
 

 

저 시-비 리- 경 지 2.0 한민  

는 아래  조건  르는 경 에 한하여 게 

l  저 물  복제, 포, 전송, 전시, 공연  송할 수 습니다.  

다 과 같  조건  라야 합니다: 

l 하는,  저 물  나 포  경 ,  저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.  

l 저 터  허가를 면 러한 조건들  적 되지 않습니다.  

저 에 른  리는  내 에 하여 향  지 않습니다. 

것  허락규약(Legal Code)  해하  쉽게 약한 것 니다.  

Disclaimer  

  

  

저 시. 하는 원저 를 시하여야 합니다. 

비 리. 하는  저 물  리 목적  할 수 없습니다. 

경 지. 하는  저 물  개 , 형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


이학박사 학위논문

Nonparametric DSSY Nonconforming

Quadrilateral Element and Its

Application to Multiscale Methods

DSSY 비순응유한요소와 멀티스케일 방법에 대한 적용

2020 년 2 월

서울대학교 대학원

수리과학부

조 강 훈





Abstract

Nonparametric DSSY Nonconforming

Quadrilateral Element and Its

Application to Multiscale Methods

Kanghun Cho
Department of Mathematical Sciences

The Graduate School
Seoul National University

We first consider nonparametric DSSY nonconforming quadrilateral element

introduced in [26]. The element satisfies the mean value property on each edge

and shows optimal convergence for second-order elliptic problems. We estimate

the effect of numerical integration on finite element method and construct new

quadrature formula for DSSY element. It is shown that only three nodes are

enough to get optimal convergence for second-order elliptic problems. Nu-

merical results are presented to compare new quadrature formula with usual

Gaussian quadrature rules.

Next we study the nonconforming generalized multiscale finite element

method(GMsFEM). The framework of GMsFEM is organized following [38],

and every process of constructing nonconforming GMsFE spaces is presented

in detail. GMsFE spaces consist of two ingredient. First one is the offline

function space, a spectral decomposition of the snapshot space which is used

to approximate the solution. Other one is the moment function space, which

is used to impose continuity between local offline function spaces. Numerical

results are presented based on nonparametric DSSY nonconforming element.



In last chapter, an algebraic multiscale finite element method is investi-

gated. Suppose that the coefficient and the source term of second-order elliptic

problems are not available, and we only know the microscale linear system.

We try to construct macroscale linear systems only using the algebraic in-

formation on the components of microscale systems. One-dimensional case is

examined in detail following GMsFEM framework, and two dimensional case

is also presented using the DSSY nonconforming finite element space.

Keywords: DSSY nonconforming finite element, nonparametric finite ele-

ment, generalized multiscale finite element method, algebraic multiscale method,

numerical integration, quadrature formula, elliptic problem
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Chapter 1

Nonparametric DSSY

Nonconforming Quadrilateral

Element

1.1 Introduction

In [19], Rannacher and Turek introduced the two types of rotated Q1 non-

conforming elements depending on the choice of their DOFs between the four

midpoint values and four integral values over four edges. It is often convenient

if the two types of DOFs between the barycenter values and face average val-

ues over faces are identical for a finite element (K,PK ,ΣK). We will coin it as

the MVP (Mean Value Property)

1

|ej |

∫
ej

ϕ dσ = ϕ(mj), ∀ej ∈ F(K), ∀ϕ ∈ PK , (1.1)

1



where F(K) denotes the set of all faces of K. For instance, for simplices, the

linear Crouzeix–Raviart element [6] fulfills the MVP (1.1). For rectangular

and parallelograms, Douglas et al. introduced a quadrilateral nonconforming

element, so-called DSSY element [7] Among quadrilateral nonconforming el-

ements which fulfills the MVP (1.1), five DOFs nonconforming element was

given in [3], and later a class of nonparametric DSSY element of four DOFs

was introduced in [26]. Also the three DOFs nonconforming element on quadri-

lateral [17] fulfills the MVP (1.1).

In [25], Meng et al. introduced an interesting new nonconforming quadri-

lateral element with a minimum number of quadrature points, although it does

not satisfy the MVP (1.1). They adopted a new affine map from new reference

element to physical element, which allows to express basis functions explicitly

without solving local linear systems.

In this chapter we modify the class of nonparametric quadrilateral element

[26] to fulfill the MVP (1.1) with a minimal number of quadrature points,

following the approach of Meng et al..

The organization of the rest of chapter is as follows. We review a few

quadrilateral nonconforming elements including nonparametric DSSY element

in Section 2. Then we introduce a new class of nonparametric quadrilateral

element with the MVP (1.1) and compare the proposed element with the

nonparametric DSSY element in Section 3. Section 4 is devoted to construction

of quadrature formula for newly designed element. We present some numerical

results in Section 5.

1.2 Quadrilateral nonconforming elements

In this section we review some quadrilateral nonconforming elements [7, 19,

26].

2



1.2.1 The Rannacher–Turek element and the DSSY element

Let Ω be a simply connected polygonal domain in R2 and denote by (Th)h>0 a

family of shape regular convex quadrilateral triangulations of Ω. Also denote

by Eh by the set of all edges of Th. Here the parameter h is given by

h = max
K∈Th

diam(K).

For a typical quadrilateral K ∈ Th, denote its four vertices by vj for j =

1, 2, 3, 4, and assume v0 := v4 for the convenience. Also denote the edge be-

tween vj−1 and vj by ej , and the midpoint of ej by mj for j = 1, 2, 3, 4.

Denote by K̂ = [−1, 1]2 be the reference element and add the “hat” (̂ ) for the

notations for the reference vertices, edges, and midpoints of K̂ such as v̂j , êj ,

and m̂j , respectively, for j = 1, 2, 3, 4.

Set

NC
K̂,l

= Span{1, x̂1, x̂2, φ̂l(x̂1)− φ̂l(x̂2)}, l = 0, 1, 2,

where

φ̂l(t) =


t2, l = 0,

t2 − 5
3 t

4, l = 1,

t2 − 25
6 t

4 + 7
2 t

6, l = 2.

The case l = 0 defines the Rannacher–Turek elements RT (K̂) with the edge–

midpoint value DOFs or the edge–integral average DOFs. The two types of

DOFs generate different finite elements. In the meanwhile, the cases l = 1 and

l = 2 define the DSSY elements NCDSSY
K̂,l

, which fulfill the MVP (1.1), and

thus the finite elements generated by both edge–midpoint DOFs and edge–

integral average DOFs are identical to each other. Let us focus on the case

of l = 1. Clearly linear polynomials satisfy the MVP and thus we investigate

on the quartic polynomial φ̂1(x̂1)− φ̂1(x̂2). Let us denote φ̂1(x̂1)− φ̂1(x̂2) by

3



ψ̂(x̂) for convenience. On the reference domain K̂, the function ψ̂(x̂) can be

factorized as

ψ̂(x̂) = −5

3
(x̂1 − x̂2)(x̂1 + x̂2)

(
x̂21 + x̂22 −

3

5

)
. (1.2)

1.2.2 Nonparametric DSSY quadrilateral element

The nonparametric DSSY quadrilateral element is designed in [26] with re-

taining the MVP. We decompose the bilinear map FK into a composition of

an affine map and simple bilinear map [11, 17, 18]. A simple bilinear map

associated with a vector s̃ is a bilinear map S : R2 → R2 satisfying

S

(
x1
x2

)
=

(
x1
x2

)
+ x1x2 s̃, ∀

(
x1
x2

)
∈ R2.

Notice that FK can be written as follows:

FK(x̂) = Ax̂+ x̂1x̂2 d+ b = A
[
x̂+ x̂1x̂2A

−1d
]
+ b = A [x̂+ x̂1x̂2 s̃] + b,(1.3)

where A is a 2 × 2 matrix and b,d, and s̃ are two-dimensional vectors given

by

A =
1

4
(v1 − v2 − v3 + v4,v1 + v2 − v3 − v4) ,

d =
v1 − v2 + v3 − v4

4
, b =

v1 + v2 + v3 + v4

4
, s̃ = A−1d.

