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Abstract

A study on ID-based Homomorphic

Encryption with Noisy Key

Yongha Son

Department of Mathematical Sciences

The Graduate School

Seoul National University

Secure data analysis delegation on cloud is one of the most powerful

application that homomorphic encryption (HE) can bring. As the technical

level of HE arrive at practical regime, this model is also being considered

to be a more serious and realistic paradigm. In this regard, this increas-

ing attention requires more versatile and secure model to deal with much

complicated real world problems.

First, as real world modeling involves a number of data owners and

clients, an authorized control to data access is still required even for HE

scenario. Second, we note that although homomorphic operation requires

no secret key, the decryption requires the secret key. That is, the secret

key management concern still remains even for HE. Last, in a rather fun-

damental view, we thoroughly analyze the concrete hardness of the base

problem of HE, so-called Learning With Errors (LWE). In fact, for the

sake of efficiency, HE exploits a weaker variant of LWE whose security is

believed not fully understood.

i



ii

For the data encryption phase efficiency, we improve the previously

suggested NTRU-lattice ID-based encryption by generalizing the NTRU

concept into module-NTRU lattice. Moreover, we design a novel method

that decrypts the resulting ciphertext with a noisy key. This enables the

decryptor to use its own noisy source, in particular biometric, and hence

fundamentally solves the key management problem. Finally, by considering

further improvement on existing LWE solving algorithms, we propose new

algorithms that shows much faster performance. Consequently, we argue

that the HE parameter choice should be updated regarding our attacks in

order to maintain the currently claimed security level.

Key words: ID-based cryptography, Post-quantum cryptography, Homo-

morphic encryption, Noisy key cryptography

Student Number: 2014-21208
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Chapter 1

Introduction

Homomorphic encryption (HE) is one of the most fascinate modern crypto-

graphic primitives, which allows computations on encrypted state without

secret key. This fundamentally removes the possibility of data leakage by

storing only ciphertexts, and newly opens various applications that was im-

possible before the advent of HE. After the first proposal of HE by Gentry

[Gen09], there has reported numerous contributions on functionality and

efficiency of HE over a decade, and now its technical level is considered

to be reach a quite practical extent. In accordance with this development,

there has been reported some series of researches of secure data analy-

sis on cloud. In this scenario, data owners encrypt their data, and those

encrypted data gather into cloud where data analysis would be homomor-

phically done. So far, this scenario is examined in somewhat naive sense

where encryption and decryption is done by a sole data owner, or there is

only one massive amount of data owner. However, the actual real world

problem is likely to be much more complicated than such model, and hence

a more delicate argument on key distribution and data access management

1



CHAPTER 1. INTRODUCTION

is required.

1.1 Access Control based on Identity

Consider a data analysis model that consists of several data owners that

provides each own data in encrypted state and clients that query analysis

result of data. Then, it is highly desirable for each data owner to have

a control on authority of access for its data, in a point that this is con-

nected to business model. The most natural solution for this would be using

ID-based HE, where each data owner encrypts its data so that only the

target ID user can decrypt it. It is actually realized by a generic compiler

which converts a plain ID-based encryption into ID-based HE is reported

in [GSW13]. Hence our goal is achieved by letting each data owner encrypts

its data with regard to every ID that it wants to assign access.

However, this solution still has efficiency issues. First in this case, the

computation cost of each data owner would be proportional to the number

of ID, since it should encrypt data for each other ID. As the ciphertext

expansion rate of homomorphic encryption is rather small, this would be

a burden for data owners who are not expected to have huge computation

power. In this regard, it would be greatly helpful to consider the approach

similar to [GHS12] that studied homomorphic evaluation of AES circuit,

which converts AES ciphertext into HE ciphertext. Then secondly, for ho-

momorphic evaluation of ID-based encryption, now the efficiency of base

ID-based encryption matters. For this, there is one quite efficient lattice-

based scheme [DLP14] is proposed base on NTRU problem, whose effi-

ciency is believed to be comparable to a recent implementation of pairing-

based one [BF01].

2



CHAPTER 1. INTRODUCTION

1.2 Biometric Key Management

Although homomorphic operations between ciphertexts can be done with-

out secret key, we cannot still exclude the secret key in the whole sce-

nario, at least for decryption procedure. In other words, there still re-

mains key management problem. Fuzzy extractor, suggested by Dodis et

al. [DORS08], is a promising cryptographic primitive that resolves those

problems. Informally, fuzzy extractor extracts a uniform random string r

and a public value H called helper from a reading w in a random source.

Then with the helper H and another reading w1 of the same source, one

can reproduce the same random string whenever w and w1 are close; which

means, in biometrics setting, w and w1 come from the same person.

There have been several proposals of fuzzy extractor, and most of them

rely on another cryptographic primitive named secure sketch also suggested

by the seminal work of Dodis et al. [DORS08]. Until now, many fuzzy ex-

tractors using secure sketch is being developed [WL18, WLG19] and it

currently tolerates considerably high amount of error—linear fraction of

errors— in polynomial time on standard assumption. However, the most

critical weakness of secure sketch-based constructions is its too high en-

tropy requirement for random source. That is, known building techniques

of secure sketch requires too high min-entropy of random sources, and it is

still difficult to obtain such random sources in practice [Dau09, KLRW14].

1.3 Concrete Security of HE

The semantic security of HE is based on the hardness of lattice-problem

named Learning With Errors (LWE). However, for the sake of efficiency,

most of HE implementations uses extremely small vectors, which currently

3



CHAPTER 1. INTRODUCTION

lie outside of the currently known provably secure parameter regime. In

this situation, Albrecht [Alb17] recently pointed out that the variants of

LWE with small key is far weaker than previous thoughts by suggesting a

new variant of the dual attack, which is one of primary solving algorithms

for LWE. About this issue, in the homomorphic encryption standardiza-

tion [ACC`18], HE community reaches a consensus of using ternary se-

crets while expecting there would be no more significant improvement on

ternary secrets. However for the use of sparse secrets, it represents some

uncertainty by stating

“However, we will not present tables for sparse secrets because the security

implications of using such sparse secrets is not well understood yet.”

1.4 List of Papers

This thesis contains the results of the following papers.

• [CHHS19] Jung Hee Cheon, Minki Hhan, Seungwan Hong, and

Yongha Son, A Hybrid of Dual and Meet-in-the-Middle Attack on

Sparse and Ternary Secret LWE, IEEE Access, Vol. 7, 2019.

• [SC19] Yongha Son, and Jung Hee Cheon. Revisiting the Hybrid at-

tack on sparse secret LWE and Application to HE parameters, 7th

Workshop on Encrypted Computing & Applied Homomorphic Cryp-

tography (WAHC), 2019.

• [CHS19] Jung Hee Cheon, Minki Hhan, and Yongha Son, Reusable

Fuzzy Extractors from Local Functions, In submission.
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• [CKKS19] Jung Hee Cheon, Duhyeong Kim, Taechan Kim, and

Yongha Son, A New Trapdoor over Module-NTRU Lattice and its

Application to ID-based Encryption, In submission.
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Chapter 2

Background

2.1 Notation

We first denote rns “ t0, 1, ¨ ¨ ¨ , n ´ 1u, and Zn is treated as rns in this

thesis. For a P Z, we denote a mod n by a unique number P r0, nq such

that a ´ pa mod pq is an integer multiple of n. tas denotes the nearest

integer of a, and rasp is a unique integer in p´p{2, p{2s such that a ´ rasp

is a multiple of p.

Column vectors are written by bold and lower case letters and matrices

are written by upper case letters. The entries of bold face is denoted as

v “ pv0, v1, ¨ ¨ ¨ , vn´1q
t. We sometimes take modular n for indices of vector

and omit the transpose operator t.

6



CHAPTER 2. BACKGROUND

2.2 Lattices

A lattice is a discrete additive subgroup of Rd. A full rank matrix B P Rdˆn

is called a basis of a lattice Λ if it holds that

Λ “ tBx : x P Znu.

We write ΛpBq to represent a lattice determined by basis B. The dimension

of a lattice Λ is defined as the cardinality of any basis of Λ. In particu-

lar, a lattice in Rd whose dimension is maximal is called full-rank lattice

and without any special mention, we will only consider full-rank lattices

throughout this paper.

The fundamental parallelepiped of a lattice basis B “ rb1, ¨ ¨ ¨ , bds P

Rdˆd is given by

PpBq “

#

x P Rd
| x “

d
ÿ

i“1

cibi for ´ 1{2 ď ci ă 1{2

+

The determinant det of lattice Λ is defined as the d-dimensional volume of

its fundamental parallelepiped.

2.2.1 Lattice Reduction Algorithm

Lattice reduction algorithm with root-Hermite factor δ0 returns a short

basis, especially whose first vector b1 has size ď δd0 ¨ det Λ1{d. The BKZ al-

gorithm [CN11] is a commonly used lattice reduction algorithm. For inputs

d-dimensional basis B of some lattice and blocksize β, the BKZ algorithm

repeatedly solves the shortest vector problem (SVP) on dimension β blocks

obtained from B, and it is known that BKZ terminates after polynomial

7



CHAPTER 2. BACKGROUND

numbers of SVP solver call. Thus the time complexity of BKZ closely re-

lated to the core SVP oracle call, and we will mention the explicit formula

in later Section 5.5. We denote an BKZ algorithm call with blocksize β for

a basis T by BKZβpT q.

Regarding the quality of BKZ algorithm, in [Che13] it is experimentally

verified that BKZ with blocksize β yields root-Hermite factor

δ0 «

ˆ

β

2πe
pπβq

1
β

˙
1

2pβ´1q

,

and we also accept this for our analysis.

2.2.2 BKZ cost model

There are two popular choices for BKZ cost model according to core SVP

solver; one is from a sieving algorithm [BDGL16] and the other from an

enumeration algorithm [CN11]. For blocksize β and dimension d, we assume

TBKZpβ, dq costs by

• 8d ¨ 20.292β`16.4 according to sieving,

• 8d ¨ 20.187β log β´1.019β`16.1 according to enumeration.

2.2.3 Geometric Series Assumption (GSA)

There is an useful assumption that estimates the lengths of the Gram-

Schmidt vectors of a reduced basis. Let B P Zdˆd be a reduced basis of some

full-ranked lattice with root-Hermite factor δ0 and let b˚i denote the i-th

Gram-Schmidt vectors of B. Then the geometric series assumption (GSA)

predicts that the length of b˚i decreases geometrically. More precisely, GSA

8



CHAPTER 2. BACKGROUND

predicts Ri :“ }b˚i } by

Ri “ δ
´2pi´1q`d
0 ¨ detpΛpBqq1{d. (2.1)

2.2.4 The Nearest Plane Algorithm

We will exploit Babai’s nearest plane algorithm [Bab86] (denoted by NP

shorthand) in our attack as a subroutine, whose property is summarized

as following.

Lemma 2.2.1. Let B be a lattice basis and t P Rd be a target vector.

Then Babai’s nearest plane algorithm NP given input B and t returns the

unique vector e “ NPBptq P PpB˚q satisfying t ´ e P ΛpBq, where B˚ is

the Gram-Schmidt basis of B.

We denote the output vector by NPBptq “ e. For the runtime of nearest

plane algorithm, we follow the heuristic assumption due to Hirschhorn et

al. [HHHGW09], which says the number of operations TNP of NP algorithm

on d-dimensional lattice input is upper bounded by

TNP “ d2
{21.06. (2.2)

For more details on the nearest plane algorithm, we refer Babai’s original

work [Bab86] or Linder and Peikert’s work [LP11].

2.3 Gaussian Measures

For a full-rank n-dimensional lattice Λ Ă Rn, the discrete Gaussian dis-

tribution with width σ ą 0 and center c P Rn denoted by DΛ,σ,c is a

9
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distribution over Λ which samples x P Λ with the probability

DΛ,σ,cpxq :“
ρσ,cpxq

ř

zPΛ ρσ,cpzq

where ρσ,cpzq :“ exp

ˆ

´
}z ´ c}2

2σ2

˙

.

There is an well-known parameter ηεpΛq called smoothing parameter

defined by [MR07], which is defined by the smallest s ą 0 such that

ρ1{s,0pΛ
˚
zt0uq ď ε,

where Λ˚ is a dual lattice of Λ. We also denote the scaled-version η1εpΛq :“
1?
2π
ηεpΛq. In particular, it is known that from [GPV08]

η1εpZq «
1

π
¨

d

1

2
ln

ˆ

2`
2

ε

˙

.

A Gaussian Sampler.

An algorithm that approximately samples the discrete Gaussian is pro-

posed by [GPV08], and we will use for our MNTRU lattices and IBE

scheme. Here we omit the detail of the algorithm and simply define the

syntax: for a basis B of a lattice L, we denote the [GPV08] algorithm that

approximately samples DΛ,σ,c by

GaussianSamplerpB, σ, cq.

10
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2.3.1 Kullback-Leibler Divergence

Instead of the traditional statistical distance concept to measure the dis-

tance of two distributions, we especially will make use of Kullback-Leibler

divergence (or KL divergence) following the methodology of [DLP14].

Remark. In fact, the recent literature is using more general concept of

distance called Rényi divergence, for example in [PAFZ19]. However, the

previous work [DLP14] was analyzed with KL divergence, and hence in

this paper we stick to the KL divergence for a clear comparison.

Definition 2.3.1 (Kullback-Leibler Divergence). Let P and Q be two dis-

tributions over a common countable set Ω, and let S Ă Ω be the support

of P . The Kullback-Leibler Divergence, noted DKL of Q from P is defined

as:

DKLpP ||Qq “
ÿ

iPS

ln

ˆ

Ppiq
Qpiq

˙

Ppiq

with the convention that lnpx{0q “ `8 for any x ą 0.

It is known that, if two distribution P and Q has small KL divergence,

hardness of any search problem that requires oracle queries for P is pre-

served even if the oracle queries is replaced with Q.

Lemma 2.3.1 (Lemma 1 of [PDG14]). Let AP be an algorithm making at

most q queries to an oracle sampling from a distribution P and returning

a bit. Let A ě 0, and Q be a distribution such that DKLpP ||Qq ď ε. Let x

(resp. y) denote the probability that AP (resp. AQq outputs 1. Then,

|x´ y| ď

c

qε

2
.

Finally, we have the following fact for KL divergence of the ideal discrete

Gaussian and the Gaussian sampler that we will use.

11
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Theorem 2.3.1 (Theorem 2 of [DLP14]). For any ε P p0, 1{4nq, if σ ě

η1εpZq}B˚
}, then

DKL

`

DΛpBq,σ,c||GaussianSamplerpB, σ, cq
˘

ď 2

ˆ

1´

ˆ

1` ε

1´ ε

˙n˙2

« 8n2ε2.

2.4 Lattice-based Hard Problems

2.4.1 The Learning With Errors Problem

Let n, q ą 0 be integers, s P Znq and χ be an error distribution over Z. We

define a distribution ALWE
n,q,χ,s over Zn`1

q obtained by sampling a Ð UpZnq q
and eÐ χ, and then computing

pa, bq “ pa, xa, sy ` eq P Zn`1
q .

Given many samples pai, biq from ALWE
n,q,χ,s, we can represent it by a matrix

pA, bq whose each row corresponds to one sample, and denoted it by LWE

samples. Also we define ALWE
n,q,α,s as the distribution ALWE

n,q,χ,s where χ is a

Gaussian distribution DZ,αq for α ą 0.

Definition 2.4.1 (Learning with Errors). Let S be a distribution over Znq .

• A search version of LWEn,q,χpSq(or LWEn,q,αpSq) is a problem that

asks to find the secret key s, given LWE samples from ALWE
n,q,χ,s(or

ALWE
n,q,α,s) for a fixed sÐ S.

• A decision version of LWEn,q,χpSq(or LWEn,q,αpSq) is a problem that

asks to determine that, given arbitrarily many samples pai, biq P Zn`1
q ,

they are LWE samples from ALWE
n,q,χ,s(or ALWE

n,q,α,s) for a fixed sÐ S or

uniform random samples from UpZn`1
q q.

12
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Although we abuse the notation LWE for both search and decision prob-

lem, without special mention, we consider a decision version of LWE prob-

lem for the most cases in this thesis. Also note that there is a decision-to-

search reduction of LWE problem [Reg05].

Special Distributions for Secret Vectors.

Several LWE-based cryptosystems takes the secret distribution S by small

portion of Znq to enhance efficiency. In particular, we will focus on the

case where S is the set of sparse (signed) binary vectors. For the sake of

readability, we denote

Bn,h “ ts P t˘1, 0un : HWpsq “ hu,

Bn,ďh “ ts P t˘1, 0un : HWpsq ď hu.

2.4.2 NTRU Problem

We recall the definition of the NTRU lattices.

Definition 2.4.2 (NTRU lattices). Let n be a power-of-two integer, and q

be a positive integer. For f, g P R, let h “ g{f mod q. The NTRU lattice

ΛNTRU associated to h and q is

ΛNTRU “ tpu, vq P R2 : u` vh “ 0 mod qu.

By the definition, ΛNTRU can also be seen as a full-rank lattice in Z2n

generated by the columns of ANTRU “

˜

´Anphq qIn

In On

¸

.

Several cryptosystems that deal with the NTRU lattices base their se-

curity on the hardness assumption of the NTRU problem which states that

13
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if f, g P Rq are random small polynomials, their quotient g{f is indistin-

guishable from random in Rq.

An interesting aspect of the NTRU lattice is that it can be easily instan-

tiated with a trapdoor basis. More precisely, as explained in [HHGP`03],

one can find another basis by computing F,G P R such that gF ´fG “ q,

and then a short trapdoor basis of ΛNTRU is provided by the integral matrix

TNTRU :“

˜

Anpgq AnpGq
´Anpfq ´AnpF q

¸

.

2.5 One-way and Pseudo-random Functions

Let F : t0, 1un Ñ t0, 1um be a function. Usually, one-way functions (OWF)

and pseudo-random generators (PRG) are defined for uniformly chosen

xÐ Un. We here consider more general definitions where the input distri-

bution can be nonuniform, and the advantages are also relaxed.

Definition 2.5.1 (OWF over weak seed). Let W “ tWnu be a family of

distributions over t0, 1un, and let F “ tFn : t0, 1un Ñ t0, 1un
s
u be a family

of functions. For a PPT adversary A, we define

AdvGn,WnpAq :“ Pr
A,w

$
ÐÝWn

rFnpw
1
q “ F pwq : ApFn, Fnpwqq Ñ w1s.

