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Abstract

In the study of a variety of materials and the phase of them, classifying
and dividing them in a consistent and useful way essentially requires some
insight of the materials and eventually helps deepening our understanding of
the materials and the phase. The conventional way of the classification of
the phase of a material is developed based on Landau’s theory of the phase
transition, and use the broken symmetry of the phase of a material.

However, in the mid of 2000, it is suggested that there is another way of
classifying the phase of a material with respect to the topology of the electronic
structure of the material, which is overlooked in the conventional way. The dis-
covery of the topological phase of materials stimulates the researches on seeking
for what is new in the topologically non-trivial phase of material. Motivated
by this new discovery of the topological phase, we focus on the study of the
effect of the long-range Coulomb interaction in electronic systems whose band
structure is a topologically non-trivial.

The first subject of this thesis is devoted to a study of the exciton-polariton
condensate in the microcavity of a monolayer transition metal dichalcogenides.
Exciton-polariton is a state in which an exciton and a photon are coherently
combined. As it is composed of a photon by part, the mass of the exciton-
polariton is very small which makes it a good candidate for the room-temperature
Bose-Einstein condensation. In this thesis, we take the Diracness of the low-
energy electronic degree of freedom into account in a monolayer transition metal
dichalcogenides. By Diracness, we mean that there is a non-vanishing Berry
curvature around the extremum of the conduction and valence band. The re-
sult of our study shows that topological and first-order phase transitions in

the exciton-polartion condensate can be achieved by increasing the excitation



density. It contrasts to the previous researches employing the effective mass ap-
proximations on similar systems. In those researches, a continuous BEC-BCS
crossover is expected to occur rather than a first-order, thus discontinuous,
topological phase transition. Furthermore, we find that various types of topo-
logical phase can appear in the exciton-polariton system in a microcavity with
a monolayer transition dichalcogenides.

The second subject is related to the double-Weyl semimetal which hosts
double-Weyl nodes near the Fermi level. A double-Weyl node is an extension
of a Weyl node. A Weyl node can appear anywhere in the Brillouin zone, does
not require any symmetry, and has +1 topological charge. On the other hand,
a double-Weyl node is only protected by Cy or Cjg rotation symmetries and
can appear on the axis invariant under the rotation. The magnitude of the
topological charge it can possess is 2. When it comes to the energy disper-
sion, the energy dispersion of a Weyl node depends on momentum linearly in
any direction, while that of a double-Weyl node is linear along only the rota-
tionally invariant axis and quadratic along the direction perpendicular to the
rotationally invariant axis.

It has been proposed that a double-Weyl semimetal can undergo a topo-
logical phase transition between the semi-metallic phase and insulating phases
by applying the physical or chemical pressure. At the point of the topological
phase transition, called a critical point, the energy dispersion of the electronic
degree of freedom is quadratic in momentum in all directions in the low-energy
limit. As a system with a quadratic dispersion can be a non-Fermi liquid in the
presence of the long-range interaction, we study the critical point of a double-
Weyl semimetal using two standard renormalization group methods, the large
Ny method and the € = 4 — d expansion method. The result of both meth-

ods implies consistently that the double-Weyl semimetal at the critical point

ii



is in an anisotropic non-Fermi liquid phase in the presence of the long-range
Coulomb interaction between electrons. We also provide the correction of the

power-law of several physical observables as an experimental guide in sought.

keywords: exction, exciton-polariton, topological phase transition, double-
Weyl semimetal, long-range Coulomb interaction.

student number: 2013-22992
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Chapter 1

Introduction

When it comes to the condensed matter physics, the past decade is arguably
an era of the introduction and the develoment of the symmetry protected topo-
logical phase of materials[2, 3, 4, 5, 6], such as the quantum-spin Hall phase of
the two-dimensional and the three-dimensional system with the time-reversal
symmetry, and the synthesis of materials with the unprecedented properties, for
example, the two-dimensional materials like a graphene[7], a monolayer transi-
tion dichalcogenide [1, 8, 9] as well as the topological insulators like the HgTe
quantum well and BiySes[10, 11], etc.

The topological phase of a material completely originates from the quantum
nature of the electrons in the material. For example, Zak's phase[12] determin-
ing the topological phase of a one-dimensional system with both of chiral sym-
metry and inversion symmetry is a total sum of the phase of the wave function
acquired by an electron during a travel over the whole one-dimensional Bril-
louin zone[12, 2]. As the phase with the trivial Zak's phase and the phase with
a non-trivial Zak’s phase are subject to the same symmetry group, the subtle
distinction between those two phases is not captured in the conventional classi-
fication of the phase of materials based on broken symmetries. Also, the phase

of the wave function is understood as a purely quantum mechanical quantity,



which implies that the phase with the non-trivial Zak's phase emerges due to
a purely quantum mechanical origin.

The topological non-trivial phases are accompanied by interesting proper-
ties such as the existence of the symmetry-protected boundary modes on the
boundaries of the system [2, 13]. For instance, a two-dimensional topological
insulator hosts at least one helical edge mode on each edge. A sort of the three-
dimensional topological semimetals, called Weyl semimetal[14], hosts a nodal
point in the Brillouin zone which is very stable against any perturbation as long
as it is not strong enough that two Weyl-node come into the pair annihilation.

However, the classification of the topological phase is complete only in
the non-interacting limit. When the interactions are taken into account, the
topological phase of a material can change regardless of the occurrence of the
symmetry-breaking due to the interaction. Therefore, the interplay between
interactions and the topological structures of electronic bands are needed to be
considered in the study of the topological characterization of a system.

Especially, in a set of newly synthesized materials like graphene and mono-

layer transition dichalcogenide, which are featured by their quasi two-dimensional

geometry, electric fields are not screened well as much as it is in the three dimen-
sional insulators or metals due to the lower dimension of the materials. Hence,
we can expect a strong influcence of the long-range Coulomb interaction be-
tween electrons in this system. Also, materials in a topological semimetallic
phase or at the phase transition between the topological semimetalic phase
and the insulating phase have gapless nodes. Such a gapless node can induce
quantum cricitcal phenomena which result in singular behaviours of physical
observables when there are suitable interactions.

Motivated by the anticipation that the topological structure of the electronic
system in concert with the long-range Coulomb interaction between electrons

may yield astonishing outcomes, we explore the interplay between them in a



microcavity with a monolayer transition metal dichalcogenide and in a double-
Weyl semimetal at the topological phase transition point.

This thesis is outlined as follows.

In chapter 2, a brief introduction to the topological Chern number is intro-
duced. Also, the low-energy model of the monolayer transition metal dichalco-
genide and the multi-Weyl semimetals are introduced in the group representa-
tion theoretical point of view.

In chatper 3, the self-consistent mean-field method is exposed in detail. Two
approaches are used to derived the self-consistent equations. One is called the
Hatree-Fock factroization and the other derivation originates from the varia-
tional principle.

In chapter 4, the excition-polaritonic system in a microcavity with a mono-
layer transition metal dichalcogenide is studied in the self-consistent Hartree-
Fock method. We show two excitonic order parameters with different symmetry
characters appear because of the diracness of the electronic band structure of
a monolayer transition metal dichalcogenide in the low-energy limit. It turns
out that the resultant phase diagram shows interesting topological first order
phase transitions which are not seen in the previous researches.

In chapter 5, we investigate the effect of the long-range Coulomb interaction
in a double-Weyl semimetal at its topological quantum phase transition. Two
standard renormalization group methods, the large N; expansion and the ¢ =
4 — d expansion are used and both two methods yield a consistent result that a
double-Weyl semimetal at the topological phase transition between the double-
Weyl semimetalic phase and insulating phases will exhibit an anisotropic non-
Fermi liquid behavior. As a guideline for experimental confrimation of the
anisotropic non-Fermi phase, we provide the power-laws of physical observables.

In chapter 6, this thesis concludes with a summary.



Chapter 2

Low energy theory and the topological charac-
terization of 2D TMD and multi-Weyl semimet-

als

2.1 Chern number

2.1.1 General formula for the abelian Berry curvature and Chern

number

Let us start with a general way of calculating the Chern number. Aussming
that the energy structure of a Hamiltonian H (k) is gapped at an energy Ep,
not necessarily to be the Fermi energy. The energy levels are denoted by FE,, (k)
and the eigenstate of it are |1, k), and the (abelian) Berry phase acquired by
the n-th band through a trip around a closed path P is

o= b Au(k) - di
P
where A, (k) = i (Ynk|Vik|¥nk) is the Berry connection of the n-th band.

Note that a physical quantity is expressed through a line intergral over a closed

path, which can be re-expressed using the Stoke’s theorem.

yg)Aﬂ(k).dk: = /Sarn(k).d%



where P = 0S. F,(k) = Vi x A, (k) is known as the Berry curvature. A
gauge-invariant expression for the Berry curvature is known

[F (k)] = iepgr Y <8p VUn wm> <wm aq¢n>

m

— iapqr Z <1/]n ’apH’ ¢m> <¢m |8qH‘ wn>

m#0 (En,k - Em,k)2
_ 2Im [(Yn [OpH | Ym) (Ym [0gH | Pn)]
_ qurngo Bor Eot) , (2.1)

which is very useful in the numerical calculation. As long as E,, j, # Ey,  for
all m,n, the Berry curvature is not singular. Also, the Berry curvature from
all bands sums up to zero: > F,(k)=0.

It is interesting to find the close analogy between the Berry curvature F, (k)
and the magnetic field, and between the Berry connection .4, (k) and the vector
potential in the classical theory of electromagnetism. In the same line of thought
of the classical theory of electromagnetism, we can obtain the net charge of a
"magnetic" monopole, which is quantized, by integrating the "magnetic" fields

Fn(k) over a closed surface S. This is the Chern number of the n-th band.

1
Cn= 5= yfs Fnlk) - dS. (2.2)

In the two-dimensional free space, S is taken to be the whole (k;,k,) plane.
If there is a periodic potential in the two-dimensonal space, as it is in a the
two-dimensional lattice system, S can be taken as the first Brillouin zone of
the lattice. If the system is three-dimensional metalic system, we can think of
S as the Fermi surface. In the following sections, seversal examples relevant to

what will follow are going to be exposed.

2.1.2 Two-band model

It is heuristic to apply something new to a two-band model since two-band

model is able to be treated completely analytically and provides good intution.
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A general two-band model Hamiltonian is reads as
H(k) = ao(k)oo + a(k) - o,
whose eigen energies are Ey+ = ag(k) £ |a(k)| and the eigenstaes are

a3 + |a|

1
- V2laVlal +as \ap +ias)

+)

az — |a|

1
~V2lalVial = a3 \ gy +iay

Evaluation of Eq. (2.1) with these eigen states turns out to be

=)

F (k)] —icyy, 2pi(R) (ol =)Dy (k) - (o +)

8 al®
. Oqai(k) - (+|oi|—)Dpaj(k) - (—|os[+)

’Lﬁpqr 8|a|2
. Opai(k)04a;(k) {{+|oi| =) {—|oj|+) = (+]oj|=)(—|oi|+)}
. Opai(k)0ya;(k) {(+|oioi|+) — (+|ojoi+)}
—Zqur 8|a|2
_  Opai(k)ga;(k)(+|ok|+)
= Epgriijk 4‘@’2

Epgr
- 2 a0 a 29)

When it comes to a constant unitary transformation a;(k) = B;;b;(k), the

Berry curvatures expressed with a or b are related by

—Epqr€ijkOpai(k)0ya; (k) (+|ok|+) = —epgreijiBia Bjb BreOpba (k) 9gby(Kk)be

= — det B [epgreancOpba (k) Oqby (k)b .

Hence a transformation B with det B < 0 changes the direction of the Berry

curvature, and thus the sign of Chern number.



2.1.3 Massive Dirac fermion in the two-dimensional free space

Let us assume that a system described by a Hamiltonian of the two-dimensional

massive Dirac fermion:

m ky — ik,
H = = (kg, ky,m) - 0.
ky +iky -m
The eigen energies are B+ = +vk? + m?2, which shows that the system is

gapped as long as m # 0, and the eigenstates of the Hamiltonian are

1 m + Vk2 +m?
N \/2E+\/E+ +m kel¢

1 m — k2 +m?
N \/2E+\/E+ —m kel¢

+)

=)

Putting these into Eq 2.1 and 2.2, we get

_2Im [(¢py [01H [ y—) (- |02 H | ¢n)]
(B4 — B_ i)

[Fi(k)l3 =

mk
m2 4 k2’

and thus

C’:—i }mikdkdqj:_w.
2m Jr2 2 (m2 + k2)3/2 2

Hence, the electronic structure of a massive Dirac fermion bears a Chern
number :l:% whose sign is determined by the opposite of the sign of the mass

m.

2.1.4 Fermi surface of a Weyl fermion system

In the three-dimensional case, the most famous system possessing Chern num-
ber is the metallic Weyl node system. The electronic structure around a Weyl

node is described by a Hamiltonian of the massless Weyl fermion. In the most



general form, the Hamiltonian of the Weyl node is written as
H = Z cijkioj,
i,j=1,2,3
with det(c;;) # 0. Using Eq 2.3, we get the Berry curvature
_ k. detc
2 ’Zj (225 cijki)

Fo )], = 7

and the Chern number over a closed two-dimensional surface in the three-

dimensional space

C+:_detcy§ Sy - k
Am Jrs (‘Zj " Cz‘jki)2’)3/2

:_sign[detc]yg as. . P
o Jes 0 pl?

= —sign [det c].

where a substitution p; = c¢;;k; is used in the last line. In conclusion, what
we learn is that the Fermi surface around a Weyl node has a non-zero Chern
number which originates at a singular point k = 0, where the energy gap closes.
Sometimes, we call the Chern number, —sign [det |, the topological charge of
a Weyl node.

From the point of view that a topological number only changes by an interger
number, the topological number of a Weyl node implies the stability of the Weyl
node. Let us imagine an arbitary perturbation V = —a - o applied to a Weyl
node described by a Hamiltonian Hy = vpk - 0. Considering the perturbed
Hamitlonian H = Hy + V, the role of the perturbation is a mere displacement
of the Wely node from k = (0,0,0) to k = v;la, and thus the Wely node does

robustly survive against any type of small perturbation.



2.1.5 Constraints by symmetry
2.1.5.1 Time-reversal symmetry

When the system is invariant under the time-reversal symmetry represented by
a Pr = ¢ K with a matrix € = —is, acting on the spin space and the complex
conjugation K, we can find a matrix, so called the sewing matrix, I'(7"), which

relates the eigenstates at k and —k sharing the same eigenenergy.

Pribn(k) = ey (k)
= [Ty Y (=k)- (2.4)

Antisymmetric matrix [I'(7)];,, is non-zero only when n-th band at —k is the
Krammer partner of n-th band at k. Let us denote the Krammer partner of
¥ (k) by ¥, (—k). Transformation rules of phyiscal observables are derived
from Eq 2.4, and that of [A(p)(k)]nm = pd}TTL(k) - ¢m (k) is our interest. For
example, using Eq 2.4 and [AP)(k)] = — [AP*(k)] = —09L (k) -7 (k),
or AP) (k) = —AP1(k), we get

AP &)| = =0, (v, (k) e (k)

= L (T) Otk () - (=) Tn (T)
= [P a® (1)

mn

AP (k) = [pf(T)A(p)(_k)p(T)]T, (2.5)



Using Eq 2.1 and Eq 2.5, we have

Falk)], = izper Y [AP(R)] A (k)]
—igpgr 3 TN AP (~R)(T)]

m

mn

[TH(T)AD (k)T (T) |

mn nm

= iepgr |11 (T) AW (k) AP (—k)(T)]

nn

=ie [P7)], L S [a0m] (40 R)] T,
= —itpgr Z [A(p)(_k)} . [A(Q)(_k)]m .
L Fn(k)], == [Fra(=k)], (2.6)

where we have used [I'T(7)] n7n (T 7 = 1 since n-th band at k and Tn-th
band at —k are Krammer partners.

As an application of Eq 2.6, let us imagine a system with Weyl nodes. If
there is a Weyl node at kg and a Fermi pocket is formed by the upper band
stemming from the Weyl node, there should be another Weyl node at —kg
whose upper band also crosses the Fermi energy. Two upper bands of Weyl
nodes are related by the time-reversal symmetry. Supposing that the Fermi
pockets are disjoint, then it is the topological charge C(kg) of a Weyl node that
the integral of Berry curvature of the upper band of the Weyl node at k over

the Fermi pocket around the Weyl node.

1
C(k()) = % ygfupper(k[) + q) . dSq.

The topological charge C(—ky) of the Wely node at —kq is obtainable using Eq

10



2.6.

1
C—ko) = 5= b Fra(—ko + )45,

1
— 5 P Fral-ko—a)-as.,

_ (=1
o

i 56 Fulk +q) - dS,,
= C(ko)

where we have used dS_4 = —dS,. Therefore, any pair of Weyl nodes related
by the time-reversal symemtry shares a common topological charge.

Another example is

2.1.5.2 Inversion symmetry

When the system is invariant under a spatial inversion, represented by an uni-

tary matrix Pz, we can relate two states at k and —k by a matrix I'(Z).

Prin(k) = [U(ZD)]5, (k). (2.7)

Here, [I'(Z)],,, is non-zero only when n = Zn.

(AP (K)| = 0,6l (k) - ()
= 00} (k) P} - Prifm(k)

= - [M@AV (k@]

nm

n

AP (k) = - [FT(I)A(p)(—k)F(I)] : (2.8)

which is slightly different from Eq 2.5. In the same way with the derivation of

Eq 2.6, we can derive the constraints forced by Z.

11



Fulk)], = iepr Y, | AP (k)

m

—igpr 3 |THD) AP (~R)0(T)|

= igyr [TT(T) AW (—k) A (—R)D(T)]
— igper [T1(D)] > ERCOIN

=g 3 AV (-R)| A0 (-k)|

m

[A(q)(k)]

nm mn

[FT(I)A@(—k)F(I)}

nm

nn

[49(-k)| _ [0(D)]

n,In m,In

)
m,Tn

" Fa(R)], = [Fon(=R)], . (2.9)

Applying 2.8 to the pair of Wely nodes related by the inversion symmetry

T, we can show

1
O(ko) = o ?g]-"zn(—kzo +q)-dS,

1
=5 %J:In(_kﬁ —q)-dS_4

1
=S f R+ a)-as,,

= _C(k0)>

thus the inversion transformation flips the sign of topological charge of a Weyl

node.

2.2 Low-energy effective theory of electronic struc-

ture

In the following subsections, the low-energy effective theories of a single layer

transition metal dichalcogenides and a multi-Weyl node are going to be exposed.

12



As the group representation theory would play a central role in the determina-
tion of the possible structure of the electronic structure, it comes first and the
application of it to the case of a single layer transition metal dichalcogenides

and a multi-Weyl node system will follow.