Then (1.3) can be understood as the following decomposition of a simple

bilinear map SK associated with s̃ followed by an affine map AK :

FK = AK ◦ SK ,

4



Figure 1.1. A bilinear map FK from K̂ to K, a simple bilinear map SK from
K̂ to K̃, and an affine map AK from K̃ to K.

where AK : K̃ → K and SK : K̂ → K̃ are given by

AK(x̃) = Ax̃+ b, SK(x̂) = x̂+ x̂ ŷ s̃.

Here K̃ = SK(K̂) is a quadrilateral with four vertices

ṽ1 = v̂1 + s̃, ṽ2 = v̂2 − s̃, ṽ3 = v̂3 + s̃, ṽ4 = v̂4 − s̃.

It should be stressed that SK is linear on each of four boundaries of K̂,

and, in particular, the midpoints of K̂ are invariant under the map SK and

that K̃ is a perturbation of K̂ by a single vector s̃ such that opposite vertices

are moved in the same direction (see Figure 1.1.)

5



Denote the equations of lines passing through ṽ1, ṽ3, and ṽ2, ṽ4 by ℓ̃1(x̃) =

0 and ℓ̃2(x̃) = 0, respectively. Then ℓ̃1(x̃) and ℓ̃2(x̃) are linear polynomials

given (up to multiplicative constants) by

ℓ̃1(x̃) = x̃1 − x̃2 − s̃1 + s̃2,

ℓ̃2(x̃) = x̃1 + x̃2 + s̃1 + s̃2.
(1.4)

On the intermediate domain K̃, the quartic polynomial µ̃ of DSSY element

can be understood as the multiple of the following factors

µ̃(x̃) = −5

3
ℓ̃1(x̃)ℓ̃2(x̃)Q̃(x̃), (1.5)

where Q̃(x̃) is a quadratic polynomial. In [26] a class of quadratic polynomials

Q̃(x̃; c̃) are chosen such that the quartic polynomial µ̃(x̃; c̃) satisfies the mean

value property (1.6) in K̃ :

1

|ẽj |

∫
ẽj

µ̃ dσ̃ = µ̃(m̃j), j = 1, 2, 3, 4. (1.6)

Indeed, they are given in the following form

Q̃(x̃; c̃) =

(
x̃1 +

2

5
s̃2

)2

+

(
x̃2 +

2

5
s̃1

)2

− r̃2

+ c̃

[
(x̃1 +

2

5
s̃2)(x̃2 +

2

5
s̃1) +

6

25
s̃1s̃2

]
,

(1.7)

with r̃ =
√
6
5

√
5
2 − s̃21 − s̃22 for arbitrary constant c̃ ∈ R. Here, we assume that

the coefficient of x̃1 is normalized. Notice that r̃ takes a positive real value if

K̃ is convex, which is equivalent to |s̃1|+ |s̃2| ≤ 1. (Remark 2.1 of [26])

6



Define, for each c̃ ∈ R,

µ̃(x̃1, x̃2; c̃) = −5

3
ℓ̃1(x̃1, x̃2)ℓ̃2(x̃1, x̃2)Q̃(x̃1, x̃2),

where ℓ̃1 and ℓ̃2 are defined by (1.4) and Q̃ by (1.7) depending on c̃ as well as

s̃. Then a class of nonparametric nonconforming elements are defined on the

intermediate quadrilaterals K̃ with four DOFs as follows:

1. K̃ = SK(K̂);

2. P̃
K̃
(c̃) = Span{1, x̃1, x̃2, µ̃(x̃1, x̃2; c̃)};

3. Σ̃
K̃

= {four edge-midpoint values of K̃} = {four mean values over edges of K̃}.

The above class of intermediate nonparametric elements is unisolvent with

c̃ in most cases.

Theorem 1.2.1. [26] The intermediate nonparametric element
(
K̃, P̃

K̃
(c̃), Σ̃

K̃

)
is unisolvent if c̃ satisfies

s̃21 + s̃22 +
1

3
+ c̃ s̃1s̃2 ̸= 0.

A class of nonparametric nonconforming elements on quadrilaterals K is

directly defined by using the affine map AK from K̃ to K. The transformed

elements also satisfy the MVP and unisolvency.

1. K = FK(K̂);

2. NCnp
K = PK(c̃) = Span{1, x1, x2, µ(x1, x2; c̃)};

3. ΣK = {four edge-midpoint values of K} = {four mean values over edges of K}.

7



Here µ(x1, x2; c̃) is a quartic polynomial defined by

µ(x1, x2; c̃) = µ̃ ◦ A−1
K (x1, x2; c̃) = −5

3
ℓ1(x1, x2)ℓ2(x1, x2)q(x1, x2; c̃),

where

ℓ1(x) = ℓ̃1 ◦ A−1
K (x), ℓ2(x) = ℓ̃2 ◦ A−1

K (x), q(x; c̃) = Q̃ ◦ A−1
K (x).

As ψ̂(x̂) in (1.2) can be regarded as a product of two lines and a circle,

µ(x; c̃) can be interpreted similarly. That is, µ(x; c̃) can be understood as a

product of two linear polynomials and one quadratic polynomial such that the

straight lines ℓ1(x) = 0 and ℓ2(x) = 0 are passing through v1, v3 and v2,

v4, respectively and q(x; c̃) = 0 is an ellipse which is determined to fulfill the

MVP for µ̃(x̃).

Finally the global nonparametric DSSY element spaces is defined as fol-

lows:

NCnp
h = {vh ∈ L2(Ω) | vh|K ∈ NCnp

K for K ∈ Th,

vh is continuous at the midpoint of each e ∈ Eh},

NCnp
h,0 = {vh ∈ NCnp

h | vh is zero at the midpoint of each e ∈ Eh ∩ ∂Ω}.

We can simply eliminate the parameter c̃ everywhere in the above finite ele-

ment construction by fixing c̃ = 0, which gives

Q̃(x̃) =

(
x̃1 +

2

5
s̃2

)2

+

(
x̃2 +

2

5
s̃1

)2

− 6

25

(
5

2
− s̃21 − s̃22

)
. (1.8)
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Recalling (1.4), we can rewrite (1.8) in terms of ℓ̃1 and ℓ̃2 as follows:

Q̃(ℓ̃1, ℓ̃2) =

[
1

2

(
ℓ̃1 + ℓ̃2 −

6

5
s̃2

)]2
+

[
1

2

(
ℓ̃2 − ℓ̃1 −

6

5
s̃1

)]2
− 6

25

(
5

2
− s̃21 − s̃22

)
=

1

2

[
l̃2 −

3

5
(s̃1 + s̃2)

]2
+

1

2

[
l̃1 +

3

5
(s̃1 − s̃2)

]2
− 6

25

(5
2
− s̃21 − s̃22

)
.

(1.9)

1.3 A new intermediate space K for nonparametric

DSSY element

In the previous section nonparametric DSSY element is developed on quadri-

laterals. Here we modify the element by adopting a new intermediate space

K with an affine map CK from K to K. The modified element also have the

MVP and its basis functions can be expressed explicitly.

1.3.1 The Meng et al. approach

We first review the approach of Meng et al. in [25] where a new reference

quadrilateral is proposed. The element takes the four integral values over four

edges as their DOFs. It does not satisfy the MVP but the basis functions are

given explicitly.

We use similar notation in the previous section. Set l1(x) and l2(x) to be

linear polynomials such that l1(x) and l2(x) are line equations passing through

v1, v3 and v2, v4, respectively. Also set

l1(v1) = 1, l1(v3) = h1 and l2(v2) = 1, l2(v4) = h2.

