rectangular areas (right image) represent the doped regions of the PBTTT film. 
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(TEM) cross-section image and energy dispersive spectrometer (EDS) element analysis of 

the etched PBTTT film on a SiO2/Si substrate. The EDS scan starts from the carbon 

protection film (deposited on top of the PBTTT film) all the way to the substrate (see the 

arrow in Figure 2.4a). Although the TEM cross-section image and the carbon element 

signals in the EDS data hardly display the boundary between the carbon protection film 

and the etched PBTTT film, the sulfur element signals give us fingerprint information to 

clearly identify the PBTTT film in the EDS scan. The extracted thickness of the etched 

PBTTT film is 30 nm which is smaller than 40 nm of a pristine PBTTT film (measured 

previously by Kang et al.[39]).  

Interestingly, the doping and etching processes did not affect the surface 

morphology of the PBTTT films. Figure 2.5 shows AFM images of the PBTTT films after 
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Figure 2.4 (a) TEM cross-section image of the etched PBTTT film. (b) Oxygen element 

signals. (c) Sulfur element signals. (d) Argon element signals. (e) Carbon element signals. 

(f) Silicon element signals. 
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both the doping and etching processes. Although the PBTTT film thickness was decreased 

from 40 nm to 30 nm by the etching, the surface images of both the etched PBTTT films 

in Figure 2.5a and c show the identical surface morphology as that of the pristine PBTTT 

film in Figure 2.2c. This result was one of the evidences that the PBTTT films were peeled 

off layer by layer during the argon plasma etching process. Furthermore, it was hard to 

identify additional features due to the dopant molecules on the PBTTT film surface after 

the doping. 

 

2.2.2. Electrical characterization 

The electrical charaterization of the devices were performed using a semiconductor 

parameter analyzer (Keithley 4200 SCS) at a pressure of ~10-2 mbar in a vacuum probe 

station (JANIS Model ST-500). 

 

2.2.3. Spectroscopy and microscopy  

The UPS measurements were conducted by using AXIS SUPRA (Kratos, Inc.) at 

a base pressure of  7 × 10−9 mB with the He I photon line (21.22 eV) and the resolution 

(a) (b) (c)

Etched Doped/unetched Doped/etched

Figure 2.5 (a) AFM image of the etched PBTTT film. (b) AFM image of the doped and 

unetched PBTTT film. (c) AFM image of the doped and etched PBTTT film. 
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of 10 meV. The absorption spectra of the PBTTT films were acquired by using V-770 

(JASCO). The TEM and EDS measurements were operated by JEM-2100F (JEOL) and the 

AFM images were scanned by NX-10 (Park systems). 

 

2.2.4. Contact resistance extraction by Y-function method 

 The Y-function method has been applied to field-effect transistors made of various 

materials including two-dimensional semiconductors for which the device geometry is 

typically hard to define, because this method only requires a single IDS-VGS transfer curve 

in the linear regime (𝑉𝐺𝑆 − 𝑉𝑡ℎ ≫ 𝑉𝐷𝑆) for extracting the contact resistance.[52-54] In the 

linear regime, IDS can be described as 

𝐼𝐷𝑆 =
𝑊

𝐿
𝜇𝑒𝑓𝑓𝐶𝑖(𝑉𝐺𝑆 − 𝑉𝑡ℎ)𝑉𝐷𝑆 

       =  
𝑊

𝐿

𝜇0
1 + 𝜃(𝑉𝐺𝑆 − 𝑉𝑡ℎ)

𝐶𝑖(𝑉𝐺𝑆 − 𝑉𝑡ℎ)𝑉𝐷𝑆 

where W, L, Ci, 𝜇𝑒𝑓𝑓 , 𝜇0  and 𝜃  denote the channel length, the channel width, the 

capacitance per unit area, the effective mobility, the intrinsic mobility and the mobility 

attenuation factor. The mobility attenuation factor is described as  

𝜃 = 𝜃𝑐ℎ + 𝜇0𝐶𝑖𝑅𝐶
𝑊

𝐿
≈ 𝜇0𝐶𝑖𝑅𝐶

𝑊

𝐿
 (𝑓𝑜𝑟 𝑉𝐺𝑆 − 𝑉𝑡ℎ ≫ 𝑉𝐷𝑆) 

where 𝜃𝑐ℎ  and 𝑅𝐶  denote the attenuation factor from the channel and the contact 

resistance. In the large gate bias regime, 𝜃𝑐ℎ  is negligible compared to rest part of 𝜃. 

The Y-function is defined by IDS and the transconductance (𝑔𝑚 = 𝜕𝐼𝐷𝑆/𝜕𝑉𝐺𝑆) by 

Y =
𝐼𝐷𝑆

√𝑔𝑚
=

𝐼𝐷𝑆

√
𝑊
𝐿

𝜇0
(1 + 𝜃(𝑉𝐺𝑆 − 𝑉𝑡ℎ))

2 𝐶𝑖𝑉𝐷𝑆

= √
𝑊

𝐿
𝜇0𝐶𝑖𝑉𝐷𝑆(𝑉𝐺𝑆 − 𝑉𝑡ℎ) 

Considering the slope of Y and 1/√𝑔𝑚 with respect to VGS, the slope of Y (denoted as 𝑆𝑦) 
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is √
𝑊

𝐿
𝜇0𝐶𝑖𝑉𝐷𝑆 and the slope of 1/√𝑔𝑚  (denoted as 𝑆𝑔) is 𝜃/√

𝑊

𝐿
𝜇0𝐶𝑖𝑉𝐷𝑆. Therefore, 

the product of 𝑆𝑦
−1, 𝑆𝑔 and 𝑉𝐷𝑆 results in 𝑅𝑐. 
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2.3. Results and Discussions 

2.3.1. Ultraviolet-visible absorption spectroscope 

Figure 2.6 shows an ultraviolet-visible (UV-Vis) absorption data of various kinds 

of PBTTT films; a pristine (black line), etched (blue line), doped and unetched (denoted as 

“doped/unetched”, red line), and doped and etched (denoted as “doped/etched”, green line). 

Compared with the pristine film data, the etched film data show a decrease in the absorption 

over the entire range, while maintaining the surface morphology (Figure 2.5). This implies 

that the PBTTT films were peeled off layer by layer by the etching. By controlling the 

amount of F4-TCNQ dopant molecules with a nominal thickness of 10 nm, both the doped 

films data show that the amount of the neutral dopants on the film was much less than the 

previous research with a small peak near 400 nm which is a unique absorption feature of 

the neutral F4-TCNQ.[39] Furthermore, both the doped films data show a clear bleaching of 

the π- π* transition peak of PBTTT (resulting in a color change as seen from the right image 
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Figure 2.6 UV-Vis spectra for pristine PBTTT, etched PBTTT, doped/unetched PBTTT, 

and doped/etched PBTTT films. The shaded area (in green) denotes a broad polaron 

absorption. 
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of Figure 2.3) and the appearance of distinct peaks corresponding to F4-TCNQ anion (near 

780 and 890 nm). These results mean that the amount of the dopant molecules was 

considerably optimized, so most of the dopant molecules diffuse into the PBTTT without 

leaving too much neutral dopants. The shaded area (in green) of this UV-Vis plot indicates 

a broad polaron absorption in PBTTT.[55-56] The doped/etched film data show a slight 

recovery of the π- π* transition peak of PBTTT, and a shrinkage of the neutral F4-TCNQ 

and F4-TCNQ anion peaks near 400 nm and 800 nm, respectively. These results imply that 

the etching caused a slight de-doping at the top surface of the doped PBTTT films by 

preferential etching of the dopant molecules (as shown in the final step of the fabrication 

process in Figure 2.1a).  

 

2.3.2. Electrical characterization of PBTTT OFETs 

Figure 2.7a and b shows the transfer curve of the 50 μm channel length transistors 

for both the linear and saturation regimes. The doped contact (i.e., doped/etched, donated 

as “DC”) PBTTT transistors showed the ON/OFF ratio over than 105 with the mobility of 
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0.045 cm2/V·s. I extracted the field-effect mobility from the transfer curve from the 

following equation, 𝐼𝐷𝑆 =
𝜇𝑊𝐶𝑖

2𝐿𝑒𝑓𝑓
(𝑉𝐺𝑆 − 𝑉𝑡ℎ)

2 in saturation regime, where W, 𝐿𝑒𝑓𝑓, Ci, 𝜇 

and 𝑉𝑡ℎ denote the channel width, the channel length, the capacitance per unit area, the 

mobility and the threshold voltage of PBTTT transistors. Compared with the pristine 

devices with the mobility of 0.053 cm2/V·s, DC PBTTT transistors had a slightly lower 

mobility, which was caused by the etching process. This is supported by a slight decrease 

in the mobility of the pristine PBTTT OFETs from 0.060 cm2/V·s to 0.051 cm2/V·s after 

the etching process (Figure 2.8). Although the surface morphology was not changed by the 

etching, the water contact angle of the PBTTT films was changed from 101.7° to 67.3°, 
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Figure 2.8 IDS-VGS transfer curves of the pristine PBTTT transistor (a) before etching and 

(b) after etching. 

(a) (b)

Figure 2.9 (a) A water droplet on a pristine PBTTT film. (b) A water droplet on an etched 

PBTTT film. 
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which can imply a slight change of chemical properties of the film surface (Figure 2.9).  

