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Abstract

Mathematical Analysis of the
Indistinguishability Obfuscations

Jiseung Kim
Department of Mathematical Sciences
The Graduate School

Seoul National University

Indistinguishability obfuscation (iO) is a weak notion of the program
obfuscation which requires that if two functionally equivalent circuits are
given, their obfuscated programs are indistinguishable. The existence of
iO implies numerous cryptographic primitives such as multilinear map,
functional encryption, non interactive multi-party key exchange. In gen-
eral, many iO schemes are based on branching programs, and candidates
of multilinear maps represented by GGH13, CLT13 and GGH15.

In this thesis, we present cryptanalyses of branching program based iO
over multilinear maps GGH13 and GGH15. First, we propose cryptanaly-
ses of all existing branching program based iO schemes over GGH13 for all
recommended parameter settings. To achieve this, we introduce two novel
techniques, ‘program converting’ using NTRU-solver and ‘matrix zeroiz-
ing’, which can be applied to a wide range of obfuscation constructions.
We then show that there exists polynomial time reduction from the NTRU
problem to all known branching program based iO over GGH13.



i

Moreover, we propose a new attack on iO based on GGH15 which
exploits statistical properties rather than algebraic approaches. We apply
our attack to recent two obfuscations called CVW and BGMZ obfuscations.
Thus, we break the CVW obfuscation under the current parameter setup,
and show that algebraic security model of BGMZ obfuscation is not enough
to achieve ideal security. We show that our attack is lying outside of the
algebraic security model by presenting some parameters not captured by

the proof of the model.

Key words: Cryptanalysis, Indistinguishability Obfuscation, Multilinear
Map
Student Number: 2014-21202
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Chapter 1
Introduction

Intuitively, the program obfuscation is similar to an encryption scheme
which takes as input a program, not a message. Informally, the security of
the program obfuscation is to hide all information excepts for inputs and
outputs of the program. Constructing a general-purpose program obfus-
cation has been a long standing coveted open problem because of fruitful
applications and implications, but the impossibility of the general-purpose
program obfuscation was proved [BGIT01, BGIT12]. Instead, authors of
the seminal paper proposed a weak notion of program obfuscation, called
the indistinguishability obfuscation. Currently, a cryptographic obfusca-

tion means the indistinguishability obfuscation.

1.1 Indistinguishability Obfuscation

Indistinguishability Obfuscation (i0) is a weak notion of program obfusca-
tion. It takes as input a program, and outputs a obfuscated program while

preserving the functionality. The purpose of iO is to hide one bit informa-
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tion which one of program is obfuscated when two functionally equivalent
programs and an obfuscated program of one of them are given. Although
it provides one bit indistinguishability, it has numerous applications such
as a functional encryption [GGH™13b|, a witness encryption |[GGSW13|,
a deniable encryption [SW14], graded encoding schemes [FHHL18], and a
traitor tracing [BZ17].

Garg et al. [GGH™13b| first proposed a plausible candidate of the
general-purpose 10 exploiting a cryptographic multilinear map. This con-
struction consists of three steps; transforms a circuit into a (matrix) branch-
ing program (BP), randomize a branching program while preserving func-
tionalities to blow-up the security, and encode an randomized branching
program using a cryptographic multilinear map. This first candidate of
iO has ignited the various subsequent studies [BR14, PST14, AGIS14,
BGK™14, MSW14, Zim15, AB15, BMSZ16, GMM™* 16, DGG™ 18, CVW18|
BGMZ18| by changing steps of a transformation and a randomization pro-
cesses, all of which stand on the cryptographic multilinear maps.

To date, there are three plausible candidates of multilinear map; the
first is due to Garg, Gentry, and Halevi [GGH13a] (GGH13), the second is
due to Coron, Lepoint, and Tibouchi |[CLT13| and the last is due to Gentry,
Gorbunov, and Halevi [GGH15|. These constructions are not known to have
the desired security of the multilinear map due to the specialized attack,
typed zeroizing attacks [CHL™ 15, HJ16,|CLLT16|; these attacks commonly
use several encodings of zero to show the insecurity of the multi-party key
exchange protocol instantiated by candidates of the multilinear map.

However, zeroizing attacks do not damage the security of current iO
constructions from the candidate multilinear maps since all iO candi-

dates do not publish ‘low-level encodings of zero’ which are key ingredi-
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ents to break cryptographic multilinear maps. On the other hand, some
iO candidates [BR14, BGK™ 14, |AGIS14, |Zim15, MSW14] claimed the
provable security under the idealized multilinear map model, so-called
the generic multilinear map model. In addition, some works have been
tried to overcome this gap between idealized model and concrete instan-
tiation of multilinear maps by presenting a concept of weak multilinear
map [GMM™16, MZ18, BGMZ1§].

Despite the provable security under these models, the security of con-
crete instantiation of indistinguishability obfuscations based on GGH13,
CLT13 and GGH15 is still in dubious nature. Indeed, there have been
numerous attacks to indistinguishability obfuscations which employ rela-
tions between the top level encodings of zero [CGH™ 15, MSZ16, ADGM17,
CGH17, |CLLT17, |Pel18, CHKL18a, CHKL18b, CVW18| KL19, CCH"19].

However, the security of a few branching programs iO still remains as
an open problem. For example, CVW and BGMZ obfuscations proposed by
Chen et al. [CVW18| and Bartusek et al. [BGMZ18|, which are branching
program 10 based on GGH15, are robust against all known (quantum)
attacks. Moreover, the security of FRS obfuscation proposed by Fernando
et al. [FRS17] when it is instantiated by CLT13 is still open. In case of
branching program iO over GGH13, the GGHRSW iO |[GGH™13b], the first
candidate, and the GMMSSZ iO |[GMMT™16|, a provably secure under weak
GGH13 multilinear map model, are standing against all known classical

attacks.
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1.2 Contributions

In this thesis, we propose new polynomial cryptanalyses of branching pro-
gram obfuscations based on cryptographic multilinear maps, GGH13 and
GGH15.

1.2.1 Mathematical Analysis of iO based on GGH13

We present distinguishing attacks on candidates BP iO over GGH13 mul-
tilinear map based on the algorithm to solve the NTRU problem. With the
novel two techniques, program converting and matrix zeroizing attack, we
show that existing general-purpose BP obfuscations cannot achieve the de-
sired security when the obfuscations use GGH13 with proposed parameters
in [GGH13a, LSS14, |ACLL15|. In other words, there are two functionally
equivalent BPs with same length such that their obfuscations obtained by
an existing BP obfuscations over GGH13 can be distinguished in polyno-
mial time for the suggested parameters.

Our attack is applicable to wide range of obfuscations and BPs com-
pared to the previous attacks. In particular, we show that multi-input BP
obfuscations including GMMSSZ construction are insecure in the NTRU-
solvable parameter regime. Further, we show that the first candidate in-
distinguishability obfuscation GGHRSW based on GGH13 with current
parameters also does not have the desired security even if it only obfus-
cates input-unpartitionable BPs including branching programs generated
by Barrington’s theorem. Although a new property of BPs called linear
relationally inequivalence is exploited in our attack, we show that various
pairs of BPs satisfy this property.

As a result, we show that the BP obfuscations based on GGH13 mul-
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tilinear map with suggested parameters are broken using the algorithm
for NTRU solely. Therefore the underlying lattice dimension n of GGH13
should be set ton = ©(k?)) to maintain 2* security of obfuscation schemes.
This implies the iO based on GGH13 is even much inefficient than the pre-
vious results [LMA™16, ABD16].

1.2.2 Mathematical Analysis of iO based on GGH15

We give a new polynomial time cryptanalysis, statistical zeroizing attack,
on the candidates of iO based on the GGH15 multilinear map. This attack
directly distinguishes the distributions from zeros of obfuscated programs
instead of finding algebraic relations of evaluations. We particularly exploit
the sample variance as a distinguisher of the distributions, while this attack
introduces wide class of distinguishing methods. In particular, under an
assumption on lattice preimage sampling algorithm with a trapdoor, our

attack breaks the security of

e CVW obfuscation for the optimal parameter choice. Further, our

2

attack still works for the relatively small variance o of Gaussian

distribution such as o = poly(\) for the security parameter A, and

e BGMZ obfuscation for large variance of Gaussian distribution, e.g.
o = 2*, which still enables the security proof in the weak GGH15

multilinear map model [

This result refutes the open problem posed in [CVW18] in a certain
parameter regime: the CVW obfuscation is not secure even when the ad-
versary gets oracle access to the honest evaluations as matrix products

instead of obfuscated program.

*That is, our attack is lying outside the considered attack class in [BGMZ1§|.
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Our attack leads a new perspective to the study of iO: we should fo-
cus on the statistical properties such as shapes of distributions as well to
achieve indistinguishability obfuscation. In particular, the distributions of
evaluations should be (almost) the same regardless of the choice of tar-
get branching program. Previously, most attacks and constructions only

focused on the algebraic structure of evaluations.

1.3 List of Papers

This thesis contains the results of the following papers.

e [CHKL18a] Jung Hee Cheon, Minki Hhan, Jiseung Kim, Changmin
Lee. Cryptanalyses of Branching Program Obfuscations over GGH13
Multilinear Map from the NTRU Problem. In Advances in Cryptol-
ogy - CRYPTO 2018 - 38th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings,
Part III, pages 184-210, 2018.

e [CCH'19] Jung Hee Cheon, Wonhee Cho, Minki Hhan, Jiseung Kim,
Statistical Zeroizing Attack: Cryptanalysis of Candidates of BP Ob-
fuscation over GGH15 Multilinear Map. In Advances in Cryptology -
CRYPTO 2019 - 39th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part III,
pages 253-283, 2019



Chapter 2
Preliminaries

In this chapter, we introduce some information related to the thesis. In
particular, we recall a concept of cryptographic multilinear map, branching

program and indistinguishability obfuscation commonly used in the thesis.

2.1 Basic Notations

Throughout this thesis, let N,Z and R, respectively, be sets of natural
numbers, integers, and real numbers.

Lower bold letters usually indicate row vectors or ring elements, and
capital bold letters denote matrices. In addition, capital italic letters de-
note random matrices or random variables. The notation (a||b) means a
concatenation of vectors a and b. The disjoint union and intersection of
two sets X and Y are denoted by respectively, X| |Y and X (Y.

For a vector v, the ¢, norm of a vector v = (v;) is denoted by |v|, =
(32, [vgP)V/?. Similarly, we let |Al, be the infinity norm of a matrix A,

|A|,x = max;;a;; with A = (a;;). Similarly, we can define a size of
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polynomial ring element as a ¢5 norm of the coefficient vector.

For sampling algorithms, we usually use the ‘left-arrow’ notation. A
notation x < y indicates denote the operation of sampling element x from
the distribution y. In particular, if x is the uniform distribution on a finite
set X, we denote x — U(X).

2.2 Indistinguishability Obfuscation

We review the formal definition of indistinguishability obfuscation (iO).

Definition 2.2.1 (Indistinguishability Obfuscation). A probabilistic poly-
nomial time machine O is an indistinguishability obfuscation for a circuit

class C = {Cy} if the following conditions are satisfied:

e For all security parameters X\ € N, for all circuits C' € Cy, for all

inputs x, the following probability holds:

Pr[C'(x) = C(x): C" < O\ C)] =1.

o For any p.p.t distinguisher D, there exists a negligible function «
satisfying the following statement: For all security parameters A € N
and all pairs of circuits Cy, Cy € Cy, Cy(x) = C1(x) for all inputs x

implies

|Pr[D(O()\, Cy)) = 1] — Pr[D(O(), CY)) = 1]| < a(N).
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2.3 Cryptographic Multilinear Map

Boneh and Silverberg [BS03] proposed a concept which is a natural gener-
alization of cryptographic bilinear map[], named cryptographic multilinear
map. The new primitive implies numerous applications such as a multi
party key exchange and a broadcast encryption. We first recall its formal

definition

Definition 2.3.1 (Cryptographic Multilinear Map). Let Gy, - ,G, and
Gr be multiplicative groups of the same same order. A cryptographic k-

multilinear map is function e : Gy X Gy X --- x G, — G such that

1. For any ay, - ,a, € Z and (g1, -+ ,gx) € G1 x -+ x G, we have

6(9(1117 o >g,i”) = e(gla T 7gi€)nf:1 i

2. If g; is a generator of a group G; for each i € [k], then e(g1,- -, gx)

is also a generator of a group Gr.

Moreover, for such groups G;’s, a discrete logarithm problem must be hard

because of the security issue.

However, constructing a secure cryptographic multilinear map with
k > 2 has been a challenge problem. There exist only three main candi-
dates called GGH13, CLT13 and GGH15, respectively [GGH13al, CLT13,
GGHI15], but their security is still unclear. Actually, such candidates have
different structures, called graded encoding systems which is slight gener-
alizations of a cryptographic multilinear maps. However, in this thesis, we

will regard these candidates as multilinear maps.

*Cryptographic 2-multilinear map



CHAPTER 2. PRELIMINARIES

The three main candidates are based on different structures: GGH13
is based on ideals of polynomial rings, CLT13 is based on integers, and
GGH15 is based on graphs, respectively. We will defer descriptions of these

candidates in the each chapter.

2.4 Matrix Branching Program

A matrix branching program (BP) is the set which consists of an index-

to-input function and several matrix chains.

Definition 2.4.1. A width w, length h, and a s-ary matrix branching
program P over a (-bit input is a set which consists of index-to-input maps
{inp,, : [h] = [€]} uefs), sequences of matrices, and two disjoint sets of target

matrices

P = {(inpy) c(s> {Pip € {0, L} Y ieh] befo, 135, Po, P1 < Z7}.

The evaluation of P on input x = (x;)ieqq € {0, 1} is computed by

. h
0 Zf Hi=1 Pi7($inpu(i))ue[s] € 7)0

P(x) =
. h
1 af Hi:l Piv(xinpu(i))ue[s] e P

When s = 1 (s = 2), the BP is called a single-input (dual-input) BP.
If s > 3, the BP is called a multi-input BP. In this paper, we usually set
Po = 0" or Iand Py = Z**"\Py. Also, we call {P;p,}beo,13+ the i-th layer
of the BP. Moreover, some branching programs have a additional structure,
called a bookend vector, to change evaluations of branching programs into
a constant or a vector. If it requires to describe obfuscations, we introduce

it later. Remark that each obfuscation targeted in the thesis take as input

10
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different BP type (e.g. single and dual BP) and the required properties of
BP are slightly different. Therefore, we will mention the required properties

used to construct an obfuscation again before describing each obfuscation.

2.5 Tensor product and vectorization

For any two matrices A = (a;j);; € Z™*™ and B € ZP*9, a tensor product

of matrices A ® B is defined as a mp x ng integer matrix such that

ay,-B -+ ay,- B

am - B, -+, apm-B

Consider a matrix C' € Z"*™ whose i-th column is denoted by c;. Then,

vec(C') is a mn-dimensional vector such that

1
C2
vec(C) = | = |eZ™.

Cm

Then, for appropriate matrices A, B and C, the identity holds [Lau05,
CLLT17] that
vec(A-B-C) = (CT®A) - vec(B).

Throughout this paper, we call it ‘the vectorization identity’.

11
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2.6 Background Lattices

A lattice £ of dimension n is a discrete additive subgroup of R". If £
is generated by the set {by,---,b,}, all elements in £ are of the form
Z?Zl x; - b; for some integers x;’s. In this case, the lattice £ is called the
full rank lattice. Now we give several definitions and lemmas used in this
paper.

For any o > 0, the Gaussian function on R" centered at ¢ with param-

eter o is defined as
Poc(x) = e ™X=¢l/7" for all x € R™

Definition 2.6.1 (Discrete Gaussian Distribution on Lattices). For any
element ¢ € R™, 0 > 0 and any full rank lattice L of R"™, the discrete

Gaussian distribution over L is defined as

Po,c (X)

forallxe L
Po, C(ﬁ)

Dﬁ,a,c (X)

where poc(L) = D cr Poc(X).

Lemma 2.6.1 ([MP12]). Forintegersn =1, ¢ = 2 and m = 2nlogq, there
is a p.p.t algorithm TrapSam(1”,1™, q) that outputs a matriz A € Z7*™ and
a trapdoor T such that A is statistically indistinguishable from U(Zy*™)

with a trapdoor T.

Lemma 2.6.2 (|GPVO08|). There is a p.p.t. algorithm Sample(A, T,y,0)

that outputs a vector d from a distribution Dym ,. Moreover, if o = 24/nlogq,

then with all but negligible probability, we have

{A,d,y:y < U(Z;),d < Sample(A, 7,y,0)} ~; {A,d,y : d < Dzm,, Ad = y}.

12



Chapter 3

Mathematical Analysis of
Indistinguishability
Obfuscation based on the

GGH13 Multilinear Map

In this chapter, we propose cryptanalyses of all existing indistinguisha-
bility obfuscation candidates based on branching programs over GGH13
multilinear map for all recommended parameter settings.

