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Abstract

We study topological phases in systems with spacetime inversion symmetry IST.

IST is an anti-unitary symmetry which is local in momentum space and satisfies

I2ST = 1 such as PT in 2D and 3D without spin-orbit coupling and C2T in 2D

with or without spin-orbit coupling where P , T , C2 indicate inversion, time-

reversal, and two-fold rotation symmetries, respectively. Under IST, the Hamil-

tonian and the periodic part of the Bloch wave function can be constrained to

be real-valued, which makes the Berry curvature and the Chern number to van-

ish. In this class of systems, gapped band structures of real wave functions can

be topologically distinguished by Stiefel-Whitney numbers instead. The first

and second Stiefel-Whitney numbers w1 and w2, respectively, are the corre-

sponding invariants in 1D and 2D, which are equivalent to the quantized Berry

phase and the Z2 monopole charge, respectively. We first describe the topo-

logical phases characterized by the first Stiefel-Whitney number, including 1D

topological insulators with quantized charge polarization, 2D Dirac semimetals,

and 3D nodal line semimetals. Next we show how the second Stiefel-Whitney

class characterizes the 3D nodal line semimetals carrying a Z2 monopole charge.

In particular, we explain how the second Stiefel-Whitney number w2, the Z2

monopole charge, and the linking number between nodal lines are related. Then,

we study the properties of 2D and 3D topological insulators characterized by

the nontrivial second Stiefel Whitney class. After this exposure to our general

theory, we explain the reformulated Nielsen-Ninomiya theorem in two dimen-

sions as an interesting application. We derive all these results by assuming only

IST symmetry. When P or C2 symmetry is present in addition to IST symmetry
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in the absence of spin-orbit coupling, we show that the second Stiefel-Whitney

number can be calculated efficiently using the parity eigenvalues of P or C2.

The relation between the parity eigenvalues and the second Stiefel-Whitney

number is applied to the study of odd-parity topological superconductivity in

spin-polarized systems.

Keywords: band topology, spacetime inversion symmetry, topological semimetal,

topological insulator, topological superconductor, topological invariant

Student Number: 2013-20372
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Chapter 1

Introduction

The energy band structure of a periodic crystal consists of a mapping from

a crystal momentum k to the Bloch Hamiltonian H(k), which is generally

complex-valued. Gapped band structures of insulators can be topologically dis-

tinguished by the equivalence class of H(k) [1]. That is, two gapped band

structures are topological distinct if one cannot be smoothly deformed to the

other while keeping the energy gap. In two dimensions (2D), the gapped band

structures of a complex Hamiltonian are distinguished by an integer topo-

logical invariant, called the Chern number c1. The Chern invariant charac-

terizes the equivalence classes of fiber bundles associated with the complex

Bloch wave functions |u(k)⟩, which is nothing but the first Chern class. The

Chern number c1 can be expressed in terms of the Berry connection Am(k) =

⟨um(k)| i∇ |um(k)⟩ and the Berry curvature Fm(k) = ∂kxAm,y(k)−∂kyAm,x(k)

where m = 1, 2, ..., Nocc with Nocc denoting the number of occupied bands. c1

is given by the integral of Fm(k) on a 2D closed manifold M summed over all
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the occupied bands as

c1 =

Nocc∑
m=1

∫
M

d2k

2π
Fm(k). (1.1)

When the full 2D Brillouin zone torus is considered for the integration, the

corresponding insulator with a nonzero c1 is a quantum Hall insulator exhibiting

a quantized anomalous Hall conductivity σxy = e2

h c1. The integration can also

be performed over a 2D closed subspace of a 3D Brillouin zone enclosing Weyl

points. In this case, a nonzero c1 corresponds to the total chiral charge of the

enclosed Weyl points [2–4].

On the other hand, when the system satisfies a certain symmetry condition,

the corresponding Bloch wave functions can be real-valued. Here the relevant

symmetry is so-called the spacetime inversion symmetry IST : (t, r) → (−t,−r),

which inverts the sign of both time t and spatial coordinates r [5–7]. IST is an

antiunitary symmetry operator that is local in momentum space and satisfies

I2ST = 1. For instance, the combination of spatial inversion P and time-reversal

T can be used to define IST = PT in systems with negligible spin-orbit coupling

in any dimension. In the case of 2D systems, the combined symmetry IST, where

C2z denotes two-fold rotation about the z-axis, can also play the role of IST,

irrespective of the presence or the absence of spin-orbit coupling [5]. Since IST

can always be represented by IST = K with the complex conjugation operator

K under a suitable basis choice [5, 8], the invariance of the Hamiltonian H(k)

under IST imposes the reality condition to H(k), and then we can choose real

eigenstates |u(k)⟩, such that

ISTH(k)I−1ST = H∗(k) = H(k),

IST |u(k)⟩ = |u(k)⟩∗ = |u(k)⟩ . (1.2)

Since real wave functions have zero abelian Berry curvature at every momentum
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d Physical invariant Mathematical invariant

d = 1 Quantized Berry phase First Stiefel-Whitney number (w1)

d = 2 Z2 monopole charge Second Stiefel-Whitney number (w2)

Table 1.1 The correspondence between the physics terminology and Stiefel-

Whitney (Stiefel-Whitney) class in systems with spacetime inversion symmetry.

d indicates the spatial dimension.

k, all gapped real band structures have zero Chern number so that they are all

topologically trivial in view of the first Chern class.

In fact, the gapped band structures of real Hamiltonians are topologically

distinguished by different topological invariants, so-called the Stiefel-Whitney

numbers [9–11]. The first and the second Stiefel-Whitney numbers, w1 and w2,

respectively, are the corresponding 1D and 2D topological invariants [7, 12].

The Stiefel Whitney numbers w1, w2 are rooted in the mathematical struc-

ture of real vector bundles associated with real Bloch wave functions, which

is nothing but the Stiefel Whitney class, characterizing the twist of real Bloch

states in momentum space. Although the concept of Stiefel-Whitney numbers

is not popular in condensed matter physics, their physical implication is quite

transparent. Namely, w1 is equivalent to the quantized Berry phase, while w2

is equivalent to the Z2 monopole charge of a nodal line, both are well-defined

in systems with spacetime inversion symmetry. The correspondence between

Stiefel-Whitney number and the relevant physical invariant is summarized in

Table 1.

The band crossing condition changes significantly in the presence of the

reality condition given in Eq. (1.2). For instance, in PT -symmetric systems with

negligible spin-orbit coupling, since each band is non-degenerate at a generic
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momentum k, an accidental band crossing can be described by an effective

two-band Hamiltonian given by

H(k,m) = f0(k,m) + f1(k,m)σx + f3(k,m)σz, (1.3)

where σx,y,z are the Pauli matrices for the two crossing bands and f0,1,3(k,m)

are real functions of momentum k and a parameter m tuning the band gap. It

is worth noting that the σy term vanishes due to the reality condition. Then

because closing the band gap requires only two conditions f1,3(k,m) = 0 to be

satisfied whereas the number of independent variables (k, m) is d+1 where d is

the spatial dimension, an accidental band crossing is possible unless d+ 1 < 2.

This means that, in 1D, a gapped band structure is generally stable but an

accidental band crossing can happen at the critical point between two gapped

insulators. On the other hand, in 2D, a gapless phase with point nodes can

be stabilized, and an accidental band crossing induces a transition between an

insulator and a stable 2D Dirac semimetal phase. Similarly, in 3D, a semimetal

phase with nodal lines can be stabilized, and an accidental band crossing me-

diates a transition between an insulator and a 3D nodal line semimetal. It is

worth noting that the 1D insulators, the 2D Dirac points, and the 3D nodal

lines mentioned above are all characterized by the first Stiefel Whitney number

w1, which follows from the equivalence between w1 and the quantized Berry

phase.

In fact, a line node of a 3D nodal line semimetal can also be characterized

by another topological invariant, that is, the second Stiefel-Whitney number

w2. Namely, a line node of a 3D nodal line semimetal carries two Z2 topological

indices w1 and w2, and thus it is doubly charged [13]. As shown in Ref. [7], w2 is

equivalent to the Z2 monopole charge proposed in Ref. [5]. In fact, a two-band

description based on Eq. (1.3) cannot capture w2 because there should be at
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least two bands below the Fermi level to characterize the band topology of a

nodal line carrying nonzero Z2 monopole charge (monopole nodal line) at the

Fermi level. It is shown that the multi-band description is required due to the

intrinsic linking structure of monopole nodal line with other nodal lines below

the Fermi level, which can be predicted by using the mathematical property of

Stiefel Whitney classes.

The significance of w2 is not limited to the characterization of monopole

nodal line in 3D nodal line semimetals. When w2 is computed on the 2D Bril-

louin zone torus, it becomes a well-defined 2D Z2 topological invariant char-

acterizing 2D insulators in the absence of the Berry phase [7]. Thus one can

classify IST-symmetric 2D insulators into topologically trivial insulators with

w2 = 0 and topologically nontrival insulators with w2 = 1, dubbed the 2D

Stiefel Whitney insulator (Stiefel-Whitney insulator) [7, 14]. Contrary to the

2D quantum Hall insulator that has stable band topology and 1D chiral edge

states, the 2D Stiefel-Whitney insulator is an obstructed atomic insulator, which

can support zero-dimensional corner charges in the presence of additional chiral

symmetry [7, 14–22]. The 2D Stiefel-Whitney insulator can also be used as a

basic building block for novel 3D topological insulators such as 3D weak and

strong Stiefel-Whitney insulators as shown in Ref. [7, 23]. Table II summarizes

the correspondence between the first Chern class and the second Stiefel Whitney

class.

The rest of the paper is organized as follows. The mathematical definition

of the first and second Stiefel Whitney classes are given in Chapter 2. Chap-

ter 3 describes the topological phases characterizied by the first Stiefel-Whitney

number. Basically, w1 characterizes 1D insulators with quantized charge polar-

ization, and 2D or 3D semimetals with point or line nodes. Chapter 4 describes

the relation between the second Stiefel Whitney class and the Z2 monopole

5



First Chern class (c1) Second Stiefel-Whitney class (w2)

2D complex wave function 2D real wave function

Chiral charge of Weyl points Z2 monopole charge of nodal lines

Quantum Hall insulator Stiefel-Whitney insulator

Table 1.2 Correspondence between the first Chern class and the second Stiefel

Whitney class.

charges of nodal line semimetals. Using the mathematical properties of the

Stiefel Whitney classes, we show the intrinsic linking structure of semimetals

with Z2 monopole charge. Also, we explain how w2 can be calculated from Wil-

son loop spectra. Topological insulators characterized by w2 are described in

Chapter 5. There we introduce the definition of 2D Stiefel-Whitney insulator,

3D weak Stiefel-Whitney insulator, and 3D strong Stiefel-Whitney insulator,

and elaborate their topological properties. In Chapter 6, we explain the re-

formulated Nielsen-Ninomiya theorem in two dimensions as an interesting ap-

plication of our theory. After that, in Chapter 7, we consider the case where

spatial inversion (or twofold rotation) symmetry and time reversal symmetry

are present simultaneously, while we assume only the combined spacetime in-

version symmetry in the previous chapters. It allows us to calculate the second

Stiefel-Whitney number using inversion parity eigenvalues very efficiently. This

sets the basis for the study on odd-parity superconductivity in spin-polarized

systems with spacetime inversion symmetry in Chapter 8. We conclude our re-

view in Chapter 9 with the discussion of candidate materials and possible issues

for future studies.

The text in this thesis significantly overlaps with my papers [6, 7, 14, 23–

25]. The abstract, introduction, and Chapters 2, 3, 4, 5, and 9 overlap with
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my review paper [24], which summarizes my research papers [6, 7, 14, 23], and

Chapters 6, 7, 8, and Appendix B overlap with [14], the Supplemental Material

of [7], [25], and [23], respectively.
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Chapter 2

Stiefel-Whitney classes

Here we provide the mathematical definition of Stiefel-Whitney classes, which

basically indicate the topological obstruction to defining real wave functions

smoothly over a closed manifold.

2.1 The first Stiefel-Whitney class

The first Stiefel-Whitney class measures the orientability of real occupied wave

functions over a closed 1D manifold. Namely, the real occupied wave functions

are orientable (non-orientable) when w1 = 0 (w1 = 1).

In general, the orientation of a real vector space refers to the choice of

an ordered basis. Any two ordered bases are related to each other by a unique

nonsingular linear transformation. When the determinant of the transformation

matrix is positive (negative), we say that the bases have the same (different)

orientation. After choosing an ordered reference basis {v1, v2, ...}, the orienta-

tion of another basis {u1, u2, ...} is specified to be positive (negative) when the
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basis has the same (different) orientation with respect to the reference basis.

Real wave functions defined on the Brillouin zone can be considered as real

unit basis vectors defined at each momentum, that is, they form a structure of

a real vector bundle over the Brillouin zone. The basis can be smoothly defined

locally on the manifold, but may not be smooth over a closed submanifold M

of our interest. We say that the real wave functions are orientable over M when

local bases can be glued with transition functions having only positive deter-

minant, i.e., all transition functions are orientation-preserving. The orientable

wave functions are classified into two classes with the positive and negative

orientation as in the case of the real vector spaces.

Interestingly, the orientablity of real wave functions can be determined by

the Berry phase computed in a smooth complex gauge, such that w1 = 1 (w1 =

0) indicates that the relevant wave functions carry π (0) Berry phase. Namely,

the first Stiefel-Whitney number defined in a real basis is equivalent to the

well-known quantized Berry phase defined in a smooth complex basis. This

correspondence can be seen by investigating how the π Berry phase computed

with the smooth complex state |unk⟩ affects the real state |ũnk⟩ connected by

a gauge transformation as

|ũnk⟩ = gmn(k) |umk⟩ , (2.1)

where g is the gauge transformation matrix. In order to make the state |unk⟩

real, the π Berry phase should be eliminated by a local phase rotation because

the diagonal components of the Berry connection are zero when the state is

real. Then we have

0 =

∫ 2π

0
dk TrÃ =

∫ 2π

0
dk(TrA+ i∇k log det g), (2.2)

where Ãmn = ⟨ũmk|i∇k|ũnk⟩ and Amn = ⟨umk|i∇k|unk⟩. Integrating the

9



log det g term gives

det g(2π)

det g(0)
= exp

[
i

∫ 2π

0
dk TrA

]
. (2.3)

Moreover, at the Brillouin zone boundary, since the smooth complex state fulfills

|un(2π)⟩ = |un(0)⟩, the real state satisfies

|ũn(2π)⟩ = [g−1(0)g(2π)]mn |ũm(0)⟩ , (2.4)

which, together with Eq. (2.3), shows that the total Berry phase basically deter-

mines the determinant of the transition function for |ũnk⟩ at the Brillouin zone

boundary. Namely, when the total Berry phase is π, the real state |ũnk⟩ requires

an orientation-reversal between k = 2π and k = 0. Therefore we conclude that

the first Stiefel-Whitney number w1 for a closed curve C in the Brillouin zone

is given by

w1|C =
1

π

∮
C
dk · TrA(k) (mod 2), (2.5)

where A(k) is the Berry connection calculated in a smooth complex gauge.

In fact, the first Stiefel-Whitney number w1 determines the orientability of

real states even in higher dimensions [10]. From the analysis in 1D, we find

det g(q)

det g(p)
= exp

[
i

∫ q

p
dk · TrA(k)

]
. (2.6)

Let us note that det g is globally smooth when the Berry phase is zero over

every closed cycle. Otherwise, det g becomes discontinuous at some points so

that the real states are non-orientable as in the 1D case. Thus, real states are

orientable over an arbitrary dimensional closed manifold M if and only if the

total Berry phase, which is calculated in a smooth complex gauge, is trivial for

any 1D closed loop in M.
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2.2 The second Stiefel-Whitney class

The second Stiefel-Whitney class describes whether a spin (or pin) structure is

allowed or not for given real wave functions defined on a 2D closed manifold

M. If w2 = 0 (w2 = 1), a spin or pin structure is allowed (forbidden). Below

we give a more formal definition of the second Stiefel-Whitney number w2.

Let us consider real occupied states |umk⟩ on M. Then we introduce a

covering of M whose geometric structure is topologically equivalent to M.

For given two open covers (or patches) A and B, one can find smooth real

wave functions |uAmk⟩ and |uBmk⟩ defined in each open cover, respectively. In the

overlapping region A ∩B, a transition function tABmn(k) is defined as

|uBnk⟩ = tABmn(k) |uAmk⟩ . (2.7)

For convenience, here we assume that the occupied wave functions are orientable

over M so that tABmn(k) ∈ SO(Nocc). Then, since the double covering of SO(Nocc)

is Spin(Nocc), the problem reduces to whether the lifting of the transition func-

tion from t ∈ SO(Nocc) to t̃ ∈ Spin(Nocc) is allowed or not. If such a lifting is

allowed consistently over M, one can say that the spin structure exists, and

thus w2 = 0. In contrast, if such a lifting is not allowed, the spin structure does

not exist, and w2 = 1. The extension to the case of non-orientable manifolds is

also straightforward as shown in Ref. [7].

In general, the transition functions should satisfy the following consistency

conditions [9],

tABk tBAk = 1, (2.8)

for k ∈ A ∩B and

tABk tBCk tCAk = 1, (2.9)
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for k ∈ A ∩ B ∩ C, where A, B, and C are arbitrary patches. The transition

functions defined in Eq. (2.7) satisfy these consistency conditions automatically.

However, when we consider the lifting of transition functions to the double

covering group at all overlapping regions in M, the consistency conditions are

not automatically satisfied everywhere. Let us write I and −I to denote the 0

and 2π rotation in the double covering group. In general, after the lift tAB →

t̃AB, the lifted transition functions satisfy

t̃ABk t̃BAk = ±I (2.10)

for k ∈ A ∩B and

fABCk ≡ t̃ABk t̃BCk t̃CAk = ±I, (2.11)

for k ∈ A ∩ B ∩ C. The sign can be either + or − because both I and −I are

projected to 1 via a two-to-one mapping from Spin(Nocc) to SO(Nocc). f
ABC
k is

gauge-invariant as one can see from the transformation of the lifted transition

functions t̃ABk → (g̃Ak )−1t̃ABk g̃Bk under |uAnk⟩ → gAmnk |uAmk⟩, where g̃ is a lift

of g. Also, fABCk has a unique value at each triple overlap, because it is fully

symmetric with respect to the permutation of A, B, C, and is independent of

k within a triple overlap.

Let us now examine the case where a lift that satisfies the consistency con-

ditions can be found. In general, there is no obstruction for the first consistency

condition in Eq. (2.8) whereas the second consistency condition in Eq. (2.9)

depends on w2. In fact, w2 is defined as

(−I)w2 =
∏

A∩B∩C
fABC , (2.12)

where the product is over all triple overlaps in M. One can see that transition

functions cannot be lifted to their double covering group when w2 = 1 mod-

ulo two, because, in this case, there is at least one triple overlap A ∩ B ∩ C
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where fABC = −I violating the consistency condition. This indicates that the

obstruction to the existence of a spin structure is dictated by the Z2 invariant

w2.

B
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(a) (b)
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k
y

k
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k
yk

x

k
z

k
z

Figure 2.1 Three patches covering a sphere. (a) Orthographic view. ϕ and θ are

the azimuthal and polar angles. B and A (C) overlap at ϕ = 0 (ϕ = π), and

A and C overlap at ϕ = π/2. The north pole at θ = 0 and the south pole at

θ = π are triple overlaps. (b) Top view. Overlapping regions are exaggerated

for clarity. From the supplemental materials in Ref. [7].

For instance, let us illustrate how w2 is defined on a spherical manifold,

which is directly relevant to the Z2 monopole charge of a nodal line. First we

consider three patches A, B, and C covering a sphere shown in Fig. 2.1. In the

spherical coordinates (ϕ, θ), there are three overlaps A ∩B, A ∩ C, and B ∩ C

at ϕ = 0, ϕ = π/2, and ϕ = π, respectively. We restrict all transition functions

on the overlaps to SO(Nocc), which is possible because every loop on a sphere

is contractible to a point such that the first Stiefel-Whitney number is trivial.

Then

(−I)w2 = fABC(0)fABC(π), (2.13)
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where 0 and π denotes the polar angle θ.

