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Abstract

In the study of a variety of materials and the phase of them, classifying

and dividing them in a consistent and useful way essentially requires some

insight of the materials and eventually helps deepening our understanding of

the materials and the phase. The conventional way of the classification of

the phase of a material is developed based on Landau’s theory of the phase

transition, and use the broken symmetry of the phase of a material.

However, in the mid of 2000, it is suggested that there is another way of

classifying the phase of a material with respect to the topology of the electronic

structure of the material, which is overlooked in the conventional way. The dis-

covery of the topological phase of materials stimulates the researches on seeking

for what is new in the topologically non-trivial phase of material. Motivated

by this new discovery of the topological phase, we focus on the study of the

effect of the long-range Coulomb interaction in electronic systems whose band

structure is a topologically non-trivial.

The first subject of this thesis is devoted to a study of the exciton-polariton

condensate in the microcavity of a monolayer transition metal dichalcogenides.

Exciton-polariton is a state in which an exciton and a photon are coherently

combined. As it is composed of a photon by part, the mass of the exciton-

polariton is very small which makes it a good candidate for the room-temperature

Bose-Einstein condensation. In this thesis, we take the Diracness of the low-

energy electronic degree of freedom into account in a monolayer transition metal

dichalcogenides. By Diracness, we mean that there is a non-vanishing Berry

curvature around the extremum of the conduction and valence band. The re-

sult of our study shows that topological and first-order phase transitions in

the exciton-polartion condensate can be achieved by increasing the excitation
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density. It contrasts to the previous researches employing the effective mass ap-

proximations on similar systems. In those researches, a continuous BEC-BCS

crossover is expected to occur rather than a first-order, thus discontinuous,

topological phase transition. Furthermore, we find that various types of topo-

logical phase can appear in the exciton-polariton system in a microcavity with

a monolayer transition dichalcogenides.

The second subject is related to the double-Weyl semimetal which hosts

double-Weyl nodes near the Fermi level. A double-Weyl node is an extension

of a Weyl node. A Weyl node can appear anywhere in the Brillouin zone, does

not require any symmetry, and has ±1 topological charge. On the other hand,

a double-Weyl node is only protected by C4 or C6 rotation symmetries and

can appear on the axis invariant under the rotation. The magnitude of the

topological charge it can possess is 2. When it comes to the energy disper-

sion, the energy dispersion of a Weyl node depends on momentum linearly in

any direction, while that of a double-Weyl node is linear along only the rota-

tionally invariant axis and quadratic along the direction perpendicular to the

rotationally invariant axis.

It has been proposed that a double-Weyl semimetal can undergo a topo-

logical phase transition between the semi-metallic phase and insulating phases

by applying the physical or chemical pressure. At the point of the topological

phase transition, called a critical point, the energy dispersion of the electronic

degree of freedom is quadratic in momentum in all directions in the low-energy

limit. As a system with a quadratic dispersion can be a non-Fermi liquid in the

presence of the long-range interaction, we study the critical point of a double-

Weyl semimetal using two standard renormalization group methods, the large

Nf method and the ϵ = 4 − d expansion method. The result of both meth-

ods implies consistently that the double-Weyl semimetal at the critical point
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is in an anisotropic non-Fermi liquid phase in the presence of the long-range

Coulomb interaction between electrons. We also provide the correction of the

power-law of several physical observables as an experimental guide in sought.

keywords: exction, exciton-polariton, topological phase transition, double-

Weyl semimetal, long-range Coulomb interaction.

student number: 2013-22992
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Chapter 1

Introduction

When it comes to the condensed matter physics, the past decade is arguably

an era of the introduction and the develoment of the symmetry protected topo-

logical phase of materials[2, 3, 4, 5, 6], such as the quantum-spin Hall phase of

the two-dimensional and the three-dimensional system with the time-reversal

symmetry, and the synthesis of materials with the unprecedented properties, for

example, the two-dimensional materials like a graphene[7], a monolayer transi-

tion dichalcogenide [1, 8, 9] as well as the topological insulators like the HgTe

quantum well and Bi2Se3[10, 11], etc.

The topological phase of a material completely originates from the quantum

nature of the electrons in the material. For example, Zak’s phase[12] determin-

ing the topological phase of a one-dimensional system with both of chiral sym-

metry and inversion symmetry is a total sum of the phase of the wave function

acquired by an electron during a travel over the whole one-dimensional Bril-

louin zone[12, 2]. As the phase with the trivial Zak’s phase and the phase with

a non-trivial Zak’s phase are subject to the same symmetry group, the subtle

distinction between those two phases is not captured in the conventional classi-

fication of the phase of materials based on broken symmetries. Also, the phase

of the wave function is understood as a purely quantum mechanical quantity,
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which implies that the phase with the non-trivial Zak’s phase emerges due to

a purely quantum mechanical origin.

The topological non-trivial phases are accompanied by interesting proper-

ties such as the existence of the symmetry-protected boundary modes on the

boundaries of the system [2, 13]. For instance, a two-dimensional topological

insulator hosts at least one helical edge mode on each edge. A sort of the three-

dimensional topological semimetals, called Weyl semimetal[14], hosts a nodal

point in the Brillouin zone which is very stable against any perturbation as long

as it is not strong enough that two Weyl-node come into the pair annihilation.

However, the classification of the topological phase is complete only in

the non-interacting limit. When the interactions are taken into account, the

topological phase of a material can change regardless of the occurrence of the

symmetry-breaking due to the interaction. Therefore, the interplay between

interactions and the topological structures of electronic bands are needed to be

considered in the study of the topological characterization of a system.

Especially, in a set of newly synthesized materials like graphene and mono-

layer transition dichalcogenide, which are featured by their quasi two-dimensional

geometry, electric fields are not screened well as much as it is in the three dimen-

sional insulators or metals due to the lower dimension of the materials. Hence,

we can expect a strong influcence of the long-range Coulomb interaction be-

tween electrons in this system. Also, materials in a topological semimetallic

phase or at the phase transition between the topological semimetalic phase

and the insulating phase have gapless nodes. Such a gapless node can induce

quantum cricitcal phenomena which result in singular behaviours of physical

observables when there are suitable interactions.

Motivated by the anticipation that the topological structure of the electronic

system in concert with the long-range Coulomb interaction between electrons

may yield astonishing outcomes, we explore the interplay between them in a
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microcavity with a monolayer transition metal dichalcogenide and in a double-

Weyl semimetal at the topological phase transition point.

This thesis is outlined as follows.

In chapter 2, a brief introduction to the topological Chern number is intro-

duced. Also, the low-energy model of the monolayer transition metal dichalco-

genide and the multi-Weyl semimetals are introduced in the group representa-

tion theoretical point of view.

In chatper 3, the self-consistent mean-field method is exposed in detail. Two

approaches are used to derived the self-consistent equations. One is called the

Hatree-Fock factroization and the other derivation originates from the varia-

tional principle.

In chapter 4, the excition-polaritonic system in a microcavity with a mono-

layer transition metal dichalcogenide is studied in the self-consistent Hartree-

Fock method. We show two excitonic order parameters with different symmetry

characters appear because of the diracness of the electronic band structure of

a monolayer transition metal dichalcogenide in the low-energy limit. It turns

out that the resultant phase diagram shows interesting topological first order

phase transitions which are not seen in the previous researches.

In chapter 5, we investigate the effect of the long-range Coulomb interaction

in a double-Weyl semimetal at its topological quantum phase transition. Two

standard renormalization group methods, the large Nf expansion and the ϵ =

4− d expansion are used and both two methods yield a consistent result that a

double-Weyl semimetal at the topological phase transition between the double-

Weyl semimetalic phase and insulating phases will exhibit an anisotropic non-

Fermi liquid behavior. As a guideline for experimental confrimation of the

anisotropic non-Fermi phase, we provide the power-laws of physical observables.

In chapter 6, this thesis concludes with a summary.
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Chapter 2

Low energy theory and the topological charac-

terization of 2D TMD and multi-Weyl semimet-

als

2.1 Chern number

2.1.1 General formula for the abelian Berry curvature and Chern

number

Let us start with a general way of calculating the Chern number. Aussming

that the energy structure of a Hamiltonian H(k) is gapped at an energy EF ,

not necessarily to be the Fermi energy. The energy levels are denoted by En(k)

and the eigenstate of it are |ψn,k⟩, and the (abelian) Berry phase acquired by

the n-th band through a trip around a closed path P is

γn =

˛
P
An(k) · dk

where An(k) = i ⟨ψn,k |∇k|ψn,k⟩ is the Berry connection of the n-th band.

Note that a physical quantity is expressed through a line intergral over a closed

path, which can be re-expressed using the Stoke’s theorem.˛
P
An(k) · dk =

ˆ
S
Fn(k) · d2k

4



where P = ∂S. Fn(k) ≡ ∇k × An(k) is known as the Berry curvature. A

gauge-invariant expression for the Berry curvature is known

[Fn(k)]r = iεpqr
∑
m

〈
∂p ψn

∣∣∣∣ψm〉〈ψm∣∣∣∣∂qψn〉
= iεpqr

∑
m̸=0

⟨ψn |∂pH|ψm⟩ ⟨ψm |∂qH|ψn⟩
(En,k − Em,k)

2

= −εpqr
∑
m ̸=0

2Im [⟨ψn |∂pH|ψm⟩ ⟨ψm |∂qH|ψn⟩]
(En,k − Em,k)

2 , (2.1)

which is very useful in the numerical calculation. As long as En,k ̸= Em,k for

all m,n, the Berry curvature is not singular. Also, the Berry curvature from

all bands sums up to zero:
∑

nFn(k) = 0.

It is interesting to find the close analogy between the Berry curvature Fn(k)

and the magnetic field, and between the Berry connection An(k) and the vector

potential in the classical theory of electromagnetism. In the same line of thought

of the classical theory of electromagnetism, we can obtain the net charge of a

"magnetic" monopole, which is quantized, by integrating the "magnetic" fields

Fn(k) over a closed surface S. This is the Chern number of the n-th band.

Cn =
1

2π

˛
S
Fn(k) · dS. (2.2)

In the two-dimensional free space, S is taken to be the whole (kx, ky) plane.

If there is a periodic potential in the two-dimensonal space, as it is in a the

two-dimensional lattice system, S can be taken as the first Brillouin zone of

the lattice. If the system is three-dimensional metalic system, we can think of

S as the Fermi surface. In the following sections, seversal examples relevant to

what will follow are going to be exposed.

2.1.2 Two-band model

It is heuristic to apply something new to a two-band model since two-band

model is able to be treated completely analytically and provides good intution.
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A general two-band model Hamiltonian is reads as

H(k) = a0(k)σ0 + a(k) · σ,

whose eigen energies are E± = a0(k)± |a(k)| and the eigenstaes are

|+⟩ = 1√
2 |a|

√
|a|+ a3

a3 + |a|

a1 + ia2

 ,

|−⟩ = 1√
2 |a|

√
|a| − a3

a3 − |a|

a1 + ia2

 .

Evaluation of Eq. (2.1) with these eigen states turns out to be

[F+(k)]r =iεpqr
∂pai(k) · ⟨+|σi|−⟩∂qaj(k) · ⟨−|σj |+⟩

8 |a|2

− iεpqr
∂qai(k) · ⟨+|σi|−⟩∂paj(k) · ⟨−|σj |+⟩

8 |a|2

=iεpqr
∂pai(k)∂qaj(k) {⟨+|σi|−⟩⟨−|σj |+⟩ − ⟨+|σj |−⟩⟨−|σi|+⟩}

8 |a|2

=iεpqr
∂pai(k)∂qaj(k) {⟨+|σiσj |+⟩ − ⟨+|σjσi|+⟩}

8 |a|2

=− εpqrεijk
∂pai(k)∂qaj(k)⟨+|σk|+⟩

4 |a|2

=− εpqr

4 |a|3
(∂pa× ∂qa) · a. (2.3)

When it comes to a constant unitary transformation ai(k) = Bijbj(k), the

Berry curvatures expressed with a or b are related by

−εpqrεijk∂pai(k)∂qaj(k)⟨+|σk|+⟩ = −εpqrεijkBiaBjbBkc∂pba(k)∂qbb(k)bc

= −detB [εpqrεabc∂pba(k)∂qbb(k)bc] .

Hence a transformation B with detB < 0 changes the direction of the Berry

curvature, and thus the sign of Chern number.

6



2.1.3 Massive Dirac fermion in the two-dimensional free space

Let us assume that a system described by a Hamiltonian of the two-dimensional

massive Dirac fermion:

H =

 m kx − iky

kx + iky −m

 = (kx, ky,m) · σ.

The eigen energies are E± = ±
√
k2 +m2, which shows that the system is

gapped as long as m ̸= 0, and the eigenstates of the Hamiltonian are

|+⟩ = 1√
2E+

√
E+ +m

m+
√
k2 +m2

keiϕ

 ,

|−⟩ = 1√
2E+

√
E+ −m

m−
√
k2 +m2

keiϕ

 .

Putting these into Eq 2.1 and 2.2, we get

[F+(k)]3 = −2Im [⟨ψ+ |∂1H|ψ−⟩ ⟨ψ− |∂2H|ψn⟩]
(E+,k − E−,k)

2

= − mk

m2 + k2
,

and thus

C = − 1

2π

ˆ
R2

1

2

m k

(m2 + k2)3/2
dkdϕ = −sign(m)

2
.

Hence, the electronic structure of a massive Dirac fermion bears a Chern

number ±1
2 whose sign is determined by the opposite of the sign of the mass

m.

2.1.4 Fermi surface of a Weyl fermion system

In the three-dimensional case, the most famous system possessing Chern num-

ber is the metallic Weyl node system. The electronic structure around a Weyl

node is described by a Hamiltonian of the massless Weyl fermion. In the most

7



general form, the Hamiltonian of the Weyl node is written as

H =
∑

i,j=1,2,3

cijkiσj ,

with det(cij) ̸= 0. Using Eq 2.3, we get the Berry curvature

[F+(k)]r =− kr det c

2
∣∣∣∑j (

∑
i cijki)

2
∣∣∣3/2 ,

and the Chern number over a closed two-dimensional surface in the three-

dimensional space

C+ = −det c
4π

˛
FS

dSk · k(∣∣∣∑j (
∑

i cijki)
2
∣∣∣)3/2

= −sign [det c]
4π

˛
FS

dSp · p

|p|3

= −sign [det c] .

where a substitution pj = cijki is used in the last line. In conclusion, what

we learn is that the Fermi surface around a Weyl node has a non-zero Chern

number which originates at a singular point k = 0, where the energy gap closes.

Sometimes, we call the Chern number, −sign [det c], the topological charge of

a Weyl node.

From the point of view that a topological number only changes by an interger

number, the topological number of a Weyl node implies the stability of the Weyl

node. Let us imagine an arbitary perturbation V = −a · σ applied to a Weyl

node described by a Hamiltonian H0 = vFk · σ. Considering the perturbed

Hamitlonian H = H0 + V , the role of the perturbation is a mere displacement

of the Wely node from k = (0, 0, 0) to k = v−1
F a, and thus the Wely node does

robustly survive against any type of small perturbation.
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2.1.5 Constraints by symmetry

2.1.5.1 Time-reversal symmetry

When the system is invariant under the time-reversal symmetry represented by

a PT = ϵ K with a matrix ϵ = −isy acting on the spin space and the complex

conjugation K, we can find a matrix, so called the sewing matrix, Γ(T ), which

relates the eigenstates at k and −k sharing the same eigenenergy.

PT ψn(k) ≡ ϵψ∗
n(k)

= [Γ(T )]n̄n ψn̄(−k). (2.4)

Antisymmetric matrix [Γ(T )]n̄n is non-zero only when n̄-th band at −k is the

Krammer partner of n-th band at k. Let us denote the Krammer partner of

ψn(k) by ψT n(−k). Transformation rules of phyiscal observables are derived

from Eq 2.4, and that of
[
A(p)(k)

]
nm

= ∂pψ
†
n(k) · ψm(k) is our interest. For

example, using Eq 2.4 and
[
A(p)(k)

]
nm

= −
[
A(p)∗(k)

]
mn

= −∂pψTm(k) ·ψ∗
n(k),

or A(p)(k) = −A(p)†(k), we get[
A(p)(k)

]
nm

= −∂p (ϵψ∗
m(k))

† · ϵψ∗
n(k)

= −Γ∗
m̄m(T )∂pψ

†
m̄(−k) · ψn̄(−k)Γn̄n(T )

=
[
Γ†(T )A(p)(−k)Γ(T )

]
mn

,

∴ A(p)(k) =
[
Γ†(T )A(p)(−k)Γ(T )

]T
, (2.5)
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Using Eq 2.1 and Eq 2.5, we have

[Fn(k)]r = iεpqr
∑
m

[
A(p)(k)

]
nm

[
A(q)(k)

]
mn

= iεpqr
∑
m

[
Γ†(T )A(p)(−k)Γ(T )

]
mn

[
Γ†(T )A(q)(−k)Γ(T )

]
nm

= iεpqr

[
Γ†(T )A(q)(−k)A(p)(−k)Γ(T )

]
nn

= iεpqr

[
Γ†(T )

]
n,T n

∑
m

[
A(q)(−k)

]
T n,m

[
A(p)(−k)

]
m,T n

[Γ(T )]T n,n

= −iεpqr
∑
m

[
A(p)(−k)

]
T n,m

[
A(q)(−k)

]
m,T n

,

∴ [Fn(k)]r = − [FT n(−k)]r , (2.6)

where we have used
[
Γ†(T )

]
n,T n [Γ(T )]n,T n = 1 since n-th band at k and T n-th

band at −k are Krammer partners.

As an application of Eq 2.6, let us imagine a system with Weyl nodes. If

there is a Weyl node at k0 and a Fermi pocket is formed by the upper band

stemming from the Weyl node, there should be another Weyl node at −k0

whose upper band also crosses the Fermi energy. Two upper bands of Weyl

nodes are related by the time-reversal symmetry. Supposing that the Fermi

pockets are disjoint, then it is the topological charge C(k0) of a Weyl node that

the integral of Berry curvature of the upper band of the Weyl node at k over

the Fermi pocket around the Weyl node.

C(k0) =
1

2π

˛
Fupper(k0 + q) · dSq.

The topological charge C(−k0) of the Wely node at −k0 is obtainable using Eq

10



2.6.

C(−k0) =
1

2π

˛
FT n(−k0 + q) · dSq

=
1

2π

˛
FT n(−k0 − q) · dS−q

=
(−1)2

2π

˛
Fn(k + q) · dSq,

= C(k0)

where we have used dS−q = −dSq. Therefore, any pair of Weyl nodes related

by the time-reversal symemtry shares a common topological charge.

Another example is

2.1.5.2 Inversion symmetry

When the system is invariant under a spatial inversion, represented by an uni-

tary matrix PI , we can relate two states at k and −k by a matrix Γ(I).

PIψn(k) = [Γ(I)]n̄n ψn̄(−k). (2.7)

Here, [Γ(I)]n̄n is non-zero only when n̄ = In.

[
A(p)(k)

]
nm

= ∂pψ
†
n(k) · ψm(k)

= ∂pψ
†
n(k)P

†
I · PIψm(k)

= −
[
Γ†(I)A(p)(−k)Γ(I)

]
nm

,

∴ A(p)(k) = −
[
Γ†(I)A(p)(−k)Γ(I)

]
, (2.8)

which is slightly different from Eq 2.5. In the same way with the derivation of

Eq 2.6, we can derive the constraints forced by I.
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[Fn(k)]r = iεpqr
∑
m

[
A(p)(k)

]
nm

[
A(q)(k)

]
mn

= iεpqr
∑
m

[
Γ†(I)A(p)(−k)Γ(I)

]
nm

[
Γ†(I)A(q)(−k)Γ(I)

]
mn

= iεpqr

[
Γ†(I)A(p)(−k)A(q)(−k)Γ(I)

]
nn

= iεpqr

[
Γ†(I)

]
n,In

∑
m

[
A(p)(−k)

]
In,m

[
A(q)(−k)

]
m,In

[Γ(I)]In,n

= iεpqr
∑
m

[
A(p)(−k)

]
T n,m

[
A(q)(−k)

]
m,T n

,

∴ [Fn(k)]r = [FIn(−k)]r . (2.9)

Applying 2.8 to the pair of Wely nodes related by the inversion symmetry

I, we can show

C(−k0) =
1

2π

˛
FIn(−k0 + q) · dSq

=
1

2π

˛
FIn(−k0 − q) · dS−q

=
(−1)1

2π

˛
Fn(k + q) · dSq,

= −C(k0),

thus the inversion transformation flips the sign of topological charge of a Weyl

node.

2.2 Low-energy effective theory of electronic struc-

ture

In the following subsections, the low-energy effective theories of a single layer

transition metal dichalcogenides and a multi-Weyl node are going to be exposed.
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As the group representation theory would play a central role in the determina-

tion of the possible structure of the electronic structure, it comes first and the

application of it to the case of a single layer transition metal dichalcogenides

and a multi-Weyl node system will follow.

2.2.1 Representation of a symmetry group and invariance of

Hamiltonian

Let a system subject to a symmetry group G and be described by wave functions

spanned by a set of functions, {ψi(r)|i = 1, · · · , n}, called the basis functions.

For convenience, {ψi} are assumed to be orthonormal. Applying a transfor-

mation P (g) corresponding to an element g ∈ G to ψi, we can obtain the

representation matrix Γ(g) of g from the following relation.

P (g)ψj(r) ≡ ψj(ĝ
−1r) = Γ(g)ijψi(r)

yielding [Γ(g)]ij =
´

ddrψ∗
i (r)ψj(ĝ

−1r). Here, ĝ is the faithful representation

of O(d) in the d-dimensional real space. For example, when g means a counter-

clockwise rotation of a point, or a vector, along the z-axis, then the 3×3 matrix

ĝ is

ĝ =


cosα − sinα 0

sinα cosα 0

0 0 1

 .

The Hamiltonian restricted to the space spanned by the basis functions is de-

fined by

hij ≡
ˆ

ddrψ∗
i (r)H(r̂, p̂)ψj(r).

The invariance of H(r̂, p̂) under g ∈ G implies h = Γ(g)† h Γ(g) stating the

invariance of h.

In a periodic system, each basis functions are labelled by the crystal mo-

mentum k, thus {ψk,i(r)|k ∈ FBZ, i = 1, · · · , n} is the set of basis functions.
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The restricted Hamiltonian h is also labelled by k:

[h(k)]ij ≡
ˆ

ddrψ∗
k,i(r)H(r̂, p̂)ψk,j(r),

whose invariance under g is represented by

Γ(g)h(ĝ−1k)Γ(g)† = h(k). (2.10)

2.2.2 Monolayer transition metal dichalcogenides

As an insulator, the electronic band structure of a single layer transition metal

dichalcogenides is gapped. The minimum(maximum) of the conduction band(valence

band) is located around the corners K and K ′ ≡ −K of the fisrt Brillouin zone,

whose group of the wave vector is C3h while the lattice is invariant under D3h.

It is known that the edges of the conduction and the valence bands at τK con-

sist of
{
dz2 , dx2−y2 , dxy

}
orbitals of Mo atoms[15]. Hence, we can construct an

effective Hamiltonian near K using the the Bloch basis functions:

ψ1(r) =
1√
N

∑
R

e−iK·Rdz2(r −R), (2.11)

ψ2(r) =
1√
N

∑
R

e−iK·R
(
dx2−y2(r −R) + idxy(r −R)

√
2

)
, (2.12)

ψ3(r) =
1√
N

∑
R

e−iK·R
(
dx2−y2(r −R)− idxy(r −R)

√
2

)
, (2.13)

where R denotes the lattice sites of Mo atoms. The representation matrices of

C3 and σh on these basis functions are

Γ(C3) =


1 0 0

0 e−
4πi
3 0

0 0 e
4πi
3

 , Γ(σh) =


1 0 0

0 1 0

0 0 1

 .
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Only C3 among C3h effectivley constraints the possible form of h(K + q). Ap-

plication of Eq 2.10 with g = C3 yields

h(K + q) =


h11 h12(qx − iqy) h13(qx + iqy)

h∗12(qx + iqy) h22 h23(qx − iqy)

h∗13(qx − iqy) h∗23(qx + iqy) h33

+O(q2).