To achieve this, we introduce two novel techniques, program convert-
ing using NTRU-solver and matrix zeroizing, which can be applied to a
wide range of obfuscation constructions and BPs compared to previous
attacks. We then prove that, for the suggested parameters, the existing
general-purpose BP obfuscations over GGH13 do not have the desired se-
curity. Especially, the first candidate indistinguishability obfuscation with
input-unpartitionable branching programs (FOCS’13) and the recent BP

13
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INDISTINGUISHABILITY OBFUSCATION BASED ON THE GGH13

MULTILINEAR MA .
obfuscation (TCC’16) are not secure against our attack when they use

the GGH13 with recommended parameters. Previously, there has been no
known polynomial time attack for these cases.

Our attack shows that the lattice dimension of GGH13 must be set
much larger than previous thought in order to maintain security. More
precisely, the underlying lattice dimension of GGH13 should be set to

n = O(k*)\) to rule out attacks from the subfield algorithm for NTRU

where x is the multilinearity level and A the security parameter.

3.1 Preliminaries

3.1.1 Notations

Throughout this chapter, we use the bold letters to denote matrices, vectors
and elements of ring. Fora=ag+ -+ a,_1- X" e R = Z[X]/|{X"+ 1),
where n is a power of 2, the size of a means the Euclidean norm of the
coefficient vector (ag, -+ ,a,—1). We denote (7, k)-th entry of matrix M by
M|y, k].

3.1.2 GGH13 Multilinear Map

Garg et al. suggested a candidate of multilinear map over ideal lattice [GGH13a]
which is used to realize the first plausible candidate of indistinguishable
obfuscation [GGH"13b]. In this section, we briefly describe the GGH13
multilinear map. For more details, we recommend readers to refer the orig-
inal paper [GGH13a]. Any parameters of multilinear maps are induced by
the multilinearity parameter x and the security parameters \. For the sake

of simplicity, we denote the multilinear maps which has the previous men-

14
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tioned parameter as (k, A)-GGH multilinear map.

The multilinear map is sometimes called the graded encoding scheme.
i.e., All encodings of message have corresponding levels. Let g be a secret
element in R = Z[X]/{X™ + 1) and ¢ a large integer. Then, the message
space and encoding space are set by M = R/{(g) and R, = R/{q), respec-
tively. In order to represent a level of encodings, the set of secret invertible
elements L = {z;}1<;<x © R, is chosen. We call a subset of L. level set and
elements in IL level parameters.

For a small message m € M, level-L(c L) encoding of m is:

encr(m) = [ﬂ} ) 3

Hz’eL Z;

where r € R is a small random element. We call ency (m), ency,,;(m) a top-
level and level 1 encoding of m, respectively. In addition, for a matrix M,
we denote a matrix whose entries are level-L encodings of corresponding
entries of M by ency (M).

The arithmetic operations between encodings are defined as follows:

ency(my) + encp(my) = encp(m; + my),

ency, (my) -ency,(my) = encp, r,(m; - my).

Additionally, the (x, \)-GGH scheme provides a zerotesting parameter
which can be used to determine whether a hidden message of a top-level

encoding is zero or not. The zerotesting parameter p.; is of the form:

Dot = |:h HiELZi:|
g 1,

15



CHAPTER 3. MATHEMATICAL ANALYSIS OF
INDISTINGUISHABILITY OBFUSCATION BASED ON THE GGH13
MULTILINEAR MAP

where h is an O(,/q)-size element of R. Given a top-level encoding of zero

enc,(0) = [r- g/ [ [, zilq, & zerotesting value is:

[pat - enc(0)], = [h- w2 -8 ] =h-rl,=h-reR.
g [Licr i q

We remark that a zerotesting value for a top-level encoding of nonzero
gives an element of the form [h - (r + m - g !')],, which is not small by
Lemma 4 in [GGH13a|. Thus one can decide whether a message is zero or
not by the zerotesting value.

Several papers [GGH13al |[L.SS14, ACLL15] proposed the parameters of
(k, A\)-GGH13 multilinear map. Here we introduce the minimum conditions

that satisfy the three works.

e logg = O(k-logn)
o n = O(k° - \%) for constants 4, e
o M = O(ne(l))

Here M is the size bound of numerators r - g + m of level 1 encodings[
We note that the suggested parameters in [LSS14} |ACLL15| choose ¢ =
€ = 1, which enables the subexponential attack with respect to A for small
k [ABD16, BEF*17]. When ¢ > 2, all known direct attacks on GGH13

multilinear map require exponential time for classical adversary.

*The coefficients of random values are usually sampled from the Gaussian distribu-
tion. This do not hurt the result of this paper because the coefficients are bounded with
overwhelming probability.
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3.2 Main Theorem

In this section, we present the results from our attacks. We denote the
obfuscation within our attack range as the attackable obfuscation, which is
formally defined by the attackable modelin the next section. The attackable
obfuscation model encompasses all suggested BP obfuscations based on
GGH13 multilinear map.

Proposition 3.2.1 (Universality of the Attackable Model). BP obfusca-
tions

|GGHT 13b, AGIS14, BGK™ 14, PST14, MSW14, GMM™ 16, BMSZ16] sat-
isfy all the constraints of the attackable model.m

As a result, we obtain the following main theorem.

Theorem 3.2.1. Let O be an attackable obfuscator, k, X be the multilinear-
ity level and the security parameter of underlying GGH13 multilinear map.
Suppose that the modulus q, dimension n, size bound M of numerators of

level 1 encoding of underlying GGH13 satisfy logq = O(k - logn), M =
O(n®W). Then the following propositions hold:

1. Forn = O(k-)\%) for a constant § as in [GGH13d, LSS14,|ACLL15],
there exist two functionally equivalent branching programs with Q(N\°)-
length such that their obfuscated programs by O can be distinguished
with high probability in polynomaual time with respect to X.

2. Moreover, for new parameter constraints n = (:)(/-i€ . )\5) for constants
€ < 2,0, there exist two functionally equivalent branching programs
with Q(X/?=¢))-length such that their obfuscated programs by O can

TWe deal with easier model in the main body for simplicity. We can extend the model
to capture the construction in [BR14]. This extended model is placed in Appendix
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be distinguished with high probability in polynomial time with respect
to \.

The main theorem is proven by combining converting program technique
and matriz zeroizing attack which are described in Section [3.4] 3.5 The
bottleneck of the attack is the algorithm for NTRU, which is exploited in
the middle step of converting technique; the other process can be done in
polynomial time, while the time complexity to solve the NTRU problem
relies on the parameters. The detailed analysis for the time complexity will
be discussed in Section [3.4.3]

3.3 Attackable BP Obfuscations

In this section, we present a new BP obfuscation model which is attackable
by our attack, the attackable model. We call a BP obfuscation captured by
our model an attackable BP obfuscation.

The attackable model is composed of two steps; for a given BP, ran-
domize BP, and encode randomized BPs by GGH13 multilinear map. More
precisely, for a given branching program BP of the form

P = {M,}, € 2% %}

i€[¢],be{0,1}w ’

we randomize P by several methods satisfying Definition [3.3.1] which will

be described later. And then we encode each entries of randomized matrices
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and outputs the obfuscated program as the set

oF) = (8.8 <rpra)
U {{Mi,b, M;,b c Rl(]di+3i)><(di+1+€i+1)}ie[g]’be{()’l}w’ }
U {rf rf\' c R(d£+1+eé+l)><d€+2}
’ q
and the public parameters of GGH13 multilinear map. S, T denote book-
end matrices, and matrices with apostrophe mean the matrices of dummy

program. In the attackable model, we specify the following property in-

stead of establishing how to evaluate the program exactly. To evaluate the

input value, a new function Evalg; : {0, 1}V — Rgoxdem is computed as
follows:
¢
S M T-8S M T doxd
Evalﬁ(x) =S 1_[ Mi:xinp(i) .T-9. H M;xmp(i) T e Rqox ey
i=1 i=1

Proposition 3.3.1 (Evaluation of Obfuscation). For a program P and
program O(P) obfuscated by the attackable model, the evaluation of O(P)
at a root x of P yields a top-level GGH13 encoding of zero in specific entry
of the matriz Evalgz(x). In other words, there are two integers u,v such
that Evalgg(x)[u,v] is an encoding of zero at level I for every input x

satisfying P(x) = 0.

In the rest of this section, we explain specified descriptions of the at-
tackable model in Section 4.1 and 4.2, and present a constraint of BPs to

execute our attack in Section 4.3.
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3.3.1 Randomization for Attackable Obfuscation Model

We introduce the conditions for BP randomization of attackable obfus-
cation model. These conditions for randomization covers all of the BP
randomization methods suggested in the first candidate iO |[GGH"13b]
and its subsequent works |[AGIS14, BGK™14, PST14, MSW14, (GMM™16,
BMSZ16]. In other words, higher dimension embedding, scalar bundling,
Kilian randomization, bookend matrices (vectors), and dummy programs

are captured by the attackable conditions.

Definition 3.3.1 (Attackable Conditions for Randomization). For a branch-

ing program P = {Mi,b € ZdiXdi+1}ie[£],be{O,l}W7 the attackable randomized

branching program is the set

Rand(P) = {Rs,Rge Z%*(dre)}
U {{Rp, R}y, € ZUFexdintendt o6, |
U {RT, R’{I‘ c Z(de+1+€£+1)><dz+2}

satisfying the following properties, where dy, dy, o, €;’s are integers.
1. There exist matrices So, Sy € Z%*% Ty Ty € Z¥%*%+1 and scalars
as, g, ar, A, {Qb, Oy Yiele befo,1yw such that the following equations hold

Jor all {b; € {0, 1} }icpq:

l ¢ ¢
Rs- HRi,bi Ry =as - Hai,bi s Q- <So : nMi,bi 'T0> )

i=1 =1 i=1
l 14 L
/ / ro_ / / / / /
R | [Riy, - Rr = a5 -] Jaip, -ah- | So-] [Mi, - T0 ).
i=1 =1 =1

2. The evaluation of randomized program is done by checking whether the
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fized entries of RP(x) := Rg - []\_, Ri xR — R [T_, R R:

i Xinp(i)
are zero or not. Especially, there are two integers u,v such that P(x) =
0= RP(x)[u,v] =0.

Matrices with apostrophe are called dummy matrices, Rs, Rg, R, R
bookend matrices (vectors), and a’s bundling scalars. When some elements
of Rand(P) (or bundling scalars) are trivial elements, we say that there is

no such element.

3.3.2 Encoding by Multilinear Map

After the randomization, we encode the randomized matrix branching
program by GGH13 multilinear map. We stress that we do not encode
dummy /bookend matrices if there are no dummy /bookends, respectively.

For each randomized matrices, R, p, R;.’b and randomized bookend ma-
trices Rs, Rg, R, R, we obtain the encoded matrices ency, , (R 1) whose
entries are encoding of corresponding entries of randomized matrix R; .
For brevity we write I\A/L;b to denote ency,, (Rsp), and the other matrices
l\A/Igvb, §, S’ , 'T‘, T’ are defined in similar manner.

Two conditions should hold in the attackable model

1. the evaluation of valid input is top-level, in other words, for all input

X, (Uf=1Li7X;np(i)) u Lg U Lt = L where L denotes top-level set,

2. the sizes of set L’s are all similar, that is, there is a constant C' such
that |L;p|/|Ljp| < C for all 4, j,b, b’ and similar inequalities hold
for Ls, L.

In practice, the level L’s is determined by the straddling set system intro-
duced in [BGK™14, MSW14], and these constructions satisfy our condi-
tions. Using the condition 1 and Definition [3.3.1] Proposition can be
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easily verified. We also note that the condition 2 implies ¢ = ©(k), where

k is the level of underlying multilinear map.

3.3.3 Linear Relationally Inequivalent Branching Pro-

grams

At last, we explain the condition, linear relationally inequivalence, for
branching programs of attackable BP obfuscation. This condition is used
at the last section, but we note that there are several linear relationally
inequivalence BPs as stated in Proposition [3.3.2]

To define the linear relationally inequivalence, we consider evaluations
of invalid inputs of branching program and denote Hle M, », by M(b)
for b = (by, -+, by). We define linear relations of two BPs and the linear

relationally inequivalence of BPs as
Definition 3.3.2 (Linear Relations of Branching Program). For a given

branching program

d; xd;
PM = {Mz,b € Z Xdit1 }i€[€]7b6{071}w Y

the set of linear relations of Py s
LM = (qb)be{o,l}wx‘f : Z qb . M(b) — Odl ><d£+1
be{0,1}wx¢

Definition 3.3.3 (Linear Relationally Inequivalence). We say that two
branching programs Py and Pn with the same length are linear relationally

inequivalent if Lyy # L.

The set of linear relations of a given BP is easily computed by comput-
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ing the kernel, considering BP matrices as vectors. It is clear that Ly is a
lattice. We note that the set of linear relations of BP is not determined by
the functionality of BP, and indeed it seems that they are irrelevant.

Further, one can observe that if Py, PN are linear relationally inequiv-
alent BPs, then so do two extended BPs Py, P which are obtained by
concatenating some other (functionally equivalent) BPs on the right (or
left) of Py, Pn. Therefore we can show that there exist arbitrary large two
functionally equivalent BPs which are linear relationally inequivalent.

We conclude this section by presenting a proposition that shows con-

crete examples of linear relationally inequivalent BPs, which are placed in
Appendix [6.1.3]

Proposition 3.3.2. There are two functionally equivalent, but linear re-
lationally inequivalent branching programs. Especially, there are examples
satisfying the linear relationally inequivalence which are

1) generated by Barrington’s theorem and input-unpartitionable or

2) from non-deterministic finite automata and read-once, in other words,

inp s a bijection.

3.4 Program Converting Technique

In this section, we describe the program converting technique, which re-
move the hindrance of modulus ¢ and g. We first define new notion Y
program (of P) if all entries of branching program matrices correspond-
ing a program P are in a space Y while preserving many properties. For
example, the obfuscated program O(P) is R, program. Suppose that the
obfuscated program O(P) of program P is given.

We will convert given obfuscated program O(P) into R and R/{g) pro-
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gram using the algorithm to solve the NTRU problem, especially subfield
attacks [ABD16, |CJL16] which solves the problem with large modulus g.

Proposition 3.4.1 (JABD16, (CJL16, |CHL17, KF17]). Let ¢ be a large
integer, n a power of two, M a constant much smaller than ¢, R =
ZIX|{X" 4+ 1) and R, = R/qR. For a given [f,/f:], € R, for fi,f e R
with size smaller than M, there is an algorithm to compute (c-fa, c-f;) € R?
such that sizes of c, ¢ - f; and c - f5 are much smaller than q in time
208) . poly(n) for a constant B satisfying 3/log B = ©(nlog M/log® q).

We note that the similar results hold for other non-cyclotomic ring [KF17,

CHL17] or for f;, £, from certain distribution [ABD16]. Throughout in this
paper, we only consider the bounded coefficient f;f; in cyclotomic ring for
brevity.

For given obfuscated program in R, we first make the NTRU instances
and solve the problem, and then convert to R program by some computa-
tions on obfuscated matrices. This procedure replaces the level parameter
z; with a small element c¢;. The R program preserves same functionality
with the R, program. Subsequently, we convert this R program to R/{(g)
program by recovering the ideal {(g).

3.4.1 Converting to R Program

In order to remove the modulus ¢, we employ the algorithm for solving
NTRU problem. Let i\V/Iivb be the obfuscated matrix of R;p. Then, each

(4, k)-th entries of obfuscated matrix IVI“D is of the form

d, ., — | 2kb 8 T Ajkb
]7 b Z,L ?
q
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where a;;p is the (j,k)-th entry of the matrix R;p and rj;p € R are
random small elements. Consider an element v = [d;1,0/d120], = [(T1.10-
g+a110)/(ri20-g+ai20)], Then, v is the instance of the NTRU problem
since the size of denominator and numerator of v is much smaller than ¢
in the parameter setup of GGH13 multilinear map.

Applying Proposition to an instance v, one can find a pair (c; -
(ri10-8+ai10), C-(rioo-g+aiag)) € R? with relatively small ¢; € R.
Further, for any element d;;1, € i\V/Iivb, we can remove the modulus ¢ by

computing
c;i-(ri10-8+a11,0) [djrp/diiol; =Ci (Tjko &+ ak0) €ER

because of the small size of ¢;. Consequently, one can obtain a new matrix
D; 1, over R whose (j, k)-th entry is ¢; - (vjr0 -8+ ajk0)-

Similarly, a new dummy matrix Dj,, over R can be obtained because
IVI;-’b shares the level parameter z; with l\N/I@b by multiplying ¢; - (r;x0- 8+
ajro) to [d;,/di10], where dj; y is a (j, k)-th entry of §;’b. We easily
observe that 2 - 2% matrices D, and D;b share the parameter c;.