2.2.1 Representation of a symmetry group and invariance of

Hamiltonian

Let a system subject to a symmetry group G and be described by wave functions
spanned by a set of functions, {¢;(r)|i =1, -- ,n}, called the basis functions.
For convenience, {1;} are assumed to be orthonormal. Applying a transfor-
mation P(g) corresponding to an element g € G to v;, we can obtain the

representation matrix I'(g) of g from the following relation.

P(g)i(r) = ¥;(37'r) = T(g)iji(r)

yielding [I'(g)];; = [ A% (r)b; (G~ 'r). Here, § is the faithful representation
of O(d) in the d-dimensional real space. For example, when g means a counter-

clockwise rotation of a point, or a vector, along the z-axis, then the 3 x 3 matrix

~

g is
cosa —sina 0
g=|sina cosa 0
0 0 1

The Hamiltonian restricted to the space spanned by the basis functions is de-

fined by

iy = [ alrut () HG ) )
The invariance of H(#,p) under g € G implies h = T'(g)" h T'(g) stating the
invariance of h.

In a periodic system, each basis functions are labelled by the crystal mo-

mentum k, thus {¢;(r)|k € FBZ,i = 1,--- ,n} is the set of basis functions.
2] 2 11
L1

13
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The restricted Hamiltonian A is also labelled by k:

(), = [t () H B (),
whose invariance under g is represented by

L(9)h(g~ R)T(9)" = h(k). (2.10)

2.2.2 Monolayer transition metal dichalcogenides

As an insulator, the electronic band structure of a single layer transition metal
dichalcogenides is gapped. The minimum(maximum) of the conduction band(valence
band) is located around the corners K and K’ = — K of the fisrt Brillouin zone,
whose group of the wave vector is C3, while the lattice is invariant under Dsgy,.
It is known that the edges of the conduction and the valence bands at 7K con-
sist of {dz2, dz2_y2,dmy} orbitals of Mo atoms[15]. Hence, we can construct an

effective Hamiltonian near K using the the Bloch basis functions:

Yi(r) = \/1N ; e KRG (r —R), (2.11)
r) — L e—iK~R dxzfyz(’r‘ — R) + idxy(r — R)

a(r) = \/N%: < NG ) (2.12)
" — L KR dxz_y2 (r— R) —idyy(r — R)

P3(r) = \/N%: < NG ) (2.13)

where R denotes the lattice sites of Mo atoms. The representation matrices of

C53 and o}, on these basis functions are

1 0 0 10 0
I(Cy) =0 % o |, Llop)=[0 1 0
0 0 eF 00 1

3] O 11 =L —

,..._L—! :"Ii-'l_li .l| .l.II
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Only C5 among Cjy, effectivley constraints the possible form of h(K + q). Ap-
plication of Eq 2.10 with g = Cj3 yields

hi1 hi2(qz —iqy)  hi13(gz + iqy)
h(K + Q) = h’f2(qu'c + iQy) haa h23(Qa¢ - iQy) + O(QQ)'
13(qz — iq?;) h33(qz + iqy) h33

Turning the spin degree of freedom on, the basis functions are

o1(r) = P1(r) 1), p2(r) = Ya(r) 1), ¢3(r) = Y3(r) 1),
pa(r) = P1(r) |4), ¢5(r) = Ya(r) 1), de(r) = Us3(r) 1),

and the representation matrices of C3 and o}, on these basis functions are

1

2mi
e 3

Using I'(op,)h(K + q)T'(03)" = h(K + q), we know that h(K + q) takes a block

diagonalized form

hT(K—i—q) 0
0 hi(K"F(I)

hK +q) =

15



Note that the spin-up and spin-down are completely decoupled due to o;,. Mak-

ing use of I'(C3), what we obtain is

hll,s h12,s(Qm - 2.Qy) h13,s(Qm + iQy)
hs(K + Q) = hTQ,s(Qw + iQy) h22,s h23,s(q:c - iQy) + O(qz)'
his,s(% — iqy) h§3,s(% + iqy) hss, s

Also, h(K + q) = (I'(oy)e) A" (K + (¢, —qy)) (lﬂ(av)e)T shows that all h;; s are

real, where 7 = e¢K is the time-reversal symmetry with

0O 00 -1 0 0
0 0 0 O 0 -1
0 -X O 00 O -1 0
€ = = s
X 0 1 0 0 O 0 0
0 01 0 0 0
01 0 O 0 0
and
0 —1X
(o) =
—1 X 0

is the representation matrix of a reflection oy, : (z,y,2) — (—z,¥, 2).
The difference between h;;+ and h;; | mainly comes from the spin-orbit

coupling. Without it, h;j+ = hsj | = h;j. Assuming the on-site L - S coupling,

ho+ 5L 0

hK +q) =
0 ho — 3L,

with L, = diag(0,2,—2). Note that the on-site spin-orbit coupling does not
split the bands of 1y = d,2. The spliting by the L - S spin-orbit is 2A. First
principle calculations have report that hgs > hy; > hogo > |2)| and the Fermi
energy lies between the bands from 11 and 1y(3) at K(—K). Using this knowl-

edge, we can obtain the 4 x 4 low-energy effective model Hamiltonian[Di Xiao
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a t A 2\

MoS, | 3.193 | 1.66 | 1.66 | 0.15

WSs | 3.197 | 1.79 | 1.79 | 0.43
MoSey | 3.313 | 1.47 | 1.47 | 0.18
WSey | 3.310 | 1.60 | 1.60 | 0.46

Table 2.1: Fitting parameters a, t, A, and \. [1]

2012] for a single layer transition metal dichalcogenides

A -1
het(TK + q) = atq - o + 50z~ )\TJZ2

Sz, (2.14)
with the lattice constant a, t = hja/a, and A = hy; — hoa. Here, o; acts on the
orbital space spanned by {11,12} and s, acts on the spin space. Note that t
is the spin-up band among the two spin-splited valence bands which is placed
above if 7A > 0. The fitting parameters a, t, A, and A are shown in Table
(..)[Di Xiao 2012]. In all listed materials, A > 0 which means the upper band
of the two spin-splited valence bands consists of 121(r) and 3, (r) at K and

— K, respectively.

2.2.3 Multi-Weyl node

A Weyl node does not require any symmetry. It can exist at any point in the
Brillouin zone. The stability of a Weyl node also reflects the fact that a Weyl
node does not require any special symemtry. However, its extention for a higher
topological charge is not stable. For example, a version of extention of a Weyl

node described by the following Hamiltonians

k, k2
HQ—Weyl(k) = ’
K2k,
k, k3
H3 weyi (k) = ,
K ks

17



which will turn out to be Hamiltonians for a double- and a triple-Weyl node,
have topological charges of magnitude 2 or 3. However, they are not stable.
They are gapped if a perturbation a0, + ayoy is added to Hy(3)-weyl- To have
such nodal points stable, we need some special symmetries. In the remaining
part of this section, we will show that some rotational symmetries make the
nodes stable.

Let us begin with a general implication of a n-fold rotational symmetry.
When a lattice is invariant under a n-fold rotational symmetry along an axis,

the Hamiltonian should satisfy
H(k) =T[C,]H(C; k)T[C,]". (2.15)

If the wave vector k is a point on the line called the rotationally invariant line,
then the Hamiltonian at that k is invariant under C,, [I'[C,], H(k)] = 0, and
the states on this line can be labeled with the eigenvalues of C),. At a general
point of the rotationally invariant line only four types of transformation can
be included in the group of the wave vector. One is the rotation, another is
the space-time inversion Z7, and the third is a combination of mirror reflection
and time-reversal o7, and the other is a mirror reflection o,. Here, oy, is the
mirror reflection against the plane perpendicular to the rotationlly invariant
line, while o, is a mirror reflection against a plane on which the rotationally
invariant line lies. Combinations of C5 rotation along an axis perpendicular to
the rotationally invariant line and either of the time-reversal, spatial inversion,
or a mirror reflection, such as Cs7T or C3Z, can be made by the combination
of those four. For example, Co7T = 0,Z7. We first consider the case in which
only the rotations are the symmetry of the wave vector of the general points on

the rotationally invarinat line.
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2.2.3.1 Multi-Weyl nodes protected by a n-fold rotational symmetry

When only the n-fold rotation and its powers C]" are the symmetries of the
wave vector, no degeneracy in the electronc band structures is protected by
the symmetries because all irreducible representaion of the group of the wave
vector is one-dimensional. However, accidental degeneracies can happen and
these are what is of our interest. To investigate the electronic structure around

the accidental degeneracy, let us begin with a 2 x 2 Hamiltonian of the form
H(K +q) = f(K,q)oy + f*(K,q)o- + g(K,q)o-,

where 04 = 0, £i0,. Here, K does denote a general point in the rotationally
invariant line, not the corners of the hexagonal Brillouin zone. Also, q is an
deviation of a wave vector from the rotationally invariant line, and thus q
is perpendicular to the line. The Hamiltonian describes two bands near the
rotationally invarinat line. In general, f(K,0) = 0 and ¢(K,0) # 0 if the
eigenvalues of C,, of two bands are different. However, if there is a point K =
K such that g(K(,0) = 0, an accidental degeneracy happens and we are
going to find the possible symmetry allowed forms of f(K,q). Taking the

. . . . _42mp _ Fmp
spin degree of freedom into account, the eigenvalue of C,, is e™* = e "= with

p=20,12---,n—1and F = +1. However, we can set I' = 1 because
2p+1=2(p+ 1) — 1. Hence, The representation matrix of C,, would be

_;@pt)m _;p=a)7
(& ’ n O i (p+q+1)m & L 0
I'[Cn] = =e n

0 i (2¢+1)7 (p—a)m ’
[ n )

0 e’ n

with which we can get the constraints of f and ¢

f(K.q)=e 5 [(K,Cpla), (2.16)
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from Eq. (2.15). Making the z-axis coincide with the rotationally invariant
line, Eq. (2.16) reads as
_ 2(p—q)mi _2mi 27

f(K:qv,q-)=e n f(K.,e nqy,enq),

_ 27 2mi

g(KZ7 g+, q,) = g(Kz, € Tqu) eTQ*)a

which lead
f(Eqe,q-) = > FUO(K. g,
(a—B+p—g)mod n=0

9K, q1,0-,¢:) = Y Ga(K2) g1,

a>0

with ¢ = 1/q% + q2. The possible forms of f for all possible n and p — g are

listed in Table 2.2. One can easily find the cases in which we can get a stable
double- or triple-Weyl node when only the rotational symmetries are consid-
ered.(Actually, because of the required cancellation of the topoloigal charge in
the whole Brillouin zone, there must be another Weyl, or a double-Weyl, or a
triple-Weyl nodes in the other site of the Brillouin zone to cancel the topological

change of the double- or triple-Weyl node we have found.)

2.2.3.2 Other symmetries 77, 0,7, and o,

If other symmetries such as ZT, 5, T, and o, are present, parts of the Table 2.2
change. With Z7, every bands are doubly degenerate and a node is essentially
a composition of two node of opposite topological charge leaving net topological
charge zero. When it comes to 03,7, the commutation relations of [C,,,01] =0
and [Cy,, T] = 0 play an important role. Let ¢,(r) be an eigenstate of C), with

the eigenvalue exp [—@]. Then,

Co [onTbp(r)] = 4T [Cup(r)] = € [0, T ()]

shows that 03,7 ¢p(r) is an eigenstate of C), with eigenvalue exp [2?1]7 which

means that o, T enforces all bands doubly degenerate on the rotationally in-

] 2- 1_]|
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n|p—qgmodn H(K +q)

2 1 m(K,)o, + (aq— + bgy) oy + h.c
3 2 m(K,)o, + aqroy + h.c
1 m(K;)o, +aq-o4 +h.c
4 3 m(K;)o, + agroy +h.c
2 m(K,)o, + (a,q_2|r + qu) or +he
1 m(K;)o, +aq-o4 +h.c
6 5 m(K,)o, + agroy +h.c
4 m(K.)o, + agioy + hc
3 m(K.)o. + (agd 4+ bg®) o4 + h.c
2 m(K.)o, +aq’o, +h.c
1 m(K,)o, +ag_o4 +h.c

Table 2.2: Effective Hamiltonians on the rotationally invariant line.

variant line. As it is with Z7, no node with non-zero net topological charge is
possible.
The last remaining case is a system with o,. Let the mirror plane of o, be

yz, and thus o, : (z,y,2) = (—z,y,2). It is easy to see that
0,Croy = C’,:l

for any n. Therefore,we again get a two-fold degenerate bands on the rotation-
ally invariant line of C,.
In conclusion, multi-Weyl nodes are stable only when one of the following

conditions is satisfied.

e No time-reversal symmetry and no vertical mirror reflection o, = Cyp

and Cﬁh

o No mirror reflection = C4 and Cg (Note that inversion symmetry is absent

when Cy or Cg symmetries are present with all mirror reflections broken.
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Chapter 3

Self-consistent method in the mean-field level

This chapter is prepared to provide a short course about the self consistent
method, especially focusing on the Hartree-Fock method. The Hartree-Fock
method is arguably one of the most famous way used in the condendsed matter
theory taking the self-consistency of a many-body problem, together with the
density functional theory. We derive the self-consistent equations using the
Hartree-Fock factorization [16], and then we show that the same equation can
be obtained in the more elegant method of variation from which we also derive
the self-consistent equation in a multi-orbital system. After the derivation, the

homogeneous electron gas is studied in detail for a heuristic purpose

3.1 Derivation of the self-consistent equation using

the Hartree-Fock factorization

The homogeneous electron gas is a system of electrons invaraiant under any
translation and rotation. This assumption is simply encoded into the following

Hamiltonian:

H= Zek,géL oCho + — Z ZV ckJrq(7 p 2.50p.5Ck.0» (3.1)

k.p,q o5
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where s and o denote the spin indices and V' is the total volume of the system.

When

v e d=3,
(q) = )
- 4=2

the interaction corresponds to the long-range Culomb interaction. Assuming
that the fluctaion of the expectation value of éL <Cp.o is quite small, we can

substitute é}; -Cp,s by

éTk,a'épys - <CI) sC > 5"’:1355 a + 0 (ck o‘cp 5)
where ¢ (ck +Cp, 5> = 5;2705;;,5 - <é;r,,sép,5> 0s,00k,p is the fluctuation of éLVUénS
assumed to be very small. After substitution and dropping terms involving the
small fluctations , we get

. g
Hyr = E €k,sCh sCh,s
k,o

N A Y ACAY
Z >_V(@)gpr {<Ck+q,acpvs> Cp-q,sCho T <cp_q,sc:c,a> Ck:-l—qadcp’s}

k.p.q 0.5
Z Vi {<Ck:+qck> I? qCp T <é;r)*qép> éJ{Hqék}
_ngckk——z ZVp k) < >] CCh (3.2)
+ % zk: zp: v (0) <e;ép>

The last term is called the Hartree term

VZV <ATA > (3.3)

and the second term is called the Fock term, or the exchange self-energy,

k) = —% S Vip- k) <6Lép> . (3.4)

AT A
CrCk-
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The role of the Hartree term Y7 is to provide an additional chemical potential to
all electrons. However, the electrostatic potential from the background positive
ions is almost eactly the same and cancels the Hartree term, and thus we usually
ignore it and focus on the Fock term Y p(k) which renormalizes the electronic
band dispersion .

The definition of ¥ (k) requires us to calculate the electron density n(k) =
<éLék> whose sum over the whole momentum space must be the number of
whole electrons Ny, typically an order of 10%%. In the single band model, the

electron density can be calculated simply as
n(k) =06 (5F — &k — EF(I{?)) 5

where e is the Fermi level to be determined too, from which we get the self-

consistent equation for Y p(k):
1
Sr(k) =+ Epj V(p—K)O (er —ep — Sp(p)) . (35)
with a constraint on ep

Na=> O(ep —cp— Zp(k)). (3.6)
k

3.2 Derivation of the self-consistent equation using

the variational principle

As aforementioned, Sec 3.1 is revisited with the variation principle. The iden-

tical result can be obtained by mimizing the following functional of ®

E[®] = w, (3.7)

with
H= g hichTCj + 5 E %jszIC}Cka,

1,5€1 ,5,k,l€l
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where V;ji = —Vji = —Vijik is required due to the fermionic anticommuation
relation.

To take the variaion of E with respect to ®, we aussme that |®) is well
approximated by the Slater determinant composed of the eigenfunctions of the

non-interacting part of H.
D) = Hc,w = rngn ) |P(k1, 1) [Pk, L) - [Pk, 1), (3.8)

where N is the number of electrons. To evaluate (®|H|®), we need to know
what we get by operating ¢ and éf on |®). For this purpose, we introduce two

notations for states.