F is called to be εpnq-one-way (or ε-OW for short) over W if for any PPT

adversary A, it holds that

AdvFn,WnpAq ď εpnq.

In particular, if ε “ neglpnq, we say that F is a one-way function over

14
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W.

Definition 2.5.2 (PRG over weak seed). Let W “ tWnu be a family of

distributions over t0, 1un, and let F “ tFn : t0, 1un Ñ t0, 1un
s
u be a family

of functions. For a PPT adversary A, we define

AdvFn,WnpAq :“

ˇ

ˇ

ˇ

ˇ

ˇ

Pr
A,w

$
ÐÝWn

rApFn, Fnpwqq “ 1s ´ Pr
u

$
ÐÝUns

rApFn, uq “ 1s

ˇ

ˇ

ˇ

ˇ

ˇ

.

F is called to be ε-pseudorandom generator over W if for any PPT adver-

sary A, it holds that

AdvFn,WnpAq ď εpnq.

If ε “ neglpnq, then we say that F is pseudorandom generator over W .

15



Chapter 3

ID-based Data Access Control

In this section, we propose a generalized notion of NTRU lattices called

module-NTRU(MNTRU) lattices which enables to solve the dimension in-

flexibility of NTRU-based cryptosystems. We also show efficient genera-

tion a trapdoor over MNTRU lattices, and argue that our generalization

yields better efficiency than NTRU trapdoor as well as parameter flexi-

bility. Based on our MNTRU trapdoor, we construct a new IBE scheme

as a generalization of the Gentry-Peikert-Vaikuntanathan (GPV) frame-

work [GPV08] based on NTRU trapdoor. We also rigorously analyze the

parameter choices with respect to the correctness and the security of the

scheme. Our generalization derives much efficient parameter instantiation

upon previous IBE scheme over MNTRU lattices.

3.1 Module-NTRU Lattices

In this section, we introduce the generalized notion of NTRU lattices de-

scribed in Section 2.4.2. To give intuition, we understand the NTRU trap-

16
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door generation by following. First, it samples short polynomials f, g P R,

and we view this by sampling a small matrix S “

«

g

´f

ff

. Then, an NTRU

instance h “ g{f P Rq can be understood by an element obtained from

a vector orthogonal to S. In this case, such orthogonal vector is clearly

pf, gq P R2, and h comes from the quotient vector p1, g{fq P R2
q. Finally,

we extend S to the trapdoor TNTRU by solving the NTRU equation that

satisfies gF ´ fG “ q, and define TNTRU “

˜

Apgq ApGq
´Apfq ´ApF q

¸

.

In Section 3.1.1, we elaborate the generalization of the above un-

derstanding of NTRU instance and trapdoor generation, which we call

module-NTRU (MNTRU) instance and trapdoor. We will apply this new

trapdoor for IBE scheme in later sections, and the Gram-Schmidt norm of

the trapdoor matrix is closely related to its efficiency. Regarding this, we

analyze and discuss about the Gram-Schmidt norm of the trapdoor matrix

in Section 3.1.2.

3.1.1 Construction of MNTRU lattice and trapdoor

Our new construction essentially follows the above described framework

for NTRU; we first set a small matrix S P Rdˆpd´1q which corresponds to

pg,´fqt, and consider a vector orthogonal to S, say

det “ pdet1, ¨ ¨ ¨ , detdq,

whose name indicates, this vector is indeed computed from the determinant

of submatrices of S. Then we define a MNTRU instance by a vector h P

Rd´1
q such that p1,hq “ det´1

1 ¨ det. Finally, we consider a generalized

17
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version of NTRU equation defined by

d
ÿ

i“1

deti ¨ Fi “ q,

and by concatenating F “ pF1, ¨ ¨ ¨ , Fdq to S, we complete the trapdoor

TMNTRU generation.

We elaborate from the generation of S. Firstly, we sample vector of

polynomials f i “ pf1,i, ¨ ¨ ¨ , fd,iq P Rd for 1 ď i ď d ´ 1 where each

fj,i is a small polynomial(having small coefficients), and define a matrix

S “ rf 1, ¨ ¨ ¨ ,f d´1s P Rdˆpd´1q, and assume that S is full-rank in Rq which

happens with high probability.

To find a vector orthogonal to S over R, we define Si be the pd ´

1q ˆ pd ´ 1q matrix that results from deleting i-th row of S, and define

deti “ p´1qi´1 ¨ detpSiq. Then the following lemma holds.

Lemma 3.1.1. The vector det “ pdetiq1ďiďd satisfies dett ¨ S “ 0 over R.

Proof. We show dett is orthogonal to each column f i of S by considering

a d ˆ d matrix Mi “ rf i || Ss . Since Mi has the same two columns, it

has determinant 0. Now the cofactor expansion by the first column implies

detpMiq “ dett ¨ f i, which ends proof.

Assuming that det1 is invertible in Rq (hence S is full-rank in Rq), we

define the MNTRU instance hMNTRU P Rd´1
q as

hMNTRU “ ph1, ¨ ¨ ¨ , hd´1q.

From Lemma 3.1.1, it holds that p1,hMNTRUq ¨ S “ 0 mod q. We then

define the dn-dimensional MNTRU lattice ΛMNTRU associated to h and q

18
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by

ΛMNTRU “ tpu0, ¨ ¨ ¨ , ud´1q P Rd : u0` u1h1` ¨ ¨ ¨ ` ud´1hd´1 “ 0 mod qu,

whose basis is given by

AMNTRU :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

´Aph1q ´Aph2q ¨ ¨ ¨ ´Aphd´1q qIn

In On ¨ ¨ ¨ On On

On In ¨ ¨ ¨ On On

...
...

. . .
...

...

On On ¨ ¨ ¨ In On

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

We proceed to the generation of the MNTRU trapdoor TMNTRU P

Zdnˆdn of ΛMNTRU. For that, we consider the generalized NTRU equation

(MNTRU equation) which was previously defined in [PP19], where we uti-

lize a restricted version: Given S P Rdˆpd´1q, find polynomials F1, ..., Fd P R
such that

d
ÿ

i“1

deti ¨ Fi “ q (3.1)

where deti for 1 ď i ď d are defined above. This can be done by

generalizing the previous method in [HHGP`03], or applying more de-

veloped method of [PP19]. As our proof-of-concept implementation ex-

ploits the former method, we give the detailed procedure by following. Let

det “ pdet1, ¨ ¨ ¨ , detdq P Rd be a vector of polynomial, and let φ “ Xn` 1.

Our goal is to find F “ pF1, ¨ ¨ ¨ , Fdq P Rd satisfying

d
ÿ

i“1

deti ¨ Fi “ q.
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• First, compute si P ZrXs such that

sideti “ Ri mod φ,

where Ri P Z is the resultant of deti and φ.

• Compute the GCD δ of Ri, with coefficients ui P Z such that

d
ÿ

i“1

uiRi “ δ.

• If δ divides q, define

F 1i “
q ¨ ui
δ

si.

The vector F 1 “ pF 11, ¨ ¨ ¨ , F
1
dq may have too large size, and hence we use

Babai’s reduction on F 1 with a matrix S, which gives much shorter solution

F “ pF1, ¨ ¨ ¨ , Fdq of the MNTRU equation.

For a solution vector F “ pF1, ..., Fdq P Rd of the MNTRU equation,

we set the trapdoor TMNTRU P Zdnˆdn as the concatenation of AnpSq and

AnpF q, i.e.,

TMNTRU :“ pAnpSq||AnpF qq .

We know that p1,hMNTRUq ¨ S “ 0 mod q from Lemma 3.1.1, and

moreover (3.1) implies that xp1,hMNTRUq,F y “ 0 mod q, and hence a

lattice ΛpTMNTRUq is contained in ΛMNTRU. Finally, Lemma 3.1.2 below

says ΛpTMNTRUq is full-rank, which completes the construction of trapdoor

TMNTRU for the MNTRU lattice ΛMNTRU.

Lemma 3.1.2. ΛpTMNTRUq Ą qIdn.

Proof. We only need to show that ΛRpS||F q Ą qRd. Let ei P Rd denote the
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unit vector whose i-th component is 1 for 1 ď i ď d. Since
řd
i“1 deti ¨Fi “ q,

the determinant of TMNTRU is p´1qd´1 ¨ q. Let Mi,j be the pi, jq-minor of

TMNTRU, the determinant of pd´1qˆpd´1qmatrix results from deleting i-th

row and j-th column of TMNTRU, and define M i :“ pMi,1,Mi,2, ...,Mi,dq
t P

Rd. Then, by the cofactor expansion, it holds that

TMNTRU ¨M i “ p´1qi´1
¨ detpTMNTRUq ¨ ei “ ˘qei,

which proves our claim.

Note that Lemma 3.1.2 only implies that ΛpTMNTRUq is a full-rank

sublattice of ΛMNTRU, but does not guarantee that ΛpTMNTRUq “ ΛMNTRU,

and hence TMNTRU is not proven to be a trapdoor basis for ΛMNTRU; recall

that for NTRU case, TNTRU is a basis of ΛNTRU. We first note that it is

well known(e.g., Lemma 7.1 of [MG02]) that TMNTRU can be efficiently

converted into a basis B of ΛMNTRU such that }B˚
} ď }T˚

}. As a more

important remark, the full-rank set TMNTRU indeed suffices for the trap-

door usage, and hence we never perform such basis-converting process in

our IBE scheme.

Hardness Assumption

The original NTRU trapdoor obtains its hardness from NTRU assumption

that as, for two small random polynomials f and g in R, their quotient

h “ fg´1 P Rq is indistinguishable from uniform element in Rq. For our

case, we can establish a similar MNTRU assumption, saying

hMNTRU “ det´1
1 ¨ pdet2, ¨ ¨ ¨ , detdq P Rd´1

q
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is indistinguishable from a uniform vector in Rd´1
q .

In fact, what we exactly need is somewhat weaker notion; to apply the

GPV framework, we require SIS is hard over a random choice of A. Thus,

our following IBE scheme is secure under somewhat mild assumption that

SIS is hard over AMNTRU on average, where the randomness is from the

random choice of S.

3.1.2 Minimize the Gram-Schmidt norm

For an IBE scheme in GPV framework, the users’ secret key issue involves a

discrete Gaussian sampling over ΛpTMNTRUq. As known discrete Gaussian

samplers sample Gaussian having size proportional to }T˚
MNTRU}, it is quite

important to set TMNTRU to have small Gram-Schmidt norm }T˚
MNTRU}. In

this regard, we now explain how we choose S P R to minimize }T˚
MNTRU}.

We start from the following lemma adapted from Lemma 2 of [DLP14]

that says for MNTRU trapdoor, we only need to see d Gram-Schmidt

norms to determine }T˚
MNTRU}.

Lemma 3.1.3. Let TMNTRU “ rt1 ¨ ¨ ¨ tdns be the MNTRU trapdoor. Then

}T˚MNTRU} “ maxt}t˚1}, }t
˚
n`1}, ¨ ¨ ¨ }t

˚
pd´1qn`1}u

Intuitively, we expect that the minimal occurs when

}t˚1} “ }t
˚
n`1} “ ¨ ¨ ¨ “ }t

˚
pd´2qn`1} “ }t

˚
pd´1qn`1}.

Since the first d´1 norms depend on our choice of f i P Rd, we first choose
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f i`1 P Rd for 1 ď i ď d´ 2 for the first d´ 2 equality by

}tin`1} “

c

d

d´ i
¨ }t1}. (3.2)

As underlying idea for this choice, we see that t˚in`1 is a projection of tin`1

(of dimension dn) over a subspace of dimension pd´iqn, and hence random

choice of f i implies

}t˚pi´1qn`1} “

c

d´ i` 1

d
¨ }tpi´1qn`1}.

We experimentally check this choice of f i indeed implies

}t˚1} “ }t
˚
n`1} “ ¨ ¨ ¨ “ }t

˚
pd´2qn`1},

and Figure 3.1 shows the result with d “ 4 case.

Finally the last one }t˚
pd´1qn`1} depends on our choice of S “

rf 1, ¨ ¨ ¨ ,f d´1s, and we investigate the optimal choice of }t1} while varying

}t1}. We presume that such optimal choice is represented by cd ¨ q
1{d for

some constant cd that depends only on d, which implies the Gram-Schmidt

norm of TMNTRU can be reached to

}T˚
MNTRU} ď cd ¨ q

1{d.

Note that this is consistent with the known result of [DLP14] with c2 “
a

e{2 « 1.1658, which is also provided with heuristic analysis. Regarding

this, we experimentally verify that it holds for c3 « 1.2 as Figure 3.2.
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}t1}
}t˚n`1}

}t˚2n`1}

Figure 3.1: }t˚in`1} values with }tin`1} “

b

d
d´i
¨ }t1} for i “ 1, 2,

with pd, n, qq “ p4, 256, 227q

3.2 IBE-Scheme from Module-NTRU

In this section, we describe our IBE scheme, whose security is based on

MNTRU and Module-LWE.

3.2.1 Scheme Construction

We start from master key generation procedure KeyGen. It basically gener-

ates the MNTRU instance h “ ph1, ¨ ¨ ¨ , hd´1q P Rd´1
q as the master public

key and the MNTRU trapdoor matrix TMNTRU P Zdnˆdn as the master se-

cret key. The master secret key elements are sampled according to Section

3.1.2, which implies

}T˚
MNTRU} “ cd ¨ q

1{d.

The detailed procedure is given by Algorithm 1.
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pd, n, qq “ p3, 512, 221q

1.2 ¨ q1{3
}t1}

y “ x
}t˚2n`1}

1.2 ¨ q1{3
}t1}

y “ x
}t˚2n`1}

pd, n, qq “ p3, 256, 227q

1.2 ¨ q1{3
}t1}

y “ x
}t˚2n`1}

1.2 ¨ q1{3
}t1}

y “ x
}t˚2n`1}

pd, n, qq “ p3, 256, 224q

1.2 ¨ q1{3
}t1}

y “ x
}t˚2n`1}

1.2 ¨ q1{3
}t1}

y “ x
}t˚2n`1}

Figure 3.2: Values of }t˚
pd´1qn`1} for d “ 3,

which indicates c3 « 1.2 regardless of n and q.
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Algorithm 1: KeyGen

Input : n, q, d
Output: MPK “ h P Rd´1

q and MSK “ TMNTRU P Zdnˆdn

1 for i “ 1 to d´ 1 do

2 σi Ð
b

d
d´i`1

cd ¨ q
1{d{
?
dN ;

3 y “ py1||y2q Ð BKZδ0pΛ
K
q,cpA1qq;

4 f i Ð pf1,i, ¨ ¨ ¨ , fd,iq where each coefficient of fj,i P R is
sampled from DZ,σi

5 end
6 S Ð rf 1, ¨ ¨ ¨ ,f d´1s;
7 detÐ pdet1, ¨ ¨ ¨ , detdq where deti “ p´1qi´1 ¨ detpSiq;

8 hÐ det´1
¨ pdet2, ¨ ¨ ¨ , detdq P Rd´1

q ;

9 Find a solution F “ pF1, ¨ ¨ ¨ , Fdq P Rd of the MNTRU equation
řd
i“1 deti ¨ Fi “ q;

10 T Ð rApSq||ApF qs;
11 return MPK “ h and MSK “ T

The extract procedure issues the user secret key skid valid for user id.

The main task for this is sampling short s P Rd such that

xs, p1,hqy “ Hpidq mod q

where H : t0, 1u˚ Ñ Rq is some hash function modeled as a random oracle.

This vector s is computed by Gaussian sampling over ΛMNTRU, and we use

GaussianSampler with the master secret key TMNTRU. The standard devi-

ation σ is chosen to yield KL Divergence of GaussianSamplerpTMNTRU, σq

and the ideal discrete Gaussian DΛpTMNTRUq,σ less than 2´λ. It is given by
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σ “ η1εpZq ¨ }T˚
MNTRU} where ε “ 2´λ{2{p2

?
2 ¨ dnq, and more precisely

σ «
cd
π
¨

d

ln 2

2

ˆ

λ

2
` log2p4

?
2 ¨ dnq

˙

¨ q1{d. (3.3)

We also remark that this extract procedure should be stateful, i.e.,

it should stores every previously issued user secret keys, otherwise our

scheme becomes insecure by repeated queries on the same id; actually,

every IBE scheme based on GPV framework share the same feature, and

some stateless variants are already argued in previous works. For simplicity

we omit them and refer [GPV08]. The detailed procedure can be found in

Algorithm 2 below.

Algorithm 2: Extract

Input : An identity id, the master secret key T, the master
public key h and a hash function H : t0, 1u˚ Ñ Rq

Output: A user secret key skid P Rd´1

1 if id is previously queried then
2 return skid in local storage
3 end
4 else
5 tÐ pHpidq, 0, ¨ ¨ ¨ , 0q P Rd

q ;

6 σ Ð cd
π
¨

b

ln 2
2

`

λ
2
` log2p4

?
2 ¨ dnq

˘

¨ q1{d;

7 cÐ GaussisanSamplerpT, σ, tq;
8 s “ ps0, s1, ¨ ¨ ¨ , sd´1q Ð t´ c;
9 Add skid “ ps1, ¨ ¨ ¨ , sd´1q in local storage;

10 return skid
11 end

Our encryption and decryption are done in the same manner to Module-

LWE based encryption. In particular, polynomials r, ei are uniformly sam-
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pled from t´1, 0, 1un. Moreover, our IBE scheme also combines KEM and

one-time-pad (OTP) as in [DLP14]. This combination of OTP is neces-

sary for our case where the width parameter σ is chosen to have negligible

KL divergence of Gaussian sampler; KL divergence argument only applies

for search problems, and without the use of OTP, we cannot guarantee

indistinguishability based security of our scheme.

Algorithm 3: Encrypt

Input : An identity id, a message µ P t0, 1um, the master public
key h P Rd´1

q , hash functions H : t0, 1u˚ Ñ Rq and
H 1 : t0, 1un Ñ t0, 1um

Output: A ciphertext C “ pc, c1q where c P Rd
q and c1 P t0, 1um.