Since K is a convex quadrilateral, h1 and h2 satisfy h1, h2 < 0. Also we may

9



assume h1, h2 > −1 by changing the order of the vertices. Now a reference

quadrilateral K is designed to have four vertices

v1 = (1, 0),v2 = (0, 1),v3 = (h1, 0),v4 = (0, h2). (1.10)

Obviously there exists a unique affine map CK : K → K such that CK(vj) =

vj , j = 1, 2, 3, 4. Observe the following property

lj(x) = lj ◦ CK(x) = xj , j = 1, 2,

which indicates that the inverse affine map C−1
K : K → K can be written as

C−1
K (x) = (l1(x), l2(x)).

The nonconforming element
(
K,PK ,ΣK

)
are defined on the reference

quadrilaterals K as follows:

1. K = C−1
K (K) is the convex quadrilateral defined by (1.10);

2. P
MCL
K = Span{1, x1, x2, l1l2 = x1x2},

3. Σ
MCL
K = {four mean values over edges of K}.

Theorem 1.3.1. [25] The nonparametric element
(
K,P

MCL
K ,Σ

MCL
K

)
is uni-

solvent.

Proof. Denote the functions 1, x1, x2, x1x2 by ϕ1, ϕ2, ϕ3, and ϕ4, respectively.

10



Figure 1.2. An affine map CK from K to K.

Define A = (ajk) ∈M4×4(R) by ajk = 1
|ej |
∫
ej
ϕjdσ. Then

A =


1 1

2
1
2

1
6

1 1
2h1

1
2

1
6h1

1 1
2h1

1
2h2

1
6h1h2

1 1
2

1
2h2

1
6h2

 (1.11)

with det(A) = − 1
24(1−h1)2(1−h2)2. Since h1 < 0 and h2 < 0, A is nonsingular.

By computing A−1, we can explicitly present basis functions on K as fol-

lows:

ϕ1(x1, x2) = SK

(h1h2
2

− h2x1 − h1x2 + 3x1x2

)
,

ϕ2(x1, x2) = SK

(
− h2

2
+ h2x1 + x2 − 3x1x2

)
,

ϕ3(x1, x2) = SK

(1
2
− x1 − x2 + 3x1x2

)
,

ϕ4(x1, x2) = SK

(
− h1

2
+ x1 + h1x2 − 3x1x2

)
,

11



where

SK =
2

(1− h1)(1− h2)
=

1

area(K)
.

Notice that the mean value property does not hold. For example,

ϕ1(m2) = ϕ1

(h1
2
,
1

2

)
=
h1
4
> 0.

Here the quadrilateral K plays a similar role as the intermediate space K̃ in

nonparametric DSSY element. The nonconforming element (K,PK ,ΣK) on

physical domain K is defined via the affine map CK :

1. K = CK(K) is a convex quadrilateral;

2. PMCL
K = Span{1, l1, l2, l1l2} = Span{1, x1, x2, l1l2},

3. ΣMCL
K = {four mean values over edges of K}.

1.3.2 A class of nonparametric DSSY elements on K

In this section we define a class of nonparametric DSSY elements on K where

K is proposed in §1.3.1. Our strategy is to find a quartic polynomial on K

similar to (1.2), where the ansatz is

µ(x) = −5

3
ℓ1(x)ℓ2(x)Q(x) (1.12)

with linear polynomials ℓj(x), j = 1, 2, and a quadratic polynomial Q(x). Here

ℓ1(x) and ℓ2(x) are linear polynomials similar to (1.4) such that ℓ1(x) = 0

and ℓ2(x) = 0 are the line equations passing through v1, v3, and v2, v4,

respectively. They are given (up to multiplicative constants) by

ℓ1(x) = x1,

ℓ2(x) = x2.
(1.13)

12



A class of quadratic polynomials Q(x; c) are chosen such that the quartic

polynomial µ(x; c) fulfills the mean value property in K. We use the following

Gauss quadrature formula which is exact for quartic polynomials:

∫ 1

−1
f(t) dt ≈ 8

9
f(0) +

5

9
(f(ξ) + f(−ξ)), ξ =

√
3

5
.

Denote by dj :=
vj−vj−1

2 for j = 1, 2, 3, 4, assuming v0 = v4. Then the mean

value property (1.6) is simplified into the form

µ(g2j−1) + µ(g2j)− 2µ(gj) = 0, j = 1, 2, 3, 4, (1.14)

where

g1 = m1 − ξd1, g2 = m1 + ξd1,

g3 = m2 − ξd2, g4 = m2 + ξd2,

g5 = m3 − ξd3, g6 = m3 + ξd3,

g7 = m4 − ξd4, g8 = m4 + ξd4.

Observe that g2j−1, g2j and mj are the Gauss points on ej(t) for each j =

1, 2, 3, 4, since the line equations for edges ej are written in vector notation as

follows:

ej(t) = mj + tdj ,

for t ∈ [−1, 1]. Consider the quartic polynomial µ(x) in (1.12) restricted to an

edge ej(t). Notice that from (1.13) the following equations hold:

ℓ1(g2j−1) ℓ2(g2j−1) = ℓ1(g2j) ℓ2(g2j) = (1− ξ2)ℓ1(mj) ℓ2(mj). (1.15)
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By combining (1.14) and (1.15), we can see that (1.1) holds if and only if the

quadratic polynomial Q satisfies

Q(g2j−1) + Q(g2j)− 5Q(mj) = 0, j = 1, 2, 3, 4. (1.16)

The general solution of (1.16) can be found by using symbolic calculation

package. The solution is given with arbitrary constant c ∈ R:

Q(x; c) = x21 −
3

10
(1 + h1)x1 +

3

20
h1 + c

[
x22 −

3

10
(1 + h2)x2 +

3

20
h2

]
. (1.17)

Then the quartic polynomial µ is defined for each c ∈ R as follows:

µ(x1, x2; c) = −5

3
ℓ1(x1, x2)ℓ2(x1, x2)Q(x1, x2; c), (1.18)

where ℓ1 and ℓ2 are two linear polynomials defined by (1.13) and Q is quadratic

polynomial by (1.17).

Now a class of nonparametric nonconforming elements on the intermediate

quadrilaterals K with four DOFs are defined as follows.

1. K = C−1
K (K) is the convex quadrilateral defined by (1.10);

2. PK = Span{1, x1, x2, µ(x1, x2; c)},

3. ΣK = {four mean values over edges of K} = {four mean values over edges of K}.

It should be stressed that by the above construction the mean value property

holds for any element p ∈ PK :

1

|ej |

∫
ej

p dσ = p(mj), j = 1, 2, 3, 4.

Also the above class of nonparametric elements is unisolvent for most of c,

such as c > 0.
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Theorem 1.3.2. (K,PK ,ΣK) is unisolvent if c satisfies

h21 + h1 + 1 + c(h22 + h2 + 1) ̸= 0.

Proof. Denote the functions 1, x1, x2, µ(x1, x2; c) by ϕ1, ϕ2, ϕ3, and ϕ4, respec-

tively. Define A = (ajk) ∈ M4×4(R) by ajk = 1
|ej |
∫
ej
ϕjdσ. By direct calcula-

tion, we have

1

|e1|

∫
e1

xj1x
k
2 dσ =

j!k!

(j + k + 1)!
,

1

|e2|

∫
e2

xj1x
k
2 dσ =

j!k!

(j + k + 1)!
hj1,

1

|e3|

∫
e3

xj1x
k
2 dσ =

j!k!

(j + k + 1)!
hj1 h

k
2,

1

|e4|

∫
e4

xj1x
k
2 dσ =

j!k!

(j + k + 1)!
hk2.