Turning the spin degree of freedom on, the basis functions are

ϕ1(r) = ψ1(r) |↑⟩ , ϕ2(r) = ψ2(r) |↑⟩ , ϕ3(r) = ψ3(r) |↑⟩ ,

ϕ4(r) = ψ1(r) |↓⟩ , ϕ5(r) = ψ2(r) |↓⟩ , ϕ6(r) = ψ3(r) |↓⟩ ,

and the representation matrices of C3 and σh on these basis functions are

Γ(C3) = e−
πi
3



1

e
2πi
3

e−
2πi
3

e
2πi
3

e−
2π
3
i

1


,

Γ(σh) =



−i

−i

−i

i

i

i


.

Using Γ(σh)h(K + q)Γ(σh)
† = h(K + q), we know that h(K + q) takes a block

diagonalized form

h(K + q) =

h↑(K + q) 0

0 h↓(K + q)

 .
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Note that the spin-up and spin-down are completely decoupled due to σh. Mak-

ing use of Γ(C3), what we obtain is

hs(K + q) =


h11,s h12,s(qx − iqy) h13,s(qx + iqy)

h∗12,s(qx + iqy) h22,s h23,s(qx − iqy)

h∗13,s(qx − iqy) h∗23,s(qx + iqy) h33,s

+O(q2).

Also, h(K + q) = (Γ(σv)ϵ)h
∗(K + (qx,−qy)) (Γ(σv)ϵ)† shows that all hij,s are

real, where T = ϵK is the time-reversal symmetry with

ϵ =

 0 −X

X 0

 =



0 0 0 −1 0 0

0 0 0 0 0 −1

0 0 0 0 −1 0

1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0


,

and

Γ(σv) =

 0 −iX

−iX 0


is the representation matrix of a reflection σv : (x, y, z) → (−x, y, z).

The difference between hij,↑ and hij,↓ mainly comes from the spin-orbit

coupling. Without it, hij,↑ = hij,↓ ≡ hij . Assuming the on-site L · S coupling,

h(K + q) =

h0 + λ
2Lz 0

0 h0 − λ
2Lz

 ,

with Lz = diag (0, 2,−2). Note that the on-site spin-orbit coupling does not

split the bands of ψ1 = dz2 . The spliting by the L · S spin-orbit is 2λ. First

principle calculations have report that h33 > h11 > h22 ≫ |2λ| and the Fermi

energy lies between the bands from ψ1 and ψ2(3) at K(−K). Using this knowl-

edge, we can obtain the 4× 4 low-energy effective model Hamiltonian[Di Xiao
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a t ∆ 2λ

MoS2 3.193 1.66 1.66 0.15

WS2 3.197 1.79 1.79 0.43

MoSe2 3.313 1.47 1.47 0.18

WSe2 3.310 1.60 1.60 0.46

Table 2.1: Fitting parameters a, t, ∆, and λ. [1]

2012] for a single layer transition metal dichalcogenides

heff(τK + q) = atq · σ +
∆

2
σz − λτ

σz − 1

2
sz, (2.14)

with the lattice constant a, t = h12/a, and ∆ = h11 − h22. Here, σi acts on the

orbital space spanned by {ψ1, ψ2} and sz acts on the spin space. Note that t

is the spin-up band among the two spin-splited valence bands which is placed

above if τλ > 0. The fitting parameters a, t, ∆, and λ are shown in Table

(..)[Di Xiao 2012]. In all listed materials, λ > 0 which means the upper band

of the two spin-splited valence bands consists of ψ2↑(r) and ψ3↓(r) at K and

−K, respectively.

2.2.3 Multi-Weyl node

A Weyl node does not require any symmetry. It can exist at any point in the

Brillouin zone. The stability of a Weyl node also reflects the fact that a Weyl

node does not require any special symemtry. However, its extention for a higher

topological charge is not stable. For example, a version of extention of a Weyl

node described by the following Hamiltonians

H2-Weyl(k) =

kz k2−

k2+ −kz

 ,

H3-Weyl(k) =

kz k3−

k3+ −kz

 ,
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which will turn out to be Hamiltonians for a double- and a triple-Weyl node,

have topological charges of magnitude 2 or 3. However, they are not stable.

They are gapped if a perturbation axσx + ayσy is added to H2(3)-Weyl. To have

such nodal points stable, we need some special symmetries. In the remaining

part of this section, we will show that some rotational symmetries make the

nodes stable.

Let us begin with a general implication of a n-fold rotational symmetry.

When a lattice is invariant under a n-fold rotational symmetry along an axis,

the Hamiltonian should satisfy

H(k) = Γ[Cn]H(Ĉ−1
n k)Γ[Cn]

†. (2.15)

If the wave vector k is a point on the line called the rotationally invariant line,

then the Hamiltonian at that k is invariant under Cn, [Γ[Cn],H(k)] = 0, and

the states on this line can be labeled with the eigenvalues of Cn. At a general

point of the rotationally invariant line only four types of transformation can

be included in the group of the wave vector. One is the rotation, another is

the space-time inversion IT , and the third is a combination of mirror reflection

and time-reversal σhT , and the other is a mirror reflection σv. Here, σh is the

mirror reflection against the plane perpendicular to the rotationlly invariant

line, while σv is a mirror reflection against a plane on which the rotationally

invariant line lies. Combinations of C2 rotation along an axis perpendicular to

the rotationally invariant line and either of the time-reversal, spatial inversion,

or a mirror reflection, such as C2T or C2I, can be made by the combination

of those four. For example, C2T = σvIT . We first consider the case in which

only the rotations are the symmetry of the wave vector of the general points on

the rotationally invarinat line.
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2.2.3.1 Multi-Weyl nodes protected by a n-fold rotational symmetry

When only the n-fold rotation and its powers Cmn are the symmetries of the

wave vector, no degeneracy in the electronc band structures is protected by

the symmetries because all irreducible representaion of the group of the wave

vector is one-dimensional. However, accidental degeneracies can happen and

these are what is of our interest. To investigate the electronic structure around

the accidental degeneracy, let us begin with a 2× 2 Hamiltonian of the form

H(K + q) = f(K, q)σ+ + f∗(K, q)σ− + g(K, q)σz,

where σ± = σx ± iσy. Here, K does denote a general point in the rotationally

invariant line, not the corners of the hexagonal Brillouin zone. Also, q is an

deviation of a wave vector from the rotationally invariant line, and thus q

is perpendicular to the line. The Hamiltonian describes two bands near the

rotationally invarinat line. In general, f(K,0) = 0 and g(K,0) ̸= 0 if the

eigenvalues of Cn of two bands are different. However, if there is a point K =

K0 such that g(K0,0) = 0, an accidental degeneracy happens and we are

going to find the possible symmetry allowed forms of f(K, q). Taking the

spin degree of freedom into account, the eigenvalue of Cn is e−i
2πp
n e−i

Fπp
n with

p = 0, 1, 2, · · · , n − 1 and F = ±1. However, we can set F = 1 because

2p+ 1 = 2(p+ 1)− 1. Hence, The representation matrix of Cn would be

Γ [Cn] =

e−i (2p+1)π
n 0

0 e−i
(2q+1)π

n

 = e−i
(p+q+1)π

n

e−i (p−q)π
n 0

0 ei
(p−q)π

n

 ,

with which we can get the constraints of f and g

f(K, q) = e−
2(p−q)πi

n f(K, Ĉ−1
n q), (2.16)

g(K, q) = g(K, Ĉ−1
n q),
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from Eq. (2.15). Making the z-axis coincide with the rotationally invariant

line, Eq. (2.16) reads as

f(Kz, q+, q−) = e−
2(p−q)πi

n f(Kz, e
− 2πi

n q+, e
2πi
n q−),

g(Kz, q+, q−) = g(Kz, e
− 2πi

n q+, e
2πi
n q−),

which lead

f(Kz, q+, q−) =
∑

(α−β+p−q)mod n=0

F
(p,q)
αβ (Kz)q

α
+q

β
−,

g(Kz, q+, q−, qz) =
∑
α≥0

Gα(Kz)q
2α
⊥ ,

with q⊥ =
√
q2x + q2y . The possible forms of f for all possible n and p − q are

listed in Table 2.2. One can easily find the cases in which we can get a stable

double- or triple-Weyl node when only the rotational symmetries are consid-

ered.(Actually, because of the required cancellation of the topoloigal charge in

the whole Brillouin zone, there must be another Weyl, or a double-Weyl, or a

triple-Weyl nodes in the other site of the Brillouin zone to cancel the topological

change of the double- or triple-Weyl node we have found.)

2.2.3.2 Other symmetries IT , σhT , and σv

If other symmetries such as IT , σhT , and σv are present, parts of the Table 2.2

change. With IT , every bands are doubly degenerate and a node is essentially

a composition of two node of opposite topological charge leaving net topological

charge zero. When it comes to σhT , the commutation relations of [Cn, σh] = 0

and [Cn, T ] = 0 play an important role. Let ϕp(r) be an eigenstate of Cn with

the eigenvalue exp
[
−2πpi

n

]
. Then,

Cn [σhT ϕp(r)] = σhT [Cnϕp(r)] = ei
2πp
n [σhT ϕp(r)]

shows that σhT ϕp(r) is an eigenstate of Cn with eigenvalue exp
[
2πpi
n

]
, which

means that σhT enforces all bands doubly degenerate on the rotationally in-
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n p− q mod n H(K + q)

2 1 m(Kz)σz + (aq− + bq+)σ+ + h.c

3 2 m(Kz)σz + aq+σ+ + h.c

1 m(Kz)σz + aq−σ+ + h.c

4 3 m(Kz)σz + aq+σ+ + h.c

2 m(Kz)σz +
(
aq2+ + bq2−

)
σ+ + h.c

1 m(Kz)σz + aq−σ+ + h.c

6 5 m(Kz)σz + aq+σ+ + h.c

4 m(Kz)σz + aq2+σ+ + h.c

3 m(Kz)σz +
(
aq3+ + bq3−

)
σ+ + h.c

2 m(Kz)σz + aq2−σ+ + h.c

1 m(Kz)σz + aq−σ+ + h.c

Table 2.2: Effective Hamiltonians on the rotationally invariant line.

variant line. As it is with IT , no node with non-zero net topological charge is

possible.

The last remaining case is a system with σv. Let the mirror plane of σv be

yz, and thus σv : (x, y, z) → (−x, y, z). It is easy to see that

σvCnσv = C−1
n

for any n. Therefore,we again get a two-fold degenerate bands on the rotation-

ally invariant line of Cn.

In conclusion, multi-Weyl nodes are stable only when one of the following

conditions is satisfied.

• No time-reversal symmetry and no vertical mirror reflection σv ⇒ C4h

and C6h

• No mirror reflection ⇒ C4 and C6 (Note that inversion symmetry is absent

when C4 or C6 symmetries are present with all mirror reflections broken.
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Chapter 3

Self-consistent method in the mean-field level

This chapter is prepared to provide a short course about the self consistent

method, especially focusing on the Hartree-Fock method. The Hartree-Fock

method is arguably one of the most famous way used in the condendsed matter

theory taking the self-consistency of a many-body problem, together with the

density functional theory. We derive the self-consistent equations using the

Hartree-Fock factorization [16], and then we show that the same equation can

be obtained in the more elegant method of variation from which we also derive

the self-consistent equation in a multi-orbital system. After the derivation, the

homogeneous electron gas is studied in detail for a heuristic purpose

3.1 Derivation of the self-consistent equation using

the Hartree-Fock factorization

The homogeneous electron gas is a system of electrons invaraiant under any

translation and rotation. This assumption is simply encoded into the following

Hamiltonian:

Ĥ =
∑
k,σ

εk,σ ĉ
†
k,σ ĉk,σ +

1

2V

∑
k,p,q

∑
σ,s

V (q)ĉ†k+q,σ ĉ
†
p−q,sĉp,sĉk,σ, (3.1)
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where s and σ denote the spin indices and V is the total volume of the system.

When

V (q) =


4πe2

q2
d = 3,

2πe2

q d = 2,

the interaction corresponds to the long-range Culomb interaction. Assuming

that the fluctaion of the expectation value of ĉ†k,sĉp.σ is quite small, we can

substitute ĉ†k,σ ĉp,s by

ĉ†k,σ ĉp,s →
〈
ĉ†p,sĉp,s

〉
δk,pδs,σ + δ

(
ĉ†k,σ ĉp,s

)
where δ

(
ĉ†k,σ ĉp,s

)
≡ ĉ†k,σ ĉp,s −

〈
ĉ†p,sĉp,s

〉
δs,σδk,p is the fluctuation of ĉ†k,σ ĉp,s

assumed to be very small. After substitution and dropping terms involving the

small fluctations , we get

ĤMF =
∑
k,σ

εk,sĉ
†
k,sĉk,s

− 1

2V

∑
k,p,q

∑
σ,s

V (q)δq,p−k

{〈
ĉ†k+q,σ ĉp,s

〉
ĉ†p−q,sĉk,σ +

〈
ĉ†p−q,sĉk,σ

〉
ĉ†k+q,σ ĉp,s

}
+

1

2V

∑
k,p,q

V (q)δq,0

{〈
ĉ†k+q ĉk

〉
ĉ†p−q ĉp +

〈
ĉ†p−q ĉp

〉
ĉ†k+q ĉk

}

=
∑
k

εkĉ
†
kĉk − 1

V

∑
k

[∑
p

V (p− k)
〈
ĉ†pĉp

〉]
ĉ†kĉk (3.2)

+
1

V

∑
k

[∑
p

V (0)
〈
ĉ†pĉp

〉]
ĉ†kĉk.

The last term is called the Hartree term

ΣH(k) =
1

V

∑
p

V (0)
〈
ĉ†pĉp

〉
, (3.3)

and the second term is called the Fock term, or the exchange self-energy,

ΣF (k) = − 1

V

∑
p

V (p− k)
〈
ĉ†pĉp

〉
. (3.4)
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The role of the Hartree term ΣH is to provide an additional chemical potential to

all electrons. However, the electrostatic potential from the background positive

ions is almost eactly the same and cancels the Hartree term, and thus we usually

ignore it and focus on the Fock term ΣF (k) which renormalizes the electronic

band dispersion εk.

The definition of ΣF (k) requires us to calculate the electron density n(k) =〈
ĉ†kĉk

〉
whose sum over the whole momentum space must be the number of

whole electrons Nel, typically an order of 1023. In the single band model, the

electron density can be calculated simply as

n(k) = Θ (εF − εk − ΣF (k)) ,

where εF is the Fermi level to be determined too, from which we get the self-

consistent equation for ΣF (k):

ΣF (k) =
1

V

∑
p

V (p− k)Θ (εF − εp − ΣF (p)) , (3.5)

with a constraint on εF

Nel =
∑
k

Θ(εF − εk − ΣF (k)) . (3.6)

3.2 Derivation of the self-consistent equation using

the variational principle

As aforementioned, Sec 3.1 is revisited with the variation principle. The iden-

tical result can be obtained by mimizing the following functional of Φ

E [Φ] =
⟨Φ|Ĥ|Φ⟩
⟨Φ|Φ⟩

, (3.7)

with

Ĥ =
∑
i,j∈I

hij ĉ
†
i ĉj +

1

2

∑
i,j,k,l∈I

Vijklĉ
†
i ĉ

†
j ĉk ĉk,

24



where Vijkl = −Vjikl = −Vijlk is required due to the fermionic anticommuation

relation.

To take the variaion of E with respect to Φ, we aussme that |Φ⟩ is well

approximated by the Slater determinant composed of the eigenfunctions of the

non-interacting part of Ĥ.

|ΦN ⟩ =
∏
k,σ

ĉ†k,σ|0⟩ ≡
1√
N !

∑
P

sgn (P ) |P (k1, ↑)⟩|P (k1, ↓)⟩ · · · |P (kN
2
, ↓)⟩, (3.8)

where N is the number of electrons. To evaluate ⟨Φ|Ĥ|Φ⟩, we need to know

what we get by operating ĉ and ĉ† on |Φ⟩. For this purpose, we introduce two

notations for states.

|r1, r2, · · · , rN ) = |r1⟩|r2⟩ · · · |rN ⟩, (3.9)

|r1, r2, · · · , rN ⟩ ≡
1√
N !

∑
P

|rP (1), rP (2), rP (3), · · · , rP (N)) (3.10)

=
1√
N !

∑
P

sgn(P )|rP (1)⟩|rP (2)⟩|rP (3)⟩ · · · |rP (N)⟩.

The completeness of the vector space is expressed as

1 =

ˆ
r1

ˆ
r2

· · ·
ˆ
rN

|r1, r2, · · · , rN )(r1, r2, · · · , rN |, (3.11)

1 =
1

N !

ˆ
r1

ˆ
r2

· · ·
ˆ
rN

|r1, r2, · · · , rN ⟩⟨r1, r2, · · · , rN |, (3.12)

where the first relation is valid for both of Fock spaces of bosons and fermions

while the second one is only valid for the Fock space of fermions. Provided

with these notations, the normalized Slater determinant of a N -electron state
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is represented as

(r1, r2, · · · , rN |ΦN ⟩ =
1√
N !

⟨r1, r2, · · · , rN |ΦN ⟩

=
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ϕα1(r1) ϕα2(r1) · · · ϕαN (r1)

ϕα1(r2) ϕα2(r2) · · · ϕαN (r2)
...

...
...

...

ϕα1(rN ) ϕα2(rN ) · · · ϕαN (rN )

∣∣∣∣∣∣∣∣∣∣∣∣
, (3.13)

where ϕαn(r) is an orthonormal basis function of the non-interaction systems

labelled as αi. Let us expand the field opertor Ψ̂(x), annihilating an electron at

a site x, with another normalized basis I = {χi|i = 1, 2, · · · ,M}, not necessarily

orthogonal,

Ψ̂(r) =
∑
i∈I

χi(r)ĉi, (3.14)

ĉi =
[
S−1

]
ij

ˆ
ddrχ∗

j (r)Ψ̂(r), (3.15)

with Sij =
´

ddrχ∗
i (r)χj(r). Given the basis χi of the single particle Hilbert

space, the eigenstates ϕ′αn
s are expressed by a linear combination of the basis:

ϕαn =
∑
i

Cinχi,

⟨i|n⟩ =
∑
i

CjnSij

which enables us to calculate ⟨r1, r2, · · · , rN−1|ĉj |Φ⟩:

⟨r1, r2, · · · , rN−1|ĉj |Φ⟩ =
∑
s

[
S−1

]
js

ˆ
ddxχ∗

s(x)

∣∣∣∣∣∣∣∣∣∣∣∣

ϕα1(x) ϕα2(x) · · · ϕαN (x)

ϕα1(r1) ϕα2(r1) · · · ϕαN (r1)
...

...
...

...

ϕα1(rN−1) ϕα2(rN−1) · · · ϕαN (rN−1)

∣∣∣∣∣∣∣∣∣∣∣∣
=
∑
n

(−1)n−1Cjn⟨r1, r2, · · · , rN−1|α1, · · ·αn−1, αn+1 · · · ⟩,

(3.16)
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and ⟨r1, r2, · · · , rN−2|ĉk ĉl|Φ⟩:

⟨r1, r2, · · · , rN−2|ĉk ĉl|Φ⟩ =
ˆ
x1,··· ,xN−1

⟨r1, r2, · · · , rN−2|ĉk|x1, x2, · · ·xN−1⟩

× ⟨x1, x2, · · ·xN−1|ĉl|Φ⟩

=
∑
αi

ηmnCkmCln × t (3.17)

⟨r1, r2, · · · , rN−2|α1, · · ·αm−1, αm+1, · · · , αn−1, αn+1 · · · ⟩,

with ηmn = (−1)m+n . Also, the norm of |Φ⟩ is

⟨Φ|Φ⟩ =

∑
i,j∈I

C∗
i,1SijCj,1

∑
i,j∈I

C∗
i,2SijCj,2

∑
i,j∈I

C∗
i,2SijCj,2

 (3.18)

Armed with Eq (3.16) and Eq (3.17), we can evaluate ⟨Φ|H|Φ⟩:

⟨Φ|H|Φ⟩ =
∑
ij

hij

〈
Φ

∣∣∣∣ĉ†i ĉj∣∣∣∣Φ〉+
1

2

∑
ijkl

Vijkl

〈
Φ

∣∣∣∣ĉ†i ĉ†j ĉk ĉk∣∣∣∣Φ〉 ,
where the first quadratic term is rewritten as

∑
ij

hij

〈
Φ

∣∣∣∣ĉ†i ĉj∣∣∣∣Φ〉 =
1

(N − 1)!

∑
ij

hij

ˆ
r1,··· ,rN−1

〈
Φ

∣∣∣∣ĉ†i ∣∣∣∣r1, r2, · · · , rN−1

〉

×
〈
r1, r2, · · · , rN−1

∣∣∣∣ĉj∣∣∣∣Φ〉
=
∑
m,n

∑
ij

hij(−1)m+nC∗
imCjnMmn

=
∑
n

∑
ij

C∗
inhijCjn, (3.19)

whereMmn ≡ ⟨α1, · · · , αm−1, αm+1, · · · , αN |α1, · · · , αn−1, αn+1, · · · , αN ⟩, while
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the second quaratic term turns out

1

2

∑
ijkl

Vijkl

〈
Φ

∣∣∣∣ĉ†i ĉ†j ĉk ĉk∣∣∣∣Φ〉 =
1

2(N − 2)!

∑
ijkl

Vijkl

ˆ
r1,··· ,rN−2

〈
Φ

∣∣∣∣ĉ†i ĉ†j∣∣∣∣r1, r2, · · · , rN−2

〉

×
〈
r1, r2, · · · , rN−2

∣∣∣∣ĉk ĉl∣∣∣∣Φ〉
=
1

2

∑
ijkl

Vijkl
∑
m,n

ηmnC
∗
imC

∗
jn ×

∑
p,q

ηpqCkpClqMnm;pq

=
1

2

∑
ijkl

Vijkl
∑
m,n

ηmnC
∗
imC

∗
jn ×

∑
p,q

ηpqCkpClq (δmqδnp − δmpδnq)

=
1

2

∑
ijkl

Vijkl
∑
m,n

C∗
imC

∗
jn (CknClm − CkmCln) ,

(3.20)

withMnm;pq = ⟨· · ·αn−1, αn+1, · · · , αm−1, αm+1 · · · | · · ·αp−1, αp+1, · · · , αq−1, αq+1 · · · ⟩.

Here, the last equality of Eq (3.19) and (3.20) are valid when the eigenfunctions

ϕα(x) are normalized. Appyling the variational principle with respect to C∗
in,

we get

0 =
∂E [Φ]

∂C∗
in

=
1

⟨Φ|Φ⟩

[
∂

∂C∗
in

⟨Φ|H|Φ⟩ − E [Φ]
∂

∂C∗
in

⟨Φ|Φ⟩
]
, (3.21)

giving us an equation of C ′
ins:

ESilCln =
∑
l

hilCln +
∑
jkl

∑
m

(
C∗
jmVijklCkm − C∗

jmVijklClm
)
Ckn, (3.22)

where the
´

ddxϕ∗αm
(x)ϕ∗αn

(x) = C∗
imSijCjn = δmn is assumed . The second

term and the third term in the right-hand side of Eq (3.22) are actually the

Hartree self-energy term and the Fock self energy term:

[ΣH ]il =
∑
m

∑
j,k

C∗
jmVijklCkm, (3.23)

[ΣF ]ik = −
∑
m

∑
j,l

C∗
jmVijklClm, (3.24)

and then Eq (3.22) is written as

ESCn = (h+ΣH +ΣF )Cn
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with Cn = (C1,n, C2,n, · · · , CM,n)
T .