1 r, ei Ð t´1, 0, 1un for 0 ď i ď d´ 1; k Ð t0, 1un;
2 tÐ Hpidq;

3 c0 Ð rt` e0 `
X

q
2

T

¨ k;

4 c0 Ð 2rlog2 qs´3 ¨
X

c0
2rlog2 qs´3

\

;

5 cÐ pc0, c1, ¨ ¨ ¨ , cd´1q where ci “ rhi ` ei for 1 ď i ď d´ 1;
6 c1 Ð µ‘H 1pkq;
7 return C “ pc, c1q

Algorithm 4: Decrypt

Input : A ciphertext C “ pc, c1q, a user secret key skid P Rd´1,
and hash functions H : t0, 1u˚ Ñ Rq and
H 1 : t0, 1un Ñ t0, 1um

Output: A message µ P t0, 1um

1 s1 “ p1,´skidq;
2 w Ð xc, s1y;

3 k Ð
Y

2
q
¨ w

U

;

4 return mÐ c‘H 1pkq
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For the decryption correctness, observe that

w “ xc, p1,´skidqy “
Yq

2

U

¨m` e0 ` rs0 ´

d´1
ÿ

i“1

eisi.

Then each coefficient of the error polynomial e0 ` rs0 ´
řd´1
i“1 eisi should

lie over p´q{4, q{4q. We first estimate the coefficient size of the error poly-

nomial by approximating it into (continuous) Gaussian distribution hav-

ing the same variance. Precisely, it is assumed to behave like 0-centered

Gaussian with variance 2
3
p}skid}

2 ` 1q. Using a tail bound for Gaussian

distribution, we have the following condition for correctness:

q ě
32
?
λ ln 2

3
?

3
¨ }skid}. (3.4)

Moreover, as in [DLP14], one can reduce the size of ciphertext by send-

ing only a few highest order bits of c0, which not much harm the correctness

of decryption.

3.2.2 Security Analysis by Attack Algorithms

In this section, we give security analysis of our IBE scheme based on

the following facts from the literature. First, adapted from [PAFZ19]’s

argument, if an N -dimensional lattice Λ is known to have an unusually

short vector v whose size is evidently smaller than Gaussian Heuristic
´
b

N
2πe
¨ detpΛq1{N

¯

, it can be found by BKZ with blocksize β satisfying

0.75
a

β{N ¨ }v} ď δ2β´N
0 detpΛq1{N (3.5)

29



CHAPTER 3. ID-BASED DATA ACCESS CONTROL

where the root Hermite factor δ0 of BKZβ is given by
´

β
2πe
pπβq

1
β

¯
1

2pβ´1q

[Che13].

On the other hand, for any N -dimensional lattice Λ, if one wants to find

a vector v whose size is larger than detpΛq1{N , the required root Hermite

factor δ0 is determined by

δN0 ď
}v}

detpΛq1{N
. (3.6)

Based on these facts, we mount lattice attacks on several possible attack

points.

Master Key Recovery

One may try to recover MSK from MPK, by finding an unusually short

vector f i in a lattice with a basis AMNTRU. Since the short vector f i is

chosen to have norm smaller than
b

d
2
¨ cd ¨ q

1{d, (3.5) implies that

0.75
b

β
dn
¨

b

d
2
¨ cd ¨ q

1{d

q1{d
« 0.75 ¨ cd

c

β

2n
“ δ2β´dn

0 .

User Key Recovery

The attacker can try to obtain an user secret key id from MPK “ h, which

involves finding any short s P Rd satisfying xs, p1,aqy “ Hpidq. This can

be done by finding a short vector ps, 1q in a dn ` 1-dimensional lattice

with determinant qn. For correct decryption, the target vector norm would

be approximately
?
dn ¨ σ where σ comes from (3.3). Then (3.6) gives a

condition ?
dn ¨ σ

qn{pdn`1q
«

?
dn ¨ σ

q1{d
“ δdn0 .
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IND-CPA security

Our ciphertext is of the form

pc0, c1, ¨ ¨ ¨ , cd´1q “ prt` e0, rh1 ` e1, ¨ ¨ ¨ rhd´1 ` ed´1q

for MPK “ h. Like the above user key recovery case, one can try to find the

dn`1-dimensional vector pe0, ¨ ¨ ¨ , ed´1, 1q in a lattice with determinant qn.

Since we know the unusual short vector pe0, ¨ ¨ ¨ , ed´1, 1q of size «
a

2dn{3

in the lattice, we apply (3.5)

0.75

c

β

dn
¨
a

2dn{3 “ 0.75

c

2β

3
ď δ2β´dn

0 q1{d.

3.2.3 Parameter Selections

We now set a concrete parameter pd, n, qq, and compare our scheme with

previous results. First of all, we note that it should be noted that if one

wants to use MNTRU dimension d, the master key generation involves a

sampling from a discrete Gaussian with width σ « q1{d{
?
dn. However for

d ą 3 case, σ becomes extremely small (less than 0.5) for our interest mod-

ulus q and dimension n ranges. Thus, in order to hedge against any possible

problems regarding this extremely small discrete Gaussian, we conserva-

tively consider only small d, explicitly d “ 3. Moreover besides this discrete

Gaussian sampling issue, too large d implies too small width parameter σ,

and the resulting secret matrix S would be almost zero matrix, which can

be find out by simple exhaustive search.

One may use some portions of vectors among u1, ¨ ¨ ¨ , ud´1 and v, but we also have
the same result.
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In this regard, we instantiate our scheme with d “ 3, with modulus

parameter q “ 219 for n “ 512, which satisfies the correctness condition

(3.4). Upon our security analysis of Section 3.2.2, the minimal block size

for attacking our scheme is 506; Master key recovery requires β ě 714,

and user key recovery requires β ě 612, and IND-CPA security requires

β ě 506. According to methodology of [ADPS16], we estimate BKZ call

with block size β costs 20.292β time, and hence our instantiation provides

about 147 security level. For a pair comparison, we re-evaluate security of

[DLP14] parameter (d “ 2, n “ 1024, q “ 227) according to our renewed

security analysis of Section 3.2.2; Master key recovery requires β ě 908,

and user key recovery requires β ě 867, and IND-CPA security requires

β ě 300.

Finally we also compare key sizes and ciphertext size. Clearly the ci-

phertext and master public key consists of d ´ 1 elements in Rq, so their

bitsizes are pd´1qnptlog2 qu`1q. Next, the user secret key consists of d´1

elements in R whose coefficients are sampled from a discrete Gaussian of

standard deviation σ “ cd
π
¨

b

ln 2
2

`

λ
2
` log2p4

?
2 ¨ dnq

˘

¨ q1{d from (3.3); for

our case σ « 2.33 ¨ q1{3, and [DLP14] case σ « 2.28 ¨
?
q (with λ “ 192).

This can be stored in various ways, and we follow falcon’s method that

requires about pd´ 1qn ¨ ptlog2pσqu` 2q .

We also check our proposal by a proof-of-concept implementation, and

experimental results consisting speed results and concrete bit-sizes can be

found in Table 3.1 below. However, we remark again that this implemen-

tation is literally for proof-of-concept, and our superiority on speed results

over [DLP14] should not be taken seriously.

∗In [DLP14], this parameter set was claimed to have 192-bit security based on their
own security analysis. However we adapt the latest, rather conservative security analysis
of literature, and it concludes 87-bit security for that parameter set.
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[DLP14] Ours

(d, n, log2 q) (2, 1024, 26) (3, 512, 19)
Bit-security 87∗ 147

Ciphertext size (bytes) 3328 2432
Master pk size (bytes) 3328 2432
User sk size (bytes) 2048 1152

User KeyGen (ms) 22.02 12.6
Enc ` Dec (ms) 4.9 1.6

Table 3.1: Comparison between [DLP14] and our scheme. Both experiments
are done on Intel (R) Xeon (R) Silver 4144 processor (2.20GHz CPU). Full
implementation can be found on github.com/Yongyongha/Module-NTRU.

3.3 Application to Signature

Our MNTRU trapdoor can be used for building a signature scheme. Let

n be a power-of-two integer, d ě 2 be a MNTRU dimension and q ą 0

be modulus. In this case, we use the same keygen algorithm to output a

public verification key VK “ a and a secret signing key SK “ TMNTRU.

For a message µ, the signing procedure runs the extract algorithm with

t “ Hpµq to output a sign s. The corresponding verification procedure

checks whether s is short and xs, p1,aqy “ Hpµq. The public key size would

be pd´1qn¨rlog2 qs, and the signature size would be pd´1qn¨ptlog2pσqu` 2q .

falcon chooses σ « 1.312 ¨ }T˚
} from Rényi divergence argument due to

[Pre17], which translates into σ « 1.55 ¨
?
q in falcon case, and σ «

1.58 ¨ q1{3 in our case.

For the signature usage, there is no encryption phase and we only con-

sider the secret key recovery (the master key recovery in IBE) and the

signature forgery (the user key recovery in IBE) attacks. In this case, one
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can check that the other attacks are only relevant to the total dimension

N “ nd, in other words, q is irrelevant to security level. Thus, under the

same security level, the ring dimension n is proportional to 1{d and hence

we conclude that the pk size is asymptotically proportional to 1 ´ 1
d
, and

the sign size is asymptotically proportional to d´1
d2
. However, regarding the

concrete parameters, such asymptotic decreases in sig size is not so huge

due to the small choice of q, and indeed the expected size of signature

becomes rather larger than the NTRU case due to the constant terms.

For example, falcon chooses q to be the smallest prime such that q “ 1

mod 2n p12289q for n “ 512 and 1024 case, and q “ 1 mod 3n p18433q for

n “ 768 case†. We focus on n “ 768 and d “ 2 case having total dimension

1536, where we can divide the same total dimension by n “ 512 and d “ 3,

and use modulus q “ 12289. Note that this two parameter sets provide the

same security levels, as they have the same total dimension. The concrete

sizes are compared in Table 3.2.

[PAFZ19] Ours

(d, n, q) (2, 768, 18433) (3, 512, 12289)
Bit-security 195 195

VK size (bytes) 1440 1792
Sig size (bytes) 864 892

Table 3.2: Comparison between [PAFZ19] and our scheme

However, we remark that our generalization can still contributes for

digital signatures by introducing parameter flexibility with power-of-two

dimensional rings. We leave an open question that whether many op-

timization techniques for power-of-two ring case are applicable, which

may lead to practical (M)NTRU-based cryptosystem like MLWE-based
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schemes [BDK`18, DKL`18] in Post-Quantum Cryptography realm.

†This is for the purpose of using number theoretic transform(NTT), which enables
fast operations on Rq.
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Chapter 4

Noisy Key Cryptosystem

We propose reusable fuzzy extractors for Hamming distance on binary al-

phabet, under the adversary model that the perturbation of each multiple

reading for reusability is controlled by adversary as in [Boy04, WLG19].

Our core ingredient is a special function family so-called local functions

which have been mainly considered for simple constructions of fundamen-

tal cryptographic primitives; one-way functions and pseudorandom gener-

ators. Indeed, we obtain the reusable security of our fuzzy extractors from

the one-wayness and pseudorandomness of the local functions.

We then propose two different approaches for achieving the function-

ality of fuzzy extractor. The first one exploits the fact that local functions

approximately preserves the distance of inputs due to its simple structure,

and the second one uses a rather complex argument that says the knowl-

edge of an approximate value of the preimage of local function efficiently

leads to recovery of the exact preimage value. Based on these ideas, we

construct fuzzy extractors where each scheme can be shown over different

type of random sources, where all of them can tolerate linear fraction of
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error if instantiated with a proper local function, assuming that they enjoy

the sufficient security level.

Due to the limited understanding for hardness of local functions over

non-uniform source in literature, we cannot specify a concrete random

source other than uniform source where we have local one-way functions

(OWF) or local pseudorandom generators (PRG). In this regard, we also

present arguments about the cryptographic hardness of local functions over

non-uniform source. From this argument we derive plausibility of local

OWF and weaker variant of local PRG over some non-uniform sources,

which reinforce the security ground of our fuzzy extractor schemes.

4.1 Reusable Fuzzy Extractors

A pn, κ, t, δq-fuzzy extractor is an algorithm tuple (Init (initialize), Gen

(generate), Rep (reproduce)) satisfying

• Init takes an input security parameter 1λ, and outputs public param-

eter pp.

• Gen takes public parameter pp and a string w P t0, 1un, and outputs

an extracted string r P t0, 1uκ and helper H P t0, 1u˚.

• Rep takes public parameter pp and a string w1 P t0, 1un and H, and

outputs a string r1 P t0, 1uκ or K.

• For the correctness, for w,w1 P t0, 1un such that HDpw,w1q ď t ¨

n∗and ppÐ Initp1λq and pr,Hq Ð Genppp,wq, it holds that

PrrRepppp,w,Hq “ rs ě 1´ δ
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where the randomness is over the choice of w1, and algorithms Gen

and Rep.

Remark. The original definition requires worst-case correctness on w1,

that is, the correctness requires to hold for any w1 such that HDpw,w1q ď

t ¨ n. We slightly weaken this condition to average-case, and note that this

is already implicitly considered in [CFP`16] for their correctness analysis.

Reusable security

For the security notion for reusability, we consider two definitions based

on indistinguishability (IND) and one-wayness (OW), where the first one

is considered much often in literature.

Let W be a family of probability distributions over t0, 1un†. For an

adversary A, it plays ExpW,ρIND´reu (resp, ExpW,ρOW´reu) by querying Init followed

by at most ρ times of Chal and returns β1(resp, r1), an input of Fin. See

Figure 4.1 below for the definition of each procedure.

We say that a fuzzy extractor is pρ, εq-IND-reusable over W if for any

distribution W PW , and for any PPT adversary A
ˇ

ˇ

ˇ

ˇ

PrrExpW,ρIND´reupAq “ 1s ´
1

2

ˇ

ˇ

ˇ

ˇ

ď εpλq.

Similarly a fuzzy extractor is called pρ, εq-OW-reusable over W if for any

distribution W PW , and for any PPT adversary A

PrrExpW,ρOW´reupAq “ 1s ď εpλq.

∗In other literature, t usually denotes the error value itself. Note that in our definition
t denotes the ratio of error, and its meaningful choice is clearly t P r0, 0.5q.
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If the advantage ε is neglpλq, we simply say a fuzzy extractor ρ-reusable

for both cases.

Init(pp):

1. w Ð W

2. pb,Hq Ð Genppp,wq

3. β Ð t0, 1u

4. If β “ 1, Return pb,Hq

5. Else, u Ð t0, 1uκ, Return
pu,Hq

Chal(δk):

1. If HWpδkq ą t ¨ n, Return K

2. pbk,Hq Ð Genppp,w ` δkq

3. Return pbk,Hkq

Fin(β1):

1. If β “ β1, Return 1

2. Else, Return 0

Init(pp):

1. w Ð W

2. pb,Hq Ð Genppp,wq

3. Return H

Chal(δk):

1. If HWpδkq ą t ¨ n, Return K

2. pbk,Hq Ð Genppp,w ` δkq

3. Return pbk,Hkq

Fin(b1 P t0, 1uκ):

1. If b “ b1, Return 1

2. Else, Return 0

Figure 4.1: Left: ExpW,ρIND´reu, Right: ExpW,ρOW´reu

†Fuzzy extractor can be generally defined over any metric space, for instance set
difference metric, but we only focus on binary string with Hamming distance case.
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4.2 Local Functions

A random local function is determined by a boolean function P : t0, 1u` Ñ

t0, 1u called predicate. Let n be input length and m output length. We

sample Ij “ tij,1, ¨ ¨ ¨ , ij,`u by random `-element subsets of rns for 1 ď j ď

m, and define an index set I “ tIj : 1 ď j ď mu. For x “ pxiq
n
i“1 P t0, 1u

n,

the local function LFP,I : t0, 1un Ñ t0, 1um is computed as follows:

LFmP,Ipxq :“
`

P pxij,1 , ¨ ¨ ¨ , xij,`q
˘

1ďjďm
,

along with the indices sets and predicate as public parameters. In this

construction ` is called the locality.

4.2.1 Hardness over Non-uniform Sources

The local functions have been thoroughly researched in the cryptographic

literature after argued by Goldreich [Gol00] to use them as simple one-way

functions. Still, most of study focus on the hardness when the inputs are

chosen uniform randomly, and their hardness has never been discussed over

non-uniform source to the author’s best knowledge. Here we discuss and

give some clues for their security over non-uniform sources. We refer the

beautiful survey [App16] by Applebaum to readers for more details study

for cryptographic hardness of local random functions over uniform source.

Pseudorandomness of Local Functions over Non-uniform Source

We give some evidences that random local functions does not likely to be a

strong PRGs, but it is reasonable to assume that any adversary may have

a bounded advantage.

40



CHAPTER 4. NOISY KEY CRYPTOSYSTEM

Let W be a source that is possibly non-uniform. First of all, consider

the distribution tLFpkqpwq : w Ð W u of k-th coordinate. This distribution

may not be balanced (i.e. the probability that occurs 0 and 1 are different).

Further, to be secure against F2-linear attacks the distribution tLFpwq :

w Ð W u should be a negligible-biased distribution, which is not true in

general. Thus the PRG assumption on LF over W seems to be false.

However, in our fuzzy extractor construction, the adversary will be only

given a single sample LFpwq, whereas most of distinguishing attacks inher-

ently use the standard hybrid argument to inspect statistical properties of

distinguishing targets; for example it is biased or not. Usually the hybrid

argument makes a lose of advantage by a factor N to amplify the num-

ber of samples to N, and thus it may reasonable to assume that random

(flipping) local functions is, say, 1{3-PRG.

One-wayness of Local Functions over Non-uniform Source.

We discuss here that the one-wayness of local functions over non-uniform

source seems to be hard, even we weaken the goal of adversary to get an

approximate inversion. This supports our weak pseudorandomness assump-

tion as well. The hardness of inversion, or even approximate inversion of

local function is the minimal requirement for security of our fuzzy extrac-

tor, since the input of local functions in our construction would be one’s

secret noise source, say human’s biometrics. Fortunately, both problems

seem to be hard even for non-uniform sources. We give some evidences for

them.

The one-wayness of local functions over non-uniform source is sup-

ported by the self-reducibility shown by Bogdanov and Rosen [BR13, The-

orem 6.1]. The self-reducibility of local functions states that, roughly, if the
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inversion problem of LFpxq is hard in a certain level (i.e. sub-exponential

to n) for a small fraction of seed x, then for all but a small fraction of seeds

the inversion problem of LFpxq also enjoy the similar level of hardness as

well. Therefore the one-wayness of local functions enjoys all-or-nothing fla-

vor: Either all but small inputs are hard to invert, or all but small inputs

are easy to invert. Thus by assuming the one-wayness of local functions

over uniform source, the one-wayness of local functions is likely to hold

even for non-uniform source as well, with respect to the certain level of

hardness and choice of underlying indices.