Then

A =


1 1

2
1
2 − 1

24(c+ 1)

1 1
2h1

1
2 − 1

24h1(h
2
1 + c)

1 1
2h1

1
2h2 − 1

24h1h2(h
2
1 + ch22)

1 1
2

1
2h2 − 1

24h2(ch
2
2 + 1)

 (1.19)

with det(A) = 1
96(1− h1)

2(1− h2)
2
(
h21 + h1 + 1 + c (h22 + h2 + 1)

)
. Thus A is

nonsingular if and only if h21 + h1 + 1 + c (h22 + h2 + 1) ̸= 0.

The affine map CK : K → K induces a class of nonparametric noncon-

forming elements on quadrilaterals K, denoted by (K,NCK ,ΣK), which also

satisfy the MVP and unisolvency.

1. K = CK(K);

2. NCK = PK(c) = Span{1, x1, x2, µ(x1, x2; c)};

3. ΣK = {four edge-midpoint values of K} = {four mean values over edges of K}.
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Here µ(x1, x2; c) is a quartic polynomial defined by

µ(x1, x2; c) = µ ◦ C−1
K (x1, x2; c) = −5

3
ℓ1(x1, x2)ℓ2(x1, x2)q(x1, x2; c),

where

ℓ1(x) = ℓ2 ◦ C−1
K (x), ℓ2(x) = ℓ1 ◦ C−1

K (x), q(x; c) = Q ◦ C−1
K (x).

We may choose c = 1 to have symmetry in (1.17), with which (1.17) reads as

follows:

Q(x) =
(
x1 −

3

20
(1 + h1)

)2
+
(
x2 −

3

20
(1 + h2)

)2
+

3

20
h1 −

9

400
(1 + h1)

2 +
3

20
h2 −

9

400
(1 + h2)

2.

(1.20)

Remark 1.3.3. We may consider rectangular elements for simple case. Then

the basis functions of K = [hx
2 ,

hx
2 ]× [−hy

2 ,
hy

2 ] are given explicitly as follows:

ϕ1(x) =
1

4
+

1

2
ℓ1(x)−

1

2
ℓ2(x) +

6

c+ 1
µ(x),

ϕ2(x) =
1

4
+

1

2
ℓ1(x) +

1

2
ℓ2(x)−

6

c+ 1
µ(x),

ϕ3(x) =
1

4
− 1

2
ℓ1(x) +

1

2
ℓ2(x) +

6

c+ 1
µ(x),

ϕ4(x) =
1

4
− 1

2
ℓ1(x)−

1

2
ℓ2(x)−

6

c+ 1
µ(x),

where ℓ1(x) =
1
hx
x+ 1

hy
y, ℓ2(x) = − 1

hx
x+ 1

hy
y.

In the end, the global nonconforming element spaces is defined by

NCh = {vh ∈ L2(Ω) | vh|K ∈ NCK for K ∈ Th,

vh is continuous at the midpoint of each e ∈ Eh},

NCh,0 = {vh ∈ NCh | vh is zero at the midpoint of each e ∈ Eh ∩ ∂Ω}.
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1.4 Construction of quadrature formula

1.4.1 Effect of numerical integration on FEM

Consider the following elliptic boundary problem
−∇ · (κ(x)∇u) = f in Ω,

u = 0 on ∂Ω,
(1.21)

where Ω is a simply connected polygonal domain in R2, and κ =
(
κij(x)

)
is a symmetric matrix with smooth functions κij(x). We assume that κ is

uniformly elliptic on Ω so that there is a constant λ > 0 such that

2∑
i,j=1

κijξiξj ≥ λ|ξ|2.

For any open subset U of Rn, denote the seminorm and norm of the Sobolev

space W k,p(U) by | · |k,p,U and || · ||k,p,U , respectively. Also denote by Hk(U) =

W k,2(U) and abbreviate | · |k,p,U and || · ||k,p,U as | · |k,U and || · ||k,U . The
variational form of (1.21) is given by finding u ∈ H1

0 (Ω) such that

a(u, v) = F (v), v ∈ H1
0 (Ω) (1.22)

where a(u, v) =
∫
Ω κ∇u · ∇ v dx and F (v) =

∫
Ω fv dx. Consider the noncon-

forming finite element space NCh made up by (K,PK ,ΣK) in §1.3.2. Then the

finite element approximation uh ∈ NCh,0 of (1.22) is defined as the solution

of discrete problem

ah(uh, vh) = Fh(vh), vh ∈ NCh,0, (1.23)
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where ah(u, v) =
∑

K∈Th
∫
K κ∇u · ∇ v dx and Fh(v) =

∑
K∈Th

∫
K fv dx. The

energy error estimate for nonconforming method is provided in [7] using the

broken energy norm

||v||1,h =
√
ah(v, v).

Theorem 1.4.1. [7] Assume that u and uh are the solutions of (1.22) and

(1.23), respectively. Then we have the following error estimate

||u− uh||1,h ≤ Ch||u||2,Ω. (1.24)

In actual computation we need to calculate definite integrals in ah(u, v) and

f(v). Gaussian quadrature rules are frequently used, but we want to construct

more efficient quadrature formula while the order of convergence is unchanged

by numerical integration. There are many papers [27, 28, 29] studying the effect

of numerical integration on finite element method. In [27], sufficient conditions

for quadrature formula are provided to preserve the order of convergence,

where the finite element space consists of Pk(K), piecewise polynomials of

degree ≤ k. If the formula is exact for P2k−2(K), then the optimal order of

convergence O(hk) is obtained for the energy norm error.

We want to find such conditions based on NCh. Notice that our noncon-

forming elements on K are constructed via the affine map CK from the refer-

ence element K onto K. Thus it is natural to construct quadrature formula

on K, which is defined with positive weights ωl and nodes bl, by

∫
K
ϕ(x)dx ≈

L∑
l=1

ωl ϕ(bl). (1.25)
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Denote the Jacobian determinant of CK by det(DCK), and observe that

∫
K
ϕ(x)dx = | det(DCK)|

∫
K
ϕ(x)dx.

It induces the quadrature formulae on K from (1.25), which is given by

∫
K
ϕ(x)dx ≈

L∑
l=1

ωl,K ϕ(bl,K), (1.26)

where ωl,K = | det(DCK)|ωl and bl,K = CK(bl). Suppose that the discrete

problem (1.23) is approximated by the above quadrature formulae. Then the

numerical solution uh is defined as the solution of approximate problem

ah(uh, vh) = F h(vh), vh ∈ NCh,0, (1.27)

where

ah(u, v) =
∑
K∈Th

ωl,K

(
κ∇u · ∇ v

)
(bl,K),

F h(v) =
∑
K∈Th

ωl,K

(
fv
)
(bl,K).

(1.28)

We define the quadrature error functionals to estimate the effect of numerical

integration, by

E(ϕ) =

∫
K
ϕ(x) dx−

L∑
l=1

ωl ϕ(bl),

EK(ϕ) =

∫
K
ϕ(x) dx−

L∑
l=1

ωl,K ϕ(bl,K).

(1.29)
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Notice that two error functionals are related by the equation

EK(ϕ) = | det(DCK)|E(ϕ).

The following lemma is essential for the argument.

Lemma 1.4.2. [27](Bramble-Hilbert lemma) Let Ω ⊂ Rn be a domain with a

Lipschitz continuous boundary. Suppose that L is a continuous linear mapping

on W k+1,p(Ω) for some integer k ≥ 0 and p ∈ R+. If

L(p) = 0 ∀p ∈ Pk(Ω), (1.30)

then there exists a constant C(Ω) such that

|L(v)| ≤ C(Ω)
∣∣∣∣L∣∣∣∣ |v|k+1,p,Ω. (1.31)

Now we are ready to estimate the effect of numerical integration. First

we prove uniform ellipticity of the approximate bilinear form ah. Denote the

space consist of partial derivatives of functions in PK by ∇PK :

∇PK := Span
{ ∂ū
∂xj

∣∣∣ u ∈ PK , j = 1, 2
}
.