Applying to the translationally system in which the momentum is a good

quantum number, i, j, k, and l in the summation
∑

ijkl Vijklĉ
†
i ĉ

†
j ĉk ĉk correspond

to the momentum k + q, p− q, p and k. Eq (3.23) and (3.24) become

[ΣH(p)]il =
∑
m

∑
k,q

C∗
m(k)V (0)Cm(k), (3.25)

[ΣF (p)]il =
∑
m

∑
j,l

C∗
m(k)V (k − p)Cm(k), (3.26)

which is identical to Eq (3.3) and (3.4) when M is 1.

3.3 The self-energies in a multi-orbital system

From Eq (3.25) and (3.26), the mean-field expression for the self-energies can

be obtained. Here we use M = N ×Mo functions to expand the single particle

Hilbert space, where Mo is the number of Wannier orbitals in a unit cell and

N is the number of unit cells in the system which will be sent to infinity. In

this setting, the second quantized form of interaction is replaced by

V̂ =
1

2

∑
i,j,k,l∈I

Vijklĉ
†
i ĉ

†
j ĉk ĉk → V̂ =

1

2

Mo∑
a,b,c,d=1

Vabcd(q)ĉ
†
k+q,aĉ

†
p−q,bĉp,cĉk,d,

and the consequential expressions of self-energies are given as

[ΣH(p)]ad =
∑
m

∑
k,q

C∗
b,m(k)Vabcd(0)Cc,m(k), (3.27)

[ΣF (p)]ac =
∑
m

∑
k,q

C∗
b,m(k)Vabcd(p− k)Cd,m(k), (3.28)

where a, b, c and d labels the Wannier orbitals in the unit cell.
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3.4 The Hartree-Fock description of the homogeneous

electron gas

For the homogeneous electron gas, the contraint Eq (3.6) on εF can be solved

easily by introuducing the Fermi momeutm kF satisfying

Nel
V

=


k3F
6π2 d = 3,

k2F
4π d = 2.

The Fermi level εF is determined by

εF = εkF +ΣF (kF ).

Using kF , the self-consistent equation for ΣF Eq (3.5) is also expressed without

ΣF on the right hand side.

ΣF (k) =
1

V

∑
|p|<kF

V (p− k).

For the long-range Coulomb interaction in the three dimension, the integration

in the right-hand side is just an elemenatry integration and one get

Σ
(3d)
F (k) =

e2

π

ˆ 1

−1
dx
ˆ kF

0

p2dp
p2 + k2 − 2pkx

=
e2kF
π

[
1

2y

ˆ 1

0
dp p log p+ y

|p− y|

]
=− e2kF

π

[
1

2
+

1− y2

4y
log
∣∣∣∣1 + y

1− y

∣∣∣∣] ,
with y = k/kF . Here we use the integration by part

x log (x+ a) =
1

2

d
dxx

2 log (x+ a)− 1

2

x2 − a2

x+ a
− 1

2

a2

x+ a
.

For the two dimension, the integration can not be performed analytically and

the result is expressed with the complete elliptic integrals respectively of the

first and second kind[16]

Σ
(2d)
F (k) = −2e2kF

π


E(y) y ≤ 1,

y
[
E( 1y )−

(
1− 1

y2

)
K( 1y )

]
y ≥ 1.
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Figure 3.1: The Fock term, or the exchange self energy, and the energy dis-

persion of the homogeneous two- and three- dimensional electron gases. (a)

and (c) : The exchange self-energy in two- and three- dimension divided by

the Fermi energy. (b) and (d): Comparison between the non-interacting en-

ergy dispersion and the self-energy corrected energy dispersion of the two- and

three- dimensional electron gases.

In Figure 3.1(a) and 3.1(c) the plots of Σ(3d)
F and Σ

(2d)
F divided by εF are

provided for the case of e2kF
πεF

= 2 and e2kF
πεF

= 1
2 , respectively. And the enegy

dispersion of electrons in the non-interacting limit and the energy dispersion in

the Hartree-Fock approximation are also provided in Figure 3.1(b) and 3.1(d).

The values of the ΣF at k = 0 and k = kF are

Σ
(3d)
F (0) = −e

2kF
π

,

Σ
(3d)
F (kF ) = −e

2kF
2π

,
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and

Σ
(2d)
F (0) = −e2kF ,

Σ
(2d)
F (kF ) = −2e2kF

π
.

Note that the energy dispersion of electrons is largely modified by εk → εk +

Σ
(3d)
F (0).

Σ(3d)(0)
Σ(3d)(kF )

= 2 and Σ(2d)(0)
Σ(2d)(kF )

= 1
2 implies that the electrons deep inside the

Fermi sea are strongly influenced by the interaction. This conclusion does not

coincide with the experimental result and the Landau’s Fermi lqiuid
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Chapter 4

Exciton-Polariton condensate in two-dimensional

TMDC

4.1 Introduction

Monolayers of TMDC, such as MoS2 and WSe2, have attracted widespread in-

terest in recent years as a semiconductor analogue of graphene. Like graphene,

they are atomically thin, 2D materials, whose band extrema occurring at the

Brillouin zone corners K and K ′ can be described very well by the Dirac

Hamiltonian, that gives rise to the ±π-Berry phase at each valley, but, un-

like graphene, possess direct band gaps at K and K ′ [1].

Given he band structure origin of the valley Berry phase, we may ask

whether and how it may be affected by the electron-electron interaction and

the electron-photon coupling. The electron-electron interaction in TMDC has

been observed to give rise to both the electron-electron pairs, i.e. the Cooper

pairs [17], and the electron-hole pairs, i.e. the excitons [18, 19], with super-

conductivity, which arises from the condensation of the former, shown to be

possibly topologically non-trivial [20, 17, 21].

Meanwhile, the optical valley selection rule for the circularly polarized
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light[1, 22, 23] shows the strong effect that the ±π-Berry phase has on the

electron-photon coupling with direct band gaps (∼ 1.5 to 2 eV) lying within

the visible spectrum [8, 9].

The above considerations motivate us to study the condensation of polari-

tons, emergent bosons from hybridizations of cavity photons and excitons. It

is tunable by both the Coulomb electron-electron interaction and the electron-

photon coupling for the exciton binding and the photon-exciton hybridization,

respectively. The recent years have seen reports in various systems of possi-

ble observation of this condensation [24, 25, 26] with progresses underway for

TMDC [27, 28]. The room temperature polariton condensation is a possibility,

light-matter coupling giving a very small polariton mass [29]. When the polari-

ton lifetime, though limited by the finite lifetimes of both cavity photons and

excitons, is much longer than the thermalization time, substantial evidences

of superfluidity, such as vortex formation [30], Goldstone modes [31], and the

Landau critical velocity [32], have been observed.

In this Chapter, we develop a mean-field theory for exciton-polaritons in

gapped Dirac materials such as TMDCs, and demonstrate that due to the effect

of the π-Berry phase, the mean-field electronic band structure with the polari-

ton condensate can undergo symmetry-breaking or topological phase transitions
1 driven by the competition between the electron-electron interaction and the

electron-photon coupling that can be tuned by the excitation density. We first

apply our mean-field theory to the single valley model to show how the phase

transitions arise and then extend the calculation on the physical two valley

model to obtain various phases and their topological invariants.
1By contrast, previous studies, e.g [33], dealt with the topology of the effective polariton

bands.
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4.2 Model

The polariton condensation in our gapped Dirac materials should be derived

from the electrons with the Coulomb interaction coupled to coherent photons.

Hence the Hamiltonian we consider would be

Ĥ = Ĥ0 + Ĥe-e + Ĥph + Ĥe-ph − µXN̂tot, (4.1)

Ĥ0 =
∑
τ=±

∑
k

[
ĉ†τ,1,k ĉ†τ,2,k

]
d(0)
τ (k) · σ

ĉτ,1,k
ĉτ,2,k

 ,
Ĥph = h̄ωc

∑
I

(
â†I âI +

1

2

)
,

Ĥe-ph = −1

c
⃗̂
A ·
∑
τ=±

∑
k

∑
i,j

[Jτ (k)]ij ĉ
†
τ,i,kĉτ,j,k,

Ĥe-e =
1

2S

∑
τ,τ ′

∑
k1,k2,q

∑
i,j

V (q)ĉ†τ,i,k1−q ĉ
†
τ ′,j,k2+q ĉτ ′,j,k2 ĉτ,i,k1 ,

where σ represent the Pauli matrices, I the photon polarization index, d(0)
τ (k) ≡

(τ h̄vkx, h̄vky, Egap/2), with τ = ± being the valley index, ωc the cavity photon

frequency and V (q) = 2πe2

ϵq the Coulomb interaction, with ϵ being the dielectric

constant; note that the exchange terms of the electron-electron interaction are

in the orbital rather than the band basis [34, 35, 36]. Meanwhile, the first

quantized current operator is given by J⃗τij(k) = −e∂k[d(0)
τ (k) · σ]ij (i, j = 1, 2)

and the gauge field operator by

⃗̂
A =

∑
I

√
2πc2h̄/ϵSLcωc(eI âIe−iωct + e∗

I â
†
Ie
iωct),

where e⃗I is the photon polarization vector and S, Lc the cavity area and length,

respectively. ĉ1(2) and âI are the annihilation operators for the electron in the

Lz = 0 (Lz = 2τ) orbital and the photon with the polarization I, respec-

tively. Each valley is taken to be completely spin-polarized with opposite spin

polarization, i.e. Sz = τ/2, due to the transition metal atomic spin-orbit

coupling L · S removing the spin degeneracy in the Lz = 2τ orbital; hence,
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the dark excitons from intra-valley spin-flip [37] will not be considered. Lastly,

N̂tot =
∑

I â
†
I âI+N̂ex is the total number of excitations, both photons and exci-

tons, in the system and tuned by the chemical potential µX . Since the number of

exciton N̂ex is the number of electrons excited from the valence band to the con-

duction band, the band basis for the electrons,
∑

α [W (k)]i,α ψ̂α,k = ĉi,kwhich

diagonalizes Ĥ0 of Eq. (4.1) with ψ̂c(v) as the annihilation operator of electrons

in the conduction (valence) band, can be convenient. This allows to identify the

exciton number as N̂ex ≡
∑

τ,k n̂
τ
ex,k where n̂τex,k ≡ (ψ̂†

τ,c,kψ̂τ,c,k+ψ̂τ,v,kψ̂
†
τ,v,k)/2.

Physically, we are interested in the thermal quasi-equilibrium that is reached

after the cooling of a population of hot polaritons initially introduced by a short

laser pulse [38]. For simplicity, we shall set the temperature to be zero.

4.3 Self-consistent mean-field equation

We use the BCS variational wave function for the polariton condensate [35, 36]

Ψ(Λ±)⟩ = N
∏

I,τ=±,k
eΛI â

†
I (uτ,k + vτ,kψ̂

†
τ,c,kψ̂τ,v,k)|0⟩ (4.2)

with N = e−
∑

I=± Λ2
I/2 and |uτ,k|2+ |vτ,k|2 = 1, where I = ± corresponds to the

right (left) circularly polarization e⃗± = (1,±i)/
√
2 and |0⟩ is the ground state of

Ĥ0, in which photons are absent and all the valence (conduction) band states

are occupied (vacant). In this wave function, the photon component gives

the coherent state with the number of photons ⟨â†I âI⟩ = Λ2
I and of excitons

⟨N̂τ,ex⟩ =
∑

k |vτ,k|2; only the excitons with zero center-of-mass momentum are

condensed, and the condensation energy arises only from the stronger intra-

valley - but not from the weaker inter-valley - electron-electron interaction.

To determine Λ±, uτ,k, vτ,k that minimize ⟨Ψ(Λ±)|Ĥ|Ψ(Λ±)⟩, we obtain the

mean-field self-consistency condition not only for the electron-electron interac-
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tion through ĤMF
e-e =

∑
τ,i,j,k ∆̃τ ;ij(k)ĉ

†
τ,i,kĉτ,j,k where 2

∆̃τ ;ij(k)= − 1

S

∑
k

V (k − p)
〈
ĉ†τ,j,pĉτ,i,p

〉∣∣∣µX ,Λτ

µX=0,Λτ=0
, (4.3)

but also for Ĥph + Ĥe-ph, by which ΛI ’s are determined as [36]

ΛI = − 1

h̄ωc − µX

1√
S

∑
τ,k

(
gI,τk

)∗
⟨ψ̂†

τ,v,kψ̂τ,c,k⟩, (4.4)

using the rotating wave approximation Ĥe-ph = 1√
S

∑
k,I,τ g

I,τ
k âI ψ̂

†
τ,c,kψ̂τ,v,k +

h.c. on the electron-photon coupling, where gI,τk =
√

h̄3

2ωcϵSLc
⟨c|eI · J(τ)(k)|v⟩ is

the electron-photon coupling strength, and I the photon circular polarization

index. The optical valley selection rule [1] gives us the s-wave electron-photon

coupling, i.e. gI,τk = g0δI,τ +O(k2).

4.3.1 Details of the optical-valley selection rule

It can be shown gI,τk = g0δI,τ under the general consideration of the symmetry

of a single-layer transition metal dichalcogenides.

Let us consider J (τ)
i (k) ≡ −e∂iH(τ)

0 (k). As it is a derivative of a Hamilto-

nian, a scalar under any r ∈ G, J (τ)
i (k) should transform like a vector:

Γ(r)J
(τ)
j (r̂−1k)Γ(r)† = r̂ijJ

(τ)
i (k), (4.5)

and thus G(I,τ)(k) ≡ eI · J (τ)(k) transforms as

Γ(r)G(I,τ)(r̂−1k)Γ(r)† = e−iIαG(I,τ)(k), (4.6)

when r is the α-rotation along the z-axis:

r̂ =


cos 2π

3 − sin 2π
3 0

sin 2π
3 cos 2π

3 0

0 0 1

 .

2The no-photon ground state value in the Fock potential is subtracted off so that ĉk’s can

be treated as the non-interacting quasiparticles with our band parameters
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Here, we have used r̂ij (e±)j = (e±)i e
∓iα. As g(I,τ)(k) ∝ ⟨c|G(I,τ)(k)|v⟩ is the

value of G evaluated using the band basis, we need to rewrite Eq. (4.6) in the

band basis:

Γ̃k(r)G̃
(I,τ)(r̂−1k)Γ̃k(r)

† = e−iIαG̃(I,τ)(k), (4.7)

where Γ̃k(r) ≡ W †
kΓ(r)Wr−1k and G̃(I,τ)(k) ≡ W †

kG
(I,τ)(k)Wk. It is important

to note that Γ̃k(r) is a diagonal matrix because all bands of interest near the τK

valleys are non-degenerate and also does not depend on k. The proof is as fol-

lows. First, the fact that all bands are non-degenerate means the representation

matrix Γ̃k(r) is a direct sum of only one-dimensonal irreducible representations,

and an one-dimensional irreducible representation coincides with the character

of the irreducible representation, which is independent of basis. Since the group

we are considering is a crystallographic group such as C3h, the number of all

possible values of characters of irreducible representations are finite, while k

varies continuously. Therefore, we arrive at a conclusion that Γ̃k(r) is indepen-

dent from k and must be same with Γ(r), which is just Γ̃k=0(r). Provided with

this knowledge, Eq. (4.7) leads us to

[Γ(r)]ii
[Γ(r)]jj

[
G̃(I,τ)(r̂−1k)

]
ij
= e−iIα

[
G̃(I,τ)(k)

]
ij
, (4.8)

which, in turn, informs that the diagonal component
[
G̃(I,τ)(k)

]
ii

, the intra-

band transition amplitude, should be zero at k = 0 for both polarization I = ±.

Evaluation of Eq. (4.8) at k = 0 for a single-layer transition metal dichalco-
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genide is not diffcult provided that

Γ(C3) =





c ↑ c ↓ v ↑

c ↑ 1

c ↓ e
2πi
3

v ↑ e
2πi
3


for K valley



c ↑ c ↓ v ↓

c ↑ 1

c ↓ e
2πi
3

v ↓ 1


for −K valley

,

leaving only 4 non-zero
[
G(I,+)(0)

]
i,j

for i, j = c ↑, c ↓, v ↑:[
G̃(+,+)(0)

]
c↑,v↑

,
[
G̃(−,+)(0)

]
v↑,c↑

,
[
G̃(+,+)(0)

]
c↑,c↓

,
[
G̃(−,+)(0)

]
c↓,c↑

.

(if τ = −, v ↑ should be replaced with v ↓.) Among the four, the last three

can be neglected within the rotating-wave approximation, which enforces the

energy conservation even for the virtual processes of the optical transition.

Therefore, the dominant optical excitation from the upper valence band at

the K valley is the transition from v ↑ to c ↑ by a light polarized in I = +

direction.. In a similar reasoning, the dominant contribution to the optical

excitation from the −K valley is the transition from v ↓ to c ↓ by a light

with I = − polarization. Hence, spin, momentum(valley), and the polarization

of light are tightly coupled, which makes the family of single layer transition

dichalcogenides a good platform of spintronics and valleytronics.

39



4.4 Competition between s- and p- wave order pa-

rameter

From the self-consistency conditions of Eqs. (4.3) and (4.4), we find that there

exists the competition between the electron-electron interaction and the electron-

photon coupling in the polariton condensation in the Dirac material. We first

note that the electron-photon coupling induces only the s-wave excitons at both

valleys, as ΛI in Eq. (4.4) is maximized when the electron-photon coupling gI,τk

and the exciton correlation
〈
ψ̂†
τ,c,kψ̂τ,v,k

〉
are in the same symmetry. On the

other hand, the electron-electron interaction may not favor the s-wave exciton

when we examine ĤMF
e-e =

∑
τ,α,β,k ∆τ ;βα(k)ψ̂

†
τ,β,kψ̂τ,α,k, given that

∆τ ;c,v(k)=
∑
i,j

[W ∆̃W †]τ ;c,v(k) ≈ ∆s
τ ;c,v(k) +e

iτϕk∆p
τ ;c,v(k),

∆s
τ ;c,v(k) ≈− 1

S
cos2 θk

2

∑
p

V (|k − p|)⟨ψ̂†
τ,v,pψ̂τ,c,p⟩ cos2 θp

2
,

∆p
τ ;c,v(k) ≈

1

S
sin θk

∑
p

V (|k − p|) (4.9)

where tanϕk ≡ ky/kx, tan θk ≡ h̄vk/(Egap/2). The p-wave components ∆p
τ ;c,v(k)

arises from the τπ Berry phase, as can be seen both from the chiralities of the

p-wave components for the two valleys being opposite and ∆p
τ ;c,v(k) being pro-

portional to sin θk, the integrated Berry curvature of Ĥ0 for momenta smaller

than k, that vanishes linearly as k → 0. We see from Eq. (4.9) that the Coulomb

electron-electron interaction favors the p-wave (s-wave) exciton at the τ valley

when the τ -valley exciton density
∑

p⟨n̂τex,p⟩ becomes sufficiently large (small)

compared to the critical density set by the average Berry curvature. We will

show that when the exciton symmetry of the polariton condensate is predomi-

nantly chiral p-wave in the τ valley, the Berry phase sign of τ valley changes in

the mean-field Hamiltonian ĤMF ≡ Ĥ0+
1√
S

∑
I,τ,k(ΛIg

I,τ
k ψ̂†

τ,c,kψ̂τ,v,k + h.c.)+

ĤMF
e-e − µXN̂ex from that of Ĥ0. While Eq. (4.9) also indicates that the chiral
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p-wave excitons are due to a component of the electron-electron interaction that

violates the Ntot conservation (See Appendix A), the Ntot fluctuation remains

small, i.e. ⟨(∆N̂tot)2⟩
N2

tot
=

Λ2+
∑

k|uk|
2|vk|2

(Λ2+
∑

k|vk|
2)2

≪ 1.
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4.5 Topological phase transition of a signle photon–

coupled massive Dirac particle system and its

Phase diagram

Figure 4.1: (a) Photon fraction and mean-field band exciton gap parameters

∆s,p averaged over the momentum space as the functions of Rs for the photon

frequency h̄ωc = 2.1eVÅ, the dielectric constant ϵ = 10, the Dirac velocity

h̄v = 3.7eVÅ, and the band gap of Egap = 2.0eVÅ. (b)-(e) Pseudo-spin textures

at the Rs values indicated in (a). Arrow represents η̂∥ and false color represents

ηz(k); for convenience, we have plotted the τ = − valley coupled to I = −

photons.

The essence of the competition between the electron-electron interaction and

the electron-photon coupling can emerge clearly from considering only a single
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valley, i.e. the τ = − valley coupled to the I = − photons, revealing how the

competition can give rise to the phase transition of our polariton condensate.

Fig. 4.1(a) shows how the photon fraction Λ2/(Λ2 + ⟨N̂ex⟩) of the polariton

condensate and the exciton gap parameters ∆s,p of Eq.(4.9) depend on the

mean distance Rs ≡
√

S
Ntotπ

between excitations, the quantity that determines

the total number of excitations Ntot. A key feature here is that the p-wave

excitons are dark [39], which can be confirmed from Λ vanishing in Eq.(4.4) for

the purely p-wave ⟨ψ̂†
vψ̂c⟩ because the s-wave symmetry for the electron-photon

coupling, i.e. gk ≈ g0δI,τ . Since ∆p arises solely from the electron-electron

interaction, the higher-density discontinuous crossing of |∆s| and |∆p| curves

in Fig. 4.1(a) at Rs = Rc1 can be regarded as a consequence of the competition

between the electron-electron interaction and the electron-photon coupling.

Overall, the Fig. 4.2 plots show how the topological phase transition of

ĤMF can arise from the competition between the s-wave and the chiral p-wave

exciton pairing channels. The Chern number of a single valley can be defined

in a manner analogous to that of the topological insulator surface [40], with the

understanding that the integer value is obtained when summed with that of

the other valley. Note how the Chern number C− = ±1
2 coincides exactly with

|∆s| < |∆p| (|∆s| > |∆p|) in Fig. 4.1 (a). C− can be computed equivalently in

either the orbital basis obtained from σ · d̂ = W (σ · η̂)W † or the band basis

as C− = 1
4π

´
d2kd̂ · (∂kxd̂ × ∂ky d̂) = −1

2 + 1
4π

´
d2kη̂ · (∂kx η̂ × ∂ky η̂), which

is consistent with Fig. 4.1 (b)-(e) as it gives C− = ±1
2 when the skyrmion is

present (absent); note that Ĥ0 gives C− = −1
2 . In fact, we may define the

overall exciton symmetry to be chiral p-wave when C− = +1
2 . Given that the

∆p arises from the non-conservation of Ntot as can be seen from Eq.(4.9), this

is a case of discontinuous phase transitions to excitonic insulator phases in the

absence of the Ntot conservation, though our case deals with quantum rather

than classical phase transitions considered in [41, 42].
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The full phase diagrams with respect to Rs and the photon detuning δ ≡

h̄ωc−Egap shown as Fig. 4.2 for different values of the dielectric constant ϵ and

the band gap Egap can be largely explained by the different energy competi-

tions that give rise to the higher and the lower density phase transition. δ and

ϵ are control parameters in the competition between the electron-photon cou-

pling and the electron-electron interaction; the photon self-consistency equation

Eq.(4.4) shows that the smaller δ leads to the larger photon fraction, while the

smaller ϵ leads to the larger electron-electron interaction. Fig. 4.2 (b) shows that

the C− = +1
2 phase with the chiral p-wave excitons requires sufficiently weak

electron-photon coupling, which is naturally larger for the smaller Coulomb in-

teraction of ϵ = 15 shown in red than for the larger Coulomb interaction of

ϵ = 10 shown in blue and green. That the lower density (larger Rs) transition

depends little on δ confirms its weak dependence on the electron-photon cou-

pling. Meanwhile, the blue curves of Fig. 4.2 (b) shows that for a larger Egap

the lower density transition occurring at smaller Rs (larger density) when com-

pared with the lower Egap shown by the green and red curves. This is because

of the larger Egap suppressing ∆p through reducing sin θk at all momenta, or,

equivalently, the Berry curvature integrated over momenta smaller than k.