Figure 2.7c shows the IDS-VDS output curves of DC transistors which represents 

favorable output characteristics without the S-shape at a low VDS regime that is typically 

induced by a significant contact resistance. From the Y-function method, the extracted 

value of the contact resistance of DC PBTTT transistors from the data in Figure 2.10 was 

found to be 5.1 kΩ·cm and that of pristine device was found to be 24.5 kΩ·cm. The contact 

resistance of DC PBTTT transistor had a comparable value to the lowest value that has 

been reported in literature.[32,57]  

 

2.3.3. ON/OFF ratio stability of the doped-contact PBTTT OFETs 

The etching process was an essential step for reducing the amount of the neutral 

dopants and improving the stability of the devices. Figure 2.11e shows the ON/OFF ratio 

of the doped PBTTT transistors either etched (filled symbols) or unetched (empty symbols), 
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measured over the time scale of two months. For the doped transistors with the channel 

length of 50 μm, the doped/etched devices preserved its ON/OFF ratio over 105 for about 
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Figure 2.11 The time evolution of transfer curves for (a) the doped/unetched PBTTT 

transistor with the channel length, Lch, of 50 μm, (b) the doped/unetched PBTTT transistor 

with Lch = 100 μm, (c) the doped contact (doped/etched) PBTTT transistor with Lch = 50 

μm, and (d) the doped contact PBTTT transistor with Lch = 100 μm for two months. (e) 

ON/OFF ratio stability for the doped PBTTT transistors with a channel length (L) of 50 

μm and 100 μm. (f) Schematic images of doped region propagation by the neutral dopants 

diffusion. 
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15 days, whereas it was difficult to define the ON/OFF ratio for the doped/unetched devices 

just after fabrication due to a large off-current. For the channel length of 100 μm, the 

doped/etched devices preserved its ON/OFF ratio for more than two months, on the other 

hand the ON/OFF ratio of the doped/unetched devices dropped significantly after 15 days. 

The decrease of the ON/OFF ratio was mainly caused by orders of magnitude increase in 

the off-current. Figure 2.11f shows a schematic diagram that depicts different propagation 

rates of the doped region in the doped/unetched and doped/etched devices over time based 

on optical images of the doped region propagation (see Figure 2.13 in Chapter 2.3.4.). The 

different propagation rates mainly result from different diffusion rates of the neutral dopant 

molecules, which have been shown to be much more diffusive than ionized dopant 

molecules.[58-59] The figure represents the possible formation of percolated current paths 

between the source and drain electrodes (i.e. the doped regions from each side meet in the 

middle) which would result in the rise of the off-current. The diffusion of the neutral dopant 

molecules takes place in both the doped/unetched and doped/etched devices, but such 

diffusion effect is less significant for the doped/etched device due to a lower initial amount 

of the neutral dopants. Therefore, percolation paths are much more difficult to form in the 

doped/etched device. In the next section, this concept could be verified by a numerical 

simulation which has been applied to reveal the diffusion velocity of molecules in various 

systems.[60-61] A modified Fick’s diffusion equation was solved by a numerical simulation 

that accounts for the capturing of diffusive neutral dopant molecules via charge transfer.  

I also discovered that the surface diffusion of the neutral dopants would be 

prohibited further by introducing a dielectric layer on top of the doped/etched PBTTT film. 

Figure 2.12 shows the ON/OFF ratio of the DC PBTTT transistors encapsulated with a 
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CYTOP (CTL-809M, Asahi Glass) layer on top showed a greater stability over time for the 

devices with 50 μm channel length, compared to the DC devices without any layers on top 

(see Figure 2.12c). This result would be an evidence that the neutral dopant molecules 

diffuse primarily along the surface. A detailed investigation of a microscopic mechanism 

for the surface interaction between the CYTOP molecules and neutral dopants is beyond 

the scope of this study.  
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Figure 2.12 IDS-VGS transfer curves of (a) the CYTOP encapsulated doped contact PBTTT 

transistor with the channel length of 50 μm and (b) the CYTOP encapsulated doped contact 

PBTTT transistor with the channel length of 100 μm for more than two months. (c) The 

ON/OFF ratio stability for the doped contact and CYTOP encapsulated doped contact 

transistors. 



 

25 

 

2.3.4. Numerical simulation of the diffusion of F4-TCNQ 

As discussed in the previous section, the dopant diffusion is a critical issue that has 

to be solved for the ON/OFF ratio stability of the doped transistors. The dopant diffusion 

can be visually observed from the optical images of the selectively doped PBTT films with 

the same shadow mask used for doped transistors with the channel length of 50 μm (see 

Figure 2.13a). The doped regions (darker regions) propagate over time, blurring the 

rectangular edges. After seven days, the 50 μm gap was nearly filled with the propagated 

doped regions in the doped/unetched case. In order to mitigate the diffusion problem, I 

introduced argon plasma etching to control the amount of the dopant molecules in the 

PBTTT film, which suppressed the propagation of the doped region significantly (see 

Figure 2.13b). In the doped/etched case, the 50 μm gap could be clearly distinguished over 

one week. Therefore, I considered that the propagation of the doped regions from the source 

and drain electrodes was the reason of the rise of the off-current for the doped PBTTT 

transistors. To understand the propagation of the doped region, I constructed a solid-state 

diffusion model of F4-TCNQ molecules in PBTTT film and performed numerical 
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Figure 2.13 Optical images of the rectangular doped regions with the 50 μm gap in the (a) 

doped/unetched and (b) doped/etched PBTTT film for one week. 
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simulations to confirm the validity of our model. 

Before discussing the diffusion of F4-TCNQ molecules in PBTTT film, I will 

briefly discuss the processes involved in the molecular doping of PBTTT by F4-TCNQ 

molecules. Charge-transfer doping between a host donor molecule and a strong acceptor 

molecule (i.e. a high electron affinity like F4-TCNQ) is known to undergo integer-charge 

transfer (ICT), leading to a complete transfer of an electron from the host to the acceptor.[62-

63] The molecular doping in organic semiconductors via ICT was recently proposed to occur 

in two steps; in the first step, a single-electron transfer from donor to accepter molecules 

making a integer-charge transfer complex (ICTC) and in the second step, the dissociation 

of the ICTC resulting in mobile polarons.[64] Then, the formation of ICTC via charge 

transfer reaction could be described as the following reaction formula 

[𝐷] + [𝐴] → [𝐷+𝐴−]    (1) 

where [𝐷] , [𝐴]  and [𝐷+𝐴−]  denote the concentration of the donor molecules, the 

concentration of the acceptor molecules and the concentration of ICTC. In this study, a 

PBTTT host molecule was a donor and a F4-TCNQ dopant molecule was an acceptor. 

Therefore, a complete doping process will produce a F4-TCNQ anion and a mobile hole in 

PBTTT. However, since the dopant concentration was quite comparable with the host 

concentration, not all the F4-TCNQ molecules undergo charge transfer but there remain 

some unreacted dopant molecules (i.e. neutral dopant molecules) in the PBTTT film. After 

the ionization of the dopant molecules during ICT, there is an electrostatic force between 

the F4-TCNQ anions and holes in the PBTTT film. Therefore, I considered that the 

likelihood of F4-TCNQ anion diffusion was much lower than that of the neutral F4-TCNQ 

molecule diffusion in PBTTT. In addition, the amount of the neutral dopant molecules will 

be especially large near the top surface of PBTTT as previously observed from the depth-
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profile of the molecular ratio between F4-TCNQ and PBTTT.[39] Therefore, I assumed that 

the dominant contribution towards the diffusion is from the neutral dopant molecules near 

the top surface of the PBTTT film. Recently, this was verified by spectroscopic 

measurement of the sequentially p-doped P3TH by Reiser et al.[58] 

In order to simulate the solid-state diffusion of neutral F4-TCNQ molecules in 

PBTTT, I modified Fick’s second law in a one-dimensional (1D) case considering a finite 

capturing of the neutral F4-TCNQ molecules by charge transfer reaction as described above. 

A modified 1D Fick’s second law would be expressed as  

𝜕[𝑁]

𝜕𝑡
= 𝐷

𝜕2[𝑁]

𝜕𝑥2
− 𝑓    (2) 

where [𝑁], 𝐷 and 𝑓 denote the neutral dopant concentration, the diffusion constant and 

a function representing the rate of the capturing process, respectively. The form of 𝑓 will 

be described in details later. Designating the increment of time and space as Δ𝑡 and Δ𝑥, 

then, in simulation, Equation (2) is converted to 

[𝑁]𝑥
𝑡+Δ𝑡−[𝑁]𝑥

𝑡

∆𝑡
= 𝐷

[𝑁]𝑥+Δ𝑥
𝑡 +[𝑁]𝑥−Δ𝑥

𝑡 −2[𝑁]𝑥
𝑡

∆𝑥2
− 𝑓   (3) 

where [𝑁]𝑥
𝑡  denotes the value of [𝑁] at the time coordinate, 𝑡, and space coordinate, 𝑥. 