Now let us define

W̃ (θ) = t̃AB(θ)t̃BC(θ)t̃CA(θ), (2.14)

where we omit ϕ in the argument of transition functions because they are

uniquely specified by the overlapping region. W̃ (θ) is smooth for 0 < θ < π

because t̃ is smooth within an overlap. W̃ (0) = fABC(0) = ±I, and W̃ (π) =

fABC(π) = ±I. Then we see that w2 = 1 modulo two when the image of the

map W̃ : [0, π] → Spin(Nocc) is an arc connecting I and −I, whereas w2 = 0

when the image is a closed loop containing I or −I. Next, we project W̃ to W

by using the two-to-one map Spin(Nocc) → SO(Nocc). We have

W (θ) = tAB(θ)tBC(θ)tCA(θ), (2.15)

which is smooth for 0 < θ < π, and W (0) = W (π) = 1. Under this projection,

an arc connecting I and −I projects to a loop winding the non-contractible

cycle an odd number of times, whereas a closed loop projects to a contractible

loop or a non-contractible loop winding the non-contractible cycles an even

number of times [26]. As a result, the second Stiefel-Whitney number is given

by the winding number of W (θ) modulo two. This relation between w2 and the

parity of the winding number of W (θ) provides the correspondence between

the second Stiefel-Whitney number and the Z2 monopole charge of a nodal line

enclosed by the sphere, which is further discussed in Sec.IV.
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Chapter 3

First Stiefel-Whitney class and
topological phases

Here we describe the topological phases in IST-symmetric systems characterized

by the first Stiefel-Whitney number w1. In 1D, w1 computed over the full Bril-

louin zone is the bulk topological invariant of insulators with quantized charge

polarization. In 2D (3D), w1 is defined on a closed loop enclosing a point (line)

nodes, and plays the role of a topological charge carried by the node. In all

these cases, the low-energy properties of the system can be generally described

by the 2 × 2 effective Hamiltonian in Eq. (1.3) and the corresponding band

crossing occurs when

f1(k,m) = f3(k,m) = 0. (3.1)

3.1 1D topological insulator: SSH model in a real basis

In 1D, since there is only one momentum variable k for a given tuning parameter

m, the gap-closing condition in Eq. (3.1) cannot be satisfied in general, and
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Topological phase w1 w2

Insulator 1D TI with P1 = 1/2 2D SWI

Semimetal 2D DSM or 3D NLSM 3D monopole NLSM

Table 3.1 Comparison of the topological phases characterized by the first

Stiefel-Whitney number w1 and the second Stiefel-Whitney number w2. Here

TI (SWI) indicates a topological insulator (Stiefel Whitney insulator). DSM

(NLSM) denotes Dirac semimetal (nodal line semimetal). A monopole nodal

line indicates a nodal line with Z2 monopole charge.

thus an insulating phase becomes stable. However, when k and m are varied

simultaneously, one can find a unique solution of Eq. (3.1) that corresponds to

the critical point between two gapped insulators.

To describe the relation between the topological property of an insulator

and w1, let us consider 1D insulators described by the Su-Schuriffer-Heeger

(SSH) model [27]. Although the properties of the corresponding topological

insulator are already well-known, here we describe the SSH model by using a

real basis and illustrate the relevant topological property in the context of the

first Stiefel-Whitney number. The SSH Hamiltonian is given by

HSSH = sin kσx + (t+ cos k)σz, (3.2)

where the Pauli matrices σx,y,z indicate the two sublattice sites within a unit

cell. This Hamiltonian is symmetric under PT = K so that the bulk charge

polarization P1 is quantized into either P1 = 0 or P1 = 1/2 modulo 1. It is well-

known that this system describes a topologically trivial insulator with P1 = 0

when |t| > 1 and a topologically nontrivial insulator (TI) with P1 = 1/2 when

|t| < 1. Let us see how the topology manifests in the wave function for the
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Figure 3.1 The amplitudes of the occupied state of the SSH model. Red and

orange lines show the first and second components of the occupied state in

Eq. (3.3). (a,b) Under reality condition. The occupied state is anti-periodic for

(a) t = 0.7 whereas it is periodic for (b) t = 1.3. (c) In a smooth complex gauge

with ϕv(k) = k/2. The occupied state is smooth both for |t| < 1. From the

supplemental materials in Ref. [7].

occupied state, which is given by

|uv⟩ = eiϕv(k)
sign(k)

N(k)

t+ cos k −
√

(t+ cos k)2 + sin2 k

sin k

 , (3.3)

where ϕv(k) is an arbitrary overall phase factor and N(k) is a positive normal-

ization factor.

First, let us impose the reality condition on |uv⟩ over the whole 1D Brillouin
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zone by choosing the gauge eiϕv(k) = 1. Fig. 3.1(a) and (b) show the amplitudes

of the two components of |uv⟩ along the Brillouin zone when |t| < 1 an |t| > 1,

respectively. When |t| > 1, the real wave function is smooth and continuous

over the entire 1D Brillouin zone, and thus w1 = 0. In contrast, the real wave

function is discontinuous at the Brillouin zone boundary at k = ±π when |t| < 1,

although it is smooth over −π < k < π. Then at the boundaries k = ±π, the

wave function should be glued with an orientation-reversing transition function.

This demonstrates that the occupied state is non-orientable, and thus w1 = 1.

On the other hand, if the reality condition is relaxed by choosing ϕv(k) =

k/2, the occupied state becomes globally smooth in both |t| < 1 and |t| > 1

cases. [See Fig. 3.1(c), (d).] However, the discontinuity of the real wave function

for |t| < 1 manifests as a π Berry phase of the corresponding smooth complex

wave function. In this smooth complex gauge, one can easily show that A =

⟨uv|i∇k|uv⟩ = 1/2 and P1 =
∫ π
−π dkA/(2π) = 1/2 when |t| < 1. Similarly, we

find P1 = 0 when |t| > 1. This example clearly demonstrates that w1 = 1

(w1 = 0) in a real gauge is equivalent to the π Berry phase (0 Berry phase) in

a smooth complex gauge.

3.2 2D Dirac semimetal

In 2D, the gap-closing condition in Eq. (3.1) can be satisfied by tuning two

momenta kx and ky for given m, which indicates that a semimetal with point

nodes is stable in general. When m is also treated as a tuning parameter, the

number of variables (kx, ky, m) becomes larger than the number of equations in

Eq. (3.1), which predicts a line of gapless solutions in the 3D parameter space

(kx, ky, m). Physically, this indicates an insulator-semimetal transition acrosss

the band crossing generating a stable 2D Dirac semimetal phase.
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Figure 3.2 (Color online) (a) Evolution of the band structure of a 2D noncen-

trosymmetric system with IST symmetry as a tuning parameter m increases.

(b) Trajectories of 2D Weyl points in the intermediate semimetal phase as m

increases. ⊙ and ⊗ are the locations where pair creation and pair annihilation

happen. From the supplemental materials in Ref. [6].

The stability of the Dirac points in the resulting Dirac semimetal phase can

be understood in the following way. Since the Berry curvature Fxy(k) transforms

to −Fxy(k) under IST, Fxy(k) vanishes locally unless there is a singular gapless

point, which leads to the quantization of π Berry phase around a 2D Dirac

point, which, at the same time, guarantees its stability [?,?,?, 5]. In terms of

real wave functions, discontinuous real wave functions along a loop encircling

an odd number of Dirac points cannot be adiabatically connected to smooth

real wave functions along a loop encircling an even number of Dirac points,

which again indicates the stability of Dirac points.

After the discovery of graphene, it has been well-known that a stable 2D

Dirac point can exist in PT -symmetric 2D spinless fermion systems. However,

in this system, it is also known that the Dirac point becomes unstable once

spin-orbit coupling is turned on. Therefore finding a Dirac point stable in the

presence of spin-orbit coupling was an interesting open question. One interesting
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idea proposed in Ref. [28,29] is to use the nonsymmophic crystalline symmetry

which protects four-fold degenerate Dirac points at the corners of the Brillouin

zone in 2D centrosymmetric systems.

On the other hand, in the case of 2D noncentrosymmetric systems, C2zT

symmetry can protect Dirac points with two-fold degeneracy whose location

can be anywhere in the Brillouin zone [5]. One can call a gap-closing point with

two-fold degeneracy as a 2D Weyl point, which is distinguished from four-fold

degenerate Dirac points in centrosymmetric systems. As long as the inversion

is broken, and thus the spin splitting occurs at a generic momentum, the above

description in Eq. (1.3) based on 2 × 2 matrix is still valid in C2zT symmetric

noncentrosymmetric systems with spin-orbit coupling. In fact, near the critical

point m = mc1 for the insulator-semimetal transition, the Hamiltonian can

generally be written as

H(q) = (Aq2x +mc1 −m)σx + vqyσz, (3.4)

which describes a gapped insulator (a 2D semimetal) when m < mc1 (m > mc1)

assuming A > 0. Due to T symmetry, accidental band crossing happens at

two momenta ±k. Since two Weyl points are created at each band crossing

point, the semimetal phase has four Weyl points in total. Moreover, when m

becomes larger than mc1, four Weyl points migrate in momentum space, and

eventually, they are annihilated pairwise at another critical point m = mc2.

Interestingly, when pair creation/pair annihilation is accompanied by a partner-

switching between the Weyl point pairs, the two gapped phases mediated by

the Weyl semimetal should have distinct topological property [6]. Namely, if one

gapped phase is a normal insulator, the other one should be a 2D quantum spin

Hall insulator as shown in Fig. 3.2. This theory predicts that the topological

phase transition in HgTe/CdTe heterostructrue [30, 31] should be mediated by

20



a 2D Weyl semimetal phase inbetween. Indeed, the pair creation of 2D Weyl

points across an insulator-semimetal transition was experimentally observed in

few-layer black phosphorus under vertical electric field [32]. The condition for

accidental band crossing in 2D noncentrosymmetric systems was systematically

classified by considering 2D layer group in Ref. [33].

3.3 3D nodal line semimetals

In 3D, the gap-closing condition in Eq. (3.1) can be satisfied by tuning three

momenta kx, ky, kz for given m, which indicates that a semimetal with line

nodes is stable in general. When m is also treated as a tuning parameter, since

the number of variables (kx, ky, kz, m) is four while the number of equations

in Eq. (3.1) is two, a 2D sheet of gapless solutions exists in the 4D parameter

space of (kx, ky, kz, m). This indicates an insulator-semimetal transition acrosss

the band crossing generating a stable 3D nodal line (NL) semimetal. As in the

case of 2D Dirac semimetals discussed above, the stability of nodal lines in

this class of nodal line semimetals (NLSMs) is guaranteed by w1 or π Berry

phase defined on a closed loop encircling a line node. NLSMs in IST-symmetric

systems were proposed in various materials [34–39]. Recent developments in the

study of NLSMs are extensively reviewed in Ref. [40] where NLSM whose band

degeneracy is protected by other symmetries such as mirror or nonsymmorphic

symmetries are also systematically reviewed.
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Chapter 4

Second Stiefel-Whitney class and
3D nodal line semimetals with
monopole charge

Here we describe the properties of topological NLSM in 3D whose nontrivial

topology is characterized by the second Stiefel-Whitney class. We first show that

the Z2 monopole charge of a NL defined on the wrapping sphere is equivalent to

the second Stiefel-Whitney number w2. Based on this equivalence, we apply the

mathematical property of the second Stiefel-Whitney class to the problem of

3D nodal line semimetals, and predict the fundamental topological properties

of the nodal line semimetals with Z2 monopole charges.

4.1 Second Stiefel-Whitney number and Z2 monopole

charge of nodal lines

In 3D PT -symmetric spinless fermion systems, an accidental band crossing

described by the 2× 2 effective Hamiltonian in Eq. (1.3) generates a nodal line
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that is locally stable due to π Berry phase as discussed before. However, even

in the presence of π Berry phase, it is still allowed to deform a single nodal loop

into a point node, which eventually disappears leading to a gapped insulator

as shown in Fig. 4.1(a). Since an annihilation of a single nodal line is allowed,

such a nodal line obviously carries a zero monopole charge.

(a) (b)
k
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k
z

E

k
z

k
z

Figure 4.1 Stabilty of nodal lines in 3D PT -symmetric spinless fermion systems.

(a) A Z2 trivial nodal line can be gapped via band re-inversion. (b) A nodal

line carrying Z2 monopole charge cannot be gapped alone. From Ref. [24].

However, recently it has been proposed that there is another type of nodal

lines carrying Z2 monopole charge (monopole nodal line) [40]. A single monopole

nodal line cannot be gapped and thus stable. To annihilate a monopole nodal

line, one needs to introduce another monopole nodal line, and then the nodal

line pair can be pair annihilated. To describe a monopole nodal line, one needs

to go beyond the two-band description given in Eq. (1.3) and consider at least

a four-band Hamiltonian. For instance, let us consider the following real four-

band Hamiltonian

H(k) = kxΓ1 + kyΓ2 + kzΓ3 +mΓ15, (4.1)

where Γ(1,2,3) = (σx, τyσy, σz), Γ15 = τzσz, and τx,y,z and σx,y,z are the Pauli ma-
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trices. The energy eigenvalues are E = ±
√
k2x + (ρ± |m|)2 where ρ =

√
k2y + k2z .

One can see that the conduction and the valence bands touch along the closed

loop satisfying kx = 0 and ρ = |m|. This nodal line carries a nonzero monopole

charge, which can be confirmed by directly computing the monopole charge.

Let us note that once the reality condition is imposed, only three Gamma ma-

trices, Γ1,2,3 shown above, six matrices Γab (a = 1, 2, 3; b = 4, 5), and I can

appear in H(k). The presence of three real Gamma matrices, which mutually

anticommutes, indicates that a 3D massless Dirac fermion can exist in this sys-

tem [?,41]. The Dirac point is stable against the gap opening because the mass

terms associated with Γ4,5 are forbidden. However, the six real matrices Γab can

deform the Dirac point into a nodal line while keeping the system gapless.

Moreover, there is another intriguing nodal structure in the bands that the

Hamiltonian in Eq. (4.1) describes. That is, the occupied bands also cross and

form another nodal line at ρ = 0 (NL∗), which is linked with the monopole

nodal line [7]. Because of this linking, the monopole nodal line is stable and

distinct from trivial NLs. As m → 0, the linking requires that the monopole

nodal line becomes a four-fold degenerate Dirac point as shown in Fig. 4.1 (b).

If m becomes finite after its sign-reversal, the size of the monopole nodal line

increases again. A single monopole nodal line cannot be gapped and only a pair

of monopole nodal lines can be created or annihilated across the band inversion.

Now let us illustrate the mechanism for the pair creation of monopole nodal

lines, which is a sequence of band inversions described in Fig. 4.2(a), dubbed

a double band inversion (DBI) [7, 42]. For concreteness, we describe a DBI

by using the Hamiltonian in Eq. (4.1) after the replacement kz → |k|2 −M .

The evolution of the band structure during the DBI is illustrated in Fig. 4.2

(a) as a function of the parameter M . As M is increased from M < −|m|,

the first band inversion occurs at M = −|m| between the top valence and
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Figure 4.2 Pair creation of nodal lines carrying Z2 monopole charge (monopole

nodal lines) via a double band inversion (DBI). (a) Evolution of band structure

during DBI. Red (Orange) points and lines indicate the crossing between the

conduction and valence bands (two occupied bands). (b) Saddle-shaped band

structure when 0 < M < |m|. (c) Change in nodal line structure when two

saddle-shaped bands cross. From the supplemental materials in Ref. [7].

bottom conduction bands, and it creates a trivial NL protected by π Berry

phase. Then, the inversion at M = 0 between the two occupied (unoccupied)

bands generates another NL below (above) the Fermi level, which we call NL∗.

After this band inversion, the band structure near k = 0 develops saddle-shape
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around the Fermi energy as shown in Fig. 4.2(b). Another consecutive band

inversion at M = |m| between the two saddle-shaped bands induces a Lifshitz

transition as shown in Fig. 4.2(c), during which the trivial NL splits into two

monopole nodal lines, which are linked by the NL∗ that are formed from the

occupied bands. During DBI, each occupied (unoccupied) band crosses both of

two unoccupied (occupied) bands, which is the reason why the minimal number

of bands required to create a monopole nodal line is four.

Now let us discuss the equivalence between the second Stiefel-Whitney num-

ber w2 and the Z2 monopole charge of a nodal line. The equivalence follows from

the fact that the nontrivial Z2 monopole charge forbids the existence of the spin

structure on a sphere enclosing the nodal line. Let us first briefly review the

idea of the Z2 monopole charge that is defined over a sphere enclosing a nodal

line [40]. For this, we divide the wrapping sphere into two patches, each cov-

ering the northern (N) or the southern (S) hemispheres which overlap along

the equator. |uNn (k)⟩ and |uSn(k)⟩ are real wave functions defined smoothly on

the northern and the southern hemispheres, respectively. On the overlapping

region, |uNn (k)⟩ and |uSn(k)⟩ are related by a transition function tNS in a way

that |uSn(k)⟩ = tNSmn(k) |uNm(k)⟩ for k ∈ N∩S. The Z2 monopole charge is defined

by the winding number of the transition function [40]. We restrict the transi-

tion function to SO(Nocc), which is possible because every loop on a sphere is

contractible to a point, that is, the corresponding first Stiefel-Whitney number

is trivial. Then we see that the winding number of tNS along a loop in N ∩ S

gives a Z2 number because π1(SO(Nocc)) = Z2 for Nocc > 2. This Z2 number

is nothing but the Z2 monopole charge. When the number of occupied bands

is two, the winding number is integer-valued because π1(SO(2)) = Z. In this

case, the Z2 monopole charge is given by the parity of the winding number.

Interestingly, this Z2 monopole charge also characterizes the obstruction to
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having a spin structure over the wrapping sphere. For simplicity, let us take a

gauge where the transition function tNS(k) is an identity at some k = k0 ∈

N ∩ S. Then, the transition function undergoes a 4πN rotation (2π(2N + 1)

rotation) for an integer N along a loop containing k0 in N ∩ S when the Z2

monopole charge is trivial (nontrivial). This is because the homotopy group

π1(SO(Nocc)) is generated by the paths representing 2πN rotation [26,43] and

the Z2 monopole charge indicates the parity of the relevant winding number.

While the 2π rotation and the identity are identical in SO(Nocc), they are not

identical in Spin(Nocc). Therefore, the transition function is well-defined over

the overlap N ∩ S only as a SO(Nocc) element when the Z2 monopole charge

is nontrivial. On the other hand, no obstruction arises when the Z2 monopole

charge is trivial because a 4π rotation is identical to the identity element even

as a Spin(Nocc) element. Thus, the Z2 monopole charge is identical to the sec-

ond Stiefel-Whitney number over the enclosing sphere. This equivalence can be

proved more rigorously by using the mathematical definition given in Eq. (2.12),

(2.13) after suitable deformation of the patches and related transition functions

as shown in Ref. [7]

4.2 Whitney sum formula and linking of nodal lines

Since the equivalence between the Z2 monopole charge and the second Stiefel-

Whitney number w2 has been established, one can use the mathematical prop-

erties of Stiefel-Whitney numbers to understand the physical properties of

monopole nodal lines. One important mathematical property of Stiefel-Whitney

numbers is the so-called Whitney sum formula, which provides the rule for de-

termining the total second Stiefel-Whitney number of blocks of bands from w1

and w2 of each block. Using the Whitney sum formula, one can show that w2
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of nondegenerate occupied bands can be expressed by the Berry connection as

w2 =
∑
n<m

1

π2

∮
T 2

dS ·An ×Am. (4.2)

This is the central equation to be used to relate w2 and the linking structure,

which is a unique characteristic of monopole nodal lines.

To explain the Whitney sum formula, let us suppose that the set of the

occupied bands B can be decomposed into a direct sum of n subsets.

B =
⊕
i

Bi = B1 ⊕ B2...⊕ Bn. (4.3)

Here the direct sum indicates that one can find a basis in which the transition

function can be block-diagonal over all the overlapping regions A ∩B between

two patches A and B. This is equivalent to the condition that each block is

isolated from the other blocks by band gaps, because energetically isolated

bands cannot be connected by transition functions. Explicitly, the Whitney

sum formula is given by [10,44]

w2 (⊕iBi) =
∑
i

w2(Bi) +
∑
i<j

1

π2

∮
M
dS ·Ai ×Aj , (4.4)

where M indicates a closed 2D manifold and Ai =
∑

n∈Bi ⟨unk|i∇k|unk⟩ is the

Berry connection for the i-th block which is calculated in a smooth complex

gauge. On a torus, the second term in Eq. (4.4) can be expressed as∮
T 2

dS ·Ai ×Aj = Φi,ϕΦj,θ − Φi,θΦj,ϕ (4.5)

where Φi,ψ =
∮
Ai,ψdψ is the Berry phase of the i-th block computed on the

non-contractible cycle along the ψ = θ or ϕ direction. Because the Berry phase

Φ in a smooth complex gauge is the first Stiefel-Whitney number w1 in a real
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gauge, the Berry phase Φi,ψ in Eq. (4.5) can be replaced by πw1(Bi) leading to

w2 (⊕iBi) =
∑
i

w2(Bi)

+
∑
i<j

[
wϕ1 (Bi)wθ1(Bj) − wθ1(Bi)wϕ1 (Bj)

]
, (4.6)

which is valid on a torus M = T 2.