The phase diagram of Fig. 4.2 (a) shows phase transitions as well as crossovers

in contrast to the results for the polariton condensate in the topologically triv-

ial quantum well where only the latter were present [35]. Following the results

of Kamide et al. for the topologically trivial quantum well, we can define in

the C− = −1
2 region several phases according to the photon fraction as the

photon, the polariton and the exciton BEC in the decreasing order, with their

boundaries being crossovers (shown as the dotted curves). However, as dis-

cussed above, there is a first-order phase transition (shown as the solid curves)

between the C− = −1
2 and the C− = +1

2 regions. Within the C− = +1
2 re-

gion, the phase with the vanishing photon fraction would be best termed the
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electron-hole BCS condensate, Rs being smaller than the p-wave exciton radius
3. Inside the C− = +1

2 region, there is a second-order phase transition (shown

as the dashed curves) between the polariton BEC and this electron-hole BCS

condensate involving the spontaneous rotational symmetry breaking. Despite

photons providing no preferred direction, the rotational symmetry is broken

when we have both the s-wave and the chiral p-wave components in vk/uk of

the exciton wave function Eq.(4.2), which moves the singularity of η∥ textures

of Fig. 4.1 (b), (c), (e) away from k = 0. The rotational symmetry in our

polariton condensate is restored in Fig. 4.1 (d) on Λ and ∆s vanishing contin-

uously. Hence, our polariton condensate is always distinct from the Ĥ0 ground

state in either topology or symmetry.
3Following [43], with the dielectric constant of ϵ = 10 and the band gap of Egap = 2.0 eV,

we obtain the exciton radius of a(s)
ex = 5.2 Å for the s-wave and a

(p)
ex = 46 Å for the p-wave.
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Figure 4.2: (a) The dependence of photon fraction for the single-valley TMDC

polariton system on δ and Rs shown with h̄v = 3.7eVÅ, ϵ = 10 and Egap=

2.0 eV; the green solid, the green dashed and the black dotted curves represent

the first-order transitions, the second-order transitions, and the crossovers, re-

spectively. (b) Phase boundaries for the first-order (solid) and second-order

(dashed) transitions for ϵ=10 and Egap=2 eV (green), ϵ=15 and Egap=2 eV

(red), and ϵ=10 and Egap=2.5 eV (blue).
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4.6 Topological phase transition of 2D TMD cavity

and its Phase diagram

Figure 4.3: Photon fraction (above) and mean-field band exciton gap parame-

ters ∆s,p (below) for two valleys (τ = ±1) as the functions of Rs for the photon

frequency h̄ωc = 2.1eV and other physical parameters following those of Fig.

4.2 (a).

For the two valley TMDC coupled to photons of both circular polarizations

shown in Fig. 4.3, we find that the topological phase transitions give rise to

both the quantum spin Hall phase (in the region C) and the quantum anomalous

Hall phase (in the regions B and D). To analyze this problem, we consider the

variational solution of Eq. (4.2) with the phase difference between the two

photon polarizations fixed. In the absence of interactions, Ĥ0 of Eq. (4.1) gives

us the opposite sign for the Chern numbers of Cτ = τ
2 for the τ valley. When

the exciton symmetry of one valley is the chiral p-wave and that of the other
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C+↑ C+↓ C−↑ C−↓ CS CV Ctot

A +1/2 +1/2 −1/2 −1/2 0 +1 0

B ±1/2 +1/2 −1/2 ±1/2 −1/2 +1/2 ±1

C −1/2 +1/2 −1/2 +1/2 −1 0 0

D ∓1/2 +1/2 −1/2 ∓1/2 −1/2 +1/2 ∓1

Table 4.1: Phase classification in the two valleys coupled to the photons of

both circular polarizations. The alphabet letters in the leftmost column refer

to each phase mentioned in Fig. 4.3. CS ≡
∑

τ,σ σCτ,σ/2 and CV ≡
∑

τ,σ τCτ,σ/2

are the spin and the valley Chern numbers respectively. Refer the main text

for further details.

valley is the s-wave, we have a net Chern number of Ctot ≡
∑

τ,σ Cτ,σ = ±1

for our ĤMF and hence the quantum anomalous Hall phase [44]. Due to the

valley polarization that occurs only in this phase, the regions B and D have the

elliptic photon polarizations while all the other regions have the linear photon

polarizations. Meanwhile, the region C of Fig. 4.3 shows that the photon

fraction and the ∆s at both valleys vanish continuously at the same Rs 4. In

the region C, we have the quantum spin Hall phase where the time-reversal

symmetry is restored by the opposite chirality between the p-wave excitons of

the two valleys. Table 1 shows the topological phases for the two-valley TMDC

polariton condensate taking into account both spin components at each valley.
4The rotational symmetry breaking at two valleys are not independent due to the elec-

tron-photon coupling. Therefore, if we take the Ĥ0 of Eq.(4.1), i.e. with the continuous

rotational symmetry, we have for the two valley case the SO(2) rather than SO(2) × SO(2)

symmetry breaking. Given the photon polarization, the vanishing photon fraction is necessary

for the rotational symmetry.
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4.7 Conclusion

In summary, we found topological phase transitions in the quasi-equilibrium

ground state of the TMD monolayer coupled to the cavity photons due to the

competition between the electron-photon coupling and the electron-electron in-

teraction tuned by the excitation density. Our approach is expected to work

best for the thermal quasi-equilibration time shorter than the polariton life-

time. We may find the regions of our phase diagram with optimal experimental

accessibility as the quasi-equilibration time may depend on various physical

parameters, e.g. Rs. One possible method for triggering our phase transitions

may be the terahertz pump which has been shown to induce the s-wave to

p-wave transition in the excitons [45].
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Chapter 5

Emergent anisotropic non-Fermi liquid at a topo-

logical phase transition in three dimensions

5.1 Introduction

Quantum criticality and topology play key roles in modern condensed matter

physics [46, 47, 48, 49, 50], and the two concepts become naturally impor-

tant near TQPTs. Recently, there has been a surge of interest in TQPTs

[51, 52, 53, 54, 55, 56]. The simplest class is described by the weakly interact-

ing Dirac fermions, and it is well understood that the sign of the Dirac mass

terms determines adjacent topological phases [57, 58, 59]. Since quasiparticles

are well defined, non-interacting tight-binding models are sufficient to describe

TQPTs in this class.

Beyond the simplest class, however, our understanding of TQPTs is far

from complete. The long-range Coulomb interaction may drastically change

the properties of non-interacting fermions near TQPTs, and the non-interacting

tight-binding models cannot describe some classes of TQPTs. The interplay

between critical electronic modes and the Coulomb interaction becomes signif-

icant, and quantum critical non-Fermi liquid states may appear with emergent
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particle-hole and rotational symmetries [60, 61, 62, 63, 64]. Moreover, the inter-

play may also give rise to weakly coupled but infinitely anisotropic excitations

in a class of TQPTs [65, 66, 67, 68, 69]. Thus, it is vital to deepen our under-

standing of TQPTs beyond the simplest class.

In this chapter, we uncover a novel class of TQPTs which shows emergent

anisotropic non-Fermi liquid behaviors in three spatial dimensions (3d) associ-

ated with topological nature of electronic wave functions. Our target system is

the DWSM adjacent to insulator phases under the long-range Coulomb interac-

tion. The presence of either the four-fold or six-fold rotational symmetry allows

a direct phase transition between DWSMs and insulators whose bare Hamil-

tonian has a quadratic band touching spectrum. Without the symmetries,

double-Weyl nodes may split into two Weyl nodes. The long-range Coulomb

interaction becomes relevant at the critical point, and thus quasi-particle exci-

tations are expected to be absent. Moreover, the absence of the cubic symmetry

indicates a possibility of anisotropic quantum critical behaviors in contrast to

most of the fixed points with the full rotational symmetry as in conformal field

theories. Using the standard renormalization group (RG) methods, we indeed

find novel quantum critical phenomena with emergent anisotropy. For exam-

ple, we find that the power-law dependences of the energy dispersion and the

Coulomb interaction on momentum become anisotropic, even though they are

initially set to be the same in all directions, and all excitations have anomalous

dimensions. Our universality class is one concrete example of strongly inter-

acting fixed points with non-Fermi liquid behaviors beyond the conformal field

theory description in 3d. We calculate its experimental signatures in physical

observables such as the specific heat, compressibility, diamagnetic susceptibil-

ity, and optical conductivity.
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TQPT INSDWSM

T

Figure 5.1: Phase diagram for the TQPT between the DWSM and insulator

phases with the tuning parameter m. The insets show the energy dispersions

for the (a) DWSM, (b) insulator and (c) TQPT.

5.2 Model

We consider a minimal lattice model of DWSMs with a four-fold rotational

symmetry C4 with a rotational axis along the z direction [70, 71, 72, 73, 73],

H(k) =2t′x [cos(kya0)− cos(kxa0)]σx (5.1)

+ 2t′y sin(kxa0) sin(kya0)σy + 2Mz(k)σz,

where Mz(k) = mz − t′z cos(kza0) +m0[2− cos(kxa0)− cos(kya0)] and a0 is the

lattice constant. In general, C4 symmetry does not imply t′x = t′y. However,

in the presence of the Coulomb interaction, t′x = t′y emerges at low energies

Appendix C. For |mz| < t′z, the Hamiltonian supports two double-Weyl nodes

at k = (0, 0,±k∗z), where k∗z = a−1
0 cos−1(mz/t

′
z), which are characterized by the
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Chern numbers ±2 around the points [70]. For |mz| > t′z, the system shows an

insulator phase. At |mz| = t′z, a quantum phase transition occurs between the

DWSM and insulator phases, as shown in Fig. 5.1. Neglecting m0 for simplicity,

we obtain the low-energy effective Hamiltonian near the transition point given

by

H0(k) =t⊥[(k
2
x − k2y)σx + 2kxkyσy] + (tzk

2
z +m)σz, (5.2)

where t⊥ = t′xa
2
0 and tz = t′za

2
0. Here, a tuning parameter of the TQPT,

m ∝ |mz| − t′z, is introduced. The energy eigenvalues of the Hamiltonian are

given by E±(k) = ±
√
t2⊥(k

2
x + k2y)

2 + (tzk2z +m)2, and at m = 0 the energy

dispersion becomes quadratic in all three directions.

The corresponding effective action with the long-range Coulomb interaction

is

S =

ˆ
dτd3x ψ†[∂τ − igϕ+H0(−i∇)]ψ (5.3)

+

ˆ
dτd3x

1

2

[
a
{
(∂xϕ)

2 + (∂yϕ)
2
}
+

1

a
(∂zϕ)

2

]
, (5.4)

where g ≡
√
4πe0√
ε

with e0 and ε being the bare charge and the dielectric con-

stant, respectively, ψ is a spinor with 2Nf components, and ϕ is a bosonic

field describing the long-range Coulomb interaction. Note that the topological

aspects of Eqn. (5.2) justify the effective action in the sense that the action

becomes adiabatically connected to a simple non-mixing two band model with-

out the topological aspects. The parameter a is introduced to characterize

the anisotropy ratio of the Coulomb interaction between the xy-plane and the

z-axis. For later usage, we define the following dimensionless parameters,

α =
Ad−2g

2

√
t⊥tzΛ4−d , β =

tz
t⊥
, γ =

a
√
β

2
(5.5)

with Ad = [6π(4π)
d
2Γ(d2)]

−1. Here, α represents the ratio of the Coulomb

potential and the electron kinetic energy, β−1 is the anisotropy parameter for
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the fermionic fields, and γ is the combination of the two anisotropy parameters

a and β. We assume that all the four-Fermi interactions, uijklψ†
iψ

†
jψkψl, are

set to be small at the lattice-spacing scale and flow into the trivial fixed point

as in the literature [74], which is also justified below in Sec 5.6.

5.3 Large Nf calculation

We first use the large Nf method since it is naturally extended from the conven-

tional random phase approximation [75, 76, 65, 77, 66]. The boson self-energy

is

Π(iΩ, q) =Nfg
2

ˆ
ω,k

Tr[G0(iω + iΩ,k + q)G0(iω,k)], (5.6)

with the fermion propagator G0(iω,k) = (−iω + H0(k))
−1. Here, we use the

notation
´
ω,k =

´
dω
2π

dkxdky
(2π)2

´ ′ dkz
2π , where

´ ′ dkz
2π stands for an integration over

µ < |kz| < Λ with the infrared (IR) cutoff µ and the ultra-violet (UV) cutoff

Λ. A detailed exposition of the boson self-energy is presented in Appendix C.

We propose the following ansatz for the boson self-energy at one-loop level:

Π(iΩ, q) =−
Nfg

2|q⊥|√
t⊥tz

F
(√

t⊥
|Ω| |q⊥|,

√
tz
t⊥

∣∣∣ qzq⊥ ∣∣∣) , (5.7)

where q⊥ ≡
√
q2x + q2y and

F (x, y) =
√
C2
⊥1

+ C2
z1y

2 tanh
(
x
√
C2
⊥2

+ C2
z2y

2
)
, (5.8)

with C⊥1 = 0.041, C⊥2 = 1.199, Cz1 = 0.016, and Cz2 = 1.267. For the details,

see Appendix C

The one-loop boson self-energy modifies the Coulomb potential in momen-

tum space as

D(iΩ, q) =
1

D−1
0 (q)−Π(iΩ, q)

, (5.9)
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where D0(q) =
(
aq2⊥ + 1

aq
2
z

)−1 is the bare boson propagator. In the static

(Ω = 0) and long wave length (q → 0) limit, the self-energy dominates the bare

propagator since it linearly depends on the momentum in this limit. Thus,

we take the boson self-energy as the main contribution to the renormalized

Coulomb interaction, D(iΩ, q) ≃ 1
−Π(iΩ,q) . This indicates that the boson is

strongly renormalized from the quadratic to a linear momentum dependence,

exhibiting the anomalous dimension of order one at the TQPT. This approxi-

mation has been well established in large Nf analysis and is checked afterward.

The fermion self-energy with the renormalized Coulomb interaction is

Σ(iω,k) =(−ig)2
ˆ
Ω,q
G0(iω + iΩ,k + q)D(iΩ, q), (5.10)

and the fermion part of the action is modified by the fermion self-energy as

−iω +H0(k) → −iω +H0(k)− Σ(iω,k). (5.11)

It is straightforward to show that the corrections from the self-energy are log-

arithmically divergent in both UV and IR cutoffs, respectively, and we find

Σ(iω,k) ≈Cω
Nf

(iω)ℓ− Ctz
Nf

ℓ(tzk
2
z)σz

− Ct⊥
Nf

ℓ
[
t⊥(k

2
x − k2y)σx + 2t⊥kxkyσy

]
,

(5.12)

where Cω = 0.366, Ct⊥ = 0.614, Ctz = 0.341, and ℓ = log Λ
µ is the RG parame-

ter. For the details, see Appendix C

We also evaluate the vertex correction at vanishing external momentum and

frequency,

δg =(−ig)2
ˆ
Ω,q

G0(iΩ, q)
2 1

−Π(iΩ, q)
=
Cg
Nf

ℓ, (5.13)

where Cg = 0.366, which is exactly the same as Cω. This agreement is not a

coincidence but instead a consequence of the Ward identity δg = ∂Σ/∂(iω).
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Using the logarithmic dependence of the self-energy, one can find various

anomalous dimensions. The scale invariance at the critical point forces renor-

malization of the fermion fields with the anomalous dimension ηf = Cω
Nf

. The

non-zero anomalous dimension clearly indicates non-Fermi liquid behaviors of

the fermionic excitations, which can be understood by the absence of the pole

structure in the fermionic Green function.

From Eq. (5.12), the RG equations for t⊥ and tz are given by

1

t⊥

dt⊥
dℓ

=
Ct⊥ − Cω

Nf
,

1

tz

dtz
dℓ

=
Ctz − Cω

Nf
. (5.14)

From Eq. (5.14), we find 1
β−1

dβ−1

dℓ =
Ct⊥−Ctz

Nf
> 0, indicating that β−1 diverges

at the TQPT and that the fermionic excitations become highly anisotropic at

low energies. Thus, our critical theory is described by an emergent anisotropic

non-Fermi liquid.

(a) (b) (c)

Figure 5.2: Feynman diagrams at one-loop order for the (a) fermion self-en-

ergy, (b) boson self-energy, and (c) vertex correction. A straight line with

an arrowhead and a wavy line represent the fermion and boson propagators,

respectively.

5.4 ϵ = 4− d calculatioin

— Our large Nf calculation is further supported by the standard ϵ = 4 − d

expansion [78, 62, 79, 80]. Here, we introduce a new renormalization scheme
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in which the three spatial dimensions are embedded into a manifold that has

more coordinates in the direction of the rotational axis (z-direction). Namely,

we extend the coordinates as
ˆ
dkxdky
(2π)2

ˆ
dkz
2π

→
ˆ
dkxdky
(2π)2

ˆ
dkzd

d−3p

(2π)d−2
(5.15)

with k2z → k2z + p2, and the momentum p lives in a (d − 3)-dimensional man-

ifold. Recalling [g2] = z − z⊥ + 3 − d with z = 2 and z⊥ = 1, the coupling

constant becomes marginal at d = 4 and the quantum fluctuations give log-

arithmic divergences. To read off these logarithmic divergences, we introduce

the parameter ϵ = 4−d and employ the standard momentum shell RG analysis

with ϵ expansion. For the momentum shell integration, we impose the UV and

IR cutoffs on the (d− 2)-dimensional space of (kz,p) as
ˆ
k,p

=

ˆ
dkxdky
(2π)2

ˆ
∂Λ

dkzd
d−3p

(2π)d−2
(5.16)

where ∂Λ represents an infinitesimal momentum shell µ <
√
k2z + p2 < Λ with

µ = Λe−ℓ.

By integrating out the high energy modes, we obtain corrections at one-loop

order. The fermion self-energy depicted by the diagram in Fig. 5.2(a) is given

by

Σ(iΩ, q) =(−ig)2
ˆ
ω,k,p

G0(iω + iΩ,k + q)D0(iω,k)

≈− αF⊥(γ)ℓ
[
t⊥(q

2
x − q2y)σx + 2t⊥qxqyσy

]
− αFz(γ)ℓ

(
tzq

2
z

)
σz, (5.17)

where F⊥ and Fz are dimensionless functions, whose explicit expressions are

presented in Appendix C. Note that the frequency part is not renormalized at

the one-loop order because of the instantaneous nature of the bare Coulomb

interaction. Then, it is easy to see that the vertex correction [Fig. 5.2(c)]

57



vanishes due to the Ward identity. For the boson self-energy [Fig. 5.2(b)], we

find

Π(q) =Nfg
2

ˆ
ω,k,p

Tr [G0(iω,k + q/2)G0(iω,k − q/2)]

≈−Nfα

[
a

γ
q2⊥ +

γ

a
q2z

]
ℓ. (5.18)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0(a)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0(b)

Figure 5.3: RG flows of α and γ for (a) Nf = 1 and (b) Nf = 10 at

ϵ = 1. The red dots represent the fixed points (α∗, γ∗). For Nf = 1,

(α∗, γ∗) = (0.671, 0.748) and for Nf = 10, (α∗, γ∗) = (0.096, 0.966) obtained

from Eq. (5.19).

Renormalizing the wave functions and the coupling constants, we obtain the

RG equations for α and γ as

1

α

dα

dℓ
= ϵ−

Nfα

2

(
1

γ
+ γ

)
− α

2
F+(γ),

1

γ

dγ

dℓ
=
Nfα

2

(
1

γ
− γ

)
+
α

2
F−(γ),

(5.19)

where F±(x) = Fz(x)±F⊥(x). We find two fixed points from the RG equations

in Eq. (5.19). The non-interacting fixed point α∗ = 0 with arbitrary γ∗ is

unstable, whereas there exists a stable interacting fixed point at (α∗,γ∗) with
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α∗ > 0. For Nf = 1 and ϵ = 1, the stable fixed point is located at (α∗, γ∗) =

(0.671, 0.748), and for large Nf , (α∗,γ∗) ≈ (ϵ/Nf , 1− 0.358/Nf ). The RG flows

of α and γ are illustrated in Fig. 5.3.

At the stable fixed point, the RG equations for the bosonic and fermionic

anisotropy parameters are given by, respectively,

1

a

da

dℓ

∣∣∣∣
f.p.

=
Nfα

∗

2

(
1

γ∗
− γ∗

)
> 0,

1

β−1

dβ−1

dℓ

∣∣∣∣
f.p.

=− α∗F−(γ
∗) > 0,

(5.20)

where f.p. stands for the fixed point. Note that β−1 diverges at the stable fixed

point as in the large Nf calculation demonstrating an emergent anisotropic non-

Fermi liquid, which becomes a sanity check of our analysis giving a consistent

result with the large Nf calculation (for details, see Appendix C).

5.5 Physical observables

Recently, several materials [71, 81, 82, 83, 84] have been proposed as possible

candidates for DWSMs, in which TQPTs may occur by tuning the system

parameters. For example, it has been theoretically demonstrated that SrSi2
can be tuned by changing the lattice constant through doping or strain, leading

to a transition from the DWSM to a trivial insulator phase [84]. Since the

anisotropic non-Fermi liquid behavior at the TQPT will provide power-law

corrections anisotropically to the scaling of physical observables [76, 85, 86],

the anisotropic scaling relations will be valuable to experiments.

First, consider the parameter dependence of physical observables in the non-

interacting limit [72, 87, 73, 88, 89]. The details are presented in Appendix C. In

the non-interacting limit, the specific heat CV , compressibility κ, diamagnetic
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susceptibility χD, and optical conductivity σ are give by

CV ∝ T 3/2

t⊥t
1/2
z

, κ ∝ T 1/2

t⊥t
1/2
z

, (5.21)

χD,⊥ ∝ t1/2z T 1/2, χD,z ∝
t⊥

t
1/2
z

T 1/2,

σ⊥⊥ ∝ 1

t
1/2
z

Ω1/2, σzz ∝
t
1/2
z

t⊥
Ω1/2.

Here, χD,x = χD,y = χD,⊥ and σxx = σyy = σ⊥⊥ because of the C4 symmetry

of the Hamiltonian. We also assume tx = ty = t⊥ for simplicity.

Now, consider how the anisotropic non-Fermi liquids change the bare scaling

behaviors of the physical observables. From the ϵ expansion, the RG equations

for t⊥ and tz are given by

1

t⊥

dt⊥
d ln b =z − 2z⊥ + αF⊥(γ),

1

tz

dtz
d ln b =z − 2 + αFz(γ),

(5.22)

where ln b ≡ ℓ. Let us choose z = 2 and z⊥ = 1 so that t⊥ and tz are marginal

at the tree level. Since dO
d ln b = zO for O = ω, T with z = 2, O(b) = Ob2. Let

b∗ be the cutoff value defined as O(b∗) = Λ, then b∗ = (Λ/O)1/2. Combining

this with Eq. (5.22), we find that ti(b∗) = ti,0(b
∗)α

∗Fi(γ
∗) ∝ O−ci where i =⊥, z,

ci =
1
2
d ln ti
d ln b

∣∣∣
f.p.