To construct 𝑓, I assumed that the dominant capturing process is the reaction via charge 

transfer as described in Equation (1). Then, the generation rate of the ICTC concentration 

([𝑃+𝑁−]) can be expressed as 𝑑[𝑃+𝑁−]/𝑑𝑡 in terms of a second-order rate equation that 

depends on both the concentration of the unreacted PBTTT concentration ( [𝑃] ) and [𝑁]: 

𝑑[𝑃+𝑁−]

𝑑𝑡
= 𝑘[𝑃][𝑁]    (4) 

where 𝑘 is the rate constant of the reaction. Following the Equation (1), the increasing 

amount of [𝑃+𝑁−] is equal to the decreasing amount of [𝑁]. Therefore, I could describe 

𝑓 as the following: 
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𝑓([𝑁]𝑥
𝑡  [𝑃]𝑥

𝑡 ) = 𝑘[𝑃]𝑥
𝑡 [𝑁]𝑥

𝑡    (5) 

Then, the change of ICTC concentration is converted to 

[𝑃+𝑁−]𝑥
𝑡+Δ𝑡 − [𝑃+𝑁−]𝑥

𝑡 = ∆𝑡𝑘[𝑃]𝑥
𝑡 [𝑁]𝑥

𝑡    (6) 

[𝑃+𝑁−]  is equal to F4-TCNQ anion concentration assuming that the charge transfer 

process is ICT, which is most likely to be true for this case since the ionization potential of 

PBTTT is smaller than the electron affinity of F4-TCNQ.[64] Estimating the exact values of 

𝑘 and 𝐷 requires advanced experimental techniques that could spatially map [𝑁] and 

[𝑃+𝑁−] in the channel of the device, which is beyond the scope of this study. However, I 

were able to qualitatively predict the time evolution of the doped region propagation in the 

channel of the doped PBTTT transistors by predicting [𝑁]  and [𝑃+𝑁−]  from this 

numerical calculation. 

Since [𝑃+𝑁−] could represent the doped PBTTT concentration, I normalized 

[𝑃+𝑁−]𝑥
𝑡   by the concentration of total PBTTT molecules to calculate the doping fraction 

of PBTTT molecules at the space coordinate, 𝑥, at time, 𝑡. Following the assumption that 

the rise in the OFF current is caused by the formation of percolated current paths between 

the source and drain electrodes, there exists a critical doping fraction in the middle of the 

channel for forming the conduction paths between the electrodes. Therefore, if the doping 

fraction in the middle of devices exceeds a particular value, I consider that the increase of 

the off-current causes the ON/OFF ratio of the devices to decrease. In the simulation, the 

initial value of the neutral dopant is set (i.e. [𝑁] at 𝑡 = 0) over a certain width at both 

sides of the channel of doped transistors in order to describe the doped regions beside 

source and drain electrodes in the devices just after the fabrication. During the simulation, 

the neutral dopant molecules from both sides of the channel diffuse towards the middle, 

some of which are captured during the diffusion. In order to investigate the effect of the 
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argon plasma etching on the propagation of the doped regions, the only controlled 

parameter that I varied between the doped/unetched and doped/etched cases was the initial 

amount of the neutral dopants; the initial amount neutral dopant of the doped/unetched 

device is ten times of that of the doped/etched device. Figure 2.14 shows the spatial 

distribution of the neutral dopant concentration and the doping fraction of the PBTTT 

molecules over time. Although the only input parameter that varied between the 

doped/unetched and doped/etched cases was the initial amount of the neutral dopants, the 

doping fraction profiles show clear contrasts between the two cases in Figure 2.14b and d. 

Especially, I found that the doping fraction at the center of the PBTTT film (i.e. an indicator 

for the formation of the percolated current paths) was negligible for the doped/etched case 

whereas the doping fraction gradually increased over time for the doped/unetched case. 

As doped
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As doped

Left RightPosition

As doped
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As doped

Left RightPosition

(a) (b)
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Figure 2.14 (a) The evolution of the neutral dopant concentration of the doped/unetched 

device. (b) The evolution of the doping fraction of the PBTTT molecules of the 

doped/unetched device. (c) The evolution of the neutral dopant concentration of the 

doped/etched device. (d) The evolution of the doping fraction of the PBTTT molecules of 

the doped/etched device. 
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2.3.5. Band diagram analysis 

To confirm the doping effect on the carrier injection properties directly, I fabricated 

homogeneously doped (i.e., entire PBTTT area in a transistor is doped and etched; denoted 

as “entire-doped”) PBTTT devices with the channel length of 2 μm by a conventional 

photolithography. Figure 2.15a shows the IDS-VDS data of an entire-doped device measured 

from 80 K to 300 K. For this temperature range, the entire-doped device showed a clear 

ohmic behavior. This result implies that the charge injection occurred without an activation 

barrier. Since two-dimensional (2D) charge transport properties in PBTTT have been 

previously demonstrated,[39,65] the thermionic emission equation for 2D semiconducting 

system, 𝐼𝐷𝑆 = 𝑅∗𝑇
3

2𝑒𝑥𝑝[(−𝑞/𝑘𝐵𝑇)(𝜙 − 𝑉𝐷𝑆/𝜂)], was employed to extract the activation 

energy of the contact between the doped PBTTT and gold electrodes, where 𝑅∗, 𝜙, and 
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Figure 2.15 (a) IDS-VDS output curves of an entire-doped PBTTT device at VGS = 0 V in a 

temperature range from 80 K to 300 K. (b) ln(IDS/T
3/2) vs 1/T at VGS = 0 V. (c) ln(IDS/T

3/2) 

vs 1/T at VGS = -20 V. (d) ln(IDS/T
3/2) vs 1/T at VGS = -40 V. (e) ln(IDS/T

3/2) vs 1/T at VGS = -

60 V. (f) The plots of activation energies vs VDS. 
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𝜂 denote the Richardson coefficient, the effective activation energy, and ideality factor, 

respectively. The curves of ln(IDS/T
3/2) vs 1/T were plotted for each VDS bias under the gate 

bias from 0 V to –60 V as shown in Figure 2.15b to e. The extracted activation energies, 

by using the slopes of ln(IDS/T
3/2) vs 1/T plots for each VDS bias, are plotted as shown in 

Figure 2.15f. The effective activation energy was determined as the extrapolated value of 

the activation energy at VDS = 0 V. For all gate biases, the extracted thermal activation 

energy had negative values, which implies that a dominant charge injection mechanism 

was not likely to be thermionic emission.  

To construct the band diagram of the contact region of the devices, ultraviolet 

photoelectron spectroscopy (UPS) was conducted for both the pristine and doped/unetched 

PBTTT films. The Fermi levels of these samples were calibrated by the UPS data of 50 nm 

thick gold film and the value of the work function of gold was determined to be 4.52 eV 

(Figure 2.16a). This value is slightly less than the typical 5.0 eV reported for gold 

presumably due to a low vacuum level (~10-7 torr) used during the evaporation.[66-67] Here, 
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Figure 2.16 (a) The UPS data of 50 nm-thick Au films near the Fermi level and secondary-

electron cut-off. (b) The UPS data of the doped/unetched and pristine PBTTT films near 

the Fermi level (right) and secondary-electron cut-off (left). 
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I used the doped/unetched PBTTT film for UPS data since I assume that the PBTTT 

molecules at the bottom side of devices were free from etching. Figure 2.16b shows the 

UPS spectra for binding energies near the Fermi level and secondary-electron cut-off region. 

The UPS data showed similar shifts for both the highest occupied molecular orbital 

(HOMO) levels and secondary-electron cut-off levels of the PBTTT films after doping. 

The difference between the Fermi level and the HOMO level of the PBTTT film was 

reduced from 0.87 eV to 0.26 eV after doping.  

Figure 2.17a and b show the band diagrams near the contact electrodes for the 

pristine and doped PBTTT molecules, based on the UPS analysis. I regarded that the 

interface dipole caused a vacuum level shift of 0.28 eV between the gold electrode and the 

PBTTT films.[68] Considering the charge concentration of the doped PBTTT film of about 

3.3 × 1020 𝑐𝑚−3,[39] the depletion width between the doped PBTTT and gold is about 2 

nm which is thin enough for tunneling.[35] From the IDS-VDS data of an entire-doped device 

and band diagram analysis, I considered that the charge injection of the devices was 

enhanced since the dominant charge injection mechanism was changed from thermionic 
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Figure 2.17 The band diagram near the contact of (a) the pristine PBTTT transistor and (b) 

the doped contact PBTTT transistor, with a highlighted view of the band diagram at the 

contact. 
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emission (pristine transistors) to thermally assisted tunneling (doped contact transistors) 

via the doping of contact regions. Despite of the 0.26 eV energy gap between the gold 

electrodes and the doped PBTTT molecules (Figure 2.17b), this contact showed ohmic 

properties as shown in Figure 2.15a. This may be due to sub-band gap states induced by 

doping which are accessible by injected charges from the electrodes via tunneling.  

 

2.3.6. Low-voltage operation OFETs by using high-k dieletric 

A crucial advantage of the bottom-gate structure employed in the study comes from 

its extra degree of freedom in the choice of the dielectric material that is compatible with 

the semiconductor. This is highly relevant for OFETs with high-k dielectric materials which 

typically require relatively high temperature processes which results in irreversible 

damages to the OSC film, as well as exposure to chemical environments which can harm 

the OFET device performance (e.g. exposure to water during atomic layer deposition 

(ALD)).[69] Therefore, in order to use high-k dielectric materials for low-voltage operation 

of OFETs, the dielectric materials should be ideally deposited before the OSCs. To 

demonstrate the advantage of the molecular implantation doping in the low-voltage 

PBTTT

P++ Si

Al2O3

P++ Si

Al2O3

Au Au

P++ Si

Al2O3

Au Au

OTS

P++ Si

Al2O3

Au Au
PBTTT

P++ Si

Al2O3

Au AuPBTTT

P++ Si

Al2O3

Au Au

Al2O3 Deposition Electrode deposition OTS SAM Formation

PBTTT layer depositionF4-TCNQ depositionSurface etching

P++ Si

Wafer Cleaning

F4-TCNQ F4-TCNQ

Figure 2.18 The fabrication process of the high-k PBTTT transistors on Al2O3. 
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operation of OFETs, I adopted Al2O3 as the bottom gate dielectric deposited by ALD. 