Further, Bogdanov and Qiao [BQ12] showed that the hardness of inver-

sion implies the hardness of approximate inversion, or more formally the

following theorem.

Theorem 4.2.1 ([BQ12, Theorem 1.3]). Let m,n, ` be integers and µ ą 0,

and LF : t0, 1un Ñ t0, 1um a randomly chosen local function with locality

`. If m ě n ¨ pk{µq2` for a universal constant k, then there is an efficient

algorithm given LFpxq and x1 such that HDpx,x1q ď p1{2´µqn that recov-

ers x with probability 1 ´ op1q, where the probability is over the choice of

the random local function and x.

We denote the algorithm in this theorem by BQ. Note that the prob-

ability can be improved to 1 ´ Opn´rq for r ď n{
?
k, and the running

time of algorithm is a polynomial of m,nr. The algorithm is rather com-

plicated and related with the planted 3SAT model. Further, as parameters

suggested the algorithm is not so practical, and we cannot obtain the over-

whelming success probability of the algorithm. Still, this theorem gives us

an intuition for new direction to construct the fuzzy extractor. We indeed

use the algorithm BQ in our last construction, but we do not explicitly

describe the algorithm since it is a relatively theoretic construction.
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4.2.2 Flipping local functions

In this section we give a description for specific local functions we con-

cern. We consider a slightly general choice induced from a fixed predicate,

instead just choose one fixed predicate. Let P : t0, 1u` Ñ t0, 1u be a pred-

icate, and we consider a variant predicate Pr : t0, 1u` Ñ t0, 1u that maps

x ÞÑ P px`rq. Now we define a flipping local function with a set of vectors

R “ trju1ďjďm by

FLFmP,I,Rpxq :“
`

P pxij,1 ` rj,1, ¨ ¨ ¨ , xij,` ` rj,`q
˘

1ďjďm
,

along with public parameters P, I,R. Note that the string r essentially

works for random flipping each bit of predicates. We will simply write

FLFmP by omitting the index sets I and the flipping vectors set R if there

is no need to specify them, and write FLFP,I,R when the length of FLF is

obvious in the context.

We remark that while the state-of-the-art analysis on the cryptographic

hardness of local random functions have been studied for a fixed single

predicate (e.g. [App16, AL18]), many studies had been conducted for more

general choice of predicates, for example [CM01, MST06, BR13]. Still, we

believe that the flipping local functions enjoy the very similar analysis, and

establish the following assumption.

Assumption 4.2.1. The flipping local function FLFP is a secure one-way

function (PRGs) if the corresponding local function LFP is a secure one-

way function (PRGs, respectively).

While the main body of this paper—new construction of fuzzy

extractor—is written with general predicates, we recommend to reader

to keep in mind the recently suggested candidate Xor-Maja,b predicate
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in [AL18]

px1 ‘ ¨ ¨ ¨ ‘ xaq ‘Majbpxa`1, ¨ ¨ ¨ , xa`bq,

where the majority function Majn outputs the majority bit of them. For

the sake of simplicity, we only consider the case where b is odd. Xor-Maj is

considered as a plausible candidate predicate for local PRGs over uniform

source and shown to secure against many attacks including a variety class

of statistical attack, semi-definite programming, and linear and algebraic

attack [OW14, AL18, FPV18]. More concretely the authors of [AL18] sug-

gest local functions with predicate Xor-Maj as a concrete candidate local

pseudorandom function (without flipping) for a ě 2s and b ą 16s` 2 with

the stretch m “ ns, which rules out all known attacks and their extensions.

Note that, especially for Xor-Maj, the flipping essentially does not

affect at all for linear parts, and the remainder non-linear part is a very

nontrivial predicate to analyze, at least algebraically.

4.2.3 Noise stability of predicate functions: Xor-Maj

Our key observation for fuzzy extractor construction is that the predicate

function P is highly simple so that it sends two close inputs to the same

value with an unusual high probability. This notion is formalized by the fol-

lowing definition that says how much stable the function is against (small)

perturbation.

Definition 4.2.1. For P : t0, 1u` Ñ t0, 1u and t P r0, 1s, the noise stability

of P at t is defined by

StabtpP q “ 2 PrrP pxq “ P px` δqs ´ 1

where x is chosen uniformly over t0, 1u` and δ follows the distribution
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Ber`t.

We have the following proposition about the noise stability of

Xor-Maj.

Proposition 4.2.1. For any t P r0, 1s and non-negative integers a, b, it

holds that

StabtpXor-Maja,bq “ p1´ 2tqa ¨ StabtpMajbq.

In particular, we have

StabtpXor-Maja,bq “ O
`

p1´ 2tqa`1
˘

Proof. We start from the following lemma.

Lemma 4.2.1. For any odd integer n and t P r0, 1s,

StabtpMajnq “
1

2n´1

˜

tn{2u
ÿ

h“0

ˆ

n

h

˙

¨ pn,h,t

¸

. (4.1)

where

pn,h,t “
h
ÿ

i“0

tn{2u´h`i
ÿ

j“0

ˆ

h

i

˙ˆ

n´ h

j

˙

¨ ti`jp1´ tqh´pi`jq.

In particular, the following asymptotic formula holds

ˇ

ˇ

ˇ

ˇ

StabtpMajnq ´
2

π
arcsinp1´ 2tq

ˇ

ˇ

ˇ

ˇ

“ O

˜

1
a

ntp1´ tq

¸

.

Proof. First note that

pn,h,t :“ Pr
δÐBernt

r Majpxq “Majpx` δq | HWpxq “ h s .
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Then it holds that pn,h,t “ pn,n´h,t and

Pr r HWpxq “ h | xÐ t0, 1un s “

ˆ

n

h

˙

{2n,

and hence we have

StabtpMajnq “
1

2n´1

˜

tn{2u
ÿ

h“0

ˆ

n

h

˙

¨ pn,h,t

¸

.

It only remains to compute pn,h,t. For any δ, we denote fh (f 1h resp) by

the number of 0s (1s resp) in x‘ δ that was 1s (0s resp) in x. Note that

Majnpxq “

$

&

%

0 if n ă 2HWpxq

1 otherwise,

and hence Majpx‘ δq remains unchanged if and only if

n´ 2ph´ fh ` f
1
hq ą 0,

or equivalently,

f 1h ď tn{2u´ h` fh.

Thus we have

pn,h,t “

˜

h
ÿ

i“0

Prrfh “ is ¨

˜

tn{2u´h`i
ÿ

j“0

Prrf 1h “ js

¸¸

.

Since δ Ð Bernt , we know fh and f 1h follows Bph, tq and Bpn ´ h, tq resp,

which completes proof.

The claim for asymptotic behavior is adapted from Sheppard’s For-
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mula [She99] and Theorem 3.4.2 of [O’D03].

Toward the noise stability of Xor-Maj, we understand it by a bias

function of the difference dtpfqpxq “ fpx` δq ´ fpxq as follows:

Stabtpfq “ Prrdtpfqpxq “ 0s ´ Prrdtpfqpxq “ 1s “ ´biaspdtpfqq

where a function bias for a binary variable X is defined by

biaspXq :“ PrrX “ 1s ´ PrrX “ 0s.

Then the following lemma allows to compute the exact value of stability.

Lemma 4.2.2 (Piling-up lemma [Mat93]). Let X :“
Àn

i“1Xi for inde-

pendent binary variables Xi. Then it holds that

biaspXq “ p´1qn`1
n
ź

i“1

biaspXiq.

By Lemma 4.2.2, Lemma 4.2.1 and the relation of bias and stability, the

first part is obvious. Moreover, the asymptotic part immediately follows

from arcsinpxq “ Opxq.

4.3 From Pseudorandom Local Functions

In this section, we propose a highly simple and intuitive construction of

fuzzy extractor for binary alphabet with Hamming distance using the flip-

ping local function. Prior to the beginning, we define the following proce-

dure SampleRand; this definition is totally for readability, because it is just

a consecutive uniform sampling.
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SampleRandpn,m, `q:

1. For j “ 1, ¨ ¨ ¨ ,m:

(a) Sample a subset Ij of size ` uniformly random from rns.

(b) Sample a uniformly random vector rj Ð t0, 1u`.

2. Return I “ tIju1ďjďm,R “ trju1ďjďm.

4.3.1 Basic Construction: One-bit Fuzzy Extractor

We start with pn, 1, t, δq-fuzzy extractor PRGFE1. Let n ą 0 be a bit-

length of our target bit-string, t P r0, 1{2q be the target error tolerance

ratio, P : t0, 1u` Ñ t0, 1u be a predicate function, and m ą 0 be an integer

that will be specified later, and we write for readability

pt :“
StabtpP q

2
.

For PRGFE1.Init, we output pp “ tm,n, `, P u, and Figure 4.2 presents

PRGFE1.Gen and PRGFE1.Rep,

Correctness and Parameters.

We first see the correctness. Let w and w1 be n-bit strings such that

HDpw,w1q “ t¨n. Since I andR are uniformly chosen at random, we know

each component of FLFP,I,Rpwq and FLFP,I,Rpw
1q differ with probability

1
2
´ pt. Since each component is independent thanks to the random choice

of R, we conclude that

HD pGP,I,Rpwq, GP,I,Rpw
1
qq „ B

ˆ

m,
1

2
´ pt

˙

.
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PRGFE1.Gen(pp,w):

1. b
$
ÐÝ t0, 1u // Extracted bit

2. I,RÐ SampleRandpn,m, `q

3. If b “ 1, hÐ FLFP,I,Rpwq

4. Else, u
$
Ð t0, 1um, hÐ u

5. HÐ pI,R,hq // Helper

6. Return pb,Hq

PRGFE1.Rep(pp,w1,H “ pI,R,hq):

1. h1 Ð FLFP,I,Rpw
1q.

2. dÐ HDph,h1q.

3. If d ď mp1´ptq
2 , Return b1 “ 1

4. Else, Return b1 “ 0

Figure 4.2: Basic Fuzzy Extractor

In our scheme view, this corresponds to the case when PRGFE1.Gen extracts

b “ 1. Meanwhile, for the case b “ 0, the vector h is chosen uniformly at

random and hence we have HDph,h1q „ Bpm, 1
2
q. To sum up, we have

HDph,h1q “

$

&

%

Bpm, 1
2
´ ptq if b “ 1

Bpm, 1
2
q if b “ 0

.

From this the failure probability δ is given by

δ “ Prrb1 ‰ bs “ Prrb “ 1s ¨ Pr

„

X ą
m ¨ p1´ ptq

2



`Prrb “ 0s ¨ Pr

„

X 1
ď
m ¨ p1´ ptq

2



,

where X „ Bpm, 1
2
q, and X 1 „ Bpm, 1

2
´ ptq. It is known that for X „
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Bpn, tq, it holds that

PrrX ď as ď exp

ˆ

´2 ¨
pnt´ aq2

n

˙

named Hoeffding’s bound, and we conclude

δ ď exp

ˆ

´
m ¨ p2

t

2

˙

. (4.2)

The helper consists of ` ¨ m numbers of indices in rns (corresponding

to I) and ` ¨m bits string (corresponding to R), and m bits string (cor-

responding to h) for one extracted bit. Thus the total helper size would

be

|H| “ p`rlog ns` `` 1q ¨m (4.3)

bits.

Remark. The most part of helper in our scheme consists of random bit

strings I andR. This can be reduced by a short seed of appropriate random

number generator, as in many LWE-based cryptosystems [ADPS16, Gal13,

CMNT11], and then the helper size would be only m. We note that this is

secure in the random oracle model, for example see [Gal13].

4.3.2 Expansion to multi-bit Fuzzy Extractor

We consider two natural expansion of PRGFE1 to κ-bit length key ex-

traction scheme, say PRGFE1
κ and PRGFE2

κ. The basic idea for both is to

simply call κ times of PRGFE1, but the input bit-string w is differently fed

to PRGFE1. We will show the both constructions enjoy reusable security,

but over different type of random sources later.

The second expansion PRGFE2
κ is designed for the case where the input
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PRGFE1
κ.Genppp,w):

1. For i “ 1, ¨ ¨ ¨ , κ:

(a) pHi, biq Ð PRGFE1.Genppp,wq

2. bÐ pb1, ¨ ¨ ¨ , bκq

3. Return pH “ tHiu1ďiďκ, bq

PRGFE1
κ.Repppp,w

1,H “ tHiu1ďiďκ):

1. For i “ 1, ¨ ¨ ¨ , κ:

(a) b1i Ð PRGFE1.Repppp,w,Hiq

2. b1 Ð pb11, ¨ ¨ ¨ , b
1
κq

3. Return b1

Figure 4.3: PRGFE1
κ: First expansion of κ-bit Fuzzy Extractor

string w P t0, 1un can be divided into κ mutually independent blocks

having length ni. First we define PRGFE2
κ.Init outputs pp “ tppiu where

ppi “ tm,ni, `, P u.

PRGFE2
κ.Genppp,wq:

1. Parse w into wi P t0, 1u
ni pi P

rκsq

2. For i “ 1, ¨ ¨ ¨ , κ:

(a) pHi, biq Ð PRGFE1.Genpppi,wiq

3. bÐ pb1, ¨ ¨ ¨ , bκq

4. Return pH “ tHiu1ďiďκ, bq

PRGFE2
κ.Repppp,w

1,H “ tHiu1ďiďκ):

1. Parse w into wi P t0, 1u
ni pi P

rκsq

2. For i “ 1, ¨ ¨ ¨ , κ:

(a) b1i Ð PRGFEκ.Reppppi,wi,Hiq

3. b1 Ð pb11, ¨ ¨ ¨ , b
1
κq

4. Return b1

Figure 4.4: PRGFE2
κ: Second expansion of κ-bit Fuzzy Extractor:

Correctness and Helper size.

We deal with the correctness, helper size and running times for both con-

structions at once. For both of constructions, we require every bit bi be
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correctly reproduced and hence from (4.2) we bound the failure probabil-

ity δ as

δ ď

ˆ

1´

ˆ

1´ exp

ˆ

´
m ¨ p2

t

2

˙˙κ˙

ď κ exp

ˆ

´
m ¨ p2

t

2

˙

“ κ exp

ˆ

´
m ¨ StabpP q2t

8

˙

. (4.4)

Equivalently, we can say that the parameter m for obtaining δ should be

m ě
8 ln pκ ¨ δ´1q

StabtpP q2
. (4.5)

The total helper size would be κ times of (4.3), namely

|H| “ κ ¨ p` ¨ prlog ns` 1q ` 1q ¨m,

which can be compressed into |H1| “ κm as in Remark 4.3.1.

We note that, the parameter m determines the overall performance;

helper size and algorithm running times. So far we only consider the cor-

rectness part to derive one condition for m by (4.3). In the next section

we obtain one more condition for m from the security requirement, which

enables us to determine m.

4.3.3 Indistinguishable Reusability

We first state the following main theorem that says for any random source

W where FLFP pW q is pseudorandom, PRGFE1
κ is IND-reusable. Recall that,

for a predicate P where LFP pUnq is pseudorandom, we plausibly assume

that FLFP pUnq for n “ Opλq is also pseudorandom, which provides a con-

crete example of random source W “ Un where PRGFE1 is assumed to be
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IND-reusable.

Theorem 4.3.1 (IND-reusability of PRGFE1
κ). Let P be a predicate func-

tion. Let W be a family of distributions W over t0, 1un such that the flip-

ping local function FLFP is a ε-PRG over W with stretch pρ` 1qκm. Then

PRGFE1
κ in Figure 4.3 is a pρ, εq-IND-reusable pn, κ, t, δq-fuzzy extractor

over W where failure probability is bounded by

δ ď κ exp
`

´m ¨ StabtpP q
2
{8
˘

.

Proof. The failure probability is already known by (4.4). Let W P W
be a random source. For the proof of reusability, we consider a series of

experiments Exp0, Exp1, and Exp2, where Exp0 “ ExpWIND´reu.

Exp0: This is exactly the reusability experiment, and in Figure 4.5 gives

the detailed process in terms of PRGFE1.

Exp1: We change step (c) of Chalpδpkqq to compute the local function

FLFmP,I,R on input w, instead of w ` δpkq; see step (c) of Chalpδpkqq of

Figure 4.5.

Claim 1. Any adversary A winning Exp1 with some probability implies an

adversary B winning Exp0 with the same probability, and vice versa.

Proof of Claim. On Exp0, A learns from δpkq queries

Ω0 “

"

δpkq, bpkq,
´

Ipkqi ,Rpkqi ,h
pkq
i

¯

1ďiďκ

*

1ďkďρ

where

h
pkq
i “

$

&

%

FLF
P,Ipkqi ,Rpkqi

pw ` δpkqq if b
pkq
i “ 1

u
pkq
i if b

pkq
i “ 0.
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Init(pp): Exp0, Exp1, Exp2

1. w ÐW

2. For i “ 1, ¨ ¨ ¨ , κ:

(a) bi
$
ÐÝ t0, 1u

(b) Ii,Ri Ð SampleRandpn,m, `q

(c) If bi “ 1, hi Ð FLFmP,Ii,Ri
pwq

Else, ui
$
ÐÝ t0, 1um,hi Ð u

Regardless of bi,

ui
$
ÐÝ t0, 1um,hi Ð u

(d) Hi Ð pIi,Ri,hiq

3. bÐ pb1, ¨ ¨ ¨ , bκq

4. H “ tHiu1ďiďκ

5. β
$
ÐÝ t0, 1u

6. If β “ 1, Return pb,Hq

Else, u
$
ÐÝ t0, 1uκ, Return pu,Hq

Chal(δpkq): Exp0, Exp1 , Exp2

1. For i “ 1, ¨ ¨ ¨ , κ:

(a) b
pkq
i

$
ÐÝ t0, 1u

(b) Ipkqi ,Rpkqi Ð SampleRandpn,m, `q

(c) If b
pkq
i “ 1,

h
pkq
i Ð FLFm

P,Ipkq

i ,Rpkq

i

pw ` δpkqq

h
pkq
i Ð FLFm

P,Ipkq

i ,Rpkq

i

pwq

Else, u
pkq
i

$
ÐÝ t0, 1um,h

pkq
i Ð u

Regardless of b
pkq
i ,

u
pkq
i

$
ÐÝ t0, 1um,h

pkq
i Ð u

(d) H
pkq
i Ð pIpkqi ,Rpkqi ,h

pkq
i q

2. bpkq Ð pb
pkq
1 , ¨ ¨ ¨ , b

pkq
κ q

3. Hpkq “ tH
pkq
i u1ďiďκ

4. Return pbpkq,Hpkqq

Fin(β1):

1. If β “ β1, Return 1
Else, Return 0

Figure 4.5: Overview of proof

Here, from the definition of FLF we know that

FLF
P,Ipkqi ,Rpkqi

pw ` δpkqq “ FLF
P,Ipkqi ,Rpkqi `δpkq

pwq,
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and since A knows δpkq, the knowledge of Ω0 implies to the knowledge of

Ω1 “

"

δpkq, bpkq,
´

Ipkqi ,Rpkqi ` δpkq,h
pkq
i

¯

1ďiďκ

*

1ďkďρ

where

h
pkq
i “

$

&

%

FLF
P,Ipkqi ,Rpkqi `δpkq

pwq if b
pkq
i “ 1

u
pkq
i if b

pkq
i “ 0.