= α∗Fi(γ
∗)/2, c⊥ ≈ 0.402/Nf , and cz ≈ 0.044/Nf in the large

Nf approximation.

Then, near the interacting fixed point, the scaling relations of the physical

observables with respect to either temperature or frequency become

CV ∝ T 3/2+η1 , κ ∝ T 1/2+η1 , (5.23)

χD,⊥ ∝ T 1/2−η2 , χD,z ∝ T 1/2−η3 ,

σ⊥⊥ ∝ Ω1/2+η2 , σzz ∝ Ω1/2+η3 ,

where η1 ≡ c⊥+cz/2 ≈ 0.423/Nf , η2 ≡ cz/2 ≈ 0.022/Nf , and η3 ≡ c⊥−cz/2 ≈

0.380/Nf . (Equivalently, we can obtain the same results by including all the
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effects of renormalization in the coordinates rather than the system parame-

ters, as presented in Appendix C.) Thus, it is easily seen that the diamag-

netic susceptibility and optical conductivity show anisotropic scaling behav-

iors, χD,z/χD,⊥ ∝ T η2−η3 and σ⊥⊥/σzz ∝ Ωη2−η3 . In addition, the permittivity

tensor characterizing the charge screening also exhibits the anisotropic behav-

ior, ε⊥/εz = a2 ∝ Ωη2−η3 . By measuring these ratios, we can clearly see the

anisotropic scaling behaviors at the TQPT.

5.6 Short-range interaction and the stability of anisotropic

non-Fermi liquid fixed point

In this section, we study the effects of short-range interactions which was re-

ported to destroy the non-Fermi liquid phase in the pyrochlore iridates A2Ir2O7

[90, 91] and show that the non-Fermi liquid phase of DWSM at TQPT remains

stable in a realizable range of Nf in d = 3.

To investigate how short-range interactions affects the non-Fermi liquid we

have found, we first use the following identity(
ψ†σ0ψ

)2
= −

(
ψ†σiψ

)2
=

1

2

(
ψ†σyψ

∗
)
(ψᵀσyψ) (5.24)

for i = x, y, z. Using this identity, we can study the effects of all possible

short-range interactions in particle-particle channel and particle-hole channels

by adding just the following interaction to the action in Eq. (5.4):

Su =
u

2

ˆ
ddxdt

(
ψ†σ0ψ

)2
(t,x)

(5.25)

In contrast to Ref. [90, 91] where the 4 by 4 gamma matrices are used and the

vector-type short-range interactions appear, only the scalar-type interaction is

needed in the present case.

To obtain the corrections generated by the short-range interaction and the

combination of the short-range and Coulomb interaction up to one-loop order,
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we evaluate the Feynman diagrams in Fig. 5.4.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 5.4: Feynman diagrams generated by the short-range interaction and

long-range Coulomb interactions. The dashed and wavy lines stand for the

short-range interaction and long-range Coulomb interaction, respectively. The

solid line with arrow tip stands for the fermion.

Among the diagrams in Fig. 5.4, only the diagrams Fig. 5.4(b), 5.4(g),
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5.4(h), and 5.4(k) give us the following non-zero corrections to the short-range

interaction,

δu(b)dℓ =− u2
ˆ
∂Λ

dΩddq

(2π)d+1
ηµν

Tr[σ0G(iΩ, q)σ0σµ]
Tr[σµσµ]

Tr[σ0G(iΩ, q)σ0σµ]
Tr[σµσµ]

,

δu(g),(h)dℓ =u(ig)2
ˆ
∂Λ

dΩddq

(2π)d+1
ηµν

× Tr[σ0G(iΩ, q)σ0σµ]
Tr[σµσµ]

Tr[σ0G(iΩ, q)σ0σµ]
Tr[σµσµ]

D0(iΩ, q),

δu(k)dℓ =− (ig)4
ˆ
∂Λ

dΩddq

(2π)d+1
ηµν

× Tr[σ0G(iΩ, q)σ0σµ]
Tr[σµσµ]

Tr[σ0G(iΩ, q)σ0σµ]
Tr[σµσµ]

D0(iΩ, q)
2,

where ηµν ≡ diag(1,−1,−1, 1) and the repeated indices are summed over. Here,

by using Eq. 5.24, we convert the corrections to ‘vector-type’ short-range in-

teraction such as (ψ†σiψ)
2 (i = x, y, z) into the corrections to the ‘scalar-type’

short-range interaction such as (ψ†σ0ψ)
2 and it is reflected in ηµν . As a result,

we obtain the following correction δu to u:

δudℓ =δu(b)dℓ+ δu(g)dℓ+ δu(h)dℓ+ δu(k)dℓ (5.26)

=−
∑

a,b=u,g

ˆ
∂Λ

dΩddq

(2π)d+1
ηµν

× Tr[σ0G(iΩ, q)σ0σµ]
Tr[σµσµ]

Tr[σ0G(iΩ, q)σ0σµ]
Tr[σµσµ]

Ia(q)Ib(q) (5.27)

=
u2

4

ˆ
∂Λ

ddq

(2π)d
1

εq
+
ug2

2

ˆ
∂Λ

ddq

(2π)d
1

aq2⊥ + 1
aq

2
z

1

εq
(5.28)

+
g4

4

ˆ
∂Λ

ddq

(2π)d
1

(aq2⊥ + 1
aq

2
z)

2

1

εq
,

where Iu(q) = u and Ig(q) = g2

a(k2x+k
2
y)+k

2
z/a

. Introducing a dimensionless

parameter

ū =
Sd−2

4π (2π)d−2 Λ2−d |t⊥|
u,

the correction δu to the dimensionless ū is obtained from Eq. (5.28),

δu = ū2H1(λ) + ūαH2(γ, λ) + α2H3(γ, λ), (5.29)
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with

H1(γ, λ) =

ˆ Λρ

0

ρdρ√
ρ4 + (1 + λρ2)2

(5.30)

=
1

2
√
1 + λ2

log

1 +
√
1 +

(√
1 + λ2 + λ

)2
√
1 + λ2 + λ

 ,
H2(γ, λ) =12γ

ˆ ∞

0

ρdρ

(1 + 4γ2ρ2)

√
ρ4 + (1 + λρ2)2

(5.31)

=
6γ√

1 + (4γ2 − λ)2
log

 4γ2
(
4γ2 − λ+

√
1 + (4γ2 − λ)2

)
√
1 + λ2

√
1 + (4γ2 − λ)2 + λ (4γ2 − λ)− 1

 ,
H3(γ, λ) =36γ2

ˆ ∞

0

ρdρ

(1 + 4γ2ρ2)2
√
ρ4 + (1 + λρ2)2

(5.32)

=18γ2

4γ2 −√
1 + λ2

1 + (4γ2 − λ)2
+

(
4γ2 − λ

)
λ− 1(

1 + (4γ2 − λ)2
)3/2

× log

 4γ2
{√

1 + (4γ2 − λ)2 −
(
4γ2 − λ

)}
1− λ (4γ2 − λ) +

√
(1 + λ2)

(
1 + (4γ2 − λ)2

)

,

where Λρ =
(
1 + λ2

)−1/4 is introduced to regulate the UV divergence in Eq.

(5.30).

After rescaling the fields and space-time coordinates, we finally obatin the
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RG flow functions for α, γ, λ and ū:

1

α

dα

dℓ
=ϵ− α

2

[
Nf

{
1

γ

(
2 + λ2

2
− λ(5 + 2λ2)

4
√
1 + λ2

)
+ γ

(
1 + 2λ2√
1 + λ2

− 2λ

)}]
(5.33)

− α

2
F+(γ, λ)

1

γ

dγ

dℓ
=
α

2

[
Nf

{
1

γ

(
2 + λ2

2
− λ(5 + 2λ2)

4
√
1 + λ2

)
− γ

(
1 + 2λ2√
1 + λ2

− 2λ

)}
+

]
(5.34)

+
α

2
F−(γ, λ)

1

λ

dλ

dℓ
=− α

λ

[
4γ2Fz(γ, λ) + λF⊥(γ, λ)

]
, (5.35)

dū

dℓ
=(ϵ− 2− αF⊥(γ, λ)) ū+ δū

=(ϵ− 2− αF⊥(γ, λ) + αH2(γ, λ)) ū+H1(γ, λ)ū
2 +H3(γ, λ)α

2. (5.36)

Note that no modification arises in Eqs. (5.33), (5.34), and (5.35) even if we

include u, because u does not yield self-energy correction to the fermion ψ and

boson ϕ at leading order. And for the particle-particle channel, it has the same

RG flow equations as the particle-hole channel because they have the same

operator form.

The RG function Eq. (5.36) of ū includes a term proportional to α2. This α2

correction generates ū during RG flow even if we start with an initial condition

ū(ℓ = 0) = 0. Consequently, we find no stable fixed point with Nf = 1 in d = 3.

Figure 5.5 shows RG flow for Nf = 4, 4.775, and 5 in d = 3 when we ignore λ

in the RG functions Eq. (5.33, 5.34, 5.35, 5.36), where stable (unstable) fixed

points are denoted by red (blue) points. The green point is the NFL fixed point.

The lower bound of Nf , Nc, above which a stable fixed point begins to appear is

approximately Nc = 4.775 as it is seen. The results seems to show that the non-

Fermi liquid phase of DWSM at TQPT is not realizable in a real experiment

since Nf ≥ 5 is not likely to be achievable. However, if we take λ into account,

we get a qualitatively different consequence. Fig. 5.6 shows RG flow when λ is
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Figure 5.5: RG flow diagrams in terms of Nf when s⊥ is ignored.
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Figure 5.6: RG flow diagrams in terms of Nf when s⊥ is allowed.

kept. The estimated lower bound of Nf is about Nc = 1.883. Thus, a stable

fixed point appear for Nf = 2 which is much smaller and compared to that

obatined when λ is neglected. We expect that dWSM at TQPT with Nf = 2

is accessible in an experiment with SrSi2 [82]. Although the estimated values

of the lower bounds of Nf are found to depend on the renormalization shceme,

s⊥-term in DWSM at TQPT seems to stabilize the non-Fermi liquid phase.

So far, we consider the corrections up to one-loop order diagrams. However,

in the ϵ expansion, we find the anisotropic NFL fixed point up to order of

O(ϵ). In that reason, near our anisotropic NFL fixed point, α2 will give us the

correction of O(ϵ2). So, if we carefully consider the order of ϵ, we can ignore

α2 contribution in Eq. (5.36) near our anisotropic NFL fixed point. In this
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situation, the short-range interaction is irrelevant in d = 3 when Nf > Nc =

2.279 when λ is neglected, while Nc become 0.952 if λ is kept. Thus, keeping

λ, we find that the non-Fermi liquid phase of DWSM at TQPT with Nf = 1

remains stable in the presence of the short-range interaction up to the accuracy

of O(ϵ). Note that to properly keep O(ϵ2) contribution, we need to calculate

the two-loop order calculations, but that is out of our scope.

5.7 Discussion

Through out this chapter, for simplicity we ignored m0 in Eq. (5.1) and the

corresponding s⊥(k
2
x + k2y)σz term with s⊥ = m0a

2
0 in H0, which is allowed

by symmetry. If we include the effect of this term, we find that there still

exists a stable non-Gaussian fixed point at (α∗, γ∗, λ∗) = (0.336ϵ/Nf , 0.821 −

0.083/Nf ,−sgn(β)(0.866 + 0.035/Nf )) in the ϵ expansion (λ ≡ s⊥/t⊥), in-

dicating that the anisotropic non-Fermi liquid behavior is robust against the

s⊥(k
2
x + k2y)σz term. The details are presented in Appendix C. Note that for a

TQPT between triple-Weyl semimetals [89], we believe that similar symmetry-

allowed parabolic term should be considered.

There are studies about the instability of NFL in the quadratic dispersions

under the presence of the short-range interactions [90, 91]. Our calculations are

controlled by either ϵ or 1/Nf . Thus, the scaling dimensions of the four-point

short-range interactions at the stable fixed point are the same as the bare one

at the leading order, [uijkl] = −d+2+O (ϵ or 1/Nf ), which indicates that our

fixed point is stable under the short-range interactions.

We stress that our emergent anisotropic non-Fermi liquid fixed point is

distinct from previously studied non-Fermi liquid fixed points. Our fixed point

is in 3d in sharp contrast to most of the previously studied fixed points including

the very nice work by Sur and Lee where anisotropic non-Fermi liquid below

3d was found [79]. In 3d, quantum fluctuations are typically marginal or even
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irrelevant, so quasi-particles are usually well-defined. However, the interplay

between the topology and C4 rotational symmetry in our systems protects the

quadratic band touching at the topological phase transition, and the anisotropic

non-Fermi liquid fixed point appears. As discussed above, the absence of the

cubic symmetry makes the anisotropy even emergent in terms of the anomalous

dimensions. Furthermore, the characteristic interplay between topology and

symmetry is crucial in addition to the long-range Coulomb interaction to realize

our universality class.

5.8 Conclusion

We studied TQPTs between DWSMs and insulators using the large Nf theory

and ϵ = 4 − d expansion. We found that a novel class of quantum criticality

appears at the TQPT characterized by emergent anisotropic non-Fermi liquid

behaviors in which critical electronic modes and the long-range Coulomb inter-

action are strongly coupled, and the system becomes infinitely anisotropic. The

anisotropic behaviors at the TQPT may be observed experimentally by mea-

suring the power-law corrections to the diamagnetic susceptibility χD,z/χD,⊥ ∝

T η2−η3 and optical conductivity σ⊥⊥/σzz ∝ Ωη2−η3 , which we propose as smoking-

gun signals of our TQPTs.
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Chapter 6

Conclusion

It is the effects of interactions in the newly discovered topological materials

that my doctoral research has been focused on. The researches are started

with an anticipation that the Coulomb interaction between electrons are not

well screened in some topological materials as much as it is in the conven-

tional three dimensional materials. Hence, the initial aims of my researches are

to reveal what phenomena can occur, which is rarely expected in the conven-

tional material, and how it is related to the topological character of the new

materials. To solve this curiosity, we have studied two electronic systems with

non-trival topological characters in which electrons are interacting via the long-

range Coulomb interaction. In the following paragraphs, we summarize what

we have studied in this doctoral thesis.

One of the two is an exciton-polariton system in a microcavity with a tran-

sition metal dichalcogenide. To deal with a wide range of excitaion density,

we treat an exciton as a composite particle of an electron in the conduction

band and a hole created when a state in the valence band is emptied, rather

than a bosonic particle. To deal with the condensation of excitons and pho-

tons, we introduce an ansatz for the mean-field ground state which is just the

direct product of the coherent state of photon and the coherent state of exciton.
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Solving the self-consistent mean-field equations numerically in a system with a

single species of massive Dirac fermion, or just the single valley problem, we find

that the s-wave and p-wave excitonic order parameters compete and there are

topological phase transitions owing to the competition between them. Further-

more, we show that the p-wave order parameter is generated due2 to non-zero

Berry curvature around the band extremum, which is an intrinsic properties of

the massive Dirac fermion. Applying the same method to the two-valley prob-

lem, in which electrons in both valleys effectively interact through the cavity

photon, we get a result showing the possiblity that various topological phases

can appear in a microcavity with a monolayer transition metal dichalcogenide.

The next subject is related to a three-dimensional topological semimetal,

called a double-Weyl semimetal. A double-Weyl semimetal is characterized by

double-Weyl nodes near the Fermi energy which can come true because crys-

tallogrphic systems are thought not to be subject to the relativistic Lorentz

symmetry. When two double-Weyl nodes merge, called the topological phase

transition point, there appears a band structure whose dispersion is quadratic in

all directions. Abrikosov proposed that systems with quadratic band touchings

can show a singular response to the external fields because the Coulomb inter-

action is not screened well and preserves it long-range nature in the long-wave

length limit. To examine the proposal of Abrikosov in a double-Weyl semimetal

at its topological phase transition point, we employ two renormalization group

approaches, the large Nf method and the ϵ = 4−d expansion. The approaches

yield a consistent result implying that a double-Weyl semimetal at the topolog-

ical phase transition is an anisotropic non-Fermi liquid. We also check whether

weak short-range interactions destroy this anisotropic non-Fermi liquid phase,

and get a result that if more than two merging points of double-Weyl nodes

exist simultaneously in the first Brillouin zone, the anisotropic non-Fermi liquid

phase survives the short-range interaction.
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Appendix A

Coulomb interaction in the band basis

The self-consistent equation for the Fock term in the band basis is expressed as

∆τ ;βα(k) = − 1

S

∑
p

∑
i,j

V (k − p)W ∗
iβ(k)

〈
ĉ†τ,j,pĉτ,i,p

〉
Wjα(k)

= − 1

S

∑
p

∑
α′,β′,i,j

V (k − p)W ∗
iβ(k)W

∗
jβ′(p)ρτ ;α′β′(p)Wiα′(p)Wjα(k),

(A.1)

with

W (k) =

 cos θk2 − sin θk
2 e

iτϕk

sin θk
2 e

iτϕk cos θk2

 ,

where ϕk = arctan(ky/kx) and θk = arctan h̄v
√
k2x+k

2
y

Egap/2
. Here, we introduce the

one-particle density matrix ρτ ;α′β′(p) ≡
〈
ψ̂†
τ,β′,pψ̂τ,α′,p

〉
for the notational con-

venience. And we neglect Hartree terms with V (q = 0) which vanishes due

to overall charge neutrality. In the second line in (A.1), under an assump-

tion that the translational symmetry remains unbroken,
〈
ĉ†τ,i,k1−q

∣∣ĉτ ′,j,k2

〉
=

δτ,τ ′δk1−q,k2

〈
ĉ†τ,i,k2

∣∣ĉτ ′,j,k2

〉
is used. It can also be shown that ∆τ ;vc(k) =

∆∗
τ ;cv(k) and ∆τ ;vv(k) = −∆τ ;cc(k). The latter relation is from the electron

number conservation.

We solved (4.4) and (A.1) numerically with the fixed excitation density
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constraint. We used the triangular mesh of 256 by 256 with the momentum

cutoff 1 Å to minimize the number of the mesh outside of the cutoff momentum

while keeping the rotational symmetry as much as possible. Instead of imposing

excitation density constraint explicitly, we solved the self-consistent equation

changing the chemical potential for the excitation density.

The partial wave decomposition in Eq. (4.9) of the main text is extracted

from Eq. (A.1). To make notation simple, let us assume τ = +1. For ∆1;cc and

∆1;cv,

∆1;cc(k) = − 1

S

∑
p

V (k − p) [n1;eh(p) {sin θk sin θp cos(ϕk − ϕp) + cos θk cos θp}

+
eiϕp

2
ρ1;cv(p) {sin θk cos θp cos(ϕk − ϕp) + i sin(ϕk − ϕk)− cos θk sin θp}

+
e−iϕp

2
ρ1;vc(p) {sin θk cos θp cos(ϕk − ϕp)− i sin(ϕk − ϕp)− cos θk sin θp}

]
,

(A.2)

∆1;cv(k) =
1

S

∑
p

V (k − p)

[
e−iϕkn1;eh(p)

{
sin θk cos θp

+ sin θp
(
ei(ϕp−ϕk) sin2 θk

2
− e−i(ϕp−ϕk) cos2 θk

2

)
− e−2iϕkρ1;cv(p)

{
eiϕp sin θk

2
sin θp

2
+ eiϕk cos θk

2
cos θp

2

}2

+e−2i(ϕk+ϕp)ρ1;vc(p)

{
eiϕp sin θk

2
cos θp

2
− eiϕk cos θk

2
sin θp

2

}2
]
,

(A.3)

where n1;eh(p) = {ρ1;cc(p)− ρ1;vv(p) + 1} /2.

By Fourier transformation, we can get the partial waves of ∆τ ;cv(k), ∆(m)
τ ;cv(k) =´ 2π

0,|k|=k
dϕk
2π ∆τ ;cv(k)e

−imϕk for m = 0,±1,±2, · · · . Also, we have subtracted the

contribution from non-excited states (ρτ ;αβ(k) = 0 but ρτ ;vv(k) = 1) as only
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excited quasiparticles are assumed to interact with each other.

∆
(m)
1;cc(k) =

1

4π

ˆ ∞

0
dp p

[
−n(m)

1;eh(p)

{
f
(|m−1|)
p,k sin θp sin θk

+ 2f
(|m|)
p,k cos θp cos θk + f

(|m+1|)
p,k sin θp sin θk

}
+ ρ

(m−1)
1;cv (p)

{
− f

(|m−1|)
p,k cos2 θp

2
sin θk

+ f
(|m|)
p,k sin θp cos θk + f

(|m+1|)
p,k sin2 θp

2
sin θk

}
+
[
ρ
(−m−1)
1;cv (p)

]∗{
f
(|m−1|)
p,k sin2 θp

2
sin θk

+ f
(|m+1|)
p,k sin θp cos θk − f

(|m+2|)
p,k cos2 θp

2
sin θk

}]
, (A.4)

∆
(m)
1;cv(k) =

1

2π

ˆ ∞

0
dp p

[
n
(m+1)
1;eh (p)

{
− f

(|m|)
p,k sin θp cos2 θk

2

+ f
(|m+1|)
p,k cos θp sin θk + f

(|m+2|)
p,k sin θp sin2 θk

2

}
− ρ

(m)
1;cv(p)

{
f
(|m|)
p,k cos2 θp

2
cos2 θk

2

+
1

2
f
(|m+1|)
p,k sin θp sin θk + f

(|m+2|)
p,k sin2 θp

2
sin2 θk

2

}
+
[
ρ
(−2−m)
1;cv (p)

]∗{
f
(|m|)
p,k sin2 θp

2
cos2 θk

2

− 1

2
f
(|m+1|)
p,k sin θp sin θk + f

(|m+2|)
p,k cos2 θp

2
sin2 θk

2

}]
, (A.5)

f
(m)
p,k =

ˆ 2π

0

dϕ

2π

(
p2 + k2 − 2pk cosϕ

)−1/2
e−imϕ

=
1

k + p
3F2

({
1

2
,
1

2
, 1

}
, {1−m, 1 +m} ; 4kp

(k + p)2

)
, (A.6)

O(m)(p) =

ˆ 2π

0,|p|=p

dϕp
2π

O(p)e−imϕp , (A.7)

where 3F2 is the generalized hypergeometric function. In general, we expect to

have ρ(m)
τ ;cv ̸= 0 for every m as the self-consistent equations relate terms with

angular momentum m and −m − 2. But m = −1 is the only exception as

(−1) = −(−1)− 2. Therefore, we get a solution with ρ
(−1)
τ ;cv ̸= 0 and n

(0)
τ ;eh ̸= 0,
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and all other terms vanish. Actually, this is the solution which satisfies the

rotational symmetry as both ρ
(−1)
τ ;cv and n

(0)
τ ;eh keep the symmetry. Therefore,

to describe the rotational symmetry breaking, we should include other pairing

terms.

We used a truncated equation which includes only the s-wave (m = 0)

and the p-wave (m = −1) terms of contributions in the main text to describe

the phase transition. The p-wave term should be included as it is the only

pairing term which preserves the rotational symmetry of the Hamiltonian. And

the s-wave is also crucial as it is induced by the cavity photon and breaks the

rotational symmetry. Also, we kept terms with factor f (0)p,k only in the truncated

equation as it gives the largest contribution. Lastly, the s-wave is expected to

dominate in the low excitation density regime as mentioned in the main text.

This choice for the truncation is also supported by Fig. SA.1.

Figure A.1: Paring terms with various m integrated along the radial direc-

tion with the condition in Fig. 1 of the main text. The rotational symmetry

preserving solution appears in Rc2 < Rs < Rc3.