Theorem 1.4.3. Assume that at least one of following conditions are satisfied:

1. E(ϕ) = 0 for any ϕ ∈
{
∇u · ∇ v

∣∣ u, v ∈ PK

}
,

2.
⋃L

l=1{bl} contains a ∇PK unisolvent subset.

Then there exists a constant λ > 0 such that

ah(v, v) ≥ λ||v||21,Ω, ∀v ∈ NCh. (1.32)
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Proof. Let vK := v|K ∈ PK and vK := vK ◦ CK ∈ PK for arbitrary v ∈ NCh.

By applying the chain rule to DvK , we have

||DvK(bl)|| ≤ ||DCK || ||DvK(bl,K)||.

Since Th is a shape regular triangulations of Ω, there is a constant C such that

||DCK || ||DC−1
K || ≤ C.

From the scaling argument, we have

|vK |1,K ≤ C||DC−1
K ||−1

∣∣det(DC−1
K )
∣∣1/2|vK |1,K .

First assume that the quadrature formula (1.25) is exact for |∇ v|2. It follows
that

L∑
l=1

ωl|∇ vK(bl)|2 =
∫
K

∣∣∇ vK
∣∣2dx = |vK |2

1,K
≤ C||vK ||2

1,K
.

Now assume that
⋃L

l=1{bl} contains a ∇PK unisolvent subset. Then for any

vK ∈ PK ,

L∑
l=1

ωl|∇ vK(bl)|2 =
L∑
l=1

ωl

2∑
j=1

∂vK
∂xj

(bl) = 0

⇒ ∂vK
∂xj

(bl) = 0, j = 1, 2, 1 ≤ l ≤ L

⇒ ∂vK
∂xj

= 0.

Therefore the mapping

vK 7→
( L∑

l=1

ωl|∇ vK(bl)|2
)1/2
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defines a norm over the quotient space PK/P0(K). Since the mapping vK 7→
|vK |1,K also defines a norm over PK/P0(K), there exists a constant C > 0

such that
L∑
l=1

ωl|∇ vK(bl)|2 ≤ C||vK ||2
1,K

.

That is, it leads to the same conclusion when we assume the exactness of

quadrature formula. From the uniform ellipticity of κ, we get

L∑
l=1

ωl,K

(
κ∇ vK · ∇ vK

)
(bl,K) ≥ C

L∑
l=1

ωl,K |∇ vK(bl,K)|2

≥ C||DCK ||−2
L∑
l=1

ωl,K |∇ vK(bl)|2

= C|det(DCK)| ||DCK ||−2
L∑
l=1

ωl|∇ vK(bl)|2

= C|det(DCK)| ||DCK ||−2||vK ||2
1,K

≥ C(||DCK || ||DC−1
K ||)−2||vK ||21,K

≥ C||vK ||21,K ,

where C is a generic constant. By combining above results, we conclude that

ah(v, v) =
∑
K∈Th

L∑
l=1

ωl,K

(
κ∇ vK · ∇ vK

)
(bl,K)

≥ λ
∑
K∈Th

||vK ||21,K = λ||v||21,Ω.

The following theorem estimates the effect of quadrature formulae on the

approximate bilinear form ah.

Theorem 1.4.4. Suppose that E(ϕ) = 0 for any ϕ ∈ ∇PK . Then there exists
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a constant C such that

∀κ ∈W 1,∞(K), ∀u, v ∈ PK ,∣∣EK(κ∇u · ∇ v)
∣∣ ≤ ChK ||κ||1,∞,K |∇u|0,K |∇ v|0,K

≤ ChK ||κ||1,∞,K ||u||1,K ||v||1,K ,

(1.33)

where hK denotes the diameter of K.

Proof. First we fix ϕ ∈ ∇PK and estimate E(ψ ϕ) for arbitrary ψ ∈W 1,∞(K).

Since W 1,∞(K) ⊂ C0(K) and all norms are equivalent in finite dimensional

vector spaces, we have

∣∣E(ψ ϕ)
∣∣ = ∣∣∣ ∫

K
ψ ϕdx−

L∑
l=1

wl

(
ψ ϕ
)
(bl)

∣∣∣
≤ C|ψ ϕ|0,∞,K ≤ C|ψ|0,∞,K |ϕ|0,∞,K

≤ C||ψ||1,∞,K |ϕ|0,∞,K ≤ C||ψ||1,∞,K |ϕ|0,K .

Thus the linear mapping

ψ ∈W 1,∞(K) 7→ E(ψ ϕ)

is continuous with norm less than C|ϕ|0,K . Notice that the above mapping

vanishes on P0(K) by assumption. By Lemma 1.4.2, there is a constant C

such that

∣∣∣E(ψ ϕ)
∣∣∣ ≤ C|ψ|1,∞,K |ϕ|0,K , ∀ψ ∈W 1,∞(K), ∀ϕ ∈ ∇PK .

Next we set ψ = κχ for κ ∈W 1,∞(K) and χ ∈ ∇P (K). Then we have

|ψ|1,∞,K = |κχ|1,∞,K ≤ C|κ|1,∞,K |χ|0,∞,K ≤ C|κ|1,∞,K |χ|0,K .
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Combining above results, we get

∣∣∣E(κχϕ)
∣∣∣ ≤ C|κ|1,∞,K |χ|0,K |ϕ|0,K .

From the inequalities

|κ|1,∞,K ≤ ChK |κ|1,∞,K ,

|χ|0,K ≤ C
∣∣ det(DCK)

∣∣−1/2|χ|0,K ,

|ϕ|0,K ≤ C
∣∣det(DCK)

∣∣−1/2|ϕ|0,K ,

we obtain

∣∣∣E(κχϕ)
∣∣∣ = |det(DCK)|

∣∣∣E(κχϕ)
∣∣∣

≤ ChK |κ|1,∞,K |χ|0,K |ϕ|0,K .

Finally set χ = ∇u and ϕ = ∇ v to get the conclusion.

Now we estimate the effect of numerical integration on the right hand side

linear functional F h.

Theorem 1.4.5. Suppose that E(ϕ) = 0 for any ϕ ∈ P0(K). Then for arbi-

trary f ∈W 1,∞(Ω) and ϕ ∈ PK , there exists a constant C such that

∣∣EK(fϕ)
∣∣ ≤ ChK

(
area(K)

)1/2||f ||1,∞,K ||ϕ||1,K , (1.34)

where hK denotes the diameter of K.

Proof. Since W 1,∞(K) ⊂ C0(K), we have for arbitrary ϕ ∈ PK that

∣∣E(ϕ)
∣∣ ≤ C|ϕ|0,∞,K ≤ C||ϕ||1,∞,K .
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We apply Lemma 1.4.2 to the linear mapping

ϕ ∈W 1,∞(K) 7→ E(ϕ),

which is continuous with norm less than C, and vanishes on P0(K) by assump-

tion. Then there is a constant C such that

∣∣E(ϕ)
∣∣ ≤ C|ϕ|1,∞,K . (1.35)

By generalized Leibniz formula, we have for arbitrary f ∈W 1,∞(K) that

∣∣f ϕ∣∣ ≤ C
(
|f |1,∞,K |ϕ|0,∞,K + |f |0,∞,K |ϕ|1,∞,K

)
.

Observe the following inequalities with j = 0, 1:

|f |1−j,∞,K ≤ Ch1−j
K |f |1−j,∞,K ,

|ϕ|j,K ≤ ChjK
∣∣ det(DCK)

∣∣−1/2|ϕ|j,K .