Figure 2.18 illustrates the fabrication process of the high-k devices. After Si substrates were 

cleaned using de-ionized water, isopropanol and acetone for 10 min in each cleaning 

solvent by sonication in an ultrasonic bath, the substrates were further cleaned with an 

oxygen plasma etching (50 W for 2 min). After the substrate cleaning, Al2O3 layers were 

deposited on the substrates by an atomic layer deposition (ALD) for 200 cycles at a pressure 

of ~10-1 torr. The thickness of the deposited Al2O3 was 25 nm on 5 nm SiO2 native oxide 

of a Si substrate (TEM image in Figure 2.18). The rest of the fabrication processes was 

identical to the process described in Section 2.2.1. 

Figure 2.19 shows the measured capacitance data of the deposited Al2O3. The 

capacitance value was measured by LRC meter (4248A, Hewlett Packard) and the value 

was 2.36 × 10−7 𝐹/𝑐𝑚2. The measured values are reasonable considering the thicknesses 

and the dielectric constants of the deposited Al2O3 and native SiO2 (25 nm thick Al2O3 and 

a 5 nm thick native SiO2 on a silicon substrate from Figure 2.18). This measured 
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capacitance value is about 18 times higher than the capacitance value for the 270 nm thick 

SiO2 (1.28 × 10−8 𝐹/𝑐𝑚2) used in Figure 2.1a. 

Figure 2.20 shows the OTS SAM treatment showed an excellent improvement of 

the interface like in the SiO2 case in terms of the PBTTT film morphology which is critical 

to the PBTTT OFET performance.[70] As a result, the DC PBTTT transistors on Al2O3 had 

a similar mobility value to those on SiO2. The transfer curves did not show a significant 

hysteresis which is usually induced by trap sites on the gate dielectric interface (Figure 

2.21).  

Figure 2.20 (a) A water droplet on a pristine Al2O3 substrate. (b) A water droplet on the 

OTS SAM treated Al2O3 substrate. (c) AFM image of the PBTTT film deposited on the 

OTS SAM treated Al2O3 substrate. 
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Figure 2.22 shows IDS-VGS transfer characteristics of the pristine and the DC 

PBTTT transistors on Al2O3 gate dielectrics with the channel length of 50 μm. All of the 

voltage biases were under 3 V to avoid dielectric breakdown.[71] The DC PBTTT device 

had about twice the value of IDS value than the pristine one in both the linear and saturation 

regimes. Interestingly, these results indicate that the DC PBTTT devices had a larger 

mobility than the pristine devices; 0.037 cm2/V·s for DC PBTTT devices and 0.019 

cm2/V·s for pristine devices. These results show that the reduction of the contact resistance 

is more effective in the low-voltage operation of the OFETs which could be applied to low 

power consumption organic electronics.  
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2.4. Conclusion 

In conclusion, I demonstrated an enhanced charge injection in PBTTT OFETs by 

molecular implantation doping with F4-TCNQ and introduced an argon plasma etching 

treatment for improving the off-current stability. With this approach, the amount of neutral 

dopants was effectively controlled and the dopant diffusion into the active channel of the 

PBTTT OFETs was significantly suppressed. If the neutral dopants are removed 

completely by furthur optimization, this technique could work even for devices with 

smaller channel length. The low temperature measurement and the band diagram analysis 

implied that the enhanced charge injection properties originated from the change of the 

dominant charge injection mechanism from thermionic emission to tunneling at the contact 

between the doped PBTTT films and metal electrodes. In addition, I demonstrated the low-

voltage operation devices by using Al2O3 as a high-k gate dielectric material. For the high-

k devices, the doped contact PBTTT transistor showed a better performance compared to 

the pristine devices. This study provides clear evidences that the molecular implantation 

doping is potentially one of the key techniques for solving the contact resistance issue for 

OFETs, thereby facilitating low-power oragnic electronics. 
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Chapter 3. Highly stable contact doping in organic field 

effect transistors by dopant-blockade method 

 

In organic device applications, downscaling and high-speed operation are 

essential, and a high contact resistance between metal electrodes and organic 

semiconductors fundamentally limits the device performance. Recently, various contact 

doping methods have been reported as an effective way to resolve the contact resistance 

problem. However, the contact doping has not been explored extensively in organic field 

effect transistors (OFETs) due to dopant diffusion problem which significantly degrades 

the device stability by damaging the ON/OFF switching performance. Here, I improved the 

stability of a contact doping method by incorporating “dopant-blockade molecules” in 

poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno [3,2-b]thiophene) (PBTTT) film in order to 

suppress the diffusion of the dopant molecules. By carefully selecting the dopant-blockade 

molecules for effectively blocking the dopant diffusion paths, the ON/OFF ratio of PBTTT 

OFETs could be maintained over two months. This work would maximize the potential of 

OFETs by employing the contact doping method as a promising route towards resolving 

the contact resistance problem. 

 

3.1. Introduction 

Developing high-performance organic field effect transistors (OFETs) has been a 

bottleneck in exploiting the merits of organic semiconductors (OSCs) such as solution-

processability, mechanical flexibility and bio-compatibility, for realizing practical organic 

optoelectronic device applications.[1-12] In particular, considering the industrial success of 

organic light emitting diodes (OLEDs), OFETs could be potentially used as switching and 

driving transistors in the organic flexible display panels.[13-14] To meet future technological 
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demands, downscaling and high-speed operation of OFETs are necessary. However, a high 

contact resistance between metal electrodes and OSCs remains as one of the dominant 

obstacles for utilizing OFETs because the high contact resistance decreases the effective 

mobility of OFETs and limits the range of the operation voltage for achieving high-

frequency operation as a switching transistor.[15-17] 

To overcome the contact resistance problem in OFETs, there have been a diverse 

range of approaches including self-assembled monolayer (SAM) treatment on metal 

electrodes by organic molecules[18-24] and introducing charge injection layer between metal 

electrodes and OSCs.[25-31] In addition, contact doping (i.e. introduction of external 

molecules near contact regions) has been studied as an effective method for improving 

contact properties.[32-35] An ideal contact doping technique in OFETs would meet two 

criteria; firstly, a high maximum doping level for enhancing charge injection and secondly 

a spatial confinement of dopants for device stability. However, these two requirements 

cannot often be simultaneously achieved since achieving a high doping level requires a 

large dopant density, which leads to a faster diffusion of dopant molecules within the host 

semiconductor. This dopant diffusion problem results in a rise of the OFF current due to an 

unintentional doping of the active channel. Confining the dopant molecules within the 

selective regions near the contacts is especially challenging in the case of bulk-doping since 

a large concentration gradient of dopant density at the edges of the doped regions 

accelerates the dopant diffusion. The dopants from the contact regions diffuse towards the 

active channel region which should remain un-doped in order to maintain a sharp ON/OFF 

switching characteristic in OFETs. Therefore, the dopant diffusion has limited the contact 

doping techniques to be employed extensively in OFETs. 

Despite a significant level of attention given in the dopant diffusion problem in 
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organic solar cells and OLEDs,[36-43] there have been relatively few studies which have 

focused on OFETs. Recently, I have developed a surface etching treatment for suppressing 

the dopant diffusion in doped-contact poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-

b]thiophene) (PBTTT) OFETs.[44] This system exploited a facile and efficient bulk-doping 

of PBTTT via solid-state diffusion of 2,3,5,6-tetrafluoro-7,7,8,8-

tetracyanoquinodimethane (F4-TCNQ) which resulted in a high-conductivity and high 

carrier-concentration regions in spatially selected regions in OFETs.[45] This doping method 

effectively reduced the contact resistance (by a factor of 5) and showed its potential by 

demonstrating the low-voltage operation organic transistor. However, despite an improved 

device stability by the surface etching treatment, suppressing the diffusion of dopant 

molecules from the contact regions to the channel region of PBTTT OFETs could not be 

completely avoided, and thereby resulting in degradation of the switching characteristics 

of OFETs. 

In this study, the stability of the contact doping method in PBTTT OFETs was 

significantly improved by introducing a novel technique for suppressing the dopant 

diffusion. The diffusion pathways of the dopants within the active channel region were 

spatially blocked by incorporating tetracyanoquinodimethane (TCNQ) as “dopant-

blockade molecules” in PBTTT OFETs. The dopant-blockade molecules were carefully 

chosen such that they are electrically inactive and they readily locate themselves in the 

diffusion paths of the dopants. This technique effectively constructed barriers against the 

motion of dopant molecules by incorporating the dopant-blockade molecules. This concept 

can be considered analogous to a recent work which achieved a high operational and 

environmental stability by filling voids that can act as water adsorption sites in the polymer 

film of OFETs by using a specific range of organic solvents and molecules.[46] In this work, 
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I demonstrated that introducing TCNQ as dopant-blockade molecules in PBTTT film 

remarkably increase the device stability against dopant diffusion by comparing the OFETs 

with and without the TCNQ incorporation. 
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3.2. Experiments 

3.2.1. Materials and device fabrication process 

 

Figure 3.1 (a) Molecular structures of PBTTT, F4-TCNQ, TCNQ and OTS. (b) HOMO 

and LUMO levels of PBTTT and F4-TCNQ. (c) HOMO and LUMO levels of PBTTT and 

TCNQ.  