Thanks to the uniformly random choice of Rpkqi , Ω1 is actually the view of

an adversary B playing Exp1, from which we prove the claim.

Exp2: We now change step (c) of Init and Chal to output hi and h
pkq
i as a

uniform string regardless of the choice of extracted bit b and bk. Since the

adversary’s view in Exp2 is exactly same regardless of β, we have PrrExp2 “

1s “ 1{2.

Claim 2. |PrrExp1 “ 1s ´ PrrExp2 “ 1s| ď ε

Proof of Claim. During the execution of Exp1, the adversary obtains at

most pρ` 1qκm bits of FLFP outputs; ρκm bits from Chal phases, and κm

bits from Init phase. Since the other view of adversary is same for both

experiments, an adversary that distinguishes those experiments can be

used to distinguish less than pρ`1qκm-length FLFP outputs from uniform,

whose advantage is bounded by ε from the pseudorandomness of flipping

local functions.

By combining Claim 1 and Claim 2, we reach conclusion.
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4.3.4 One-way Reusability

We show in the previous section that PRGFE1
κ is secure for any source im-

plying pseudorandomness of underlying flipping local functions. However,

relying on only the strong PRG assumption would lead to restrictive use of

our idea, since it is still obscure that whether one’s interest random source

satisfies such assumption. In this regard, we show that PRGFE2
κ achieves

one-wayness based reusable security over some random sources that re-

quires quite different condition of for FLFP . In fact, we consider random

sources that consist of several independent blocks Wi where the flipping

local function over Wi is ε-PRG with ε ď 1{2.

Theorem 4.3.2 (OW-reusability of PRGFE2
κ). Let P be a predicate func-

tion. Let W be a family of distribution W over t0, 1un of the form

W “ pW1, ¨ ¨ ¨ ,Wκq such that

• Wis are mutually independent.

• FLFP is an ε-PRG with ε ă 1{2 with stretch pρ` 1qm for every Wi.

Then PRGFE2
κ in Figure 4.4 is a pρ, ε1q-OW-reusable pn, κ, t, δq-fuzzy ex-

tractor over W where

ε1 ď

ˆ

1

2
` ε

˙κ

and δ ď κ exp
`

´m ¨ StabtpP q
2
{8
˘

.

Proof. Note that for one-bit extraction fuzzy extractor, pρ, εq-IND-reusable

security is equivalent to pρ, 1{2` εq-OW-reusable security. Then, Theorem

4.3.1 applied for κ “ 1 for each Wi implies, PRGFE1
1 is pρ, 1{2 ` εq-OW-

reusable over Wi. From the mutually independence assumption on Wi,

PRGFE2
κ can be understood by a κ concatenation of independent PRGFE1

1,
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and hence we conclude that inverting whole κ-bit succeeds with probability

ď
`

1
2
` ε

˘κ
.

Remark. We can convert this OW-reusable fuzzy extractor into IND-

reusable one in random oracle model, using generic conversion due to

[ACEK17]. This can be simply done by letting the extracted key by Hpbq

for a function H modeled by random oracle; since H is random oracle, the

only strategy of the adversary distinguishing Hpbq and uniform string u is

to find the preimage b.

Instantiation

We show the efficiency of our constructions by instantiating with

Xor-Maj predicate. Clearly, the size of helper and running time of al-

gorithms Gen and Rep is proportional to m, and we argue that m is in

polynomial of other parameters like ρ, n, δ, and especially of error ratio t.

We will assume here t is in r0, 0.5 ´ νs for some constant ν ą 0, which

suffices for fuzzy extractor.

For that, we first recall that from [AL18], the local function of

Xor-Maja,b where a “ r2ss and b “ t16s ` 2.5s is pseudorandom

over Un until the stretch ns, which yields StabtpP q “ O pp1´ 2tq2s`1q “

O pp1´ 2tq2sq from Proposition 4.2.1. Based on this fact, we assume that

our target random source W yields the local function of Xor-Maja,b with

a “ cs for some c ě 2 and a corresponding b is a ε-PRG over W with

stretch ns, which gives StabtpP q “ O pp1´ 2tqcsq .

Now we summarize the conditions for m and s that gives ρ-IND-

reusable pn, κ, t, δq-fuzzy extractor from Theorem 4.3.1.

• For failure probability δ, we set m “ O

ˆ

ln pκ ¨ δ´1q

p1´ 2tq2cs

˙

.
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• For ρ-reusability, we choose s such that ns ě pρ` 1qκm for PRGFE1
κ.

By combining two conditions, we reach one condition on s by

s “ O

ˆ

log pρκ ¨ ln pκ ¨ δ´1qq

log n´ 2c ¨ logp1´ 2tq

˙

,

which implies

s “ O

ˆ

log pρκ ¨ ln pκ ¨ δ´1qq

log n´ 2c

˙

since logp1´ 2tq “ Op1q in our interest range of t. Finally, we conclude

m “ O

ˆ

ln pκ ¨ δ´1q

p1´ 2tq2cs

˙

ď O
`

ln pκ ¨ δ´1
q ¨ t2cs

˘

.

since 1
1´2t

“ Optq in our interest range of t. To sum up, our helper size and

the running time of all algorithms are polynomials in t, which is the first

achievement for non-sketch-and-extract schemes.

We finally remark that this analysis contains quite a few hidden con-

stants, and some non-tight approximations, for instance logp1´2tq “ Op1q

and 1
1´2t

“ Optq, and hence the actual parameter setting would be smaller

so that results in much efficient instantiation.

Remark. The previous best result [CFP`16] had helper size and re-

produce time exponential in t. To be precise, to achieve ρ-reusability and

failure probability δ, it publishes lnpδ´1q¨expptλq numbers of digital lockers

as helper. Moreover, as generate (reproduce, resp) phase need to generate

(unlock, resp) every digital lockers, the running time is also proportional

to lnpδ´1q ¨ expptλq.

†For brevity, we only consider PRGFE1
κ case. For PRGFE2

κ we need ns ě pρ` 1qm.

58



CHAPTER 4. NOISY KEY CRYPTOSYSTEM

4.4 From Local One-way Functions

The main drawback of the pseudorandomness-based constructions of the

previous section is that the condition for random source is harsh, and may

not apply for the noisy sources in real world: Although the second construc-

tion requires somewhat mild pseudorandomness condition for each block,

the assumption that the random source consists of independent blocks is

still uncomfortable.

In this section, we give another polynomial-time construction that

achieves the reusable security over random source yielding one-way local

function. As we discussed in Section 4.2, the one-wayness of local function

on non-uniform source is quite plausible.

The main idea is very simple; encode the input w using local functions

in the generation phase and also make a random string r; the extracted

string would be b “ Hpw||rq for a hash function H modelled by random

oracle. In the reproduce phase, recover the original input w by invoking

the algorithm BQ in Theorem 4.2.1 with the advice w1, a noisy input, and

then recover r.

We remark that this construction is exactly the same to the secure

sketch based fuzzy extractor, and here the local function plays the role of

secure sketch. The difference is, we only care about the one-wayness here

whereas the usual discussion of this construction require the secure sketch

to have a constraint on the min-entropy. Our result below can be generally

understood as (reusable) one-way secure sketch leads to (reusable) one-way

fuzzy extractor in the random oracle model.‡

Now we formally describe our one-way fuzzy extractor as in Figure 4.6.

‡We remark that since we use the one-wayness as security notion, we cannot weaken
the requirement of random oracles to randomness extractors.
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Here H : t0, 1u˚ Ñ t0, 1uκ be a hash function modelled by random oracle.

OWFE.Gen(pp,w):

1. I,RÐ SampleRandpn,m, `q

2. h1 Ð FLFP,I,Rpwq,

h2
$
ÐÝ t0, 1uλ

3. HÐ pI,R,h1,h2q // Helper

4. b Ð Hpw||h2q // Extracted

bits

5. Return pb,Hq

OWFE.Rep(pp,w1,H “ pI,R,h1,h2q):

1. w Ð BQph1,w
1q

2. bÐ Hpw||h2q

Figure 4.6: One-way Fuzzy Extractor

We discuss the reusable security and correctness. Unfortunately, this

scheme has op1q error probability which cannot be negligible, and for the

smaller error probability (Opn´rq) one has to spend longer time complexity

(polynomial of nr). The reusable security follows from the one-wayness of

local functions and the random oracle model.

Theorem 4.4.1 (OW-reusability of OWFE). Let P : t0, 1u` Ñ t0, 1u be

a predicate function. Let W be a family of distributions W over t0, 1un

such that the flipping local function FLFP is a ε-OW over W with stretch

pρ ` 1qm. If m ě n ¨ pk{µq2` for µ “ 1{2 ´ t for the universal constant

k in Theorem 4.2.1, then OWFE in Figure 4.6 is a pρ, εq-OW-reusable

pn, κ, t, δq-fuzzy extractor over W where failure probability δ is bounded by

op1q.

Proof. The correctness is directly derived from Theorem 4.2.1. We argue

about the reusable security part. By following the conversion from Exp0 to
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Exp1 in the proof of Theorem 4.3.1, we may assume that every Chal query is

done by δpiq “ 0. Note that for every helper Hpiq “ pIpiq,Rpiq,hpiq1 ,h
piq
2 q and

key bpiq “ Hpw||h
piq
2 q pair that the adversary obtain during experiment,

only meaningful information would be pIpiq,Rpiq,hpiq1 q since H is a random

oracle. Then, the adversary is asked to find b “ Hpw||h2q from at most

pρ ` 1qm length of FLFP outputs. Again, since H is a random oracle, the

only strategy of adversary is to find the preimage pw||h2q of b, whose

probability is bounded by ε by the one-wayness of FLFP .

Instantiation

Now we discuss the asymptotic efficiency of our construction. We assume

that the bit length n of source is sufficiently large, and that there is a family

of local functions with locality ` that achieves the one-way security overW
and has a stretch nc` for constant c§. In particular, Xor-Maj is conjectured

to satisfy the stretch np`´3q{18 with one-wayness. Also, we assume that the

error rate t ă 1{2 is an arbitrary positive constant, i.e. µ ą 0 is an arbitrary

fixed constant. Then, the possible number of reusability is

nc`

n ¨ pk{µq2`
“

ˆ

µnc

k

˙`

{n.

Thus we obtain the following proposition.

Proposition 4.4.1. Let LF : t0, 1un Ñ t0, 1un
s

be a local function with

predicate Xor-Maj with locality ` over W. Assuming that LF is a one-

way function over W, there is a one-way fuzzy extractor with reusability

Ωpµ`ns´1q, error probability op1q and the running time polypn ¨ p1{µq2`q for

error rate t “ 1{2´ µ of source.

§All promising candidate local functions satisfy this asymptotic.
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Note that the helper size is as same as the PRG-based construction,

and the running time is also polynomial in t.
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Chapter 5

Concrete Security of

Homomorphic Encryption

In this chapter, upon the current dual attack framework, we apply MitM

attacks for LWE instead of exhaustive search. For that, we first observe

that Odlyzko’s MitM attack on NTRU [HGSW03] can be easily adapted

to the literature of LWE, and we give an explicit algorithm and rigorous

analysis for it. The cost of this attack is proportional to the square root

of the number of candidate secret vector, while it is less sensitive to the

absolute size of error when the ratio of error and modulus is sufficiently

small. Thus, this MitM attack is highly appropriate for the trade-offed

LWE sample for the large modulus case and from this observation,

From this observation, we propose a new hybrid attack of the dual

attack and MitM attack. Our hybrid attack shows significant performance

improvement on the sparse ternary secret LWE problems, which are used

in two homomorphic encryptions HElib [HS14] and HEAAN [CKKS17]∗.

∗SEAL also needs to use the sparse ternary key to support the bootstrapping.
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We estimate our attack complexity for several parameters that are in the

currently used parameter range for the HEs. This result shows that our

attack can solve the sparse ternary secret LWE problems in more than

1000 times faster compared to the previous attacks on average.

5.1 Albrecht’s Improved Dual Attack

In this section, we give a detailed descrption of the dual attack and its

recent variant suggested by Albrecht [Alb17], which is known as the best

attack on the underlying LWE problems of fully homomorphic encryptions.

5.1.1 Simple Dual Lattice Attack

The dual lattice attack is an algorithm to solve LWE. The main idea of the

dual attack is to exploit a short vector in the following orthogonal lattice

ΛKq pAq “ tv P Zn : vtA ”q 0u.

More precisely, for a short vector y in ΛKq and an LWE sample pA, bq,

one has

xy, by “ xy, As` ey “ xy, Asy ` xy, ey ”q xy, ey

and this yields rxy, bysq “ xy, ey, which is significantly shorter than q. On

the other hand, if the given sample pA, bq is uniform random then rxy, bysq

is a random value which is not small compared to the previous case. By

applying this procedure for different y’s, we obtain the distinguishing algo-

rithm with overwhelming success probability. Thus we can solve the LWE

problem using the smallness of this inner product.

See [CH18].
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For LWE cases with small secrets, a natural improvement of dual attack

can be obtained by considering the scaled or normal form of dual lattice.

More precisely, the scaled normal dual lattice is defined by

Λq,cpAq “ tpv1,v2q P Zm ˆ p1
c
Zqn : vt1A ”q c ¨ v2u.

As in the dual attack, we find a short vector py1,y2q P Λq,cpAq and then

compute the inner product as follows

xy1, by “ xy1, Asy ` xy1, ey ”q c ¨ xy2, sy ` xy1, ey

for the LWE sample pA, b “ As ` eq that allows us to solve the DLWE

problem.

Choice of c.

We take the constant c to satisfy |c ¨ xy2, sy| « Er|xy1, ey|s, in order

that each summand equally contributes to error e. First we estimate

Er| xy1, ey |s «
αq
?

2π
¨ }y1}, and then c would be taken to satisfy

c «
αq
?

2π
¨
}y1}

| xy2, sy |
.

Although we assume that y is short, Since the exact size of y1 and

xy2, sy are not sure, we heuristically assume that }y1} «
a

m
m`n

}y} and

| xy2, sy | «
b

h
m`n

}y}.

Assumption 5.1.1. Let y P LcpAq be a short vector obtained from lattice

reduction. Then each entry of y has similar size }y}{
?
m` n.
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5.1.2 Improved Dual Attack

Now we review the improvement on the dual attack on the sparse secret

LWE problem [Alb17]. Most of the techniques described in this section are

applicable to our hybrid attack. Hereafter we assume that the secret key

s is in Bn,h for some h ! n.

Assumption on s.

To exploit the sparsity of secret key, Albrecht suggests to solve the LWE

problem by dual lattice attack with the assumption that some coordinates

of secret key are zero. More precisely, parse the matrix A into A1||A2 for

two matrix A1 P Zmˆpn´kqq and A2 P Zmˆkq . If the part of secret key that

corresponds to A2 is the zero vector, Then it holds that b “ As ` e “

A1s1 ` e, for the parsed secret key s “ ps1||s2q P Zn´kq ˆ Zkq such that

s2 “ 0. Thus the dual attack on A1 using py1,y2q P Λq,cpA1q proceeds

xy1, by “ xy1, A1s1 ` ey

“ xy1, A1s1y ` xy1, ey

”q c ¨ xy2, s1y ` xy1, ey.

Since it is sufficient to run the lattice reduction algorithm in dimension

n´k instead of n, this assumption yields the faster time to solve the DLWE

problem. The drawback is the probability that the assumption holds; we

minimize the product of the inverse of the probability and the time com-

plexity to solve DLWE with this assumption by choosing appropriate k.
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Relaxed Assumption.

Albrecht introduces another method to relax the assumption. When s2 ‰

0, the dual attack on A1 yields

xy1, by “ xy1, A1s1y ` xy1, A2s2y ` xy1, ey

”q y
t
1A2s2 ` c ¨ y

t
2s1 ` y

t
1e

and c ¨ yt2s1 ` y
t
1e is relatively small when the sample is from LWE. We

assume that the coordinates of s2 are all but up to h1 zero, instead of zero

vector. Then the attack is done by searching possible secret s12 P Bn,ďh1
and check whether xy1, by ´ yt1A2 ¨ s

1
2 is far less than q or not. If there is

such s12 then we decide that the given sample is from LWE.

In this strategy, the probability that assumption holds is highly in-

creased whereas the time complexity is not much increased; in practice the

adversary choose h1 Æ 10 so that the dominated part is the lattice reduc-

tion algorithm. Thus this relaxation induces the smaller estimated security

of LWE. We remark that this approach can be viewed as a tradeoff between

dimension and error, as also noted by Albrecht.

Amortized Costs for Lattice Reductions.

To verify the guessed s12 is correct or not, we should obtain several short

py1,y2q P Λq,cpA1q. To obtain several short vectors of similar length in a

given lattice Λ, the easiest way would be repeating a lattice reduction that

yields root Hermite factor δ0, which gives vectors vi of length less than

δm0 ¨ det Λ1{m.

Instead, Albrecht suggested a way that performs one expensive lat-

tice reduction (e.g. BKZβ) on given basis to have a sufficiently short ba-
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sis B, and apply cheap lattice reductions (e.g. LLL) repeatedly while re-

randomizing the short basis B by multiplying some short and sparse uni-

modular matrix U. Using sufficiently short and sparse U, the short vectors

vi obtained by this cheap lattice reduction which is estimated by

Ep}vi}q “ 2 ¨ δm0 ¨ det Λ1{m.

For more details we refer [Alb17, Section 3].