Then by (1.35), we conclude that

|E(fϕ)| = |det(DCK)|
∣∣E(f ϕ)

∣∣
≤ ChK

∣∣ det(DCK)
∣∣1/2(|f |1,∞,K |ϕ|0,∞,K + |f |0,∞,K |ϕ|1,∞,K

)
≤ ChK

(
area(K)

)1/2||f ||1,∞,K ||ϕ||1,K .

Finally we estimate the effect of numerical integration by combining the

above theorems.
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Theorem 1.4.6. Let u and uh are the solutions of (1.22) and (1.27), respec-

tively. Assume that ah is uniformly elliptic and E(ϕ) = 0 for any ϕ ∈ ∇PK .

Then we have the following error estimate

||u− uh||1,Ω ≤ Ch
(
||κ||1,∞,Ω ||u||2,Ω + ||f ||1,∞,Ω

)
. (1.36)

Proof. We exploit the uniform ellipticity of ah. Let uh be the solutions of

(1.23). Then we have for arbitrary vh ∈ NCh, that

λ||uh − vh||21,Ω ≤ ah(uh − vh, uh − vh)

= ah(uh − vh, uh − vh) + ah(uh − uh, uh − vh)

= ah(uh − vh, uh − vh) +
(
F h(uh − vh)− ah(uh, uh − vh)

)
± ah(uh, uh − vh)

= ah(uh − vh, uh − vh) +
(
ah(uh, uh − vh)− ah(uh, uh − vh)

)
+
(
F h(uh − vh)− Fh(uh − vh)

)
.

Denote by wh := uh − vh. It follows that

λ||uh − vh||1,Ω ≤ C||uh − vh||1,Ω +
|ah(uh, uh − vh)− ah(uh, uh − vh)|

||uh − vh||1,Ω

+
|Fh(uh − vh)− F h(uh − vh)|

||uh − vh||1,Ω
≤ C inf

vh∈NCh
||uh − vh||1,Ω

+ sup
wh∈NCh

( |ah(uh, wh)− ah(uh, wh)|
||wh||1,Ω

+
|F h(wh)− Fh(wh)|

||wh||1,Ω

)
.

If we take vh = uh, the above inequality is simplified to

||uh − uh||1,Ω ≤ 1

λ
sup

wh∈NCh

( |ah(uh, wh)− ah(uh, wh)|
||wh||1,Ω

+
|F h(wh)− Fh(wh)|

||wh||1,Ω

)
.
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It remains to estimate two consistency error terms. First,

|ah(uh, wh)− ah(uh, wh)| ≤
∑
K∈Th

∣∣EK(κ∇uh · ∇wh)
∣∣

≤
∑
K∈Th

hK ||κ||1,∞,K ||uh||1,K ||wh||1,K

≤ Ch||κ||1,∞,Ω ||uh||1,Ω ||wh||1,Ω

≤ Ch||κ||1,∞,Ω ||u||2,Ω ||wh||1,Ω.

In the last inequality, we use

||uh||1,Ω ≤ ||u||1,Ω + ||u− uh||1,Ω

≤ ||u||1,Ω + Ch||u||2,Ω ≤ C||u||2,Ω.

Second,

|F h(wh)− Fh(wh)| ≤
∑
K∈Th

∣∣EK(fwh)
∣∣

≤ C
∑
K∈Th

hK
(
area(K)

)1/2||f ||1,∞,K ||wh||1,K

≤ Ch
(
area(Ω)

)1/2||f ||1,∞,Ω ||wh||1,Ω.

The theorem follows by combining above two results with triangle inequality.

That is,

||u− uh||1,Ω ≤ ||u− uh||1,Ω + ||uh − uh||1,Ω

≤ Ch||u||2,Ω + Ch
(
||κ||1,∞,Ω ||u||2,Ω +

(
area(Ω)

)1/2||f ||1,∞,Ω

)
≤ Ch

(
||κ||1,∞,Ω ||u||2,Ω + ||f ||1,∞,Ω

)
.
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1.4.2 Quadrature formula on K

Now we turn to develop a quadrature formulae on K, which is defined as

∫
K
ϕ(x) dx ≈

L∑
l=1

ωl ϕ(bl), (1.37)

where ωl and bl, l = 1, · · · , L, are positive weights and nodes, respectively. In

[25], the basis functions are at most of degree two so that quadrature formula

of degree two are found. However our element has high-order degree basis to

fulfill the MVP, we require another quadrature formula.

Observe that K is a right-angled triangle in each quadrant. It makes us

easy to compute integrals of polynomials on K exactly. Denote the triangle in

j-th quadrant by T j for j = 1, 2, 3, 4. Following results are obtained by direct

computation with applying integration by parts repeatedly.

∫
T 1

xi1x
j
2 dx =

i!j!

(2 + i+ j)!
,∫

T 2

xi1x
j
2 dx = − i!j!

(2 + i+ j)!
hi+1
1 ,∫

T 3

xi1x
j
2 dx =

i!j!

(2 + i+ j)!
hi+1
1 hj+1

2 ,∫
T 4

xi1x
j
2 dx = − i!j!

(2 + i+ j)!
hj+1
2 .

Then we get

∫
K
xi1x

j
2 dx =

4∑
k=1

∫
Tk

xi1x
j
2 dx

=
i!j!

(2 + i+ j)!
(1− hi+1

1 )(1− hj+1
2 ).
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To preserve the order of convergence, we may find the quadrature formula

exact for functions in ∇PK , where the space ∇PK of dimension three is

defined as

∇PK : = Span
{ ∂u
∂xj

∣∣∣ u ∈ PK , j = 1, 2
}

= Span
{
1,
∂u

∂x1
,
∂u

∂x2

}
.

Also we may seek the formula where the set of quadrature nodes
⋃L

l=1{bl}
contains a ∇PK unisolvent subset. Here we find three-point quadrature for-

mula where the nodes are symmetric with respect to the barycenter R of K,

which is given by

R =
(1 + h1

3
,
1 + h2

3

)
.

We further impose following assumptions to reduce computational burden and

get explicit quadrature formula:

1. The nodes are given as

b1 = R+ (s, t), b2 = R, b3 = R− (s, t).

2. The weights are equal to w = area(K)
3 .

Then it reduces to find (s, t) which satisfy

3∑
l=1

∂u

∂xj

(
bl

)
= Ij for j = 1, 2,

where

I1 = −(1 + h2)(h
2
1 + h22 + h1 + 2)

4
and I2 = −(1 + h1)(h

2
1 + h22 + h2 + 2)

4
.
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A use of symbolic package gives the formula for arbitrary quadrilateral mesh

(Figure 1.4) such that t is the root of a1z
4 + a2z

2 + a3 = 0, where

a1 = 17781120h41 + 71124480h31 + (−34477488h22 − 68954976h2 + 72209232)h21

+ (−68954976h22 − 137909952h2 + 2169504)h1

+ 17781120h42 + 71124480h32 + 72209232h22 + 2169504h2 + 1084752,

a2 = −1234800h61 − 3408048h51 + (923112h22 + 4513392h2 − 1595880)h41

+ (−3103776h22 + 4461120h2 − 3795264)h31

+ (1767240h42 − 841176h32 − 13270608h22 − 945720h2 − 8805528)h21

+ (7344720h42 + 13558608h32 + 9324000h22 + 18019728h2 + 832896)h1

− 1764000h62 − 4868640h52 − 1831320h42 − 1829016h32

− 7892280h22 − 1196424h2 − 308448,

a3 = (h1 + 1)2 (h2 + 1)2 (229h21 − 145h22 + 26h1 − 263h2 + 84)2,

and s is given by

s =
(h1 + 1)(h2 + 1)(1836 t2 − 229h21 + 145h22 − 26h1 + 263h2 − 84)

504 t (7h21 − 10h22 + 14h1 − 20h2 − 3)
.