For all matrices 1f\7[i,b and lf\v/I;?b with ¢ € [/] and b € {0,1}", we can
obtain new matrices D;, and D}, over R. In the case of bookend matrices
S and 'T‘, they are converted into matrices over R with small constants cg
and ct, respectively. Note that this step runs in polynomial time if x is
large [ABD16, CJL16, CHL17, KF17]. Detailed analysis of this part is
discussed in Section 3.4.3]

Therefore, we can convert R,-program O(F) into a new program, R-

program of P:
R(P> = {DS7 DT7 D/S7 D/Ta {Di,b7 D/i,b}ie[f],be{o,l}w }
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Note that the matrix D;p of R(P) is of the form ¢; - R;p (mod (g)) in
R/(8)-

Dummy and bookend matrices satisfies similar relations. We denote c; -
a;p and ¢;-’ip by pib, p}y, for simplicity. The properties of Deﬁnitionm
is naturally extended to the following. The proposition means an
evaluation of R(P) preserves the functionality up to constant on the valid

input x.

Proposition 3.4.2 (Evaluation of R and R/(g) Branching Program). For
a R program given in this section, the following propositions holds:

1. The higher dimension embedding matrices U’s are eliminated in the
product of randomized matrixz branching program, that is, there are matrices
Sy, S| € Zdoxd4 Ty, T} € ZU+1*d+2 gych that the following equations hold

for all input x:

¢ ¢ ‘
Ds - HDi,b,— Dt = ps - H Pib; * PT * (So : H M;p, - To) (mod (g)),

i=1 i=1 i=1

i=1

¢ ¢ ¢
Ds [ [Din, Dr=ps-] [ s, o (SB M, TB) (mod {(g)).
i=1 i=1

2. The evaluation of R program is done by checking whether the fized en-
tries of Fvalp(x) := Dg - Hle Dix,pi - Dr — D's - ]_[f:1 D'ixp D't
is multiple of g or not. Especially, there are two integers u,v such that
P(x) = 0 = Evalp(x)[u,v] =0 (mod {(g))
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3.4.2 Recovering (g) and Converting to R/(g) Pro-

gram

Next, we will compute a basis of the plaintext space (g) to transform R
program into R/{g)-program. Unlike other attacks, we do not use the as-
sumption ‘input partitionability’. We exploits the fact that R program
which comes from R, program has the same functionality up to constant.
However, existing attacks with input partitionable assumption and our
cryptanalysis cannot be applied to a BP program for an ‘evasive function’

since it does not output multiples of g. It consists of following two steps:

Finding a multiple of g. This step is done by computing Evalp at the
zeros of program P. We compute Fvalp(x) for R program R(P) at x
satisfying P(x) = 0. Then, Proposition implies that Fvalp(x)[u, v]

is a multiple of g. More precisely, Evalp(x)[u, v] is of the form

¢
CS'CT'HCi'a'g
i=1

when p.; - Evalg; (x)[u,v] = a-h (mod ¢) for some a € R such that |a-h/,
is less than ¢%/*.

This procedure outputs the value which is not only multiple of g but
also ¢;’s. However, we can generate several different R program from O(P)
for different solutions of Proposition [3.4.1, We assume that the multiples
of g from different R program are independent multiples of g, with the

randomized lattice reduction algorithm as in [GNOS].

Computing Hermite Normal Form of (g). For given several random
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multiples f; - g of g, we can recover a basis of (g) by computing sum of
sufficiently many ideal {f - g) represented by a lattice with basis {f - g, f -
g X, -, f-g-X"!} or computing the Hermite Normal Form of union
of their generating sets by applying the lemma [ABD16, Lemma 1].

Both computations are done in polynomial time in A and &, since the
evaluations and computing the Hermite normal form has a polynomial time
complexity. Eventually, we recover the basis of ideal lattice (g) and we can
efficiently compute the arithmetic computations in R /{(g). In other words,
we get a R/{(g) program corresponding to O(P) (or P), whose properties
are characterized by Proposition [3.4.2] For convenience, we abuse the no-
tation; from now, R(P) is the R/(g) program and Dg, Dt and D, for
all i € [¢],b € {0,1}" are matrices over R/{(g).

3.4.3 Analysis of the Converting Technique

We discuss the time complexity of our program converting technique. The
program converting consists of converting to R program, evaluating of
R program, computing a Hermite Normal Form of an ideal lattice {(g).
The last two steps take polynomial time complexity, so the total cost is
dominated by the first step. More precisely, solving the NTRU problem for
each encoded matrix is the dominant part of the program converting.

To estimate the cost of solving the NTRU problem, we assume that
each component of branching program is encoded by GGH13 multilinear
map in level-1. The general cases are similar but a bit more complex when
we assume that the size of level sets are not too different so that ¢ = ©(k).

Suppose that an obfuscated branching program O(P) over (k, A)-GGH13
multilinear map is given. For constants 9, e and security parameter A\, mul-

tilinearity level k, n, M, and logq are set to be (:)(K6 - %), n®Wand
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(:)(/-@ -logn), respectively. Proposition implies that one can convert
the program in 29 - poly(\, k) time for % = @("110(;;%24) =6 <H;\—ie>
Therefore, the program converting technique is done in polynomial time
for k = Q(/\‘s/ (2=€)), Alternatively, the program converting technique is done
in polynomial time for obfuscated programs with length ¢ = Q()\‘;/ (2=e)),
We note that choosing large n to make the subfield attack work in ex-
ponential time rules out our attack as well. More concretely, if one chooses

n = ©(x*)\) then the underlying NTRU problem is hard enough to block

known subexponential time attacks.

3.5 Matrix Zeroizing Attack

In this section, we present a distinguishing attack on R programs to com-
plete our cryptanalysis of attackable BP obfuscation model. We note that
we can evaluate the R program at invalid inputs, or mized input, since
the multilinearity level which was the obstacle of mixed inputs is re-
moved in the previous step. We recall that M(b) denotes [];_, Mip, for

b = (by,---,by) and the set of linear relations

LM = (Qb)be{o’l}wz . Z qb M(b) _ Oledf-H
be{0,1}wx¢

which was defined in Section [3.3.3] We also recall that the two program
M and N are linear relationally inequivalent if Ly # L.

For two functionally equivalent but linear relationally inequivalent BPs
Py and Py, we will zeroize the R program corresponding to Py by ex-
ploiting the linear relation, whereas R program corresponding to Pnx would

not be a zero matrix. The result of the matrix zeroizing attack is as follows.
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Proposition 3.5.1 (Matrix Zeroizing Attack). For functionally equivalent
but linear relationally inequivalent branching programs Py, P, there is a
PPT algorithm which can distinguish between two R programs R(Pam) and
R(Pn) obtained by the method in Sectz’on with non-negligible probabil-
1ty.

Now we explain how to distinguish two R programs using linear rela-
tionally inequivalence. Despite the absence of multilinearity level, we still
have obstacles to directly exploit linear relationally inequivalence: scalar
bundlings. To explain the main idea of the attack, we assume that, for
the time being, all scalar bundling are trivial in the obtained program in
Section 5. We later explain how to deal the scalar bundlings.

Suppose that two BPs Py, Py and an R program
R(Px) = {Ds,Dr,Dg, D1/, {D; b, D" v }icebefo, 13w }

are given. Our goal is to determine X = N or X = M. We can compute a
linear relation (gy,) which is an element of Ly\Ln in polynomial timdf] by
computing a basis of kernel, and solve the membership problems of lattice

for each vector in the basis. Then the following equation holds

¢ ¢
Z (% Dg - 1_[ Dip, - DT) = Z <Qb -Sp - 1_[ M,;p, - To)

be{0,1}wx¢ i=1 be{0,1}wxt i=1

4
=S Y (qﬂM)T =S - 0% . Ty = 0042 (mod (g))
i=1

be{0,1}wx¢

fThe dimension of (qb)be{oﬁl}wxé is 2@*¢ which is exponentially large. However, we
can reduce this exponential part by considering a polynomial number of b so that there
are linear relations.
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when X = M whereas this is not hold when X = N. Therefore, the matrix
zeroizing attack works when the scalar bundlings are all trivial.

When the scalar bundlings are not trivial, we can do the similar com-
putation after recovering ratios of bundling scalars. Assume that we know
pi/piv for every 1 < i < ¢ and u,v € {0,1}". Consequently, for r(b) :=
[ Licjqg Pib; Where b = (by, -+, by), we can compute r(b)/r(c) for b,c €

{0, 1}*¢ by multiplying ratios of bundling scalars. Then, we can calculate

D <qb ' EEE; Ds [ [ D, DT>

be (0,1}t
¢
= D, (qb'Ps 2(0) - pr-So - | [Mip, 'TO)
be{0,1}wx! i=1
¢
= ps -1(0) - pr-So- Z <qb : HMi,bz') -To  (mod (g)),
be{0,1}wx¢ i=1

which is a zero matrix if and only if X = M.

Accordingly, we should remove the scalar bundlings or recover ratios
of scalar bundlings to execute the matrix zeroizing attack. In the rest of
this section, we show how to recover or remove (ratios of) scalar bundlings
in several cases. In Section we explain how to recover all ratios in

general cases by complex techniques.

3.5.1 Existing BP Obfuscations

In this section, we show how to apply the matrix zeroizing attack on two
remarkable obfuscations, GGHRSW and GMMSSZ. The other examples
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on obfuscations [PST14, BMSZ16| are placed in Appendix [6.1.2]

GGHRSW.

As the first case, we consider the first BP obfuscation, GGHRSW, which
has the identity dummy program. We note that the attack for this case
works for the attackable BP obfuscations with fixed dummy program as
well. For this case, a constraint on the bundling scalars ax = o) for every
input x is given where ay = ag- Hz 1 Qi iy "OT oy = ag: ]_[l L0

/
Kinp(i) VT

Suppose R program of P is given by
R(P) = {Ds,Dr,Dg/, Dy, {Djp, Di b }ic[,befo,1} -

By Proposition [3.4.2] the following equations hold

L
DS H DZ »Xinp(4) T - ps H pl »Xinp(4) pT (SO ’ H Mivxinp(i) ) TO) mOd <g>7
i=1

=1

l l 4
D,S ’ H Dfivxinp(i) ’ D'l]_‘I = p,S ’ Hp;,xinp(i) ’ pi_[‘ ’ <86 ’ H M;’xinp(i) ’ T6> mOd <g>

i=1 =1 =1

Here we assume that each M oy AT€ identity matrices. Now we consider

the two quantity of evaluations Plainp(x) := Dg - HZ 1 Dix, ., - Dt and
¢

Dummyp(x) :=D's - [[,_; D' xppiy - DT

According to the condition of scalar bundlings, ps - ]—[f 1 Pixinpiy * PT =

inp(4)

ps Hf L P Xt - prp since the value ¢’s are shared for plain and dummy

program. It is possible to remove scalar bundlings by dividing Plainp(x)
- Ty for

some fixed d from the above division. Since we know all M’s, the matrix

by Dummyp(x). In other words, we can get d - Sy - Hle M

ivxinp(i)

zeroizing attack works well for the computed quantities.
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We remark that the previous analysis [CGH17| analyzed the first can-
didate 1O |[GGH™13b|. Whereas the work in [CGH17] heavily relies on the
input partitionable property of the single input branching program, our
algorithm do not need this property. Moreover, our algorithm can be ap-
plied to dual input branching program, so this attack can be applied to

wider range of branching programs.

GMMSSZ.

Most notable result for BP obfuscation, GMMSSZ, is suggested by Garg
et al. in TCC 2016 [GMM™16]. The authors claim the security of their
construction against all known attack. Nevertheless, the matrix zeroizing
attack can be applied to their obfuscation.

GMMSSZ obfuscates low-rank matrix branching program, which is
evaluated by checking whether the product My - Hiem M, b, - My is zero
or not. There are two distinctive property of the obfuscation; the uniform
random higher dimension embedding and given bookend vectors as inputs.
Let My = (81, ,Bay)s Mys1 = (71, ,Ya,,,)" are the given bookend
vectors. The bookend vectors are also extended as Hy = (Mg||0), Hy 1 =
(My41]|Ugyq)T for randomly chosen Uy, in the higher dimension embed-
ding step to remove the higher dimension embedding matrices. Note that
the branching programs of this obfuscation are square, we do not restrict
the shape of matrices in this section.

For the evaluation, one compute Mo . Hiem l\r\/ILbi . Mg+1, which is cor-

responding to

¢ ¢
Ds: HDi,bi ‘Dt = ps- Hpi,bi pT - (Mo : H My, - Me+!> (mod (g))

l
i=1 =1 =1
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in R program by Proposition|3.4.2 Since we know all M’s, we can compute

the ratios of scalar bundlings by

Pib,;/Pib. = Ds - Hie[f] Dy, - Dr/M, HiEV] Mip, - Myia
T Ds - Hie[@ Djp; - Dr/M, Hie[é] Mip; - Meys

for b, b’ which are same at all but j-th bit. Therefore, the matrix zeroiz-
ing attack well works for the construction of [GMM™16|. We remark that

this method works for unknown bookend matrices with more complicated
technique, see Section [3.5.2]

3.5.2 Attackable BP Obfuscation, General Case

Now we consider the attackable BP obfuscations in general. We note that
an attackable obfuscation without bookends can be considered as the ob-
fuscation with bookends by re-naming the matrices. For example, if we
name Dg := D g = p10-D1, then we can regard that Dg is a left bookend
matrix and p; o the corresponding scalar bundling.

The case of obfuscation with bookend matrices is most complex, and
requires complicated technique. We will recover the bookend matrices up

to constant multiplication, and proceed the algorithm similar to the case

of [GMM¥16].

Recovering the Bookends

For the sake of simplicity, we only consider the case of bookend vectors.
To tackle constructions using bookend matrices, it is suffice to consider a
fixed (u,v)-entry of output matrix given in Proposition m

If the obfuscation has bookend vectors, then the evaluation of R pro-
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gram is computed by

¢ ‘ ¢
Ds - 1_[ Dip, - Dt = ps - H Pib; * PT - (So : 1_[ M;yp, - To) (mod {g))
i=1 i=1 i=1
for some vectors Sy € (R/{(g))'*¥ and Ty € (R/{(g))%+*!. Let Sy =
(B, Ba), To= (71, ,Y4,,,) and the evaluation Dg - ]_[le D;y, -Dr
is denoted by Evalp(by,--- ,by).
Our idea is removing p’s to make equations over Sy, Ty. Let b;; €
{0,1}* for 1 <i<land te{0,1} and t = (t1,--- ,t,) € {0,1}*. Then the

following two values share the same p’s, precisely (PSPT)2'nie[e] PibioPibis:

Evalp (b1, -+ ,beo)-Evalp(by, -+ ,bga),
EUGZD<b1,t17 T be,tg)'EvalD (b1,1—t17 T 7b€,1—tg)'

We denote So-[[i_, Mip,-To by Eqna(by, - - -, by). Then, by the above

relations, we get a equation for By, , Ba,, V1, Vdpys:

Eqna(bio, -, beo) - Eqnn(big, -+, bei)
EUCLZD(bLo, cee 7bg70) . EvalD(bLl, cee ,b&l)

_ Ean(bl,tla T 7be,t,_7) : Ean(b1,1—t1, T 7b€,1—tg)
~ Evalp(bi4y, -+ ,bes,) - Evalp(bii_ty, -+ ,brit,)

Both side of the equation is homogeneous polynomial of degree 4. If we
substitute each degree 4 monomials by another variables, this equation
become a homogeneous linear equation of new variables. The number of
new variable is O(did; ;).

Now we assume that we can obtain sufficient number of linearly inde-
pendent equations generated by the explained way. Then, since the system

of linear equations can be solved in O(M?) time by Gaussian elimination
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for the number of variable M, we can find all ratios of degree 4 monomials.
ﬁln other words, we can compute 63, -+ ,008q4,,0v1, -+ ,07aq,,, for some

constant §.

Matrix Zeroizing Attack

The remaining part of the attack is exactly same with the attack on
GMMSSZ. Precisely, we can recover the ratios of scalar bundlings by com-

puting

0i /P' . DS ’ Hie[e] Di,bi ’ DT/SO Hie[é] Mi,bi : TO
J:bj/ Fj,b] Dg - Hie[z] D;p - D+/Sg Hz‘e[f] M, 1, - To

for b, b’ which are same at all but j-th bits. We note that we do not know
exact values of Sy, Ty, but we recovered Sy, 0Ty in the above step. Thus

we can compute pjp;/ P, by

Ds - [ Licjq Dib, - D1/(650) [ Licjg Miip, - (6T0)
Ds - [ [iejq Dib; - D1/(6S0) [ Licpg Mib: - (6T0)

Therefore the matrix zeroizing attack can be applied to the attackable BP

obfuscations, which include all existing BP obfuscations over GGH13.

SHere we assume that g is hard to factorize. If g is factorized in the Gaussian
elimination procedure, we can proceed the algorithm for a factor of g.
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Chapter 4

Mathematical Analysis of
Indistinguishability

Obfuscation based on the
GGH15 Multilinear Map

In this chapter, we present a new cryptanalytic algorithm on obfuscations
based on GGH15 multilinear map. Our algorithm, statistical zeroizing at-
tack, directly distinguishes two distributions from obfuscation while it fol-
lows the zeroizing attack paradigm, that is, it uses evaluations of zeros of
obfuscated programs.