 

Figure 3.1a shows the molecular structures of the organic materials used in this 

work. In order to suppress the dopant diffusion in the channel region of the PBTTT OFETs, 

I adopted dopant-blockade molecules in the F4-TCNQ-doped-contact PBTTT OFETs 

which are fabricated in the same way as the previous chapter.[44] The dopant-blockade 

molecules should be selected to avoid the charge transfer reaction with PBTTT molecules 

for maintaining the electrical properties of the doped-contact PBTTT OFETs (denoted as 

“DC-FET”) after introducing dopant-blockade molecules in the PBTTT channel. Figure 

3.1b and c show the values of the highest occupied molecular orbital (HOMO) level and 

lowest unoccupied molecular orbital (LUMO) level of F4-TCNQ and TCNQ. TCNQ was 

adopted as the dopant-blockade molecule because it has a similar molecular structure with 

F4-TCNQ but the LUMO level is higher than the HOMO level of PBTTT which 

energetically prohibits the charge transfer reaction with PBTTT.[47] On the contrary, the 

charge transfer reaction between PBTTT and F4-TCNQ is energetically favorable because 

the HOMO level of PBTTT is higher than the LUMO level of F4-TCNQ. Therefore, 
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electrons transfer easily from PBTTT to F4-TCNQ, whereas the charge transfer between 

PBTTT and TCNQ is energetically unfavorable. Based on this energetic mismatch between 

the HOMO level of PBTTT and LUMO level of TCNQ, it was expected that introducing 

TCNQ molecules in the channel region hardly affects the electrical properties of PBTTT 

films. To verify this idea, I compared the pristine PBTTT OFET and the PBTTT OFET 

with TCNQ molecules deposited on the entire PBTTT channel.  

 

 

Figure 3.2 Schematic images of (a) the PBTTT OFET and (b) the PBTTT OFET with 

TCNQ molecules deposited on the entire PBTTT channel. (c) The transfer curves of the 

PBTTT OFET (black line) and PBTTT OFET with TCNQ molecules deposited on the 

entire PBTTT channel (red line). 

 

As the electrical results in Figure 3.2c, the transistor characteristics of the PBTTT 

OFETs was well preserved, compared to the entire-doped PBTTT OFET with F4-TCNQ 

which became a conductor rather than a transistor due to doping.[44] 
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Figure 3.3 Schematic images of the fabrication process of the dopant-blockade PBTTT 

OFET. The red regions in the middle of transistors is the TCNQ-incorporated regions. The 

dark green regions represent the neutral F4-TCNQ molecules which are not involved in the 

charge transfer reaction with PBTTT molecules. The bright green regions are the doped-

PBTTT regions by using F4-TCNQ dopant molecules. 

 

Figure 3.3 shows how the TCNQ molecules were incorporated in the doped-

contact PBTTT FETs by entailing the step-by-step fabrication process of the TCNQ-

incorporated doped-contact PBTTT OFET (dopant-blockaded doped-contact-FET, 

denoted as “DB/DC-FET”). First, SiO2/Si substrates were cleaned by sonication with de-

ionized water, isopropanol and acetone for 10 min in each cleaning solvent. Ti/Au (2 nm/30 

nm) electrodes were deposited on the cleaned substrates as source and drain electrodes by 

using an electron-beam evaporator under 10-6 torr, patterned by shadow masks. 30 mM 

octyltrichlorosilane (OTS) solution was prepared by dissolving OTS in toluene solvent. 

The substrates were then transferred to N2 filled glove box and immersed in the OTS 

solution over 12 hours to form the OTS self-assembled monolayer on SiO2 surfaces. The 

OTS-treated substrates were cleaned again by isopropanol, acetone and toluene for 10 min 

in each solvent with sonication to remove residual OTS molecules on the surface. Poly(2,5-

bis(3-hexadecylthiophen-2-yl)thieno [3,2-b]thiophene) (PBTTT) solution was made by 

dissolving PBTTT in 1,2-dichlorobenzene with the concentration of 9 mg/mL and heated 

at 110 ˚C before the spin-coating. Then, the PBTTT solution was spin-coated on the OTS-

treated substrates with 1500 rpm for 45 s. After that, the PBTTT deposited substrates were 
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annealed at 180 ˚C for 20 min and cooled down slowly to form a clear terrace morphology 

as a result in Figure 3.4.[48-51]  

After that, TCNQ molecules were selectively incorporated in the middle of the 

channel region of the PBTTT transistor with the nominal thickness of 10 nm by using a 

thermal evaporator under 5×10-6 torr with a shadow mask. Then, F4-TCNQ molecules were 

deposited near the metal contact regions of the device with the nominal thickness of 10 nm 

by the same method for TCNQ deposition. The thermal evaporation method used for both 

the TCNQ and F4-TCNQ deposition ensures the spatial selectivity, i.e. the position of the 

dopant-blockade molecules (TCNQ) are limited in the conduction channel region of OFETs, 

separated from the contact regions near the source and drain electrodes. The shadow mask 

for patterning the F4-TCNQ molecules was carefully aligned under an optical microscope 

in order to avoid the spatial overlap between the F4-TCNQ-doped region and TCNQ-

incorporated region. This is important since the presence of the TCNQ molecules near the 

contact regions could interrupt the charge transfer between the dopant molecules (F4-

TCNQ) and the host PBTTT molecules, and therefore resulting in a lower doping efficiency. 

4 nm

0 nm

- 4 nm

- 8 nm

Figure 3.4 The surface morphology of the PBTTT film deposited on the OTS-treated 

SiO2/Si substrate measured by atomic force microscope. 
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Finally, the devices were etch-treated by argon plasma (50 W, 1 s) for further enhancing 

the device stability by removing the neutral F4-TCNQ molecules which are highly diffusive 

compared to their charged counterparts.[44,52-53] The samples for UV-Vis absorption, ToF-

SIMS and XRR measurements were prepared in the same way as above without the 

patterning on the different substrates; fused silica windows for UV-Vis absorption 

measurement and bare Si substrates for ToF-SIMS and XRR measurements. 

 

3.2.2. Device and film characterization 

Electrical measurement was performed by a semiconductor parameter analyzer 

(Keithley 4200 SCS) under vacuum condition (~10-3 torr). Ultraviolet-visible (UV-Vis) 

absorptions were measured by UV/Vis spectroscopy (JASCO V-770). Element depth 

profiles were acquired by a time-of-flight secondary ion mass spectrometry (TOF.SIMS5, 

Iontof). XRR scans were measured on a home diffractometer (3303TT, GE) using Cu Kα-

radiation (λ= 1.5406Å) and a 1D detector (Meteor 1D, XRD Eigenmann) (work in 

collaboration with Prof. K. Broch in university of Tübingen). 
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3.3. Results & Discussions 

3.3.1. Ultraviolet-visible absorption spectroscope 

The absence of the charge transfer reaction between TCNQ and PBTTT was 

confirmed by ultraviolet-visible (UV-Vis) absorption spectroscopy measurements. Figure 

3.5 displays the UV-Vis absorption data of a pristine PBTTT film (black line), a TCNQ-

incorporated PBTTT film (PBTTT/TCNQ, shown as a red line) and a F4-TCNQ-doped 

PBTTT film (PBTTT/ F4-TCNQ, shown as a green line). The pristine PBTTT film (black 

line) showed a clear π-π* transition peak near 550 nm.[44-45] On the other hand, the PBTTT/ 

F4-TCNQ film (green line) displayed a clear bleaching of a PBTTT π-π* transition peak. 

In addition, the F4-TCNQ anion peaks near 800 nm and 900 nm appeared and a broad 

polaron absorption of charged PBTTT was observed from 600 nm to 1000 nm. These 

changes of the absorption spectrum were caused by the charge transfer between PBTTT 

and F4-TCNQ.[44] However, for the PBTTT/TCNQ film (red line), the absorption data 

almost unchanged, compared with the pristine film. This good agreement between the 
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Figure 3.5 UV-Vis spectroscopy data for the pristine PBTTT film (black line), 

PBTTT/TCNQ film (red line) and PBTTT/F4-TCNQ film. 
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pristine film and PBTTT/TCNQ film supported the absence of the charge transfer reaction 

between PBTTT and TCNQ. 

 

3.3.2. ToF-SIMS and XRR measurements 

 In order to effectively block the diffusion paths of the dopant molecules, the 

dopant blockade molecules would ideally be bulk-incorporated in the PBTTT film. 