71,72, mN) = [r1)|re) |, (3.9)
1

1,72, ,TN) = — TP1)s TP(2), TP(3)," " ,T 3.10

71,72 N) WE 7Py, TP(2), TP(3) P(N)) (3.10)

ngn Nrpan ree)re@) - [revy)-

The completeness of the vector space is expressed as

1 :/ / / |7=1’7-2’... 7rN)(/r17r2,... 7TN|7 (311)
T1JT2 TN
1
]_ = ]V[/ / / |fr17r27... ’TN><7‘1’1'2’... ’rN” (312)
A i A &) TN

where the first relation is valid for both of Fock spaces of bosons and fermions
while the second one is only valid for the Fock space of fermions. Provided

with these notations, the normalized Slater determinant of a N-electron state
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is represented as

1

(ri,72,- -+ ,TN|PN) = (ri,ro, -+ ,rN|®PN)

)

Gar (1) Gan(r1) -+ Pay(r1)

1) dualr2) )|

2

¢a1 (TN) ¢a2 (TN) T ¢aN (TN)

where ¢, (r) is an orthonormal basis function of the non-interaction systems
labelled as «;. Let us expand the field opertor \i/(:c), annihilating an electron at
a site x, with another normalized basis I = {x;|i = 1,2, -+, M}, not necessarily
orthogonal,
U(r) = xi(r)é, (3.14)
el

&= 1[5, / A (r) U (r), (3.15)
with S;; = fddrxf(r)xj (r). Given the basis y; of the single particle Hilbert
space, the eigenstates ¢, s are expressed by a linear combination of the basis:

¢an = Z CinXia

(iln) =Y CjuSi
which enables us to calculate (ri,ro, -+, rn_1]¢;|®):

Par(T)  ban(®) - day(®)
(r1,m2, -+, rN=1]|¢5| @) = Z [S_l]js/ddmxz(w) ¢a1:(rl) ¢a2:(7‘1) %N:(Tl)

s

(;Sozl(erl) Qbag(TNfl) qbaN("'Nfl)

= Z(_l)n_l Cjn<'f’1,"°2, e ,'I"N_1|Oé1, o Op—1,0p41 - '>7
n

(3.16)

KA LT
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and (ri,7o, -+ ,rN_2|Ck¢|P):

(r1,72, -+, *N—2|CkC| D) =/ (r1,72, -+, *N—2|Ckla1, T2, - TN_1)
L1, LN-1

X (x1, 22, - TN-1]¢|P)

= Z nmnckmcln Xt (317)
o
<T17T27 T 7TN—2‘0417 01, 0m41, 0 01, 0p41 """ >7

with 9, = (=1)™1" . Also, the norm of |®) is

(®2) = | > Cr1SiCia | | D CiaSiCha| | D CiaSijCia (3.18)

1,J€l 1,J€1 1,J€l

Armed with Eq (3.16) and Eq (3.17), we can evaluate (®|H|®):

1 Fata s
(®|H|®) Zh” < éle; > + 52%‘1@1 <‘I’ of }Cka; ‘1>>,
ijikl
where the first quadratic term is rewritten as
Zhw < C C] > :71 Zhw/ <<I) T r1,72 T’N1>
(N - 1)' ij T1, 3 TN-1 Z
X <T17T27 s TN-1 é] (b>
=D > hi(=1)""CE Cin Mo
m,n  ij
=> ") CihijCin, (3.19)
n 1j
where an = <a17 s Om—1, Oy, 0 7aN|a17 ot Qn—1,Qn41, 0 ,OéN>, while
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the second quaratic term turns out

ZVzgkl< of C CliCho ‘I)> 2N —2)1 Z‘/mkl/ <‘I> et G, ,TN—2>
ijkl " igkl y TN -2
X <7“1,7“2,"' s TN—2|CrCy ‘1>>
ZmeannC* C* X anqckpclanmmq
’L]k‘l pq
Z V;]k:l Z nmnC:mC;n X Z nqukpClq (5mq‘5np - ‘5mp5nq)
'ijl p,q
S Z Vijki Z n (CenCim — CremCin) ,
zjkl
(3.20)
WithM’er;pq = < =1, Ontl, ", Om—1, Ol " " ’ .. 'ap—laap+17' . 7aq_1’aq+1 .. >

Here, the last equality of Eq (3.19) and (3.20) are valid when the eigenfunctions

oo (x) are normalized. Appyling the variational principle with respect to C

m’

we get
_OE[®] 1 0 0
0= acr = ®[®) [aci*n (P|H|®) — E [D] oc (®|D) |, (3.21)
giving us an equation of C/, s
ESyCry = Z hiCin + Y Y (CrnViskiChim — CnViiriCim) Cin,  (3.22)

gkl m
where the fddmgﬁzm(ac)gbzn (x) = C} SijCjn, = Oy is assumed . The second
term and the third term in the right-hand side of Eq (3.22) are actually the
Hartree self-energy term and the Fock self energy term:

Xnly = ZZ VijkiCrm, (3.23)

m -])

Eelie ==Y CinVijtiCim, (3.24)

m ]7

and then Eq (3.22) is written as

ESC, = (h+ Xy +Xr)C,
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with Cy, = (C1ny Cony -+ Coin)

Applying to the translationally system in which the momentum is a good
quantum number, ¢, 7, k, and [ in the summation Zijkl Vijklégé}ékék correspond
to the momentum k + q, p — q, p and k. Eq (3.23) and (3.24) become

Pl =YY Cr(k)V(0)Cp(k), (3.25)

mkq

Se@)y =YY Ch(k — p)Cin(k), (3.26)

m jl

which is identical to Eq (3.3) and (3.4) when M is 1.

3.3 The self-energies in a multi-orbital system

From Eq (3.25) and (3.26), the mean-field expression for the self-energies can
be obtained. Here we use M = N x M, functions to expand the single particle
Hilbert space, where M, is the number of Wannier orbitals in a unit cell and
N is the number of unit cells in the system which will be sent to infinity. In

this setting, the second quantized form of interaction is replaced by

o, 1 RS 4 A A
V= 5 Vz’jklci 5 CkCE -V = 5 Z Vabcd(Q)Ck+q7acp_q7bcp,cck,dv
i,9,k,lel a,b,c,d=1

and the consequential expressions of self-energies are given as

ad - Z Z Cb m abcd )Cc,m<k>7 (327)

mkq

[EF Z Z Cb m abcd p k)Cd m(k) (328)

m k,q

where a, b, c and d labels the Wannier orbitals in the unit cell.
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3.4 The Hartree-Fock description of the homogeneous

electron gas

For the homogeneous electron gas, the contraint Eq (3.6) on e can be solved

easily by introuducing the Fermi momeutm kg satisfying

kg
Na Jorr d=3
Vo) k2
eod=2

The Fermi level ep is determined by

ep = €k, + Zr(kr).
Using kr, the self-consistent equation for X Eq (3.5) is also expressed without
3. on the right hand side.

Srk) =5 S Ve k)

|p|<kr

For the long-range Coulomb interaction in the three dimension, the integration

in the right-hand side is just an elemenatry integration and one get

2 1 kp 2
(3d) e p-dp
s@D ) =< [ aq __pap
i (k) 7r/_1 x/o p? + k2 — 2pkx
ekp[1 1 p+y
= dp plog
0 p—Yy

T |2y
1+y
1—yl|l|’

ekp [1 1—y¢?
=— = 1
T [2 + 4y og’

with y = k/kp. Here we use the integration by part

1d 122 —a? 1 a?
mlog(m+a):§£x log(a;+a)—§ il e

For the two dimension, the integration can not be performed analytically and
the result is expressed with the complete elliptic integrals respectively of the

first and second kind[16]

E(Zd)(k) _262kp E(y) y<1,
(20) ()
s
y[BG) - (1-%) K@) =1
] 1] =1
= O &
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Figure 3.1: The Fock term, or the exchange self energy, and the energy dis-
persion of the homogeneous two- and three- dimensional electron gases. (a)
and (c) : The exchange self-energy in two- and three- dimension divided by
the Fermi energy. (b) and (d): Comparison between the non-interacting en-
ergy dispersion and the self-energy corrected energy dispersion of the two- and

three- dimensional electron gases.

In Figure 3.1(a) and 3.1(c) the plots of Eﬁf’d) and ng) divided by e are

provided for the case of ekaﬁ = 2 and ekal: = %, respectively. And the enegy

dispersion of electrons in the non-interacting limit and the energy dispersion in

the Hartree-Fock approximation are also provided in Figure 3.1(b) and 3.1(d).
The values of the Xp at kK =0 and k = kp are

2
(3d) e“kp
239 (0) = -,
2
(3d) e“kp
E k = —
F ( F) o’
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and

2EY(0) = —ekp,

2e%k
22V (kp) = -2

™

Note that the energy dispersion of electrons is largely modified by e — e +

2839 (0).
% = 2 and 2?;2%)(;(2) = % implies that the electrons deep inside the

Fermi sea are strongly influenced by the interaction. This conclusion does not

coincide with the experimental result and the Landau’s Fermi lgiuid
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Chapter 4

Exciton-Polariton condensate in two-dimensional

TMDC

4.1 Introduction

Monolayers of TMDC, such as MoSs and WSes, have attracted widespread in-
terest in recent years as a semiconductor analogue of graphene. Like graphene,
they are atomically thin, 2D materials, whose band extrema occurring at the
Brillouin zone corners K and K’ can be described very well by the Dirac
Hamiltonian, that gives rise to the +m-Berry phase at each valley, but, un-
like graphene, possess direct band gaps at K and K’ [1].

Given he band structure origin of the valley Berry phase, we may ask
whether and how it may be affected by the electron-electron interaction and
the electron-photon coupling. The electron-electron interaction in TMDC has
been observed to give rise to both the electron-electron pairs, i.e. the Cooper
pairs [17], and the electron-hole pairs, i.e. the excitons [18, 19], with super-
conductivity, which arises from the condensation of the former, shown to be
possibly topologically non-trivial [20, 17, 21].

Meanwhile, the optical valley selection rule for the circularly polarized
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light[1, 22, 23] shows the strong effect that the +m-Berry phase has on the
electron-photon coupling with direct band gaps (~ 1.5 to 2 eV) lying within
the visible spectrum [8, 9].

The above considerations motivate us to study the condensation of polari-
tons, emergent bosons from hybridizations of cavity photons and excitons. It
is tunable by both the Coulomb electron-electron interaction and the electron-
photon coupling for the exciton binding and the photon-exciton hybridization,
respectively. The recent years have seen reports in various systems of possi-
ble observation of this condensation [24, 25, 26] with progresses underway for
TMDC [27, 28]. The room temperature polariton condensation is a possibility,
light-matter coupling giving a very small polariton mass [29]. When the polari-
ton lifetime, though limited by the finite lifetimes of both cavity photons and
excitons, is much longer than the thermalization time, substantial evidences
of superfluidity, such as vortex formation [30], Goldstone modes [31], and the
Landau critical velocity [32], have been observed.

In this Chapter, we develop a mean-field theory for exciton-polaritons in
gapped Dirac materials such as TMDCs, and demonstrate that due to the effect
of the m-Berry phase, the mean-field electronic band structure with the polari-
ton condensate can undergo symmetry-breaking or topological phase transitions
I driven by the competition between the electron-electron interaction and the
electron-photon coupling that can be tuned by the excitation density. We first
apply our mean-field theory to the single valley model to show how the phase
transitions arise and then extend the calculation on the physical two valley

model to obtain various phases and their topological invariants.

!By contrast, previous studies, e.g [33], dealt with the topology of the effective polariton
bands.
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4.2 Model

The polariton condensation in our gapped Dirac materials should be derived
from the electrons with the Coulomb interaction coupled to coherent photons.

Hence the Hamiltonian we consider would be

H= I:.IT() + ﬁe_e + ﬁph + I:Ie_ph — NXNtOt7 (4.1)
~ éT,l,k
Ho = Z Z [éilk Ai2 k} d? (k) - o R )
=% k Cr2.k
. 1
th = hwc Z (d}d} + 2) I
I

N 1=
_ T
He_ph - EA : :: : J Z] T,Z,kc7—7]7k’
o
Hee 252 Z ZV &L ik Cor iy Cr' s Criker

7,7 k1,k2,q 1,j

where o represent the Pauli matrices, I the photon polarization index, dgo) (k) =
(Thvkg, hvky, Egap/2), with 7 = + being the valley index, w, the cavity photon
frequency and V(q) = % the Coulomb interaction, with € being the dielectric
constant; note that the exchange terms of the electron-electron interaction are
in the orbital rather than the band basis [34, 35, 36]. Meanwhile, the first
quantized current operator is given by j;;(k) = —edk [d(TO)(k) ol (4,7 =1,2)
and the gauge field operator by

A= Z V2me2h/eSLew(erare et + e?&}ei‘m),
I

where €7 is the photon polarization vector and S, L. the cavity area and length,
respectively. ¢(z) and ay are the annihilation operators for the electron in the
L, = 0 (L, = 27) orbital and the photon with the polarization I, respec-
tively. Each valley is taken to be completely spin-polarized with opposite spin
polarization, i.e. S, = 7/2, due to the transition metal atomic spin-orbit

coupling L - S removing the spin degeneracy in the L, = 27 orbital; hence,
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the dark excitons from intra-valley spin-flip [37] will not be considered. Lastly,
Ntot =>; &J}& 1+Nex is the total number of excitations, both photons and exci-
tons, in the system and tuned by the chemical potential 1 x. Since the number of
exciton Ngy is the number of electrons excited from the valence band to the con-
duction band, the band basis for the electrons, >, [W(k)]; zﬂa,k = ¢; p,which
diagonalizes Hy of Eq. (4.1) with @C(U) as the annihilation operator of electrons
in the conduction (valence) band, can be convenient. This allows to identify the
exciton number as Nox = >k oy Where AT = (1/3167,61/37,671@ +12}77U7k12)i,v,k)/2'
Physically, we are interested in the thermal quasi-equilibrium that is reached
after the cooling of a population of hot polaritons initially introduced by a short

laser pulse [38]. For simplicity, we shall set the temperature to be zero.

4.3 Self-consistent mean-field equation

We use the BCS variational wave function for the polariton condensate [35, 36]

Lt o o
\P<A:|:)> = N H eAIaI (u'r,k: + UT,kwj—7c7k1/}T,v,k)|0> (42)
I, =%k

with N = e~ 21=+1/2 and |ur ke |* + |vrk|* = 1, where I = + corresponds to the
right (left) circularly polarization €1 = (1,44)/+/2 and |0) is the ground state of
Hy, in which photons are absent and all the valence (conduction) band states
are occupied (vacant). In this wave function, the photon component gives
the coherent state with the number of photons (&}&ﬁ = A% and of excitons
(Nyox) = >k [vr.k/|%; only the excitons with zero center-of-mass momentum are
condensed, and the condensation energy arises only from the stronger intra-
valley - but not from the weaker inter-valley - electron-electron interaction.
To determine A4, urk, v that minimize (U(A+)|H|T(A)), we obtain the

mean-field self-consistency condition not only for the electron-electron interac-
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tion through HMF = doriik Ar;ij(k)é;i’ké’r,j,k where *

~ NXvAT

1 . A
Bk = —5 2 Vk—p) (e jpenin)| "0 @)
k ) T

but also for ﬁph + ffe_ph, by which A;’s are determined as [36]
A=t S () k) (4.4)
e B o U et |

using the rotating wave approximation ﬁe_ph = ﬁ Zk,]; g,ﬁ’T&I@Z;C’kd}T’v,k +
h.c. on the electron-photon coupling, where g,i’T = \/ﬁi’%c@]e - IO (k)|v) is
the electron-photon coupling strength, and I the photon circular polarization
index. The optical valley selection rule [1] gives us the s-wave electron-photon

coupling, i.e. g,lc’T = god1 - + O(K?).

4.3.1 Details of the optical-valley selection rule

It can be shown g,Ic’T = go01,~ under the general consideration of the symmetry
of a single-layer transition metal dichalcogenides.
Let us consider Ji(T)(k) = —eaiHéT)(k). As it is a derivative of a Hamilto-
nian, a scalar under any r € G, Ji(T)(k) should transform like a vector:
L(r)J7 (k)0 () = 74007 (K), (4.5)
and thus GU7) (k) = e - J(7) (k) transforms as
LG k)D(r)f = e G (&), (4.6)

when r is the a-rotation along the z-axis:

2T i 2T
cos 5 sin 5 0

r= i 2T 2m
T sin 5 Ccos 5 0
0 0 1

2The no-photon ground state value in the Fock potential is subtracted off so that éx’s can

be treated as the non-interacting quasiparticles with our band parameters
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Here, we have used 7;; (ex); = (ex), eT@. As g7 (k) o (c|GUT)(K)|v) is the
value of G evaluated using the band basis, we need to rewrite Eq. (4.6) in the
band basis:

Tk (r)GUD (77 )Ty (1) = e G (), (4.7)

where Ty (r) = WIIF(T')WT—Ik and GU7) (k) = W,IG(I’T)(k)Wk. It is important
to note that T'y(r) is a diagonal matrix because all bands of interest near the 7K
valleys are non-degenerate and also does not depend on k. The proof is as fol-
lows. First, the fact that all bands are non-degenerate means the representation
matrix f‘k(r) is a direct sum of only one-dimensonal irreducible representations,
and an one-dimensional irreducible representation coincides with the character
of the irreducible representation, which is independent of basis. Since the group
we are considering is a crystallographic group such as Csp, the number of all
possible values of characters of irreducible representations are finite, while k
varies continuously. Therefore, we arrive at a conclusion that I'y(r) is indepen-
dent from k and must be same with I'(r), which is just Tj—o(r). Provided with

this knowledge, Eq. (4.7) leads us to

[P(T)L'L é([,r) (fﬁlk)}

:efﬂa ~(1,7) .
Tl @], )

ij

ij

which, in turn, informs that the diagonal component [G(I ’T)(k:)} _, the intra-
1
band transition amplitude, should be zero at k = 0 for both polarization I = =+.

Evaluation of Eq. (4.8) at k = 0 for a single-layer transition metal dichalco-
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genide is not diffcult provided that

ct ¢l o7
ctT| 1
_ for K valley
cl e
2mi
v T e 3
F(C3) - ’
ct ¢l vl
ctT| 1
_ for — K wvalley
cl e
v 1

leaving only 4 non-zero [G(]’Jr) (O)L.j fori,j=ct,cl,vt:

[@(+,+)(0)] [@(—,+) (0)} [@(+,+)(0)} ’ [(;(—#)(0)}

ot otet el et

(if 7 = —, v 1 should be replaced with v |.) Among the four, the last three
can be neglected within the rotating-wave approximation, which enforces the
energy conservation even for the virtual processes of the optical transition.
Therefore, the dominant optical excitation from the upper valence band at
the K wvalley is the transition from v 1 to ¢ T by a light polarized in I = +
direction.. In a similar reasoning, the dominant contribution to the optical
excitation from the —K valley is the transition from v | to ¢ | by a light
with I = — polarization. Hence, spin, momentum(valley), and the polarization
of light are tightly coupled, which makes the family of single layer transition

dichalcogenides a good platform of spintronics and valleytronics.
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4.4 Competition between s- and p- wave order pa-

rameter

From the self-consistency conditions of Egs. (4.3) and (4.4), we find that there
exists the competition between the electron-electron interaction and the electron-
photon coupling in the polariton condensation in the Dirac material. We first
note that the electron-photon coupling induces only the s-wave excitons at both
valleys, as Ay in Eq. (4.4) is maximized when the electron-photon coupling g,Ic’T
and the exciton correlation <1ﬂ c,k¢77v7k> are in the same symmetry. On the
other hand, the electron-electron interaction may not favor the s-wave exciton

when we examine HMF = Dok AT;ga(k)’(ZJ:r_ﬂ k”LZJT@’k, given that

Aren(k)=Y [WAWT ] oo(k) & AL (k) +eT* AL (),

T;C,v
i?j
S ~ 1 2 Hk,‘ A—i- ~ 2 9]3
AT;C,U(k) ~ E COs ? Z V(|k - p|)<¢7‘,v,p¢7'707p> COS 57
P
1
A7, (k) m sin szp:V(]k —p|) (4.9)

where tan ¢p, = ky/ky, tan 0y, = hok/(Egap/2). The p-wave components A%, (k)
arises from the 7w Berry phase, as can be seen both from the chiralities of the
p-wave components for the two valleys being opposite and A%.. (k) being pro-
portional to sin g, the integrated Berry curvature of IEIO for momenta smaller
than k, that vanishes linearly as & — 0. We see from Eq. (4.9) that the Coulomb
electron-electron interaction favors the p-wave (s-wave) exciton at the 7 valley

when the 7-valley exciton density >_ (7 becomes sufficiently large (small)

ox,p)
compared to the critical density set by the average Berry curvature. We will
show that when the exciton symmetry of the polariton condensate is predomi-
nantly chiral p-wave in the 7 valley, the Berry phase sign of 7 valley changes in
the mean-field Hamiltonian HMF = H + % Z[,T,k(AIQIICJ@ZJ,C,MZ’T,U& +h.c.)+
HMF _ /1% Ny from that of Hy. While Eq. (4.9) also indicates that the chiral

3 '-\.- 1
| -Ili
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p-wave excitons are due to a component of the electron-electron interaction that

violates the Nio, conservation (See Appendix A), the Ny fluctuation remains

(ANwot)?) _ A3 fuk | |ok|?