Our attack breaks the recent indistinguishability obfuscation candidate
suggested by Chen et al. (CRYPTO’18) for the optimal parameter settings.
More precisely, we show that there are two functionally equivalent branch-
ing programs whose CVW obfuscations can be efficiently distinguished by

computing the sample variance of evaluations.
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This statistical attack gives a new perspective on the security of the
indistinguishability obfuscations: we should consider the shape of the dis-
tributions of evaluation of obfuscation to ensure security.

In other words, while most of the previous (weak) security proofs have
been studied with respect to algebraic attack model or ideal model, our
attack shows that this algebraic security is not enough to achieve indis-
tinguishability obfuscation. In particular, we show that the obfuscation
scheme suggested by Bartusek et al. (TCC’18) does not achieve the desired
security in a certain parameter regime, in which their algebraic security
proof still holds.

The correctness of statistical zeroizing attacks holds under a mild as-
sumption on the preimage sampling algorithm with a lattice trapdoor.

We experimentally verify this assumption for implemented obfuscation by
Halevi et al. (ACM CCS’17).

4.1 Preliminaries

4.1.1 Notations

Throughout this chapter, lower bold letters means row vectors and capital
bold letters denote matrices. In addition, capital italic letters denote ran-
dom matrices or random variables. For a random variable X, we let E(X)
be the expected value of X, Var(X) the variance of X.

The n-dimensional identity matrix is denoted by I"*". For a row vector
v, a i-th component of v is denoted by v;, and for a matrix A, a (7, j)-th
entry of a matrix A is denoted by a; ;, respectively. A notation 1*** means
a a x b matrix such that all entries are 1. The ¢, norm of a vector v = (v;)
is denoted by v, = (3, [vi|P)/P. We denote |A|., by the infinity norm of

38



CHAPTER 4. MATHEMATICAL ANALYSIS OF
INDISTINGUISHABILITY OBFUSCATION BASED ON THE GGH15
MULTILINEAR MAP

a matrix A, |A], = max; ja;; with A = (a; ;).

4.2 Statistical Zeroizing Attack

In this section, we introduce a new cryptanalysis, statistical zeroizing at-
tack. We give an abstract model for branching program obfuscation and
the attack description in this model. In this attack, we are given two func-
tionally equivalent branching programs M and N, which will be specified
later, and an obfuscated program O(P) for P = M or N. Our purpose is to
distinguish whether P = M or P = N. The targeted branching programs
of the obfuscation output 0 when the product corresponding to input is

zero. The obfuscated program O(P) consists of

{S, {Di,b}Kish,be{o,l}s, T,inp = (inpy,--- ,inp,) : [h] — [6]873}

where every element is a matrix over Z, (possibly identity) except the input
function inp. The output of the obfuscated program at x = (1, ,2y) €

{0,1}¢ is computed by considering the value

=

OP)(x) =S| [Dixpe) - T

i=1
where Xinp(i) = (Tinp, (i)s "+ » Tinp, (5))- Note that O(P)(x) can be a matrix,
vector or an element (over Z,). Regard it as matrix/vector/integer over Z
and check the value: if |O(P)(x)|, < B < ¢ then it outputs 0, otherwise
outputs 1. We call O(P)(x) the evaluation of the obfuscated program (at
x). We also call O(P)(x) evaluation of zero if P(x) = 0 in the plain pro-

gram. We stress that the output and evaluation of the obfuscated program
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is different; the output of the obfuscated program is the same to output
of original program, and the evaluation is the value O(P)(x), which is
computed right before determining the output.

To distinguish two different obfuscated programs, we see the distribu-
tion of valid evaluations of zero of O(M) and O(N). For the evaluation
of zero, the size of these products is far smaller than ¢ (or B), thus we
can obtain the integer value rather than the element in Z,. Now, if the
evaluation is of the matrix or vector form, we consider only the first entry,
namely (1,1) entry of the matrix or the first entry of the vector, in the
whole procedure of the attack. We call all of these entries by the first entry
of the evaluation, including the case of the evaluation is just a real value.

Our strategy is to compute the sample variance of the first entries of
many independent evaluations which follow the same distribution. The
key of the attack is that this variance heavily depends on the plain pro-
gram of the obfuscated program and the variance is sufficiently different
to distinguish for two certain programs. Therefore, from the variance of
the several evaluations, we can decide that the obfuscated program is from
which program.

Note that one can sample an element following the distribution of ob-
fuscation or its evaluation at fixed point x = Xy in polynomial time when
the corresponding program is given, since there is no private key in the
obfuscation procedure. In this regard, we consider a more general problem
which is easier to analyze: Given two polynomial-time constructible distri-
bution Dy and Dy and x sampled from one of them, determine that the
sample is from which distribution. In our scenario, Dy; and Dy are the
distribution of O(M)(x) and O(N)(x), respectively where the distribution

is over all randomness to construct obfuscations.
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Since the adversary has one sample in our setting, the actual algorithm

proceeds by sampling multiple evaluations itself as follows.

Data: Dy, DN, x, &

1. set B = (03 + 0%)/2 for 03y = Var(Dy) and 0% =

Var(Dn)
2. i« [k] and let s; =z
3. sample {s;}efi—1] from Dy and {s;}i11<j<x from Dy

4. compute the sample variance S? of {s;} e[

5. if S? < B, decides Dy, otherwise Dy.

The choice of  is specified later in Proposition [£.2.1, We also remark
that the overall time complexity of algorithm is O(k - Tsample) plus small
computation for sample variance, where Tgmple is the time complexity for
sampling algorithms. The advantage of this algorithm is, by the standard
hybrid arguemnt, advy,,t/x where advy,,; = 0.98 is the advantage of distin-
guishing algorithm by sample variance when s samples are given as inputs
instead of one sample as in Proposition 4.2.1]

In the next subsection, we analyze the distinguishing algorithm using
sample variance for general distributions instead of iO when the multiple
samples are given. Then we go back to the actual attack for iO for the con-
crete obfuscations in Section and by showing the attack conditions
hold well.
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4.2.1 Distinguishing Distributions using Sample Vari-

ance

Now we give the detailed analysis of distinguishing by sample variance. In
this algorithm, we compute the variance of the samples, and check whether
the distance between the sample variance and the expected variance of Dy
and Dy. If the distance from the sample variance to the variance of Dy is
less than the distance to the variance of Dy, we decide the given samples
are from Dy;. Otherwise we decide the samples are from Dy. The result

of this method is stated in the following proposition.

Proposition 4.2.1. Suppose that two random variables Xy and X that
follow polynomial time constructible distributions Dn and Dy and have
the means pn and pun and the variances o, and o3y, respectively. For the
security parameter A and polynomials p,q,r = poly(X), there is a poly-
nomial time algorithm that distinguishes Dy and Dy with non-negligible
advantage when O(p- (\/q + /1)) = poly(X\) independent samples from Dp
are given and the following conditions hold:

E[(Xm — pm)']

2
Om

2 2 1 ST

max(o, op) | _ » E[(X~ — p~)']
ON ~ Om b N

< q, and '

In other words, if two known distributions satisfy the conditions, we can
solve the distinguishing problem of two distribution with multiple samples.
Thus to cryptanalyze the concrete obfuscation schemes, it suffice to show
the conditions in Proposition [£.2.1f We conclude this section by giving the

proof of this proposition.

Proposition [{.2.1. We call a definition and useful lemmas first.
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Lemma 4.2.1 (Chebyshev’s inequality). Let X be a random variable with

a finite expected value i and a finite variance o > 0. Then, it holds that
Pr[|X — u| = ko] < 1/k?

for any real number k > 0.

Definition 4.2.1 (Sample variance). Given random n samples x1,za, -+ , Ty

of D, the sample variance of D is defined by

§2 = 1w — 72
i=1

n—1

= l n o
where T = - >1" | x; is the sample mean.

Definition 4.2.2 (Kurtosis). Let X be a random variable with a finite

expected value p and a finite variance o® > 0. The kurtosis of X is defined
by
E[(X =] _ E[(X —p)]

R =g =g =

Lemma 4.2.2. Let S? be the sample variance of size k samples of a dis-
tribution D. Let X be a random variable following D and pu, = E[(X —
E[X])"] be the n-th central moment. Then the variance of S* satisfies

Var(s?) = <u4 _ iu) .

E Kk—1

Now we return to the proof. Suppose that all of the conditions hold for

polynomials p, g, € poly()\) and 03; < 0%. By Lemma [4.2.1] and |4.2.2] we
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compute the 99% confidence interval of variance of S? as follows

1 K—1 1
Pr(|S?—op| =104/~ | B[(Xp — up)i] — cop )| € —
r[|S op| 0 \/m ( [(Xp — pp)*] 3 UP)] 100

with x number of samples. If x is sufficiently large, the two intervals of

sample variance for M and N are disjoint. So we can distinguish two
distributions by checking the size of sample variance.

More precisely, if k =100 (p- /g + p - 4/r)* that is poly(\), we have

02+10- 03y - \/% (E[(XM;MM)‘*] K= 1)

1 E[(XN_MN)4] k—1
2 2

Thus the algorithm decides the answer by checking if the sample vari-
ance is included in which interval; we do not care the case that it is not
included both. This algorithm succeeds with probability at least 0.99 for
each input, i.e. the advantage of algorithm is at least 0.98. Note that this
algorithm only does the polynomial number of sampling and computing

the variance, thus the running time is polynomial. ]

4.3 Cryptanalysis of CVW Obfuscation

In this section, we briefly describe the construction of CVW obfuscation
scheme and show that the statistical zeroizing attack works well for CVW

obfuscation.
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4.3.1 Construction of CVW Obfuscation

Chen, Vaikuntanathan and Wee proposed a new candidate of iO which is
robust against all existing attacks. We here give a brief description of the
candidate scheme. For more details, we refer to original paper [CVW18].

First, we start with the description of BPs they used. The authors use
single-input binary BPs, i.e., inp = inp;. They employ a new function,
called an input-to-index map w: {0,1}* — {0, 1}" such that @(x); = Xinp()
for all i € [h], x € {0,1}*. As used in the paper [CVW18], we denote the
H?:I M, 5x); by Mgx) or simply My. We sometimes abuse the notion
M, ,, to denote M; 5(x), -

A target BP P = {inp, {P;}ic[n],bef0,1}, Po, P1}, which is called Type I

BP in the original paper, satisfies the following conditions.

1. All the matrices P;; are w x w matrices.

2. For a vector v = 1'% the target sets Py, P satisfies v- Py = {01 *¥},
A\ Pl 7+ {lew}

3. An index length A is set to (A + 1) - £ with the security parameter \.

4. An index-to-input function satisfies inp(i) = (¢ mod ¢). Thus, index-

to-input function iterates A + 1 times.

Construction. CVW obfuscation is a probabilistic polynomial time algo-
rithm which takes as input a BP P with an input length ¢, and outputs
an obfuscated program preserving the functionality. The algorithm process

consists of the following steps. Here we use new parameters n,m,q,t :=

*As noted in the remark of introduction, it is assumed implicitly that v = 1'% for
the targeted BP, while the definition of Type I BP uses v € {0, 1}1*%.
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(w+2nf)-n, o for the construction. We will specify the parameter settings

later.

e Sample bundling matrices {R;, € Z2**2™}, 111 be(0.1) such that (17*®
™). Ry - (121 @17") = 0 <= x’ € 0({0,1}") for all X’ € {0, 1}".
More precisely, R, is a block diagonal matrix diag(Rg}b), be), ce Rl(gb) ).

Each Rgz) € 72" is one of the following three cases.

-

[2nxin if inp(7) # k
> (k
Rz(‘,b) = (k) nxn e .
[ Ry < Dyt ifinp(i) = kand i < M
R -
_Jnxn
A—lﬁ(k) if inp(i) = k and ¢ > \/
k+5eb
=0

e Sample matrices {S;; «— Dgfyn}ie[h],be{o,l} and compute

= (11>< (w+2ne) ® Inxn) e gnxt

P b®slb e tht
Ri, ®Sis

_ w+2n€)><1 ®In><n) c Jtxn

e Sample (A;,7;) <« TrapSam(1f,1™ q) for 0 < i < h — 1, A, <
U(Z2*™), {Eip < Dy bieth-11bet0,1y and {Epp < Dy beqo,1)-
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e Run Sample algorithms to obtain

~

Di,b € Z™M*M Sample(Ai_l, Ti—1, Si,b : Az + Ei,ba O') for 1 <1< h — 1,

Dh,b € ZM*T Sample(Ah_l, Th—1, Sh,b -L- Ah + Eh,b7 0').

e Define Ay as a matrix J - Ag € Z™™ and outputs matrices

{inp, Ay, {Dyp}icrn)pef01} } -

Evaluation. Evaluation process consists of two steps. The first step is to
compute a matrix Ay - Dgx) mod ¢q. The last step is size comparison: If

|Ay-Dgx) mod ¢l < B, output 0 for some fixed B. Otherwise, output 1.

Parameters. Let A and A\ g for the security parameters of obfuscation
itself and underlying LWE problem satisfying Apywr = poly(A) and the
following constraints. Set n = Q(Arwrlogq) and x = Dy, /55 More-
over, for the trapdoor functionality, m = Q(tlogq) and o = Q(+/tlogq)
for t = (w+2nf)-n. B = (w+ 2nl) -h- (m-o?y/n(w+2nl)c)" and
q = B - w(poly(\)) for correctness, and ¢ < (o/ApwE) - 2w for a fixed
e € (0,1) for security. For more details, we refer readers to the original
paper [CVW1§].

Remark 4.3.1. The original paper [CVWI18] only uses one security pa-
rameter X\, but the correctness does not hold in that setting. Instead, the

trick that uses two security parameters X and Apwg resolves this problem
as in [BGMZ18§].

Zerotest Functionality. From the construction of the obfuscation, the
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following equality always holds, which is essentially what we need.

[AJ ’ D@(X)]q = [J : (ﬁ Sz,mz) Ay +J- Z ((1:[ z) 'Ejvmj ’ ﬁ Dk,xk)]

0“*™ gives Sy = 0™ due to the

construction of R;; is zero for the valid evaluation. Then, the following

The honest evaluation with P, =

inequality holds:

I[As - Dol = [ Zh] ((ﬁ )-Emj- ﬁ Dk:,xk)]

j=1 =1 k=j+1 alloo
h J—1 h

<P\ (LS ) Bis 1] D
j=1 i=1 k=j+1 0

h
<h- (m%x 1Sis] - o - m) <B
1y

for all but negligible probability due to the choice of B. If Py is not the
zero matrix, then S, is also not the zero matrix with overwhelming proba-
bility. It implies that |[[Ay - Dgx)lelleo is larger than B with overwhelming
probability because of A}, « U(Zy*").

4.3.2 Cryptanalysis of CVW Obfuscation

We apply the statistical zeroizing attack to the CVW obfuscation. As
stated in Section it is enough to show that the conditions of Propo-
sition hold. We only consider small variance o2 so that o = poly(}),

and sufficiently large E.m This includes the optimal parameter choice as

fIndeed, the attack requires the condition 0% < m®/n‘*+1.
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well.
Our targeted two functionally equivalent BPs M = {M,}ic[n] pe0,1}
and N = {N; s }ic[n],bef0,1} are of the form

1w><w 1fZ — 1
M, = 0Y*" for all i,b and N, =

0¥*?  otherwise

Suppose that we have an obfuscated program O(P) for P = M or P = N.
Our goal is to determine whether the program O(P) is an obfuscation of
M or N.

By the standard hybrid argument, it suffices to distinguish the distri-
butions Dy or DN where Dy and Dy is the distributions of the (1,1)
entry of evaluation at a fixed vector x of the obfuscated program of M
or N, respectively. To exploit Proposition we transform the CVW
construction into the language of random variables. We denote the random
matrix by the capital italic words whose entry follows a distribution that
corresponds to the distribution of entry of the bold matrix. For example,
the entry of random matrix £, follows the distribution Dy, since the ma-
trix E;; is chosen from thfgm in the CVW construction. More precisely, we
define random matrices RZ('Z) following Dy 7", Sip following Dy " and A;
as in the trapdoor sampling algorithm. Then we obtain random matrices
S’g), R™ E (f) and D@'(,f) as in the construction of CVW obfuscation for

ib o i,

the branching programs P = M or N. We note that only S'g) and Di(f)
depend on the choice of branching program, but we put P in some other
random variables for convenience of distinction.

Under this setting, it suffices to show the following proposition.

Proposition 4.3.1. For a security parameter X\, fix the Gaussian variance
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parameter o = poly(\). Then, there are two functionally equivalent branch-
ing programs M and N with sufficiently large input length € satisfying the

following statement: let Zyy and Zn be random variables satisfying

(O R
], ],

where every random matriz is defined as the above. Let puy and pn, oag
and 0%, be mean and variance of the random wvariables of Zy and Zn,
respectively. Then, it holds that

E[(Zm — pim)]

7
oM

‘maX(U%T’UIZ\/I)’ <p 'E[(ZN — un)*] <q

2 2 1
N~ M N

< q, and ’

for some p,q = poly(\) under Assumption 1]

We remark that since the random matrices D’s are dependent each
other, we need to assume the statistical property for verifying conditions
of Proposition as follows.