To obtain statistically independent py1,y2q P Λq,cpA1q, we have to

assume that we can obtain arbitrarily many samples of DLWE. On the

other hand, in many actual uses of LWE problem, there are only bounded

number of samples pA, bq are given; typically the number of samples

would be m “ Opnq. In this case we instead sample several short vectors

yi “ pyi,1||yi,2q in a fixed lattice Λq,cpA1q. One can perform BKZ algo-

rithm iteratively with re-randomizing basis, or can perform LLL algorithm

iteratively according to the amortizing technique.

• Iterating BKZ: For a basis B of Λq,cpA1q, iteratively perform BKZ

on B ¨ U while randomly sample arbitrary unimodular U.

• Iterating LLL: Perform BKZ on B to have BBKZ . Randomly sample

a small and sparse unimodular U, and run LLL on BBKZ ¨U to have

a short vector. Repeat this while changing unimodular U.

However, if we use the same lattice Λq,cpA1q, new k-dimensional samples

are not independent to each other anymore, since yi comes from the same

lattice Λq,cpA1q. Thus we heuristically assume that, the short vectors yi P

ΛcpA1q are independent to each other, that is, we still obtain LWEk,q,χ

samples from yi.
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Assumption 5.1.2. Each iterative call of BKZ (or LLL) algorithm for

randomized basis of Λq,cpA1q gives an independent short vector yi.

5.2 Meet-in-the-Middle Attack on LWE

In this section, we describe an attack algorithm to solve LWE by meet-

in-the-middle strategy. Let pA, bq P Zmˆpn`1q
q be LWEn,q,αpBn,ďhq samples

with secret vector s. For the MitM approach, it is natural to consider the

noisy relation

As1 « b´ As2

for some s1 P Bn,ďh{2 and s2 P Bn,ďh{2 satisfying s “ s1 ` s2. We first

prepare a table

T “ tAv1 P Zmq : v1 P Bn,ďh{2u†.

Then, we exhaustively investigate v2 P Bn,ďh{2, while checking whether

b ´ Av2 P Zmq is close to the set T where such closeness depends on the

size of error e. Now, if such case occurs for some v2, then we can expect

that the vector v2 is the right half of secret s. Otherwise, we cannot see

such case for all possible v2, we conclude that the given sample is from the

uniform distribution.

In this approach, finding an element in T that is close to b´Av2 P Zmq is

the main task. A simple exhaustive method that checks every close vector

to b´Av2 P Zmq surely works, but it costs too much time. We here resolve it

by a search algorithm in the presence of noise that uses a locality sensitive

∗Another way to use MitM method is to parse A and s into rAl|Ars and s “ psl||srq
for n{2 dimension vectors. In the regards of the overall attack complexity that product
of the time and the inverse of probability, the method discussed in the main body is
better; The MitM with parsing takes less time and memory but the success probability
is far less compared to the MitM in the paper.
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hashing-like technique, which is adapted from Odlyzko’s MitM attack on

NTRU [HGSW03].

Before explaining our algorithm, we would like to remark that this

MitM attack alone does not affect the practical parameter choice of the

current schemes, but this attack serves as a main subroutine of our hybrid

attack algorithm that will be introduced in Section 5.

Remark. To the best of our knowledge, there has been two papers that

mentioned the MitM approach on LWE, but both of them are problematic;

Bai and Galbraith [BG14] mentioned that there is a MitM attack on LWE,

but they do not give the explicit algorithm, and Albrecht, Player and

Scott [APS15] presented a MitM attack on LWE based on lexicographic

order sorting, which has a flaw in the analysis. We describe this flaw in

Appendix. We note that a very similar algorithm is considered in a different

context; for example the inhomogeneous short integer solution problem

under the name approximate merge algorithm.

5.2.1 Noisy Collision Search

For a vector a P Zmq , we call a vector t P Zmq by B-noisy collision of

a if }a ´ t}8 ď B for some B ă q{2. Consider a set T Ă Zmq and a

vector a P Zmq . Our purpose is to determine whether there is a B-noisy

collision t of a in S, and if so returns such vector t. We mainly exploits

a simple locality sensitive hashing sgn : Zq Ñ t0, 1u, which defined as

sgnpxq “ 1 for x P r0, q{2q and 0 otherwise. For every B-noisy collision

t “ ptiq of a “ paiq, the sign of i-th entries sgnpaiq and sgnpbiq must

coincide if ai P VB :“ r´q{2`B,´Bq Y rB, q{2´Bq.

For a vector a “ paiq P Zmq , define an index set Ia :“ ti : ai P VBu, and

define a function sgn1 : Zq Ñ t0, 1, xu that returns sgnpaq if a P VB, and
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otherwise x. Then from the above observation, we have the following fact

that becomes a foundation of our algorithm

If T has a B-noisy collision of a, then there is a binary string

pb1, ¨ ¨ ¨ , bmq P sgnpT q such that bi “ sgn1paiq for every index i in Ia.

Detailed Algorithms.

We give two algorithms Preprocess and Search, where the former literally

preprocess the set T , and the latter investigate whether T has a B-noisy

collision of input a P Zmq .

- Preprocess: On input T Ă Zmq ,

1. Initialize an empty hash table H with 2m (empty) linked lists with

indexes in t0, 1um.

2. For each t P T ,

(a) append t into the linked list indexed sgnptq.

3. Return nonempty linked lists H.

- Search: On input a hash table H, a query a P Zmq and distance bound

B,

1. For each bin P t0, 1um obtained from sgn1paq by replacing x by 0 or

1,

(a) If H has a linked list indexed bin, for each t in the list,

i. Check whether }a´ t}8 ď B. If so, return t.

2. Return K.
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Algorithm Analysis.

First, the following proposition asserts that our algorithm can find the

B-noisy collision, if exists.

Proposition 5.2.1 (Correctness). Let T be a nonempty subset of Zmq and

H be the output of Preprocess algorithm on input T . Then Search algo-

rithm with input pL,a, Bq returns a vector if and only if there is a B-noisy

collision of a in H. In particular, every returned vector is a B-noisy colli-

sion of a.

Proof. The second claim is immediate. For the first claim, one direction

is clear since the output vector itself is a noisy collision in T . Conversely,

suppose that T has a noisy collision t. Since sgnptq would be one of strings

obtained from sgn1paq, it outputs t unless it terminates before then with

some vector t1.

To investigate the (time) cost of Algorithms, we presents some lemmas.

Lemma 5.2.1. If a
$
Ð Zmq , |Ia| follows a binomial distribution Bpm, 1 ´

4B{qq.

Proof. Since a is sampled from UpZmq q, the probability that each compo-

nent ai is not in VB is 4B{q. Each component of ai is independent, and

then we know the number of x in sgn1paq follows a binomial distribution

Bpm, 4B{qq.

Lemma 5.2.2. Suppose the elements of the table T come from uniform

distribution over Zmq . For any bin P t0, 1um,

Pr rLbin ‰ Hs ď
|T |
2m

.
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Proof. Note that Lbin ‰ H if and only if bin P sgnpT q. Since T is uniformly

distributed, the probability of bin R sgnpT q is
`

1´ 1
2m

˘|T |
ě 1´ |T |

2m
, which

proves the claim.

Now assuming that the linked list insertion costs Op1q, the cost of

Preprocess is clearly Op|T |q. The costs of Search consists of 2m´|Ia| times

of hash table lookups, and some computations of }¨}8 norm. We first claim

that |Ia| would be mp1 ´ 4B{qq (stated in Lemma 5.2.1), which implies

Search look ups the hash table about 24mB{q times.

Next we claim that by Heuristic 5.2.1, if m is sufficiently large‡, the

computation of } ¨ }8 almost never occur for a randomly chosen query

a P Zmq .

Assumption 5.2.1. Let m, q ą 0 be positive integers and B P p0, q{4q, and

consider T Ă Zmq whose element is sampled from uniform distribution. Let

H be output of Preprocess on input T . If

m ě 2 logp|T |q{p1´ 4B{qq, (5.1)

then for a random vector aÐ Zmq , the probability that Search never com-

putes } ¨ }8 norm is ě 1´ 1{|T |.

We justify the heuristic as follows: Since |Ia| “ mp1 ´ 4B{qq for ran-

dom a P Zmq on average by Lemma 5.2.1, we heuristically assume that

Search visits 24mB{q indexes. Since Pr rLbin ‰ Hs ď
|T |
2m

by Lemma 5.2.2,

we bound the probability that Search never visits nonempty linked lists

by
´

1´ |T |
2m

¯4mB{q

. One can easily check that if such choice of m yields the

claim.

‡Note that, when we use noisy collision search to solve LWE, the parameter m is the
number of samples of given LWE instances so it can be freely chosen by adversary.
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Preprocess Search§

|T | ¨m Op24mB{qq

(operations on Zq) (table look-ups)

Table 5.1: Time cost for noisy search

Considering all above, we assess the total time cost in Table 5.1.

5.2.2 Noisy Meet-in-the-middle Attack on LWE

We now present a (noisy) MitM attack for LWE, using noisy collision

search. Formal description is given by Algorithm 5. We would like to remark

that, since we mainly exploit this algorithm as a subroutine of the main

hybrid attack for LWE, Algorithm 5 is also described for LWE although

it can actually solve the search version of LWE. Here, we define Bn,h by

a set of vectors in t0,˘1unq with h number of nonzero entries. Also, Bn,ďh
denotes Yhi“0Bn,i.

One can easily check that correctness of Algorithm 5 comes immediately

from the correctness of noisy search.

Proposition 5.2.2. Let h1, h2 ą 0 be positive integers, χ be a pB, εq-

bounded distribution over Z, and let pA, bq P Zmˆpn`1q
q be ALWE

n,q,χ,s samples

where s P Bn,ďh1`h2. Then Algorithm 5 returns 1 for input pA, bq and h1, h2

with probability ě p1´ εqm.

Proof. If input pA, bq is LWE sample with sparse ternary secret s P

Bn,ďh1`h2 , we exhaustively run the noise search on v1 P Bn,t1 for t1 ď h1

and v2 P Bn,t2 for t2 ď h1. These search should find ps1, s2q such that

§Per one query in average.
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Algorithm 5: Meet-in-the-middle attack for binary sparse LWE
problems

Input : A matrix pA, bq P Zmˆpn`1q
q

Hamming weight parameters h1, h2 ą 0
Output: 1 if pA, bq is from LWE distribution, and 0 otherwise

1 Compute T “ tAv1 : v1 P Bn,ďh1u;
2 Run Preprocess on input T to have a hash table H;
3 for v “ b´ Av2 P Zmq for each v2 P Bn,h2 do
4 if Search on input pH,v, Bq returns a vector, then
5 return 1
6 end

7 end
8 return 0

s “ s1 ` s2 and in this case the following equations holds:

}As1 ´ pb´ As2q}8 “ }As´ b}8 “ }e}8

Since Algorithm 5 returns 1 if }e}8 ď B and each coordinate of error

e follows χ, we conclude the algorithm succeeds with probability ě p1 ´

εqm.

To apply the analyses of noisy collision search, we need the following

assumption that says that the vectors in table and queries are randomly

distributed over Zmq .

Assumption 5.2.2. For a fixed matrix A P Zmˆnq , a distribution of vec-

tors of the form As where s Ð Bn,ďh is sufficiently close to the uniform

distribution over Zmq .

Proposition 5.2.3. Suppose that Assumption 5.2.2 holds. Then for a uni-

formly random matrix pA, bq P Zmˆpn`1q
q , Algorithm 5 returns 0 for input
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pA, bq and parameters h1, h2 with probability ě 1 ´ NTNq ¨

´

2B
q

¯m

, where

NT pn, h1q and Nqpn, h2q denotes the number of vectors in table and the

number of query.

Proof. By Assumption 5.2.2, we consider every query v “ b ´ Av2 as a

random sample from Zmq . Then again from the assumption, the set T is

randomly distributed on Zmq , and we conclude that the probability that a

B-noisy collision of v is in T is less than NT p2B{qq
m. Since we try at most

Nq queries, the claim holds.

Clearly, the time complexity of Algorithm 5 is the sum of table con-

struction and Preprocess time Tpre, and total noisy search time Tsearch.

Clearly, the size of table NT and the number of query Nq is given by

NT “
h1
ÿ

i“1

ˆ

n

i

˙

¨ 2i, Nq “

h2
ÿ

i“1

ˆ

n

i

˙

¨ 2i (5.2)

for given h1, h2. Finally, by supposing Assumption 5.2.2 holds and the

condition for m (5.1), we have the following cost estimation.

• Tpre consists of NT ¨ n
2 operations over Zq on constructing table T ,

and Preprocess also requires NT ¨m operations.

• Since each Search call for each query costs 24mB{q in average, we

have Tsearch “ OpNq ¨ 2
4mB{qq.

5.3 The Hybrid-Dual Attack

In this section, we propose a hybrid attack that combines lattice reduction

and the MitM attack. More precisely, we use dual attack as a trade-off
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Memory
Time

Tpre Tsearch
NT ¨m NT ¨ pn

2 `mq OpNq ¨ 2
4mB{qq

(bits) (operations) (table look-ups)

Table 5.2: Cost for Algorithm 5 with inputs a matrix in Zmˆpn`1q
q and

h1, h2.

method for LWE sample, which increases the error size and reduces di-

mension and Hamming weight of secret vector. For that MitM attack of

the previous section cost heavily depends on the dimension of secret vector

but less sensitive to error size, this trade-off largely decreases the MitM

attack cost.

5.3.1 Dimension-error Trade-off of LWE

In this section we interpret Albrecht’s dual attack as dimension-error trade-

off with detailed analysis. For given LWE samples pA, bq P Zmˆpn`1q
q from

ALWE
n,q,α,s for k ă n, divide A into A1 and A2 consisting of the first n ´ k

columns and the remaining k columns. For any vectors py1,y2q P Λq,cpA1q,

it holds that

xy1, by “ xy1, A1s1y ` xy1, A2s2y ` xy1, ey

”q y
t
1A2s2 ` c ¨ y

t
2s1 ` y

t
1e

where s2 is the last k entries of s. Now, if py1,y2q is sufficiently short to

satisfy xy1, ey , xy2, s1y ! q, we have a new LWE-like sample

py1
tA2, xy1, byq “ pa

1, xa1, s2y ` e
1
q P Zk`1

q ,

with new secret vector s2 and error e1 “ c ¨ xy2, s1y ` xy1, ey .
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Algorithm 6: A Dimension-error Trade-off

Input : A matrix pA, bq P Zmˆpn`1q
q

Root Hermite factor δ0

Dimension trade-off parameter 0 ă k ă n
Output: A vector pa1, b1q P Zk`1

q .

1 Parse A into rA1||A2s with A1 P Zmˆpn´kqq and A2 P Zmˆkq ;

2 y “ py1||y2q Ð BKZδ0pΛ
K
q,cpA1qq;

3 return pa1, b1q Ð pyt1A2, xy, byq P Zk`1
q .

We now have Algorithm 6 for the dimension-error trade-off, while as-

suming Assumption 5.1.1 to justify the choice for c in Section 3.1. In other

words, we choose c “ αq
?

2π
¨

}y1}
|xy2,s1y|

and assume that each entry of y has

similar size }y}{
?
m` n. We formally state that Algorithm 6 can serve a

trade-off algorithm on the LWE problem as follows.

Proposition 5.3.1. Assume that Assumption 5.1.1 holds for outputs of

BKZ algorithm with root-Hermite factor δ0. Then for given ALWE
n,q,α,s sam-

ples pA, bq P Zmˆnq , Algorithm 6 returns one ALWE
k,q,χ,s1 sample pa1, b1q P Zk`1

q ,

where s1 “ psn´k`1, ¨ ¨ ¨ , snq. In particular, the error distribution χ is

pB, 2e´4πq-bounded with

B “

ˆ

2`
1
?

2π

˙

¨

c

m

m` n
¨ αq ¨ }y} (5.3)

Proof. It only remains to show the error bound part, and we use the fol-

lowing lemma.

Lemma 5.3.1 (Lemma 2.4 of [Ban95]). For any real s ą 0 and C ą 0,
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and any x P Rn, we have

Prr|xx,DZn,sy| ě C ¨ s}x}s ă 2 ¨ expp´π ¨ C2
q.

From this lemma we know }xy1, ey} ă 2αq ¨ }y1} with probability ě

1´ 2e´4π. Therefore, with probability ě 1´ 2e´4π, we have

|e1| ď |xy1, ey| ` |c ¨ xy2, sy|

ď 2αq ¨ }y1} `
αq
?

2π
¨ }y1}

ď p2`
1
?

2π
q ¨ αq ¨ }y1}.

Since Assumption 5.1.1 guarantees }y1} «
a

m
m`n

}y}, we show (5.3).

Amortizing and Heuristic for Algorithm 6

We remark that Albrecht’s amortizing technique and heuristic assumption

described in Section 3 works well for this trade-off. More precisely, the

amortizing technique reduces the time cost for multiple run of tradeoff

algorithm into, essentially, the time cost of one run of Algorithm 6. On the

other hand, we can obtain arbitrary many independent trade-offed LWE

samples from the bounded number, e.g. m “ Opnq, of given LWE samples

under the heuristic assumption. We employ these techniques in the hybrid

attack and estimation as well.

5.3.2 Our Hybrid Attack

Now we are able to describe our hybrid attack, which is formally written in

Algorithm 7. We first explain how to choose parameters m and τ optimally
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from inputs.

• The number of n-dim DLWE samples m is set to minimize the short

vectors obtained from BKZδ0 , precisely

m “

d

n log q{c

log δ0

.

• The error bound B is subsequently obtained from m by Proposition

5.3.1, precisely

B “ p2`
1
?

2π
q ¨ αq

c

m

m` n
¨ 22
?
n log δ0 log q{c.

• The number of k-dim DLWE samples τ is chosen according to Heuris-

tic 5.2.1¶, in order to ensure that Algorithm 5 runs in time propor-

tional to 24τB{q, precisely

τ “
1

1´ 4B{q
logpNT ¨Nqq,

where

NT “ |T | “
h1
ÿ

i“1

ˆ

k

i

˙

¨ 2i, Nq “

h2
ÿ

i“1

ˆ

k

i

˙

¨ 2i.

The following theorem shows the results of Algorithm 7 for LWE sam-

ples.

¶We note that the parameter τ does not critically affect to the performance when
we use the amortization technique. Hence we choose τ as in heuristical computation.
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Algorithm 7: A new hybrid attack for sparse ternary secret LWE

Input : pA, bq P Zmˆpn`1q
q

Root Hermite factor δ0

Dimension trade-off parameter 0 ă k ă n
MitM parameter 0 ď h1, h2 ď h

Output : 1 if pai, biq’s are sampled from LWE distribution, and 0
otherwise.