One important physical implication of the Whitney sum formula given in

Eq. (4.6) is that it reveals the linking structure of a monopole nodal line at the

Fermi level with other nodal lines below the Fermi level. Since w2 is equivalent

to the Z2 monopole charge of a nodal line, the relation between w2 and the

linking number of a nodal line also provides the equivalence of the Z2 monopole

charge of a nodal line to its linking number modulo two.

To show the relation between the w2 and the linking number, let us con-

sider a sphere enclosing a nodal line γ1 at the Fermi level. w2 defined on

the sphere is identical to the Z2 monopole charge of the nodal line γ1. Now

we smoothly deform the sphere into a torus while keeping the energy gap fi-

nite during the deformation. Then, w2 computed on the sphere and the torus

should be the same. If the torus T 2 wrapping γ1 is thin enough, all the occu-

pied bands can become non-degenerate everywhere on the torus. Then, because

the w2 of a non-degenerate band is zero, the Whitney sum formula becomes

w2 =
∑

n<m
1
π2

∮
T 2 dS ·An ×Am, where An = ⟨unk|i∇k|unk⟩ is the Berry con-

nection for the nth topmost occupied band, and n and m run over the occupied

bands.

By noting that the quantization condition of the Berry phase,
∮
C An = π or

0, resembles the Ampere’s law in electromagnetics, one can solve the equation

and get a solution analogous to the Bio-Savart law. Explicitly, let us start from

the differential form representing the quantization of the Berry phase, which is
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Figure 4.3 A torus T 2 wrapping the nodal line γ1 in the Brillouin zone. T 2

is thin enough so that it does not intersect any other band degeneracies. Red

lines (γ1 and γ6) are lines of touching between the conduction and valence band.

Orange (γ3 and γ4) and green (γ2 and γ5) lines are lines of touching between

the first and the second topmost occupied band and between the second and

the third topmost occupied band, respectively. Only the linking between γ1 and

γ3 is protected as it generates the nontrivial second Stiefel-Whitney number on

T 2, whereas the linking between γ1 and γ5 is not protected [See Eq. (4.11)].

From the supplemental materials in Ref. [7].

similar to the differential form of the Ampere’s law,

∇k ×An(k) =
∑
i

Iin

∮
γi

dkiδ
3(k− ki), (4.7)
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which gives

An(k) =
1

4π

∑
i

∮
γi

Iindki × (k− ki)

|k− ki|3
, (4.8)

where γi’s are lines of band touching points, and Iin = π if the line γi generates

the Berry phase on nth band whereas Iin = 0 otherwise.

By using this formula of the Berry connection, we have

1

π2

∮
T 2

dS ·An ×Am =
∑
γj

(
δ1n

Ijm
π

− δ1m
Ijn
π

)
Lk(γ1, γj), (4.9)

where n and m are band indices, so that n = 1 or m = 1 indicate the topmost

occupied band. j labels nodal lines, and

Lk(γi, γj) =
1

4π

∮
γi

∮
γj

dki × dkj · (ki − kj)

|ki − kj |3
, (4.10)

is the Gauss’ linking integral of the closed lines γi and γj . This eventually leads

to

w2(T
2) =

∑
γ̃j

Lk(γ1, γ̃j), (4.11)

where γ̃j ’s are nodal lines formed between the first and second topmost occupied

bands. The implication of Eq. (4.11) is clear. For convenience, let us suppose

that there is one nodal line γ1 at the Fermi level and another nodal line γ̃ below

the Fermi level. If the monopole charge of γ1 is one, γ1 and γ̃ should be linked.

On the other hand, if the monopole charge of γ1 is zero, γ1 and γ̃ are unlinked.

This relation between the Z2 monopole charge and linking number also explain

why the minimal model Hamiltonian describing monopole nodal line should be

at least a 4×4 matrix. Since a monopole nodal line should be linked with other

nodal lines below the Fermi level, there should be at least two occupied bands

below the Fermi level.
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4.3 Computation of w2 by using Wilson loop method

(b) θ

�

π

π0-π

-π

B A

C D

B
Cθ

�

A

(a)

Figure 4.4 Patches covering a sphere and a torus. Wilson loop operators are

calculated along the red arrows. (a) Sphere covered with three patches which

overlap on ϕ = 0, ϕ = π/2, and ϕ = π. (b) Torus covered with four patches. ϕ

and θ are 2π-periodic. Transition functions are taken to be nontrivial only over

θ = 0 and ϕ = 0 lines. From the supplemental materials in Ref. [7].

Let us explain how the second Stiefel-Whitney number w2 can be computed

by using the Wilson loop method. The Wilson loop operator is defined by [?,

45, 46]

W(ϕ0+2π,θ)←(ϕ0,θ) = lim
N→∞

FN−1FN−2...F1F0, (4.12)

where (ϕ, θ) parametrizes a 2D subspace of the 3D Brillouin zone or the 2D

Brillouin zone itself, and Fj is the overlap matrix at ϕj = ϕ0 + 2πj/N whose

matrix elements are given by [Fj ]mn = ⟨umϕj+1
|unϕj ⟩, and ϕN = ϕ0. As shown

below, the homotopy class of the Wilson loop operator gives the second Stiefel-

Whitney number in a special gauge known as the parallel-transport gauge [47].
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In practice, the homotopy class can be simply obtained by looking at the spec-

trum of the Wilson loop operator. It is given by the parity of the number of

spectral crossing at Θ = π, where Θ indicates the phase eigenvalue of the Wilson

loop operator.

First, let us consider a sphere in the Brillouin zone, which is covered by three

patches A, B, and C whose overlaps A ∩C, C ∩B, and B ∩A are at ϕ = π/2,

ϕ = π, and ϕ = 2π, respectively, for all 0 ≤ θ ≤ π [See Fig. 4.4(a)]. Here ϕ and θ

are the azimuthal and the polar angles of the sphere. Real occupied states |unk⟩

are smooth within each patch. The Wilson loop operator W0(θ) ≡W(2π,θ)←(0,θ)

is then

W0(θ) = ⟨uA(0, θ)|uB(2π, θ)⟩W(2π,θ)←(π,θ)

⟨uB(π, θ)|uC(π, θ)⟩W(π,θ)←(π/2,θ)

⟨uC(π/2, θ)|uA(π/2, θ)⟩W(π/2,θ)←(0,θ)

=tAB(θ)Pe−i
∫ 2π
π dϕ′AB

ϕ (θ,ϕ′)

tBC(θ)Pe−i
∫ π
π/2 dϕ

′AC
ϕ (θ,ϕ′)

tCA(θ)Pe−i
∫ π/2
0 dϕ′AA

ϕ (θ,ϕ′), (4.13)

where we used that W(θ,ϕ2)←(θ,ϕ1) = Pe−i
∫ ϕ2
ϕ1

dϕ′Aϕ(θ,ϕ
′)

when the states |un(ϕ,θ)⟩

are smooth for ϕ1 < ϕ < ϕ2, and Anm,ϕ = ⟨um(θ,ϕ)|i∂ϕ|un(θ,ϕ)⟩ is the ϕ compo-

nent of the Berry connection. Here P indicates that the integral is path-ordered.

If we take the parallel-transport gauge, which is defined by

|uAp,n(ϕ,θ)⟩ =
[
Pe−i

∫ ϕ
0 dϕ′AA

ϕ (θ,ϕ′)
]
mn

|uAm(ϕ,θ)⟩ ,

|uBp,n(ϕ,θ)⟩ =
[
Pe−i

∫ ϕ
π dϕ′AB

ϕ (θ,ϕ′)
]
mn

|uBm(ϕ,θ)⟩ ,

|uCp,n(ϕ,θ)⟩ =

[
Pe−i

∫ ϕ
π/2

dϕ′AC
ϕ (θ,ϕ′)

]
mn

|uCm(ϕ,θ)⟩ , (4.14)
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the Wilson loop operator is then

W0(θ) = Wp,0(θ) = tABp (θ)tBCp (θ)tCAp (θ), (4.15)

where Wp and tp are the Wilson loop operator and the transition function in

the parallel-transport gauge. It is worth noting that the Wilson loop operator

in parallel-transport gauge is given by the product of all the transition func-

tions along the ϕ cycle for given θ, which has the same form of Eq. (2.15).

Since W0(θ = 0, π) = 1 due to the consistency condition at triple overlaps, the

image of the map W0(θ) for θ ∈ [0, π] forms a closed loop. Then the second

Stiefel-Whitney number w2 is given by the parity of the winding number of

W0(θ) as explained in Sec.II.B, which can be obtained gauge invariantly from

its eigenvalues Θ(θ).

Fig. 4.5(a-d) shows four examples of Wilson loop spectra when Nocc = 2.

As Fig. 4.5(a) and (b) both have zero winding number, Fig. 4.5(a) can be

smoothly deformed to Fig. 4.5(b), and vice versa. It is possible as the crossing

point on Θ = 0 can be annihilated at the boundary θ = 0 or θ = π. However,

Fig. 4.5(b) cannot be adiabatically deformed to Fig. 4.5(c) or (d) because they

have different winding numbers.

Let us note that the parity of the winding number, which is equivalent to

the second Stiefel-Whitney number, is given by the parity of the number of

crossing points on Θ = π. Thus, we can get w2 by counting the number of the

crossing points on the line. This is also true when the number of occupied bands

is larger than two because the crossing points on Θ = π are stable even when

additional trivial bands are added.

While a single linear crossing point is locally stable on the line Θ = nπ

for any integer n, two linear crossing points on the same line may be pair-

annihilated. In fact, one important difference between Nocc = 2 and Nocc > 2
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cases is that a pair annihilation, which is forbidden in the former case, is always

possible in the latter case. In the case of two occupied bands, two linear crossing

points on the line Θ = π at θ = θ1 and θ = θ2 cannot be pair-annihilated if there

is a linear crossing point on the Θ = 0 line at θ = θ0 satisfying θ1 < θ0 < θ2

[See Fig. 4.5(d)]. This is because both of the eigenvalues are on Θ = 0, and no

eigenvalue exists on Θ = π at θ = θ0. Accordingly, the crossing points at θ1

and θ2 on Θ = π cannot be pair-annihilated because they can never reach the

polar angle θ0 which is between θ1 and θ2. On the other hand, such protection

mechanism does not exist when Nocc > 2 and a pair annihilation is always

possible on Θ = π as shown in Fig. 4.5(g,h). Hence, only the parity of the

winding number is topologically meaningful when Nocc > 2. This parity is the

second Stiefel-Whitney number w2 which can be determined by counting the

number of the crossing points on Θ = π.

For later use, let us briefly explain how the Wilson loop operator can be

computed on a torus and it is related with the second Stiefel-Whitney number.

Similar to the case on a sphere, the homotopy class of the Wilson loop opera-

tor W0(θ) determines the second Stiefel-Whitney number w2, gauge-invariantly

from the spectrum of W0(θ). Namely, w2 can be determined by counting the

number of the crossing points on Θ = π. The Wilson loop operator on a torus

can be related to the transition function as follows. Let us consider a torus

covered with four patches shown in Fig. 4.4(b). We take a gauge where transi-

tion functions are trivial over θ = π line. Also, we impose on θ = 0 that tAD

and tBC are the identity (constant orientation-reversing matrices) when the

occupied states are orientable (non-orientable) along θ. Then, we move to the
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parallel-transport gauge which is defined by

|uA/Dp,n(ϕ,θ)⟩ =

[
Pe−i

∫ ϕ
0 dϕ′A

A/D
ϕ (θ,ϕ′)

]
mn

|uA/Dm(ϕ,θ)⟩ ,

|uB/Cp,n(ϕ,θ)⟩ =

[
Pe−i

∫ ϕ
π dϕ′A

B/C
ϕ (θ,ϕ′)

]
mn

|uB/Cm(ϕ,θ)⟩ , (4.16)

where 0 ≤ ϕ ≤ π in the first line, π ≤ ϕ ≤ 2π in the second line. In this gauge,

the Wilson loop operator is given by the product of all the transition functions

existing in the ϕ direction for given θ as

W0(θ) =


tABp (0, θ)tBAp (π, θ) for 0 ≤ θ ≤ π,

tDCp (0, θ)tCDp (π, θ) for π ≤ θ ≤ 2π.

(4.17)

Here W0(θ) is smoothly defined in the range 0 ≤ θ < 2π, but its periodic

boundary condition is nontrivial:

W0(2π) = (tADp (0, 0))−1W0(0)tADp (0, 0), (4.18)

where we used that tADp (ϕ, 0) = tAD(0, 0) and tBCp (ϕ, 0) = tBC(π, 0) are inde-

pendent of ϕ. Let us note that since the transition function is assumed to be

trivial over the θ = π line, tADp (0, 0) determines the orientability along the θ

direction. Then Eq. (4.18) means that the orientability along the θ direction

constrains the Wilson loop eigenvalues along the θ direction. This information is

important to understand the Wilson loop spectrum defined on the 2D Brillouin

zone torus as discussed in Sec.V.A. More details for the relationship between

the homotopy class of the Wilson loop operator and the mathematical definition

of the second Stiefel-Whitney number on a torus is given in Ref. [7].

4.4 Candidate Materials

In Ref. [7], based on first-principles calculations, ABC-stacked graphdiyne is

proposed to realize monopole nodal lines with the linking structure. ABC-
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stacked graphdiyne refers to an ABC stacking of 2D graphdiyne layers composed

of sp2-sp carbon network of benzene rings connected by ethynyl chains. [See

Fig. 4.6(c).] Nomura et al. [48] theoretically proposed ABC-stacked graphdiyne

as a nodal line semimetal, and later Ahn et al. [7] found that it belongs to

the monopole nodal line phase, characterized by the nontrivial second Stiefel-

Whitney number. Consistent with Ref. [48], nodal lines occur off the high-

symmetry Z point of the Brillouin zone. While the electronic band structure

displays direct band gap along the high-symmetry lines as shown in Fig. 4.6(d),

close inspection throughout the entire Brillouin zone reveals that the valence

and conduction bands touch each other along a pair of closed nodal lines col-

ored in red in Fig. 4.6(e). Additionally, the two topmost occupied bands form

another nodal line [the orange line in Fig. 4.6(e)], which pierces the red nodal

lines, manifesting the proposed linking structure. Moreover, it is shown that

strain can induce a topological phase transition from the nodal line semimetal

phase with monopole nodal lines to a 3D weak Stiefel-Whitney insulator. The

pair of the monopole nodal lines appearing near the Z point fuse together and

pair annihilate at the ∼ 3 % of tensile strain, when strain is applied along

the out-of-plane (z) direction to 3D ABC graphdiyne with the rest of the lat-

tice parameters fixed at the values obtained without strain. It is found that

in the resulting insulator, any 2D slice in the momentum space with fixed kz

has w2 = 1, which confirms the 3D weak Stiefel-Whitney insulator phase of 3D

graphdiyne under a tensile-strain.

Let us briefly mention the influence of time-reversal symmetry breaking

and spin-orbit coupling. When time-reversal symmetry is broken due to ef-

fective Zeeman effect, a monopole nodal line semimetal turns into an axion

insulator with quantized magnetoelectric polarizability as shown in Ref. [7]. On

the other hand, when spin-orbit coupling is not negligible, a monopole nodal
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line semimetal becomes a higher-order topological insulator with helical hinge

states [18]. These examples clearly show that monopole nodal line semimetal

materials can be considered as a parent state leading to various novel topological

insulators under suitable conditions.
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Figure 4.5 Wilson loop spectra on a sphere. The Wilson loop operator is calcu-

lated along the azimuthal direction with a fixed polar angle θ. (a-d) When the

number of occupied bands Nocc is two. The winding number is (a,b) zero, (c)

one, and (d) two. (b) can be adiabatically deformed to (a) as we push the cross-

ing point on Θ = 0 out of the boundary at θ = 0 or θ = π. (e-h) When Nocc = 3

or Nocc = 4. (e) has a flat spectrum on Θ = 0 in addition to (c). Adding a small

perturbation to (e) does not deform the spectrum when Nocc = 3, while it de-

forms the spectrum to (f) when Nocc = 4. (g) and (h) shows the Z2 nature of the

Wilson loop spectrum for Nocc = 3 and Nocc = 4, respectively. Blue lines in (g)

and (h) are obtained after adding one and two flat bands to (d), respectively,

whereas red lines are the spectrum after adding a PT -preserving deformation

which eliminates non-protected crossing points. The crossing points on Θ = π

can always be pair-annihilated after this deformation. From the supplemental

materials in Ref. [7].
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Figure 4.6 (a) Band structure near a nodal line with zero Z2 monopole charge.

(b) Band structure near a nodal line carrying a unit Z2 monopole charge

(monopole nodal line) linked with another nodal line below the Fermi level

(EF ). (c) Atomic structure of ABC-stacked graphdiyne. (d) Band structure

of ABC-stacked graphdiyne where thick orange lines indicate degenerate nodal

lines above and below EF . (e) The shape of two monopole nodal lines (red loops)

at EF (E = 0) linked with a nodal line below EF (yellow line) in ABC-stacked

graphdiyne. From Ref. [7].
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Chapter 5

Stiefel-Whitney insulators in 2D
and 3D

Up to now, we have considered w2 defined on a sphere or a torus enclosing a

nodal line, which is embedded in 3D momentum space. In this section, we con-

sider w2 as a topological invariant that classifies 2D IST-symmetric insulators,

in which w2 is defined on the entire 2D Brillouin zone torus.

5.1 Second Stiefel-Whitney number on a torus

2D IST-symmetric insulators can be characterized by the Wilson loop spectrum

on the 2D Brillouin zone. The 2D Brillouin zone can be viewed as a 2D torus,

parametrized by two periodic cycles (ϕ, θ) = (kx, ky) along which occupied

states may be non-orientable, contrary to the case on a sphere where occupied

states are always orientable. If the Wilson loop operator is calculated along a

non-orientable cycle, its spectrum cannot reveal the topological property due

to the possible flat spectra existing on the Θ = 0 and Θ = π lines. For this
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reason, we only consider Wilson loop operators calculated along the orientable

cycles below. More subtle issues related with the non-orientability is discussed

in detail in Ref. [7]

Fig. 5.1 shows the Wilson loop spectra computed on a 2D torus. As discussed

before, the second Stiefel-Whitney number on a torus indicates whether the

Wilson loop operator can be continuously deformed to the identity operator or

not, modulo an even number of winding on non-contractible cycles. Accordingly,

the parity of the number of crossing points on Θ = π gives the second Stiefel-

Whitney number as it does on a sphere. For example, w2 = 0 in Fig. 5.1(a,b,f),

and w2 = 1 in Fig. 5.1(c,d,e,g,h).

What makes the Wilson loop spectrum on a torus distinct from that on a

sphere is the boundary condition of the Wilson loop operator. While W = 1 at

θ = 0 and π on a sphere, the periodic boundary condition in Eq. (4.18) should

be satisfied on a torus. Because the boundary condition on a torus does not

require that all eigenvalues are degenerate at the end-points on Θ = 0, an odd

number of the crossing points on Θ = π does not necessarily mean that the

eigenvalues wind as shown in Fig. 5.1(d,e,g,h). Moreover, when Nocc is even,

crossing points on Θ = 0 are protected not only locally but also globally. As

crossing points are protected on both Θ = 0 and π, there are three distinct

topological phases characterized by an odd number of crossing points i) only on

Θ = 0, ii) only on Θ = π, and iii) on both Θ = 0 and Θ = π. On the other hand,

when Nocc is an odd integer, the crossing points on Θ = 0 are not protected

due to the flat spectrum.