Assumption 1. For an integer 0 < k< h—2and P =M or N, let lA),EP)

be a random matrix such that D,EP) = Hf: 42 DZ-(P), where Di(P) is the ran-
dom matrix which follows a distribution corresponding preimage-sampled

matrix DEP). Then, the following equations hold

1. the variance is approximated by the same one assumed that D’s are

independent Gaussian, that is, it holds that

Var[b,gp)] =0 (m"F 2 (o)) .
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2. the kurtosis is bounded by constant, that is, it holds that

E[(Dy®) — E[D,®])1]
Var[Dk(P)]z

= O(poly(N)).

We experimentally verify this assumption using the implementation
of GGH15 BP obfuscation by Halevi et al. [HHSSD17a]. More detailed
experimental results are presented in Appendix We remark that if
we assume that D’s are independent matrices that have discrete Gaussian

entry with the variance o2, the following computations hold:

hok=2 . (g2)h—h=1

e the variance of D,gp) is exactly m , and

e the kurtosis of b,gp) is 3+ (14 2/m)"*=0(1).

The honest evaluation of the CVW obfuscation [Aj - Dg(:)()]q is the

matrix of the form

_ j h
Z <<n zm) ]+1 Tj1 " H Dg;i);

i=1 k=j+2

which does not contain the term including the trapdoor matrices A; for
1 = 0,---,h — 1. Thus, to establish the statistical properties including
variance in Proposition [4.3.1] it suffices to analyze the statistical properties
of the random matrices Si(,f)7 Ei(}:)7 Di(f) and their products.

By the definition of Zp with P = M or P = N, it is rewritten as

- J
ZP =J- Z ((H 1,1'Z> ]+1x]+1 ’ H Dk$k> '
=0 i=1 k=j+2

Now we give the lemmas to prove Proposition [4.3.1 The proofs of

lemmas are placed in Appendix and sub-lemmas in Appendix [6.2.6]

o1
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The proof of Proposition [4.3.1] using the lemmas is placed in the concluding
part of this section.
For the convenience of the statement, let (Zfl\l/[)) ; be random variables

of (1,1)-th entry of the random matrices

J h
&(M M M
3 TT5 500 [T o
i=1 k=j+2
for 7 =0,1,--- ,h — 1. In this notation, Zy; is the summation of (Zs\l/l))j

for 7 €{0,1,--- , h—1}. Similarly, we define (Zl(}\f))j forall j =0,---,h—1.
We employ additional notations constants ¢, d and (possibly polynomial)
co such that for all 0 < k < h — 2,

H(P) N P) _ M. (P)1)4
Lo Var[DP) B~ (D)

mh—k=2(g2)h—k-1 Var[Dk(P)]Q

< Co.

We remark that variances of many terms for M and N are exactly
the same since the only Dy, S’l are different and the different terms in
products of S are canceled for j = 2. Note that most of lemmas hold under
Assumption |1, but we omit this repeated statement under Assumption
for brevity.

Lemma 4.3.1. E[(ZN);] = E[(Z0Y);]1=0 for all j = 0,-- ,h— 1.

M M N N
Lemma 4.3.2. E[(Z1))y - (Z1) )] = EUZ1Y ) - (Z11)] = 0 for
H1 F 2.
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Lemma 4.3.3 (j = 0). It holds that

Lemma 4.3.4 (j = 1). It holds that

Var[(ZS\I/I))O] = Var[(ZS\f))o] =0 ((w +2nf) -m"1t. th) and
E Z(M) 4 E Z(N) 4 2
I 1’5\/[))0] ; I 1’&))0] < 3cp - (w+2n6)* - m” - (C—i) = poly(A).
VC””[(ZM Jo)? VC”’KZM 0]? ¢

Var[(z80),] = © <(n302 L(20-1)- n2> - mh*(o—?)h) ,
Var[(Zg))l] =06 (w3 n- mh’2(02)h) + Var[(ZS\l/[))l]
E[(z5Y || Bz 1o o (A
Varl 20| | Varlz®),p| = FT0 02 (5) =vos

Lemma 4.3.5 (1 < j < A-{). Let j be a fized integer with j = £-j1+jo > 1
forO0<jo <l and2<j < \-{. Then, it holds that

Var((Z;));] = Var[(ZY),]
—0 ((j2nj+j1+2(0_2)j1+1 L (0 — o) (g2 ¢ én]#l)mhfjfl(oj)h) _
Moreover, it holds that

E[(Z1")4]
Var[(Z{\");]2

?

n

Ji+j—1
S| < 27co(w + 2nl)*n*m? (1 + —) <

= poly()).

Lemma 4.3.6 (j > \-{)). Let j be a fized integer with j =€ - j; + jo > 1

53
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for 0 < jo <l and j > \-L. Then, it holds that

Var[(ZiY));] = Var((Z1Y),]

-0 (((ﬁ +j2) . n)\+j+1 . (02))\ + (ﬁ —j2> n]+1> 'mhfjfl . (0_2)h> )
In addition, it holds that

E[(Z{1)4]

Var[(Z3) 2|

E[(Z{)Y
Var[(Z{Y),)?

n C

9\ M2 7 g\ 2
< 27co(w + 2nl)*n*m? (1 + —) <—>

= poly()).

Now we give a proof of the proposition |4.3.1| using above lemmas.

of Proposition [{.5.1. Fix ¢ be a sufficiently large so that o* < m*/n**! and
choose BP M and N as the given in the first page of this section. These
two branching programs have the same functionality and length.

Using the results of lemmas, we can prove the proposition by analyzing
the summation of random matrices. We first verify the results for Zy;. The

similar result holds for Zn since the bounds of lemmas are almost same.
From Lemma and the definition of Zyg, we have

h—1 h—1 h—1
Var(Zu] = E [(Z(Z&“))j)?] =E [Z(Zﬁ“ﬁ] = > Var[(Zi));]

On the other hands, applying to the Cauchy-Schwarz inequality, it also
holds
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When dividing both sides by Var[Zn]?, we obtain the inequality

ElZa] | _ B (55D s | B (207)]
Var[Zy)?| Var[Znm)? Var|Zm|?
PR o ik | IO o 2 (G v
= Var|Zwm|? 0 VCLT[(ZE\{I))]‘]2
Bz |
By Lemma |4.3.3||4.3.4114.3.5| and [4.3.6), i) is bounded by
VO”"[(ZM )j]Q
poly(A) for all j = 0,1, -+, h— 1. Therefore, the following inequality holds.
PLZ | oy(n) = a(0)
Var[Zm)?| POWIA) =4

The same holds for N as well.

Moreover, Var[Zx]—Var[Zu] = © (w® - n- m"?(c*)") holds by Lemma
4.3.4L Then the values )Var[(Zl(g/I))j]/(Var[ZN] - Var[ZM])‘ is bounded
by poly()) for every j since o < m®/n**1. This implies the first condition
also holds.

]

Remark 4.3.2. In the original paper [CVW18], the authors give two dif-
ferent choice of the distributions of E; ,; Dy, with corresponding dimension
in Section 11, and X = Dy /sy With appropriate dimension in Section
5. This paper focus on Dz, but the result still holds for x = Dy srws

with slight modification.
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4.4 Cryptanalysis of BGMZ Obfuscation

In this section, we briefly review the BGMZ obfuscation and apply the sta-
tistical zeroizing attack on BGMZ obfuscation for exponentially large vari-
ance o. Note that the security proof of BGMZ obfuscation under GGH15
zeroizing model (and underlying BPUA assumption) is independent of the
parameter o, so our attack implies that the algebraic security proof is not

enough to achieve the ideal security of iO.

4.4.1 Construction of BGMZ Obfuscation

Bartusek et al. proposed a new candidate of iO which is provably secure
in the GGH15 zeroizing model. We briefly review the construction of this
scheme. For more detail, we refer to the original paper [BGMZ1§|.

We start with the conditions of BP they used. The authors use a dual-
input binary BP’s. i.e.,inp(i) = (inp, (%), inpy(¢)). For simplicity, they use
the notation x(7) = (Zinp, (i), Tinp,(;))- Moreover, they employ the new pa-
rameter 1 = poly(¢, \) with n > ¢* which decides the minimum number of
the BP layer for the security parameter A and input length /.

The targeted BP P also satisfies the following conditions.

1. All the matrices {P; }ic[n)befo,1}2 are w x w matrices.
h‘ wXw
2. Hizl Pi,x(i) = Qwxv,

3. Each pair of input bits (j, k) is read in at least 4¢* different layers of

branching program.

4. There exist layers iy < 4o < --- < i, such that inp;(i1),- - ,inp;(i,)

cycles n/¢ times through [/].
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To obfuscate a branching program that does not satisfy the condition 3 or
4, one pads the identity matrices to satisfy the conditions while preserving

the functionality.

Remark 4.4.1. The original construction consider the straddling set and
asymmetric level structures to prohibit invalid evaluations. The description
below omitted them because our attack only exploits the valid evaluations

whose results are the same regardless of them.

Construction. BGMZ obfuscation is a probabilistic polynomial time al-
gorithm which takes as input a BP P with a length A, and outputs an
obfuscated program with the same functionality. We use several param-
eter such as n,m,q,t := (w + 1) - n,0,v,g in the construction. We will
describe the setting for new parameters such as g, v later.

The obfuscation procedure consists of the following steps.

e Sample (A;,7;) < TrapSam(1f,1™ ¢q) for 0 < i < h — 1, A, <
U(ngm), {Eib — X" }iepn—1]pefo,12 and By «— x™ where t :=
(w+1) n.

e Sample matrices B; , € Z9*9 and invertible matrices R; € Zg"”g)x

randomly.

e Sample matrices {S;p < Dz " bic[h—1],bef0,1)2 and a final encoding Dy,

as

I’LUTLX’LUTL
Dj, € Z™*™ « Sample(A,_1, 71, ( Oan> Ay + Ep,0),

27
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and compute bookend vectors v and w as

v=[v-J Ay | b, Ry,

N Pz Sz
S@b = b ® b S ZtXt
Sib

where v/ — D} . W' «— D7, b, b, — U(Z}) and J := [J'[I"*"]

with a randomly chosen matrix J’ « {0, 1}***".

e Compute matrices

A

Di, € 7™M Sample(Ai_l,Ti_l, Si,b . AZ + E@b, O') with 1 <1< h — ].,

D;
andCLb:Ril-( b o >-Ri+1withi=1,---,h—1.
i,b

Evaluation. Outputs 0 if |v - [ /2, C; @) - wP| < B. Otherwise, outputs
1.

Parameters. We first consider several security parameters. Let A\ and
Arwe = poly(X) be security parameters depending on the obfuscation itself
and the hardness of LWE satisfying following constraints, respectively. Set
n=QAwelogq), x = Dzs with s = Q(4/n). Moreover, for the trapdoor
functionality, we set m = Q(tlogq) and o = Q(+/tlog q). In addition, they
use parameters ¢ = 5 and v = 2*. For correctness we set zerotest bound
B = (m-B-0-v/1)" 4+ (k-v)"! and B-w(poly(N)) < q < (6/Awp)- 2 we
for some fixed € € (0,1). For more detail we refer readers to the original
paper [BGMZ18|.
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Zerotest Functionality. From the construction of obfuscation, the fol-
lowing equality always holds if C := 1—[?2—11 Cix() is an encoding of zero

computed by honest evaluation.

h o j-1 h h—1
—Ilv.7. ((H Sixti)  Ejx() - H Dixiiy- w7 +b, - H B (i) bg]
Jj=1 =1 k=j+1 =1 all oo
hoog-1 h h—1
<V I 2 (] [Six) Eixy - || Dixtiy - w7 +bu [ [ Bixy - b,
j=1 i=1 k=j+1 =1 ©

<02'm2'(m'5'0-\/g)hfl—i—(k-y)h*l

Since |[v-C-wT],|| is bounded by 62-m?-(m-B-0-4/t)"*+(k-v)"*! < B
for all but negligible probability. Moreover, if H?:l P; @) is a nonzero
']

matrix, then H?:l Si,x(i) is also nonzero matrix. Thus, [[v-C - w'],| is

larger than B with overwhelming probability because of Aj, « U(Z{™).

4.4.2 Cryptanalysis of BGMZ Obfuscation

In this section, we analyze the conditions for the statistical zeroizing attack
on the BGMZ obfuscation when we assume o > v = 2*. (More precisely,
the same result holds when o2 > v2g/12m.). As in Section , the nota-
tion written in the capital italic words are regarded as the random matrix
whose entry follows a distribution that corresponds to the distribution of
entry of the bold-written matrix.

The targeted BPs are M = {M, p }ic[n]befo,132 and N = {Nip }icia] befo,1)2
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such that

Twxw  ifi=1
M, = 0" for all 4,0 and N;, = )
0™  otherwise

Note that two branching programs always output zero. Now we suppose
that we have polynomially many samples from the one of two distributions
Dwm and Dy, where Dy and Dy are the distributions of the evaluations
of obfuscations of M and N.

Then our purpose is to distinguish whether the samples come from

Dn or D by Proposition 4.2.1L We obtain random matrices Si(’i), EZ.SE),

Dﬁ:) and Ci(? as in the construction of BGMZ obfuscation for branching

programs P = M or N. Thus, it suffices to prove the following proposition.

Proposition 4.4.1. Let \ be a security parameter and o the Gaussian
variance parameter satisfying o = v2g/12m for parameters m,v and g of
BGMZ obfuscation. Then, there are two functionally equivalent branching
programs M and N satisfying the following statement: let Zyg and Zn be
random variables satisfying
h—1 h—1
v = [fu . H C’Z(XM(Z) . wT] and Zn = [U : H Cz(f()z) . wT] )
i=1 i=1

q q

where every random matrix is defined as the above. Let pupy and pn, oag
and o, be mean and variance of the random wvariables of Zy and Zn,
respectively. Then, it holds that

E[(Zm — pm)']

7
Om

2 2 1 S 4q

max(ox, o3) <p E[(Zn — pin)"]
N~ Om - N

< q, and ‘
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for some p,q = poly(\) under Assumption 1]

Note that Assumption (1| (for BGMZ obfuscation) is also needed to
verify the proposition. With the honest evaluation [v . ]_[?;11 Cix) - WT]
q
of the BGMZ obfuscation, we obtain the integer of the form

h jfl h—1
Z z x( ] x(7) H Dk x (k) W + b 1_[ Bz ,x(2) bT
j=1 =1 k=j+1 i=1

which does not contain the term including trapdoor matrices A;’s. Thus,
similarly to the CVW obfuscation case, we need to analyze the statistical
properties of the random vectors v/®), w'®), bq()P), beP) and random matri-
ces SZEE), EZEE), Di(f)) and their products to prove the statistical properties
including the variance in Proposition [4.4.1]

The proof of Proposition is based on the following lemmas and
placed in the concluding part of this section. All proofs of these lemmas are
in Appendix Note that most lemmas in this section also hold under
Assumption [T as the section[4.3.2] so we omit repeated under Assumption 1]
in statements. Notations ¢g, ¢, and d are similarly defined as Section

For j =0,1,--- ,h —1,let (Z(™); be a random variable of the form

J h

oM) (M (M) ()T
TS B T Dy - o™
i=1 k=j+2

and for j = h, (Z™));, a random variable of the form

h—1
p™ T B™M, . s

ix(i) " Ow
=1

We similarly define (Z™); for j = 0,1, ,h, and Zp = Z?ZO(Z(P))]' for
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P =M and N.
Lemma 4.4.1. E[(Z®™);] = E[(Z™);] =0 for all j = 0,1,--- , h.

Lemma 4.4.2. E[(Z),, - (2),,] = E[(Z™),, - (2™),,] = 0 for
M1 7 2.

Lemma 4.4.3 (j = 0). It holds that
Var[(ZM)o] = Var[(Z™)] = © (wn-m" - (e %),
[ )

E[(Zz™M)g] E[(Z™)q]
‘Va?“[(Z““))o]2 Var[(Z®M),]?

Y

d 2
< 108co(w + 1) - n?*m* - (E) = poly()).

Lemma 4.4.4 (j = 1). It holds that

Var[(Z(M))l]
Var[(Z(N))l]

0 (nzmh_l (o)t -32) ’

0 (wngmh’1 _ (02)h+1 ) 32) + Var[(Z(M))l]

Moreover, it holds that

E[(Z(M))‘ll] . 4 d 2 B
‘Var[(Z(M))l]Q < 81¢y - n"m” - (E) = poly(A),
(N)y4 2
‘VSEE(ZZ(N))JEP < 324co(w +1)% - n®m* - <%l> = poly()).

Lemma 4.4.5 (2 < j < h—1). It holds that

Var[(Z™);] = Var[(Z™N),] = © (nj“mh’j (oH)h L s°).
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Moreover, it holds that

Bl(Z™)

J

Var[(Z00),

B2

J

Varl(Z0),F| =

Y

Lemma 4.4.6 (j = h). It holds that
1 h+1
Var[(ZM),] = Var[(Z™N),] = ¢" - {E v(v+ 2)} :
Moreover, it holds that
1 (h+1)
BUZMRLELZ™)] <27 () fola + 202 {35 v+ 2}

Now we give a proof of the proposition |4.4.1| using the above lemmas.

of Proposition[{.4.1. Choose BPs M and N as given in the first page of
this section. They have the same functionality and length.