1.
NZ, TETSSATACIERIS

small, 7.e.

5 2T 8
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4.5 Topological phase transition of a signle photon—
coupled massive Dirac particle system and its

Phase diagram

(b) () (d) (e)

1.0
T ; 1 (a) 0.15
0.8 = —
- + 2 — — Photon Ratio 5]
I 3
8 0.6} A° 15
5 A % §
E 0.4¢ 9]
o 10.05 8

Figure 4.1: (a) Photon fraction and mean-field band exciton gap parameters
A%P averaged over the momentum space as the functions of R, for the photon
frequency hw. = 2.1eVA, the dielectric constant e = 10, the Dirac velocity
hv = 3.7eVA, and the band gap of Eg,, = 2.0eVA. (b)-(e) Pseudo-spin textures
at the R, values indicated in (a). Arrow represents 7 and false color represents
n.(k); for convenience, we have plotted the 7 = — valley coupled to I = —

photons.

The essence of the competition between the electron-electron interaction and

the electron-photon coupling can emerge clearly from considering only a single
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valley, i.e. the 7 = — valley coupled to the I = — photons, revealing how the
competition can give rise to the phase transition of our polariton condensate.
Fig. 4.1(a) shows how the photon fraction A2/(A% + (N)) of the polariton

condensate and the exciton gap parameters A®P of Eq.(4.9) depend on the
S

Niot

mean distance Ry = between excitations, the quantity that determines
the total number of excitations Niot. A key feature here is that the p-wave
excitons are dark [39], which can be confirmed from A vanishing in Eq.(4.4) for
the purely p-wave (@EM& because the s-wave symmetry for the electron-photon
coupling, i.e. gr =~ godrr. Since AP arises solely from the electron-electron
interaction, the higher-density discontinuous crossing of |A®| and |AP| curves
in Fig. 4.1(a) at Rs = R¢1 can be regarded as a consequence of the competition
between the electron-electron interaction and the electron-photon coupling.
Overall, the Fig. 4.2 plots show how the topological phase transition of
HMF can arise from the competition between the s-wave and the chiral p-wave
exciton pairing channels. The Chern number of a single valley can be defined
in a manner analogous to that of the topological insulator surface [40], with the
understanding that the integer value is obtained when summed with that of
the other valley. Note how the Chern number C_ = i% coincides exactly with
|A®| < |AP| (|JA%| > |AP|) in Fig. 4.1 (a). C— can be computed equivalently in
either the orbital basis obtained from o - d = W (o -7)WT or the band basis
as C_ = & [d®kd - (O,d x Oy, d) = —1 + L [ d?kn) - (Ok, M x Op,7), which
is consistent with Fig. 4.1 (b)-(e) as it gives C_ = £1 when the skyrmion is

present (absent); note that Hy gives C_ = —%. In fact, we may define the
overall exciton symmetry to be chiral p-wave when C_ = +%. Given that the

AP arises from the non-conservation of Ny as can be seen from Eq.(4.9), this
is a case of discontinuous phase transitions to excitonic insulator phases in the
absence of the Ny conservation, though our case deals with quantum rather

than classical phase transitions considered in [41, 42].
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The full phase diagrams with respect to Rs and the photon detuning § =
hwe — Egap shown as Fig. 4.2 for different values of the dielectric constant e and
the band gap Eg.p can be largely explained by the different energy competi-
tions that give rise to the higher and the lower density phase transition. ¢ and
€ are control parameters in the competition between the electron-photon cou-
pling and the electron-electron interaction; the photon self-consistency equation
Eq.(4.4) shows that the smaller § leads to the larger photon fraction, while the
smaller € leads to the larger electron-electron interaction. Fig. 4.2 (b) shows that
the C_ = —i—% phase with the chiral p-wave excitons requires sufficiently weak
electron-photon coupling, which is naturally larger for the smaller Coulomb in-
teraction of € = 15 shown in red than for the larger Coulomb interaction of
€ = 10 shown in blue and green. That the lower density (larger R;) transition
depends little on § confirms its weak dependence on the electron-photon cou-
pling. Meanwhile, the blue curves of Fig. 4.2 (b) shows that for a larger Fgp
the lower density transition occurring at smaller Ry (larger density) when com-
pared with the lower Eg,, shown by the green and red curves. This is because
of the larger Ey,, suppressing AP through reducing sin 6, at all momenta, or,
equivalently, the Berry curvature integrated over momenta smaller than k.

The phase diagram of Fig. 4.2 (a) shows phase transitions as well as crossovers
in contrast to the results for the polariton condensate in the topologically triv-
ial quantum well where only the latter were present [35]. Following the results
of Kamide et al. for the topologically trivial quantum well, we can define in
the C_ = —% region several phases according to the photon fraction as the
photon, the polariton and the exciton BEC in the decreasing order, with their
boundaries being crossovers (shown as the dotted curves). However, as dis-
cussed above, there is a first-order phase transition (shown as the solid curves)
between the C_ = —% and the C_ = +% regions. Within the C_ = —I—% re-

gion, the phase with the vanishing photon fraction would be best termed the
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electron-hole BCS condensate, Rs being smaller than the p-wave exciton radius
3. Inside the C_ = +% region, there is a second-order phase transition (shown
as the dashed curves) between the polariton BEC and this electron-hole BCS
condensate involving the spontaneous rotational symmetry breaking. Despite
photons providing no preferred direction, the rotational symmetry is broken
when we have both the s-wave and the chiral p-wave components in vy /uy of
the exciton wave function Eq.(4.2), which moves the singularity of 7 textures
of Fig. 4.1 (b), (c¢), (e) away from k = 0. The rotational symmetry in our
polariton condensate is restored in Fig. 4.1 (d) on A and A® vanishing contin-
uously. Hence, our polariton condensate is always distinct from the JEIO ground

state in either topology or symmetry.

3Following [43], with the dielectric constant of € = 10 and the band gap of Egap = 2.0 €V,

we obtain the exciton radius of 'y = 5.2 A for the s-wave and af) = 46 A for the p-wave.
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Figure 4.2: (a) The dependence of photon fraction for the single-valley TMDC
polariton system on § and Ry shown with hv = 3.7eVA, ¢ = 10 and Egop=
2.0 €V; the green solid, the green dashed and the black dotted curves represent
the first-order transitions, the second-order transitions, and the crossovers, re-
spectively. (b) Phase boundaries for the first-order (solid) and second-order
(dashed) transitions for e=10 and Eg,p=2 eV (green), e=15 and FEg,,=2 eV
(red), and e=10 and Ey,p,=2.5 €V (blue).
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4.6 Topological phase transition of 2D TMD cavity

and its Phase diagram

A
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Figure 4.3: Photon fraction (above) and mean-field band exciton gap parame-
ters A®P (below) for two valleys (7 = £1) as the functions of R for the photon
frequency hw, = 2.1eV and other physical parameters following those of Fig.
4.2 (a).

For the two valley TMDC coupled to photons of both circular polarizations
shown in Fig. 4.3, we find that the topological phase transitions give rise to
both the quantum spin Hall phase (in the region C) and the quantum anomalous
Hall phase (in the regions B and D). To analyze this problem, we consider the
variational solution of Eq. (4.2) with the phase difference between the two
photon polarizations fixed. In the absence of interactions, Hy of Eq. (4.1) gives
us the opposite sign for the Chern numbers of C. = 5 for the 7 valley. When

the exciton symmetry of one valley is the chiral p-wave and that of the other
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Cov | Cop | Cor | Coy | Cs | Cv | Cio
Al +1/2 | +1/2 | —1/2 | =12 0 | +1 | 0
B | +1/2 | +1/2 | —1/2 | £1/2 | =1/2 | +1/2 | +1
C
D

—1/2 | 4172 | —1/2 | +1/2 | -1 0o | o
F1/2 | +1/2 | =1/2 | F1/2 | =1/2 | +1/2 | F1

Table 4.1: Phase classification in the two valleys coupled to the photons of
both circular polarizations. The alphabet letters in the leftmost column refer
to each phase mentioned in Fig. 4.3. Cs =3 0Crs/2and Cy =3, 7Cr0/2
are the spin and the valley Chern numbers respectively. Refer the main text

for further details.

valley is the s-wave, we have a net Chern number of Cioy = ETJ Cro = £1
for our AMF and hence the quantum anomalous Hall phase [44]. Due to the
valley polarization that occurs only in this phase, the regions B and D have the
elliptic photon polarizations while all the other regions have the linear photon
polarizations. Meanwhile, the region C of Fig. 4.3 shows that the photon
fraction and the A® at both valleys vanish continuously at the same Ry *. In
the region C, we have the quantum spin Hall phase where the time-reversal
symmetry is restored by the opposite chirality between the p-wave excitons of
the two valleys. Table 1 shows the topological phases for the two-valley TMDC

polariton condensate taking into account both spin components at each valley.

4The rotational symmetry breaking at two valleys are not independent due to the elec-
tron-photon coupling. Therefore, if we take the Hy of Eq.(4.1), i.e. with the continuous
rotational symmetry, we have for the two valley case the SO(2) rather than SO(2) x SO(2)
symmetry breaking. Given the photon polarization, the vanishing photon fraction is necessary

for the rotational symmetry.
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4.7 Conclusion

In summary, we found topological phase transitions in the quasi-equilibrium
ground state of the TMD monolayer coupled to the cavity photons due to the
competition between the electron-photon coupling and the electron-electron in-
teraction tuned by the excitation density. Our approach is expected to work
best for the thermal quasi-equilibration time shorter than the polariton life-
time. We may find the regions of our phase diagram with optimal experimental
accessibility as the quasi-equilibration time may depend on various physical
parameters, e.g. Rs. One possible method for triggering our phase transitions
may be the terahertz pump which has been shown to induce the s-wave to

p-wave transition in the excitons [45].

49



Chapter 5

Emergent anisotropic non-Fermi liquid at a topo-

logical phase transition in three dimensions

5.1 Introduction

Quantum criticality and topology play key roles in modern condensed matter
physics [46, 47, 48, 49, 50], and the two concepts become naturally impor-
tant near TQPTs. Recently, there has been a surge of interest in TQPTs
[51, 52, 53, 54, 55, 56]. The simplest class is described by the weakly interact-
ing Dirac fermions, and it is well understood that the sign of the Dirac mass
terms determines adjacent topological phases [57, 58, 59]. Since quasiparticles
are well defined, non-interacting tight-binding models are sufficient to describe
TQPTs in this class.

Beyond the simplest class, however, our understanding of TQPTs is far
from complete. The long-range Coulomb interaction may drastically change
the properties of non-interacting fermions near TQPTs, and the non-interacting
tight-binding models cannot describe some classes of TQPTs. The interplay
between critical electronic modes and the Coulomb interaction becomes signif-

icant, and quantum critical non-Fermi liquid states may appear with emergent
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particle-hole and rotational symmetries [60, 61, 62, 63, 64]. Moreover, the inter-
play may also give rise to weakly coupled but infinitely anisotropic excitations
in a class of TQPTs [65, 66, 67, 68, 69]. Thus, it is vital to deepen our under-
standing of TQPTs beyond the simplest class.

In this chapter, we uncover a novel class of TQPTs which shows emergent
anisotropic non-Fermi liquid behaviors in three spatial dimensions (3d) associ-
ated with topological nature of electronic wave functions. Our target system is
the DWSM adjacent to insulator phases under the long-range Coulomb interac-
tion. The presence of either the four-fold or six-fold rotational symmetry allows
a direct phase transition between DWSMs and insulators whose bare Hamil-
tonian has a quadratic band touching spectrum. Without the symmetries,
double-Weyl nodes may split into two Weyl nodes. The long-range Coulomb
interaction becomes relevant at the critical point, and thus quasi-particle exci-
tations are expected to be absent. Moreover, the absence of the cubic symmetry
indicates a possibility of anisotropic quantum critical behaviors in contrast to
most of the fixed points with the full rotational symmetry as in conformal field
theories. Using the standard renormalization group (RG) methods, we indeed
find novel quantum critical phenomena with emergent anisotropy. For exam-
ple, we find that the power-law dependences of the energy dispersion and the
Coulomb interaction on momentum become anisotropic, even though they are
initially set to be the same in all directions, and all excitations have anomalous
dimensions. Our universality class is one concrete example of strongly inter-
acting fixed points with non-Fermi liquid behaviors beyond the conformal field
theory description in 3d. We calculate its experimental signatures in physical
observables such as the specific heat, compressibility, diamagnetic susceptibil-

ity, and optical conductivity.
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. . . m

DWSM TQPT INS

Figure 5.1: Phase diagram for the TQPT between the DWSM and insulator
phases with the tuning parameter m. The insets show the energy dispersions

for the (a) DWSM, (b) insulator and (c) TQPT.

5.2 Model

We consider a minimal lattice model of DWSMs with a four-fold rotational

symmetry Cy with a rotational axis along the z direction [70, 71, 72, 73, 73],

H(k) =2t} [cos(kyag) — cos(kzap)] oy (5.1)

+ 2t sin(kzao) sin(kyag)oy + 2M (K)o,

where M, (k) = m, —t/, cos(k.ag) + mo[2 — cos(kzag) — cos(kyap)] and ag is the
lattice constant. In general, Cy symmetry does not imply ¢/, = t;/. However,
in the presence of the Coulomb interaction, ¢/, = t;l emerges at low energies
Appendix C. For |m,| < t,, the Hamiltonian supports two double-Weyl nodes
at k = (0,0, +k?), where k¥ = ay ' cos™!(m,/t.), which are characterized by the
1 ,;:;I 2-tjg-w
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Chern numbers +2 around the points [70]. For |m,| > t,, the system shows an
insulator phase. At |m,| = t,, a quantum phase transition occurs between the
DWSM and insulator phases, as shown in Fig. 5.1. Neglecting mg for simplicity,
we obtain the low-energy effective Hamiltonian near the transition point given

by
Ho(k) =tL[(k2 — k2)ow + 2kakyoy] + (tk2 +m)os, (5.2)

where t; = t'a? and t, = t,a?. Here, a tuning parameter of the TQPT,
m o |my| — t,, is introduced. The energy eigenvalues of the Hamiltonian are

given by Ey(k) = :I:\/ti(k:% +k2)%2 4 (t.k2 +m)?, and at m = 0 the energy

dispersion becomes quadratic in all three directions.
The corresponding effective action with the long-range Coulomb interaction

is

S = / drd®z 1[0, —ige + Ho(—iV)]e (5.3)
1 1
+ [ Lol @or+ @or+ 1002 6a)
where g = % with ey and e being the bare charge and the dielectric con-

stant, respectively, ¢ is a spinor with 2Ny components, and ¢ is a bosonic
field describing the long-range Coulomb interaction. Note that the topological
aspects of Eqn. (5.2) justify the effective action in the sense that the action
becomes adiabatically connected to a simple non-mixing two band model with-
out the topological aspects. The parameter a is introduced to characterize
the anisotropy ratio of the Coulomb interaction between the xy-plane and the
z-axis. For later usage, we define the following dimensionless parameters,

Ag_29° 5= 12 - ay/B
2

o= —— s
Vit A t

with Ay = [67r(47r)gf‘(g)]*1. Here, « represents the ratio of the Coulomb

(5.5)

potential and the electron kinetic energy, 37! is the anisotropy parameter for

.":r'\'\.—-'! - l‘.I-.\:l T 1_-] i ...‘.l ]
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the fermionic fields, and + is the combination of the two anisotropy parameters
a and 8. We assume that all the four-Fermi interactions, Uijkﬂﬁ;rlﬁ;{lﬁkl/}l, are
set to be small at the lattice-spacing scale and flow into the trivial fixed point

as in the literature [74], which is also justified below in Sec 5.6.

5.3 Large Ny calculation

We first use the large Ny method since it is naturally extended from the conven-
tional random phase approximation [75, 76, 65, 77, 66]. The boson self-energy

is
(i, q) =Nyg® | TriGo(iws + 2.k + q)Cliw, )] (5.6)
w,k

with the fermion propagator Go(iw, k) = (—iw + Ho(k))~*. Here, we use the

. . dw dkxdky ! dk,, ! dk, . .
notation fw’k = | %G [ &=, where [* 5= stands for an integration over

p < |kz| < A with the infrared (IR) cutoff p and the ultra-violet (UV) cutoff
A. A detailed exposition of the boson self-energy is presented in Appendix C.

We propose the following ansatz for the boson self-energy at one-loop level:

) 9|QL
11(i9, q) = - “2LLLp (\ffglaul.

where ¢ = \/m and
Fla,y) =/CF, + Chy2tanh (2,/C7, +CLy2) (5.8)

with C, =0.041, C;, = 1.199, C,, = 0.016, and C,, = 1.267. For the details,

) (5.7)

see Appendix C
The one-loop boson self-energy modifies the Coulomb potential in momen-

tum space as

1

DOa) = e i q)
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where Dy(q) = (aqi + éqg)fl is the bare boson propagator. In the static
(€ = 0) and long wave length (¢ — 0) limit, the self-energy dominates the bare
propagator since it linearly depends on the momentum in this limit. Thus,
we take the boson self-energy as the main contribution to the renormalized
Coulomb interaction, D(if2,q) ~ m This indicates that the boson is
strongly renormalized from the quadratic to a linear momentum dependence,
exhibiting the anomalous dimension of order one at the TQPT. This approxi-
mation has been well established in large N; analysis and is checked afterward.
The fermion self-energy with the renormalized Coulomb interaction is
Y(iw, k) =(—ig)? g Goliw +iQ, k + q)D(iQ, q), (5.10)
a

and the fermion part of the action is modified by the fermion self-energy as
—w + Ho(k) — —w + 7‘(0(’6) — Z(iw, k) (5.11)

It is straightforward to show that the corrections from the self-energy are log-

arithmically divergent in both UV and IR cutoffs, respectively, and we find

(i, k) ~ 2 (i)t — S 01120,
Ny Ny (5.12)
. .
_ NL;K [tL (K2 — k2)ow + 2t kokyoy]

where C,, = 0.366, Cy, = 0.614, C;, = 0.341, and ¢ = log% is the RG parame-
ter. For the details, see Appendix C
We also evaluate the vertex correction at vanishing external momentum and

frequency,

5, =(—ig)® [ Goli2, q)*—— %

- _ X9y 5.13
0 g N, (5:13)

where Cy = 0.366, which is ezactly the same as C,,. This agreement is not a

coincidence but instead a consequence of the Ward identity 6, = 0X/0(iw).