When Nocc is even, there are four distinct types of Wilson loop spectra. For

instance, Fig.5.1(a-d) correspond to the Nocc = 2 case. Because a crossing point

on Θ = 0 is topologically stable, the spectrum in Fig. 5.1(a) and (b) [(c) and

(d)] is distinct although w2 = 0 [w2 = 1] in both cases. In fact, they can be
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distinguished by the first Stiefel-Whitney number along θ (w1,θ). To understand

this, let us recall the periodic boundary condition for the Wilson loop operator

shown in Eq. (4.18),

W (2π) = M−1W (0)M, (5.1)

where detM = −1 when w1,θ = 1, in the parallel-transport gauge defined

before. When Nocc = 2 and detM = −1, it becomes

exp(iΘ(2π)σy) = M−1 exp(iΘ(0)σy)M

= exp(−iΘ(0)σy), (5.2)

which shows that eigenvalues are interchanged as θ goes from 0 to 2π such that

an odd number of crossing points occur. As a Wilson loop operator can be diag-

onalized into 2×2 blocks, this applies to any case with even Nocc. For instance,

three distinct topological phases when Nocc = 4 are shown in Fig. 5.1(f,g,h)

which corresponds to (w1,θ, w2) = (1, 0), (0, 1), and (1, 1), respectively.

It is worth noting that w2 and the corresponding Wilson loop spectrum

may change depending on the unit cell choice when w1,θ = 1. Notice that the

spectrum in Fig. 5.1(b) and (d) differ by a constant shift by π while they have

different second Stiefel-Whitney numbers. The same is true for Fig. 5.1(f) and

(h). To understand the origin of such unit cell dependence, let us use (kx, ky)

to parametrize the Brillouin zone. Since the eigenstates of the Wilson loop

operator calculated along kx are Wannier states localized in the x-direction and

the Wilson eigenvalues are Wannier centers, Fig. 5.1(b) and (d) (also (f) and

(h)) indicate that a uniform shift of the Wannier centers changes the second

Stiefel-Whitney number. In other words, the second Stiefel-Whitney number

can be changed if the unit cell is shifted by a half lattice constant. Therefore,

w2 becomes a well-defined topological invariant only when w1 = 0. The insulator

43



with w2 = 1 and w1 = 0 can be called a 2D Stiefel-Whitney insulator, which is

an example of higher order topological insulators. In particular, the 2D Stiefel-

Whitney insulator has fragile band topology when Nocc = 2 as explained in the

following section.

5.2 Second Stiefel-Whitney number when Nocc = 2:

Euler class, fragile topology, and corner charges

Although the general integral form of w2 is not known, an integral form of

w2 can be found in some special cases. In particular, when Nocc = 2 and the

occupied bands are orientable, w2 is identical to the parity of the Euler invariant

e2. The Euler invariant e2 is an integer topological invariant for two real bands

which can be written as a simple flux integral form [9,10,41],

e2 =
1

2π

∮
BZ

dS · F̃12, (5.3)

where F̃mn(k) = ∇k × Ãmn(k) and Ãmn(k) = ⟨ũm(k)|∇k|ũn(k)⟩ (m,n = 1, 2)

are 2 × 2 antisymmetric real Berry curvature and connection defined by real

states |ũn(k)⟩. It is invariant under any SO(2) gauge transformation, which has

the form O(k) = exp[−iσyϕ(k)] and satisfies det[O(k)] = 1. On the other hand,

under an orientation-reversing transformation with det[O(k)] = −1, which has

the form O(k) = σz exp[−iσyϕ(k)], e2 changes its sign. Therefore, the Euler

class is well-defined only for orientable real states, that is, the states associated

only with O(k) with a unit determinant.

The flux integral form of e2 can be connected to transition functions in the

following way. To show this relation, let us notice that the 2D Brillouin zone

can be deformed to a sphere when the real states are orientable along any non-

contractible one-dimensional cycles as far as the topology of the real states is

concerned. Then the sphere can be divided into two hemispheres, the northern
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(N) and southern (S) hemispheres, which overlap along the equator. Along the

equator, the real smooth wave functions |ũN ⟩ and |ũS⟩ defined on the northern

and southern hemispheres, respectively can be connected by a transition func-

tion tNS = ⟨ũN |ũS⟩ = exp[−iσyϕNS ] ∈ SO(2). It is straightforward to show

that

e2 =
1

2π

∮
S2

dS · F̃12

=
1

2π

∫
N
dS · F̃12 +

1

2π

∫
S
dS · F̃12

=
1

2π

∮
S1

dk ·
(
ÃN,12 − ÃS,12

)
=

1

2π

∮
S1

dk · ∇kϕNS , (5.4)

where S1 indicates the circle along the equator. Therefore the Euler class e2 is

identical to the winding number of the transition function tNS . Let us note that

Eq. (5.4) is also equivalent to the definition of the monopole charge module two,

and thus its parity is equivalent to w2 according to the discussion in Sec.IV.A.

One physical consequence resulting from a nonzero Euler invariant e2 is

the existence of anomalous corner charges. The presence of corner charges can

be understood in terms of the effective Hamiltonian for boundary states [18].

Here let us briefly explain the idea. Suppose that a two-dimensional system

is composed of two quantum Hall insulators with Chern numbers c1 = 1 and

c1 = −1, respectively, which are related to each other by IST. This system is an

Euler insulator with e2 = 1, which can be confirmed by the winding pattern of

the Wilson loop spectrum. In this particular limit of the Euler insulator, two

counter-propagating chiral edge states exist. The edge states are fully gapped

after two IST-symmetric mass terms m1 and m2 are added. Each of the two

mass terms has 4Ni=1,2 + 2 zeros due to the IST symmetry condition m1,2(θ) =

−m1,2(−θ), where θ denotes the angular coordinate of the circular boundary
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of a disk-shaped finite-size system, and Ni=1,2 are non-negative integers. The

band gap of the edge spectrum 2m = 2
√
m2

1 +m2
2 is nonzero because m1 and

m2 do not vanish simultaneously in general. However, when there is additional

chiral symmetry, only one mass term, which we take here as m1, remains, so the

edge band gap closes at 4N1 + 2 points. As the points of zero mass are domain

kinks, charges are localized there. The corner charges are robust because they

are energetically isolated from the bulk bands. Even when chiral symmetry is

broken, the corner charges remain localized as long as they are in the bulk

gap [49].

The band topology associated with the nonzero Euler class is fragile. Namely,

the Wannier obstruction of an Euler insulator with e2 ̸= 0 disappears after ad-

ditional trivial bands are introduced below the Fermi level [14]. Although the

Euler class is defined only for two band systems, its parity still remains mean-

ingful even after additional trivial bands are introduced. Namely, if the Euler

class of the two-band model is even (odd), w2 of the system should remain zero

(one) after the inclusion of additional trivial bands [7]. Such a change of the

topological indices from Z to Z2 can also be observed from the variation of the

winding pattern in the Wilson loop spectrum when additional trivial bands are

added [7, 17].In fact, such fragility of the winding pattern in the Wilson loop

spectrum reflects the fragility of the Wannier obstruction [7, 16–18]. Although

the nontrivial second Stiefel-Whitney number (w2 = 1) does not induce a Wan-

nier obstruction when the number of bands is bigger than two, anomalous corner

states can still exist. Here the corner charges are induced by the configuration

of the Wannier centers constrained by the non-trivial second Stiefel-Whitney

number [14].

46



5.3 Topological phase transition mediated by monopole

nodal line, and 3D weak Stiefel-Whitney insulator

Since the second Stiefel-Whitney number determines not only the Z2 monopole

charge of a nodal line on its wrapping sphere but also the Z2 topological invari-

ant of a 2D Stiefel-Whitney insulator, an intriguing topological phase transition

mediated by monopole nodal lines can occur in 3D PT -symmetric systems. To

describe this, let us start with a sphere wrapping a monopole nodal line in mo-

mentum space, and deform it into two parallel 2D planes with fixed kz. Then

each 2D plane can be considered as a 2D subsystem with PT symmetry. Since

the monopole charge of the nodal line is identical to the difference of w2 of

these two planes, if w2 = 0 in one plane, w2 = 1 in the other plane. Armed

with this information, let us start from a 3D normal insulator and assume that

a pair of monopole nodal line is created at the Γ point by tuning a parameter

M . Then every 2D subspace with fixed kz has w2 = 1 when its kz lies between

the monopole nodal line pair whereas the other 2D subspaces with kz on the

other side of the Brillouin zone should have w2 = 0. After the two monopole

nodal lines are pair annihilated at the Brillouin zone boundary, one can expect

that every 2D slice of the Brillouin zone with fixed kz has w2 = 1, which is the

definition of a 3D weak Stiefel-Whitney insulator. This phase can be consid-

ered as a vertical stack of weakly interacting 2D Stiefel-Whitney insulators. In

general, a 3D weak Stiefel-Whitney insulator is characterized by three Stiefel-

Whitney numbers defined on kx = π, ky = π, and kz = π planes, respectively.

The three invariants encode the three stacking directions of 2D subsystems.

The invariants can be changed only when monopole nodal line pairs are created

and then annihilated at the Brillouin zone boundary after traversing the full

Brillouin zone, which is analogous to the topological phase transition between
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a 3D Chern insulator and a normal insulator mediated by Weyl points [50].

To demonstrate the topological phase transition, let us consider a lattice

regularization of Eq. (4.1),

H(k) =
3∑
i=1

fi(k)Γi + f15(k)Γ15, (5.5)

where f1 = 2 sin kx, f2 = 2 sin ky, f3 = M + 2(cos kx − 1) + 2(cos ky − 1) +

2r(cos kz−1), f15 = m, and r andm are positive constants. The energy spectrum

has a simple analytic form E = ±
√
f21 + (fρ ± |m|)2, where fρ =

√
f22 + f23 .

When r < 1 +m/2, an insulator-semimetal-insulator transition occurs as M is

varied. If we focus on r < 1 + m/2 and M < 4 − m, the system is a normal

insulator when M < −m, a 3D weak Stiefel-Whitney insulator when 4r+m <

M < 4 − m, and it is a semimetal having two monopole nodal lines when

−m < M < 4r + m. One can clearly see that two monopole nodal lines are

linked by the line of valence band degeneracy [See Fig. 5.2(a)]. The monopole

nodal lines are pair-created at (kx, ky, kz) = (0, 0, 0) and pair-annihilated at

(kx, ky, kz) = (0, 0, π) via a double band inversion as M increases from −m to

4r+m. To verify the change of topological properties, the corresponding Wilson

loop spectra are shown in Fig. 5.2(b-d).

5.4 3D strong Stiefel-Whitney insulator and quantized

magnetoelectric response

Since we have a new 2D Z2 invariant w2 and the associated 2D Z2 topologi-

cal insulator (2D Stiefel-Whitney insulator), it is natural to ask whether one

can find a 3D topological insulator associated with the second Stiefel Whitney

class. In spinless fermionic systems with IST = PT , real wave functions can

be defined over the full 3D Brillouin zone. However, unfortunately, there is no
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corresponding 3D topological invariant [13,51]. So we do not expect a 3D topo-

logical insulator associated with the Stiefel-Whitney number other than the 3D

weak Stiefel-Whitney insulator discussed above. Instead, we focus on the 3D

systems with IST = C2zT where the z-axis is chosen as the axis for C2 rotation.

In C2zT -symmetric 3D systems, only the wave functions on the kz = 0 and

kz = π planes can be real with the corresponding second Stiefel-Whitney num-

bers w2(0) and w2(π), respectively. Thus, a 3D strong Z2 topological invariant

∆3D may be defined as ∆3D ≡ w2(π) − w2(0) in a way similar to how the 3D

Fu-Kane-Mele invariant is constructed. Since ∆3D originates from w2 in IST-

invariant planes, the 3D topological insulator with ∆3D = 1 can be called a 3D

strong Stiefel-Whitney insulator. Let us note that the idea of C2zT -protected

Z2 topological insulator was already proposed in Ref. [5]. However, its bulk

electromagnetic response and the related hinge excitations are studied recently

in Ref. [23, 52]. In fact, a strong 3D Stiefel-Whitney insulator is an example

of higher-order topological insulators whose bulk magnetoelectric response is

described by the axion term with the quantized magnetoelectric polarizability

P3 = 1/2. As a result of the bulk boundary correspondence associated wth the

quantized P3, we show that a 3D strong Stiefel-Whitney insulator has chiral

hinge states [53–62] along the edges parallel to the rotation axis and 2D mass-

less Dirac fermions on the surfaces normal to the rotation axis as shown in

Fig. 5.3.

The equivalence between ∆3D and the quantized magnetoelectric polariz-

ability can be shown by analyzing the homotopy group of the sewing matrix G

for IST symmetry defined as

Gmn(k) = ⟨um(−C2zk)|C2zT |unk⟩ , (5.6)
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which satisfies

Gmn(k) = Gnm(−C2zk), (5.7)

where −C2zk = (kx, ky,−kz) and |unk⟩ is the cell-periodic part of a Bloch

state. If we choose smooth occupied states, the corresponding sewing matrix

also becomes smooth. Then the nontrivial homotopy class of G characterizes the

obstruction to taking a uniform representation G(k) = G0 independent of k. At

a generic momentum, G(k) ∈ U(N). On the other hand, on a C2zT -invariant

plane, either the kz = 0 or kz = π plane, GT (k) = G(k) according to Eq. (B.2),

from which we obtain

G(k) ∈ U(N)/SO(N), (5.8)

where N denotes the number of occupied bands.

In a smooth complex gauge, the magnetoelectric polarizability P3 takes the

form of the 3D Chern-Simons invariant [63,64]

P3 =
1

8π2

∫
BZ
d3kϵijkTr

[
Ai∂jAk −

2i

3
AiAjAk

]
, (5.9)

where Amn(k) = ⟨umk|i∇k|unk⟩ is the Berry connection, and BZ denotes the

Brillouin zone. In terms of the sewing matrix G(k), one can show that

2P3 =
1

24π2

∫
BZ
d3kϵijkTr

[
(G−1∂iG)(G−1∂jG)(G−1∂kG)

]
, (5.10)

which is nothing but the 3D winding number of the sewing matrix G. Since

the 3D winding number is determined by the 2D winding numbers in invariant

planes, we eventually find

2P3 = w2(π) + w2(0) = ∆3D( mod 2), (5.11)

which is proved more explicitly in Ref. [23]. We used that w2 is given by the

2D winding number of G, which is derived in Appendix B.
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The relation between the bulk topological invariant of the axion insulator

and that of the 2D Stiefel-Whitney insulator implies a similar relation between

their anomalous boundary states. In fact, the chiral hinge states in an axion

insulator can be considered to result from the pumping of charges at the corners

of the Stiefel-Whitney insulator when kz is regarded as a parameter for the

pumping process [52]. This charge pumping picture can be extended further to

the cases with strong spin-orbit coupling. Here one can consider a helical charge

pumping, where the corner charges with different spins are pumped to the

opposite directions, which leads to a construction of a higher-order topological

insulator with helical hinge states [18,42,54].
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Figure 5.1 Wilson loop spectra on a torus. The Wilson loop operator is calcu-

lated along the orientable ϕ cycle at a fixed θ. (a-d) Spectrum when Nocc = 2.

(w1,θ, w2)= (a) (0, 0), (b) (1, 0), (c) (0, 1), (d) (1, 1). (e-h) Nontrivial spectrum

whenNocc = 3 andNocc = 4. (e) WhenNocc = 3 with w2 = 1. When the number

of occupied bands is odd, w2 can be determined only if we calculate the Wil-

son loop operator along a orientable cycle. (f-h) When Nocc = 4. (w1,θ, w2)=

(f) (1, 0), (g) (0, 1), (h) (1, 1). Here, w1,θ is the first Stiefel-Whitney number

computed along the θ direction. From the supplemental materials in Ref. [7].
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Figure 5.2 Topological phase transition from a normal insulator to a 3D weak

Stiefel-Whitney insulator. The Hamiltonian in Eq. (5.5) is used with r = 0.5 and

m = 0.9. (a) Shape of the nodal lines formed by touching between a conduction

and a valence band (red) and between valence bands (orange). As M increases

from −1 to 2.5, a pair of monopole nodal lines are created near (0, 0, 0), and then

they are annihilated near (0, 0, π). (b)∼(d) Wilson loop operators are calculated

along the kx direction at each value of ky and kz. (b) Normal insulator at

M = −1. (c) Nodal line semimetal with monopole nodal lines at M = 1. (d)

3D weak Stiefel-Whitney insulator at M = 3.
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Figure 5.3 3D strong Stiefel-Whitney insulator protected by C2zT symmetry.

(a) Schematic figure describing the second Stiefel-Whitney number on the C2zT -

invariant planes in momentum space. In a 3D strong Stiefel-Whitney insulator,

w2(kz = π) − w(kz = 0) = 1 modulo two. (b) Schematic figure describing

the gapless states on the surface and hinges in real space. An odd number of

2D Dirac fermions appear on each of the top and bottom surfaces. 1D chiral

fermions appear on the side hinges. From Ref. [23].
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Chapter 6

Reformulation of the
Nielsen-Ninomiya Theorem in 2D

The aim of this chapter is to show that a two-band system with the Euler class

e2 has band crossing points whose total winding number is equal to 2e2. This

generalized the conventional Nielsen-Ninomiya theorem, which states that the

total topological charge of stable band crossing in the Brillouin zone must van-

ish. This work was motivated by the peculiar phenomenon observed in twisted

bilayer graphene.

The recent discovery of Mott insulating states and superconductivity in

twisted bilayer graphene (TBG) near the first magic angle θ ∼ 1.05◦ [65, 66]

has lead to a surge of research activities to understand this system [67–97]. One

notable feature in the band structure of TBG is the presence of almost flat

bands near charge neutrality, which are effectively decoupled from other bands

by an energy gap. The reduced kinetic energy of the flat bands allows this

purely carbon-based system, normally regarded as a weakly correlated system,

to be an intriguing playground to examine the Mott physics and the associated
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unconventional superconductivity.

For a microscopic description of correlation effect in TBG, there have been

several theoretical efforts to construct a tight-binding lattice model captur-

ing the characteristic band structure of the four almost flat bands near charge

neutrality [93–97]. Here we neglect the spin degrees of freedom for counting

the number of bands, which is valid because the spin-orbit coupling is negli-

gibly small. According to the low energy continuum theory which excellently

describes the qualitative feature of the almost flat bands, there are two Dirac

points at each K and K’ point in the Moiré Brillouin zone, whose origin can

be traced back to the Dirac points at each valley of the underlying graphene

layers [98, 99]. The presence of massless Dirac fermions is further supported

by several theoretical studies [100–103] as well as recent quantum oscillation

measurement [104]. The existence of gapless Dirac points indicates the valley

charge conservation Uv(1) and the spacetime inversion symmetry C2zT , where

C2z denotes a two-fold rotation about the z-axis and T is time-reversal sym-

metry [93, 94]. In the presence of Uv(1) and C2zT , the four nearly flat bands

are decoupled into two independent valley-filtered two-band systems, and each

two-band system possesses Dirac points at K and K ′. The fact that both the

valley charge conservation and C2zT are not the exact symmetry of the TBG

indicates that the symmetry of the low energy physics is larger than the exact

lattice symmetry [93].

Interestingly, by putting together all the emergent symmetry including Uv(1)

and C2zT , Po et al. have found an obstruction to constructing well-localized

Wannier functions describing the four nearly flat bands in TBG [93,94]. More-

over, it is shown that the obstruction originates from the fact that the two

Dirac points in each valley-filtered two-band system have the same winding

number, which is generally not allowed in 2D periodic systems due to the
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Nielsen-Ninomiya theorem [105].

The main purpose of the present study is to unveil the topological nature

of the nearly flat bands in TBG near a magic angle and propose a general

framework to understand the band topology of 2D systems sharing the same

symmetry. In particular, we show that, two bands having two Dirac points with

the same winding number is endowed with an integer topological invariant, the

Euler class e2, when the 2D spinless fermion system has spacetime inversion

symmetry IST ≡ C2zT . We explicitly show that two bands having a nonzero

Euler class cannot have exponentially localized Wannier representation, that is,

there is a Wannier obstruction. Moreover, the nonzero Euler class e2 implies

that there are band crossing points, henceforth called vortices, between the

two bands, whose total winding number is equal to 2e2. Thus, a real two-band

system carrying a nonzero e2 evidences the violation of the Nielsen-Ninomiya

theorem.

This chapter is organized as follows. We first present the topological prop-

erties of a simple four-band lattice model proposed by Zou et al. [93], which

captures all the essential properties of the nearly flat bands in TBG at magic

angle. After clarifying the issues related with the band topology of TBG by

using the toy model, we provide a general description of the band topology of

spacetime (IST) symmetric spinless fermion systems in 2D. In Sec 6.2. we prove

the correspondence between the vortex winding number and the Euler class,

and demonstrate the violation of Nielsen-Ninomiya theorem in real two band

systems with a nonzero Euler class.
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Figure 6.1 (a) The definition of the hopping amplitudes t1,2 for a four-band

lattice model proposed by Zou et. al. [93]. a is the lattice constant representing

the lattice vector for a Moiré superlattice of TBG at magic angle. (b) High

symmetry points in the Brillouin zone. Γ = (0, 0), M = (2π/
√

3a, 0), and

K = (2π/
√

3a, 2π/3a). The blue rectangle is the Brillouin zone used to compute

the Wilson loop spectrum. (c) Band structure along high-symmetry lines. Both

of the occupied and unoccupied bands have gapless Dirac points at K and K’.