We report some numerical values of w, s, t for uniform trapezoidal mesh

with parameter θ (Figure 1.3) in Table 1.1 for simple use.
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θ w s t

0 0.6666666667 α α

0.2 0.4629629632 0.2888473372 0.2888473372

0.4 0.3401360547 0.2450221177 0.2450221177

0.6 0.2604166667 0.2106058842 0.2106058842

0.8 0.2057613168 0.1823862558 0.1823862558

Table 1.1. Quadrature formula for trapezoidal meshes with parameter θ. We
have s = t for these meshes since h1 = h2. For the rectangular mesh case
(θ = 0), any nodes (α, α) ∈ K can be chosen.

(1− θ)h

h

(1 + θ)h

Figure 1.3. An uniform trapezoidal mesh with parameter θ.
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Figure 1.4. A nonuniform quadrilateral mesh.

1.5 Numerical results

Example 1.5.1. [25] Consider the following elliptic problem:
−∆u = f in Ω,

u = 0 on ∂Ω,
(1.38)

where Ω = (0, 1)2, and the source term f is generated by the exact solution

u(x1, x2) = sin(2πx1) sin(2πx2)
(
x31 − x42 + x21x

3
2

)
.

We use 4 × 4 Gauss formula and the proposed formula to compute the
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components of corresponding linear system. Error behaviors for uniform trape-

zoidal mesh with various θ are reported in the below tables, which show the

optimal convergence rates for both quadrature formula. Notice that the errors

become larger when we use more perturbed meshes with larger θ. We also

observe the optimal convergence rate for a nonuniform quadrilateral mesh in

Table 1.7.

1
h

4× 4 Gauss formula Our formula

||u− uh||1,Ω ratio ||u− uh||0,Ω ratio ||u− uh||1,Ω ratio ||u− uh||0,Ω ratio

16 0.380 0.444E-02 0.433 0.455E-02

32 0.191 0.99 0.111E-02 1.99 0.216 1.00 0.114E-02 2.00

64 0.954E-01 1.00 0.278E-03 2.00 0.108 1.00 0.285E-03 2.00

128 0.477E-01 1.00 0.696E-04 2.00 0.541E-01 1.00 0.713E-04 2.00

256 0.239E-01 1.00 0.174E-04 2.00 0.271E-01 1.00 0.178E-04 2.00

Table 1.2. Results of Example 1.5.1 for uniform trapezoidal mesh of θ = 0.

1
h

4× 4 Gauss formula Our formula

||u− uh||1,Ω ratio ||u− uh||0,Ω ratio ||u− uh||1,Ω ratio ||u− uh||0,Ω ratio

16 0.393 0.496E-02 0.457 0.483E-02

32 0.198 0.99 0.126E-02 1.98 0.229 1.00 0.122E-02 1.98

64 0.995E-01 1.00 0.317E-03 1.99 0.115 1.00 0.308E-03 1.99

128 0.498E-01 1.00 0.798E-04 1.99 0.572E-01 1.00 0.772E-04 2.00

256 0.249E-01 1.00 0.200E-04 2.00 0.286E-01 1.00 0.193E-04 2.00

Table 1.3. Results of Example 1.5.1 for uniform trapezoidal mesh of θ = 0.2.
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1
h

4× 4 Gauss formula Our formula

||u− uh||1,Ω ratio ||u− uh||0,Ω ratio ||u− uh||1,Ω ratio ||u− uh||0,Ω ratio

16 0.426 0.619E-02 0.433 0.637E-02

32 0.216 0.98 0.160E-02 1.95 0.219 0.99 0.164E-02 1.95

64 0.109 0.99 0.412E-03 1.96 0.110 1.00 0.419E-03 1.97

128 0.549E-01 0.99 0.105E-03 1.98 0.549E-01 1.00 0.106E-03 1.98

256 0.275E-01 1.00 0.264E-04 1.99 0.275E-01 1.00 0.267E-04 1.99

Table 1.4. Results of Example 1.5.1 for uniform trapezoidal mesh of θ = 0.4.

1
h

4× 4 Gauss formula Our formula

||u− uh||1,Ω ratio ||u− uh||0,Ω ratio ||u− uh||1,Ω ratio ||u− uh||0,Ω ratio

16 0.472 0.795E-02 0.476 0.822E-02

32 0.242 0.96 0.211E-02 1.92 0.243 0.97 0.216E-02 1.93

64 0.123 0.98 0.551E-03 1.93 0.123 0.99 0.559E-03 1.95

128 0.618E-01 0.99 0.142E-03 1.96 0.616E-01 0.99 0.143E-03 1.97

256 0.310E-01 1.00 0.359E-04 1.98 0.309E-01 1.00 0.361E-04 1.98

Table 1.5. Results of Example 1.5.1 for uniform trapezoidal mesh of θ = 0.6.
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1
h

4× 4 Gauss formula Our formula

||u− uh||1,Ω ratio ||u− uh||0,Ω ratio ||u− uh||1,Ω ratio ||u− uh||0,Ω ratio

16 0.528 0.102E-01 0.532 0.106E-01

32 0.273 0.95 0.277E-02 1.88 0.274 0.96 0.282E-02 1.91

64 0.139 0.97 0.740E-03 1.90 0.139 0.98 0.744E-03 1.92

128 0.704E-01 0.99 0.192E-03 1.94 0.702E-01 0.99 0.192E-03 1.95

256 0.353E-01 0.99 0.491E-04 1.97 0.352E-01 1.00 0.489E-04 1.98

Table 1.6. Results of Example 1.5.1 for uniform trapezoidal mesh of θ = 0.8.

1
h

4× 4 Gauss formula Our formula

||u− uh||1,Ω ratio ||u− uh||0,Ω ratio ||u− uh||1,Ω ratio ||u− uh||0,Ω ratio

16 0.383 0.460E-02 1.42 0.961E-02

32 0.193 0.99 0.116E-02 1.98 0.677 1.07 0.215E-02 2.16

64 0.966E-01 1.00 0.290E-03 2.00 0.363 0.90 0.597E-03 1.85

128 0.483E-01 1.00 0.726E-04 2.00 0.184 0.99 0.151E-03 1.98

256 0.242E-01 1.00 0.181E-04 2.00 0.921E-01 0.99 0.379E-04 2.00

Table 1.7. Results of Example 1.5.1 for nonuniform quadrilateral mesh.

Example 1.5.2. Consider the following elliptic problem:
−∇ ·

(
κ(x)∇u

)
= f in Ω,

u = 0 on ∂Ω,
(1.39)

where Ω = (0, 1)2 and κ(x) = 1 + (1 + x1)(1 + x2) + ϵ sin(10πx1) sin(5πx2).

The source term f is generated by the exact solution

u(x1, x2) = sin(3πx1)x2(1− x2) + ϵ sin(πx1/ϵ) sin(πx2/ϵ).
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In this example, the heterogeneous coefficient κ is considered. We only

report the result of ϵ = 0.2 case since we have similar error behaviors for other

ϵ values. Optimal convergence rates is observed for both quadrature formula.

1
h

4× 4 Gauss formula Our formula

||u− uh||1,Ω ratio ||u− uh||0,Ω ratio ||u− uh||1,Ω ratio ||u− uh||0,Ω ratio

16 0.899 0.987E-02 0.931 0.122E-01

32 0.455 0.98 0.247E-02 2.00 0.465 1.00 0.309E-02 1.98

64 0.228 1.00 0.619E-03 2.00 0.233 1.00 0.775E-03 1.99

128 0.114 1.00 0.155E-03 2.00 0.116 1.00 0.194E-03 2.00

256 0.571E-01 1.00 0.387E-04 2.00 0.581E-01 1.00 0.485E-04 2.00

Table 1.8. Results of Example 1.5.2 for uniform trapezoidal mesh of θ = 0.