] 2- 1_]|
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Using the logarithmic dependence of the self-energy, one can find various
anomalous dimensions. The scale invariance at the critical point forces renor-
malization of the fermion fields with the anomalous dimension 7y = %‘; The
non-zero anomalous dimension clearly indicates non-Fermi liquid behaviors of
the fermionic excitations, which can be understood by the absence of the pole

structure in the fermionic Green function.

From Eq. (5.12), the RG equations for ¢, and t, are given by

1.dt| Cy, —Cy 1dt, Cy, —C,
—_——= = ——" = = .14
t, de Nf Tty dY Nf (5 )

From Eq. (5.14), we find ﬁd@l = CtLN;CtZ > 0, indicating that 3~! diverges

at the TQPT and that the fermionic excitations become highly anisotropic at

low energies. Thus, our critical theory is described by an emergent anisotropic

non-Fermi liquid.

Y

(a) (b) ()

Figure 5.2: Feynman diagrams at one-loop order for the (a) fermion self-en-
ergy, (b) boson self-energy, and (c) vertex correction. A straight line with
an arrowhead and a wavy line represent the fermion and boson propagators,

respectively.

5.4 ¢ =4 —d calculatioin

— Our large Ny calculation is further supported by the standard € = 4 —d

expansion [78, 62, 79, 80]. Here, we introduce a new renormalization scheme

1 & 1 =1 —
x] 2-tf) BF
1 = | | —
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in which the three spatial dimensions are embedded into a manifold that has

more coordinates in the direction of the rotational axis (z-direction). Namely,
we extend the coordinates as

dkzdk, [ dk, dk: dk: dk.d*3p
(5.15)
(2m)?2 27 (2m)d= 2

with k2 — k2 + p?, and the momentum p lives in a (d — 3)-dimensional man-

ifold. Recalling [¢?] = 2 — 2) +3 —d with z = 2 and z; = 1, the coupling
constant becomes marginal at d = 4 and the quantum fluctuations give log-
arithmic divergences. To read off these logarithmic divergences, we introduce
the parameter € = 4 — d and employ the standard momentum shell RG analysis
with € expansion. For the momentum shell integration, we impose the UV and

IR cutoffs on the (d — 2)-dimensional space of (k,,p) as

dk dk, [ dk.d*3p 5.16)
k.p 2 on (2m)d—2 '

where JA represents an infinitesimal momentum shell p < /k2 + p? < A with

p=Ae*

By integrating out the high energy modes, we obtain corrections at one-loop
order. The fermion self-energy depicted by the diagram in Fig. 5.2(a) is given
by

¥ (iQ, q) =(—ig)* Goliw +iQ, k + q) Do (iw, k)
w,k,p

~—aF ) (y)¢ [tl(qg — qz)aw + 2th$qyay]
— aF, (1) (t:47) o2, (5.17)
where F'| and F, are dimensionless functions, whose explicit expressions are
presented in Appendix C. Note that the frequency part is not renormalized at

the one-loop order because of the instantaneous nature of the bare Coulomb

interaction. Then, it is easy to see that the vertex correction [Fig. 5.2(c)]
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vanishes due to the Ward identity. For the boson self-energy [Fig. 5.2(b)], we
find

M(q) =Nyg? / | Te[Gifie  + 0/2)Goli b — /2)
w,k,p

~ N [,Yqﬁr ’Yqz] ’ (5.18)
ST \X\\l Wiz ® M\\\\\\\\\\\\M\ \W
le\\é\ \\\\\\\\ /,i////,% l&\\\\\\\\\\\\\\\ il
CflIN \:\;//7 ,\\‘g\{\,% oo L\X\ \ \\\\\\\\ \ {Z/'
L
. _ 02 N \\\ ’,/
ons /////// //Z/Z ity \\Q &%Eﬁ/ =

Figure 5.3: RG flows of o and v for (a) Ny = 1 and (b) Ny = 10 at
e = 1. The red dots represent the fixed points (a*,7*). For N;y = 1,
(a*,v*) = (0.671,0.748) and for Ny = 10, (a*,7*) = (0.096,0.966) obtained
from Eq. (5.19).

Renormalizing the wave functions and the coupling constants, we obtain the

RG equations for o and « as

1 da Nia (1 e}
e e = _-F
e G RO o
ldy Nya (1 +0¢F() '
ydl 2 \y 7 9 "\

where Fiy (z) = F,(z) £ F| (). We find two fixed points from the RG equations
in Eq. (5.19). The non-interacting fixed point a* = 0 with arbitrary +* is
unstable, whereas there exists a stable interacting fixed point at (a*,y*) with
) ¥ =] —
s A =t)st
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a* > 0. For Ny =1 and € = 1, the stable fixed point is located at (a*,v*) =
(0.671,0.748), and for large Ny, (a*,v*) = (¢/Ny,1—-0.358/N¢). The RG flows
of & and ~ are illustrated in Fig. 5.3.

At the stable fixed point, the RG equations for the bosonic and fermionic

anisotropy parameters are given by, respectively,

1 Nea* 1

,@ — fe 7_7* >0’

adl fp 2 ¥

e (5.20)
R RPN
Bt ode g, - ’

where f.p. stands for the fixed point. Note that 37! diverges at the stable fixed
point as in the large Ny calculation demonstrating an emergent anisotropic non-
Fermi liquid, which becomes a sanity check of our analysis giving a consistent

result with the large Ny calculation (for details, see Appendix C).

5.5 Physical observables

Recently, several materials [71, 81, 82, 83, 84] have been proposed as possible
candidates for DWSMs, in which TQPTs may occur by tuning the system
parameters. For example, it has been theoretically demonstrated that SrSis
can be tuned by changing the lattice constant through doping or strain, leading
to a transition from the DWSM to a trivial insulator phase [84]. Since the
anisotropic non-Fermi liquid behavior at the TQPT will provide power-law
corrections anisotropically to the scaling of physical observables [76, 85, 86],
the anisotropic scaling relations will be valuable to experiments.

First, consider the parameter dependence of physical observables in the non-
interacting limit [72, 87, 73, 88, 89]. The details are presented in Appendix C. In

the non-interacting limit, the specific heat Cy, compressibility , diamagnetic
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susceptibility xp, and optical conductivity o are give by

T3/2 T1/2
Cy x el RO — 5, (5.21)
tit, tJ_t
XD, X t1/271/2, XD.: X 1/2 Lz
O'J_J_OC*QI/Z 04y X tZ 91/2
1/2 t,

Here, Xp.+ = XD,y = Xp,1. and 043 = 0y = 01| because of the Cy symmetry
of the Hamiltonian. We also assume t, = t, =t for simplicity.

Now, consider how the anisotropic non-Fermi liquids change the bare scaling
behaviors of the physical observables. From the € expansion, the RG equations

for ¢, and ¢, are given by

1 dt

77L:Z—22J_+04FJ_(’)/),

ty dlnb (5.22)
1 dt, '
T =22 FZ )

Lamp - 2tal0)

where Inb = £. Let us choose z = 2 and z; =1 so that ¢, and t, are marginal
at the tree level. Since % =20 for O = w, T with z = 2, O(b) = Ob®. Let
b* be the cutoff value defined as O(b*) = A, then b* = (A/O)'/2. Combining
this with Eq. (5.22), we find that ¢;(b*) = t;0(b*)* F0") oc O~ where i =1, 2,
¢ = & 4k = o Fi(v*)/2, 1 ~ 0.402/ Ny, and ¢, ~ 0.044/N; in the large

Ny approximation.
Then, near the interacting fixed point, the scaling relations of the physical

observables with respect to either temperature or frequency become

Cy oc T3/2+m, K oc TH/2Hm (5.23)
Xp,L o< TH*m, XD,z o T2,
oL o Q2 0. oc QYE,

where 1 = c¢| +¢,/2~0.423/Ny, n2 = ¢, /2~ 0.022/Ny,and g3 = ¢ —c./2 &
0.380/Ny. (Equivalently, we can obtain the same results by including all the

,{ : 1]|
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effects of renormalization in the coordinates rather than the system parame-
ters, as presented in Appendix C.) Thus, it is easily seen that the diamag-
netic susceptibility and optical conductivity show anisotropic scaling behav-
iors, xp,./xp,1. < T™™™ and 0 | /0., oc Q"7 In addition, the permittivity
tensor characterizing the charge screening also exhibits the anisotropic behav-
ior, £ /e, = a? oc Q™. By measuring these ratios, we can clearly see the

anisotropic scaling behaviors at the TQPT.

5.6 Short-range interaction and the stability of anisotropic

non-Fermi liquid fixed point

In this section, we study the effects of short-range interactions which was re-
ported to destroy the non-Fermi liquid phase in the pyrochlore iridates AsIroO7
[90, 91] and show that the non-Fermi liquid phase of DWSM at TQPT remains
stable in a realizable range of Ny in d = 3.

To investigate how short-range interactions affects the non-Fermi liquid we

have found, we first use the following identity
toor) o) = L (o
(vhoow)” = = (vhoww) =5 (vhoyu) W) (5.24)

for i = x,y,z. Using this identity, we can study the effects of all possible
short-range interactions in particle-particle channel and particle-hole channels
by adding just the following interaction to the action in Eq. (5.4):

S, = g / d4zdt (1/}* amp)i’x) (5.25)
In contrast to Ref. [90, 91] where the 4 by 4 gamma matrices are used and the
vector-type short-range interactions appear, only the scalar-type interaction is
needed in the present case.

To obtain the corrections generated by the short-range interaction and the

combination of the short-range and Coulomb interaction up to one-loop order,

I ey 1
-":lx_i L, 1_.i i
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we evaluate the Feynman diagrams in Fig. 5.4.

8) (k)

Figure 5.4: Feynman diagrams generated by the short-range interaction and
long-range Coulomb interactions. The dashed and wavy lines stand for the
short-range interaction and long-range Coulomb interaction, respectively. The

solid line with arrow tip stands for the fermion.

Among the diagrams in Fig. 5.4, only the diagrams Fig. 5.4(b), 5.4(g),
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5.4(h), and 5.4(k) give us the following non-zero corrections to the short-range
interaction,

su®dl — — u2/ dQddq . VTr[aoG(iQ,q)aoau] Tr[o0G (i, q)ogo ]
an (2m)dHt Tr[o,0,] Tr[o,0,] ’

dQd?
@) qp —u(iq) g
ouI M dl =u(ig) /8/\ (2m) e ums

Tr[o0G (i, q)ogo ] Tr[ooG (i, q)ooo,]
Tr[op0] Tr[on0]
dQd?
B g = — (ig)* g
ou' de (ig) /8A (27r)d+1"“”
Tr[ooG (i, q)ogo ] TrjooG (i), g)ooo,]
Tr[oyoy] Tr[o,0,]

Do(iQ, q)7

Do(iQ7 q)27

where 7,,, = diag(1, —1, —1,1) and the repeated indices are summed over. Here,
by using Eq. 5.24, we convert the corrections to ‘vector-type’ short-range in-
teraction such as (¢¥o;4)? (i = 2,9, 2) into the corrections to the ‘scalar-type’
short-range interaction such as (¢fog1)? and it is reflected in M- As a result,

we obtain the following correction du to u:

Sudl =5u®dt + 5u'9 dt + su™ de + su® de (5.26)
Z / dQdiq .
S 8A 27-[- (9-\d+1"THY
Tr[o0G (i, q)ogo ] TrooG (i€, q)ooo,]
I.(q)] 2
TI'{O'MO'H] TI'[O'NO'“] (q) b(q) (5 7)
2 d 1 2 d 1 1

_uw [ diq 1 ug” [ dg < (5.28)

4 Jor 2m)ieq 2 Joa 2m)%aq? + 1q2 eq

ANV
4 Jon (27r)d (ag? + %QE)Q €q’

where I,,(q) = v and I,(q) = WM. Introducing a dimensionless

parameter
Sa—2 u
A (2m) T2 A2t |

the correction du to the dimensionless w is obtained from Eq. (5.28),

u =

Su = a2 Hy(\) + aaHy(y, ) + o® Hz(7, \), (5.29)
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with

A, d
Hi(y,A) =/ e = (5.30)
0 \/p4+ (1+Ap?)
2
1 1+(\/1+)\2+/\>
= — log |1+ ,
2¢/1 + N2 . V1I+AZ4 A
oo d
(%) =127 [ pdr (5.31)
O (L4 4202) (/0! + (1 + M2’

6y

42 <4’y2 —A+/1+ (42— )\)2>
= log )
1+ (492 — ) VIFA 14 (@2 = N2+ (42 - )) -1

Hj(y, \) =367 / pdp (5.32)
0 (1449207t + (14 Ap?)?

2 _ 2 2 _ —
g2 | \/21 L2 (472 — X) A 13/2

4ry? { 1+ (492 = 2 — (492 — /\)}

x log
1—A(dy2 — ) + \/(1 +2) (1 + (492 — )\)2>

where A, = (1 + )\2)_1/ * is introduced to regulate the UV divergence in Eq.
(5.30).

After rescaling the fields and space-time coordinates, we finally obatin the
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RG flow functions for «, v, A and a:

1 da a 1 /2472 A5+2)2) 1422
— T —e— 2 |Np{ = - oy =5 -2
a dl 2 v\ 2 4T+ A2 VI+ A2

(5.33)
[0
_§F+(71 )
ldy « 1 /24 )2 )\(5+2>\2)) <1+2)\2 >}}
YN - —y [ —20 ) b 4| (534
S de z[f{7<2 Wit ) T\Vitae (534
(6
+§F—(’Ya )
1dX «
%:<e—2—aﬂ<w))ﬂ+5ﬂ

=(e—2—aF (v, \) + aHa(y,\) @+ Hy(y, \)a* + Hz(y, \)a?. (5.36)

Note that no modification arises in Eqs. (5.33), (5.34), and (5.35) even if we
include u, because u does not yield self-energy correction to the fermion v and
boson ¢ at leading order. And for the particle-particle channel, it has the same
RG flow equations as the particle-hole channel because they have the same
operator form.

The RG function Eq. (5.36) of @ includes a term proportional to a?. This o
correction generates u during RG flow even if we start with an initial condition
u(¢ = 0) = 0. Consequently, we find no stable fixed point with Ny =1in d = 3.
Figure 5.5 shows RG flow for Ny = 4, 4.775, and 5 in d = 3 when we ignore A
in the RG functions Eq. (5.33, 5.34, 5.35, 5.36), where stable (unstable) fixed
points are denoted by red (blue) points. The green point is the NFL fixed point.
The lower bound of Ny, N., above which a stable fixed point begins to appear is
approximately N, = 4.775 as it is seen. The results seems to show that the non-
Fermi liquid phase of DWSM at TQPT is not realizable in a real experiment
since Ny > 5 is not likely to be achievable. However, if we take A into account,

we get a qualitatively different consequence. Fig. 5.6 shows RG flow when A is

] 2- 1_]|

65



1, \

—Z

o
=]

\\ \§\\ N

: N AN
\ \§ \fx\\ \
\\7;\

\\\ \\ o

g\
iy

K
\

4,,
4

,,.Lfg

%/

AN

\\§
\\\\
\

7’
¢//

e
> %

\

/
/
<

_ o,

—

<
€ e o
> %
S

o
=
—

N

/

o
44/
——

{/

0.

m .J>

0.2&\‘\‘\/ 0.2 %« \ 0. \
U_Om \&\x\\\\\ OOL\ AN \§§ ol \\\\\\
(a) Ny=4 (b) Ny =4.775 (¢) Ny=5

Figure 5.5: RG flow diagrams in terms of Ny when s is ignored.
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Figure 5.6: RG flow diagrams in terms of N; when s is allowed.

kept. The estimated lower bound of Ny is about N. = 1.883. Thus, a stable
fixed point appear for Ny = 2 which is much smaller and compared to that
obatined when A is neglected. We expect that dAWSM at TQPT with Ny = 2
is accessible in an experiment with SrSis [82]. Although the estimated values
of the lower bounds of N; are found to depend on the renormalization shceme,
s1-term in DWSM at TQPT seems to stabilize the non-Fermi liquid phase.
So far, we consider the corrections up to one-loop order diagrams. However,
in the e expansion, we find the anisotropic NFL fixed point up to order of
O(e). In that reason, near our anisotropic NFL fixed point, o will give us the
correction of O(e?). So, if we carefully consider the order of €, we can ignore

o? contribution in Eq. (5.36) near our anisotropic NFL fixed point. In this

< A __‘}‘T-E] f.fF i
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situation, the short-range interaction is irrelevant in d = 3 when Ny > N, =
2.279 when A is neglected, while N, become 0.952 if X is kept. Thus, keeping
A, we find that the non-Fermi liquid phase of DWSM at TQPT with Ny = 1
remains stable in the presence of the short-range interaction up to the accuracy
of O(e). Note that to properly keep O(e?) contribution, we need to calculate

the two-loop order calculations, but that is out of our scope.

5.7 Discussion

Through out this chapter, for simplicity we ignored mg in Eq. (5.1) and the
corresponding s (k2 + k;)oz term with s; = moa(QJ in Ho, which is allowed
by symmetry. If we include the effect of this term, we find that there still
exists a stable non-Gaussian fixed point at (o*,~*,A*) = (0.336¢/Ny,0.821 —
0.083/N¢, —sgn(3)(0.866 4+ 0.035/N¢)) in the € expansion (A = s, /t|), in-
dicating that the anisotropic non-Fermi liquid behavior is robust against the
s1 (k2 + k;)az term. The details are presented in Appendix C. Note that for a
TQPT between triple-Weyl semimetals [89], we believe that similar symmetry-
allowed parabolic term should be considered.

There are studies about the instability of NFL in the quadratic dispersions
under the presence of the short-range interactions [90, 91]. Our calculations are
controlled by either € or 1/Ny. Thus, the scaling dimensions of the four-point
short-range interactions at the stable fixed point are the same as the bare one
at the leading order, [ujji] = —d+2+ O (e or 1/Ny), which indicates that our
fixed point is stable under the short-range interactions.

We stress that our emergent anisotropic non-Fermi liquid fixed point is
distinct from previously studied non-Fermi liquid fixed points. Our fixed point
is in 3d in sharp contrast to most of the previously studied fixed points including
the very nice work by Sur and Lee where anisotropic non-Fermi liquid below

3d was found [79]. In 3d, quantum fluctuations are typically marginal or even

3 oy i
A1 == TH
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irrelevant, so quasi-particles are usually well-defined. However, the interplay
between the topology and Cj rotational symmetry in our systems protects the
quadratic band touching at the topological phase transition, and the anisotropic
non-Fermi liquid fixed point appears. As discussed above, the absence of the
cubic symmetry makes the anisotropy even emergent in terms of the anomalous
dimensions. Furthermore, the characteristic interplay between topology and
symmetry is crucial in addition to the long-range Coulomb interaction to realize

our universality class.