(d) Wilson loop spectrum for the lower two bands. The Wilson loop operator

is calculated along the ky direction at fixed kx, as shown by the red arrow in

(b). The unit winding of the spectrum indicates the unit Euler class |e2| = 1.

From Ref. [14].

6.1 Band topology of nearly flat bands in twisted bi-

layer graphene

Let us first clarify the issues related with the band topology of the nearly flat

bands in TBG at magic angle. For this purpose, we study a simple four-band

model Hamiltonian proposed by Zou et al. [93], which captures the essential

characteristics of the nearly flat bands in TBG.
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6.1.1 A four-band lattice model

The model is defined on a honeycomb lattice which represents the Moiré su-

perlattice of TBG at magic angle [93]. Putting two orbitals per site, one can

construct a four-band Hamiltonian given by

H =
∑
⟨ij⟩

c†i (t̂1)ijcj +
∑
⟨⟨ij⟩⟩

c†isij(it̂2)ijcj , (6.1)

where t̂1 = 0.4 + 0.6τz and t̂2 = 0.1τx indicate the hopping amplitudes between

the nearest-neighbor and next-nearest neighbor sites with the Pauli matrices

τx,y,z representing the orbital degrees of freedom. Here we choose sij = +1 for

ri = rj+aŷ, which determines the rest of the sij ’s because of the C3z symmetry.

Then the full Hamiltonian is invariant under a three-fold rotation about the z-

axis C3z, a two-fold rotation about the y-axis C2y, and IST = C2zT . Namely, the

lattice model has D6 point group symmetry. This model Hamiltonian inherits

the essential features of the nearly flat bands of TBG with enlarged emergent

symmetries. In momentum space, the Hamiltonian becomes

H(k) = t̂1

[(
1 + 2 cos

√
3kxa

2
cos

kya

2

)
σx

+ 2 sin

√
3kxa

2
cos

kya

2
σy

]

+ t̂2

(
4 cos

√
3kxa

2
sin

kya

2
− 2 sin kya

)
, (6.2)

where the Pauli matrices σx,y,z denote the sublattice degrees of freedom of the

honeycomb lattice.

6.1.2 Band topology of lower two bands

The band structure of the four-band model is shown in Fig. 6.1(c). One can

see that two lower bands are fully separated from the two upper bands. The
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two lower bands cross at two corners of the BZ, K and K ′, forming two Dirac

points with the same winding number. As pointed out in [93], the winding

number of the two Dirac points can be determined by examining the mirror

eigenvalues of the two occupied bands at the M point: if their mirror eigenvalues

are opposite (equal), the winding numbers of the Dirac points at K and K ′

points are equal (opposite). In the case of the model Hamiltonian in Eq. (6.1),

the mirror symmetry along the ΓM line can be represented by τz, and it can

be explicitly checked that the mirror eigenvalues of the two occupied bands

are indeed opposite along this line. Similarly, the two upper bands also possess

two Dirac points sharing the same winding number whose winding direction

is opposite to that between the lower two bands. Both the lower two bands

and the upper two bands possess the same topological characteristic of the

nearly flat bands of TBG in a single valley while preserving all D6 point group

symmetry [93].

Let us focus on the topological properties of the lower two bands to under-

stand the band topology and the relevant obstruction of the nearly flat bands

in TBG. One direct evidence showing the nontrivial topology of the lower two

bands is the winding of the Wilson loop spectrum shown in Fig. 6.1(d), which

is computed from the transition function in a real gauge by using the technique

developed in [7]. Here the Wilson loop operator corresponds to the transition

function. In the Wilson loop spectrum in Fig. 6.1(d), two eigenvalues change

symmetrically about Θ = 0 line due to the IST symmetry, and each eigenvalue

winds once as kx is varied. Below we show that the unit winding of the tran-

sition function in a real gauge indicates the unit Euler class |e2| = 1, which

imposes an obstruction to Wannier representation and leads to the violation of

the Nielsen-Ninomiya theorem.
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6.2 Failure of Nielsen-Ninomiya Theorem due to the

Euler class

Let us now show that the Euler class is the topological invariant that explains

the band topology for nearly flat bands in TBG, which was attributed to the

non-zero total winding number in the Brillouin zone. More explicitly, we show

that the Euler class is equivalent to half the total winding number. To in-

troduce some notations and set the stage for the discussion that follows, we

first give a short proof of the 2D Nielsen-Ninomiya theorem, in analogy to

the three-dimensional (3D) case [106]. Our main result will follow by carefully

investigating the failure of the 2D Nielsen-Ninomiya theorem.

6.2.1 Two-dimensional Nielsen-Ninomiya theorem

We give a short proof of the 2D Nielsen-Ninomiya theorem that the total wind-

ing number is zero in 2D periodic systems and point out what the assumptions

are. Note that we have stated this theorem by using the winding number instead

of Berry phase because Berry phase is defined only modulo 2π.

Let us take two real basis states |ũ1k⟩ and |ũ2k⟩ such that IST is represented

by the complex conjugation K (i.e., IST = K), so the IST symmetry condition

ISTH(k)(IST)−1 = H(k) requires that the matrix elements of the Hamiltonian

Hmn(k) = ⟨ũmk|H(k)|ũnk⟩ to be real, that is, Hmn(k) = H∗mn(k). Therefore,

H(k) = r(k) cos θ(k)σ1 + r(k) sin θ(k)σ3 (6.3)

where r(k) ≥ 0, σ1 and σ3 are Pauli matrices defined in the basis {|ũ1k⟩ , |ũ2k⟩},

and a term proportional to σ0 is ignored. Let us define a unit vector n(k) =

(cos θ(k), sin θ(k)) away from points at which r(k) = 0. The winding number

of the Hamiltonian along a loop C is defined to be the winding number of
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n(k) [107]:NC = 1
2π

∮
C dk ·∇kθ(k). Let Di be a disk enclosing an ith vortex, so

that the total winding number is given by

Nt =
1

2π

∮
∪i∂Di

dk · ∇kθ(k), (6.4)

where ∂Di is the boundary of Di. Using the Stokes’ theorem, we have

Nt = −
∫
BZ−∪iDi

dS · ∇k ×∇kθ(k) = 0 (6.5)

Here, we have made an obvious assumption that the matrix elements of the

two-band Hamiltonian are continuously defined throughout the Brillouin zone.

This has two important implications. The first one is that when the matrix

elements of the two-band Hamiltonian cannot be defined continuously in the

presence of IST symmetry, a non-vanishing total winding number is allowed.

We will discuss this in the following subsection. The second implication is that

when the two bands are no longer isolated from the other bands, the winding

number may lose its meaning. This is discussed in [14].

6.2.2 Winding number and the Euler class

Let us now prove that e2 is equal to half the total winding number of a two

band Hamiltonian. We again consider the Hamiltonian in Eq. (6.3).

In the case when the total Berry phase, i.e. the sum of the Berry phases

of the two bands, along any non-contractible 1D cycle in the Brillouin zone is

trivial, we can take a spherical gauge in which we neglect the non-contractible

1D cycles and instead view the Brillouin zone as a sphere [Fig. B.1]. We refer

readers to [14] for a discussion on the case in which the Berry phase is nontrivial.

One immediate consequence of the non-vanishing total winding number is

that it is impossible to define a continuous Hamiltonian matrix element through-

out the sphere. Thus, let us divide the sphere into N and S hemispheres such
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Figure 6.2 Deformation of the Brillouin zone to a sphere. When the total wind-

ing number is non-zero in the Brillouin zone, Hamiltonian matrix elements are

smooth only over local patches N and S, respectively. When the nontrivial

transitions are restricted to kx = 0 (the black bold line), the boundary of the

Brillouin zone can be contracted to a point so that the Brillouin zone becomes

a sphere on the right. From Ref. [14].

that each vortex is located in the interior of either the N or S hemisphere

[Fig. B.1]. On the equator, we need a transition function, ONS(ϕ) ∈ SO(2),

where ϕ is the azimuthal angle parametrizing the equator. The two Hamilto-

nian on the N and S hemispheres are connected along the equator as

(HN )mn = (ONS)mp(HS)pq(O
†
NS)qn (6.6)

Thus, we must have ONS = exp(−iσy(θS − θN )/2). Before moving on, note

that we may assume that the two bands of our interest arise as sub-bands of

a lattice Hamiltonian. Then, this transition matrix is the transition function

between the two sub-bands of interest. Because the full lattice Hamiltonian is

continuous, any discontinuity of the projected 2×2 Hamiltonian must originate

from that of the basis states of the two subbands. Accordingly, the Euler class,
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which is given by the winding number of the transition function, is equal to

1

4π

∮
equator

dk · (∇kθ
N −∇kθ

S) = (NN +NS)/2, (6.7)

where NN/S are the sum of the winding number within N/S patch. The negative

sign in the definition of NS is there because the winding number is defined by

the counterclockwise line integral with respect to the normal direction of the

sphere. In conclusion, we have proved that

e2 = −1

2
Nt. (6.8)

Let us note that this is a generalization of the Poincaré-Hopf theorem [108–110],

which relates zeros of a tangent vector field to the Euler characteristic of the

manifold, to rank two real Bloch bundles (i.e., two real Bloch states).
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Chapter 7

Inversion Parity Formulae

We have developed our theory by requiring only the combination of inversion

and time reversal symmetries. Many PT -symmetric (or, in 2D, C2T -symmetric)

systems, however, have both inversion (or two-fold rotation) and time reversal

symmetries. Inversion symmetry helps us to identify the topological phase of

matter because the phase is partially determined by the inversion eigenvalues

at the inversion-invariant momenta (which is commonly called time-reversal-

invariant momenta or TRIM in short) [38, 42, 111–114]. Here we derive the

formula for calculating the second Stiefel-Whitney class using inversion eigen-

values, which is

(−1)w2 =
4∏
i=1

(−1)[N
−
occ(Γi)/2], (7.1)

where Γi=1,2,3,4 are four TRIM on the inversion-invariant plane where w2 is

evaluated, N−occ(Γi) is the number of occupied bands with negative inversion

eigenvalues at Γi, and the bracket means the greatest integer function, i.e.,

[n + x] = n for n ∈ Z and 0 ≤ x < 1. After we derive Eq. (7.1), we discuss
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about using the formula to count the Z2 monopole charges in the Brillouin

zone. Finally, we show that the quantized magnetoelectric polarization can be

induced by applying a magnetic field on a nodal line semimetal with odd pairs

of Z2 monopoles.

7.1 The first Stiefel-Whitney class from parity

Before we move on, let us briefly review the relation between the Berry phase

and inversion eigenvalues following Ref. [38, 112], because it is needed in the

derivation of our formula. Here the Berry phase is calculated in a smooth com-

plex gauge. As shown in Sec. 2.1, this Berry phase corresponds to the first

Stiefel-Whitney class w1 of real gauges.

Inversion symmetry imposes a constraint on the Berry connection by

TrA(k) + TrA(−k) = −i∇k log detB(k), (7.2)

where Bmn(k) = ⟨um−k|P |unk⟩ is the sewing matrix for inversion symmetry.

Accordingly, the Berry phase along an inversion-invariant line is given by [?,?]∫ π

−π
dkTrA(k) =

∫ π

0
dk (TrA(k) + TrA(−k))

=

∫ π

0
dk − i∇k log detB(k)

= −i log
detB(π)

detB(0)
. (7.3)
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That is,

exp

[
i

∫ π

−π
dkTrA(k)

]
=

detB(π)

detB(0)

= detB(π) detB(0)

=
2∏
i=1

Nocc∏
n=1

ξn(Γi)

=

2∏
i=1

ξ(Γi), (7.4)

where we used detB(0) = ±1, Γ1 = 0 and Γ2 = π, ξn = ±1 is the inversion

eigenvalue of the nth occupied band, and ξ(Γi) is the product of all inversion

eigenvalues of occupied states over the TRIM Γi for simplicity of notation. The

product of ξ at two TRIM gives the Berry phase along the inversion-invariant

line passing through the two TRIM.

By applying the above relation, we can investigate the inversion-required

band degeneracies [38]. Let us recall that, in PT -symmetric systems, the non-

trivial Berry phase along a contractible loop indicates that band degeneracies

are enclosed by the loop. The band degeneracies appear as nodal lines in the 3D

Brillouin zone. If we consider the Berry phase Φ around the half of an inversion-

invariant plane, which we parametrize by 0 ≤ kx ≤ π for simplicity, it is given

by

(−1)Φ/π = exp

[
i

∮
∂(hIP)

dk · TrA(k)

]

= exp

[
i

∮
dkyTrAy(π, ky) − i

∮
dkyTrAy(0, ky)

]

=

2∏
i=1

ξ(Γi)

[
4∏
i=3

ξ(Γi)

]−1

=

4∏
i=1

ξ(Γi), (7.5)
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where ∂(hIP) is the boundary of the half invariant plane, and Γi’s are contained

in the invariant plane. Therefore, when the product of all inversion eigenvalues

over four TRIM is −1 (+1), an odd (even) number of nodal lines penatrating

through the half of the inversion-invariant plane containing the four momenta.

Here only the parity of the number of nodal lines can be counted because an

even number of nodal lines can be removed from an invariant plane without

changing the inversion eigenvalues.

7.2 The second Stiefel-Whitney class from parity

We are now ready to derive an analogous formula for the second Stiefel-Whitney

class. While we have taken a complex smooth gauge to associate the first Stiefel-

Whitney class with inversion eigenvalues, we now take a real gauge to associate

the second Stiefel-Whitney class charge with inversion eigenvalues.

7.2.1 Two occupied bands

First we consider two orientable occupied bands over an invariant plane. Be-

cause the first Stiefel-Whitney class is trivial for orientable occupied bands,

there are two cases according to Eq. (7.4): the product of two inversion eigen-

values at each TRIM is all negative or all positive.

In the former, the second Stiefel-Whitney class is trivial because the oc-

cupied bands can be deformed to topologically trivial bands without closing

the band gap between the conduction and valence band as follows. We invert

the occupied bands such that the topmost occupied band has the positive in-

version eigenvalue and the other has the negative eigenvalue at each TRIM.

Then, by applying Eq. (7.5) to the lowest occupied band rather than the whole

occupied bands, we find that inversion eigenvalues do not require a degener-
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acy between the occupied bands because the product of inversion eigenvalues is

positive for the lowest occupied bands. In other words, all degeneracies between

the occupied bands can be removed without changing the inversion eigenval-

ues. After removing all the accidental degeneracies, we have two non-degenerate

orientable occupied bands. The Whitney sum formula shows that the second

Stiefel-Whitney class is trivial for the resulting bands. As the band gap is not

closed during the deformation we have described, the second Stiefel-Whitney

class of the original phase is also trivial.

In the latter case where the inversion eigenvalues are the same at each

TRIM, it may be impossible to isolate the two occupied bands from each other

without closing the band gap between the conduction and valence band. For

example, when the eigenvalues are −1 at one or three TRIM and +1 at the other

TRIM, the degeneracy of the occupied bands is required by Eq. (7.5) applied

to the lowest occupied band. The second Stiefel-Whitney class is nontrivial in

this case. We will show this by associating the flux integral form of the second

Stiefel-Whitney class with inversion eigenvalues. As we did when reviewing the

result for the Berry phase, we begin by defining an 1D integral with inversion

eigenvalues and then extend the result to 2D integrals.

Inversion symmetry gives the following constraints on the real Berry con-

nection and curvature by

AR(k) = −BT (k)AR(−k)B(k) −BT (k)∇kB(k),

FR(k) = BT (k)FR(−k)B(k), (7.6)

where ARmn = ⟨umk|∇k|unk⟩, and |unk⟩ is real.

We consider an inversion-invariant line and take a smooth real gauge over

the line where the sewing matrix is also smooth over the line. It is always pos-

sible because we consider orientable occupied bands. Then, because the sewing
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matrix is smooth and detB = 1 at TRIM over the line, the sewing matrix

belongs to SO(2), i.e.,

B(k) = exp

 0 ϕ(k)

−ϕ(k) 0

 (7.7)

It follows that the constraint equation for the real Berry connection becomes

AR(k) +AR(−k) = −(BT (k)∇kB(k))

=

 0 −∇kϕ(k)

∇kϕ(k) 0

 , (7.8)

from which we find∫ π

−π
dkAR12(k) =

∫ π

0
dk
(
AR12(k) +AR12(−k)

)
= −

∫ π

0
dk∇kϕ(k), (7.9)

and so

exp

[
i

∫ π

−π
dkAR12(k)

]
= exp

[
−i
∫ π

0
dk∇kϕ(k)

]
= exp [−i (ϕ(π) − ϕ(0))]

=

2∏
i=1

ξ1(Γi), (7.10)

where ξ1(Γi) is the eigenvalue of the sewing matrix, i.e., B(Γi) = ξ1(Γi)I2×2.

Next, we consider an inversion-invariant plane. As the occupied states may

not be smooth over the whole plane, the sewing matrix also may not be smooth.

The sewing matrix defined on C and D patches are related to the one defined

on A and B patches as

BCD(k) = (tAC(−k))−1BAB(k)tBD(k), (7.11)
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where A and C covers −k, and B and D covers k, and tAB and tCD are the tran-

sition functions defined by |uCn−k⟩ = tACmn(−k) |uAn−k⟩ and |uDnk⟩ = tBDmn (k) |uBnk⟩.

We require all the transition functions be orientation-preserving. Then, the

above relation shows that the sewing matrix belongs to SO(2) everywhere on

the plane because it belongs to SO(2) within the patches covering a TRIM. The

symmetry constraint on FR becomes

FR(k) = FR(−k). (7.12)

The second Stiefel-Whitney class over the invariant plane is then given by

exp [iπw2] = exp

[
i

2

∫ π

−π
dkx

∫ π

−π
dkyF

R
12(kx, ky)

]
= exp

[
i

∫ π

0
dkx

∫ π

−π
dkyF

R
12(kx, ky)

]
= exp

[
i

∮
dkyA

R
12(π, ky) − i

∮
dkyA

R
12(0, ky)

]

=
2∏
i=1

ξ1(Γi)

[
4∏
i=3

ξ1(Γi)

]−1

=

4∏
i=1

ξ1(Γi), (7.13)

where we applied the Stokes’ theorem on a patch fully covering the half Brillouin

zone to get the second line.

Next, we consider two non-orientable occupied bands. Because the invariant

plane should be gapped in order that the second Stiefel-Whitney class is defined,

ξ(Γi) can be negative at an even number of TRIM. When ξ is negative at none or

all the four TRIM, the occupied bands are orientable, which we have discussed.

The remaining is the case where ξ(Γi) is negative at two TRIM, which we take

as Γ1 and Γ2. There are three configuration of inversion eigenvalues up to the

permutation Γ1 ↔ Γ2 and Γ3 ↔ Γ4 and up to a band inversion between the
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occupied bands. They are

Γ1Γ2Γ3Γ4 Γ1Γ2Γ3Γ4 Γ1Γ2Γ3Γ4

−− + + + + −− + − + −

+ + + + −−−− − + + − (7.14)

After removing all the accidental degeneracies, the lowest occupied band can

be isolated by a band gap from the other band in all three configurations. In

the first and second case, the second Stiefel-Whitney class for the occupied

bands is trivial according to the Whitney sum formula. Here, the Whitney

sum formula is w2(B1 ⊕ B2) = w1ϕ(B1)w1θ(B2) − w1θ(B1)w1ϕ(B2) modulo two,

where B1 and B2 is the bottom and top occupied bands. Because w1(B1) = 0

for trivial B1, we find w2 = 0. On the other hand, the second Stiefel-Whitney

class is nontrivial in the last case according to the Whitney sum formula, be-

cause (w1ϕ(B1), w1θ(B1), w1ϕ(B2), w1θ(B2)) = (π, π, 0, π) or (0, π, π, 0) or their

permutation by ϕ↔ θ.

Let us notice that the second Stiefel-Whitney class is nontrivial only when

there is an odd number of TRIM at which inversion eigenvalues for the two oc-

cupied bands are both −1. Thus, we can summarize the result for two occupied

bands as

(−1)w2 =

4∏
i=1

(−1)[N
−
occ(Γi)/2], (7.15)

where the bracket is the greatest integer function.