Note that elements (Z®™)); in the above Lemmas are of the form

J h
GO | (M) (M) T .
(Z(M))J = U/(M) ’ ‘](M HS (%) ]+1xj+1) 1_[ Dk,x(k) ’ w/(M) fOTj <h
i=1 k=j+2
h—1 .,
M
(2™, = pD . Bi(,x(7);) b
i=1
Let Zy be the summation of (Z™M); for j € {0,1,--- ,h}. From Lemma
4.4.2) we have
h h
Var|Zm] = Z =E[2 Z(M ] ZV(W
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h
ElZy] = E [(Z(Z(M))i)4]

=0

e )|

After dividing both sides by Var[Zy]?, we obtain the following inequal-
ity

ElZm] | _ E[(h+1)*- (Z(Z™)H]| s | B[ (Z™)]
‘Var[ZM]2 Var|Zm]? ‘ = (h+ 1) Var|Zm|?
h (M) y4
-0
s (| ELZ™)Y E[(Z™);]
<(h+1)- <Z Var[(Z0D),]2 ‘ Var[Zu]? )
E[(Z™M)]

By Lemma 4.4.314.4.4 |4.4.5| and |4.4.6), Var[(Z00), 2 is bounded by

poly(A) for all ¢ = 0,1,--- ;A — 1 regardless of P = M or P = N. Since
0% = v2g/12m, we obtain the following upper bound.

E[(Z™);] E[(Z2™)1]
‘ VarlZul® | = ‘Var[(Z(M))O]Q
=0 ((92)4 . (9(9 J; 2))h2 . (%)Ml)
= poly(})

Thus the kurtosis is bounded by polynomial of security parameter \.

Moreover, by the definition of Zn and Zy; and lemmas, we obtain the

max(oy;, o) ‘

equality |0 — 034 = © (wn®m/ =1+ (o?)"+1. 2 :
N~ Im

is bounded by poly(A). ]

s?). Using lemmas,

64



Chapter 5
Conclusions

In this paper, we proposed mathematical analyses of branching program
iO based on GGH13 and GGH15 multilinear maps.

First, in case of indistinguishability obfuscation candidates based on
GGH13, we showed that if NTRU-solver exists, then the all known iO
candidates over GGH13 do not obtain the desired security. In other words,
there exists two functionally equivalent branching programs such that their
obfuscated programs are distinguishable in polynomial time.

Second, we proposed a new cryptanalysis of iO based on GGH15, called
the statistical zeroizing attack. Unlike the previous works, we proposed the
first statistical attack to iO schemes based on GGH15. As the results, we
broke the CVW obfuscation for suggested parameters, and showed that
algebraic security model assumed by BGMZ obfuscation is insufficient to
achieve ultimate security model of i0. Indeed, we showed that the statis-
tical zeroizing attack is lying outside of the algebraic security model by
suggesting some parameters that holds the algebraic security model, but

are insecure under the attack.
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Appendix

6.1 Appendix of Chapter 3

6.1.1 Extended Attackable Model

In this section we introduce an extended model of attackable BP obfusca-
tion by our attack. The extended attackable BP obfuscation is modified in
the randomization step to embraces the obfuscation in |[BR14]. The def-

inition of extended attackable conditions for randomization is as follows,

which is similar to Definition

Definition 6.1.1 (Extended Attackable Conditions for Randomization).

For a branching program P = {M,}, € ZdiXdi“}iEm be(0,1}” the extended

attackable randomaized branching program s the set

Rand(P) = {Ri,b7 R;,b € ZdiXdHl}ie[ﬂ,be{O,l}w
U {Rs, Ry € 20 Ry, Ry e 7lmxdes)

/
v {auxlb, aUXJab}JC[N],be{O,l}wXW
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satisfying the following properties, where dy, dy, o, €;’s are integers.

1. There exist matrices Sy, Sy € Z%*N Ty Ty € Z¥*d+1 qnd scalars
as, g, ar, A, {Qib, Oy iele befo,1yw such that the following equations hold
for all {b; € {0, 1}"}ic(g:

? ? ¢
Ry - HRi,bi ‘Rr =as- Hai,bi oy <So : HMi,bi 'T0> )

i=1 =1 =1

l ¢ l
/ ' / / / / / ' '
R | [Rip, Ry =as- ] [aiy -ah | S6- [ [Mip - To ).
i=1 =1 i=1

2. The evaluation of randomized program is done by checking whether the

fixed entries of

0 4
RP(x) = || awxsx, Rs| [ Rixpe Rr— | | audsu, R ] [Ris,, ., R

Jc[N] i=1 Jc[N] i=1

is zero or not. Especially, there are two integers u,v such that P(x) = 0 =
RP(x)[u,v] = 0.

After randomizing matrices, we encode every entries and scalars of
Rand(P) separately by GGH13 multilinear map with respect to the level
corresponding to the first index of elements. We denote enc(aux;,) by
alix;a for each J < [N] and a € {0, 1}»>I/],

We note that aux’s were not discussed in the main body of our paper.
However, our program converting technique is applied with small modifi-
cation for auxiliary scalars as well. More precisely, for each aux;a, auX p,
we compute h = aux;a/aux;p and solve the NTRU problem for the in-
stance h. Then we obtain c; - (aux; + ra - g) for small c¢;. For an auxil-

iary scalar aux;. corresponding to J, we compute c; - (aux e + I'c - g) =
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cs - (auxja + ra - g) - aUXyc/auxsa. We can recover dummy auxiliaries as
well.

From this calculation, R program is obtained for extended model. the
other step such as recovering the ideal (g) and the matrix zeroizing attack

work correctly as well.

6.1.2 Examples of Matrix Zeroizing Attack
Obfuscation in [PST14].

In this section, we prove that obfuscation in [PST14] cannot be O for
general-purpose. This scheme is characterized by several special random-
izations; converting to merged branching program which consists of per-
mutation matrices, and choose the right bookend vector T = e; and no
left bookend vector, and then choose identity Kilian matrix Ky =TI at the
first left position. It implies that, by Proposition [3.4.2] the evaluation of

the program is of the form:

¢ ¢ ¢ ¢
1_[ Dz‘,bi Dt = pr- Hpi,bi : H Mz‘,bi €1 =pr- sz',bi "€ (mod<g>),
i=1 i=1 i=1 i=1

where k is an integer computed by M’s. Therefore, we can compute pr -
Hle pib; from the computed value. As a next step, we recover ratios of
scalar bundlings pj,/pjp; for b,b" which satisfies b; = bj for all i € [{]
except j by computing the ratio pr - Hle Pib:/PT - l_[le pip;- Finally, we

can run the matrix zeroizing attack.
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Obfuscation in [BMSZ16]|.

Badrinarayanan et al. suggest a construction for obfuscation based on
branching program, especially for evasive functions [BMSZ16][]| In this
section, we prove that obfuscation of Badrinarayanan et al. cannot be a
general-purpose ¢0. This construction is for low-rank branching program,
thus it do not have dummy matrices and also does not apply higher di-
mension embeddings.

The original method for their construction is in the bookend; the au-
thors use no bookend matrices and use special form of Kilian randomization
at the first and last matrices. The first and last Kilian matrices are given

as follows:

KO = diag(ﬁla e 7ﬁd1)7K£_+11 = diag(’Vh U "7de+1)7

where (3,7, are randomly chosen scalars.
To evaluate the obfuscated program, we see <l_[f:1 Mbi) [u, v] for some

u,v. This is corresponding to the following value, which is computed by

Proposition [3.4.2]
[ [Din, [[w.v] = Bu-v- [ [oin - | [ [Min, |[w,v]  (mod (g))
i€[{] 1€[£] €[{]

since Sy, Ty are exactly Ko, K[Jrll. We then can recover the ratio of scalar
bundlings by computing [ [, Dib, [t v]/ [ Licq Dipy[u, v] for b, b" which

satisfies b; = b for all i € [¢] except j. Since we computed ratios of scalar

*We remark that the construction of [BMSZ16] is similar to the construction
of |[SZ14], which is used as a foundation of recent implementation 5Gen |[LMA™16]
and our attack is also applied to [SZ14] in the same manner.
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bundlings p;p,/ Pjp,, We can run the matrix zeroizing attack.

6.1.3 Examples of Linear Relationally Inequivalent
BPs

We exhibit two examples of two functionally equivalent but linear rela-
tionally inequivalent branching programs here. This examples also certify
Proposition [3.3.2] The first simple example from nondeterministic finite
automata is read-once BPs, and the second example comes from Barring-

ton’s theorem and thus input-unpartitionable.

6.1.4 Read-once BPs from NFA

Two read-once BPs in Table 3.1 are from non-deterministic finite automata
and linear relationally inequivalent.
These two BPs are the point function which output 1 only for input

01, but they are linear relationally inequivalent. For example,

My Mo — Mg My # 0,
No,1 - Nyo—Ng1 Ny =0.

We note that the matrix M, is the adjacent matrix between {A;}ce(0,1}

and {A; 1c}eefo,1}, and N’s are defined similarly.
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0,1

OO0

Table 6.1: BPs from NFA

6.1.5 Input-unpartitionable BPs from Barrington’s

Theorem

In the case of Barrington’s theorem, the linear relationally inequivalent
matrix BPs are more complex. We consider the following two functionally

equivalent circuits:

C() = (Xl A\ XQ) AN (_'Xl N Xg),
Cl = (_‘Xl N XQ) 7AN (Xl AN Xg)
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We transform two circuits into the following BPs by Barrington theorem
as followft

Po,= 00 a, B, o' Bt e B e B
1: e e e e as € Ozgl e
Po,= 0 e B, e B' as B a5t B
1 o, e ozp_l e e e e e
input bits 1 2 1 2 1 3 1 3

where 7, denotes o7o~! for permutations 7,0 € Ss. In the matrix repre-

sentation, the permutations «, 3,7, p,d are of the form

[0 1 0 0 0] (00 1 0 0] [0 0 1 0 0]

00100 10000 00001

a=]0 00 10[,8=|0000 1|,7=]010 0 0f,
00001 01000 10000

1 000 0] 0001 0] 000 1 0]

[1 0 0 0 0] 100 0 0]

00100 00010

p=10 10 0 0|, 6=]0 0 10 0

00001 00001

00010 (0100 0]

We note that two functionally equivalent branching programs P, and
Pg, are clearly input-unpartitionable. Now if we consider two (invalid)
inputs x = 0110110111111111 and y = 1111101011111111. These yield,

for example, Po,(x) = a,-e-e- ;1 -as-e-e-e - =a, B, -a; = f.

tBarrington theorem can be implemented in various ways, but we only consider the
first description in [Bar86]. This description also can be found in [ADGM17].
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The terms in the right --- are canceled. Then the equation

PCO(X) - PCO(Y) =0,
PCI(X) - PCl(Y) # 0

hold. Thus two branching programs P, and P, are functionally equivalent

but linear relationally inequivalent.

6.2 Appendix of Chapter 5

6.2.1 Simple GGH15 obfuscation

We briefly describe the construction of single input BP obfuscation based
GGH15 without safeguard.

For an index to input function inp : [h] — [£], let
P = {inp, {P;, € {0, 1} }icilpefo,13, Po = 0, Py = Z*“\ Py}

be a single input BP.
For parameters w, m,q, B € N and o € R*, the BP obfuscation based

GGH15 consists of the matrices and input function, namely

O(P) = {inp, Ao, {D;, € Z"™ ™ }iein pefo,1} } -

In this case, the matrix T in the abstract model is the identity matrix
and S = Ay. The output of the obfuscation at x is computed as follows:

compute the matrix Ay - ]_[?:1 D mod ¢ and compare its | - || to a

ivxinp(i)

zerotest bound B. If it is less than B, outputs zero. Otherwise, outputs 1.
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The algorithm to construct an obfuscated program O(P) proceeds as

follows:

e Sample matrices (A;, 7;) < TrapSam(1“,1™,q) fori =0,1,--- ,h—1,
A — U(Z”é”xm) and E;, < x"*™ where x is a distribution related
to the hardness of LWE problem.

e By using the trapdoor 7;, sample matrices

Di,b €Z™M «— Sample(Ai,l, Ti—1, Pi,b : Al + Ei,b) O') with 1 < < h.

e Output matrices {Ag, {D;p € Z™ ™ }ic[n] bef0,1} }-

Then, we observe the product O(P)(x) = [Ay - H?Zl D 0000 18 equal
to

h h j—1 h
HPivminpm A+ Z ((H Pi,minp(z‘)) 'Eﬂ'@inp(j) ' H Di@inp(k))

i=1 j=1 i=1 k=j+1

over Z,. If T1\, Pizpw = 097, then O(P)(x) can be regarded as a
summation of matrices over integers instead of Z, under the certain choice

of parameters as follows

O(P)(x) = [AO ’ H Tinp(i) ] Z ((H Tinp(i >> i) H Di»minp(m)

i=1 i=1 k=j+1

since the infinity norm of the above matrix is less than B « ¢. Note that
the evaluation values only rely on the matrices P;, E;, and D, ;. Thus,
the evaluation result depends on the message matrices P; .

Suppose that we have two functionally equivalent BPs M = {M; ; }ic[n] bef0,1}
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and N = {Nj 3 }icn] befo,1} satisfies

waui ifi:: 1
M, = 0“*" for all i,b and N, = ’
0w*™  otherwise

and an obfuscated program O(P). The goal of adversary is to determine
whether P is M or not. For all x € {0, 1}, the evaluation of the obfuscation

is of the form

h
O(M)(x) = Eiq,,, - HDMMM and

k=2

h h
O(N) (X) = ELIinp(l) ’ H Dkvxinp(k:) +1- Ezvxinp@) ) H Dk7$inp(k)'
k=2 k=3

Note that they correspond to the distributions Dy; and Dy for a fixed
vector x. These equations show the difference of two distributions in this

case.

6.2.2 Modified CVW Obfuscation

We give a modification of CVW obfuscation, which can obfuscate the per-
mutation matrix branching programs. This modification is, as far as we
know, robust against all existing attacks. We first describe the transforma-
tion of branching programs. Then, we describe the modification of CVW

obfuscation.
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6.2.3 Transformation of Branching Programs

We first introduce the transformation from single-input permutation ma-
trix branching programs to Type I BP. This transformation is applicable
to BPs which outputs 0 when the product of BP matrices is the identity
matrix. The output of transformation is a new branching program that
outputs 0 when the product of BP matrices is the zero matrix. Through
this transformation, the width of branching program is doubled. Note that
this is adapted version of [CVW18| Claim 6.2].

We are given a branching program with input size ¢

P = {{Pi,b € {0, 1} Yicn) pefo1y, inp = [h] — [5]}
where the evaluation of P at x € {0, 1} is computed by

0 if[1", Piw .
P(X) _ H’L—l 7( |np(2))
1 otherwise

Then the transformation is done by changing branching program matrices

as

P, O :
R ) I S
w i€[h],be{0,1}

and the evaluation is similar but uses new vectors v/ = (v| — v) and

w' = (w|w) for v,w € Z":

e TR / Cw!T —
P/(x) 0 ifv' -], P ) W 0
1 otherwise
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We will choose v and w as random Gaussian vectors. Note that the result-

ing branching program is also a permutation BP.

6.2.4 Modification of CVW Obfuscation

We give here how to modify the CVW obfuscation to be applicable to the
resulting permutation BPs of the above transform. We also assume that
the index length h = (A + 1) - £ and the index-to-input function satisfies
inp(i) = (: mod ¢) as in the CVW obfuscation. We also assume that the
BP is (A + 1)-input repetition BP as in the original construction. The
changed parts are written in red. Note that the targeted BPs have width
2w. Thus we set t := (2w + 2nl) - n.

e Sample bundling matrices {R;, € Z2™*2}, ;1 (0.1} such that (17*®

I Ry - (1291 @1M ") = 0 <= x' € 0({0,1}) for all X’ € {0, 1}".

More precisely, R, ; is a block diagonal matrix diag(RZ(.}b), be), e Rgb) ).

Each Rgfz) € 7> is one of the following three cases.

[2nx2n if inp(i) # k

R (k)

Rig RY « D" ifinp(i) = k and i < Al

[oxn » B p 7.0 pit) = <
R -
ITLX’I’L
Al R® if inp(i) = k and ¢ > \/
k+5eb

. o
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and w < Dy, and compute

J = ((V| _ V|11><2n£) ®In><n> e ant

N P; Sz
Si,b = b ® b € ZtXt
R, ®S;s

L := ((W’W’11x2n€)T®Inxn> e 7txn

e Sample (A;,7;) < TrapSam(1f,1™ ¢q) for 0 < i < h — 1, A}, <
U(Z2*™), {Eqp — DL bieth—1)peto,1y and {Epp < Dy beqo 1y

e Run Sample algorithms to obtain

A

Di,b € MM — Sample(Ai,l, Ti—1, Si,b . Al + Ei,b; 0') forl<i<h-— 1,
Dh,b € LM «— Sample(Ah,l, Th—1, Sh,b -L- Ah + Eh,ba 0’).

e Define Ay as a matrix J - Ag € Z™™ and outputs matrices
{inp, Ay, {Di,b}ie[h],be{o,l}} .