1 Set m,B and τ as optimal values;
2 // Dimension-error trade-off;
3 for i from 1 to τ do

4 Let pA, bq P Zmˆpn`1q
q be DLWEn,q,αpBn,hq samples;

5 Run Algorithm 6 on input pA, bq, δ0, and k to obtain pa1i, b
1
iq P Zk`1

q

6 end

7 pA1, b1q P Zτˆpk`1q
q be a matrix having i-th row pa1i, b

1
iq;

8 // No need to perform MitM if s2 “ 0;
9 if }b1i}8 ď B then

10 return 1
11 end
12 // Perform MitM;
13 if Algorithm 5 on input pA1, b1q, B, h1, and h2 outputs 1 then
14 return 1
15 end

16 return 0

Theorem 5.3.1. Let s P Bn,h. Given sufficiently many ALWE
n,q,α,s samples,

Algorithm 7 returns 1 with probability

p “ p1´ 2e´4π
q
m
¨

ÿ

0ďiďh1`h2

ˆ

n´ h

k ´ i

˙ˆ

h

i

˙

{

ˆ

n

k

˙

.

Proof. Let the secret vector s be s “ ps1}s2q which is seperated as y “

py1}y2q. This means that we run Algorithm 5 by input pA1, b1q, which has

s2 as its LWE secret. Thus Algorithm 5 returns 1 if and only if HWps2q ď
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Memory
Time

Tlat Tpre Tsearch
NT ¨ τ

« TBKZ,δ0
NT ¨ pk

2 ` τq OpNq ¨ 2
4τB{qq

(bits) (operations) (table look-ups)

Table 5.3: Cost for Algorithm 7

h1 ` h2. This probability is

p1 “
ÿ

0ďiďh1`h2

ˆ

n´ h

k ´ i

˙ˆ

h

i

˙

{

ˆ

n

k

˙

.

From the choice of B and Proposition 5.3.1, we get p “ p1´2e´4πqm ¨p1.

Under the amortizing technique and heuristic assumption, the time

cost of the trade-off phase is approximately one lattice reduction, and the

condition sufficiently many is removed. Overall, the total time complexity

of Algorithm 7 is dominated by the sum of lattice reduction time Tlat and

Algorithm 5 time Tpre`Tsearch. Since we take τ according to Heuristic 5.2.1,

the table 5.2 is also applicable to this case, which yields the following time

cost table with the amortizing technique.

5.4 The Hybrid-Primal Attack

In this chapter, we revisit the hybrid attack in the context of the LWE

problem using sparse and ternary secret, together with various techniques

derived from other LWE attack literature. To distinguish from the hybrid-

dual attack of the previous section, we call this attack by the hybrid-primal

attack. We further refine the analysis of the hybrid attack to be align with

LWE setting, and derive more accurate and reliable security estimate.

Upon our analysis, we estimate the complexity of the hybrid attack
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for various parameters currently used in the HE literature. As a result,

we observe that the hybrid attack outperforms the previously considered

attacks‖ on currently used HE parameter regime which urges parameter

update to maintain the same security level.

We finally remark that, our result re-ensures that the security implica-

tion of the use of sparse secret is not well understood yet, as the homo-

morphic encryption standardization states.

5.4.1 The Primal Attack on LWE

The primal lattice attack for LWE solves the bounded distance decoding

(BDD) problem directly. That is, given LWE samples pA, bq, it finds a vec-

tor w “ As such that }b´w} is unusually small. The literature has mainly

considered two approaches to solve BDD: the first one directly solves BDD

using Babai’s nearest algorithm followed by lattice reduction [LP11], and

the second one converts the BDD instance into (u)SVP instance, and solves

it by lattice reduction [ADPS16, AGVW17]. We here only explain the sec-

ond method that is more widely considered. For this method one converts

the given LWE samples into some lattice. The Kannan embedding [Kan87]

considers the column echelon form rIn||A
1tst of A P Zmˆnq (after appropri-

ate permutation of rows) and construct the lattice ΛKan generated by the

following matrix

BKan “

¨

˚

˚

˝

qIm´n

0

A1

In
b

0 0 1

˛

‹

‹

‚

P Zpm`1qˆpm`1q

‖For the previous attack estimation, we exploit LWE-estimator [APS15].
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which has a short vector pe, 1q P Zm`1. However, this approach cannot

benefit when the secret is small, which information may lead to better

attack by allowing the attacker to exploit it.

In this regard, another lattice embedding is proposed by [BG14]:

ΛBG “ tx P Zm ˆ pνZqn ˆ Zu :

ˆ

Im ||
1

ν
A || ´ b

˙

¨ x “ 0 mod qu.

This lattice contains an unusual short vector pe, νs, 1q. Thus, we can find

the secret vector s along with error vector e by solving SVP on a lattice

generated by basis

BBG,ν “

¨

˚

˚

˝

qIm A ´b

0 νIn 0

0 0 1

˛

‹

‹

‚

.

The scaling factor ν is determined so that the short vector pe, νs, 1q is

balanced, or explicitly

}e} « }νs}.

Upon the choice of such ν, the vector pe, νs, 1q is assumed to be of the

form pe1, 1q where e1 is sampled from Gaussian distribution having same

standard deviation with e.

Unique-SVP estimate

One attack model based on the primal strategy was proposed in [ADPS16]

and rigorously analyzed in [AGVW17]. We remark that, the usvp tab of

LWE-estimator currently considers this attack model. When the BKZ al-

gorithm is applied for a random d-dimensional lattice, the SVP oracle finds

the shortest vector of the last projected lattice of size β, whose length is
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expected to be

δ2β´d
0 ¨ detpΛpBqq1{d

under GSA assumption. Meanwhile, in the embedding lattice for the primal

strategy, the projection of pe, 1q to the last β Gram-Schmidt vectors has

size
a

β{d ¨ }pe, 1q} «
a

βσ

where σ is the standard deviation of each component of e. Upon this

facts, [AGVW17] argues and confirms on an experimental basis that, for

β satisfying
a

βσ ď δ2β´d
0 ¨ detpΛpBqq1{d, (5.4)

one can totally recover the short vector using BKZ with such β.

Sparse secret case

When the secret is further assumed to be sparse, most of columns of A are

irrelevant to b “ As`e. From this observation, one can randomly remove

some columns of A P Zmˆnq to have A1 P Zkˆnq pk ă nq, and then apply the

primal strategy to pA1, bq that requires smaller blocksize β for (5.4). This

succeeds if pA1, bq is also LWE samples, or equivalently, all the removed

columns correspond to zero component of s. Note that it happens with

adequate probability, say pk, due to sparsity of the secret. Considering this

into account, the attack complexity for sparse secret is calculated by

min
k

1

pk
¨ Tk

where Tk is the time cost for the primal attack on k-dimensional LWE

sample.
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5.4.2 The Hybrid Attack for SVP

In this section we recall the description and bird-eye analysis flow of the

hybrid attack [Wun16]. Generally, the hybrid attack finds a short vector

v “ pvl,vgq in a lattice Λ, whose basis is of the form

B “

˜

T C

0 Ir

¸

P Zpd`rqˆpd`rq.

For our interest case, we assume that vl is sampled from a small Gaussian

distribution Ddαq and vg is ternary vector having low Hamming weight

h ď r.

Hybrid with Exhaustive-search

The main observation for the hybrid attack is

v “

˜

vl

vg

¸

“ B

˜

x

vg

¸

“

˜

Tx` Cvg

vg

¸

for some x. Then we have vl “ Tx` Cvr, which implies

NPT pCvgq “ NPT pTx` Cvgq “ NPT pvlq.

From this we consider the following hybrid attack of lattice reduction and

exhaustive search:

1. Reduce the matrix T so that NPT pvlq “ vl

2. Guess vr and compute NPT pCvrq; if the guess is correct, one has

unusually short result, namely vl.
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The detailed procedure is given below by Algorithm 8.

Algorithm 8: A Hybrid of Exhaustive Search

Input : A matrix B “

ˆ

T C
0 Ir

˙

P Zpd`rqˆpd`rq

A blocksize β
A weight parameter hg
An expected bound y for }vl}8.

Output : A short vector v in ΛpBq

1 T Ð BKZβpT q;
2 for for each w P t˘1, 0ur of Hamming weight hg do
3 v1l Ð NPT pCwq P Zd;
4 if v “ pv1l||vgq P ΛpBq and }vl}8 ď y then
5 return v.
6 end

7 end

8 return False

Speedup with MitM

Upon this basic attack, one can speed up the guessing step by MitM ap-

proach. For two vectors v1 and v2 of low weight satisfying vg “ v1 ` v2,

we have

Cv1 “ ´Cv2 ` Cvg “ ´Cv2 ` vl ´ Tx,

and hence

NPT pCv1q “ NPT p´Cv2 ` vlq.

For MitM strategy, one hopes that the NP algorithm works homomorphi-

cally, that is,

NPT p´Cv2 ` vlq “ NPT p´Cv2q ` NPT pvlq (5.5)
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in order to have

NPT pCv1q “ NPT p´Cv2 ` vlq “ NPT p´Cv2q ` NPT pvlq.

As we reduce the matrix T so that NPT pvlq “ vl, one reaches

NPT pCv1q “ NPT p´Cv2q ` vl « NPT p´Cv2q “ ´NPT pCv2q (5.6)

from which one tries to detect the (noisy) collision in MitM manner. The

event (5.5) definitely not always happens, and indeed the probability for

(5.5) plays a crucial role to analyze the attack complexity.

To detect the collision, we need to store vector v in a table having

addresses related to NPpCvq. In this regard, we define the address set Ax
below: note that for a bound y such that }vl}8 ď y, we have

Apd,yqNPT pCv1q
XApd,yq

´NPT pCv2q
‰ H,

which enables one to find the collision.

Definition 5.4.1 (Definition 1 of [Wun16]). For a vector x P Zd the set

Apd,yqx Ă t0, 1ud is defined as

Apd,yqx “

#

a P t0, 1ud :
ai “ 1 if xi ą r

y
2
´ 1s

ai “ 0 if xi ă t´
y
2
u

+

.

Algorithm 9 below describes the detail. The main loop investigates

vectors of Hamming weight hM , while expecting vg is represented by the

sum of two vectors of weight hM . Note that this happens not only for

HWpvgq “ 2hM case, but HWpvgq “ 2k for some k ď hM case.
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Algorithm 9: A Hybrid MitM Attack

Input : A matrix B “

ˆ

T C
0 Ir

˙

P Zpd`rqˆpd`rq

A blocksize β
A weight parameter hM
An expected bound y for }vl}8.

Output : A short vector v in ΛpBq

1 T Ð BKZβpT q;
2 for each w P t˘1, 0ur of Hamming weight hM do
3 v1l Ð NPT pCwq P Zd;
4 store w in all the boxes having address in a set Apd,yq

v1l
YApd,yq

´v1l
;

5 for each w1 ‰ w in all boxes of address in Apd,yq
v1l

YApd,yq
´v1l

do

6 vg Ð w `w1 and vl Ð NPT pCvgq P Zd´r;
7 if v “ pvl||vgq P ΛpBq and }vl}8 ď y then
8 return v.
9 end

10 end

11 end

12 return False
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Analysis for MitM hybrid

The time cost of Algorithm 9 and its main parts consist of the lattice

reduction cost TBKZ and the guessing cost Tguess. The reduction cost TBKZ

can be easily estimated from blocksize β and dimension d ´ r, and hence

in the following we mainly focus on Tguess.

We estimate Tguess by one inner loop cost multiplied by the expected

number of loops, say L, and for the sake of simplicity, we establish the

following assumption.

Assumption 5.4.1. We assume that one inner loop cost of Algorithm 9

is dominated by nearest plane algorithm cost TNP.

Explanation. This assumption is closely related to the expected bound y

of }vl}8 : Too small y makes the algorithm fail to find the answer, and too

large y increases the size of address set so that Assumption 5.4.1 fails. We

will consider

y “ 6
αq
?

2π
,

that is 6 times of standard deviation ofDαq. Indeed, this value is sufficiently

large so that }vl}8 ď y holds with high probability, and sufficiently small so

that Assumption 5.4.1 makes sense. To be precise, we justify the followings

for our interest parameters.

• We have

Pr
vlÐDdαq

r}vl}8 ď ys ě 0.99.

• For x Ð PpT ˚q, the address set Apd,yqx consists of only one element

with overwhelming probability.
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For the first claim, note that the probability PreÐDαq r|e| ě ys is about

2´28 by approximating the discrete Gaussian as a continuous one. Then

}vl} ď y with probability at least p1´d ¨2´28q, and since our all parameters

satisfy d ď 220, this is still larger than 0.99.

We now explain the second claim. From the definition, one can check

that the number of address set Apd,yqx is 2` where ` is the number of com-

ponents of x in r´y
2
, y

2
s. Then for a random choice of x Ð PpT ˚q, the

probability of xi is in r´y
2
, y

2
s is y

Ri
where Ri is the i-th Gram-Schmidt

length of T. Then we establish an expectation for ` by

Er`s “
d
ÿ

i“1

y

Ri

.

By assuming GSA, we have an upper bound for that expectation by

` ď d ¨
y

Rd

“ d ¨
y

δ´d0 ¨ detpT q1{d
.

For all of our parameters in Table 5.4 one can check that the right hand

side value is much smaller than 1.

From Assumption 5.4.1, we have Tguess “ L ¨ TNP where TNP “ d2{21.06

according to (2.2). Toward an estimation for L, we start by defining two

sets

W “ tw P t˘1, 0ur : HWpwq “ hMu

and

V “ tw P W : pvg ´w P W q ^ pNPT pCwq ` NPpCvg ´ Cwq “ vlqu,
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and two probabilities

ps :“ Pr
wÐW
vlÐDdαq

rNPT pCwq ` NPT pCvg ´ Cwq “ vls

and

pc :“ Pr
wÐW

rvg ´w P W s

for which we make the following assumption.

Assumption 5.4.2. We assume that two probabilities ps and pc are inde-

pendent, and further assume that

|V | “ pspc|W |.

Explanation. We will apply this analysis for the MitM speed-up only when

|W | ě
1

pspc
.

If this inequality is unsatisfied with given parameters, the set V is likely

to be empty and Lemma 5.4.1 becomes vacuous, and hence this analysis

for the MitM speed-up becomes utterly improper.

Regarding the set V, the following lemma gives an algorithm terminates

condition.

Lemma 5.4.1. Algorithm 9 terminates with vg right after the main loop

chooses two vectors v1,v2 P V such that v1 ` v2 “ vg.

Proof. Since v1 and v2 belong to V, we have NPT pCv1q ` NPpCv2q “ vl.

Then NPT pCv1q and ´NPpCv2q differ by vl, and hence from the definition

of address set, we have ANPpCv1q X A´NPpCv2q ‰ H. Thus v1 and v2 are
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stored in at least one box, and Algorithm 9 detects them and return vg “

v1 ` v2.

From Assumption 5.4.2, we expect that the main loop samples one

vector in V for every 1
pspc

repeats, and by Lemma 5.4.1 we estimate the

number of loops are estimated by the birthday paradox as

L «

a

|V |

pspc
“

d

|W |

pspc
“

d

2hM
`

r
hM

˘

pspc
. (5.7)

It remains to compute the probabilities ps and pc to completely rep-

resent (5.7) by the parameters d, β, r and hM . Rather than giving too

generalized formula for this, we postpone this later in Section 5.4.4 after

we give the detail for the hybrid attack against LWE case.

5.4.3 The Hybrid-Primal attack for LWE

In this section, we apply the hybrid attack algorithm to the primal lattice

attack against LWE, and adapt previous analysis in accordance with our

interest LWE setting: small and sparse secret with (discrete) Gaussian

error. Without any special mention, we assume that LWE sample pA, bq is

given by LWEn,q,αpBhq.
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Overview

Given LWE sample pA, b “ As` eq, we consider Bai-Gal embedding with

some change of the order columns and ν “ 1

B “

¨

˚

˚

˝

qIm ´b A

0 1 0

0 0 In

˛

‹

‹

‚

that contains a short vector v “ pe, 1, sq. By taking a MitM dimension

parameter r ď n, we divide the matrix by following:

B “

¨

˚

˚

˝

qIm ˚ ˚

0 In`1´r 0

0 0 Ir

˛

‹

‹

‚

,

and parse s “ psl, sgq with sl P Zd and sg P Zr where d :“ m` n` 1´ r.

This represents the short vector v by pvl,vgq where vl “ pe, 1, slq P Zd

and vg “ sg with HWpvgq ď h.

Now one can simply apply Algorithm 9 with hM “ th{2u, but it takes

enormous time for the most of our interest parameters. Instead, we pick

smaller hM to have feasible MitM cost, while expecting sg has smaller

weight. Since this naturally introduces some chance that algorithm fails,

this parameter hM would be appropriately chosen to minimize the overall

complexity by considering the failure probability. We deal with this prob-

ability below by phM in Lemma 5.4.2. The detailed algorithm can be found

in Algorithm 10.

94



CHAPTER 5. CONCRETE SECURITY OF HOMOMORPHIC
ENCRYPTION

Adapting Scaling Factor

We also adapt the scaling factor technique [BG14] to our case. Precisely,

we use the following basis

Bν “

¨

˚

˚

˝

qIm ˚ ˚

0 νIn`1´r 0

0 0 Ir

˛

‹

‹

‚

that contains a vector pv1l,vgq with v1l “ pe, ν, νslq and vg “ sg. The

scaling factor ν is chosen to satisfy }v1l} «
αq
?

2π

?
d in order to assume v1l

as a vector sampled from discrete Gaussian Ddαq. The explicit formula is

given by

ν “
αq
?

2π
¨

d

n` 1´ r

h` 1´ HWpslq
.

Algorithm 10: A Primal Hybrid Attack

Input : LWEn,q,αpBhq sample pA, bq P Zmˆpn`1q
q

A blocksize β
MitM dimension parameter r
MitM weight parameter hM

Output : LWE secret vector s P t˘1, 0un

1 ν Ð αq
?

2π
¨

b

n`1
h´2hM`1 ;

2 y Ð 6αq{
?