7.2.2 General occupied bands

We now extend the above derivation to the case with Nocc > 2. We do this by

decomposing occupied states into two-level blocks and applying the Whitney

sum formula.
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Let us consider 2N + 1 or 2N + 2 occupied bands with a non-negative

integer N on an inversion-invariant plane. At each TRIM, we decompose the

occupied bands into N pairs which have inversion eigenvalues −− or ++ and

the remaining band or bands through the band inversion only between the

occupied bands. Also, we re-order the energy level of the occupied bands such

that the remaining block is at the highest level. We have, for example, the

following pattern. We have N blocks with degenerate inversion eigenvalues e.g.,

Γ1Γ2Γ3Γ4

2N + 0 : − + − +

2N − 1 : − + − +

...

2 : + + −−

1 : + + −− (7.16)

for the 1, 2, ..., 2Nth lowest energy level, and we have a remaining block at the

highest energy level, which consists of one and two bands for Nocc = 2N + 1

and 2N + 2, respectively, e.g.,

Γ1Γ2Γ3Γ4 Γ1Γ2Γ3Γ4

2N + 1 : − + + − 2N + 2 : − + +−

2N + 1 : + − +− (7.17)

where Γ1, ...,Γ4 are TRIM on the inversion-invariant plane. After this decompo-

sition, the product of all inversion eigenvalues is positive within each of N + 1

blocks. This is obvious for the lowest N blocks, and for the N + 1 block it

follows from that the band gap between the conduction and valence band is

open. Hence, each block can be isolated from the other bands by removing all
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the accidental degeneracies without changing the inversion eigenvalues. After

lifting all the accidental degeneracies, the second Stiefel-Whitney class of the

whole occupied bands is given by summing up the second Stiefel-Whitney class

of N + 1 blocks according to the Whitney sum formula [See Eq. (4.4)]. From

the relation between the inversion eigenvalues and the second Stiefel-Whitney

class for each block, we find that

(−1)w2 =

4∏
i=1

(−1)[N
−
occ(Γi)/2]. (7.18)

7.2.3 Z2 monopole charge

Suppose that the band gap is open on two invariant planes which do not in-

tersect each other 1. In such a case, we can detect the Z2 monopole charges in

the Brillouin zone using the relation between the inversion eigenvalues and the

second Stiefel-Whitney class. It is because the difference of the second Stiefel-

Whitney classes measure the Z2 monopole charges in the half-Brillouin zone.

Let two planes kz = 0 and kz = π be gapped for convenience. We have

exp [iπNmp] = exp [iπ (w2(π) − w2(0))]

=

4∏
i=1

(−1)[N
−
occ(Γi)/2]

(
8∏
i=5

(−1)[n
−
occ(Γi)/2]

)−1

=

8∏
i=1

(−1)[N
−
occ(Γi)/2], (7.19)

where Nmp is the number of Z2 monopoles in the half Brillouin zone. Eq. (7.19)

can be intuitively understood as counting the number of double band inversions

modulo two. Suppose we start with a trivial insulator whose inversion eigen-

values are all positive. In order to have [N−occ(Γi)/2] pairs of negative inversion

1This condition is not satisfied when
∏8

i=1 ξ(Γi) = −1 because the band gap is closed on
at least one of the two plane according to Ref. [38] [See Eq. (7.5)].
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eigenvalues at Γi, we need [N−occ(Γi)/2] times of double band inversions at Γi

modulo two. As a double band inversion creates a pair of Z2 monopoles in the

Brillouin zone, it creates one Z2 monopole in the half Brillouin zone in the

presence of inversion symmetry. The parity of the number of Z2 monopoles in

the half Brillouin zone is then given by summing [N−occ(Γi)/2] over all TRIM.

This is exactly what Eq. (7.19) shows.
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Chapter 8

Topological Superconductivity

In this chapter, we study the superconductivity of spin-polarized electrons in

centrosymmetric ferromagnetic metals. When spin-orbit coupling is negligible,

which we assume, the system has spacetime inversion symmetry under the com-

bination of effective spinless time reversal and spatial inversion. So, we can

define the Stiefel-Whitney numbers in the system, and our results developed

above can be applied here.

Recently, odd-parity superconductivity has received great attention due to

their potential to realize topological superconductors (TSCs) [115–119]. Fu and

Berg [120], and also Sato [121, 122] proposed a simple but powerful parity for-

mula relating the parity configuration in the normal state and the topological

property of the odd-parity superconducting state. The simplicity of the formula

allows fast diagnosis of the topological nature of a superconducting state by just

counting the number of Fermi surfaces, which greatly facilitates the search of

TSCs in centrosymmetric materials.

One limitation of the Fu-Berg-Sato formula is that it can be applied only
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to conventional first-order TSCs in which d-dimensional bulk topology sup-

ports gapless Majorana states on (d − 1)-dimensional boundaries. However,

recent studies on topological crystalline phases have uncovered higher-order

TSCs whose d-dimensional bulk topology protects gapless Majorana fermions

on the boundaries with dimensions lower than (d− 1) [55,123–127]. In general,

kth-order TSCs in d dimensions host (d − k)-dimensional boundary Majorana

states. In the case of dth-order TSCs in d dimensions, Majorana zero modes

(MZMs) exist at corners, which can be potentially useful for topological quan-

tum computations [116–119].

Up to now, several interesting ideas have been proposed to realize 2D second-

order TSCs in various different settings, such as using the superconducting prox-

imity effect on quantum Hall insulators [128], quantum spin Hall insulators [126,

129,130], second-order topological insulators [131], Rashba semiconductors [132]

and nanowires [133]; breaking time reversal symmetry of TSCs with helical Ma-

jorana edge states by applying external magnetic field [55,134–137] or attaching

antiferromagnets [138]; and some other ideas [126,136,139–141]. In 3D, on the

other hand, there are only few mechanisms proposed for realizing a third-order

TSC such as applying magnetic field to a 3D second-order TSC with helical

hinge modes [55]. For more systematic investigations of higher-order TSCs, a

simple criterion for diagnosing higher-order band topology, similar to the Fu-

Berg-Sato parity formula for first-order TSCs, is highly desired. Although some

formulae for higher-order TSCs having gapless boundary states were proposed

recently [142], the parity formula for dth-order TSCs hosting MZMs is still

lacking.

In this chapter, we establish generalized parity formulae for higher-order

TSCs and apply them to ferromagnetic metals where odd-parity superconduc-

tivity naturally arises. Using the generalized parity formulae, we classify all
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possible spin-polarized band structures of centrosymmetric ferromagnetic met-

als that can realize inversion-protected higher-order TSC. From this analysis,

we find doped ferromagnetic nodal semimetals as an ideal normal state that

realizes higher-order TSCs. Explicitly, in 2D, odd-parity pairing of a doped

Dirac semimetal (DSM) induces a 2D second-order TSC. In 3D, odd-parity

pairing of a doped nodal line semimetal (NLSM) generates a nodal line super-

conductor with monopole charges. Furthermore, in the case of a doped monopole

NLSM [5, 7], odd-parity pairing induces a 3D third-order TSC. These findings

show that the combination of superconductivity and spin-polarized 2D and 3D

nodal semimetals can be promising platforms for topological quantum compu-

tations using MZMs.

8.1 Symmetry and nodal structures

Let us first clarify the symmetry of the normal and superconducting states

of ferromagnetic metals with inversion symmetry P0 and classify the relevant

nodal structures. We assume that an electron’s spin is polarized along the z-

direction. Also, we neglect spin-orbit coupling, but its influence is discussed

later. In this setting, although time reversal symmetry T = iσyK is broken,

the ferromagnetic metallic state is symmetric under the effective time reversal

T ≡ eiπσy/2T = K defined as the product of T and a 180◦ spin rotation around

the y axis, eiπσy/2. Here σy is a Pauli matrix for spin degrees of freedom, and K

denotes the complex conjugation operator. Also, P0 = P ∗0 because [P0, T ] = 0.

Then, the system is invariant, locally at each momentum k, under P0T symme-

try satisfying (P0T )2 = 1. Such a P0T symmetric system belongs to the k-local

symmetry class AI+I proposed by Bzdusek and Sigrist [13], where the 1D and

2D topological phases are classified by Z2 invariants [5, 13]. Here the 1D Z2

invariant is the quantized Berry phase, which is the topological charge of 2D
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Dirac points and also of 3D nodal lines. The 2D Z2 invariant is the monopole

charge of 3D nodal lines.

To describe the superconducting state, we introduce a 2N -component Nambu

spinor Ψ̂(k) = [ĉ↑α(k), ĉ†↑β(k)]T , where ĉ↑α(k) [ĉ†↑α(k)] is an electron creation

[annihilation] operator with spin up and orbital α = 1, . . . , N . The corre-

sponding Bogoliubov-de Gennes (BdG) Hamiltonian can be written as Ĥ =

Ψ̂†HBdGΨ̂, where

HBdG =

 h(k) ∆(k)

∆†(k) −hT (−k)

 . (8.1)

Here, h(k) indicates the Hamiltonian for the normal state, and the pairing func-

tion ∆αβ(k) with orbital indices α, β satisfies ∆αβ(k) = −∆βα(−k) because

of the Fermi statistics of electrons. Since the pairing function forms an irre-

ducible representation of the symmetry group, it can have either odd-parity

P0∆(k)P−10 = −∆(−k) or even-parity P0∆(k)P−10 = +∆(−k).

In the weak-pairing limit, we can focus on the pairing at the Fermi energy EF

and define the corresponding pairing function as ∆EF
(k). Then, P0∆EF

(k)P−10 =

∆EF
(k) because ∆EF

is a 1×1 matrix. The Fermi statistics ∆EF
(k) = −∆EF

(−k)

naturally shows that the pairing function satisfies the odd-parity condition

P0∆EF
(k)P−10 = −∆EF

(−k). (8.2)

Therefore, in Eq. (8.1), we consider only odd-parity pairing functions that sat-

isfy P0∆(k)P−10 = −∆(−k). The corresponding odd-parity BdG Hamiltonian

is symmetric under inversion P = τzP0 which anticommutes with the particle-

hole symmetry C = τxK, where τx,y,z are Pauli matrices for the Nambu space.

PT and CP symmetries satisfying (PT )2 = 1 and (CP )2 = −1, which show

that the BdG Hamiltonian belongs to the k-local symmetry class CI+I [13]. In

this class, 2D Dirac points or 3D nodal lines can be protected as in the case of
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Figure 8.1 Band structure and parity configuration of spin-polarized metals
leading to 2D second-order TSCs in the weak pairing limit. (a) Two electron-
like (or hole-like) Fermi surfaces surrounding the same TRIM. (b) Doped DSM
with ν1 = 1. (c) Normal state whose whole bands, including both occupied and
unoccupied bands, have the higher-order topology with ν2 = 1. The horizontal
axes in (a,b,c) schematically represent the 2D Brillouin zone: K1 = (0, 0), and
Ki indicates the other three TRIMs with the same parity configuration. ±
represents the parity at TRIM. (d) The fourth way to obtain the higher-order
TSCs. Here, the ± sign on the top (bottom) row at each TRIM represents the
parity of the higher-energy (lower-energy) states. One (no) band is occupied in
the gray (white) regions, and the boundaries show the relevant Fermi surfaces.
From Ref. [25].

the class AI+I. The only difference is that the 1D invariant is integer-valued

in the class CI+I, but this is irrelevant in our analysis below because we are

only interested in the parity of the 1D invariant that can be related to the

eigenvalues of P .

8.2 Nodal structure of TSC and parity formula

According to Eq. (8.2), an odd-parity pairing function ∆(k) changes its sign on

the Fermi surfaces surrounding a time-reversal-invariant momentum (TRIM)

so that an even number of nodes should appear at the points where the sign of

∆(k) changes. The number of nodal points can be related with the inversion

parities of occupied bands using the idea proposed in Refs. [120–122] as follows.

In 2D, the parity of the number of Dirac node pairs related by inversion can be
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counted by the Z2 invariant ν1 ≡
∑

K∈TRIM no−(K) mod 2 [38], where no−(K)

is the number of occupied states with negative parity at K. Here ν1 can be

understood as the number of band inversions at TRIM that create pairs of

Dirac points, starting from the trivial phase with only positive-parity occupied

states.

One can define a similar parity index νBdG
1 for the BdG Hamiltonian as

νBdG
1 ≡

∑
K∈TRIM

nBdG;o
− (K)

=
∑

K∈TRIM

no−(K) + nu+(K)

=
∑

K∈TRIM

nu(K) mod 2, (8.3)

where n
o(u)
± is the number of occupied (unoccupied) states with ± parity in the

normal state, nu = nu+ + nu−, and n
BdG;o(u)
± is defined similarly for the BdG

Hamiltonian with an odd-parity pairing function. The second line in Eq. (8.3)

results from the odd-parity pairing, and the third line follows from no−(K) =

no−(K) + nu−(K) − nu−(K) = no−(K) + nu−(K) + nu−(K) mod 2 together with∑
K n−(K) = 0 mod 2 following from that, when all the bands are occupied,

no band crossing exists at the Fermi level. Equation (8.3) shows that νBdG
1 =

1 mod 2 only when there exists an odd number of Fermi surfaces. This is

consistent with the odd-parity condition of the pairing function ∆(k) on the

Fermi surface in Eq. (8.2), which guarantees an odd number of Dirac node pairs

in the superconducting state per each normal state Fermi surface enclosing a

TRIM.
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8.3 Generalized parity formula for second-order TSC
in 2D

To derive the condition for higher-order superconductivity of spin-polarized

electrons, let us introduce generalized parity formulae. According to the Dirac

Hamiltonian formalism for inversion-protected higher-order topological phases [49,

55], we can obtain a higher-order TI by inverting 2n bands at a TRIM start-

ing from a topologically trivial phase. Here, n denotes a nonnegative integer.

Therefore, counting the number of the simultaneous inversion of 2n bands at

TRIM leads to the following Z2 index,

ν2n ≡
∑

K∈TRIM

[
no−(K)

2n

]
floor

mod 2, (8.4)

where [m+ a]floor = m for an integer m and 0 ≤ a < 1. We can also intro-

duce similar indices νBdG
2n for the BdG Hamiltonian by replacing no−(K) by

nBdG;o
− (K). These indices characterize higher-order TSCs.

Let us first discuss the physical meaning of νBdG
2 in 2D. Recently, it was

shown that ν2 = 1 indicates the second-order topology of a PT -symmetric

topological insulator with chiral symmetry, characterized by fractional corner

charges on the boundary [14, 18, 49]. A straightforward extension of this idea

shows that νBdG
2 = 1 characterizes a second-order TSC with Majorana corner

modes. Explicitly, νBdG
2 can be decomposed as

νBdG
2 =

∑
K∈TRIM

[
nu(K)

2

]
floor

+
∑

K∈TRIM

no−(K)

+
∑

K∈TRIM

[
n−(K)

2

]
floor

+
∑

K∈TRIM

δ2(K) mod 2, (8.5)

where δ2(K) = [nu(K) + 1]n−(K) mod 2. In Eq. (8.5), the first term counts

the parity of the number of “double Fermi surfaces”, that is, two electron-like

(or hole-like) Fermi surfaces enclosing the same TRIM, in the normal state. The
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second term is ν1 for the occupied bands in the normal state and the third term

is ν2 when all bands are occupied in the normal state. Finally, the last term

counts the number of TRIM with an even number of unoccupied state and an

odd number of negative-parity eigenstates. Figures 8.1(a-d) show four different

normal state band structures leading to νBdG
2 = 1 in weak-pairing limit, which

arise from the nontrivial value of the first, second, third, and fourth terms in

Eq. (8.5), respectively.

The analysis of Eq. (8.5) becomes much simpler in systems with an inversion-

symmetric unit cell, where all atoms in a unit cell can be adiabatically shifted to

its center without breaking inversion symmetry. In this case, the third term in

Eq. (8.5) vanishes because an inversion-symmetric unit cell gives a topologically

trivial state with ν2 = 1 when all bands are occupied. Similary, the zero Berry

phase of the whole bands makes the fourth term vanish.

Then, there remain two different channels leading to νBdG
2 = 1: one is odd-

parity pairing in a metal with double Fermi surfaces, and the other is odd-parity

pairing in a doped DSM, whose nontrivial band topology arises from the first

and second terms in Eq. (8.5), respectively. In general, the former induces nodal

superconductivity rather than a fully gapped TSC. This is because each of the

two Fermi surfaces encloses a TRIM so that an odd-parity pairing function

accompanies the sign reversal at two points on the Fermi surface, generating

Dirac nodes. A strong pairing is required to get a fully gapped superconducting

state via pair annihilations of Dirac nodes, unless the system is fine-tuned so

that the two Fermi surfaces are very close to each other. On the other hand, even

weak pairing generates a fully gapped superconducting state in doped DSMs

because two disconnected Fermi surfaces, each centered at a generic momentum,

are paired in this case.
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8.4 Higher-order TSCs in 3D and further generaliza-
tion

In 3D, ν1 = 1 indicates an odd number of nodal lines [38], and ν2 = 1 indicates

an odd number of pairs of monopole nodal lines in the Brillouin zone [7,42]. Sim-

ilarly, νBdG
1 = 1 (νBdG

2 = 1) indicates a superconductor with an odd number of

nodal lines (monopole nodal line pairs). In particular, the superconductor with

a monopole nodal line pair exhibits the second-order topological property and

carries anomalous hinge Majorana states, as in the case of chiral-symmetric

monopole NLSMs [18]. Similar to 2D cases, the most promising way to get

νBdG
2 = 1 is the process with a nontrival second term in Eq. (8.5), which cor-

responds to doping spin-polarized NLSMs. The third term in Eq. (8.5) always

vanishes when the whole bands are fully considered. Also the fourth term van-

ishes if we take an inversion-symmetric unit cell as in 2D. In the case of the

first term, it may be relevant in a strong pairing limit. A double Fermi surface

normally generates a superconducting state with nodal lines carrying trivial

monopole charges from each Fermi surface. When the pairing amplitude is suf-

ficiently strong, however, the two trivial nodal lines may recombine and turn

into two monopole nodal lines. We note that the same mechanism correspond-

ing to the second term in Eq. (8.5) was also proposed in Ref. [13] for systems

with SU(2) spin rotation symmetry.

The above formulation can be generalized further to νBdG
2n with an arbitrary

n:

νBdG
2n =

∑
K∈TRIM

[
nu(K)

2n

]
floor

+
∑

K∈TRIM

[
no−(K)

2n−1

]
floor

+
∑

K∈TRIM

[
n−(K)

2n

]
floor

+
∑

K∈TRIM

δ2n(K) mod 2, (8.6)

where the definition of δ2n(K) is given in the Appendix C. In particular,
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νBdG
4 = 1 characterizes the third-order TSC in 3D [49]. By the same reason

discussed above, one can show that the best way to get a fully gapped super-

conductivity with νBdG
4 = 1 is to use the process related with the second term

in Eq. (8.6), which can be achieved by doping a monopole NLSM (see the Sup-

plemental Material for details [143]). To sum up, in ferromagnetic systems with

an inversion-symmetric unit cell, doped nodal semimetals are the best normal

state to get a higher-order TSC in the weak-pairing limit.

8.5 Lattice model

We demonstrate our theory by using simple tight-binding models defined on

rectangular or orthorombic lattices. We construct three models in which the

spin-polarized normal states are a 2D DSM, a 3D NLSM, and a 3D monopole

NLSM, respectively. When an odd-parity superconducting pairing is introduced,

we show that the three nodal semimetals turn into a 2D second-order TSC, a 3D

monopole nodal line superconductor, and a 3D third-order TSC, respectively.