5.8 Conclusion

We studied TQPTs between DWSMs and insulators using the large Ny theory
and € = 4 — d expansion. We found that a novel class of quantum criticality
appears at the TQPT characterized by emergent anisotropic non-Fermi liquid
behaviors in which critical electronic modes and the long-range Coulomb inter-
action are strongly coupled, and the system becomes infinitely anisotropic. The
anisotropic behaviors at the TQPT may be observed experimentally by mea-

suring the power-law corrections to the diamagnetic susceptibility xp_./xp,1

T2~ and optical conductivity o | /o,, o< Q7278 which we propose as smoking-

gun signals of our TQPTs.
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Chapter 6

Conclusion

It is the effects of interactions in the newly discovered topological materials
that my doctoral research has been focused on. The researches are started
with an anticipation that the Coulomb interaction between electrons are not
well screened in some topological materials as much as it is in the conven-
tional three dimensional materials. Hence, the initial aims of my researches are
to reveal what phenomena can occur, which is rarely expected in the conven-
tional material, and how it is related to the topological character of the new
materials. To solve this curiosity, we have studied two electronic systems with
non-trival topological characters in which electrons are interacting via the long-
range Coulomb interaction. In the following paragraphs, we summarize what
we have studied in this doctoral thesis.

One of the two is an exciton-polariton system in a microcavity with a tran-
sition metal dichalcogenide. To deal with a wide range of excitaion density,
we treat an exciton as a composite particle of an electron in the conduction
band and a hole created when a state in the valence band is emptied, rather
than a bosonic particle. To deal with the condensation of excitons and pho-
tons, we introduce an ansatz for the mean-field ground state which is just the

direct product of the coherent state of photon and the coherent state of exciton.
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Solving the self-consistent mean-field equations numerically in a system with a
single species of massive Dirac fermion, or just the single valley problem, we find
that the s-wave and p-wave excitonic order parameters compete and there are
topological phase transitions owing to the competition between them. Further-
more, we show that the p-wave order parameter is generated due2 to non-zero
Berry curvature around the band extremum, which is an intrinsic properties of
the massive Dirac fermion. Applying the same method to the two-valley prob-
lem, in which electrons in both valleys effectively interact through the cavity
photon, we get a result showing the possiblity that various topological phases
can appear in a microcavity with a monolayer transition metal dichalcogenide.

The next subject is related to a three-dimensional topological semimetal,
called a double-Weyl semimetal. A double-Weyl semimetal is characterized by
double-Weyl nodes near the Fermi energy which can come true because crys-
tallogrphic systems are thought not to be subject to the relativistic Lorentz
symmetry. When two double-Weyl nodes merge, called the topological phase
transition point, there appears a band structure whose dispersion is quadratic in
all directions. Abrikosov proposed that systems with quadratic band touchings
can show a singular response to the external fields because the Coulomb inter-
action is not screened well and preserves it long-range nature in the long-wave
length limit. To examine the proposal of Abrikosov in a double-Weyl semimetal
at its topological phase transition point, we employ two renormalization group
approaches, the large Ny method and the € = 4 — d expansion. The approaches
yield a consistent result implying that a double-Weyl semimetal at the topolog-
ical phase transition is an anisotropic non-Fermi liquid. We also check whether
weak short-range interactions destroy this anisotropic non-Fermi liquid phase,
and get a result that if more than two merging points of double-Weyl nodes
exist simultaneously in the first Brillouin zone, the anisotropic non-Fermi liquid

phase survives the short-range interaction.
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Appendix A

Coulomb interaction in the band basis

The self-consistent equation for the Fock term in the band basis is expressed as
1 N 4 s
Arigal(k) = -3 Z Z V(k —p) w(k) <Ci,j,pcm,p> Wia(k)
P i

= —% Z Z V(k - P)W/z*ﬁ(k)wj*ﬂ/ (p)pT;a’B/ (p)VVia’(p)Wja(k)ﬂ

p a/MB/?i?j
(A.1)
with
oS %’“ —sin %’“eiw’c
sin %’“e”‘bk cos %’“
hoy/k2+k2 .
where ¢y, = arctan(k,/k,) and 0, = arctan inm/J;y Here, we introduce the
gap

one-particle density matrix p;.o/g (p) = <7ﬂ ﬂ’,pﬁﬂalv”> for the notational con-
venience. And we neglect Hartree terms with V(g = 0) which vanishes due
to overall charge neutrality. In the second line in (A.1), under an assump-
tion that the translational symmetry remains unbroken, <é;i’k17 q|éT/,j,k2> =
67',7’6k1—q7k2<é;i7k2‘éT’,j,k2> is used. It can also be shown that Ar,.(k) =
AL (k) and Aryy(k) = —Arce(k). The latter relation is from the electron
number conservation.

We solved (4.4) and (A.1) numerically with the fixed excitation density
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constraint. We used the triangular mesh of 256 by 256 with the momentum
cutoff 1 A to minimize the number of the mesh outside of the cutoff momentum
while keeping the rotational symmetry as much as possible. Instead of imposing
excitation density constraint explicitly, we solved the self-consistent equation
changing the chemical potential for the excitation density.

The partial wave decomposition in Eq. (4.9) of the main text is extracted

from Eq. (A.1). To make notation simple, let us assume 7 = +1. For Ay, and

1
Aj.cc(k) = -3 Z V(k — p) [n1.en(p) {sin b sin 6, cos(dr, — ¢p) + cos O cos Op }
P

ip
-+ %pl;w(p) {sin b, cos b, cos(¢pr, — ¢p) + isin(¢g — ) — cos O sinbp}
—i¢p
+ 5 Piive(p) {sin Oy cos Oy, cos(¢pr, — ¢p) — isin(¢g — ¢p) — cos b sinbp}
(A.2)
1 ,
Aualk) = 5 S V(k—p) [e—mm;eh(p){ sin B, cos
p
+ sin ), <ei(¢P_¢’“) sin? % e~ @p =) cog? 0;)
: O . Op O Op)°
_ o2k . i¢p .l 1P Yk 2
e P1.c0(P) { sin 5 sin — 5 P 4+ ek cos 5 €05 }
. 4 O O O . Op)°
—i—e*m(d”ﬁ%)pl.vc(p) €% sin —% cos -2 — ik cos X gin -2 ,
’ 2 2 2 2
(A.3)

where nl;eh(p) = {Pl;cc(p) - pl;vv(p) + 1} /2

By Fourier transformation, we can get the partial waves of Ar.c, (k), A%g,(k:) =

f 0, k| =k 27r A C,,(lc)e*””‘ﬁk form = 0,41, +2,---. Also, we have subtracted the

contribution from non-excited states (pr.o3(k) = 0 but pr..»(k) = 1) as only
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excited quasiparticles are assumed to interact with each other.
Ag"éi(k) = ﬁ /000 dpp [ ngnzz(p){f;"g_”) sin O, sin O,
+ 2f1£,|21|) cos Op, cos Oy, + f;l?ﬂ') sin 0p, sin Gk}
+ i 1)(29){ — D cos? %” sin O,

—|—f| m)) sin 0 cos@k+f (m 1D i 62 s1n0k}

—m— m— 9 0p
+[p§;cv 1)(29)} {f;,k 1D gin?2 > P sin Oy,

m m 9 .
+ fok (jm+1]) sin @, cos O, — f;'k 2D g2 2ps1n9kH,

Ag;a)}(k) = %/0 dpp [n(l e;LL )( ){ — f;‘k ‘)Slngp cos? 5
+ f(|m+1| cos Op sin Oy, + f(| m+2)) sin 0, sin? ezk}

9 Ok

m 9
0 o

f(‘mHD sin Op sin O, + fﬁ;nHD sin? %’ sin? 92k}

—9m * m (7] 0
+ [pg;ci )(p)] {f;'k D sin? 2’[’00825'c

1 , 0 0
B §f1§,‘21+1‘) sinOp sin O + £, 1 (I +21) cos Ep sin 2kH7

m 2T d¢ 12 im
f;’k):/o %(p2+k:2—2pk:cos¢>) /2 g=ime

1 11 Akp
= B(dz 1%, {1-m1 :
k+p3 2({2727 }7{ m, +m}ﬂ(k+p)2)7

2m
0" (p) = / D0 0 p)e-ims,
0

;|pl=p 2

(A.4)

(A.5)

(A.6)

(A.7)

where 3F5 is the generalized hypergeometric function. In general, we expect to

have ,05”2, = 0 for every m as the self-consistent equations relate terms with

angular momentum m and —m — 2. But m = —1 is the only exception as

(=1) = —(—1) — 2. Therefore, we get a solution with pg;},) # 0 and ni(,)()ah # 0,

:I'
-"'H.

81

1]|

'|'|'



and all other terms vanish. Actually, this is the solution which satisfies the

rotational symmetry as both p({c%,) and nszh

keep the symmetry. Therefore,
to describe the rotational symmetry breaking, we should include other pairing
terms.

We used a truncated equation which includes only the s-wave (m = 0)
and the p-wave (m = —1) terms of contributions in the main text to describe
the phase transition. The p-wave term should be included as it is the only
pairing term which preserves the rotational symmetry of the Hamiltonian. And
the s-wave is also crucial as it is induced by the cavity photon and breaks the
rotational symmetry. Also, we kept terms with factor f;f)k) only in the truncated
equation as it gives the largest contribution. Lastly, the s-wave is expected to

dominate in the low excitation density regime as mentioned in the main text.

This choice for the truncation is also supported by Fig. SA.1.

() ) () )

— m=-3
0.1} : - me2
1 : m=-1|:
5 = T3 | — m=0 |
[T '
0.075 ; -
E m=1
5 m=2
4 005 — m=3
[}
0.025 S
0= - : :
1 Ry 5 Rz 10 15 Res 20

RIA]

Figure A.1: Paring terms with various m integrated along the radial direc-

tion with the condition in Fig. 1 of the main text. The rotational symmetry

preserving solution appears in R.o < Rs < Re3.

We have mentioned in the main text that the particle-hole pair non-conserving
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term induces Ai_alg(k) The first term of (A.7) with m = —1 contains n .., (p) =

{price(P) — priww(P) + 1} /2. Therefore, in the mean field Hamiltonian such term

appears due to contribution like wz k¢i,p¢v,p¢c,k or 1/12 kzpl,pwv,pwv,k which ap-

parently breaks particle-hole pair number conservation.
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Appendix B

Relation between the Chern number in the nor-
mal phase and the Skyrmion number of Hartree-

Fock quasiparticle bands

In this chapter of Appendix, we are going to prove the relation between the
Chern number in the orbital basis and the Skyrmion number in the quasiparticle
band basis. For convenience, we list some notations used in this chpater of

Appendix.
e |i) : Orbitals basis.

o |thn(k)) = Win(k)|i) : Eigenstates of Hy. Here n = ¢ is the upper energy

band and n = v is the lower band

o |ua(k)) = Via(k)|ton(k)) = Uin(k)|i) : Eigenstates of

Hyp = ) ¥h(k) [7(k) - 5], ¥n(k),

m,n.k

where the diagonalization ), [7(k) - &],.,, Vha(k) = Eq(k)Vina(k) is done

by V(k). a = ¢ is the upper mean-field energy band and o = v is the

lower mean-field energy band.
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To obtain C; = 5 + i Iz [VVJr X VV] e d?k, Let us start from the usual
definition of Berry curvature Fyg = iV X (ug(k) | V| uz(k)),

—i[Frl55 =€parOp (us (k) |0q| us(k))
=€pgrOp (Vm (K) [V13,50q Vs | ¥n (k)
=€pgr (Optm (K) [Vi5r50q Vi | ¥n(K)) + €pgr (¥ (K) [0pVi50q Vs | ¥n (K))
=€pqrVims0q Vi (Opthm (K)[¢hn (K)) + €pgr Vi Voo (Optm (k)|0tn (k)
+ €pgrOpVimsOq Vs (¥m (K)[¥0n(K)) + €pgrOp Vs Voo (¥ (k)|0qvn (k)
=€pqr VimO0q Vi (Opthm (K)[¢n(K)) + €pqrO0g Vi Voo (Optm (k) [¥n (k)
+ €pgr Vi Vao (Op¥m (K)[0q¥n (K)) + €pgrOp V504 Vi (U (k) [t (K))
=€pgrOpVims0qVimis + €pgrOp [Ving (Vm (K)[0gon (k) Vis]
T = [VVT xiv] 4V ViAoV . (B.1)

Using Eq (B.1), the Chern number is divided into two parts,

CT=217T//[H
// V>< VTA ])d2k+// vvfxzvv} &2k

=5 [VTA) ]ﬁ dk+// vvfxzvv} d2k, (B.2)

where [ff(o)] = (Ym(k)|iVi),(k)) is the matrix-valued Berry connection. If
the interactio?lnis not strong enough or our momentum space is larger enough,
then we can assume limy| o Vins (k) = 0mms- In that case, the line integration
of the first term can be reduced to % o) [/f(o)} - dk which is the Berry phase
of non-interacting valence band. b

Taking that V (k) diagonalizes 7j(k) - & into consideration, we can express
Quy = 2- [VVT xiVV]__ by 5 [ 77+ (0x7] x 9,7)) d*k . To prove this statement,

let us first consider the manifestly gauge invariant form of Berry curvature

00:H]¢) (€|0,H| D) — (z > y)
(E5 — Ez)?

Q,, —i!
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for Hamiltonian H (k) = 7j(k) - &. Noting (v |0, H|¢) is equal to n (v [0, - &| ¢),
where 7) denotes the unit vector along the direction ofij, we can show that €,

becomes %77 - (Og1 x Oyn) as follows.

(v10:H| ) (c|dyH|v) — (2 ¢ y)

ey (B, - B
_ P [0sii - il c) (e |0y - ai| v) — (x 4 y)]
4n?
_;0ami0yi; <1;|[0i70j]| v) (B.3)
1, . .
= 50 (O x Oyn) , (B.4)

where we use [0, 0;] = 2i€;j,04 between Eq (B.3) and (B.4).

Consequently, we obtain the following final result

// vava} 42k

n / Bui) x By) dk, (B.5)

T

-
3
-
"2

where 7 = £ denotes the valley index.
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Appendix C

Details of calculation of the renormalization group

calculation

C.1 Details of the ¢ =4 — d method

In this section, we provide detailed calculations of the ¢ = 4 — d method. First,
we prove that ¢, = t, and a, = a, at low energies. Next, we derive the renormal-
ization group (RG) equations using the e = 4 — d expansion. Then we discuss
the effect of the symmetry-allowed parabolic term, which is neglected in the
main text, demonstrating that the TQPT is still characterized by anisotropic
non-Fermi liquids.

Consider the leading-order self-energy corrections for fermions and bosons:

1192, q) = — Ny(—ig)? / TG0+ i+ 0/ Golis k — a/2)). (C2)

where fQ’q,p = fQ % d(g:()}y faA d(q;:;__sf with OA being the region pu < \/q2 + p? <
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A. Here,

. 1
Guli ) = Ko T 2y By + 22
RSNy
- 02+ E(k)? | o
Do(iCh.q) = 1 (C.4)

azq2 + ayql + a.q2’

where e,(k) = to(ki — k), ey(k) = 2tyk.ky, (k) = t.kZ, and E(k) =
\/5x +5y ) +€z(k)2-

C.1.1 Proof of the emergent rotational symmetry along the

k,-axis
C.1.1.1  Proof of a; = a,

First, let us prove that a, = a, at low energies. From the self-energy of the

Coulomb interaction at €} = 0,

(0, k) = — Np(—ig)? / TY[Goliw, g + k/2)Go(iw, q — k/2)]
w,q

o (5E)

ap E_) By +E-

- Nng/ [1 (@ + a) (35 (2 + q)° + E(E + ) (a2 +p%)?)
ap |Ge 2(2(q2 — q2)% + 4222 + 12(q2 + p?)2)5/2
1 (g3 + )85ty (a2 + qp)* + (62 + 65)(a2 + p*)?) kQI
ay  2(t2(q2 — q3)? + 4t2q3q2 + t2(¢2 + p*)?)>/?

a k>

1 2 (t2(az — qy)° + 4 azqy) wi2| . (s
a: (2(q2 — )% + 42¢2¢2 + £2(q2 + p2)?)p12

where ¢;+ = &,(q+ k/2) and By = />, €2,

We find that the coefficients of the k2 and k‘g terms are the same, which we
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denote as Cy, are given by

g / (62 +q2) [t2t2 (a2 + @2)* + 2(t2 + £2)(¢2 + p?)?]
- 5/2
2 [12(q2 — 2)? + 4t2¢2q2 + 12(g2 + p?)?]”/

N
I 9y, (C.6)

T AAd
where ¢ = In(A/p). Let C, = —C, /¢, which is positive regardless of ¢, ¢, and

t.. Then, the beta function of a,/a, is

a;ay (ajzéay) =Caay (1 - Z;) (C.7)

Since C}, is positive, a; = a, at low energies.