We omit the procedure and correctness of evaluation that are almost the

same as the original one.

6.2.5 Assumptions of lattice preimage sampling

In this section we provide the experimental results of Assumption [I] Our
experiments are built upon the preimage sampling algorithm in the [HHSSD17b],
an implementation of BP obfuscation [HHSSD17a) f] The results imply that

iWe also verify the correctness of the attack itself for [HHSSD17a], but with large
entry BPs. It requires very large number of samples (say 22 but polynomially many)
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Parameters Experiments Expected

#products | m | logy o2 || logy S? | E[X?]/o* | log,o?

2 2191 | 349 80.8 2.937 80.8

2 2771 | 35.2 81.4 2.702 81.7

2 3352 | 354 82.4 2.677 82.5

3 2771 | 35.2 128.7 3.025 128.4

4 3352 | 354 177.0 2.900 176.8

D 3932 | 35.6 225.9 3.068 225.9

7 5621 | 36.1 328.1 3.210 327.5

Table 6.2: Experiment results on statistical value of preimage sampling.
#products stands for the number of producted preimage matrices, o2 the
variance of preimage sampling, S? the sample variance, E[X?*]/o* the sam-
ple kurtosis and o2 the expected variance. Every experiment is done using
100 samples. The expected variance is computed under the assumption on
independency of D’s. Every expected kurtosis assuming independency of
D’s is about 3.

the variance and kurtosis move almost the same as one assumed indepen-

dency, the correctness of attack only requires much relaxed assumption.

6.2.6 Useful Tools for Computing the Variances

We introduce useful lemmas to help our computation. We note that we

consider the random matrix A whose entries are independent.

Lemma 6.2.1. Let A = (A, ;) be a n x n random matriz where A;; and
Aj are independent for every 1 < i < j<nandl <t <n.and X =

[ X1, Xo, -+, X,,] a n-dimensional random vector which is independent to

to verify the attack with binary entry BPs, which is not easy to experiment because the
obfuscation/evaluation of [HHSSD17a] takes long time (say few minutes to obtain one
evaluation).

79



CHAPTER 6. APPENDIX

A. Assume that the following conditions for all distinct i, 7, k,l € [n]:

12[2%] ::0> lELX% ')(j]:: 07 1;[)(?"X%J =0,
E[X? X;-Xi] =0, and E[X; - X; - X}, - X;] = 0.

Then, a n-dimensional random vector Y = [Y1,Ys,---,Y,] = A- X also

satisfies the similar constraints

E[Y] =0, E[Y; Y;] =0, BE[Y? Y] =0,
E[Y? Y;- Y] =0, and E[Y;-Y; Y- Y] = 0.

for all distinct i,7,k,l € [n].

Proof.

t=1s=1
= iiE[Ai,t-Xt-Ajs-Xs]
t=1s=1

- BlAi; - Ayl E[X, - X4) + Z B[Ai] - B[A;] - E[X, - X,]

1<t,s<n,t#s t=1

]
Lemma 6.2.2. Let {4; = (A"")}1cicy be n x n random matrices where

o A{k follow Gaussian distribution Dy, for all 1 < j,k <n and 1 <

i <t
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o AP and AP are independent for every1 < j <k <n,1<s<n

and 1 <1 <t,

. A’f’jl, e ,Ai’“jt are mutually (entrywise) independent for every 1 <

Iy Je < for all k

and X = (X;;) = ]_[Zzl A n x n random matriz. For all i,j,k € [n], it
holds that

E[X;;] =0, Var[X;;] =n"" (%),
E[X};] = 3(n(n+2)"" - (0%,
E[XE; - Xij] = (n(n +2))7" - (0%)*

Proof. We apply mathematical induction on ¢. For ¢ = 1, it is clear because
of the property of Gaussian distribution.

We assume that the equations hold when ¢ = s and will show that
the same results hold for t = s + 1. Let X' = HA,- and Y = A, - X',

=1
Note that all entries of A; follow Gaussian distribution Dy, satisfy the

same condition of the lemma. We denote Ay = (A;;) for brevity and

Y, = Z A; i - X ;. Note that the results of Lemma [6.2.1) holds for every
k=1
column of X, which can be shown in the inductively applying Lemmal6.2.1]

1. E[Y; ;] = 0is clear.

2. Since E[Y;;] = 0, Var[Y;;] is the same to E[Y}]. Note that we
can obtain E[Xj ;- X;;] = 0 and for k # | by applying Lemma [6.2.1]
inductively, thus E[Ai,k'Xk,j'Ai,l'Xl,j] = E[Ai,k'Ai,l]'E[Xk,j'Xl,j] =0
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also holds. Now we obtain

The last equality holds by the inductive hypothesis.

3. Note that E[Y;}] = E[(3;_; Aix - Xk;)*]. It holds that, for k # I,

E[(Aik - Xij)* - (Air- Xij)] = E[AY, - Al - E[X}; - X15] = 0
) (Azl le) (Ai,m : Xm,j)] =0

E[(Azk ki) (Air - Xig) - (Aign - Xing) - (Aiw - Xug)] = 0

X
- X
for all for all distinct k, I, m,u € {1,--- ,n}. By the induction hypoth-
esis, it holds that

E[Aj - Xi;] = BAj,] - E[Xg ;] = 30" 3(n(n +2))"" - (%)™,

Therefore, we conclude that

E[(D] Aig - Xig)'] = 3(n(n +2))* - (02)2D,

k=1

4. Note that E[Y - Y] = B[(X, 1 Aim - Xm i) - Moy Ak Xug)?]

m=1
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Then we obtain the similar result as follows:

n

(D] Aim - X )+ (O] A~ Xuj)’]

m=1 u=1
. 2 ZA
m=1
= Z Z E Aiu -E[Xg%j . Xi,j] = (Tl(n + 2))5 ) (02)2(s+1)_
u=1m=1
O

Lemma 6.2.3. Let A = (A;;) be a n x m random matriz whose entries
satisfy E[A;;] = 0, E[A};] = 0} and E[A};] < Co{ for all i€ [n],j € [m]
with some constant C', where the entries of A need not to be indepen-
dent. Let v = [vy, -+ ,v,] and w = [wy, -+ ,wy,] be n-dimensional random
vectors whose entries are mutually independent and follow the Gaussian
distribution Dy, ,,. If the entries of A are independent to the entries of v

and w, then Y = v - A - w” satisfies the following condition:
E[Y]=0, E[Y) =nm 0} 05, E[Y*] < (nm)*- (Co}) - (305)%

Proof. Note that Y = Z Z v - Aij - wj.

j=1li=1

= E[Z Z vi - Aij - wi] = Y E[v] E[A; ;] Elw;] = 0.

j=11i=1

2. For all i,k € [n], j,l € [m] satisty (i, 7) # (k,1), E[(vi- Aij-wj) - (vg -
Ag-wy)] = Elvi - v E[A; j - Agg) E|w; - w;] = 0 since one of E|v; - vg]
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or E|w; - w;] is zero. Then it holds that

Z ijWj) :E[ZZU’?A?‘]U}?]

li=1 j=1li=1

ElY

i M: m M3

3. By the Cauchy-Schwarz Inequality, it holds

Ms

E[Y IPILER PR <E[<nm>3-<22vf-z4;*] wj)]
m)* - 3, 2 B ELAL B[wf] < (nm)* - (Cor) - (303)°

j=1li=1

6.2.7 Analysis of CVW Obfuscation

In this section, we describe how to prove the Lemmas in Section 4.3.2
We use the same notation as in Section 4.3l We re-use or abuse the some
notations for the different proof for the convenience of the writing. Fix a
x satisfying O(P)(x) = 0.

Note that the appeared random matrices are of the form

J
Z(P) _ 1—[ : ﬁu,ﬂ ]_[ Dm,
=1

k=j+2

where all random matrices included in (Zﬁ ); for each j are mutually in-

dependent except the matrices D’s. Thus, we are only need to carefully
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deal with the product of preimage sampled matrices D’s to compute sam-
ple variances for each j. This issue is resolved assuming the variance of
products of D’s and bounds of their kurtosises.

More precisely, by the Assumption[I], a product of the random matrices
lA)J(P) = H?:j-i—? Di(P) has the variance ©(m"=772(¢?)"=371) and its kurto-
sis is bounded by O(poly()\)). We denote (possibly polynomial) ¢y by the
bound of kurtosises in Assumption [I, and ¢ and d the lower and upper
bound of Var[f),ip)] for all k, respectively. In other words, it holds that for

all &

H(P) NP M (P)1\4
oo Var[DP] B~ B[D®])]

mh—k=2(g2)h—k-1 Vmﬂ[[)k(P)]z

< Cop.

We also remark that all distributions corresponding to random vari-
ables appeared in lemmas except <Zl(ﬁ)) are the same as regardless of
the choice of P = M or N, because the rlnatrices of branching programs
are all zero except the first matrix. Thus we consider the choice of the

branching program only in Lemma [4.3.4] which discusses the random vari-
able (Zl(l?) .
A

of Lemma |4.3.1] and 4.5.4. We assume that p; < pe and it is enough to

show the result for M. Note that the random matrix EJ(M) is only (possibly)
dependent to D](-M) and the random variables (Zfl\l/[)) 4y and (Zfl\l/l)) 4 do not

contain such random variables at the same time. In addition, (Zﬁ/l)) 4 and
EM)

1111 Whose expectation of each

(Zg\l/l)) 4, both contain the random matrix

entry is zero. Thus, we obtain the desired result.

Similarly, when we express (Zfl\l/[)) R (Zfl\l/[)) 4, into the polynomials of
o

i1 and

random variables, then every monomial includes one entry of
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does not include the entries of D“ +1- Since the expectation of every entry

of Eft .1 1s zero, it completes proof. [

of Lemmal/.3.3 As stated above, it suffice to show the result for M. We

define X0, v, and (Zﬁ)) be random variables of the (u, v)-th entry of
DM M) (M) (M)

the random matrix []r_, EM Hk , D) and J-EXY TTr_, D

k xE ) lxy 1,21 k,xy
respectively.

Then, for all u € [t],v € [n], all random variables X have the vari-
ance ©(m"~2(c?)""1) by Assumption Moreover, it holds that E[X{%)] =
4
E[Xi
[—’(M)] < ¢o by Assumption |1}
Var[Xuyv'|?
Let Ez(}\f) be the random variables of (u,v)-th entry of the random

matrix EI(IZII) Then we can compute variance and kurtosis of YU(,IXI).

0 and
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EYA = B ESY - x5V =Y E[END] - E[X3P] = 0,
i=1 i=1
M i M M - M M
Ely® .y = B[ BOY - XY (X EDY - xO0))
i=1 j=1

_ E[é;%’ X002 _ B[S BN x M0
i=1 i=1

= B[O B X)) = (m (02,
=1

Y = B[S BN x M0y

=1

< Bm® (3 EO' . x00Y),

=1
<mt-30% ¢y (M 202 - d)?
We observe (ZSYI))O = Z;T”:l?ne Yn(-lz/ilzl)Jrl,l‘ Then,

[ w+2nl 2
M M
VC”“[(Zf,l ))0] =FE ( Z Yn(-(z‘)1)+1,1>
i=1

[ w+2ne
M)?2 _
=F Z Yn(-(ill)-&-Ll] = O((w + 2nf) - m " (o*)M).
| =1
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In addition, the upper bound of F [(Zﬂ\l/[))é] can be computed as follows:

w+2n€

E[( Z Ynz 1+11

w+2n€

< E[(w + 2nf)? Zymlm
< (w+2n0)*-m? - 3¢y - d* - m*72 - (0?)?,
Combining them, we obtain the inequality

B[z
Var[(Z{\)o]?

2
< 3¢ - mA(w + 2nl)? - (g) = poly(A).

All arguments with respect to N also hold well.

of Lemma[{.3.4 Only for this lemma, we give the proof of the two cases;
P=Mand P =N.

Case 1 P M. We now consider a random matrix J - Sl P EQ(I;,? :

Hk 3 k o) Then this case is a special case of Lemma 4.3.5, Readers refer

to the proof of Lemma [4.3.5] Therefore, we can obtain that
Var[(ZO)] = 0((n® - o + (20— 1) -n?) -m"2 - (6%)")
and

E[(Z{l\l/[))ﬂ < m2(w + 2nl)* - 9n® - 3¢y - mH* . (62)2HD L g2
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Combining this we obtain the inequality

E Z(M) 4 d 2
I 1&\4))1] < 27co - m?*(w + 2nb)* - n? - (—) = poly(A).
Var[(Z;y))1]? ¢
Case 2: P = N. For a random matrix J - Sl 2@ 1, kxk, the

random variable can be written as

h
N

1;v1 2,29

J. DN = T - diag(1*" ® S{%), 0"

1,21

+ J - diag(0“"™* ™™ R1 o ® S1

h

’ ng H kzk
k=3
h

212 H

since Sl( is diag(1“*"* ® Sl 0" ") + diag(0w<wn, Rﬁi ® 51(121))
N) )

By the lemma6.2.1] the variance of the random matrix J - 5'1(331 9.2

,X1?

HZ:S D,gi is equal to summation of variances of two above two random
matrices.

We only need to compute the variance of the first random matrix J -
diag(lwxw@)Sl(l;?, 0" x1%). 2(1;12) ‘HZ:3 D,Sji; the variance of the latter term
is a special case of the Lemma as the above case.

Let SQ%) be the random variables of (u,v)-th entry of the random

matrix Sl . We define XV, V& and (Zﬁj))l be random variables of

the (u, v) th entry of the random matrix E2(1;12) : szs D]S;Ti’ :91(1:1) : ESB .
Hk 3 kxk and J - 51 2952 Hk 3 D,i xi, respectively
Then we observe Y Zz 1 S(N) -+ Zz 1 Sl P ZJl:I()w 1)n,1

from the definition of Kronecker tensor propertles. Then, using Lemmal6.2.1},
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we can obtain
n

+ZS£T X N n)’]

i+(w—1)n,1

VarlY,

i7

2 2 2 2
VxE +ZS§T XN ]

Zslz
=1

ZS£2 i+(w—1)n,1
1

= O(wn - (¢%) - m"?- (¢*)")

= O(wn -m"2 - (o*)M).

Moreover, we can calculate an upper bound of F [3/1(1?)4] as follows:

N)* C
E[}/i(,l)]:E Z ’ +ZSIZ ’ z+w 1)n1>4]

4
<E ZS(N) Xi(lf +ZSM 'Xz+w l)nl)]

< (wn)4 . 3(02)2 . m -3¢, - m2h—6 ) (U ) (h—1) d2

= 9cp - (wn)*m? - m2* - (622 . &2

Similarly, we can compute Y ) for i = 2,--+ ,wn in the exactly same way.
The equations and 1nequahtles are all equal to the Yl(lf) case. For 1 > wn,
Yﬁ\r ) is computed as in Case 1. In other words, it is the special case j = 1
of Lemma [4.3.5| and the result is equal to Case 1 as well. Thus, we omit
the how to compute this value.

Note that Yl(i\]) = Yi(j‘(‘}cil)n’l forall K =1, ,wn. Thus, we obtain the
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desired results as follows:

w+2nz
V‘W[( Z 1+z 1)n1
w+2nl
= Elw? Yll + Z 1+z l)nl
imw+1

—O((w® n+n*- 0 + (20— 1)-n?) - m" (o))

w+2nl
E[(Z E[ Z 1+z 1)n,1 ]

w+2nl

(N)*
<E[w+2n€ 2 Yl-i—(z 1n1
< (w+ 2n0)* - 2Tn®m? - ¢y - m* Tt (67)2 D L g2
At last, with the two computations, we obtain

B[z

nt
1 4.2 2

< 27co - (w + 2nl)* - n°m” - (—) = poly ().
Var[(Zi) )] ¢

of Lemma[f.3.5. We remark that, as noted in the above proof, this proof
works for 7 = 1 as well and this case is used in the above proof. It suffice
to prove the case P = M. Let 1 < j < A-{ be an integer that j = £-j; + j»
and Xu,v the random variables of the (u, v)-th entry of the random matrix

]<ﬁ3xj+1 ]_[Z: i D,gl\f). Then, all random variables X, , have the variance
O(mh==1 . (62)"79), and we have E[X{W] = 0, E[X 'qu U)] = 0 for

4
distinct u, v’ and E[X{ | < 3co-m2-m2h=%-2.(¢2)2h=3).¢2 by Assumption
il
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Let S be the random variable of (u, v)-th entry of the random matrix
IS Thep, Var[S(M ] =nit(o2), B[SV - 51(‘1,\’/{))] = 0 for distinct

=1 "i,1;
u,u' and E[S(M) ] =3{nn+2)} 1 (o 2)2j hold.
J
1,75 7 i=1

()
matrix that consists of [[._, R € 7202 for k e [¢]. Note that [T._,

1,5

By the construction of the matrix RM RZ-(M) is a block- diagonal

( )

is of the form

J1+1 p(k) (M)
H Rk+£ (1=1) %4 e(i—1) itk=1,2,---,7
ﬁ RO _ .
=1 l jl R(k)(M)
1=1 "Vk+L(i—1),Tpp(i—1) if k= j2 + 17 T 7£
I?’LX'I’L
\

Let RM be the random variables of the (u,v)—th entry of the ran-
dom matrix upper-left quadrant of []/_, le)( . Then Var[R(J,‘ﬁ)Q] =nit .
(o)1, B[R - ROY] = 0 and B[RS o' | = 3(n(n + 2))7 - (02)20+1),

Similarly, we consider the random Varlables of the (u,v)-th entry of the
matrix ( 7 S*A(M)) . EM : (Hk i kx ) and denote it by Vi3,

=1 ~1i,x; j+1 Tjt1
Then,

-

M M M M M
Varly(th 1= B[R Y s® XM v+ BRI ZS< X )]

i+n(
=1 =1

_ @( 2 -njl . (02)j1+1 'ﬂj_l . (02)]' . mh—j—l . (02)h—j)

@(nhﬂ“ (02)j1+j+1 i1, (02)h—j)
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because of Lemma Moreover, it holds that

A n n
E[}/I(er)n 1 = Z H—wn 1T 2 z-‘,—n w+n—1), 1)4]

S X )]

i+n(w+n—1),1

M:

< M) 2 S(M) XH—wn 1 + -

= 2Tnm? - (n(n + 2)) 71 g MU 2L (62 ) h+31+1) w3

Therefore, we conclude that

() 1+ ?
E[Y 2\
Ml | _or e (142 (2) = poly(n.
Var [Yl(}:/fu)n 12 n ¢

Similarly, we can compute all variances of Y; ; for each <.