First, a 2D DSM can be described by the nearest-neighbor tight-binding

Hamiltonian for s and px orbitals as

h = −µ+ 2t sin kxσy + (M − 2t cos kx − 2t cos ky)σz, (8.7)

where the Pauli matrices σy,z describe the orbital degrees of freedom with

↑ (↓) indicating a s (px) orbital. The corresponding band structure exhibits

two Dirac points on the kx = 0 line when 0 < M/t < 4 at the energy

E = −µ. To induce superconductivity, we consider the following interaction

term Hint = −U
∑

i,σ ̸=σ′ ni,σni,σ′ − V
∑
⟨i,j⟩,σ ni,σnj,σ where U (V ) indicates

the on-site interorbital (nearest-neighbor intraorbital) interaction, which is to

be treated by mean-field approximation. The resulting odd-parity pairing leads

to a fully gapped TSC whose second order band topology is clearly demon-
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Figure 8.2 Higher-order topological superconductivity from lattice models.
(a,b) 2D second-order TSC obtained by adding an odd-parity pairing function
to the doped 2D DSM described in Eq. (8.7). (a) Energy spectrum on a finite-
size lattice. (b) Probability density of a Majorana zero mode (c,d) Monopole
nodal line superconductor derived from a doped 3D NLSM. (c) Energy spec-
trum of the system, finite-sized along x and y directions. (d) Nodal structure
in the Brillouin zone. The torus indicates the Fermi surface enclosing a nodal
line (thick gold line) in the normal state. The blue (red) color indicates the
region where the pairing function has positive (negative) sign. Two monopole
nodal loops appear at the interection, where the pairing function changes its
sign. (e,f) 3D third-order TSC derived from a doped 3D monopole NLSM (e)
Energy spectrum on a finite-size lattice. (f) Probability density of a Majorana
zero mode. From Ref. [25].

strated in Fig. 8.2(a,b). Vetically stacking the 2D DSM and introducing inter-

layer hopping, described by −2t cos kzσz, we obtain the Hamiltonian for a 3D

NLSM. Also, by further adding py and dxy orbitals at each lattice site and in-

troducing nearest-neighbor hopping, we obtain a 3D monopole NLSM. Adding

an odd-parity pairing function in these NLSMs leads to a 3D monopole nodal
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line superconductor and a 3D third-order TSC whose topological properties

are demonstarted in Fig. 8.2(c-f). Detailed information about the tight-binding

models is given in the Supplemental Material [143].

8.6 Discussions

We first discuss the effect of the inversion asymmetry of the unit cell. For

instance, in the Kagome lattice, the unit cell always breaks inversion symmetry

if all atoms are required to be strictly within the unit cell. One may choose a unit

cell, invariant under inversion up to lattice translations, only when the atoms

in a unit cell are located on its boundary. In this case, ν2 = 1 when each atom

is occupied by one electron, so the third term in Eq. (8.5) is nontrivial [143]

for a three-band tight-binding model. Then, we have νBdG
2 = 0 even when the

normal state is a doped DSM. However, this does not mean that MZM is absent

on the boundary. In fact, one can show that MZMs exist (do not exist) when

νBdG
2 = 0 (νBdG

2 = 1) in constrast to systems having inversion-symmetric unit

cell. To obtain more conventional bulk-boundary correspondence where νBdG
2 =

1 always indicates the existence of MZMs independent of symmetry of the unit

cell, one may define a reference trivial phase of the TSC as the limit µ→ −∞

where all electrons are unoccupied in the normal state as proposed in [144].

This gives a well-defined trivial phase for TSCs because Majorana fermions

are confined to form electrons in such a limit: |µ| serves as the binding energy

for Majorana fermions because µc†xcx = 2iµγ1xγ2x at each site x [145], where

Majorana operators γ1,2 are defined from the electron annihilation operator

cx = γ1x + iγ2x.

Next, let us discuss the effect of spin-orbit coupling. When spin-orbit cou-

pling is included, T symmetry is broken because the electron’s spin cannot

rotate freely independent of the orbital degrees of freedom. Since the protec-

87



tion of the nodal structures in both normal and superconducting states re-

quires the combination of time reversal and inversion symmetries, the nodal

structures become unstable when spin-orbit coupling exists. However, our for-

mula in Eq. (8.6) is still applicable as long as inversion symmetry is preserved.

Accordingly, a gapped higher-order TSC can still survive if the parity configu-

ration does not change due to spin orbit coupling, since their topology can be

protected by inversion symmetry only. In the case of the monopole nodal line

superconductor, the nodes are fully gapped when T symmetry is broken due

to spin-orbit coupling. The resulting gapped superconductor is a second-order

TSC hosting chiral hinge states [7,55,146]. In fact, in the normal state, NLSM

transforms to a Weyl semimetal by spin-orbit coupling as long as the parity

configuration does not change. This means that, when spin-orbit coupling ex-

ists, what we observe is the transition from a Weyl semimetal to a fully gapped

second-order TSC.

One way to realize spin-triplet pairing in 2D ferromagnetic nodal semimet-

als is to use a superconductor-ferromagnet-superconductor heterostructure with

inversion symmetry. Here, we can use conventional spin-singlet s-wave super-

conductors and a ferromagnet with in-plane magnetization. After spin-singlet

Cooper pairs penetrate into the ferromagnet, they can turn into spin-triplet

Cooper pairs because of the spin polarization in the ferromagnet [147]. In 3D,

on the other hand, an intrinsic superconducting pairing is required because

the proximity effect is not effective. In fact, there are several materials where

the coexistence of ferromagnetism and superconductivity is reported including,

uranium-based materials UGe2, URhGe, UCoGe, UTe2 [148–154], and more

recently proposed twisted double bilayer graphene [155–157]. We hope that

our work stimulates the research on higher-order TSC in ferromagnets. This

will open a new route to Majorana quantum computations, where ferromag-

88



netic nodal semimetals with spin-polarized band crossing serve as platforms for

higher-order TSCs.

Finally, let us briefly comment on the extension of our result to other symme-

try classes. We note that our parity formula Eq. (8.4) is generally applicable to

any odd-parity superconductors, while we focus on ferromagnetic systems with

effective time reversal symmetry since odd-parity pairing is natural in these

systems. Furthermore, we expect that nodal semimetals required by eigenval-

ues of symmetry operator G can lead to a G-protected dth-order TSCs, which

can be shown by extending Eq. (8.4) to eigenvalues of G, as is outlined in [142]

for kth-order TSCs with k < d. We leave more detailed theoretical analysis for

futur
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Chapter 9

Discussion

The Stiefel-Whitney classes are examples of characteristic classes, which are

the cohomology classes associated to vector bundles, describing how the cor-

responding vector bundle is twisted [10, 11]. There are mainly four different

types of characteristic classes known up to now: Chern classes, Stiefel Whitney

classes, Euler Classes, and Pontryagin classes [10, 11]. While the idea of Chern

classes and associated topological invariants, such as Chern numbers, mirror

or spin Chern numbers, Fu-Kane invariants, have been widely applied to con-

densed matter physics, the implication of the other characteristic classes in the

context of condensed matter physics is not well established yet. In this paper,

we have reviewed the recent progress in the study of topological physics asso-

ciated with Stiefel-Whitney numbers. More explicitly, we showed that the first

Stiefel-Whitney number is equivalent to the quantized Berry phase so that the

nontrivial first Stiefel-Whitney number w1 indicates either a 1D insulator with

quantized charge polarization or a stable Dirac point (nodal line) in 2D Dirac

semimetals (3D nodal line semimetals) in systems with spacetime inversion
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symmetry IST. Moreover, we proved that the second Stiefel-Whitney number

not only characterizes the monopole charge of nodal lines in IST-symmetric sys-

tems but also serves as a well-defined 2D topological invariant characterizing a

2D Stiefel-Whitney insulator. This idea is further extended to 3D systems with

IST = PT and IST = C2zT leading to the 3D weak and strong Stiefel-Whitney

insulators, respectively. However, materials that realize 2D Stiefel-Whitney in-

sulator and 3D strong Stiefel-Whitney insulator composed of spinless fermions

are still lacking, which provides new research opportunities to find novel topo-

logical materials and phenomena.

One important research direction to pursue is to investigate the physical

responses in topological phases characterized by the second Stiefel-Whitney

number. While we have throughly studied the topological nature of the second

Stiefel-Whitney number through band theory, the studies have been restricted

to the study of band structures. It is now definitely an important issue to

reveal the characteristic physical responses to electric, magnetic, optical, and

thermal perturbations of Stiefel-Whitney insulators and monopole nodal line

semimetals. Since the Stiefel-Whitney insulator belongs to the category of frag-

ile topological insulators or obstructed atomic insulators, this study would be

able to be generalized to the constructin of a response theory for general frag-

ile topological and obstructed atomic insulators. Only after we understand the

responses, we will be able to say that we really understand those topological

materials.

Also, as briefly explained, IST-symmetric two-band systems in 2D can be

characterized by another characteristic class, so-called the Euler class. The Eu-

ler class is an integer topological invariant classifying real orientable two-band

systems. As discussed before, a two-band system with a nonzero Euler invari-

ant e2 has fragile band topology and supports corner charges. In fact, an Euler
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insulator with e2 ̸= 0 has an intriguing topological properties which are not

discussed in this review article. If an additional trivial band is coupled to the

original two-band system and band crossing happens between them, the newly

generated Dirac points play the role of the source of π Berry phase with a

Dirac string in between, which strongly affects the braiding properties of the

original Dirac points. Such a nontrivial braiding is a manifestation of the non-

abelian topological charge of real wave functions, which is discussed thoroughly

in Ref. [14,158]. To unveil novel topological physics associated with other char-

acteristic classes is definitely one important issue for future research.

92



Appendix A

Reality condition from spacetime
inversion symmetry

Here, we show that IST symmetry imposes the reality condition on the Hamil-

tonian with a suitable choice of basis. Since IST does not change momentum, we

make the momentum dependence of the Hamiltonian implicit in the following

to simpilfy the notation.

Let {|α⟩ , |β⟩ , . . .} be the basis for the Hilbert space we consider. Then, IST

symmetry condition ISTHI
−1
ST = H in this basis becomes

⟨α|H|β⟩ = ⟨α|PT |γ⟩ ⟨γ|H|δ⟩ ⟨δ|PT |β⟩ = [⟨α|IST|γ⟩] [⟨γ|H|δ⟩]∗ [⟨δ|IST|β⟩]∗ .

(A.1)

We have the reality condition ⟨α|H|β⟩ = ⟨α|H|β⟩∗ when ⟨α|IST|γ⟩ = δαγ .

Note that it is always take a basis where ⟨α|IST|γ⟩ = δαγ . When IST |α⟩ =

eiϕα |α⟩, we can define a IST-invariant state eiϕα/2 |α⟩. When IST |α⟩ and |α⟩

are linearly independent, we can define two linearly independent IST-invariant

states as |u+α ⟩ = 1
2 (|α⟩ + IST |α⟩) and |u+α ⟩ = 1

2i (|α⟩ − IST |α⟩).
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Therefore, if we take an IST-invariant basis {|α⟩ , |β⟩ , . . .} through this pro-

cedure, we find that IST symmetry imposes that the Hamiltonian matrix ele-

ments in this basis are real, i.e., ⟨α|H|β⟩ = ⟨α|H|β⟩∗.
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Appendix B

Alternative formulation of
Stiefel-Whitney numbers using
homotopy theory

In this Appendix, we study the homotopy classification of symmetry repre-

sentations to describe the bulk topological invariants protected by spacetime

inversion IST symmetry. We define topological invariants as obstructions to hav-

ing smooth Bloch wave functions compatible with a momentum-independent

symmetry representation. When the Bloch wave functions are required to be

smooth, the information on the band topology is contained in the symme-

try representation. This implies that the d-dimensional homotopy class of the

unitary matrix representation of the symmetry operator corresponds to the

d-dimensional topological invariants. Here, we prove that the second Stiefel-

Whitney number, a two-dimensional topological invariant protected by IST, is

the homotopy invariant that characterizes the second homotopy class of the

matrix representation of IST.
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B.1 Homotopy groups of the sewing matrix

Let us begin by studying general aspects of the homotopy groups of the sewing

matrix G for IST. G is defined as

Gmn(k) = ⟨umISTk|IST|unk⟩ , (B.1)

where ISTk = (kx, ky) = k and |unk⟩ is the cell-periodic part of a Bloch state.

We are interested in the ground state of the system and study the topology of

the occupied states, so hereafter we assume that m and n run over the indices

of occupied bands. Since (IST)2 = (IST)2T 2 = 1 in both spinless and spinful

systems, G satisfies

Gmn(k) = Gnm(k). (B.2)

Under a gauge transformation |unk⟩ → |u′nk⟩ = Umn(k) |umk⟩, the sewing ma-

trix transforms as

Gmn(k) → G′mn(k) = [U †(k)G(k)U∗(k)]mn, (B.3)

where G′mn(k) = ⟨u′mk|IST|u′nk⟩. If we choose smooth wave functions for occu-

pied states, the corresponding sewing matrix also becomes smooth. The non-

trivial homotopy class of G characterizes the obstruction to taking a uniform

representation G(k) = G0 independent of k.

Note that GT (k) = G(k) according to Eq. (B.2). Such a symmetric unitary

matrix can be written as

G(k) = UG(k)UTG(k), (B.4)

where UG is a unitary matrix describing a unitary transformation from a smooth

gauge to a real gauge. As a redefinition UG(k) → O(k)UG(k) for any O(k) ∈
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O(N) does not change G(k), we obtain

G(k) ∈ U(N)/O(N), (B.5)

on IST-invariant planes, where N denotes the number of occupied bands.

Since a nontrivial homotopy class of G(k) is an obstruction to taking a

constant symmetry representation, it classifies possible topological phases for

N occupied bands. Since a smooth gauge transformation can change the ho-

motopy class of G, one should carefully identify the homotopy classes that are

related to each other by gauge transformations, to get a well-defined classifica-

tion of topological phases. This should be consistent with the classification of

the Hamiltonian space. In fact, we show below that

πd [U(N)/O(N)]

GaugeDOF
≃ πd

[
O(N +M)

O(N) ×O(M)

]
M→∞

, (B.6)

where d = 1, 2 1, GaugeDOF is the image of the map j∗ : πd[U(N)] →

πd[U(N)/SO(N)] that is induced by the projection j : U(N) → U(N)/O(N),

and O(N + M)/[O(N) × O(M)] is the classifying space of the real (i.e., IST-

symmetric) Hamiltonians for N occupied and M unoccupied bands [13].

The above equivalence can be explicitly shown in two steps. First, we use

that

πd

[
O(N +M)

O(N) ×O(M)

]
M→∞

≃ πd−1[O(N)], (B.7)

which states that the d-dimensional topological phase described by a real Hamil-

tonian is characterized by the (d− 1)-th homotopy class of the transition func-

tion for real wave functions [10, 11, 40]. Then, we use the equivalence between

1 We focus on d = 1, 2 here because we consider IST symmetry. However, this equation can
be extended to higher-dimensional systems with PT symmetry with (PT )2 = 1. In general, it
is valid for any d ̸= 4n for a positive integer n as shown in Appendix B.4. When d = 4n for
some positive integer n, the band topology is characterized by the 2n-th Chern class, so the
nontrivial band topology does not require PT symmetry and persists without the symmetry.
Therefore, the classification of the sewing matrix does not give the full classification of band
topology in the case.
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Figure B.1 Effective domain for the sewing matrix. (a) A plane representing the
3D Brillouin zone. The yellow region shows the effective Brillouin zone, and the
red region with kz = 0 is a IST-invariant plane. The kz = π plane is assumed
to be topologically trivial. (b) A 3-sphere equivalent to the 3D Brillouin zone.
(c) The sewing matrix G in the yellow region and on its boundary (red). From
Ref. [23].

the formalism in the smooth gauge and that in the real gauge:

πd [U(N)/O(N)]

GaugeDOF
≃ πd−1[O(N)], (B.8)

where d = 1, 2, which can be derived from the exact sequence of homotopy

groups [See Appendix B.4]. We demonstrate the relation between the smooth

gauge and the real gauge in more detail for d = 1, 2 in the following sections B.2

and B.3, respectively.

B.2 The first homotopy class

Here, we review the correspondence between the 1D winding number of G in

a smooth gauge and the first Stiefel-Whitney number w1 in a real gauge [7],

since the same idea is used to derive the correspondence between the second

homotopy class of G and the second Stiefel-Whitney number in the next section.

Let us suppose that |unk⟩ is smooth and the sewing matrix G is defined

in this basis. Then, we perform a gauge transformation to get new basis states
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|ũnk⟩ = Umn(k) |umk⟩ such that G̃(k) = U †(k)G(k)U∗(k) and U(k) is smooth for

0 < k < 2π, where 0 ≤ k < 2π parametrizes a closed loop in the IST-invariant

plane. If we require the reality condition G̃(k) = 1 for the new basis, we have

det[U †(k)G(k)U∗(k)] = det G̃(k) = 1, so ∂k log detU(k) = 1
2∂k log detG(k).

We have the transition function tmn ≡ ⟨ũm0|ũn2π⟩ = U∗pm(0)Upn(0 + 2π) since

⟨up0|uq2π⟩ = δpq due to the smoothness of the original basis. Its determinant

is given by the winding number of G, which we write as w, namely, det t =

det[U∗(0)U(2π)] = exp[
∫ 2π
0 ∂k log detU(k)] = exp[12

∫ 2π
0 ∂k log detG(k)] = (−1)w.

As the first Stiefel-Whitney number w1 is defined by (−1)w1 = det t, we have

w1 = w modulo 2.

The above construction shows the relation Eq. (B.8). Here, det t = ±1

characterizes π0[O(N)] because t ∈ O(N), and exp[
∫ 2π
0 ∂k log detU(k)] = ±1

characterizes the gauge-invariant part of π1[U(N)/O(N)]. Let us explain more

about this. Although U is not periodic when det t = −1 because then detU is

antiperiodic, U is periodic as an element of U(N)/O(N) (recall U(2π) = U(0)t).

Smooth gauge transformations can change the winding number of U , but it does

not change the periodic condition of U . Therefore, among nontrivial elements

in π1[U(N)/O(N)], only the loops along which detU changes sign is robust

against gauge transformations.

B.3 The second homotopy class

In this section, we show that the second homotopy class of G in a smooth gauge

corresponds to the second Stiefel-Whitney number in a real gauge. Below we

begin with the definition of the second Stiefel-Whitney number in a real gauge,

and then go to a smooth gauge. The gauge transformation matrix is associated

with the sewing matrix by Eq. (B.4).

We take a real gauge and cover the Brillouin zone torus with two patches A
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Figure B.2 Gauge transformation from a real to a smooth complex gauge in a
IST-invariant plane. (a) IST-invariant 2D Brillouin zone covered by two patches
A and B in a real gauge. (b) The patch A whose kx = π line is contracted to a
point. (c) The gauge transformation matrix U on the patch A. From Ref. [23].

and B, overlapping on the lines kx = 0 and kx = π [See Fig. B.2(a)]. When the

first Stiefel-Whitney numbers are nontrivial along both kx and ky directions,

we should introduce more patches so that there exist discontinuous transitions

along the ky direction [7]. However, we can always Dehn twist the Brillouin zone

in those cases as shown in Fig. B.3 such that only one cycle has nontrivial w1

at most, and we take the nontrivial cycle to be along the kx direction [7]. We

assume that such a Dehn twist is done. Also, we take the transition function

at kx = π to be trivial. That is, we require that real occupied states |ũnk⟩ are

smooth within the patches, but there can exist a nontrivial transition function

on the equator defined by

tABmn(ky) ≡ ⟨ũAm(2π,ky)
|ũBn(0,ky)⟩ , (B.9)

which is an element of the orthogonal group O(N) for N occupied bands. The

second Stiefel-Whitney number w2 is defined by the 1D winding number of the

transition function tAB modulo 2.

100



Then, we consider a gauge transformation to smooth states |un(kx,ky)⟩ via

|un(kx,ky)⟩ = Umn(kx, ky) |ũAm(kx,ky)
⟩ , π ≤ kx ≤ 2π,

|un(kx,ky)⟩ = Umn(kx, ky) |ũBm(kx,ky)
⟩ , 0 ≤ kx ≤ π, (B.10)

where U(kx, ky) is smooth for 0 ≤ kx, ky ≤ 2π. The gauge transformation matrix

U satisfies

tABmn(ky) = ⟨ũAm(2π,ky)
|ũBn(0,ky)⟩

= Ump(2π, ky) ⟨up(2π,ky)|uq(0,ky)⟩U
∗
nq(0, ky)

= Ump(2π, ky)δpqU
∗
nq(0, ky), (B.11)

where we used that |unk⟩ is smooth in the last line. By choosing a gauge

U(0, ky) = 1, we have

U(2π, ky) = tAB(ky) ∈ O(N). (B.12)

We further require that U(π, ky) is independent of ky, i.e.,

U(π, ky) = U0 ∈ U(N), (B.13)

as shown in Fig. B.2. It is possible to take this gauge because the 1D topological

invariant, the first Stiefel-Whitney number, is trivial along the ky direction.