C.1.1.2 Proof of t, =1,

From now on, we employ the following form of the Coulomb interaction prop-

agator with a; = ay =a and a, = 1/a,

1
Do(i€), q) = . C.8
o9 = T B T (@ T P)a (8)
Then
Y(iw, k) =(—ig)? / Goliw +1iQ, k + q) Do (iR, q),
Q,q,p
7 g2/ ex(k+q)oy +ey(k+q)oy +e.(k+q)o.
2 Jap E(k+q)
, C.9
a(qx+qy)+(q,5+p2)/a (G9)
~ — 61,e0(k)os — 01,2, (K)o — Op.e- (K)o, (C.10)
"':r"'\-ﬁ-: :Nl-.l | ]l ‘-'
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where

Y

5, :g2/ exty(az + 6a3qy +qy) — 26515 (a2 + 4y) — (2 — t5/1)ele? + 2
T2 Jap (2 +&5 +e2)%2(alg? + g7) + (2 +p?) /a)

q,

(C.11)

s / —erth(dy + 643q; + q,) + 25512 (a5 + qy) — (2 — 13 /t))epel + €L
2 Jap (€2 + €2 +e2)5/2(a(q2 + ¢2) + (¢ + p?)/a)

Y

(C.12)
g2/ €2+ e2)(e2 + 2 — et (5¢2 — p?)) 1
"2 Jop (€3 + &5 +e2)>/? a(g; +q3) + (a2 +p°)/a’
(C.13)

To prove t, = t, at low energies, let us define " = ¢,/t,. Then, the beta

function of T is given by

1dT &, — 6,

TS 7 (C.14)
From Eqgs. (C.11) and (C.12), &;, — 6, is given by
5 — b _92/ (67 + t3)e2(qz + 6q2q; + ) — 2(82 + t2)e2 (g3 + qy)
2 Jop (5 +eD)(a (qg%+q§)+(qz+ﬁ2)/a)
B (2—t5/t2)e — (2= 2 /t))ep)e? (C.15)

(e24¢2 —1-62)5/2( (a3 +aq3) + (a2 +p?)/a)

g9 1+ T2)((¢2 — q2)* (g3 + 643q; + q,)T* — 8¢2q3)

T, /,p (T%(q2 — qy) +4q2q2 + 52(¢2 +p»)?)> 2 (g2 + ¢2) + (¢ + p?)/a)
L9 B2(¢2 + p*)* (g3 + 64202 + q; — 2(qs + 4;)T?)
T /q,p —q2)% +4¢2q3 + B%(¢2 + p*)?)>/*(a(g? + ¢2) + (¢ +p?)/a)’

(C.16)
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where 8 =1t,/t,.
Expanding dy, — ¢, in terms of 67" =T — 1, then we have

b, — b1, ~ ' / (4x — 6a3qy +a,)(2(a; + q)° — (a2 +p°)*8°)
2ty Jap (62 + a2)? + B(q? + p*)?)5/%(a(g? + ) + (4% + p?)/a)
s / 4(qz + 43)*(d5 — 224847 + 50qaq, — 224395 + 43)
2ty ((¢2 + q§)2 + 822 +1%)2) 2 (a(g? + ¢2) + (¢ + p?)/a)
7 s / B%(¢2 4+ p*)* (745 — 40¢5q; + 2q3q; — 404345 + 743
2ty (2 +¢2)* + B2 + p*)2)"2(a(q? + ¢2) + (¢2 + p?)/a)
9 5T/ 4p*(qz + ay) (¢ +p*)*
S 2ty Jap (a2 +a2) + B2(a2 + p2)2)72(a(@@ + a2) + (¢ +p?)/a)
_ Ag_sg? (9@5,85/2 /oo " r5(4a452 . r4) ) -
127 /T, T A4~ 4 0 (rt 4 atp2)7/2(r2 4+ 1)
=—aGr(y)oTY, (C.17)
where o = %, v = “‘Q/B, and Ag = m. Here, we introduce

the function Gr(x) defined by

00 5 64IL‘4 _ 7“4)
Gr(z) =722° / g "
(@) =T A e 1 1)

3x
= 4 4 _ 6 _ 8 10
RS TE V1 + 1624(1 + 1602 — 8320° — 15362° + 20480'°)
42% (422 11 1624
—1+V1+162%
(C.18)
Note that Gp(7) is positive for all 4. Then, we see
1 d(5T

—aG oT C.19
5T ar = eer() (C.19)

is negative (positive) for positive (negative) 67. Therefore, 67" flows to 0,
which means T' = 1 is a stable fixed point and we arrive at the conclusion that

t, =ty =t at the low energies. Combining the results of Secs. C.1.1.1 and
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C.1.1.2, we can use the following form of action at low energies,

S :/dedac [zpf(@ —ig+ Ho(—iV)) + % <a {(0:0)% + (0y9)*} + i(@qu)Q)] ,
(C.20)

where

Ho(k) =t (k7 — k_)ow + 2t1 kokyoy + tokZ0. (C.21)

C.1.2 Renormalization group equations in the ¢ = 4 — d expan-

sion

In this section, we will show the details of the RG analysis using the e =4 — d

expansion. From Egs. (C.5) and (C.11)—(C.13) with t, = t, = t; and a, =

1

ay = a; = a, we obtain the fermion and boson self-energies, respectively, given

by
2(i9.q) =(~ig)® [ Guliw+ ik + a) Dol )
w7 7p

~—aF (y)¢ [tJ_(qi - qz)aw + QtJ_qzqyay] —aF, ()l (tzqg) 0,
(C.22)

(q) =4 / T (Gl k + /2 Golier k — a/2)

’,P

a, 7
~— Nra [fyqi + aqg] l, (C.23)
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where F'| (v) and F,(y) are given by

Oz

aﬁ ty=ty=t,, azzay:aglza

o0 r(32z* — r4)
=482° [ d
v /0 "+ 1620)52(r2 + 1)

FJ_((I:)

3
? V1 + 1624(1 + 642" — 19225)

T 2(1 + 1624)5/2

Az? (4332 VT 16x4)
—1++V1+ 1624 ’

—162*(1 — 322) In (C.24)

ty=ty=t|, az=ay :a;l =a

6z /OO dr ro(rt — 322%)
o (rt*+162%)5/2(r2 +1)

3z
— 4 2 4
=T 162072 V14 1624(—2 + 122* + 1627)

42 (41‘2 + 1+ 16354)
—1++v14 162

+ (1 —322")In (C.25)

Figure C.1 shows the plots of F|(x) and F,(x). Then, after rescaling z —

4

zet, (z,y) — (z,y)e*?, and 7 — e*r, and introducing the renormalization

constant, ¥ — /Z/*, ¢ = ¢/Z,% tL =t/ 7, te = t.)Z., a = a)Za,
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Figure C.1: Plots of F'| () and F;(x). The blue solid line and red dashed line

represent F'| (x) and F(x), respectively.

and g — g/Z,, we arrive at the following renormalized action,

Stenorm = / drdis |1 (aT ~igé+ Ho(—iV) - z(_N)) "

+3 (a {(8:0)% + (9,9)*} + i(az¢)2> — %qzﬁﬂ(—z’V)cp

2
(24221 +d—2)¢ 1
- / drdie S " yt|e s, — ——7i9 (C.26)
Zy ZyZ,
_2ZL£
+—— L+ aFL (O tL (0 = 7)o — 20:0,0,)
ty
6726
- —— (1 +aF.(y)t:0.0: | ¥
Z,

/d d3 e(z+2zJ_+d72)€ 672ZJ_£2 (1 N O¢€> ((8 ¢)2 (a ¢))
+ [ drd’x + Np— ) a((9:0)* +
274 Z. Iy v

1
+e 27, (1+ Nyayl) a(&zgﬁ)z (C.27)

Requiring the scaling invariance of the action, we obtain the renormalization

|
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constants as follows:

Zy =142z + (d - 2)] ¢, (C.28)
Zy, =1+[z—2z +aF | (y)]¢, (C.29)
Zy, =14 [z — 2+ aF,(y)] ¢, (C.30)
[ Nya (1
Z¢=1+ Z+Zl+(d—3)+T ;—F’Y e, (031)
: Nya (1
SV Y o
I 2 \v
B [2—21—(d—3) Nya [l
Zy=1+ | 5 5|8 (C.33)

From these renormalization constants, we can obtain the following RG equa-

tions for d = 4 — ¢,

1 dt
Ed—? =z —2z, +aF|(y), (C.34)
1 dt,
1da N:a (1
1 dg* Nya (1
—_ =z — —1 - — | = . C.37
2 dl z2—z +e 5 (7+7> ( )

Thus, we find the RG equations for the dimensionless parameters o and ~ as

follows:
lda  Nya (1 o}
wdl ¢ o <7+7> —§<Fz(7)+FL(7)>7 (C.38)
ldy Nya (1 o}
oA (2-0) + 5 (R - ). (©39)

C.1.3 Effects of the symmetry-allowed parabolic term

If we include the symmetry-allowed parabolic term, s, (k2 + k;)az, the non-

interacting Hamiltonian H is modified as

Ho =t1 (k3 — k))ow + 2t Lkakyoy + [Bt.kZ + sy (k3 + k)] o, (C.40)

3 O +~11 =
a1 '||'1_.]| ot ¥
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where B = +1 for the topologically trivial and nontrivial insulator phases, re-

spectively.

C.1.3.1 Boson self-energy

Similarly as in Eq. (C.23), we can obtain the boson self-energy in the presence

of the symmetry-allowed parabolic term as

I1(iQ, q) = — Ny (ig)? / Tr[Go(i2 + iw, k + q)Go(iw, k)]

w,k,p
1 /24 )2 A(5+2A2)> 5 <1+2>\2 )12]
~— Nra |— - B aq] +v| —— — 2B\ ) —¢;|,
! {7 ( 2 e )T VIR o
(C.41)
where \ = i—i
C.1.3.2 Fermion self-energy
Similarly as in Eq. (C.22), we can obtain the fermion self-energy as
X (iw, k) =(ig)* Goliw +iQ, k + q) Do (i2, q)
Q.q,p
~ =0y, [to(kE — kp)ow + 2ty kokyoy] — [0n, Bt:kZ + 65, s1 (k3 + k)] 0,
(C.42)
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where d; , 0;, and 05, are, respectively, given by

2k kI (2(Bt k2 + s k)2 — 2 k1)
/,p2 2k + (B2 +5,k2)2) (ak? + 1k2)
Ag2g® { /d 3(29)°r(=r* +2(4B~* + \r?)?)
TVIEAT ] T o )+ (4B2 1 Ar2)2)?

=aF| (v, M), (C.43)

5 :92/ R RSP (R k] — (2Bt — s K] (BtEZ +51k%))
T2 ke (K 4 (BR2+5082)2) P (ak? + Li2)
Ag 29t / 6v70 (r* — (8B — Ar?)(2B~? + Ar?))
T Vit A (14 72)(rt + (4By? +)\r2)2)5/2
=aF, (v, N/, (C.44)
5. 90 [ BULKKT (K] — (2BLE — s k) (BLk: +51k1))
2 JepsL 22 k4 + (Bt.k2 +5.k2)2) " (ak? + Li2)

A VTt A

aFy(y, AL (C.45)

_B Ag_2g* 0 / 3(27)3r3(r* — (8B72 — M) (4B~% + Ar?))
(1+72)(r*+ (4By% + )\7“2)2)5/2

>\bd

Here, we introduce the following dimensionless functions,

/ 4857 (—r +2(4B’y + Ar?)?)
dr
(1+72)(rt + (4B7y2 + \r2)2)5/2

3y
~ ST aB (1+22)%2 £ 6474 (=372 + V1 + A2)

1674(1 — 2(4B~? — \)?
— 4B (—129% + 51 + A2) — Pi/l 4(37 7_ A)2) )
42 ( — BA+ /1 + (4872 /\)2>
—14+4By2X — A2 + V1 + 22/1 + (4By2 — \)?

X In

, (C.46)
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6yr3(r! — (8B4 — M) (4By2 + Ar?)
(14 72)(r* + (4B72 + Ar2)2)5/2

FZ(Va)\):/O dr

1+ (41332 )2 { (163’74/\ —47%(3+2)%) + BA(1 + )\2))

1 —329% + 4B\ + A2
I+ By )
42 (472 — B\ + \/1 + (4BH2 - )\)2>
X In , (C.A7)

249%r3 (14 — (8B+? = \r?)(4B* + r?))
(14 72)(rt + (4By2 + Ar2)2)5/2

+ m(—Q + (4372 _ )\)2) +

—12

(14 (4B~2 — )))2

1 — 329" +4By*) + \?
V14 (4By2 = \)2

( 42 (472 — B\ + \/1 + (4B72 — /\)2> ) ]
x In

FVIER(2 4+ (487 - A7)

_1+4BPYQ)\—)\2+\/1+)\2\/1+(4372 —A)Q

=~ 4RO, (C.48)

Note that in the limit A =0, F| (v,\) = F (), and F,(y,\) = F.(7).
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C.1.3.3 RG flow equation

From Sec. C.1.3.1 and Sec. C.1.3.2, we can obtain the following RG flow equa-

v

2

a {1 <2+A2 A5+ 2)?)
Ny -B
4V1+ A2

+Fz(77)‘)+FJ_(77)‘) )

>+ <1+2/\2
\Vixe

tions,
tid;z_ =z —2z) +aF | (v, ), (C.49)
tlchitﬁz =z — 24 aF,(y, ), (C.50)
;Ld;; =z —22) — 45%72&(% A), (C.51)
%% IS ]\;j;a (zzv —Bz(jf%?)
_ Nf;a (\1/% - 2B)\> : (C.52)
(1428 o)

Then, the RG equations for the dimensionless parameters, «, v and A are

)

(C.54)

ldy « 1 /2+ )2 >\(5+2>\2)) <1+2>\2 )}
L =—IN;{— - B — v —== —2BA
2 f{v( 2 4V1+ N2 ! + A2
+Fz(’77)‘) - Fi(’Ya )‘) ) (055)
o 2
— < 4By F.(7,A) + AFL(7, V)] - (C.56)

A

For given Ny, the RG equations have unstable fixed point, a* = 0 with arbi-
trary v* and \*, and stable interacting fixed point, (a*,v*, \*) = (0.342¢/N¢,0.799—

T 1 1
-":lx_i 'INI-.. -] .I | '.‘-' | 1 'Iu
| A 1 -
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0.079/N¢, —B(0.875+0.032/Ny)) for large Ny. Then, near the interacting fixed

point,
lda|  Npo* 1<2+)\*2_B)\*(5+2)\*2)>
adll, 2 |y 2 4V1 + N*2
_ *(Hw—zm*) >0 (C.57)
IAWre ’ '

1 dgt
g | = (B0 A = Furt ) > 0. (C.58)
ﬂl dt f.p. ( )

Thus, the bosonic and fermionic anisotropy parameters a and 3! diverge at
the stable interacting fixed point. Therefore, even if we keep s (k2 + ki)az, the

interacting fixed point still exhibits anisotropic non-Fermi liquid behaviors.
C.2 Details of the large Ny calculation
In this section, we will show the detailed calculations of the large Ny method.

C.2.1 Boson self-energy

Consider the self-energy of the Coulomb interaction given by

1(iQ, q) = — Nf(—ig)? / . Tr[Go(i2 + iw, k + q)Go(iw, k)]

By + BE_ & &
=— N;g° + 1-= C.59
19 /,c(E++E_)2+QZ< E+E_)’ (C.59)
where g;4+ = ¢;(k + q/2) and F1 = \/z

C.2.1.1 ¢, dependence

Let us find the ¢; dependence in II(i€2, ¢) with non-zero 2. Because of the
emergent rotational symmetry along the k.-axis, we put q; = ¢,z for sim-

plicity. After changing the integration variables, k, — qix, ky, — q1y, k. —
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(t1/t)?q) 2, we get

. Nyg?lqu
(i, q1) = — ST

((x+1)2—|—y2)2—|—z4
x/dgx [ \/

2 2
Q
+ <t¢|lu_\2)

\/<(a;+1)2+y2)2+z4+ \/<x2+y2>2 + 24
()

+ 2
2 2 a \2
Sy o fl ey + 2] + (i)
1laul
((;U +1)2 — y2) (x2 - y2) +4(x 4+ 1)oy? + 24
X |1—= - =
\/<($+1)2+y2) e \/<x2+y2> '
C1,N;g?
= L9 142 tanh(C,&,), (C.60)
NG
where &, = ﬁ|QL‘, Cp, = 0.042, and C;, = 1.199. The final result is a

fitting function using an ansatz obtained from TI(iQ, ¢, ) o &2 for & < 1, and
I1(iQ2, q1 ) x & for & > 1.

C.2.1.2 ¢, dependence

Similarly, after changing the integration variables, k; — (t./t1)"?q.r, k. —

q.z, we get
N 4 4 4
H(’L'Qafh) - iggt’qz‘/ dr 7“/ dz \/T +\/T = 2
L - \/r4 1y \/T4 + 24] + (%)
o1 r —l—(z—f—l)2 2
\/r4 T+ A
= —M\/tzqg tanh(C,,&.), (C.61)
N
1] O N =L —
A= Tf '+

101



where £, = ﬁ|qz|, C,, = 0.016, and C,, = 1.267. The final result is a
fitting function using an ansatz obtained from II(i€2, q.) o &2 for &, < 1, and
I1(iQ2, q,) x &, for &, > 1.

C.2.1.3 Arbitrary ¢ dependence

For arbitrary q,

Nyg?lqu| &

1(iQ, q) = — —L7 =152
(’L 7q) 87T3 /tJ_tZ fr

2,2\ L e 4 2,2\ L &
(+12+y?) +aE+1)*+/(2*+9?) + a2

2
R

/d3 \/((x+1)2+y2)2+§§(z+1)4
X X

—+

B 2
2 2 2
\/<(a:+1)2+y2> +§§(z+1)4+\/<a:2+y2> + 54|+ (2)
T T 197
((l’ +1)2 - yQ) (:U2 - y2> +4(x + Day? — g—%(z +1)z
x |1— -
2 2
\/<($+1)2+y2) +5(z+1)t \/<3:2+y2) + &2t

N¢g?
=— L JCh gt + C2 g tanh ( 2,2+ 03253) . (C.62)

\/ B3t

The comparison between the exact numerical values and ansatz for the Coulomb

interaction self-energy is presented in Fig. 1 in the main text.
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C.2.2 Fermion self-energy

Using the boson self-energy obtained in Sec. C.2.1, we can obtain the fermion

self-energy as follows:

S(iw, k) =(ig)? | Go(if +iw, g +k)D(if2, q)
7q

L 2/ Q4+ w)+ez(k+q)og +ey(k+q)oy +e.(k+q)o.
T Jog QtwPtei(kt+q) +e2(k+q) +e2(k+aq)
1
a(q? +q2) + ¢2/a —11(i, q)
B 2/ i(Q+w)+er(k+q)oy +ey(k+q)oy +e.(k+q)o.
aq (QFw?P+tei(k+q)+ei(k+q)+e(k+q)

Q

1
~iwd,, — O, (e2(k)os + ey(k)oy) — d.e:(k)o-. (C.63)

The corrections d,, d;, , and d;, are evaluated in the following subsections.

C.2.2.1 w correction ¢,

The correction ¢, is given by

\/CLQ az+a;)+C2, Be2
(Q/tL)/?

coth (

2 2 2\2 2

5w:_ 2/ tJ_(Qx+qy) +1 ZqZ Q
a [ (2 + q§)2 +12¢4 + 02)° Nf61/2 \/Ci1 Q2+ qy) + C2 Bg?

(tit 1/2 1 2¢4 — Q2 /42
3N t2 4 24 274272
8m f #<‘QZ|<A —o0 [QJ_ + ﬁ q; + /tj_]

\/C2_q2 +C2 Bg?

(Q/t)1/?
X . (C.64)
VCa2 +C2 Ba2
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After changing the integration variables, ¢ — /Bgq.a and Q — Bt ¢%b, we

have

(tit)Y? 1 tLp? / / —a?— 142
0w = — A d db —_—
Ny % 55/2 (A/w) ¢ 27r3 (a* 41+ 02)2

coth <\/(Ci2a2 + Ci)/b)

X
’ /C’ila2 +C2
Co
S A (C.65)

where C,, = 0.366072. Note that §,, has a logarithmic divergence both in the
UV and IR cutoffs.