We have mentioned in the main text that the particle-hole pair non-conserving
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term induces ∆(−1)
τ ;αβ(k). The first term of (A.7) withm = −1 contains nτ ;eh(p) =

{ρτ ;cc(p)− ρτ ;vv(p) + 1} /2. Therefore, in the mean field Hamiltonian such term

appears due to contribution like ψ†
c,kψ

†
c,pψv,pψc,k or ψ†

c,kψ
†
v,pψv,pψv,k which ap-

parently breaks particle-hole pair number conservation.
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Appendix B

Relation between the Chern number in the nor-

mal phase and the Skyrmion number of Hartree-

Fock quasiparticle bands

In this chapter of Appendix, we are going to prove the relation between the

Chern number in the orbital basis and the Skyrmion number in the quasiparticle

band basis. For convenience, we list some notations used in this chpater of

Appendix.

• |i⟩ : Orbitals basis.

• |ψn(k)⟩ = Win(k)|i⟩ : Eigenstates of Ĥ0. Here n = c is the upper energy

band and n = v is the lower band

• |uα(k)⟩ = Vnα(k)|ψn(k)⟩ = Uiα(k)|i⟩ : Eigenstates of

ĤMF =
∑
m,n,k

ψ†
m(k) [η⃗(k) · σ⃗]mn ψn(k),

where the diagonalization
∑

n [η⃗(k) · σ⃗]mn Vnα(k) = Eα(k)Vmα(k) is done

by V (k). α = c̃ is the upper mean-field energy band and α = ṽ is the

lower mean-field energy band.
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To obtain Cτ = τ
2 + i

2π

˜
ẑ ·
[
∇V † ×∇V

]
ṽṽ
d2k, Let us start from the usual

definition of Berry curvature F⃗ṽṽ = i∇× ⟨uṽ(k) |∇|uṽ(k)⟩,

−i [Fr]ṽṽ =ϵpqr∂p ⟨uṽ(k) |∂q|uṽ(k)⟩

=ϵpqr∂p ⟨ψm(k) |V ∗
mṽ∂qVnṽ|ψn(k)⟩

=ϵpqr ⟨∂pψm(k) |V ∗
mṽ∂qVnṽ|ψn(k)⟩+ ϵpqr ⟨ψm(k) |∂pV ∗

mṽ∂qVnṽ|ψn(k)⟩

=ϵpqrV
∗
mṽ∂qVnṽ ⟨∂pψm(k)|ψn(k)⟩+ ϵpqrV

∗
mṽVnṽ ⟨∂pψm(k)|∂qψn(k)⟩

+ ϵpqr∂pV
∗
mṽ∂qVnṽ ⟨ψm(k)|ψn(k)⟩+ ϵpqr∂pV

∗
mṽVnṽ ⟨ψm(k)|∂qψn(k)⟩

=ϵpqrV
∗
mṽ∂qVnṽ ⟨∂pψm(k)|ψn(k)⟩+ ϵpqr∂qV

∗
mṽVnṽ ⟨∂pψm(k)|ψn(k)⟩

+ ϵpqrV
∗
mṽVnṽ ⟨∂pψm(k)|∂qψn(k)⟩+ ϵpqr∂pV

∗
mṽ∂qVnṽ ⟨ψm(k)|ψn(k)⟩

=ϵpqr∂pV
∗
mṽ∂qVmṽ + ϵpqr∂p [V

∗
mṽ ⟨ψm(k)|∂qψn(k)⟩Vnṽ] ,

∴ F⃗ṽṽ =
[
∇V † × i∇V

]
ṽṽ

+∇×
[
V †A⃗(0)V

]
ṽṽ
. (B.1)

Using Eq (B.1), the Chern number is divided into two parts,

Cτ =
1

2π

¨
[Fz]ṽṽ d

2k

=
1

2π

¨
ẑ ·
(
∇×

[
V †A⃗(0)V

]
ṽṽ

)
d2k +

1

2π

¨
ẑ ·
[
∇V † × i∇V

]
ṽṽ
d2k

=
1

2π

˛ [
V †A⃗(0)V

]
ṽṽ

· dk +
1

2π

¨
ẑ ·
[
∇V † × i∇V

]
ṽṽ
d2k, (B.2)

where
[
A⃗(0)

]
mn

= ⟨ψm(k)|i∇ψn(k)⟩ is the matrix-valued Berry connection. If

the interaction is not strong enough or our momentum space is larger enough,

then we can assume lim|k|→∞ Vmṽ(k) = δmṽ. In that case, the line integration

of the first term can be reduced to 1
2π

¸ [
A⃗(0)

]
vv

· dk which is the Berry phase

of non-interacting valence band.

Taking that V (k) diagonalizes η⃗(k) · σ⃗ into consideration, we can express

Ωxy = ẑ ·
[
∇V † × i∇V

]
ṽṽ

by 1
2

´
η⃗ · (∂xη⃗ × ∂yη⃗) d

2k . To prove this statement,

let us first consider the manifestly gauge invariant form of Berry curvature

Ωxy = i
⟨ṽ |∂xH| c̃⟩ ⟨c̃ |∂yH| ṽ⟩ − (x↔ y)

(Eṽ − Ec̃)2
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for Hamiltonian H(k) = η⃗(k) · σ⃗. Noting ⟨v |∂xH| c⟩ is equal to η ⟨v |∂xη̂ · σ⃗| c⟩,

where η̂ denotes the unit vector along the direction ofη⃗, we can show that Ωxy

becomes 1
2 η̂ · (∂xη̂ × ∂yη̂) as follows.

Ωxy = i
⟨v |∂xH| c⟩ ⟨c |∂yH| v⟩ − (x↔ y)

(Ev − Ec)2

= i
η2 [⟨v |∂xη̂i · σi| c⟩ ⟨c |∂yη̂j · σi| v⟩ − (x↔ y)]

4η2

= i
∂xη̂i∂yη̂j ⟨v |[σi, σj ]| v⟩

4
(B.3)

=
1

2
η̂ · (∂xη̂ × ∂yη̂) , (B.4)

where we use [σi, σj ] = 2iϵijkσk between Eq (B.3) and (B.4).

Consequently, we obtain the following final result

Cτ =
τ

2
+

1

2π

¨
ẑ ·
[
∇V † ×∇V

]
ṽṽ
d2k

=
τ

2
+

1

4π

ˆ
η̂ · (∂xη̂ × ∂yη̂) d

2k, (B.5)

where τ = ± denotes the valley index.
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Appendix C

Details of calculation of the renormalization group

calculation

C.1 Details of the ϵ = 4− d method

In this section, we provide detailed calculations of the ϵ = 4− d method. First,

we prove that tx = ty and ax = ay at low energies. Next, we derive the renormal-

ization group (RG) equations using the ϵ = 4 − d expansion. Then we discuss

the effect of the symmetry-allowed parabolic term, which is neglected in the

main text, demonstrating that the TQPT is still characterized by anisotropic

non-Fermi liquids.

Consider the leading-order self-energy corrections for fermions and bosons:

Σ(0,k) =(−ig)2
ˆ
Ω,q

G0(iΩ, q + k)D0(iΩ, q), (C.1)

Π(iΩ, q) =−Nf (−ig)2
ˆ
ω,k

Tr[G0(iΩ+ iω,k + q/2)G0(iω,k − q/2)], (C.2)

where
´
Ω,q,p =

´
Ω
dΩ
2π

´ dqxdqy
(2π)

´
∂Λ

dqzdd−3p
(2π)d−2 with ∂Λ being the region µ <

√
q2z + p2 <
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Λ. Here,

G0(iΩ,k) =
1

−iΩ+ εx(k)σx + εy(k)σy + εz(k)σz

=
iΩ+ εx(k)σx + εy(k)σy + εz(k)σz

Ω2 + E(k)2
, (C.3)

D0(iΩ, q) =
1

axq2x + ayq2y + azq2z
, (C.4)

where εx(k) = tx(k
2
x − k2y), εy(k) = 2tykxky, εz(k) = tzk

2
z , and E(k) =√

εx(k)2 + εy(k)2 + εz(k)2.

C.1.1 Proof of the emergent rotational symmetry along the

kz-axis

C.1.1.1 Proof of ax = ay

First, let us prove that ax = ay at low energies. From the self-energy of the

Coulomb interaction at Ω = 0,

Π(0,k) =−Nf (−ig)2
ˆ
ω,q

Tr[G0(iω, q + k/2)G0(iω, q − k/2)]

=−Nfg
2

ˆ
q,p

(
1− ε⃗+ · ε⃗−

E+E−

)
1

E+ + E−

≈−Nfg
2

ˆ
q,p

[
1

ax

(q2x + q2y)(t
2
xt

2
y(q

2
x + q2y)

2 + t2z(t
2
x + t2y)(q

2
z + p2)2)

2(t2x(q
2
x − q2y)

2 + 4t2yq
2
xq

2
y + t2z(q

2
z + p2)2)5/2

axk
2
x

+
1

ay

(q2x + q2y)(t
2
xt

2
y(q

2
x + q2y)

2 + t2z(t
2
x + t2y)(q

2
z + p2)2)

2(t2x(q
2
x − q2y)

2 + 4t2yq
2
xq

2
y + t2z(q

2
z + p2)2)5/2

ayk
2
y

]

+
1

az

t2zq
2
z(t

2
x(q

2
x − q2y)

2 + 4t2yq
2
xq

2
y)

(t2x(q
2
x − q2y)

2 + 4t2yq
2
xq

2
y + t2z(q

2
z + p2)2)5/2

azk
2
z

]
, (C.5)

where εi± = εi(q ± k/2) and E± =
√∑

i ε
2
i±.

We find that the coefficients of the k2x and k2y terms are the same, which we
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denote as Ca, are given by

Ca =−Nfg
2

ˆ
q,p

(q2x + q2y)
[
t2xt

2
y(q

2
x + q2y)

2 + t2z(t
2
x + t2y)(q

2
z + p2)2

]
2
[
t2x(q

2
x − q2y)

2 + 4t2yq
2
xq

2
y + t2z(q

2
z + p2)2

]5/2
∝−

Nfg
2

Λ4−d ℓ, (C.6)

where ℓ = ln(Λ/µ). Let C ′
a = −Ca/ℓ, which is positive regardless of tx, ty and

tz. Then, the beta function of ax/ay is

1

ax/ay

d(ax/ay)

dℓ
=C ′

aay

(
1− ax

ay

)
. (C.7)

Since C ′
a is positive, ax = ay at low energies.

C.1.1.2 Proof of tx = ty

From now on, we employ the following form of the Coulomb interaction prop-

agator with ax = ay ≡ a and az = 1/a,

D0(iΩ, q) =
1

a(q2x + q2y) + (q2z + p2)/a
. (C.8)

Then

Σ(iω,k) =(−ig)2
ˆ
Ω,q,p

G0(iω + iΩ,k + q)D0(iΩ, q),

=− g2

2

ˆ
q,p

εx(k + q)σx + εy(k + q)σy + εz(k + q)σz
E(k + q)

× 1

a(q2x + q2y) + (q2z + p2)/a
, (C.9)

≈− δtxεx(k)σx − δtyεy(k)σy − δtzεz(k)σz, (C.10)
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where

δtx =
g2

2

ˆ
q,p

ε2xt
2
y(q

4
x + 6q2xq

2
y + q4y)− 2ε2yt

2
y(q

4
x + q4y)− (2− t2y/t

2
x)ε

2
xε

2
z + ε4z

(ε2x + ε2y + ε2z)
5/2(a(q2x + q2y) + (q2z + p2)/a)

,

(C.11)

δty =
g2

2

ˆ
q,p

−ε2xt2x(q4x + 6q2xq
2
y + q4y) + 2ε2yt

2
x(q

4
x + q4y)− (2− t2x/t

2
y)ε

2
yε

2
z + ε4z

(ε2x + ε2y + ε2z)
5/2(a(q2x + q2y) + (q2z + p2)/a)

,

(C.12)

δtz =
g2

2

ˆ
q,p

(ε2x + ε2y)(ε
2
x + ε2y − εztz(5q

2
z − p2))

(ε2x + ε2y + ε2z)
5/2

1

a(q2x + q2y) + (q2z + p2)/a
.

(C.13)

To prove tx = ty at low energies, let us define T = tx/ty. Then, the beta

function of T is given by

1

T

dT

dℓ
=
δtx − δty

ℓ
. (C.14)

From Eqs. (C.11) and (C.12), δtx − δty is given by

δtx − δty =
g2

2

ˆ
q,p

(t2x + t2y)ε
2
x(q

4
x + 6q2xq

2
y + q4y)− 2(t2x + t2y)ε

2
y(q

4
x + q4y)

(ε2x + ε2y + ε2z)
5/2(a(q2x + q2y) + (q2z + p2)/a)

−
((2− t2y/t

2
x)ε

2
x − (2− t2x/t

2
y)ε

2
y)ε

2
z

(ε2x + ε2y + ε2z)
5/2(a(q2x + q2y) + (q2z + p2)/a)

(C.15)

=
g2

2ty

ˆ
q,p

(1 + T 2)((q2x − q2y)
2(q4x + 6q2xq

2
y + q4y)T

2 − 8q2xq
2
y)

(T 2(q2x − q2y)
2 + 4q2xq

2
y + β2(q2z + p2)2)5/2(a(q2x + q2y) + (q2z + p2)/a)

+
g2

2ty

ˆ
q,p

β2(q2z + p2)2(q4x + 6q2xq
2
y + q4y − 2(q4x + q4y)T

2)

(T 2(q2x − q2y)
2 + 4q2xq

2
y + β2(q2z + p2)2)5/2(a(q2x + q2y) + (q2z + p2)/a)

,

(C.16)
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where β ≡ tz/ty.

Expanding δtx − δty in terms of δT = T − 1, then we have

δtx − δty ≈ g2

2ty

ˆ
q,p

(q4x − 6q2xq
2
y + q4y)(2(q

2
x + q2y)

2 − (q2z + p2)2β2)

((q2x + q2y)
2 + β2(q2z + p2)2)5/2(a(q2x + q2y) + (q2z + p2)/a)

− g2

2ty
δT

ˆ
q,p

4(q2x + q2y)
2(q8x − 22q6xq

2
y + 50q4xq

4
y − 22q2xq

6
y + q8y)

((q2x + q2y)
2 + β2(q2z + p2)2)7/2(a(q2x + q2y) + (q2z + p2)/a)

+
g2

2ty
δT

ˆ
q,p

β2(q2z + p2)2(7q8x − 40q6xq
2
y + 2q4xq

4
y − 40q2xq

6
y + 7q8y)

((q2x + q2y)
2 + β2(q2z + p2)2)7/2(a(q2x + q2y) + (q2z + p2)/a)

− g2

2ty
δT

ˆ
q,p

4β4(q4x + q4y)(q
2
z + p2)4

((q2x + q2y)
2 + β2(q2z + p2)2)7/2(a(q2x + q2y) + (q2z + p2)/a)

=− Ad−2g
2

12π
√
tytzΛ4−d

(
9a5β5/2

4

ˆ ∞

0
dr

r5(4a4β2 − r4)

(r4 + a4β2)7/2(r2 + 1)

)
δTℓ

=− αGT (γ)δTℓ, (C.17)

where α =
Ad−2g

2
√
t⊥tzΛ4−d , γ = a

√
β

2 , and Ad = 1
6π(4π)d/2Γ(d/2)

. Here, we introduce

the function GT (x) defined by

GT (x) =72x5
ˆ ∞

0
dr

r5(64x4 − r4)

(r4 + 16x4)7/2(r2 + 1)

=
3x

4(1 + 16x4)7/2

[√
1 + 16x4(1 + 160x4 − 832x6 − 1536x8 + 2048x10)

+48x4(−1 + 64x4) ln
(
4x2(4x2 +

√
1 + 16x4)

−1 +
√
1 + 16x4

)]
.

(C.18)

Note that GT (γ) is positive for all γ. Then, we see

1

δT

dδT

dℓ
≈− αGT (γ)δT (C.19)

is negative (positive) for positive (negative) δT . Therefore, δT flows to 0,

which means T = 1 is a stable fixed point and we arrive at the conclusion that

tx = ty ≡ t⊥ at the low energies. Combining the results of Secs. C.1.1.1 and
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C.1.1.2, we can use the following form of action at low energies,

S =

ˆ
dτddx

[
ψ†(∂τ − igϕ+ Ĥ0(−i∇))ψ +

1

2

(
a
{
(∂xϕ)

2 + (∂yϕ)
2
}
+

1

a
(∂zϕ)

2

)]
,

(C.20)

where

H0(k) =t⊥(k
2
x − k2y)σx + 2t⊥kxkyσy + tzk

2
zσz. (C.21)

C.1.2 Renormalization group equations in the ϵ = 4− d expan-

sion

In this section, we will show the details of the RG analysis using the ϵ = 4− d

expansion. From Eqs. (C.5) and (C.11)−(C.13) with tx = ty = t⊥ and ax =

ay = a−1
z = a, we obtain the fermion and boson self-energies, respectively, given

by

Σ(iΩ, q) =(−ig)2
ˆ
ω,k,p

G0(iω + iΩ,k + q)D0(iω,k)

≈− αF⊥(γ)ℓ
[
t⊥(q

2
x − q2y)σx + 2t⊥qxqyσy

]
− αFz(γ)ℓ

(
tzq

2
z

)
σz,

(C.22)

Π(q) =g2
ˆ
ω,k,p

Tr [G0(iω,k + q/2)G0(iω,k − q/2)]

≈−Nfα

[
a

γ
q2⊥ +

γ

a
q2z

]
ℓ, (C.23)
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where F⊥(γ) and Fz(γ) are given by

F⊥(x) ≡
δx
αℓ

∣∣∣∣
tx=ty=t⊥, ax=ay=a

−1
z =a

=48x5
ˆ ∞

0
dr

r(32x4 − r4)

(r4 + 16x4)5/2(r2 + 1)

=
3x

2(1 + 16x4)5/2

√1 + 16x4(1 + 64x4 − 192x6)

− 16x4(1− 32x4) ln

4x2
(
4x2 +

√
1 + 16x4

)
−1 +

√
1 + 16x4

, (C.24)

Fz(x) ≡
δz
αℓ

∣∣∣∣
tx=ty=t⊥, ax=ay=a

−1
z =a

=6x

ˆ ∞

0
dr

r5(r4 − 32x4)

(r4 + 16x4)5/2(r2 + 1)

=
3x

(1 + 16x4)5/2

√1 + 16x4(−2 + 12x2 + 16x4)

+ (1− 32x4) ln

4x2
(
4x2 +

√
1 + 16x4

)
−1 +

√
1 + 16x4

. (C.25)

Figure C.1 shows the plots of F⊥(x) and Fz(x). Then, after rescaling z →

zeℓ, (x, y) → (x, y)ez⊥ℓ, and τ → ezℓτ , and introducing the renormalization

constant, ψ → ψ/Z
1/2
ψ , ϕ → ϕ/Z

1/2
ϕ , t⊥ → t⊥/Zt⊥ , tz → tz/Ztz , a → a/Za,

93



0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

Figure C.1: Plots of F⊥(x) and Fz(x). The blue solid line and red dashed line

represent F⊥(x) and Fz(x), respectively.

and g → g/Zg, we arrive at the following renormalized action,

Srenorm =

ˆ
dτddx

ψ†
(
∂τ − igϕ+H0(−i∇)− Σ(−i∇)

)
ψ

+
1

2

(
a
{
(∂xϕ)

2 + (∂yϕ)
2
}
+

1

a
(∂zϕ)

2

)
− 1

2
ϕΠ(−i∇)ϕ


=

ˆ
dτddx

e(z+2z⊥+d−2)ℓ

Zψ
ψ†

e−zℓ∂τ − 1

ZgZ
1/2
ϕ

igϕ (C.26)

+
e−2z⊥ℓ

Zt⊥
(1 + αF⊥(γ)ℓ) t⊥

(
(∂2y − ∂2x)σx − 2∂x∂yσy

)
− e−2ℓ

Ztz
(1 + αFz(γ))tz∂

2
zσz

ψ
+

ˆ
dτd3x

e(z+2z⊥+d−2)ℓ

2Zϕ

e−2z⊥ℓ

Za
2

(
1 +Nf

α

γ
ℓ

)
a((∂xϕ)

2 + (∂yϕ))

+ e−2ℓZa (1 +Nfαγℓ)
1

a
(∂zϕ)

2

 (C.27)

Requiring the scaling invariance of the action, we obtain the renormalization
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constants as follows:

Zψ =1 + [2z⊥ + (d− 2)] ℓ, (C.28)

Zt⊥ =1 + [z − 2z⊥ + αF⊥(γ)] ℓ, (C.29)

Ztz =1 + [z − 2 + αFz(γ)] ℓ, (C.30)

Zϕ =1 +

[
z + z⊥ + (d− 3) +

Nfα

2

(
1

γ
+ γ

)]
ℓ, (C.31)

Za =1 +

[
1− z⊥ +

Nfα

2

(
1

γ
− γ

)]
ℓ, (C.32)

Zg =1 +

[
z − z⊥ − (d− 3)

2
−
Nfα

4

(
1

γ
+ γ

)]
ℓ. (C.33)

From these renormalization constants, we can obtain the following RG equa-

tions for d = 4− ϵ,

1

t⊥

dt⊥
dℓ

=z − 2z⊥ + αF⊥(γ), (C.34)

1

tz

dtz
dℓ

=z − 2 + αFz(γ), (C.35)

1

a

da

dℓ
=1− z⊥ +

Nfα

2

(
1

γ
− γ

)
, (C.36)

1

g2
dg2

dℓ
=z − z⊥ − 1 + ϵ−

Nfα

2

(
1

γ
+ γ

)
. (C.37)

Thus, we find the RG equations for the dimensionless parameters α and γ as

follows:

1

α

dα

dℓ
=ϵ−

Nfα

2

(
1

γ
+ γ

)
− α

2

(
Fz(γ) + F⊥(γ)

)
, (C.38)

1

γ

dγ

dℓ
=
Nfα

2

(
1

γ
− γ

)
+
α

2

(
Fz(γ)− F⊥(γ)

)
. (C.39)

C.1.3 Effects of the symmetry-allowed parabolic term

If we include the symmetry-allowed parabolic term, s⊥(k2x + k2y)σz, the non-

interacting Hamiltonian H0 is modified as

H0 =t⊥(k
2
x − k2y)σx + 2t⊥kxkyσy +

[
Btzk

2
z + s⊥(k

2
x + k2y)

]
σz, (C.40)
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where B = ±1 for the topologically trivial and nontrivial insulator phases, re-

spectively.

C.1.3.1 Boson self-energy

Similarly as in Eq. (C.23), we can obtain the boson self-energy in the presence

of the symmetry-allowed parabolic term as

Π(iΩ, q) =−Nf (ig)
2

ˆ
ω,k,p

Tr[G0(iΩ+ iω,k + q)G0(iω,k)]

≈−Nfα

[
1

γ

(
2 + λ2

2
−B

λ(5 + 2λ2)

4
√
1 + λ2

)
aq2⊥ + γ

(
1 + 2λ2√
1 + λ2

− 2Bλ

)
1

a
q2z

]
,

(C.41)

where λ = s⊥
t⊥

.