0 if i € [wn]
ifi=a-n’+b+w-n

O(nttith . (g2)ititl . h=i=l . (o)h=7)  with a/2 € {0} U [jo —

M)y 1],b¢e[n ]
VGT[Y;J]—< if 1 = n? 4+ b+
O(niti . (g?)1ti . mh=i=1. (g2)h7) w - n with a/2 €
{an e 7€}7b € [712]
\@(nj . (02)3‘ .mh—i-1. (UQ)h*J') otherwise.
93
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Thus, we can derive upper bounds of [Yﬁ“ )4] as follows:

-

0
27nfm? - {n(n + 2) 1 - o - m2U 2 (o2) 2t g2
27n8m2 . {n(n _|_ 2)}jl+j72 . CO . m2h72]’72 . (0—2)2(h+j1) . d2

\9n4m2 An(n +2)P 7t g - mHHT2. (02)2 . g2

Let (Z(M)) be random variable of (u,v)-th entry of the matrix J -
M M
(H] 1 Sz(xl)) E +1 JTj41 ’ <Hk =j+2 k a:k> Then we observe <Z£1 ))] =

Sy, - Since, by Lemma (6.2.1) E[SIN - SO] = 0, B[R -
RS\?] =0,and £ [qul,\f) - X Svf])] = 0 hold for all distinct u, u’, the equation

By y8P] = 0 holds for all u,v.
With the similar method, we compute Va'r[(ZS\l/[)) ;] and upper bound
of E[(Z))1]-

w+2nl w+2nK

M M M
Var[(ZN);1 = E[( Y. Y08 = Z v

i=1
— @(]271 Lt (g2>j1+a+1 mhiL. (0 )h—J
+ (g _ jg)n it (02)j1+j mhi-L. (UQ)hfj
+0n-nt- (02)j -l (o))

_ @((anj1+j+2(o_2)j1+1 + (6 . jg)nj1+j+1(02)j1 + gnj+1) mh—j—l(O_Q)h)
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w+2n€

B[z} Z YN )]

w+2n€
<E[w+2n€ Z }/14-(1 1n1
< (w + 2n0)3{jon27n®m? (n(n + 2))1H " eum2h =272 (22t 2
+ (0= jo)n - 2Tndm? - (n(n + 2)Y 72 ¢y - m2 2. (02)2(h+j1) 2
+ 0 9ntm? - (n(n +2))7 1 cp - mPTH2 L (g2)2h L @)

< (w+200)" - 2% m? - (n(n -+ 2))2 5 eqm 2 (2R 2

Overall, we obtain

E Z(M) 4 2 J1+5—1 2
[( 1711\/I>]:| < 2760.(w+2n€>4_n2m2_ (1 + _> . (é) = po|y()\).
Var[(Z);)? " ‘

All arguments for N hold as well.

of Lemma[.5.6, Similarly, we also focus on the case P = M. Let j be
an integer that 7 > A - /¢ and 7 = ¢ - X\ + 7. This proof is very similar
to Lemma [4.3.4l The difference only comes from a form of the random
matrix ngl RZ(}E). Thus, in this proof, we focus on the form of the matrix.
Note that, because of the functionality, the matrices RZ(},\)/I) are completely
different for ¢ < A - ¢ and for ¢ > X\ - (.

In this case, [T/_; R i

R, is the block diagonal matrix

ﬁRm = diag( ﬁRmz ,ﬁR,?Z(M),'“ 7ﬁR¢(,éz);M))
=1 i=1

i=1 i=1
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(M)
where []/_, k) is of the form

( A Bk
HZZI k+L(i—1),@k10¢i-1) if b = 1’ 27 L ,jQ

A k)Y
[T, RY
i=1 "Yk+L(i—1),Tpqp(i—1)

HA R(k)(M)
1=1 k+£(i—1),l‘k+g(i_1)

ifh=jy+ 1,

\

Let YU(IXI) and (qul\f)) be random variable of (u,v)-th entry of the matrix

(M) (M) o(M) (M)
( i= ISZJTL ) Ej+1 ZTjp1 : <Hk =j+2 kxk) and J - ( 1= 1Szx > ’ Ej+1,xj+1 :
(H hej 12 D,g7x]3>, respectively.
Similarly, we get

w+2nl
Var[(Z{\);] = E <Z Y )nn?]

and
w+2nl
M M
E[(ZzX = E[( Y Y.
=1

< (w + 2n0)*27nm (n(n 1 2)) M2 he 22 (o2) 20 g2
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Then, we have

B[z

J

Var[(Zi)),]?

9\ M2 2
< 27co(w + 2nb)*n*m? (1 + ﬁ) (E) = poly(A).

The arguments for N hold as well.

6.2.8 Analysis of BGMZ Obfuscation

In this section, we describe how to proof lemmas in Section [1.4.2] We
modify the notation as in the CVW obfuscation case. We replace n',n
with n,t. We re-use or abuse the some notations for the different proof for
the convenience of the writing. For example, we omit the index j in the
main body of the paper. Fix a x € {0, 1}¢ satisfying O(P)(x) = 0.

By Assumption , a product of the random matrices D]P = Hf: 42 DZ.(P)
has the variance ©(m"=772(¢%)"=7=1) and O(poly()\)) upper bound of its
kurtosises.

More precisely, We denote (possibly polynomial) ¢y by the bound of
kurtosises in Assumption [I, and ¢ and d the lower and upper bound of

Var[f),gp)] for all k, respectively. In other words, it holds that for all k

(P . .
__ VarDPY B - B[D )
CS a2k S ¢ an N, (P)]2
m (02) Var|Dy®)]

< (.

We omit the proof of Lemma 4.4.1} since it is almost the same to
the proof of Lemma and Lemma [4.3.2]

of Lemma[4.4.5 Let (XY be random variables of the (u, v)-th entry of

the random matrix E)(cl(\f)) | D,gl\f()k). Then, for all u € [t],v € [n], all
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random variables X\’ have the variance ©(m"~1(¢2)h~1 . s2). Moreover,
it holds that E[Xi(%[)] — 0, E[XMD - XQ%{)] = 0 for distinct w,u’ and

E[XY%I)AL] < 3co-m?-m?h=2. (02)2h=1) . (52)2 . 42 by Assumption .
Similarly, the random variables of the (u,v)-th entry of the random
matrix J™) . 1) I, kl\f()k) are denoted by Y,3". J is defined by
[J'MD|1*7] and J'(M — {0, 1}"**" Let the random variables of the (u, v)-
th entry of the random matrix J'™) be denoted by J;(,%/I). Then we can
observe that E[J'(M)] =1 E[J'(M)Q] — 1 B[O = 1 for all u,v.

M M
Since Yl 1= Dica J1 - (t 1)+1 X7(1~(t)—1)+1,1 T Xém}rlvl’

2
(M) (M) (M) (M)
V(”’[Ym |=F <Z Jl (t—=1)+1 X ne(t—1)+1,1 T Xwn+1,1>

N RS ITvIE (M)? (M2
=FE Z J1,n~(t—1)+1 'Xn~(t—1)+1,1 + Xwn+1,1]

In addition, the upper bound of [1/1(11\4)4] can be computed

y0') N O (M
E Z 1 n(t )41 n(t—1)+1 1 + Xum+1) ]

4

(M)4
<E w + 1 Z ln(t D+1° n(t 1)+1,1 + Xwn+1)]

< (w+ D4 3¢ -m?-m?2 (022D L (52)2 . @2
Similarly, we can derive the same results for Y, , for all u,v. The vari-

ance of (ZM), = /M) . M) . El(lf()l) 1, D,gl\f()k) - w'™" s computed

by
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Var[(2™)o] = ©(nm - (5 +1) - "™ (o2) 7 - 5% %)

= O(nm - (% +1) .mhL. (02)h+1 . 52)

We also have

E[(ZMYE] < (nm)*(w + 1)*3cem? - m?=2 . (62)2h= . (s%)2 . (306%)? - d?

= 27co - (nm)* - (w + 1)*-m® - m> 72 (672 (67)2 . @

At last the upper bound is computed as

‘ E[(2™M);]

Var[(Z00), < 108co - (nm)? - (w + 1)* - m? - <%l) = poly(\)

For N, all arguments are exactly same.

of Lemma{.4.4. In this proof we consider the two cases; P = M and
P=N.

Case 1: P = M. Consider a random variable v'™) . J(M) . 5'1(1::[()1) . EQ(I:(%) .

]_[2’23 D,gl\f()k)-w’ M)" This is the special case 7 = 1 of Lemma|4.4.5] Readers

refer to the proof of Lemma {4.4.5, Based on this the following equation
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and inequalities hold:

_ @(nm N - mh—2 . (O_Q)h-‘rl . 82)

8lcy - (nm)* - nt-m2-m21. (02)2(h+1) gt 2

Var[(Z™),
E[(Z2™)i] <
' E[(Z(M )i]
Var[(ZOM), ]2

nt
< 8lcg - (nm)? - n? - m? - (E) = poly(A)

Case 2: P = N. Consider a random variable v'™ . J™ . § xgl) . E2(1:22) .
| - D,S:?(k) cw' ™" Let S be random variables of (u,v)-th entry of
the random matrix Sl(igl). Similarly, we define XI%) and Yu(lq\,r) are random
: . (N)

Varlables of the (u,v)-th entry of the random matrix E. Hk 3 Dy

and JN S 2 E(N)Q) Hk, 3 kx X respectively. J (N is deﬁned by
[J/ |17 and J' N {0, 1}mxwn, The random variables of the (u, v)-th
entry of the random matrix J'™ is denoted by J'{.

Then, we observe

w nj n
= Z Z Z k-‘rn(] 1) kl\zl) n(j— 1) + Z Sl k XSX?IC 1
j=li=1+n(j—-1) k=1
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By the Lemma [6.2.1] it holds that

Var[y{)]

i w nj n ) n ™)
=k 21 ( Z k+n (G- 1 n(j— 1) Z Xw”+k 1

j=li=1+n(j—-1) k=1 k=1

i w nj n ) )

_p|Y (3 0 s X Z SOV x (9
n(j—1)"k,i—n 1 wn+k,1
_j:u 14+n(j—1) k=1 ] e =

-2 82 +n- 0_2 . mh72 . (0_2>h72 . 82)
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In addition, the upper bound of F [}/'1(11\”4] can be computed
Bl

N)
2 J/kJrnj 1) k:z n(] 1)) Xi,l )

R
n:Ms
2

= N N N)*
< B |{(w+n* | Y] DITL AT DS oY

j=li=1+n(j—1) k=1

w n Ny N
<E {(’LU + 1)”}3 Z n3(2 Jl,c-‘rn(j 1 Slgz n(j— 1))X(, ) )

1
< {(w + 1)n}3{wnn4(§3a )3com?m?h—4(0?)2(h=2) (5%)2q?
30’4)360m2m2h_4(02)2(h_2)(82)2d2}

+n
< 9¢y - {(w 4 1)n}4 . n4 . m2 . (0_2)2(h—1) . (82)2 . d2

The same results for YM for all u,v can be shown in the same way.

The variance of (ZMN); = /™) . JN S x(1) ]_[k 3D '™

is computed as follows:
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Similarly, we have

E[(Z™1] < (nm)*9co{(w + Dn}*n*m?*m? (a2 (s*)%(30%)2d?

= 81co(nm)*{(w + 1)n}4n4m2m2h_4(02)2(h+1)(82)2d2

Then, it holds that

‘ B[(2™){]

W < 324c¢y - (nm)2 . {(w + 1)n}2 -n2.m2. <g> _ poly(/\).

O

of Lemma[{.4.5 Let2 < j < h—1 be an integer and X, ,, the random vari-
ables of the (u, v)-th entry of the random matrix E].(ﬁ)’x(j 1) HZ:;’ o D,gif()k).
All random variables X\ have the variance ©(m"3=1.(02)"=31.52), and
E[xXM] =0, (XX - XM = 0 holds for distinct u, o’ and E[XN'] <
3co - m? - m=272. (¢2)2(h==1) . (s2)2. 4% by Assumption .

We observe that

Jj 0
M) _
|{ |Sza:l = < j S.(M)> :

i=1Yi,z;

Let ngl,\f,[) be the random variable of (4, j)-th entry of the random matrix
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7, S™) Then, it hold that Var[SS | = ni=-(62)7, B[SO .S0] = 0
for distinct u,u’ and E[SZ%I ] =3{n(n+2)P 1. (c2)%.

For a random variable of (u,v)-th entry of the random matrix J™) .
( 5:1 5’1(1:8)) - g™ (Hk _i2D (M) )> , we denote it by qu}q\,/l). Then

j+1,x(5+1)

a variance of Yu(ﬂ, ) can be computed using Lemma

2
Va,r = (Z S(M X1(u1\72[+k v) =B [Z S(M Xwn+k v]

@(n ng 1 (0_2)]' 'mhfjfl . (02)h7j71 . 82)

— @( —j—l . (0_2)h—1 . 82)

Moreover, it holds that

n 4 n
BV - B (z 500 Xmm) E[(z ss,ff-xmz,v)]
k=1

k=1
n43{n(n + 2)}j71 (0_2)2j360m2m2h72j72(UZ)Q(hfjfl) (52)2d2

_ 900n4m2{n(n + 2)}j_1m2h_2j_2(02)2(h_1)(82)2d2

By Lemma [6.2.3] we can compute

j h
(M) (M) o™M) (M) ™) )T
v J HSz',x(z’) By x+1) H Dy ey~ W

i=1 k=j+2

104



CHAPTER 6. APPENDIX

which is denoted by (Z™));. Then it hold that

Var[(ZM);] = O(nm -n? -m"71 . (e))"1 . 52 %)

_ @(nm . njmh—j—l(o_Q)h+182)

EKZ(M));L] <900(nm)4 4 Q{n(n+2)}] 1 2h 2j— 2(02>2(h71)<82>2(304)2d2

= 8lco(nm)*n*m*{n(n + 2)} " m =272 (g)20 D) (2)2 42,

Overall, it holds that

< 8leg(nm)*n®m (1 + 2)j1 : <g>2 = poly(X).

All arguments hold as well for IN.

of Lemma[f.4.6 Let XM e the random variables of the (u,v)-th entry
of the random matrix ]_[h ! BZ( . All random variables of entries of B, ( (2)
are mutually independent and follow a uniform distribution [—%, %). For
convenience, we assume random variables follow a uniform distribution
[—%, %]. The complete proof is done by considering the statistical indistin-
guishability of two uniform random distributions.

We note that the similar computations as in Lemma hold as well
for the uniform distributions. More precisely, for the random variable Uq,

£, %], it hold that E[U;] = 0,

E[U?] _1—12 V(v +2), B[UY] = 8—10 V(v + 2){p(v +2) —

U, following the uniform distribution over [—%
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Thus, the variance of XS,\;[)

is
1 h—1
Var[XS\f)] =g 2. {ﬁ v(v+ 2)} :
We also have

(h-1)
BIXE] <3 (ol + 20 { o]

By Lemma 6 2.3, we can Compute the variance and expectation of

quadruple of b5 ]_[h ! B fUM) which is denoted by (ZM),.

Var[(ZM),] < g2 - g {% (+2)}h_1.{1_12.y(1/—|—2)}2

2

2(h—1) 2
BI(ZO0] < () 3l0tg + 22 { vlv +2) [3 { e} ]
(h+1)
LRV S R S

B[(Z)}] o (14 2)
Var[(Z00),]2 <27-(¢9°)°- (1 +§ . The same ar-

guments hold as well for N. However, this value is not poly(\), since g is

As a result,

small constant.
O
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