Considering that F4-TCNQ undergoes solid-state diffusion by penetrating all the way down 

to the substrate from the top surface of the PBTTT films, it was expected that TCNQ would 

also undergo solid-state diffusion in PBTTT due to a similar molecular structure. Figure 

3.6a shows elemental depth profiles of the pristine PBTTT film (dashed lines and empty 

symbols) and the PBTTT/TCNQ film (solid lines and filled symbols) by time of flight 
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Figure 3.6 (a) The depth profiles of ion intensity for the pristine PBTTT film (dashed lines 

and empty symbols) and PBTTT/TCNQ film (solid lines and filled symbols); the sulfur 

ion signals are black solid and dashed lines, the oxygen ion blue solid and dashed lines, 

silicon ion green solid and dashed lines and the cyanide ion signal red empty and filled 

circle symbols. (b) The XRR data of the pristine PBTTT film (black line), the 

PBTTT/TCNQ film (red line) and the PBTTT/F4-TCNQ film (green line). The intervals 

between large qz peaks of each film represent the out-of-plane lamellar stacking distance. 
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secondary ion mass spectroscope (ToF-SIMS). The sulfur ion signal (34S-, black solid and 

dashed lines) is a representative signal of PBTTT, both the oxygen ion (18O-, blue solid and 

dashed lines) and silicon ion (30Si-, green solid and dashed lines) signals for the silicon 

substrates and the cyanide ion signal (CN-, red empty and filled circle symbols) for TCNQ. 

The increases in the depth profiles of the cyanide ion intensity shown at each interface 

between two different media (i.e. vacuum/PBTTT and PBTTT/SiO2 interfaces) could be 

related to the matrix effect.[54-56] Comparing the pristine PBTTT film and PBTTT/TCNQ 

film, the sulfur, oxygen and silicon ions signals showed very similar depth profiles due to 

the same constituents of the both samples from PBTTT and silicon substrates. On the 

contrary, the PBTTT/TCNQ film showed a higher cyanide ion signal than the pristine 

PBTTT film down to the depth of nearly 40 nm which is the thickness of the PBTTT film.[45] 

Therefore, the depth profile of the elemental analysis indicates that TCNQ molecules 

become structurally incorporated in PBTTT films all the way down to the interface between 

the PBTTT film and the silicon substrate by solid-state diffusion.  

Figure 3.6b shows the x-ray reflectivity (XRR) data of the pristine PBTTT film 

(black line), the PBTTT/TCNQ film (red line) and the PBTTT/F4-TCNQ film (green line). 

The previous chapter showed that F4-TCNQ molecules were located at the side chain 

regions in the PBTTT film when F4-TCNQ molecules were deposited on a PBTTT polymer 

film.[45, 57-59] Upon the molecular intercalation of F4-TCNQ, the out-of-plane lamellar 

stacking distance of the PBTTT/F4-TCNQ film becomes lager than that of the pristine 

PBTTT film. The expansion of the out-of-plane lamellar stacking distance after F4-TCNQ 

doping was indicated by a shorter qz spacing between the (h00) diffraction peaks of the 

PBTTT/F4-TCNQ film compared to that of the pristine film. If the TCNQ molecules are 

located at the side chain space in a PBTTT film by solid-state diffusion, the deposition of 
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TCNQ molecules would also cause the expansion of the out-of-plane lamellar stacking 

distance in the PBTTT/TCNQ film. Compared with the pristine film, the smaller qz spacing 

between (h00) diffraction peaks of the PBTTT/TCNQ film indicates the expansion of the 

out-of-plane lamellar stacking distance due to the presence of the TCNQ molecules in the 

side chain space of PBTTT film. The extracted out-of-plane lamellar spacing was 21.64 Å  

for the PBTTT/TCNQ film and 21.37 Å  for the pristine PBTTT film. The expansion of the 

lamellar spacing was even larger for the PBTTT/F4-TCNQ film for which the extracted 

value was 22.21 Å . The larger expansion in the lamellar spacing of the PBTTT/F4-TCNQ 

film could be correlated with the bigger size of F4-TCNQ molecules relative to TCNQ 

molecules. Based on the results of the UV-Vis absorption, ToF-SIMS and XRR 

measurements, I deduced that TCNQ molecules diffused into the bulk of PBTTT film by 

the solid-state diffusion all the way down to the bottom substrate, without a significant 

charge transfer reaction with PBTTT molecules. 

 

3.3.3. Electrical characterization of the DB/DC-FET 

 

Figure 3.7 (a) Schematic images of the DC-FET (w/o TCNQ) and DB/DC-FET (with 

TCNQ). The transfer curves of (b) the DC-FET and (c) the DB/DC-FET. (d) The output 

curves of the DB/DC-FET. 
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Figure 3.7a shows the schematic images of the DC-FET (w/o TCNQ) and the 

DB/DC-FET (with TCNQ). Figure 3.7b and c show the transfer curves of the doped-contact 

PBTTT OFET (DC-FET) and TCNQ-incorporated doped-contact PBTTT OFET (DB/DC-

FET) in linear (red line) and saturation (blue line) regimes. Transfer curves of the both 

devices show similar electrical characteristics. The DB/DC-FET showed typical p-type 

OFET device characteristics with the mobility of 0.058 cm2/V•s. Figure 3.7d shows the 

output curves of the 50 μm channel length DB/DC-FET. The device shows a clear ohmic 

behavior in a low VDS region, providing evidence of a low contact resistance. To extract the 

contact resistance of the DB/DC-FET, I used Y-function method as the same way in the 

previous chapter.  

Figure 3.8 displays the data for the Y-function method; a black line shows 

1/√gm (where gm is the transconductance) and a red line is the Y-function. The extracted 

contact resistance of the DB/DC-FET was 4.55 kΩ•cm which is comparable to the previous 

result for the DC-FET. Despite of the additional incorporation of TCNQ molecules in the 
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PBTTT channel before the contact doping with F4-TCNQ molecules, the contact doping 

remained effective for achieving a low contact resistance; the pristine PBTTT OFET had 

more than 5 times larger contact resistance value of 24.5 kΩ•cm.[44] Therefore, I deduced 

that the incorporation of the dopant-blockade molecules did not affect the operation 

properties of the DC-FET. 

 

3.3.4. ON/OFF ratio stability of the DB/DC-FET 

Figure 3.9a to d show the change of the transfer curves of the DC-FET and the 

DB/DC-FET with the channel length of 50 μm and 100 μm, respectively, over two months. 

From Figure 3.9a, it is clear that the ON/OFF ratio of the DC-FET decreases due to the rise 

of the OFF current. On the other hand, the rise of the OFF current of the DB/DC-FET is 

significantly less, which is presented in Figure 3.9b. Figure 3.9e shows the traces of the 

ON/OFF ratio of the both kinds of the devices for two months; the DC-FET is denoted as 

empty symbols, the DB/DC-FET as filled symbols, 100 μm channel length devices as black 

lines and 50 μm channel length devices as red lines. For 100 μm channel devices, the traces 

of the both kinds of devices had stable ON/OFF ratio greater than 104 over the two months. 

The stability of the ON/OFF ratio of the 100 μm channel length devices reproduces the 

previous results for the DC-FET.[44] On the contrary, for the 50 μm channel length devices, 

the ON/OFF ratio stability was affected significantly by the TCNQ incorporation. The trace 

of the DC-FET decreases steeply from 20 days to 40 days. However, the trace of the 

DB/DC-FET shows the ON/OFF ratio decaying much slower and the ON/OFF ratio 

remained higher than 103 for two months. Therefore, based on these traces of the ON/OFF 

ratio of devices, I have found that the dopant-blockade method is effective for achieving 

stable DC-FETs. 
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Figure 3.9 Time evolution of the transfer curves for (a) the DC-FET with the channel 

length, Lch, of 50 μm, (b) the DB/DC-FET with Lch = 50 μm, (c) the DC-FET with Lch = 

100 μm and (d) the DB/DC-FET with Lch = 100 μm over two months. (e) The ON/OFF 

ratio of the DC-FET and the DB/DC-FET over time with the channel length of 50 μm and 

100 μm. 
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 In order to describe the dopant-blockade effect on the dopant diffusion in details, 

I first considered the diffusion of the dopant and dopant-blockade molecules independently 

within PBTTT OFETs. Figure 3.10a and b illustrate the propagation of the dopant 

molecules within the channel regions of the DC-FET and that of the dopant-blockade 

molecules in the TCNQ-incorporated PBTTT OFET (denoted as “TCNQ only”), 

respectively. Figure 3.10a describes the expansion of the doped PBTTT regions; purple 

regions represent neutral PBTTT regions, green for doped PBTTT regions, darker green 

for higher dopant concentration, and black dashed lines define the initially doped regions 

by F4-TCNQ molecules (Figure 3.10a, above). As time passes, the doped regions expand 

by the diffusion of dopant molecules into the channel and create conduction paths between 

the two electrodes (Figure 3.10a, bottom), and therefore the OFF current increases. Figure 

3.10b depicts the diffusion of TCNQ molecules in the channel region of “TCNQ only” 

device. The red regions represent the TCNQ molecules in the PBTTT channel, more vivid 

red for higher TCNQ concentration. The TCNQ molecules are initially confined in the 

middle of the channel (Figure 3.10b, above) as described in the fabrication process (Figure 

3.3), which is denoted as black dashed lines. The TCNQ molecules diffuse towards the 

contact regions from the middle of the channel along the concentration gradient as time 

passes (Figure 3.10b, bottom).  

In DB/DC-FETs, both the F4-TCNQ molecules (dopant) and TCNQ molecules 

(dopant-blockade) diffuse together in the opposite directions, affecting the motion of each 

other, as shown in Figure 3.10c. The orange regions (Figure 3.10c, bottom) represent the 

channel regions where the dopant and dopant-blockade molecules co-exist and both 

molecules hinder the diffusion of one another by occupying the potential diffusion sites in 

the PBTTT film. This process is depicted in Figure 3.10d. If there was no TCNQ dopant-
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blockade molecule, the dopant molecules move easily into the neighboring empty site. 