Now, the information on the wave function topology, encoded in the tran-

sition function tAB in a real gauge, is reflected in the unitary matrix U under

the constraint of Eq. (B.12). Since U is constant on kx = 0 and kx = π lines,

the lines can be shrunk to a point as long as topology is concerned. After the

shrinking, the B region becomes a sphere, and the A region becomes a cap as

shown in Fig. B.2(b). All possible Us are homotopically equivalent in the region

B because they are classified by the homotopy group π2[U(N)] = 0. Therefore,

we only need to study the homotopy class of U on the region A. The homotopy
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Figure B.3 Dehn twist of the Brillouin zone. A Brillouin zone defined by 0 ≤
kx, ky ≤ 2π is Denn-twisted to a tilted Brillouin zone shown as a yellow (shaded)
region. When both 1D cycles along kx and ky have nontrivial 1D topological
invariants, i.e., w1x = w1y = 1, we have a trivial 1D cycle k′y by a Denn twist
because w1y′ = w1x + w1y = 0 mod 2. From Ref. [23].

group of U on the region N with the boundary condition Eq. (B.13) is the

relative homotopy group π2[U(N), O(N)] [See Fig. B.2(c)]. Here, [U(N), O(N)]

means that U ∈ U(N) inside the region A and U ∈ O(N) on its boundary, which

is the equator. Because π2[U(N)] = 0, the relative homotopy class of U is in

one-to-one correspondence with the homotopy class of U on its boundary, which

is nothing but the homotopy class of the transition function tAB ∈ π1[O(N)].

That is, π2[U(N), O(N)] ≃ π1[O(N)]. Moreover, the relative homotopy group

of U is isomorphic to the homotopy group of G = UUT . In other words,

π2[U(N), O(N)] ≃ π2[U(N)/O(N)] [11], where the isomorphism is provided

by the projection from [U(N), O(N)] to U(N)/O(N). Therefore,

π2[U(N)/O(N)] ≃ π1[O(N)]. (B.14)

As the homotopy groups for smooth and periodic gauge transfomations are triv-

ial, the process described here provides an explicit mapping for the isomorphism

in Eq. (B.8) in the d = 2 case.

Using this formulation of the second Stiefel-Whitney number as a homotopy

class of the sewing matrix, we can simply derive the the unique characteristic
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of the Stiefel-Whitney numbers, the Whitney sum formula [7,10], if we require

some natural algebraic rules for the second homotopy classes on the Brillouin

zone torus. Let us first consider a real gauge and suppose that the occupied

bands are grouped into blocks Bi of bands isolated from each other, so that

different blocks are not connected by transition functions. For example, transi-

tion functions are block-diagonalized when there are finite energy gaps between

blocks, though a gapped energy spectrum is not necessary in general to have a

block-diagonal form of transition functions. On the Brillouin zone torus having

noncontractible 1D cycles along kx and ky directions, the second Stiefel-Whitney

number of the whole occupied bands ⊕Bi is related to the Stiefel-Whitney num-

bers of blocks by the Whitney sum formula [7, 10]

w2(⊕iBi) =
∑
i

w2(Bi) +
∑
i ̸=j

wx1 (Bi)wy1(Bj), (B.15)

where wa=x,y1 is the first Stiefel-Whitney number along ka=x,y. The appearance

of the second term in the summation is a unique characteristics of the second

Stiefel-Whitney number.

From the relation between the transition function in a real gauge and the

sewing matrix in a smooth gauge derived above, we can infer that the Whitney

sum formula should be applicable to the blocks that decouple the sewing matrix

in a smooth gauge. For instance, let us consider two blocks B1 and B2 of occupied

bands that block-diagonalize the sewing matrix as

G(k) =

eiθ1(k)G(0)
1 (k) 0

0 eiθ2(k)G
(0)
2 (k)

 , (B.16)

where the U(1) factor eiθi=1,2 of each block is singled out. Let N1 and N2 be the

number of the bands in the blocks B1 and B2, respectively. Then, the second

homotopy class of G : T 2 → U(N1)/O(N1)×U(N2)/O(N2) is determined by the
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second homotopy classes of G
(0)
1 ∈ SU(N1)/SO(N1), G

(0)
2 ∈ SU(N2)/SO(N2),

and (eiθ1 , eiθ2) ∈ U(1) × U(1) ≃ T 2. The parities of the second homotopy class

for G
(0)
1 and G

(0)
2 correspond to w2(B1) and w2(B2), respectively. Because the

generators of π2[SU(Ni)/SO(Ni)] for i = 1, 2 are mapped to the generators of

π2[U(N1 + N2)/O(N1 + N2)] by the inclusion maps, we have w2(B1 ⊕ B2) =

w2(B1) + w2(B2) when the U(1) × U(1) part is neglected. For the map T 2 →

U(1) × U(1), we can define the degree of the map as a homotopy invariant

1

(2π)2

∫
BZ

d2k
(
∂kxθ1∂kyθ2 − ∂kxθ2∂kyθ1

)
= wx1 (B1)w

y
1(B2) − wx1 (B2)w

y
1(B1) mod 2, (B.17)

where we used that θi=1,2(k) is homotopically equivalent to wx1 (Bi)kx+wy1(Bi)ky

because they have the same 1D winding number: wj1(Bi) along kj=x,y. If we

require that this homotopy invariant contributes to the two-dimensional topo-

logical invariant, that is, the second Stiefel-Whitney invariant, we obtain the

Whitney sum formula w2(B1 ⊕ B2) = w2(B1) + w2(B2) + wx1 (B1)w
y
1(B2) −

wx1 (B2)w
y
1(B1). The generalization to the cases with many blocks is straight-

forward.

B.4 Some properties of homotopy groups

In this section, we prove some properties of homotopy groups we use in the

main text. The main tool to be used is the long exact sequence of homotopy

groups [11,113,159]:

...
∂p+1−−−→ πp(X)

i∗p−→ πp(M)
j∗p−→ πp(M,X)

∂p−→ πp−1(X)
i∗p−→ ..., (B.18)

where ip : X → M and jp : M → (M,X) are inclusions, i∗p and j∗pare maps for

homotopy groups induced by ip and jp, and ∂ is the restriction to the boundary.
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This sequence is exact because the image of a map is the kernel of the next map,

e.g., im i∗p = ker j∗p . It is also valid when πp(M,X) is substituted by πp(M/X)

because the two homotopy groups are isomorphic [11,159].

. . .
∂p+1−−−→ πp(X)

i∗p−→ πp(M)
j∗p−→ πp(M/X)

∂p−→ πp−1(X)
i∗p−→ . . . . (B.19)

B.4.1 Equivalence between real and smooth gauges

Let us prove Eq. (B.8), that is, πd[U(N)/O(N)]/im j∗d ≃ πd−1[O(N)] when

d ̸= 4n for a positive integer n. It can be proved for arbitrary N when d = 1, 2,

which are dimensions studied in the main text, whereas we need the large N

limit in general dimensions, This follows from the exact sequence in Eq. (B.19).

In our case, M = U(N), and X = O(N). We have

. . .→πd[U(N)]
j∗d−→ πd[U(N)/O(N)]

∂d−→ πd−1[O(N)]
i∗d−1−−−→ πd−1[U(N)] → . . . . (B.20)

Then, we have

πd[U(N)/O(N)]

im j∗d
≃ ker i∗d−1, (B.21)

where we used the exactness of maps ker ∂d = im j∗d and im ∂d = ker i∗d−1 and

the group isomorphism theorem πd[U(N)/O(N)]/ ker ∂d ≃ im ∂d. Notice that

i∗d−1 is a trivial map for d ̸= 4n for a positive integer n when N is large

enough. When d is odd, it is because πd−1[U(N)] = 0 for d ≤ 2N . In particular,

π0[U(N)] = π2[U(N)] = 0 for all N . When d = 2, i∗d−1 is trivial because

orthogonal group elements have quantized determinants, +1 or −1, so that they

cannot have a winding of the determinant (recall that π1[U(N)] is characterized

by the winding number of the determinant of the unitary matrix). When d = 6,
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W: D2→U(N)

W: S1→SO(N)

(b)

kx

k y

0

π

-π
-π

π

(a)

W: S1→1

W: S1→SO(N)

W(kx,ky)

Figure B.4 Wilson line operator in a IST-invariant Brillouin zone. (a) W (kx, ky)
is the Wilson line operator W(kx,−π)→(kx,ky). (b) Deformation of (a) after kx =
−π, kx = π, and ky = −π lines are contracted to a point. From Ref. [23].

the map i∗5 is trivial because π5[O(N)] = 0. Bott periodicity then shows that

the same is true for 2 + 8m and 6 + 8m dimensions for a positive integer m

when N is large enough, i.e., d ≤ 2N and d ≤ N − 1. On the other hand, when

d = 4n for a positive integer n, i∗d−1 is not trivial. This is related to the fact that

the reality condition on wave functions (equivalently, PT symmetry) does not

require that the 2n-th Chern class vanishes, and the Chern class in a real gauge

is called the Pontrjagin class [9]. Let us recall that the 2n-th Chern number is

given by the (4n − 1)-th nontrivial homotopy of the transition function. The

2n-th Chern class of real wave functions does not vanish because the nontrvial

homotopy class of the transition function in πd−1[O(N)] survives as an element

in πd−1[U(N)]. Accordingly,

ker i∗d−1 ≃ πd−1[O(N)] for d /∈ 4Z+, (B.22)

where Z+ is the set of positive integers. This finishes the proof.

106



B.5 Wilson loop method

In this section, we show the connection between the second homotopy class of

the sewing matrix for IST and the winding number of the Wilson loop spec-

trum in an invariant plane. This provides a new insight into the Wilson loop

method [7, 13,17,19,20,40,41,45].

We first define a Wilson line operator for the occupied states on the line

connecting k and k′ by

Wk→k′ = lim
δ→0

Fk′−δFk′−2δ...Fk+δFk, (B.23)

where

(Fk)mn = ⟨umk+δ|unk⟩ , (B.24)

and m,n are indices for occupied states. The transition matrix F satisfies the

following equation in IST-symmetric systems.

(F ∗k)mn = ⟨umk+δ|unk⟩∗

= ⟨ISTumk+δ|ISTunk⟩

= G∗pm(k + δ) ⟨upk+δ|uqk⟩Gqn(k)

= [G†(k + δ)FkG(k)]mn. (B.25)

It follows that

W ∗k→k′ = lim
δ→0

F ∗k′−δF
∗
k′−2δ...F

∗
k+δF

∗
k

= G†(k′)Wk→k′G(k). (B.26)

Therefore, we find that

G(k′) = Wk→k′G(k)W T
k→k′ (B.27)
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For simplicity, we assume that all 1D topological invariants are trivial. Then,

we can take a gauge G(kx,−π) = 1 such that

G(kx, ky) = W(kx,−π)→(kx,ky)W
T
(kx,−π)→(kx,ky)

(B.28)

Because we are in a smooth gauge, we have

1 = G(kx,−π)

= G(kx, π)

= W(kx,−π)→(kx,π)W
T
(kx,−π)→(kx,π)

, (B.29)

so the Wilson loop operator belong to the orthogonal group at ky = π:

W(kx,−π)→(kx,π) ∈ SO(N). (B.30)

It belongs to SO(N) ⊂ O(N) because it is continously connected to the identity

element W(kx,−π)→(kx,−π) = 1.

Let us contract the kx = −π, kx = π, and ky = −π lines to a point,

which is possible due to the assumption that the 1D topology is trivial, as

shown in Fig. B.4(a,b). As we show in Sec. B.4, the relative homotopy class

of π2[U(N), SO(N)] of W (kx, ky) ≡ W(kx,−π)→(kx,ky) is determined by its ho-

motopy class on the boundary π1[SO(N)]. Notice that the relative homotopy

class of W is one-to-one correspondence with the second homotopy class of G as

derived in Sec. B.4. Also, the homotopy class in π1[SO(N)] is given by the wind-

ing number of the Wilson loop operator W [kx] ≡ W(kx,−π)→(kx,π). Therefore,

we conclude that the second homotopy class of G(kx, ky) is in one-to-one corre-

spondence with the 1D winding number of the Wilson loop operator W [kx]. In

practice, one obtains the winding number of the Wilson loop operator from the

winding pattern of its spectrum, which can be calculated in a gauge-invariant

way.
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Appendix C

Parity indices of odd-parity
superconductors.

In Chapter 8, we define parity indices ν2n that counts the number of 2n band

inversion occuring at each time-reversal-invariant momentum (TRIM):

ν2n =
∑

K∈TRIM

[
no−(K)

2n

]
floor

, (C.1)

where we define n
o(u)
± (K) as the number of occupied (unoccupied) states at K

with inversion parity ±1. One of our main result is the decomposition of the

parity indices for the odd-parity BdG Hamiltonian into

νBdG
2n =

∑
K∈TRIM

[
nu(K)

2n

]
floor

+
∑

K∈TRIM

[
no−(K)

2n−1

]
floor

+
∑

K∈TRIM

[
n−(K)

2n

]
floor

+
∑

K∈TRIM

δ2n(K) (C.2)
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modulo two, where nu(K) = nu+(K) + nu−(K), n−(K) = no−(K) + nu−(K), and

δ2n(K) is defined below. Here, we derive the decomposition Eq. (C.2) as follows:

νBdG
2n =

∑
K∈TRIM

[
no,BdG
− (K)

2n

]
floor

=
∑

K∈TRIM

[
nu+(K) + no−(K)

2n

]
floor

=
∑

K∈TRIM

[
nu+(K) + nu−(K) + 2no−(K) − no−(K) − nu−(K)

2n

]
floor

=
∑

K∈TRIM

[
nu(K)

2n
+
no−(K)

2n−1
− n−(K)

2n

]
floor

=
∑

K∈TRIM

([
nu(K)

2n

]
floor

+

[
no−(K)

2n−1

]
floor

−
[
n−(K)

2n

]
floor

+ δ2n(K)

)
=

∑
K∈TRIM

[
nu(K)

2n

]
floor

+
∑

K∈TRIM

[
no−(K)

2n−1

]
floor

+
∑

K∈TRIM

[
n−(K)

2n

]
floor

+
∑

K∈TRIM

δ2n(K) (C.3)

modulo two, where δ2n(K) is defined by the fourth and fifth lines, and we flip

the sign of the third term in the last line, which is possible because we count

only mod 2.
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[13] T. Bzdušek and M. Sigrist, Robust doubly charged nodal lines and nodal

surfaces in centrosymmetric systems, Phys. Rev. B 96 (2017) 155105.

[14] J. Ahn, S. Park and B.-J. Yang, Failure of Nielsen-Ninomiya theorem

and fragile topology in two-dimensional systems with space-time

inversion symmetry: Application to twisted bilayer graphene at magic

angle, Phys. Rev. X 9 (2019) 021013.

[15] H. C. Po, H. Watanabe and A. Vishwanath, Fragile topology and

wannier obstructions, Phys. Rev. Lett. 121 (2018) 126402.

[16] J. Cano, B. Bradlyn, Z. Wang, L. Elcoro, M. Vergniory, C. Felser et al.,

Topology of disconnected elementary band representations, Phys. Rev.

Lett. 120 (2018) 266401.

112



[17] A. Bouhon, A. M. Black-Schaffer and R.-J. Slager, Wilson loop approach

to fragile topology of split elementary band representations and

topological crystalline insulators with time-reversal symmetry, Phys.

Rev. B 100 (2019) 195135.

[18] Z. Wang, B. J. Wieder, J. Li, B. Yan and B. A. Bernevig, Higher-order

topology, monopole nodal lines, and the origin of large fermi arcs in

transition metal dichalcogenides x te 2 (x= mo, w), Phys. Rev. Lett. 123

(2019) 186401.

[19] B. Bradlyn, Z. Wang, J. Cano and B. A. Bernevig, Disconnected

elementary band representations, fragile topology, and wilson loops as

topological indices: An example on the triangular lattice, Physical Review

B 99 (2019) 045140.

[20] Z. Song, Z. Wang, W. Shi, G. Li, C. Fang and B. A. Bernevig, All magic

angles in twisted bilayer graphene are topological, Phys. Rev. Lett. 123

(2019) 036401.

[21] H. C. Po, L. Zou, T. Senthil and A. Vishwanath, Faithful tight-binding

models and fragile topology of magic-angle bilayer graphene, Phys. Rev.

B 99 (2019) 195455.

[22] S. Liu, A. Vishwanath and E. Khalaf, Shift insulators: rotation-protected

two-dimensional topological crystalline insulators, Phys. Rev. X 9

(2019) 031003.

[23] J. Ahn and B.-J. Yang, Symmetry representation approach to topological

invariants in c 2 z t-symmetric systems, Phys. Rev. B 99 (2019) 235125.

113



[24] J. Ahn, S. Park, D. Kim, Y. Kim and B.-J. Yang, Stiefel–whitney classes

and topological phases in band theory, Chinese Physics B 28 (2019)

117101.

[25] J. Ahn and B.-J. Yang, Higher-order topological superconductivity of

spin-polarized fermions, arXiv preprint arXiv:1906.02709 (2019) .

[26] R. Kirby and L. Taylor, Pin structures on low-dimensional manifolds,

vol. 2 of London Mathematical Society Lecture Note Series. Cambridge

University Press, 1991, 10.1017/CBO9780511629341.015.

[27] W. Su, J. Schrieffer and A. J. Heeger, Solitons in polyacetylene, Phys.

Rev. Lett. 42 (1979) 1698.

[28] S. M. Young and C. L. Kane, Dirac semimetals in two dimensions,

Physical review letters 115 (2015) 126803.

[29] B. J. Wieder and C. Kane, Spin-orbit semimetals in the layer groups,

Physical Review B 94 (2016) 155108.

[30] B. A. Bernevig, T. L. Hughes and S.-C. Zhang, Quantum spin hall effect

and topological phase transition in hgte quantum wells, Science 314

(2006) 1757.

[31] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W.
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초록

이 논문에서는 시공간 반전대칭이 있는 계에서의 위상적인 상에 대해 연구한다.

여기서 시공간 반전 IST 은 운동량을 바꾸지 않는 반(anti)유니터리 대칭 연산

자이면서 I2ST = 1을 만족시키는 것을 말한다. 이러한 조건을 만족시키는 IST는

스핀궤도결합이 3차원 물질에서 공간 반전 P와 시간 반전 T의 조합인 PT 혹은

스핀궤도결합의 유무와 상관없이 2차원 물질에서 수직 축으로 180도 회전 C2 와

시간 반전 T 의 결합인 C2T가 있다. 시공간 반전 대칭은 운동량 공간 내에서 해

밀토니안과 블로흐 파동함수에 실수 조건을 주고, 따라서 베리 곡률과 천 숫자가

항상 0이 된다. 따라 실수 파동함수의 위상적인 성질은 천 숫자 대신에 다른 위상

불변량으로 기술되어야 한다. 우리는 실수 파동함수의 위상적인 성질이 슈티펠-휘

트니 숫자라는 위상불변량으로 기술된다는 것을 보여주고, 이 불변량의 일반적인

성질과물리적인의미에대해설명한다.제 1슈티펠-휘트니숫자와제 2슈티펠-휘

트니숫자는 1차원과 2차원위상불변량으로양자화된베리위상과 Z2 홀극전하에

대응된다.우리는먼저제 1슈티펠-휘트니숫자로설명되는위상적인상에대해서

다룬다. 1차원에서 양자화된 전기 편극을 가지는 부도체, 2차원 디락 준금속과 3

차원 마디 선 준금속이 이에 해당된다. 다음으로 제 2 슈티펠-휘트니 숫자가 3차원

마디 선이 Z2 홀극 전하를 가지는 것을 어떻게 설명할 수 있는 지 얘기한다. 특히

제 2 슈티펠-휘트니 숫자, Z2 홀극 전하, 그리고 마디 선들의 연결 수 의 관계에

대해서 설명한다. 그 다음 제 2 슈티펠-휘트니 숫자로 설명되는 2차원과 3차원 위

상 부도체에 관해서 다룬다. 일반적인 이론에 대한 설명을 마친 다음, 2차원에서

닐슨과 니노미야의 정리의 재정립을 우리 이론의 재미있는 응용으로서 설명한다.

이 모든 이론적인 분석들은 시공간 반전 대칭만을 필요로 한다. 하지만 스핀궤도

결합이 없는 경우에 시간 반전 대칭과 공간 반전 대칭이 각각 존재하면 공간 반전

연산자의고유값을이용해서제 2슈티펠-휘트니숫자를간단하게계산할수있다.

이러한 관계와 이미 알려져 있는 결과들을 조합해서 스핀이 정렬되어 있는 계에서
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나타나는 홀반전성을 가지는 위상 초전도의 연구에 적용해본다.

주요어: 띠 위상, 시공간 반전 대칭,위상 준금속, 위상 부도체, 위상 초전도체, 위상

불변량

학번: 2013-20372
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