C.1.3.2 Fermion self-energy

Similarly as in Eq. (C.22), we can obtain the fermion self-energy as

Σ(iω,k) =(ig)2
ˆ
Ω,q,p

G0(iω + iΩ,k + q)D0(iΩ, q)

≈− δt⊥
[
t⊥(k

2
x − k2y)σx + 2t⊥kxkyσy

]
−
[
δtzBtzk

2
z + δs⊥s⊥(k

2
x + k2y)

]
σz,

(C.42)
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where δt⊥ , δtz and δs⊥ are, respectively, given by

δt⊥ =
g2

2

ˆ
k,p

t2zk⊥k
d+1
z (2(Btzk

2
z + s⊥k

2
⊥)

2 − t2⊥k
4
⊥)

2
(
t2⊥k

4
⊥ + (Btzk2z + s⊥k

2
⊥)

2
)5/2

(ak2⊥ + 1
ak

2
z)

=
Ad−2g

2 ℓ√
t⊥tzΛ4−d

ˆ
dr

3(2γ)5r(−r4 + 2(4Bγ2 + λr2)2)

2(1 + r2)(r4 +
(
4Bγ2 + λr2)2

)5/2
=αF⊥(γ, λ)ℓ, (C.43)

δtz =
g2

2

ˆ
k,p

t3⊥k
5
⊥k

d−3
z (t2⊥k

4
⊥ − (2Btzk

2
z − s⊥k

2
⊥)(Btzk

2
z + s⊥k

2
⊥))(

t2⊥k
4
⊥ + (Btzk2z + s⊥k

2
⊥)

2
)5/2

(ak2⊥ + 1
ak

2
z)

=
Ad−2g

2 ℓ√
t⊥tzΛ4−d

ˆ
dr

6γr5(r4 − (8Bγ2 − λr2)(2Bγ2 + λr2))

(1 + r2)
(
r4 + (4Bγ2 + λr2)2

)5/2
=αFz(γ, λ)ℓ, (C.44)

δs⊥ =
g2

2

ˆ
k,p

B

s⊥

t2⊥tzk
3
⊥k

d−1
z (t2⊥k

4
⊥ − (2Btzk

2
z − s⊥k

2
⊥)(Btzk

2
z + s⊥k

2
⊥))

2
(
t2⊥k

4
⊥ + (Btzk2z + s⊥k

2
⊥)

2
)5/2

(ak2⊥ + 1
ak

2
z)

=
B

λ

Ad−2g
2 ℓ√

t⊥tzΛ4−d

ˆ
dr

3(2γ)3r3(r4 − (8Bγ2 − λr2)(4Bγ2 + λr2))

(1 + r2)
(
r4 + (4Bγ2 + λr2)2

)5/2
=
B

λ
αFs(γ, λ)ℓ. (C.45)

Here, we introduce the following dimensionless functions,

F⊥(γ, λ) =

ˆ ∞

0
dr

48γ5r(−r4 + 2(4Bγ2 + λr2)2)

(1 + r2)(r4 + (4Bγ2 + λr2)2)5/2

=
3γ

2(1 + (4Bγ2 − λ)2)2

(1 + λ2)3/2 + 64γ4(−3γ2 +
√

1 + λ2)

− 4Bγ2λ(−12γ2 + 5
√

1 + λ2)− 16γ4(1− 2(4Bγ2 − λ)2)√
1 + (4Bγ2 − λ)2

× ln

 4γ2
(
4γ2 −Bλ+

√
1 + (4Bγ2 − λ)2

)
−1 + 4Bγ2λ− λ2 +

√
1 + λ2

√
1 + (4Bγ2 − λ)2

, (C.46)

97



Fz(γ, λ) =

ˆ ∞

0
dr

6γr5(r4 − (8Bγ2 − λr2)(4Bγ2 + λr2))

(1 + r2)(r4 + (4Bγ2 + λr2)2)5/2

=
3γ

(1 + (4Bγ2 − λ))2

−
(
16Bγ4λ− 4γ2(3 + 2λ2) +Bλ(1 + λ2)

)
+
√
1 + λ2(−2 + (4Bγ2 − λ)2) +

1− 32γ4 + 4Bγ2λ+ λ2√
1 + (4Bγ2 − λ)2

× ln

 4γ2
(
4γ2 −Bλ+

√
1 + (4Bγ2 − λ)2

)
−1 + 4Bγ2λ− λ2 +

√
1 + λ2

√
1 + (4Bγ2 − λ)2

, (C.47)

Fs(γ, λ) =

ˆ ∞

0
dr

24γ3r3(r4 − (8Bγ2 − λr2)(4Bγ2 + λr2))

(1 + r2)(r4 + (4Bγ2 + λr2)2)5/2

=
−12γ

(1 + (4Bγ2 − λ))2

−
(
16Bγ4λ− 4γ2(3 + 2λ2) +Bλ(1 + λ2)

)
+
√
1 + λ2(−2 + (4Bγ2 − λ)2)− 1− 32γ4 + 4Bγ2λ+ λ2√

1 + (4Bγ2 − λ)2

× ln

 4γ2
(
4γ2 −Bλ+

√
1 + (4Bγ2 − λ)2

)
−1 + 4Bγ2λ− λ2 +

√
1 + λ2

√
1 + (4Bγ2 − λ)2


=− 4γ2Fz(γ, λ). (C.48)

Note that in the limit λ = 0, F⊥(γ, λ) = F⊥(γ), and Fz(γ, λ) = Fz(γ).
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C.1.3.3 RG flow equation

From Sec. C.1.3.1 and Sec. C.1.3.2, we can obtain the following RG flow equa-

tions,

1

t⊥

dt⊥
dℓ

=z − 2z⊥ + αF⊥(γ, λ), (C.49)

1

tz

dtz
dℓ

=z − 2 + αFz(γ, λ), (C.50)

1

s⊥

ds⊥
dℓ

=z − 2z⊥ − 4b
α

λ
γ2Fz(γ, λ), (C.51)

1

a

da

dℓ
=1− z⊥ +

Nfα

2γ

(
2 + λ2

2
−B

λ(5 + 2λ2)

4
√
1 + λ2

)
−
Nfγα

2

(
1 + 2λ2√
1 + λ2

− 2Bλ

)
, (C.52)

1

g2
dg2

dℓ
=z − z⊥ − 1 + ϵ−

Nfα

2γ

(
2 + λ2

2
−B

λ(5 + 2λ2)

4
√
1 + λ2

)
−
Nfγα

2

(
1 + 2λ2√
1 + λ2

− 2Bλ

)
, (C.53)

Then, the RG equations for the dimensionless parameters, α, γ and λ are

given by

1

α

dα

dℓ
=ϵ− α

2

Nf

{
1

γ

(
2 + λ2

2
−B

λ(5 + 2λ2)

4
√
1 + λ2

)
+ γ

(
1 + 2λ2√
1 + λ2

− 2Bλ

)}

+ Fz(γ, λ) + F⊥(γ, λ)

, (C.54)

1

γ

dγ

dℓ
=
α

2

Nf

{
1

γ

(
2 + λ2

2
−B

λ(5 + 2λ2)

4
√
1 + λ2

)
− γ

(
1 + 2λ2√
1 + λ2

− 2Bλ

)}

+ Fz(γ, λ)− F⊥(γ, λ)

, (C.55)

1

λ

dλ

dℓ
=− α

λ

[
4Bγ2Fz(γ, λ) + λF⊥(γ, λ)

]
. (C.56)

For given Nf , the RG equations have unstable fixed point, α∗ = 0 with arbi-

trary γ∗ and λ∗, and stable interacting fixed point, (α∗, γ∗, λ∗) = (0.342ϵ/Nf , 0.799−
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0.079/Nf ,−B(0.875+0.032/Nf )) for large Nf . Then, near the interacting fixed

point,

1

a

da

dℓ

∣∣∣∣
f.p.

=
Nfα

∗

2

 1

γ∗

(
2 + λ∗2

2
−B

λ∗(5 + 2λ∗2)

4
√
1 + λ∗2

)

− γ∗
(

1 + 2λ∗2√
1 + λ∗2

− 2Bλ∗
) > 0, (C.57)

1

β−1

dβ−1

dℓ

∣∣∣∣
f.p.

=− α∗
(
Fz(γ

∗, λ∗)− F⊥(γ
∗, λ∗)

)
> 0. (C.58)

Thus, the bosonic and fermionic anisotropy parameters a and β−1 diverge at

the stable interacting fixed point. Therefore, even if we keep s⊥(k2x+k2y)σz, the

interacting fixed point still exhibits anisotropic non-Fermi liquid behaviors.

C.2 Details of the large Nf calculation

In this section, we will show the detailed calculations of the large Nf method.

C.2.1 Boson self-energy

Consider the self-energy of the Coulomb interaction given by

Π(iΩ, q) =−Nf (−ig)2
ˆ
ω,k

Tr[G0(iΩ+ iω,k + q)G0(iω,k)]

=−Nfg
2

ˆ
k

E+ + E−
(E+ + E−)2 +Ω2

(
1− ε⃗+ · ε⃗−

E+E−

)
, (C.59)

where εi± = εi(k ± q/2) and E± =
√∑

i ε
2
i±.

C.2.1.1 q⊥ dependence

Let us find the q⊥ dependence in Π(iΩ, q) with non-zero iΩ. Because of the

emergent rotational symmetry along the kz-axis, we put q⊥ = q⊥x̂ for sim-

plicity. After changing the integration variables, kx → q⊥x, ky → q⊥y, kz →
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(t⊥/tz)
1/2q⊥z, we get

Π(iΩ, q⊥) =−
Nfg

2 |q⊥|
8π3

√
t⊥tz

×
ˆ

d3x


√(

(x+ 1)2 + y2
)2

+ z4[√(
(x+ 1)2 + y2

)2
+ z4 +

√(
x2 + y2

)2
+ z4

]2
+
(

Ω
t⊥|q⊥|2

)2

+

√(
x2 + y2

)2
+ z4[√(

(x+ 1)2 + y2
)2

+ z4 +

√(
x2 + y2

)2
+ z4

]2
+
(

Ω
t⊥|q⊥|2

)2


×

1−
(
(x+ 1)2 − y2

)(
x2 − y2

)
+ 4(x+ 1)xy2 + z4√(

(x+ 1)2 + y2
)2

+ z4

√(
x2 + y2

)2
+ z4


=−

C⊥1Nfg
2√

t2⊥tz

√
t⊥q

2
⊥ tanh(C⊥2ξr), (C.60)

where ξr =
√

t⊥
|Ω| |q⊥|, C⊥1 = 0.042, and C⊥2 = 1.199. The final result is a

fitting function using an ansatz obtained from Π(iΩ, q⊥) ∝ ξ2r for ξr ≪ 1, and

Π(iΩ, q⊥) ∝ ξr for ξr ≫ 1.

C.2.1.2 qz dependence

Similarly, after changing the integration variables, k⊥ → (tz/t⊥)
1/2q⊥r, kz →

qzz, we get

Π(iΩ, qz) = −
Nfg

2 |qz|
4π2t⊥

ˆ ∞

0
dr r
ˆ ∞

−∞
dz

√
r4 + (z + 1)4 +

√
r4 + z4[√

r4 + (z + 1)4 +
√
r4 + z4

]2
+
(

Ω
tzq2z

)2
×

[
1− r4 + (z + 1)2z2√

r4 + (z + 1)4
√
r4 + z4

]

= −
Cz1Nfg

2√
t2⊥tz

√
tzq2z tanh(Cz2ξz), (C.61)
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where ξz =
√

tz
|Ω| |qz|, Cz1 = 0.016, and Cz2 = 1.267. The final result is a

fitting function using an ansatz obtained from Π(iΩ, qz) ∝ ξ2z for ξz ≪ 1, and

Π(iΩ, qz) ∝ ξz for ξz ≫ 1.

C.2.1.3 Arbitrary q dependence

For arbitrary q,

Π(iΩ, q) =−
Nfg

2 |q⊥|
8π3

√
t⊥tZ

ξz
ξr

×
ˆ

d3x


√(

(x+ 1)2 + y2
)2

+ ξ4z
ξ4r
(z + 1)4[√(

(x+ 1)2 + y2
)2

+ ξ4z
ξ4r
(z + 1)4 +

√(
x2 + y2

)2
+ ξ4z

ξ4r
z4

]2
+
(

Ω
t⊥q

2
⊥

)2

+

√(
x2 + y2

)2
+ ξ4z

ξ4r
z4[√(

(x+ 1)2 + y2
)2

+ ξ4z
ξ4r
(z + 1)4 +

√(
x2 + y2

)2
+ ξ4z

ξ4r
z4

]2
+
(

Ω
t⊥q

2
⊥

)2


×

1−
(
(x+ 1)2 − y2

)(
x2 − y2

)
+ 4(x+ 1)xy2 − ξ4z

ξ4r
(z + 1)z√(

(x+ 1)2 + y2
)2

+ ξ4z
ξ4r
(z + 1)4

√(
x2 + y2

)2
+ ξ4z

ξ4r
z4


=−

Nfg
2√

t2⊥tz

√
C2
⊥1
t⊥q

2
⊥ + C2

z1tzq
2
z tanh

(√
C2
⊥2
ξ2r + C2

z2ξ
2
z

)
. (C.62)

The comparison between the exact numerical values and ansatz for the Coulomb

interaction self-energy is presented in Fig. 1 in the main text.
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C.2.2 Fermion self-energy

Using the boson self-energy obtained in Sec. C.2.1, we can obtain the fermion

self-energy as follows:

Σ(iω,k) =(ig)2
ˆ
Ω,q

G0(iΩ+ iω, q + k)D(iΩ, q)

=− g2
ˆ
Ω,q

i(Ω + ω) + εx(k + q)σx + εy(k + q)σy + εz(k + q)σz
(Ω + ω)2 + ε2x(k + q) + ε2y(k + q) + ε2z(k + q)

× 1

a(q2x + q2y) + q2z/a−Π(iΩ, q)

≈− g2
ˆ
Ω,q

i(Ω + ω) + εx(k + q)σx + εy(k + q)σy + εz(k + q)σz
(Ω + ω)2 + ε2x(k + q) + ε2y(k + q) + ε2z(k + q)

× 1

−Π(iΩ, q)

≈iωδω − δt⊥
(
εx(k)σx + εy(k)σy

)
− δtzεz(k)σz. (C.63)

The corrections δω, δt⊥ , and δtz are evaluated in the following subsections.

C.2.2.1 ω correction δω

The correction δω is given by

δω =− g2
ˆ
Ω,q

t2⊥(q
2
x + q2y)

2 + t2zq
4
z − Ω2[

t2⊥(q
2
x + q2y)

2 + t2zq
4
z +Ω2

]2
coth

(√
C2

⊥2
(q2x+q

2
y)+C

2
z2
βq2z

(Ω/t⊥)1/2

)
Nf e2

(t⊥tz)1/2

√
C2
⊥1

(q2x + q2y) + C2
z1βq

2
z

=− (t⊥tz)
1/2

8π3Nf

1

t2⊥

ˆ ∞

−∞
dΩ

ˆ
µ<|qz |<Λ

dqz

ˆ ∞

−∞
dq⊥ q⊥

q4⊥ + β2q4z − Ω2/t2⊥[
q4⊥ + β2q4z +Ω2/t2⊥

]2

×
coth

(√
C2

⊥2
q2⊥+C2

z2
βq2z

(Ω/t⊥)1/2

)
√
C2
⊥1
q2⊥ + C2

z1βq
2
z

. (C.64)
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After changing the integration variables, q⊥ →
√
βqza and Ω → βt⊥q

2
zb, we

have

δω =
(t⊥tz)

1/2

Nf

1

t2⊥

t⊥β
2

β5/2
ln(Λ/µ)

ˆ ∞

0
da

ˆ ∞

0
db

a

2π3
−a2 − 1 + b2

(a4 + 1 + b2)2

×
coth

(√
(C2

⊥2
a2 + C2

z2)/b
)

√
C2
⊥1
a2 + C2

z1

=
Cω
Nf

ln(Λ/µ), (C.65)

where Cω = 0.366072. Note that δω has a logarithmic divergence both in the

UV and IR cutoffs.

C.2.2.2 t⊥ correction δt⊥

The correction δt⊥ is given by

δt⊥ =g2
ˆ
Ω,q

(Ω2 + t2zq
4
z)
(
Ω2 − 3t2⊥(q

2
x + q2y)

2 + t2zq
4
z

)[
Ω2 + t2⊥(q

2
x + q2y)

2 + t2zq
4
z

]3
coth

(√
C2

⊥2
(q2x+q

2
y)+C

2
z2
βq2z

(Ω/t⊥)1/2

)
Nf e2

(t⊥tz)1/2

√
C2
⊥1

(q2x + q2y) + C2
z1βq

2
z

=
(t⊥tz)

1/2

8π3t2⊥Nf

ˆ ∞

−∞
dΩ

ˆ
µ<|qz |<Λ

dqz

ˆ ∞

−∞
dq⊥ q⊥

(Ω2/t2⊥ + β2q4z)(Ω
2/t2⊥ − 3q4⊥ + β2q4z)[

Ω2/t2⊥ + q4⊥ + β2q4z
]3

×
coth

(√
C2

⊥2
q2⊥+C2

z2
βq2z

(Ω/t⊥)1/2

)
√
C2
⊥1
q2⊥ + C2

z1βq
2
z

. (C.66)

After changing the integration variables, q⊥ →
√
βqza and Ω → βt⊥q

2
zb, we

have

δt⊥ =
(t⊥tz)

1/2

t2⊥Nf

t⊥β
2

β5/2
ln(Λ/µ)

ˆ ∞

0
da

ˆ ∞

0
db

a

2π3
(1 + b2)(−3a4 + 1 + b2)

(a4 + 1 + b2)3

×
coth

(√
(C2

⊥2
a2 + C2

z2)/b
)

√
C2
⊥1
a2 + C2

z1

=
Ct⊥
Nf

ln(Λ/µ), (C.67)
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where Ct⊥ = 0.614362. Note that δt⊥ has a logarithmic divergence both in the

UV and IR cutoffs.

C.2.2.3 tz correction δtz

The correction δtz is given by

δtz =g2
ˆ
Ω,q

16t4zq
8
z +

(
Ω2 + t2⊥(q

2
x + q2y)

2 + t2zk
4
z

)(
Ω2 + t2⊥(q

2
x + q2y)

2 − 13t2zk
4
z

)
[
Ω2 + t2⊥(q

2
x + q2y)

2 + t2zq
4
z

]3

×
coth

(√
C2

⊥2
(q2x+q

2
y)+C

2
z2
βq2z

(Ω/t⊥)1/2

)
Nf e2

(t⊥tz)1/2

√
C2
⊥1

(q2x + q2y) + C2
z1βq

2
z

(C.68)

=
(t⊥tz)

1/2

8π3t2⊥Nf

ˆ ∞

−∞
dΩ

ˆ
µ<|qz |<Λ

dqz

ˆ ∞

−∞
dq⊥ q⊥

 16β4q8z[
Ω2/t2⊥ + q4⊥ + β2q4z

]3
+

(
Ω2/t2⊥ + q4⊥ + β2k4z

)(
Ω2/t2⊥ + q4⊥ − 13β2k4z

)
[
Ω2/t2⊥ + q4⊥ + β2q4z

]3


×
coth

(√
C2

⊥2
q2⊥+C2

z2
βq2z

(Ω/t⊥)1/2

)
√
C2
⊥1
q2⊥ + C2

z1βq
2
z

. (C.69)

After changing the integration variables, q⊥ →
√
βqza and Ω → βt⊥q

2
zb, we

have

δtz =
(t⊥tz)

1/2

t2⊥Nf

t⊥β
2

β5/2
ln(Λ/µ)

ˆ ∞

0
da

ˆ ∞

0
db

a

2π3
16 + (a4 + 1 + b2)(a4 − 13 + b2)

(a4 + 1 + b2)3

×
coth

(√
(C2

⊥2
a2 + C2

z2)/b
)

√
C2
⊥1
a2 + C2

z1

=
Ctz
Nf

ln(Λ/µ), (C.70)

where Ctz = 0.341231. Note that δtz has a logarithmic divergence both in the

UV and IR cutoffs.
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C.2.3 Vertex correction

The correction δg is given by

δg =(ig)2
ˆ
Ω,q

1

2
Tr[G0(iω, q)G0(iω, q)]D(iω, q)

=− g2
ˆ
Ω,q

−Ω2 + t2⊥(q
2
x + q2y)

2 + t2zq
4
z[

Ω2 + t2⊥(q
2
x + q2y)

2 + t2zq
4
z

]2 coth
(√

(C2
⊥2

(q2x + q2y) + C2
z2βq

2
z)t⊥/Ω

)
Nf e2√
t⊥tz

√
C2
⊥1

(q2x + q2y) + C2
z1βq

2
z

=−
√
t⊥tz

8π3Nf t
2
⊥

ˆ ∞

−∞
dΩ

ˆ
µ<|qz |<Λ

dqz

ˆ ∞

−∞
dq⊥ q⊥

−Ω2/t2⊥ + q4⊥ + β2q4z
(Ω2/t2⊥ + q4⊥ + β2q4z)

2

×
coth

(√
(C2

⊥2
q2⊥ + C2

z2βq
2
z)t⊥/Ω

)
√
C2
⊥1
q2⊥ + C2

z1βq
2
z

. (C.71)

After changing the integration variables, q⊥ →
√
βqza and Ω → βt⊥q

2
zb, we

have

δg =
(t⊥tz)

1/2

Nf

1

t2⊥

t⊥β
2

β5/2
ln(Λ/µ)

ˆ ∞

0
da

ˆ ∞

0
db

a

2π3
−a2 − 1 + b2

(a4 + 1 + b2)2

×
coth

(√
(C2

⊥2
a2 + C2

z2)/b
)

√
C2
⊥1
a2 + C2

z1

=
Cg
Nf

ln(Λ/µ), (C.72)

where Cg = Cω, which is consistent with the Ward identity.

C.3 Consistency between the large Nf calculation

and ϵ expansion

In this section, we will show the correspondence between the large Nf calcula-

tion and the ϵ expansion.

In the static (Ω = 0) and long wavelength limit (q → 0), the boson propaga-

tor in the large Nf approximation has the following form for the momentum
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dependence:

D(iω = 0, q → 0)−1 ∼ q⊥ + |qz|. (C.73)

Let us consider the ϵ expansion case. In the ϵ expansion, near the interacting

fixed point,

α∗γ∗ =
ϵ

Nf

(
1−

cNf

Nf

)
≈ ϵ

Nf
, (C.74)

α∗

γ∗
=

ϵ

Nf

1

1− cNf
/Nf

≈ ϵ

Nf

(
1 +

cNf

Nf

)
≈ ϵ

Nf
, (C.75)

where we only keep up to N−1
f order because we consider the large Nf limit.

Using these results,

D(iω = 0, q → 0)−1 =aq2⊥ +
1

a
q2z −Π(iω, q)

=a

(
1 +Nf

α∗

γ∗
ℓ

)
q2⊥ +

1

a
(1 +Nfα

∗γ∗ℓ) q2z

≈a (1 + ϵℓ) q2⊥ +
1

a
(1 + ϵℓ) q2z

∼eϵℓq2⊥ + eϵℓq2z

≈q2−ϵ/z⊥⊥ + |qz|2−ϵ. (C.76)

Here, in the fourth line, we absorbed the momentum dependence of a into

q⊥ and qz. For a sufficiently large Nf , z⊥ ≈ 1, thus for ϵ = 1 with d = 3,

D(0, q)−1 ∼ q⊥ + |qz|. Therefore, the result of the ϵ expansion is consistent

with the large Nf calculation.

C.4 Physical observables in the non-interacting limit

In this section, we will calculate the physical observables such as the specific

heat, compressibility, diamagnetic susceptibility, and optical conductivity at

the TQPT between DWSM and insulating phases in the non-interacting limit.