However, if a dopant-blockade molecule already occupies the neighboring empty site, the 

dopant molecule is sterically hindered from moving to the next site.  

The effect of the dopant-blockade molecules on the dopant diffusion can be 

summarized by Figure 3.10e, f and g which show the predicted molecular diffusion profile 

for the different kinds of devices. Figure 3.10e shows the doped fraction of PBTTT 

molecules at different positions of the channel in the DC-FET without the dopant-blockade 

molecules (“F4-TCNQ only”). As time passes, the doped fraction at the center of the 
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Figure 3.10 Schematic diagrams of (a) the propagation of doped regions in the DC-FET, 

(b) the diffusion of TCNQ molecules in the channel region of the TCNQ-incorporated 

PBTTT OFET and (c) the diffusion of F4-TCNQ and TCNQ molecules in the opposite 

directions for the DB/DC-FET. (d) The illustration for hindrance by the dopant-blockade 

molecules against the diffusion of the dopant molecules in the void spaces of the PBTTT 

film. (e) The predicted profiles of the doped fraction of PBTTT molecules at different 

positions of the channel in the DC-FET. (f) The spatial diffusion profile of TCNQ 

molecules in the PBTTT channel of the TCNQ-incorporated PBTTT OFET. (g) The 

predicted changes in the profiles of the doped fraction of PBTTT molecules and the spatial 

diffusion of TCNQ molecules for the DB/DC-FET as blue and red solid lines. Dashed lines 

taken from Figure 3.10e and f for comparison. 
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channel increases gradually, which induces the rise of the OFF current in the DC-FET. The 

black line is the initial doped fraction of PBTTT molecules for the as-prepared DC-FET 

and the time evolution of the doped fraction of PBTTT molecules predicted by the same 

numerical simulation method used in the previous chapter is indicated by an arrow.[44] 

Figure 3.10f shows a spatial diffusion profile of TCNQ molecules in the “TCNQ-only” 

device. I predicted that the diffusion of TCNQ molecules followed one-dimensional Fick’s 

diffusion equation without any correction terms (unlike F4-TCNQ), considering that TCNQ 

molecules undergo diffusion in the PBTTT film without electrostatic attraction with 

PBTTT molecules due to the lack of charge transfer reaction. Figure 3.10g shows predicted 

changes in the previous two graphs for the DB/DC-FET (“F4-TCNQ + TCNQ”). The doped 

fraction of PBTTT molecules and the TCNQ molecule distribution in the PBTTT channel 

are shown as blue lines and red lines respectively; solid line for the DB/DC-FET and dashed 

line taken from Figure 3.10e and 3.10f for comparison. The reduction of the doped fraction 

of PBTTT molecules in the middle of the channel is clearly shown from Figure 3.10g for 

which I assumed that the diffusion of F4-TCNQ molecules would be suppressed if the 

TCNQ molecules co-existed in the same position. These results show that dopant-blockade 

effect illustrated here remarkably suppresses the dopant diffusion and improve the stability 

of the DC-FET. 
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3.4. Conclusion 

In conclusion, I improved the device stability of the F4-TCNQ doped-contact 

PBTTT OFETs by adopting the dopant-blockade molecules (TCNQ). The dopant-blockade 

molecules were carefully selected to avoid the charge transfer reaction with the host 

materials, which was supported by the UV-Vis absorption spectroscopy. Furthermore, the 

selected dopant-blockade molecules were readily incorporated in PBTTT film by solid-

state diffusion, investigated by elemental and structural analysis. By incorporating the 

dopant-blockade molecules, I demonstrated a more stable switching property of the doped-

contact PBTTT OFET devices without affecting their electrical characteristics. The dopant-

blockade molecules filled the dopant diffusion paths in PBTTT and effectively suppressed 

the diffusion of the dopant molecules. This study proposes a new strategy to enhance the 

stability of molecular doping methods in organic semiconductors, and reinforce the 

potential of OFETs by employing the contact doping techniques for resolving the contact 

resistance problem.  
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Chapter 4. Summary 

In this dissertation, I described the research results mainly concerned with the 

electrical properties and operational stability of the doped-contact PBTTT OFETs. The 

main chapters were devoted to the material properties and electrical characterization of the 

doped-contact PBTTT OFETs with post-doping treatments including the surface etching, 

deposition of a passivation layer and the dopant-blockade method. 

First, I demonstrated the enhancement of injection prorperties of PBTTT OFETs 

via solid-state diffusion, using the material combination of PBTTT and F4-TNCQ as the 

host and dopant materials, respectively, and a surface etching treatment by argon plasma 

was introduced for improving the devices stability. With the careful optimization of the 

deposition of the dopant molecules and etching porcess, the amount of neutral F4-TCNQ 

molecules on the PBTTT films was effectively controlled and the propagation of the doped 

regions into the active channel area of the PBTTT OFETs was significantly suppressed. 

Furthermore, the improvement of device stability by controlling the amount of dopant 

molecules via the etching process was not only identified by the experimental data of the 

trace of ON/OFF ratio of the doped-contact PBTTT OFETs, but also verified by a 

numerical simulation based on a modified Fick’s diffusion equation that accounts for the 

capturing of diffusive neutral dopant molecules via charge-transfer. The band diagram 

analysis which was supported by low temperature measurement and UPS data of PBTTT 

films implied that the change of the dominant charge injection mechanism from 

therminonic emission to tunneling at the contact caused the improvement of charge 

injection properties after applying the contact doping. In addition, adopting Al2O3 as a high-

k gate dieletric material, I demonstrated the low-voltage operation organic transistors. For 
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these low-voltage operation devcies, the doped-contact PBTTT OFET had a better 

performance compared to the pristine device. 

Secondly, highly stable contact doping of the F4-TCNQ doped-contact PBTTT 

OFETs was achieved by incorporating TCNQ as the dopant-blockade molecule. The 

dopant-blockade molecule were carefully selected to meet two conditions; one was to avoid 

the charge transfer reaction with the host materials, and the other one was that the dopant-

blockade molecule undergoes solid-state diffusion in PBTTT film. The investigation by 

UV-Vis absorption spectroscopy, elemental depth profiles and structural analysis revealed 

that TCNQ satisfied those conditions. Through incorporating the dopant-blockade 

molecules, the doped-contact PBTTT OFET devices exhibited a more stable switching 

property without affecting their electrical characteristics. TCNQ molecules blocked the 

dopant diffusion paths in PBTTT and effectively suppressed the diffusion of the dopant 

molecules. 

This thesis provides a systematic pathway to utilize the doping technique by 

controlling the amount of dopant molecules and suppressing the dopant diffusion with 

dopant-blockade molecules. In addition, introducing a CYTOP encapsulation layer 

exhibited further improvement of stability. This study suggest that the molecular doping 

via solid-state diffusion is potentially one of the key techniques for resolving the contact 

ressitance problem in OFETs. 
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국문초록 

고체상태 확산 분자도핑에 의한  

폴리싸이오펜계 유기 전계효과  

트랜지스터의 전기적 특성 향상 연구 

 

김영록 

서울대학교 물리천문학부 

 

유기반도체는 다른 반도체물질과 비교하여 소재의 유연성, 대면적 및 용

액 공정의 장점을 갖고 있다. 이런 장점을 기반으로 유기반도체는 유기발광다

이오드, 태양전지, 센서, 메모리 그리고 트랜지스터 등의 유기전자소자에 응용

되고 있다. 이런 유기전자소자의 실질적인 응용을 위해 소자의 미세화 및 고

속동작 소자의 구현이 필수적이다. 그러나 금속 전극과 유기반도체 사이의 쇼

트키 컨택에 의해 발생하는 높은 컨택저항은 근본적으로 소자의 성능을 제한

하게 된다. 실리콘 기반의 반도체 산업에서는 전극 주변의 반도체에 선택적인 

이온주입 방법이 컨택특성을 향상시키기 위해 광범위하게 적용되고 있고, 이

와 비슷한 접근법이 유기반도체에서의 컨택저항 문제를 해결하기 위해 응용될 

수 있다. 최근에 여러 종류의 컨택도핑 방법론이 유기전자소자의 컨택저항을 

감소시키기 위한 효과적인 기술로 보고된 바 있다. 하지만 소자의 스위칭 성

능을 훼손하여 소자의 안정성을 두드러지게 악화시키는 도펀트 확산 문제로 

인해 컨택도핑 방법론은 지금까지 유기 전계효과 트랜지스터에서 본격적으로 

연구되지 않았다. 

이런 측면에서, 본 학위논문에서 우선 바텀 게이트 구조의 폴리싸이오펜

계 유기 전계효과 트랜지스터에 전하주입특성 향상을 위해 고체상태 확산에 

의한 도펀트 분자(F4-TCNQ)의 선택적인 컨택도핑을 구현하였다. 소자의 구현 

과정에서, 실험 결과와 확산방정식에 기반한 시뮬레이션을 활용하여 도핑 후

처리가 도펀트 분자의 확산에 미치는 영향에 관하여 연구하였다. 한편, 높은 
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유전율의 절연물질을 활용한 저전압 구동 유기트랜지스터에 분자도핑 기술을 

적용하여 폴리머 도핑을 활용한 소자의 미세화와 저전력 유기소자의 가능성을 

보여주었다. 