2π // According to Assumption 5.4.1;
3 Parse A1 “ r´b | As into rA11|A

1
2s where A12 has r columns;

4 Bν Ð

ˆ

T C
0 Ir

˙

where T “

ˆ

qIm A11
0 In`1´r

˙

and C “

ˆ

A12
0

˙

;

5 Run Algorithm 9 on input Bν , β, hM , y.
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Versus the previous primal attack model

We give a brief intuition that explains how the primal hybrid attack per-

forms better than the previous primal attack model. Recall from Section

5.4.1, the previous model takes advantage of sparsity by reducing the di-

mension of LWE by removing some columns of A, while expecting all the

removed columns correspond to zero components of the secret. In our view

of dividing

B “

¨

˚

˚

˝

qIm ˚ ˚

0 In`1´r 0

0 0 Ir

˛

‹

‹

‚

and v “

˜

vl

vg

¸

,

this translates into expecting the vector vg “ sg is zero, and apply the lat-

tice reduction only for the upper-left matrix. Then the success probability

is calculated by the probability that sg “ 0. In this regard, our hybrid

attack can be viewed to admit some nonzero components on vg as long as

the cost for investigating them remains not so large, which results in larger

success probability.

5.4.4 Complexity Analysis

In this section we complete the analysis of hybrid attacks in Section 12

by calculating the probabilities with respect to parameters d, r and so on.

We remark that although overall flow of analysis is similar to previous

works for hybrid attacks [HG07, BGPW16, Wun16], but to the best of

our knowledge, our analysis based on the MitM weight parameter hM and

Gaussian shape of vl has never been considered before.
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Recall that we defined

W “ tw P t˘1, 0ur : HWpwq “ hMu

and

V “ tw P W : pvg ´w P W q ^ pNPT pCwq ` NPpCvg ´ Cwq “ vlqu,

and two probabilities

ps :“ Pr
wÐW
vlÐDdαq

rNPT pCwq ` NPT pCvg ´ Cwq “ vls (5.8)

and

pc :“ Pr
wÐW

rvg ´w P W s. (5.9)

Now we will calculate the probabilities as following:

• Lemma 5.4.2 calculates the probability pc under the assumption

HWpvgq “ 2k for some k ď hM of probability phM

• Lemma 5.4.3 calculates the probability ps under the assumption

NPT pCvgq “ vl of probability pNP.

Then finally we fully represent TBKZ and Tguess with regard to n, q, α, h

and β, r, hM ,m and we finally conclude the total complexity estimation

Ttot “
1

pNPphM
pTBKZ ` Tguessq . (5.10)

Lemma 5.4.2. Let vg P Zr be a vector obtained by picking r compo-

nents of vector v sampled uniformly from Bn,h. Then the probability phM
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of HWpvgq “ 2k for some k ď hM is

phM “
hM
ÿ

k“0

`

h
2k

˘

¨
`

n´h
r´2k

˘

`

n
r

˘ .

Moreover, conditioned on HWpvgq “ 2k for some k ď hM , the probability

pc defined as (5.9) is represented by

pc “
hM
ÿ

k“0

1

2k

`

2k
k

˘`

r´2k
hM´k

˘

`

r
hM

˘ ¨

`

h
2k

˘`

n´h
r´2k

˘

řhM
i“0

`

h
2i

˘`

n´h
r´2i

˘ .

Proof. The probability phM can be directly obtained from

PrrHWpvgq “ 2ks “

`

h
2k

˘`

n´h
r´2k

˘

`

n
r

˘ .

For pc, we write E be the event HWpvgq “ 2k for some k ď hM , and

split pc by the conditional probabilities

pc “
hM
ÿ

k“0

Pr
wÐW

rvg ´w P W | HWpvgq “ 2ks ¨ Pr rHWpvgq “ 2k | Es .

The latter probability is easily obtained by

Pr rHWpvgq “ 2k | Es “

`

h
2k

˘`

n´h
r´2k

˘

řhM
i“0

`

h
2i

˘`

n´h
r´2i

˘ ,

and we proceed to compute

Pr
wÐW

rvg ´w P W | HWpvgq “ 2ks .
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For that we observe, in order that vg´w P t˘1, 0ur,w and vg should agree

on every position where w and vg are both nonzero; if not, vg´w contains

entry 2 or ´2. By writing the number of such coincident components by

`, we have

HWpvg ´wq “ 2k ´ `` phM ´ `q,

and ` should be k in order to have HWpvg´wq “ hM . Therefore, w should

coincide with vg exactly on k nonzero components for HWpvg ´wq “ hM ,

from which we have

Pr
wÐW

rvg ´w P W | HWpvgq “ 2ks “
1

2k

`

2k
k

˘`

r´2k
hM´k

˘

`

r
hM

˘ .

To proceed to the probability ps and pNP related to nearest plane algo-

rithm, we require the following assumption.

Assumption 5.4.3. We assume that the distribution of

Cw mod PpT ˚q

for w Ð W is sufficiently close to the uniform distribution on PpT ˚q.
Moreover, we assume that the discrete Gaussian Dαq behaves like a con-

tinuous Gaussian distribution of standard deviation αq{
?

2π.

Explanation. The first claim of this assumption has not been exactly stated

in any previous analysis, but all of them also explicitly assumed this. For

this to be plausible, it would be better to run Algorithm 9 with

T 1 “

˜

˚ qIm

νIn`1´r 0

¸

,
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which perturbs the coordinate axes determined by T 1˚ away from the stan-

dard coordinate axes of Cw. However, for brevity, we just put this by

assumption instead of giving too much detail on this.

Lemma 5.4.3. Let Ri be the i-th Gram-Schmidt norm of T, and let vl be a

vector sampled from Ddαq. Provided with Assumption 5.4.3, the probability

pNP of NPT pvlq “ vl is

pNP “
d
ź

i“1

erf

ˆ

Ri

?
π

2αq

˙

.

Moreover, conditioned on NPT pvlq “ vl, we can represent the probability

ps defined as (5.8) by

ps “
d
ź

i“1

¨

˝erf

ˆ

Ri

?
π

αq

˙

`
αq

Ri

¨
e
´

´

Ri
?
π

αq

¯2

´ 1

π

˛

‚.

Proof. For readability, we denote σ :“ αq{
?

2π. We first compute the

probability for NPT pCvgq “ vl, or NPT pvlq “ vl. By Lemma 2.2.1, this is

equivalent to vl P PpT ˚q. We assume that Ddαq is invariant to coordinate

axes, we may assume that vl is sampled with respect to the coordinate

axes determined by T ˚. Then we have

Pr
vlÐDdσ

rvl P PpT ˚qs “
d
ź

i“1

Pr
eÐDσ

r´Ri{2 ď e ď Ri{2s

“

d
ź

i“1

erf

ˆ

Ri

2
?

2σ

˙

.
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Toward ps, we first show that

NPT pCwq ` NPT pCvg ´ Cwq “ vl

is equivalent to

NPT pCwq ´ vl P PpT ˚q.

Since our assumption says vl “ NPT pCvlq “ NPT pCvgq, and hence we

only need to show that

NPT pCwq ` NPT pCvg ´ Cwq “ NPT pCvgq

is equivalent to

NPT pCwq ´ NPT pCvgq P PpT ˚q :

Since NPT pCvg ´ Cwq belongs to PpT ˚q by definition, the forward case

directly holds. The reverse case also immediately holds because

NPT pCwq ´ NPT pCvgq “ ´NPT pCvg ´ Cwq ` Tx

for some x.

Then we can represent

ps “ Pr
tÐPpT˚q
eÐDdσ

rt` e P PpT ˚qs

“

d
ź

i“1

Pr
tÐr´Ri{2,Ri{2s

eÐDσ

rt` e P r´Ri{2, Ri{2ss .

We now calculate pi :“ Prr´Ri{2 ď t ` e ď Ri{2s. Let gpzq be the prob-

ability density function of t ` e, which can be represented by probability
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convolution

gpzq “
1

Ri

¨ Pr
eÐDσ

rz ´Ri{2 ď e ď z `Ri{2s

“
1

2Ri

¨

ˆ

erf

ˆ

z `Ri{2
?

2σ

˙

´ erf

ˆ

z ´Ri{2
?

2σ

˙˙

.

Using the fact
ş

erfpxqdx “ x ¨ erfpxq ` e´x
2

?
π
` C, we reach

pi “

ż Ri{2

´Ri{2

gpzqdz

“
1

2Ri

¨

ż Ri{2

´Ri{2

erf

ˆ

z `Ri{2
?

2σ

˙

´ erf

ˆ

z ´Ri{2
?

2σ

˙

dz

“ erf

ˆ

Ri
?

2σ

˙

`

?
2σ

Ri

¨
e´

R2
i

2σ2 ´ 1
?
π

.

5.5 Bit-security estimation

In this section, we estimate the bit-security of LWE with small and sparse

secret. Given LWE parameters n, q, α, h we choose optimal algorithm pa-

rameters β, r, hM ,m so that the total cost (5.10)

Ttot “
1

pNPphM
pTBKZ ` Tguessq .

is minimized, which determines the bit-security of given LWE parameters.

The optimal parameters can be found by investigating possible choices for

β, r, hM ,m, and we implement a Sage module that finds the (semi-)optimal
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parameters∗∗.

We stress again that, our analysis for the MitM hybrid attack is valid

only when it holds that |W | ě 1
pcps

regarding Assumption 5.4.2. For the

parameters where the opposite case occurs, we estimate the cost with ex-

haustive search method by Section 5.5

Exhaustive-search hybrid-primal

Since the reduction cost is exactly same to Algorithm 9, it only suffices

to clarify the guessing cost Tguess, which was estimated by L ¨ TNP with

Assumption 5.4.1 where L is the expected number of loops. For Algorithm

8 with weight parameter hM , we simply upper bound L by |W | “ 2hM
`

r
hM

˘

.

Moreover, one can easily check that a sufficient condition for Algorithm 8

success is NPT pvlq “ vl and HWpvgq “ hg, whose probabilities are denoted

by pNP and phg . Note that pNP is already computed by Lemma 5.4.3, and

phg can be easily computed by

phg “

`

h
hg

˘`

n´h
r´hg

˘

`

n
r

˘ .

Putting together everything, we conclude the total complexity of Algo-

rithm 8 by
1

pNPphg
pTBKZ ` Tguessq . (5.11)

where Tguess “ 2hM
`

r
hM

˘

¨ d2{21.06.

∗∗The optimal parameters can be found by brutally searching all possible choices
for β, r, hM ,m but there are too many candidates and hence estimation itself takes
too much time. In this regard, we only investigate a plausible range of parameter sets
to quickly see the cost estimation, while assuming the optimal point is indeed in our
searching scope.
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5.5.1 Estimations

Current implementations of HElib (commit 5bcae5f) and HEAAN (commit

b45d5f0) are commonly set sparse ternary secret of Hamming weight h “

64, and the noise parameter α “ 8{q (yielding standard deviation σ « 3.2).

HE-based applications built upon the libraries also use the setting and

adjust dimension n and modulus q to reach the desired security level; for

example [TLW`19, CHK`18, CCS19]. Thus we estimate attack complexity

with the prevalent values for h “ 64 and α “ 8{q, for several choices of n

and q. We present Table 5.4 obtained by assuming sieving method for core

SVP oracle.

n 1024 2048 4096 8192 16384 32768 65536

log q 22 45 82 158 350 628 1240

Dual [Alb17] 129.3 127.7 129.5 128.6 128.3 127.2 130.3

Primal [AGVW17] 139.0 135.6 144.4 148.6 140.3 151.3 153.4

Hyb-Dual 130.7 118.8 113.7 113.9 104.6 112.5 115.4

Hyb-Primal 100.9 96.7 102.1 104.9 101.8 109.3 112.9

Table 5.4: Costs with h “ 64 and α “ 8{q (Sieving SVP oracle)

The both hybrid attacks show better performance than the current

best attack (Albrecht’s dual attack) for modulus q ě 240, and hence our

attacks claim that fully homomorphic encryption implementations that

uses the sparse ternary LWE problem with large modulus q should change

the parameter selection. In particular, HElib [HS19] and HEAAN [CHK`19]

use the sparse ternary secret basically. SEAL [SEA19] uses the (non-sparse)

ternary secret key but the paper [CH18] that supports bootstrapping for

SEAL also uses the sparse ternary secret vector.

However, the hybrid-dual attack shows worse performance for small

modulus. In this regard, we note that Albrecht’s dual attack that can be
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regarded as a special case of our hybrid-dual attack with h1 “ 0, and hence,

if we investigate all possible parameter range in our code, our hybrid-dual

algorithm must outperform Albrecht’s dual attack. However it takes too

much time to check all possible parameter ranges, and we instead investi-

gate plausible range of parameters; our code only explores the parameter

regime that h1, h2 Á h{2, and this may not capture the real optimal point.

Meanwhile, the estimations for small modulus q size implies the exhaustive

search is better than the MitM approach for that parameter, which seems

weird at first glance. However this enough make sense because our MitM

algorithm runtime exponentially grows with B{q, where B is the error size.

Then, to have small B{q after the dimension-error trade-off, we may have

to find shorter vectors in the lattice reduction stage than Albrecht’s dual

attack. Particularly for small modulus q, the additional cost for finding

such shorter vector offsets the benefit of MitM approach.

5.5.2 Application to PKE

The round 2 candidates of NIST Post-Quantum Cryptography Standard-

ization includes several lattice-based schemes, and we find one scheme

named Round5 [BBF`19] that uses sparse and ternary secret. The base

problem of Round5 is the learning with rounding (LWR) problem, defined

in similar way to LWE problem with additional modulus p ă q and

ˆ

A,

Z

p

q
¨ As

V˙

P Zmˆnq ˆ Zmp

It can be viewed that the noise from the rounding plays the Gaussian error

role of LWE. Indeed for the security estimation, LWR with modulus p and
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q is understood by LWE with error having standard deviation

σ “
q

p
¨

1
?

12
,

and the typical LWE attacks are applied to estimate its bit-security.

We find that the authors already considered the hybrid attack to choose

parameters while conservatively assuming BKZβ cost, regardless of the

dimension d of lattice, by

TBKZpβ, dq “ 20.292β

according to [ADPS16].

According to their analysis, the hybrid attack indeed shows the best

performance for its parameter sets. In this regard, we briefly point out

here some flaws and insufficiency of their analysis, However, they merely

estimate the guessing cost Tguess by
?
N where N is the expected number

of candidates of secret vectors, which is quite improper to derive accurate

time cost. Moreover, whereas our algorithm introduces a MitM weight

parameter hM to have a trade-off between the success probability and the

guessing cost, they only consider the full cost for guessing every possible

candidates. Taking this into account, we re-evaluate the bit-security of the

proposed parameters according to our refined analysis, and hence conclude

that the security of their parameter choice is overestimated

We first remark that, this inferiority of the hybrid attack for Round5 is

in line with the argument that the hybrid attack shows worse performance

than previous thought for NTRU, which was stated by [Wun16]. Moreover,

the ratio of Hamming weight to the dimension should also be noticed to

understand this inferiority compared to HE; Round5 has weight 162 out of
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(Claimed to be) 128 bit-security
n log q h σ Hybrid

490 10 162 2.29 147.7
508 10 136 2.29 141.8
586 13 182 4.61 146.0
618 11 104 2.29 131.7

Table 5.5: Solving costs for LWR instances, which were claimed to have
λ “ 128 security level in [BBF`19], with BKZ cost model 20.292β [ADPS16].

490 (33%) while HEAAN has weight 64 out of from 2048 to 65536 (from

3% to 0.1%), and this may let combinatorial strategy of the hybrid attack

bring larger performance gain for the extremely sparse secret of HE.
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Chapter 6

Conclusion

In this paper we examine several requirements on the actual use of homo-

morphic encryption. First, we consider an ID-based scenario where data

accessibility can be authorized by user’s unique ID. In this regard, we de-

sign a new paradigm of ID-based homomorphic encryption where the data

is first encrypted in plain ID-based ciphertext and then recrypted into ho-

momorphic encryption. For this purpose, we also propose more efficient

trapdoor-based ID-based encryption, where the hardness of trapdoor is

based on Module-NTRU problem.

We also propose a fundamental solution for secret key management

by proposing a new biometric key decryption method. Our proposal has

polynomial performance in key error rate t, compared to the best previous

result having exponential performance.

Finally, for a concrete implementation and evaluation, we rigorously

examine the security of homomorphic encryption schemes. As a result, we

propose new attack algorithms that show current parameter settings of

homomorphic encryption cannot satisfy the claimed security level.
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국문초록

클라우드 상의 데이터 분석 위임 시나리오는 동형암호의 가장 효과적인 응용 시나

리오 중 하나이다. 그러나, 다양한 데이터 제공자와 분석결과 요구자가 존재하는

실제 현실의 모델에서는 기본적인 암복호화와 동형 연산 외에도 여전히 해결해야

할 과제들이 남아있는 실정이다. 본 학위논문에서는 이러한 모델에서 필요한 여러

요구사항들을 포착하고, 이에 대한 해결방안을 논하였다.

먼저, 기존의 알려진 동형 데이터 분석 솔루션들은 데이터 간의 층위나 수준을

고려하지 못한다는 점에 착안하여, 신원기반 암호와 동형암호를 결합하여 데이터

사이에 접근 권한을 설정하여 해당 데이터 사이의 연산을 허용하는 모델을 생각하

였다. 또한 이 모델의 효율적인 동작을 위해서 동형암호 친화적인 신원기반 암호에

대하여연구하였고,기존에알려진 NTRU기반의암호를확장하여 module-NTRU

문제를 정의하고 이를 기반으로 한 신원기반 암호를 제안하였다.

둘째로, 동형암호의 복호화 과정에는 여전히 비밀키가 관여하고 있고, 따라서

비밀키 관리 문제가 남아있다는 점을 포착하였다. 이러한 점에서 생체정보를 활용

할 수 있는 복호화 과정을 개발하여 해당 과정을 동형암호 복호화에 적용하였고,

이를 통해 암복호화와 동형 연산의 전 과정을 어느 곳에도 키가 저장되지 않은

상태로 수행할 수 있는 암호시스템을 제안하였다.

마지막으로, 동형암호의 구체적인 안전성 평가 방법을 고려하였다. 이를 위해

동형암호가 기반하고 있는 이른바 Learning With Errors (LWE) 문제의 실제적인

난해성을 면밀히 분석하였고, 그 결과 기존의 공격 알고리즘보다 평균적으로 1000

배 이상 빠른 공격 알고리즘들을 개발하였다. 이를 통해 현재 사용하고 있는 동형

암호 파라미터가 안전하지 않음을 보였고, 새로운 공격 알고리즘을 통한 파라미터

설정 방법에 대해서 논하였다.

주요어휘: 신원기반암호, 양자내성암호, 동형암호, 잡음키암호
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