For simplicity, we assume tx = ty = t⊥, the rotational symmetry along the

kz-axis.
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C.4.1 Density of states

Through the analytic continuation iω → ω + iδ in G0(iω,k), the retarded

Green’s function Gret
0 is obtained as

Gret
0 (ω + iδ,k) =

1

−(ω + iδ) +H0(k)
, (C.77)

and the imaginary part of Gret
0 and the spectral function are

Im[Gret
0 (ω,k)] =

πsgn(ω)
2Ek

(ω +H0(k)) (δ(ω − Ek) + δ(ω + Ek)) , (C.78)

SF (ω) =− 1

π
Tr[Gret

0 (ω,k)]

=δ(ω + Ek) + δ(ω − Ek). (C.79)

The density of states is given by

ρ(ω) =

ˆ
d3k

(2π)3
SF (ω,k)

=
|ω|
π2

ˆ ∞

0
dk⊥

ˆ ∞

0
dkz k⊥δ(ω

2 − (t2⊥k
4
⊥ + t2zk

4
z))

=
Γ(5/4)

4π3/2Γ(3/4)

|ω|1/2

t⊥t
1/2
z

, (C.80)

where Γ(x) is the gamma function and we use the identity,
ˆ 1

0
dR

R

(1−R4)3/4
=

√
πΓ(5/4)

Γ(3/4)
. (C.81)

C.4.2 Free energy

In this section, we will calculate the free energy at the TQPT in the non-

interacting limit from which the specific heat and the compressibility are de-

rived. The finite-temperature propagator of fermion is

G0(iωn,k)
−1 =(−iωn − µ) +H0(k), (C.82)
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where we introduce the chemical potential µ for deriving the compressibility.

The partition function and its logarithmic form are given by

Z =Det[βG−1
0 ]

=
∏
iωn

∏
k

[
β2((ωn − iµ)2 + E(k)2)

]
, (C.83)

lnZ =V

ˆ
d3k

(2π)3
T
∑
iωn

ln
[
β2((ωn − iµ)2 + E(k)2)

]
=
V

2

ˆ
d3k

(2π)3
T
∑
iωn

[
ln
{
β2(ω2

n + (E(k)− µ)2)
}
+ ln

{
β2(ω2

n + (E(k) + µ)2)
}]
,

(C.84)

where β = T−1 and we use the relation

[
(ωn − iµ)2 + E(k)2

] [
(ωn + iµ)2 + E(k)2

]
=
[
ω2
n + (E(k)− µ)2

] [
ω2
n + (E(k) + µ)2

]
.

(C.85)

By using

∑
iωn

ln
[
β2(ω2

n + E(k)2)
]
=E(k)/T + 2 ln(1 + e−E(k)/T ) + const., (C.86)

we obtain the free energy density as

F =− T

V
lnZ

=− T

ˆ
d3k

(2π)3

[
E(k)/T + ln(1 + e−(E(k)−µ)/T ) + ln(1 + e−(E(k)+µ)/T ) + const.

]
.

(C.87)

Subtracting T = 0 contribution, δF(T ) := F(T )−F(0) is given by

δF(T, µ) =− T

ˆ
d3k

(2π)3

[
ln(1 + e−(E(k)−µ)/T ) + ln(1 + e−(E(k)+µ)/T )

]
=

Γ(5/4)

8πΓ(3/4)

T 5/2

t⊥t
1/2
z

[
Li 5

2
(−eµ/T ) + Li 5

2
(−e−µ/T )

]
, (C.88)

where Lin(x) is the polylogarithm function.
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C.4.2.1 Specific heat

For µ = 0, using Li 5
2
(−1) = − (4−

√
2)

4 ζ(5/2) with the zeta function ζ(x), we get

the free energy δF(T, 0) as

δF(T, 0) =− (4−
√
2)Γ(5/4)ζ(5/2)

16πΓ(3/4)

T 5/2

t⊥t
1/2
z

. (C.89)

The specific heat at µ = 0 is then given by

CV =− T
∂2δF(T, 0)

∂T 2

=
15(4−

√
2)Γ(5/4)ζ(5/2)

64πΓ(3/4)

T 3/2

t⊥t
1/2
z

. (C.90)

C.4.2.2 Compressibility

The compressibility is given by

κ =− ∂2δF(T, µ)

∂µ2

=− Γ(5/4)

8πΓ(3/4)

T 1/2

t⊥t
1/2
z

[
Li 1

2
(−eµ/T ) + Li 1

2
(−e−µ/T )

]
. (C.91)

At µ = 0, we have

κ =− (
√
2− 1)Γ(5/4)ζ(1/2)

4πΓ(3/4)

T 1/2

t⊥t
1/2
z

, (C.92)

where Li1/2(−1) = (
√
2− 1)ζ(1/2) is used. Note that ζ(1/2) < 0, hence, κ > 0.

(C.93)

C.4.3 Diamagnetic susceptibility

Using the Fukuyama formula [88], the diamagnetic susceptibility is given by

χD,x =e20T
∑
iωn

ˆ
d3k

(2π)3
Tr[JjG(iωn,k)JkG(iωn,k)JjG(iωn,k)JkG(iωn,k)],

(C.94)
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where Ji ≡ ∂H0
∂ki

is the current operator,

Jx =2t⊥kxσx + 2t⊥kyσy, (C.95)

Jy =− 2t⊥kyσx + 2t⊥kxσy, (C.96)

Jz =2tzkzσz. (C.97)

Note that because of the C4 symmetry of the Hamiltonian, χD,x = χD,y = χD,⊥.

Subtracting the zero temperature contribution to obtain a finite result, we have

χD,⊥ =e20T
∑
iωn

ˆ
d3k

(2π)3
Tr[JyG(iωn,k)JzG(iωn,k)JyG(iωn,k)JzG(iωn,k)]

− e20

ˆ
dωd3k

(2π)4
Tr[JyG(iω,k)JzG(iω,k)JyG(iω,k)JzG(iω,k)],

=e20t
2
⊥t

2
z

ˆ
d3k

(2π)3
[
−32(k2x + k2y)k

2
zM2 + 128t2⊥t

2
z(k

2
x + k2y)

3k6zM4

]
=e20t

1/2
z T 1/2cχ,⊥, (C.98)

where cχ,⊥ = 0.054. Here, we use
ˆ π/2

0
cos θR sin1/2 θR dθR =

2

3
, (C.99)

ˆ π/2

0
cos3 θR sin5/2 θR dθR =

8

77
, (C.100)

and the following Matsubara frequency summations (where the zero-temperature

contribution has been subtracted)

M1(ξ/T ) =T
∑
iωn

1

(ω2
n + ξ2)

−
ˆ ∞

−∞

dω

2π

1

(ω2 + ξ2)

=
1

2ξ

[
tanh

(
ξ

2T

)
− 1

]
, (C.101)

M2(ξ/T ) =T
∑
iωn

1

(ω2
n + ξ2)2

−
ˆ ∞

−∞

dω

2π

1

(ω2 + ξ2)2

=
1

4ξ3

[
tanh

(
ξ

2T

)
− 1

]
− 1

8ξ2T

1

cosh2( ξ
2T )

, (C.102)
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M3(ξ/T ) =T
∑
iωn

1

(ω2
n + ξ2)3

−
ˆ ∞

−∞

dω

2π

1

(ω2 + ξ2)3

=
3

16ξ5

[
tanh

(
ξ

2T

)
− 1

]
− 3

32ξ4T

1

cosh2( ξ
2T )

− 1

32ξ3T 2

tanh
(
ξ
2T

)
cosh2

(
ξ
2T

) ,
(C.103)

M4(ξ/T ) =T
∑
iωn

1

(ω2
n + ξ2)4

−
ˆ ∞

−∞

dω

2π

1

(ω2 + ξ2)4

=
5

32ξ7

[
tanh

(
ξ

2T

)
− 1

]
− 5

64ξ6T

1

cosh2
(
ξ
2T

) − 1

32ξ5T 2

tanh
(
ξ
2T

)
cosh2

(
ξ
2T

)
+

1

384ξ4T 3

1

cosh4
(
ξ
2T

) [2− cosh
(
ξ

T

)]
. (C.104)

Similarly, χD,z is given by

χD,z =e
2
0T
∑
iωn

ˆ
d3k

(2π)3
Tr[JxG(iωn,k)JzG(iωn,k)JxG(iωn,k)JzG(iωn,k)]

− e20

ˆ
dωd3k

(2π)4
Tr[JxG(iω,k)JzG(iω,k)JxG(iω,k)JzG(iω,k)]

=e20t
4
⊥

ˆ
d3k

(2π)3
[
−32(k2x + k2y)

2M2 + 256t4⊥(k
2
x + k2y)

4k2xk
2
yM4

]
,

=
e20t⊥

t
1/2
z

T 1/2cχ,z, (C.105)

where cχ,z = 0.107. Here, we used
ˆ π/2

0
dθ

cos2 θ√
sin θ

=
4π1/2Γ(5/4)

3Γ(3/4)
, (C.106)

ˆ π/2

0
dθ

cos6 θ√
sin θ

=
80π1/2Γ(5/4)

77Γ(3/4)
. (C.107)

In summary,

χD,⊥ = cχ,⊥e
2
0t

1/2
z T 1/2, χD,z = cχ,z

e20t⊥

t
1/2
z

T 1/2. (C.108)
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C.4.4 Optical conductivity

The optical conductivity is given by

σij(Ω, T ) =e
2
0

ˆ ∞

−∞

dω

π

nF (ω)− nF (ω +Ω)

Ω

×
ˆ

d3k

(2π)3
Tr
[
JiIm[Gret

0 (ω,k)]JjIm[G0(ω +Ω,k)]
]
, (C.109)

where nF (x) = 1
1+ex/T

. Because of the C4 symmetry of the Hamiltonian, σxx =

σyy. Hence, we only need to consider σxx and σzz.

σxx(Ω, T ) =e
2
0

ˆ ∞

−∞

dω

π

nF (ω)− nF (ω +Ω)

Ω

×
ˆ

d3k

(2π)3
Tr
[
JxIm[Gret

0 (ω,k)]JxIm[Gret
0 (ω +Ω,k)]

]
=
e20T

3/2

5t
1/2
z

δ(Ω)

ˆ ∞

0
dR

R3/2

cosh2
(
R
2

) + 3

20
√
2π

e20

t
1/2
z

|Ω|1/2 tanh
(
|Ω|
4T

)
,

(C.110)

σzz(Ω, T ) =e
2
0

ˆ ∞

−∞

dω

π

nF (ω)− nF (ω +Ω)

Ω

×
ˆ

d3k

(2π)3
Tr
[
JzIm[Gret

0 (ω,k)]JzIm[G0(ω +Ω,k)]
]

=
e20T

3/2

t⊥t
−1/2
z

3Γ(−1/4)2

160
√
2π5/2

δ(Ω) (C.111)

×
ˆ ∞

0
dR

R3/2

cosh2
(
R
2

) + √
πΓ(3/4)

40
√
2Γ(5/4)

e20

t⊥t
−1/2
z

|Ω|1/2 tanh
(
|Ω|
4T

)
.

(C.112)
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Here, we used the following identities,
ˆ ∞

0
dR

R3/2

cosh2
(
R
2

) =4.06856, (C.113)

ˆ π/2

0

cos7/2 θ√
cos θ sin θ

dθ =
8

5
, (C.114)

ˆ π/2

0
sin5/2 θ dθ =

3Γ(−1/4)2

40
√
2π

, (C.115)
ˆ 1

0
dR

R3(R4 − 2)

(1−R4)3/4
=− 6

5
, (C.116)

ˆ 1

0
dR

R5

√
1−R4

=

√
πΓ(3/4)

10Γ(5/4)
, (C.117)

lim
Ω→0

nF (A)− nF (A± Ω)

Ω
=± 1

4T

1

cosh2(A/2T )
. (C.118)

For T = 0,

σxx(Ω) =
3

20
√
2π

e20

t
1/2
z

|Ω|1/2, (C.119)

σzz(Ω) =

√
πΓ(3/4)

40
√
2Γ(5/4)

e20

t⊥t
−1/2
z

|Ω|1/2. (C.120)

C.5 Effect of extra relevant perturbations

In the presence of extra perturbations such as doping and disorder, a new

parameter is introduced to characterize the extra perturbation in addition to

the intrinsic length scale, correlation length ξ set by temperature. For example,

for doping, the Fermi wave vector kF is well defined. With the two parameters,

the two regimes naturally appear. For a large doping kF ξ ≫ 1, our fixed point

cannot be a good starting point, and it would be better to start from the Fermi

liquid. On the other hand, kF ξ ≪ 1, our description is certainly a good starting

point and one can investigate the doping effect as a perturbation even though

a little more additional cautions are necessary as in one of the standard critical

phenomena.
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C.6 Sanity check of the power-law correction

In the main text, we included all the renormalization effects in the system

parameters. Here, for a sanity check, equivalently we will include all the renor-

malization effects in the coordinates and obtain the associated anomalous di-

mensions.

Recall that the RG equations for t⊥ and tz are given by

1

t⊥

dt⊥
dℓ

=z − 2z⊥ + αF⊥(γ), (C.121)

1

tz

dtz
dℓ

=z − 2 + αFz(γ). (C.122)

Imposing t⊥ and tz as constants, then we have

z =2− αFz(γ), (C.123)

z⊥ =1 +
α

2
[F⊥(γ)− Fz(γ)] . (C.124)

At the fixed point (α, γ) = (α∗,γ∗),

z∗ =2− α∗Fz(γ
∗), (C.125)

z∗⊥ =1 +
α∗

2
[F⊥(γ

∗)− Fz(γ
∗)] . (C.126)

Now, let us find the power-law corrections of the physical observables by

using scaling hypothesis with the renormalized quantity OR and the scaling

dimension dO for an observable O. For the density of states, we have

ρ =bz−(2z⊥+1)ρR, (C.127)

whereas for the free energy,

F =b−(z+2z⊥+1)FR. (C.128)
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From Eq. (C.128), we obtain the specific heat and the compressibility, respec-

tively, as

CV =− T
∂2F
∂T 2

= b−(2z⊥+1)CV,R, (C.129)

κ =− ∂2F
∂µ2

= bz−(2z⊥+1)κR. (C.130)

To determine the scaling relation of the optical conductivities and the dia-

magnetic susceptibilities, we use the minimal coupling −i∂i → −i∂i+e0Ai(τ,x),

where Ai(τ,x) is a gauge-field. Since e0 receives no renormalization at all,

the scaling dimension of Ai is the same as that of ∂i. The optical conduc-

tivities and the diamagnetic susceptibilities can be obtained from the current-

current response function Kij(iω, q) =
1

(2π)d+1δ(ω+Ω)δd(q+p)
⟨Ji(iω, q)Jj(iΩ,p)⟩

with Ji(iω, q) = e0
´
k ψ

†(iω,k + q)∂H0(k)
∂ki

ψ(iω,k) by the following relations

[88, 85]:

σij(ω) =
1

2ω
ImKret

ij (ω, q = 0), (C.131)

χD,i(ω) =− lim
q→0

ϵijk
2qjqk

Kjk(0, q). (C.132)

Here, the repeated indices are not summed. Because ⟨Ji(iω, q)Jj(iΩ,p)⟩ is

obtained by differentiating the logarithm of the partition function Z[A] with

respect to Ai(iω, q) and Aj(iω,p), the scaling dimension of Kij(iω, q), namely

[Kij ], is given by

[Kij ] =[
δ

δAi(iω, q)
] + [

δ

δAj(iω, q)
]− [dτ ]− [ddx]

=− [∂i]− [∂j ] + (z + 2z⊥ + d− 2). (C.133)

Equipped with this scaling relation of Kij , we can derive the following relations:

σ⊥⊥ = bd−2σ⊥⊥,R, (C.134)

σzz = b2z⊥−d+2σzz,R, (C.135)

χD,⊥ = b−z+d−2χD,⊥,R, (C.136)

χD,z = b−z+2z⊥−d+2χD,z,R. (C.137)
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The RG equation of the temperature and frequency is

dO
d ln b = zO, (C.138)

where O = T,Ω. Let z = z∗ and z⊥ = z∗⊥. Solving this, we obtain O(b) = bz
∗O.

Let b∗ be the cutoff value, so that O(b∗) = (b∗)z
∗O = Λ, then b∗ = (Λ/O)1/z

∗ ∝

O−1/z∗ . Using this, we can obtain the power-law corrections of the observables

in terms of the temperature and frequency.

For the density of states, we have

ρ ∝ |Ω|(2z∗⊥+1−z∗)/z∗ ∝ |Ω|1/2+c⊥+ 1
2
cz . (C.139)

For the specific heat and compressibility,

CV ∝ T (2z∗⊥+1)/z∗ ≈ T 3/2+c⊥+ 1
2
cz , (C.140)

κ ∝ T (2z∗⊥+1−z∗)/z∗ ≈ T 1/2+c⊥+ 1
2
cz . (C.141)

For the diamagnetic susceptibility,

χD,⊥ ∝T (z∗−1)/z∗ ≈ T 1/2− 1
2
cz , (C.142)

χD,z ∝T (z∗−2z∗⊥+1)/z∗ ≈ T 1/2−c⊥+ 1
2
cz . (C.143)

For the optical conductivity,

σxx ∝Ω1/z∗ ≈ Ω1/2+cz , (C.144)

σzz ∝Ω(2z∗⊥−1)/z∗ ≈ Ω1/2+c⊥− 1
2
cz . (C.145)

Here, c⊥ ≈ 0.402/Nf and cz ≈ 0.044/Nf in the large Nf approximation.

Thus, we obtain the same results as in the main text. If the symmetry-allowed

parabolic term is included, we have c⊥ ≈ 0.145/Nf and cz ≈ 0.050/Nf .

For the candidate materials of DWSM, HgCr2Se4 and SrSi2, HgCr2Se4 has

one pair (Nf = 1) of double-Weyl points, whereas SrSi2 has six pairs (Nf = 6)

of double-Weyl points. In particular, for SrSi2, it has cubic symmetry, therefore,
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to see the anisotropic behaviors, we need to maintain only one C4 symmetry.

For example, if we apply a uniaxial pressure along ẑ, then the C4 symmetry

along x̂ and ŷ is broken, so we only have two pairs of double-Weyl points

on the ẑ axis [82]. Therefore, under this situation, the effective number of

pairs of double-Weyl points of SrSi2 is two (Nf = 2). Then, for η2 ≡ cz/2

and η3 ≡ c⊥ − cz/2 we find that η2 − η3 values for HgCr2Se4 and SrSi2 are

−0.198 and −0.132, respectively. We expect that the anisotropic scaling will

be manifested at low temperatures or low frequencies.
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국문초록

많은 수의 물질과 물질의 상(phase)을 연구함에 있어서 이들을 일관되고

유용한 방식으로 구분하는 것은 본질적으로 그 물질에 대한 이해를 필요로

하고 더 깊은 연구를 위한 도움이 된다. 물질의 상 (phase)을 구분하는 대표

적인 방법은 Landau의 상전이에 대한 연구를 기반으로 발전하였는데, 물질이

상전이를 거치면서 깨진 대칭성(broken symmetry)을 이용한다.

그러나 2000년대중반에이런대칭성에기반한방식으로는구분할수없는

새로운상과전자구조의위상학적성질과연관되어있다는것이밝혀지면서이

새로운 ’위상학적상’(topological phase)에대한탐구가응집물질물리계전반에

걸쳐서 활발히 진행되었다. 본 논문에서는 이러한 학계 흐름의 연장선에서

위상적성질이특별한새로운물질들에대해서전자간원거리상호작용에의한

효과를 연구하였다.

첫째로 단층 전이금속 칼코겐 화합물(transition metal dichalcogendies)를

이용한 광학 공동에서 엑시톤-폴라리톤에 대한 연구를 하였다. 엑시톤은 부

도체 물질의 최외곽 띠에 있는 전자가 들뜨면서 생기는 정공 (hole)와 함께

전자-정공 원거리 상호작용을 통해 서로 속박 된 상태이다. 양전하의 정공과

음전하의 전자가 서로를 속박하고 있으므로 수소에 대응하는 준입자로 이해할

수있다. 전자와 정공의결합체로서극성을강하게띄는엑시톤은빛과강하게

상호 작용 하는데, 이 때 엑시톤과 엑시톤이 흡수하고 내뱉는 광자가 모두

결맞은 상태가 되는 경우, 이 새로운 상태를 엑시톤-폴라리톤이라고 한다.

엑시톤-폴라리톤은 질량이 없는 광자의 성질을 닮아서 질량이 매우 작은

준입자로 해석 할 수 있다. 질량이 작은 입자의 경우 보즈-아인슈타인 응축이
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발현하는 온도가 높다. 엑시톤-폴라리톤의 경우 상온에서 보즈-아인슈타인

응축이 발현 할 수도 있을 정도로 질량이 작기에, 상온 보즈-아인슈타인 응축

물질의 후보로 각광 받았다. 본 논문에서는 단층 전이금속 칼코겐 화합물의

경우최외곽전자띠와전도띠의위상적으로평범하지않은 ’질량을지닌이차원

디락 페르미온’의 구조를 고려하여 연구를 진행하였다. 연구를 통해서 평범한

전자 기체 모델에서 등장하는 연속적인 BEC-BCS 교차(BEC-BCS crossover)

대신위상적일차상전이가나타나는결과를얻었다. 이 결과를 바탕으로단층

전이금속 칼코겐 화합물을 바탕으로 하는 엑시톤-폴라리톤계가 보일 수 있는

다양한 위상적 상들을 제시하였다.

둘째로이중-바일마디(double-Weyl node)가있는위상준금속의위상학적

상전이점에서 전자-전자 상호작용의 영향을 연구하였다. 이중-바일 마디는

바일마디의확장된형태이다. 바일 마디가물질의브릴루앙영역내부임의의

지점에서 생길 수 있고, ±1의 위상학적 전하 (topological charge)을 지니고

있는데 반해, 이중-바일 마디는 C4 혹은 C6 회전 대칭이 있는 물질에서 이

회전의 축 상에서만 나타날 수 있다. 그리고 ±2의 위상학적 전하를 지닌다.

특히 에너지 분산식 관점에서 바일-마디의 에너지 분산식이 운동량에 모든

방향으로 선형적(linear)인 의존성을 보여 주는 것에 반해, 이중-바일 마디의

경우 회전축과 나란한 방향의 운동량에 대해선 에너지 분산식이 선형으로 의

존하지만, 회전축과 수직한 방향으로는 이차(quadratic)의존성을 보여준다.

이중-바일 마디가 있는 위상 준금속에 물리적 혹은 화학적 압력을 가하는

방식으로 위상적 전하의 부호가 다른 두 이중-바일 페르미온을 쌍소멸 시킬 수

있다. 이중-바일 페르미온의 쌍소멸이 일어난 후에는 물질이 준금속이 아닌

부도체가되는데, 준금속과부도체상의경계면에서위상적상전이(topological

phase transition)가 일어나게 된다. 이런 상전이 점에서는 전자 구조의 낮은

에너지 영역이 눈금 바꿈(scaling)에 대해 불변인 특성을 보인다. 이런 눈금

바꿈에대해불변인계는재규격화군(renormalization group)을이용해연구하

는데, 본 논문에서는 재규격화군의 표준적인 두 가지 방식(large-Nf method,

ϵ = 4 − d expansion)을 이용하여 이중-바일 준금속의 위상적 상전이점에서
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전자간 쿨롱 상호작용의 영향을 연구하였다. 이중-바일 준금속의 위상적 상

전이점에서 상호작용으로 인해 비등방성(anisotropy)이 발현되고 고체 내 전

자에 대한 준입자(quasiparticle) 기술이 한계에 봉착하는 비-페르미 액체(non-

Fermi liquid)가 구현됨을 보였으며, 이에 대한 실험적 신호들을 제시하였다.

기존에 이론적으로 제안된 비등방성 비-페르미 액체 상들은 질서 변수(order

parameter)의 대칭성 깨짐(symmetry breaking)을 수반하는 것에 반해, 본 연

구에서 제안된 비등방성 비-페르미 액체는 대칭성 깨짐과 무관한 위상적 상

전이를 통해 나타난다는 점에서 비등방성 비-페르미 액체를 구현하는 새로운

보편성 부류(universality class)를 제안하였다는 의미가 있다.

주요어: 엑시톤, 엑시톤-폴라리톤, 위상적 상전이, 이중-바일 준금속, 원거리

쿨롱 상호작용

학번: 2013-22992
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