한편 트랜지스터의 전극 영역에 도핑영역을 한정시키기 위한 도핑 후처

리의 도입에도 불구하고 도펀트 분자의 확산 문제는 완전히 해결될 수 없었다. 

이 문제에 관하여, 도펀트 분자의 확산을 억제하기 위해 도펀트-차단 분자

(TCNQ)를 폴리싸이오펜계 유기 전계효과 트랜지스터의 채널 영역에 선택적으

로 주입하여 컨택도핑 방법론의 안정성을 향상시켰다. 이때 사용된 도펀트-차

단 분자는 전기적으로 안정적이고 트랜지스터 채널 영역에서 도펀트 분자의 

확산 영역에 자리 잡을 수 있는 분자를 사용하였다. 이 기술은 도펀트 분자 

확산 영역를 도펀트-차단 분자로 채움으로써 도펀트 분자의 움직임에 대하여 

효과적으로 장벽을 설치하는 것이었다. 이러한 도펀트-차단 방법론은 컨택저

항 문제를 해결하는 유망한 방법론으로 컨택도핑을 도입하여 유기 전계효과 

트랜지스터의 가능성을 극대화 하는데 기여 할 수 있을 것이다.  

 

Keywords: 유기 전계효과 트랜지스터, 도펀트 분자, 컨택도핑, 고체상태 확산, 

전하주입, 전하이동, 도펀트-차단 
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학부 지도교수님이셨던 최선호 교수님도 잊을 수 없는 선생님입니다. 돌이켜보면 인간적으

로 너무 부족한 저를 항상 크나큰 선의로 만나주셨던 최선호 교수님께도 감사 드립니다. 교수

님의 그 너그러우심으로 스스로를 돌아볼 기회를 만들 수 있었습니다. 많은 학생들이 존경하는 

교수님으로 오랫동안 건강하게 지내셨으면 좋겠습니다. 

함께 동고동락하며 연구실생활을 하던 동료들이 있어서 대학원생 시절이 즐거웠습니다. 먼

저 머나먼 영국에서 박사를 마치고 기어코 서울로 온 기훈이. 기훈이가 아니었으면 정말 어떻

게 졸업을 했을지 상상이 안될 꺼야. 문제를 끝까지 붙잡고 답을 찾는 치열함과 어떤 경우에도 

친절할 여유를 갖는 기훈이에게 참 많은 것을 배웠어. 연구실에서 남은 시간 성과를 많이 거둬

서 기훈이가 원하는 방향으로 진로가 풀리길 바라!! 학부 동기면서 대학원에 먼저 들어와 많은 

것을 알려준 대경이. 때로는 연구를 공동으로 수행하면서 투닥투닥하던 시기도 있었는데 어느

덧 옛 일이고 같이 졸업하는 구만. 앞으로도 종종 보자구~ 듬직한 우리연구실 랩장이자 오락대

장 우철이. 우철아 네가 있어서 정말 든든하다. 우철이가 새로 시작하는 연구를 확실하게 이끌

어줘서 가벼운 마음으로 졸업할 수 있는 거 같아. 어서 졸업해서 다시 동료로 만나자. 능력 있

는 사회인에서 잠깐의 여유를 찾아오신 종훈 형님. 학교생활 충분히 즐기시고 우철이 잘 부탁 

드립니다!! 여유 있는 팔자걸음 리치킴 준우. 연구가 수월하게 풀리지 않아 답답한 마음이 있을 

건데 꾸준하게 노력하다 보면 반드시 결과를 얻는 거 같아. 너무 걱정하지 말아~ 유기팀 막내 

희범이. 이미 1저자 논문이 있지만 요즘 들어 연구에 들이는 시간이 늘어나는 걸 보면 조만간 

주도적으로 논문을 쓸 일이 있을 거 같아. 힘내!! 연구실 동기이자 우리 연구실 마스코트 2D팀

장 갓재!! 재근이랑 그 힘들면서 또 보람찬 민홍기 교수님 수업 들은 것이 얼마 전 같은데…… 

그 동안 거의 계속 옆자리 였던 재근이가 있어 즐거웠고 잘 챙겨줘서 정말 고마웠어. 하고 있

는 연구 마무리 잘해서 좋은 논문 쓰길 바랄게!! 펭’s 맘 지원이. 지원이가 들어온 것도 얼마 안

된 거 같은데 벌써 이렇게 되었네. 우철이랑 즐겁게 연구하면서 좋은 연구도 많이 하고 무엇보

다 좋은 소식 있길!! 전문연이 약이 된 재영이. 음악을 즐기며 항상 웃는 얼굴로 있어서 보기 
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좋았어. 가끔 놀리기도 했지만 형은 정말 재영이에게 좋~~~은 소식이 있으면 좋겠어 파이팅ㅋ

ㅋㅋ. 2D팀 막내 준태 본 날은 길지 않지만 지금처럼 주도적으로 연구실 생활 잘하고 재근이에

게 많이 배우면 어렵지 않게 대학원 생활 마칠 수 있을 거야~ 우리 연구실 태양 왕택이. 만취

한 모습도 전처럼 보이지 않고 연구열을 불태우는 모습을 보면 이제 끝이 멀지 않은 것 같아. 

조금만 더 힘내자!! 같이 졸업하는 똑똑한 연식이. 우리 연구실 최연소 타이틀을 정말 오래 갖

고 있었는데 시간이 정말 빠르다. 연식이는 어디로 가든지 순발력 있게 잘 해낼 수 있을 거야~ 

빠릿빠릿한 민우. 민우는 하는거 보면 예사롭지가 않아 암만 봐도 군필같단 말이지 흠…… 지

금처럼 빠릿빠릿하게 하면 군대문제도 잘 해결되고 졸업도 문제없이 할 수 있다고 믿어~ 분자

팀 막내 종우 연구실의 미래를 부탁한다!!! 그리고 고은쌤 제가 이런저런 질문도 참 많이 드렸

는데 항상 친절하게 답해주시고 그 동안 많이 챙겨주셔서 감사합니다~ 먼저 졸업하신 태영이형, 

진곤이형, 영걸이형, 동구형, 현학이형 그리고 멋쟁이 경준이도 정말 감사했습니다!! 

나의 대나무 숲 현우. 현우가 있어서 대학원 무사히 마치는 거 같아. 현우도 하는 연구가 

어서 마무리 돼서 졸업의 순간이 찾아오길 진심으로 바래. 대전에 내려가더니 올라오지 않는 

천호. 나랑 천호는 정말 다른데 지향점은 비슷해서 참 잘 맞았던 것 같아. 같이 유럽여행 갔던 

게 7년 전이라니…… 앞으로도 잘 부탁해!! 그리고 거의 매일 보며 운동을 함께해온 인석이형. 

졸업 이후에도 학교에 남아서 같이 운동해서 즐거웠어. 조만간 교수로 자리 잡아서 거 하게 밥 

한번 살 그날을 기다릴게!!! 잘하면 재미있다는 말로 먼저 회사에 보내버린 무송이. 자신감 있

는 모습이 참 보기 좋았어 이제는 다시 한솥밥 먹는데 재미있게 지내ㅎㅎㅎ 대학원 룸메이트 

창현이도 졸업이 얼마 안 남았는데 즐거운 시간 보내길 바래요!! 지금은 미국에 유학 가있는 통

계대학원생 민성이. 미국병 완치하고 유학생활 잘 마치길 기원할게!! 월요모임을 함께했던 진영

곰, 재준이형, 경석이형, 창휘, 동현 그리고 이전에 졸업한 사람들 정말 즐거웠어~ 

인간적인 성장에 많은 영감과 기회를 준 큰은혜교회 친구들에게도 감사의 말을 전합니다. 

챙겨주시고 성장의 자극을 주셨던 지선 누님. 가끔 도라에몽 성대모사를 하며 처음되는 길을 

걷고 있는 상희. 생각이 깊고 중심이 명확한 승기. 그리고 학위를 마무리하는 시기에 저와 함께

하며 기쁨을 나누고 인간적인 성장에 많은 자극을 주었던 유정이에게 감사의 말을 전합니다. 

끝으로 때로는 갈지자로 나아가는 아들의 선택을 묵묵히 바라보며 응원하고 기도해주시는 

부모님. 저를 생각하면 항상 안타까워하시는 것 같지만 전 제 선택에 만족하고 충분히 행복한 

삶을 살고 있다고 믿어요. 지금까지 애쓰고 마음 써주셔서 고마워요. 앞으로의 삶도 지켜봐 주

시면 좋겠어요~ 그리고 형이 집에 많이 신경 쓰지 못하는데 마음 씀씀이가 섬세한 동생 영빈이

가 집에 있어줘서 고마웠어. 

이외에도 제가 도움을 받은 분들이 정말 많은데 이름을 다 적지 못해서 죄송하고 또 감사 

드립니다. 뒤돌아 보면 보이지 않는 수많은 기적이 쌓여 지금이 있음을 느낍니다. 언제나 겸손

하고 감사하는 사람이 되기를 다짐하며 먼저 도움의 손길을 건네는 삶을 살도록 노력하겠습니

다. 학교를 떠나 새 길을 나서야 하는 때에 지금까지 그랬던 것처럼 앞으로도 주님께서 제 걸

음을 인도하시기를 기도하며 이 글을 마칩니다. 감사합니다. 
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