C.2.2.2 t, correction J;

The correction 6, is given by

\/Ci2 (42+43)+C2, Bq? )

(Q/t1)1/?

coth
2/ (2 +12¢2) (9% — 363 (@2 + ¢))* + t242)
0, =g ~
Q.q [92 +1 (g7 +¢5)% + tng} TSmO (@ + &) + C2 B

L 1~ g O B 34!+ B
3 8T Ny a1 9L 2,12 4 4 4 32,413
@ f H<‘QZ|<A —0o0 [Q /tJ_ + q7 + 5 Qz]

C7,41+C2, 842
coth ((Q/u)m )

X . (C.66)
VCa2 +C2 Ba2

After changing the integration variables, ¢ — /Bgq.a and Q — Bt ¢%b, we

have

tit,)2¢, B2 (1+b%)(—3a* + 1+ b?
” _(J_2 ) J_ﬁ A/,u / da/ db a + 1( 3(1 +2 + )
t2 Ny [35/2 (a*+14b2)3

coth <\/(Ci2a2 + C?Q)/b)

1/Ci1a2 +C2

Ctl
:Vfln(/\/,u), (C.67)

X
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where C;, = 0.614362. Note that d;, has a logarithmic divergence both in the
UV and IR cutoffs.

C.2.2.3 ¢, correction ¢,

The correction d;, is given by

) 2/ 16640 + (02 + 82 (¢ + ¢2)% + 2k2) (92 + 82 (a2 + ¢2)° — 13422
4 (92 + 13 (3 + ¢3) + t2¢]

C3, (a3+42)+C2,Bq2
coth (\/ =i Y )

(Q/t)1/2
(C.68)
tltz 1/2 \/Cil @ +qy) + C2 Bq?
t te 1/2 16 4.8
L32 / dQ/ / dqy q1 5 ﬁ4qz .
8m3t4 Ny p<lgz|<A — [Q2/tJ_ +qt ‘1‘52(]?}
3
[Q2/83 + 41 + Bq2]
VO, 402, B2
coth (W)
(C.69)

X
VO + 2 Bg2

After changing the integration variables, ¢, — v/Bgq.a and Q — Bt ¢%b, we

have

1/2 2 1 CINEE Ry VAYOR S | b2
5tz_(tL2t) tlﬁ In(A /) / da/ db a 16+ (a*+1+ )(a2 3+0%)
2Ny j35/2 (a*+1+02)3

coth (\/(Ci2a2 + CZQQ)/b)
\/C1 a? +C

Ct,
:Vf In(A/p), (C.70)

X

where Cy, = 0.341231. Note that J;, has a logarithmic divergence both in the
UV and IR cutoffs.
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C.2.3 Vertex correction

The correction d, is given by

3 :(1'9)2/Q %Tr[Go(iw,q)Go(iw,q)]D(iw,Q)

2 2 Nye?
[02 + 12 (g2 + ¢2)? + 124] TE\/C1L (@3 + &) + C2 e

Viit. / dQ/ / dal g —02/82 + ¢t + B¢}
= - I
8m3Nst2 p<las|<A ) (Q%/t2 + ¢t + B%¢2)?

coth (\/(CLQL + ZQBQZ)tJ_/Q)

X
\/Cilqi + CZ Bq?

(C.71)

After changing the integration variables, ¢, — v/Bq.a and Q — Bt ¢>b, we

have

(t1t)Y? 1 ¢, 2 / / —a? —1+b?
by = — In(A d db
g Ny 2 /2 n(A/n) “ 27r3 (a* +1+02)2

coth (\/(C'Lcﬂ + 032)/b>
\/C1,a? +C

Cy
:Ff In(A/p), (C.72)

X

where C; = C,,, which is consistent with the Ward identity.

C.3 Consistency between the large N; calculation

and ¢ expansion
In this section, we will show the correspondence between the large Ny calcula-
tion and the € expansion.

In the static (2 = 0) and long wavelength limit (¢ — 0), the boson propaga-

tor in the large Ny approximation has the following form for the momentum
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dependence:
D(iw=0,g = 0)"' ~q +]q| (C.73)

Let us consider the € expansion case. In the € expansion, near the interacting

fixed point,
€ CN €
'y =— <1 - f> N —, (C.74)
Ny Ny Ny
o* € 1 € CN €
- = o~ 1—|—f>%7 C.75
* Nfl—CNf/Nf Nf( Nf Nf ( )

where we only keep up to N 7 L order because we consider the large N ¢ limit.

Using these results,
1
D(iw =0,q = 0)"" =aq? + —¢7 — (iw, q)
a
a 2 1 * % 2

1
za(1+e€)qi+a(1+ef)q§

gt 4 g (C.76)

Here, in the fourth line, we absorbed the momentum dependence of a into
g1 and g.. For a sufficiently large Ny, 2z, =~ 1, thus for ¢ = 1 with d = 3,
D(0,q)™' ~ q1 + |g.|. Therefore, the result of the e expansion is consistent

with the large Ny calculation.

C.4 Physical observables in the non-interacting limit

In this section, we will calculate the physical observables such as the specific
heat, compressibility, diamagnetic susceptibility, and optical conductivity at
the TQPT between DWSM and insulating phases in the non-interacting limit.
For simplicity, we assume ¢, = t, = t,, the rotational symmetry along the

k.-axis.
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C.4.1 Density of states

Through the analytic continuation iw — w + id in Gy(iw, k), the retarded

Green’s function Gff* is obtained as

1

ret 0. k) =
Go™ (W +iok) = s T k)

and the imaginary part of G{f* and the spectral function are

G o)) =T 4 308 (0 — B + 60+ ),
Se(w) = — TG (w, )]

=0(w + Ej) + 0(w — Ex).
The density of states is given by

3
) = [ Sl

|‘“"|/ d/ﬂ/ dle, k1 5(w? — (2 kY +£2kY))

_ T(5/4) IWW2
ARSI (3/4) ¢ 12

where I'(z) is the gamma function and we use the identity,

/1dR ( R _VAL(/4)
0

1— RAB/A T~ T(3/4)

C.4.2 Free energy

(C.77)

(C.78)

(C.79)

(C.80)

(C.81)

In this section, we will calculate the free energy at the TQPT in the non-

interacting limit from which the specific heat and the compressibility are de-

rived. The finite-temperature propagator of fermion is

Goliwn, k)™t =(—iwp — p) + Ho(k),
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where we introduce the chemical potential p for deriving the compressibility.
The partition function and its logarithmic form are given by
Z =Det[3G,]
—HH [8((wn — ip)* + E(K)?)] (C.83)

iwn,

In Z :v/ WTZln [8%((wn — ip)? + E(k)%)]

[In {B%(w2 + (E(k) — w)?)} + In {B2(w2 + (E(k) + n)*)}],

(C.84)

where 3 = T~ and we use the relation

[(wn —ip)? + E(k)?] [(wn +ip)? + E(k)*] = [wp + (BE(k) — 1)*] [wp + (E(k) + p1)?] .
(C.85)

By using

Z In [ﬁz(wg + E(k’)2)] =FE(k)/T +2In(1 + efE(k)/T) + const., (C.86)

Wn

we obtain the free energy density as

T
f:—van

3
— / (j ’;3 [B(k)/T +1n(1 + e FE9/T) 4 1n(1 4 e EEHIT) 4 eonst].
™

(C.87)

Subtracting 7" = 0 contribution, 6F(T") := F(T') — F(0) is given by

3
SFT. ) =T [ 28 (1 4 e E®@-0/T) 4 1n(1 1 o~ E@+0)/T
(2m)3
s

_ T(5/4) T2
8aD(3/4) ¢ 41/

[L%( e/T) + Lis (- e—u/T)}, (C.88)

where Li, (z) is the polylogarithm function.
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C.4.2.1 Specific heat

(4f

For 1 = 0, using Lig(—l) = ¢(5/2) with the zeta function ((x), we get

the free energy 0.F(T,0) as

(4= V2)(5/4)¢(5/2) T°?

T.0) = — ) .
The specific heat at p = 0 is then given by
0?6 F(T,0)
Ov=-T—5m
_15(4 = V2)T(5/4)¢(5/2) T (C.90)
B 64nL(3/4) ¢ 2 '
C.4.2.2 Compressibility
The compressibility is given by
o O%F(Tp)
= o2
A CTO NN /T /T
= TG/ AT Li %( e )+L11( e )| - (C.91)
At p =0, we have
2 — 1)I(5/4)¢(1/2) T/?
A T/40/2) o)

47T(3/4) AYEL

where Lij jo(—1) = (V2 —1)¢(1/2) is used. Note that ((1/2) < 0, hence, > 0.
(C.93)

C.4.3 Diamagnetic susceptibility

Using the Fukuyama formula [88], the diamagnetic susceptibility is given by
d&
eOTZ/ Tr[J; G (iwn, k) JG (iwn, k) J; G (iwn, k) JxG (iwn, k)],

(C.94)
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where J; = % is the current operator,

Jp =2t kyor + 2tJ_kyO'y, (095)
Jy =— 2tJ_kyO'a; + 2tj_k$0'y7 (096)
T, =2t.k.0.. (C.97)

Note that because of the 'y symmetry of the Hamiltonian, xp . = Xpy = XD, 1-

Subtracting the zero temperature contribution to obtain a finite result, we have
=e2T d3kTJG' k)J.G(iwn, k)J,G(iwn, k)J.G(iw,, k
XD, L =€p ; W t[Jy G (iwn, k) J. G (iwn, k) Jy G (iwn, k) J.G(iwn, k)]

dwd®k
—e? / mTr[JyG(z’w,k:)JZG(iw,k)JyG(iw,k)JzG(z’w,k)],

:egtiti/ (;lw]; [—32(k2 + k) kZ Mo + 12867 £2(k2 + k) kS M,
=e2t1/271 /2 oL (C.98)

where ¢, | = 0.054. Here, we use

w/2
/ cos O sin'/? 0 dbg (C.99)
0

(C.100)

:”OO w\t\a

w/2
/ cos 0381115/2 Op dfp =
0

and the following Matsubara frequency summations (where the zero-temperature

contribution has been subtracted)

* dw 1
ME/T) = Z /_m%(w2+£2)
1 §
2§ [tanh( T> - 1] , (C.101)
* dw 1
f/T ZZ +£2 _/_m%(w2+§2)2
_ 1 RN . 1
-1 [tanh (QT) 1} ST ()’ (C.102)
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1 * dw 1
M) TS e [

Coo 2m (w2 4 £2)3

tanh (5
o (£) 1] - ] anh )
16£5

2T 32€4T COShQ(%) 326 T2 COSh2 (i)

2T

(C.103)
My(&/T) = Z(—i{ﬁz) /OO do !

oo 2m (W 4 £2)*

¢ 5 1 1 tanh( )
:3255 [tanh (2T) - 1] T o () 32T coni? ()

1 1 ¢
+ 384E1T7 11 (%) {2 — cosh <T>] . (C.104)

Similarly, xp. . is given by

3
XD.x :egTZ / %Tr[,]x(}(iwn,k)JzG(iwn,k)JxG(iwn,k)JzG(iwn,k)]

dud®l
_ e / ot TGl ) .G, )1, Gl k) .Gl )

A3k
_e2th / G (32K 4 KMy -+ 25600 (k2 + k) 23]

e tJ_
(1/2 T2, (C.105)

where ¢, . = 0.107. Here, we used

w/2 2 47121 4
/ 49 < 0 4r/°I(5/4)
0

= ) C.106
Vend | 3T(3/4) (C.106)

w/2 6 1/2F 4
/ . e N T (C.107)

0 Vsin @ 77(3/4)

In summary,
edt

XD,L = CX,LegtiﬂTl/Q, XD,z = Cx,z q/ng/? (C.108)
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C.4.4 Optical conductivity

The optical conductivity is given by

* dwnp(w) —nr(w+Q)
Q

Uij(Q, T) :63 /

—00

3
X/(if)sTf [JIm[GF* (w, k)] J;Im[Go(w + Q, k)], (C.109)

where np(z) = Because of the Cy symmetry of the Hamiltonian, o, =

_ 1
14ec/T "
oyy. Hence, we only need to consider o, and o..

> dw np(w) —np(w+ Q)
™ Q

022 (Q,T) :eg /

—0o0

3
X / (if)gTr [JIm[GF (w, k)], Im[GE* (w + ©Q, k)]]

23/2 oo 3/2 2
= 5(Q dR + —010|Y2 tanh | == ),
5L/ () 0 cosh? (&) 20\/%@/2’ [ tan AT

(C.110)

> dw np(w) —np(w+ Q)
™ Q

0..(Q,T) :eg /

—0o0

3
X / (;ZWI;STr [ m[GE" (w, k)] J.Im[Go(w + Q, k)]]

€373/ 31(—1/4)?
¢, t7/2160v/27m5/2

00 3/2 2
y / AR R2 - + ﬁr(3/4) 681/2‘Q|1/2 tanh <|(2’> )
0 cosh® (&) = 40v20(5/4) ¢ t; 4T

5(Q) (C.111)

(C.112)
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Here, we used the following identities,

00 R3/2
0 cosh (5)
/2 7/2
/ sl g8 (C.114)
0o VcosOsinb )
/2 3T (—1/4)
in®20 do ="———"_ C.115
/0 . 40V2m ( )
L R3(R*-2) 6
d = A1
e (0116
! R® V7L(3/4)
d = 11
/0 R TR ~100(5/4) (C.117)
. np(A) —np(A£Q) 1 1
1 = - C.118
050 Q AT cosh?(A/2T) ( )
For T'= 0,
() = 5B g2 (C.119)
2
(@)= YTEGM) @6 (C.120)

A0VRD(5/4) ¢,
C.5 Effect of extra relevant perturbations

In the presence of extra perturbations such as doping and disorder, a new
parameter is introduced to characterize the extra perturbation in addition to
the intrinsic length scale, correlation length & set by temperature. For example,
for doping, the Fermi wave vector kp is well defined. With the two parameters,
the two regimes naturally appear. For a large doping kr& > 1, our fixed point
cannot be a good starting point, and it would be better to start from the Fermi
liquid. On the other hand, kré < 1, our description is certainly a good starting
point and one can investigate the doping effect as a perturbation even though
a little more additional cautions are necessary as in one of the standard critical

phenomena.

114



C.6 Sanity check of the power-law correction

In the main text, we included all the renormalization effects in the system
parameters. Here, for a sanity check, equivalently we will include all the renor-
malization effects in the coordinates and obtain the associated anomalous di-
mensions.

Recall that the RG equations for ¢ and t, are given by

1 dt)

Pl =z —2z, +aF(y), (C.121)
1dt,

Imposing £, and t, as constants, then we have

z=2—aF,(v), (C.123)

2 =1+ 5 [Fu(7) = (7). (C.124)

At the fixed point (o, ) = (a*,7*),

zF =2 —a " F,(v"), (C.125)
=14 8 [P - B (C.126)

Now, let us find the power-law corrections of the physical observables by
using scaling hypothesis with the renormalized quantity Or and the scaling

dimension dp for an observable O. For the density of states, we have
p =b" 2=+ pp (C.127)
whereas for the free energy,

F =b~+2+D) pp (C.128)
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From Eq. (C.128), we obtain the specific heat and the compressibility, respec-

tively, as
2
Cy =— TgT]; = b Oy g, (C.129)
2
K= g,; = 0" P g, (C.130)

To determine the scaling relation of the optical conductivities and the dia-
magnetic susceptibilities, we use the minimal coupling —i0; — —i0;+epA; (T, x),
where A;(7,x) is a gauge-field. Since eg receives no renormalization at all,
the scaling dimension of A; is the same as that of 0;. The optical conduc-

tivities and the diamagnetic susceptibilities can be obtained from the current-

current response function Kj;(iw,q) = (27r)d+1(5(w-1i-§2)6d(q+p) (Ji(iw, @) T; (182, p))
with J;(iw, q) = e [}, Yl (iw, k + q) 8%%(ik)¢(iw,k) by the following relations
88, 85]:

1

01j(w) =5 -ImKG" (w, g = 0), (C.131)
N Cigk e

Xp,i(w) = Jiany 2qjquJ (0,q). (C.132)

Here, the repeated indices are not summed. Because (J;(iw,q)J;(i€2, p)) is
obtained by differentiating the logarithm of the partition function Z[A] with
respect to A;(iw, q) and A;(iw, p), the scaling dimension of Kj;(iw, q), namely
[Kj], is given by

N IS
Ao ) 64 (i)

= — [0 - [0j] + (2422 +d—2). (C.133)

[Kij] =] | - [dr] - [d’x]

Equipped with this scaling relation of K;;, we can derive the following relations:

o1 =020, R, (C.134)

0. = 0725 g, (C.135)
xXp,1 =02 p | R, (C.136)
XD = b2y o (C.137)
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The RG equation of the temperature and frequency is

dO
TV

(C.138)

where O = T,Q. Let z = 2* and 2, = 2% . Solving this, we obtain O(b) = b*" O.
Let b* be the cutoff value, so that O(b*) = (b*)*" O = A, then b* = (A/O)'/*" x
O~1/%". Using this, we can obtain the power-law corrections of the observables
in terms of the temperature and frequency.

For the density of states, we have
p x |Q‘(221+17z*)/z* O( |Q’1/2+CL+%CZ‘ (0139)
For the specific heat and compressibility,

Cy oc TRZ1HD/Z" o 78/2Fest5es (C.140)

K OC T(221+1—Z*)/z* ~ T1/2+CL+%CZ. (0141)
For the diamagnetic susceptibility,

XD, 1 TN/ T1/27%CZ, (C.142)

XD.x OCT(z*72zI+1)/Z* ~ T1/27CJ_+%CZ ) (0143)
For the optical conductivity,

Opw Q" n Ql/2H0z (C.144)

0., QLD o Ql/2+er—ge: (C.145)

Here, ¢; ~ 0.402/Ny and c; ~ 0.044/Ny in the large Ny approximation.
Thus, we obtain the same results as in the main text. If the symmetry-allowed
parabolic term is included, we have ¢; ~ 0.145/Ny and ¢, = 0.050/Ny.

For the candidate materials of DWSM, HgCr,Ses and SrSis, HgCroSey has
one pair (Ny = 1) of double-Weyl points, whereas SrSi, has six pairs (Ny = 6)

of double-Weyl points. In particular, for SrSis, it has cubic symmetry, therefore,

.":r'\'\.—-'! - l‘.I-.\:l T 1_-] i ...‘.l ]
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to see the anisotropic behaviors, we need to maintain only one Cy symmetry.
For example, if we apply a uniaxial pressure along 2, then the Cy symmetry
along & and g is broken, so we only have two pairs of double-Weyl points
on the Z axis [82]. Therefore, under this situation, the effective number of
pairs of double-Weyl points of SrSiy is two (Ny = 2). Then, for gy = c,/2
and n3 = ¢, — ¢,/2 we find that 1y — n3 values for HgCraSes and SrSiy are
—0.198 and —0.132, respectively. We expect that the anisotropic scaling will

be manifested at low temperatures or low frequencies.
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