1
h

4× 4 Gauss formula Our formula

||u− uh||1,Ω ratio ||u− uh||0,Ω ratio ||u− uh||1,Ω ratio ||u− uh||0,Ω ratio

16 0.924 0.112E-01 0.968 0.121E-01

32 0.470 0.97 0.288E-02 1.95 0.491 0.98 0.307E-02 1.98

64 0.237 0.99 0.732E-03 1.98 0.246 0.99 0.770E-03 1.99

128 0.118 1.00 0.184E-03 1.99 0.123 1.00 0.193E-03 2.00

256 0.593E-01 1.00 0.462E-04 2.00 0.617E-01 1.00 0.482E-04 2.00

Table 1.9. Results of Example 1.5.2 for uniform trapezoidal mesh of θ = 0.2.
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1
h

4× 4 Gauss formula Our formula

||u− uh||1,Ω ratio ||u− uh||0,Ω ratio ||u− uh||1,Ω ratio ||u− uh||0,Ω ratio

16 0.978 0.141E-01 0.996 0.154E-01

32 0.506 0.95 0.381E-02 1.89 0.511 0.96 0.400E-02 1.94

64 0.256 0.98 0.986E-03 1.95 0.257 0.99 0.102E-02 1.97

128 0.129 0.99 0.250E-03 1.98 0.129 1.00 0.256E-03 1.99

256 0.644E-01 1.00 0.630E-04 1.99 0.644E-01 1.00 0.643E-04 2.00

Table 1.10. Results of Example 1.5.2 for uniform trapezoidal mesh of θ = 0.4.

1
h

4× 4 Gauss formula Our formula

||u− uh||1,Ω ratio ||u− uh||0,Ω ratio ||u− uh||1,Ω ratio ||u− uh||0,Ω ratio

16 1.05 0.179E-01 1.06 0.200E-01

32 0.550 0.93 0.498E-02 1.85 0.552 0.94 0.520E-02 1.94

64 0.281 0.97 0.129E-02 1.95 0.281 0.98 0.132E-02 1.97

128 0.141 0.99 0.329E-03 1.97 0.141 0.99 0.334E-03 1.99

256 0.709E-01 1.00 0.830E-04 1.99 0.706E-01 1.00 0.839E-04 1.99

Table 1.11. Results of Example 1.5.2 for uniform trapezoidal mesh of θ = 0.6.
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1
h

4× 4 Gauss formula Our formula

||u− uh||1,Ω ratio ||u− uh||0,Ω ratio ||u− uh||1,Ω ratio ||u− uh||0,Ω ratio

16 1.13 0.223E-01 1.15 0.256E-01

32 0.599 0.91 0.633E-02 1.82 0.601 0.93 0.662E-02 1.95

64 0.307 0.97 0.164E-02 1.95 0.306 0.97 0.167E-02 1.99

128 0.155 0.99 0.415E-03 1.98 0.154 0.99 0.420E-03 1.99

256 0.776E-01 1.00 0.105E-03 1.99 0.774E-01 1.00 0.105E-03 1.99

Table 1.12. Results of Example 1.5.2 for uniform trapezoidal mesh of θ = 0.8.

1
h

4× 4 Gauss formula Our formula

||u− uh||1,Ω ratio ||u− uh||0,Ω ratio ||u− uh||1,Ω ratio ||u− uh||0,Ω ratio

16 0.906 0.102E-01 1.58 0.223E-01

32 0.461 0.98 0.259E-02 1.98 0.756 1.06 0.463E-02 2.27

64 0.231 1.00 0.645E-03 2.00 0.377 1.00 0.843E-03 2.46

128 0.115 1.00 0.161E-03 2.00 0.190 0.99 0.209E-03 2.01

256 0.578E-01 1.00 0.404E-04 2.00 0.956E-01 0.99 0.513E-04 2.03

Table 1.13. Results of Example 1.5.2 for nonuniform quadrilateral mesh.
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Chapter 2

Nonconforming Generalized

Multiscale Finite Element

Method

2.1 Introduction

Many real-world problems in science and engineering are modeled with highly

heterogeneous coefficients, which are of essentially multiscale nature. Applica-

tions include quantum mechanical modeling, groundwater transport, oil reser-

voir simulation, integrated computational materials engineering, climate mod-

eling, multiscale decision making, and so on. Since fine-resolution discretiza-

tion is required to capture the high-contrast, it is extremely expensive to solve

problems without introducing any model reduction technique. During the last

decades many multiscale methods have been actively developed such as mul-

tiscale finite element methods [32, 33, 36, 37, 38], heterogeneous multiscale
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methods [30, 31], and multiscale hybridizable discontinuous Galerkin meth-

ods [34, 35]. All such methods use at least two-scale (micro, macro) grids and

build multiscale basis functions by solving local harmonic problems in each

macro block. First, one constructs local snapshot spaces which capture the

microscale heterogeneity of coefficients. Then dimension reduction techniques

are applied to build so-called offline spaces, which are used as the multiscale

basis functions. Moment spaces also need to be considered in order to impose

continuity between local offline spaces.

This chapter is organized as follows. In section 2, we review a framework of

nonconforming generalized multiscale finite element methods. Then the pro-

cess for constructing multiscale finite element spaces is presented in section

3. We present an energy norm error estimate in section 4. In section 5, some

numerical results are provided.

2.2 Framework of nonconforming generalized multi-

scale finite element methods

In this section we briefly review a framework of generalized multiscale finite

element method(GMsFEM) using nonconforming element, following [38]. We

only consider two-dimensional elliptic boundary problems here, but the frame-

work can be extended to higher dimensional cases and used for other multiscale

problems.

2.2.1 Preliminaries

Let U be any open subset of R2. We denote the seminorm, norm, and inner

product of the Sobolev space Hk(U) by |·|k,U , ||·||k,U , and (·, ·)k,U respectively.

For the space H0(U) = L2(U), we abbreviate (·, ·)k,U as (·, ·)U . Now for given
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f ∈ H−1(Ω), consider the following elliptic boundary problem
−∇ ·

(
κ(x)∇u

)
= f in Ω,

u = 0 on ∂Ω,
(2.1)

where Ω is a simply connected polygonal domain in R2, and κ is a highly

heterogeneous coefficient. The weak formulation of (2.1) is to seek u ∈ H1
0 (Ω)

such that

a(u, v) = F (v), v ∈ H1
0 (Ω) (2.2)

where a(u, v) =
∫
Ω κ∇u · ∇ v dx and F (v) =

∫
Ω fv dx. Let Th :=

⋃Nh
j=1{Tj} be

a family of shape regular triangulations of Ω and Vh be a finite element basis

function space based on Th. The mesh parameter h is given by

h = max
j=1,··· ,Nh

diam(Tj).

Let Vh,0 be the set of all elements in Vh, whose DOFs related to the boundary

∂Ω vanish. Then the finite element approximation of (2.2) is defined as the

solution uh ∈ Vh,0 of the discrete problem

ah(uh, vh) = Fh(vh), vh ∈ Vh,0, (2.3)

where ah(u, v) =
∑

Tj∈Th
∫
Tj
κ∇u · ∇ v dx and Fh(v) =

∑
Tj∈Th

∫
Tj
fv dx. In

GMsFEM, we also need to have another shape regular triangulations T H :=⋃NH

J=1{T J} of Ω. We suppose that every T J ∈ T H consists of a connected

union of Tj ∈ Th, which makes Th be a refinement of T H . Here, and in what

follows, we refer two triangulations Th and T H to microscale and macroscale
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triangulations, respectively. The macro mesh parameter H is given by

H = max
J=1,··· ,NH

diam(T J).

Let V H be a finite element basis function space associated with T H , and V H,0

be the set of all elements in V H , whose DOFs related to ∂Ω vanish. Then the

generalized multiscale finite element approximation of (2.2) is equivalent to

find uH ∈ V H,0 such that

ah(u
H , vH) = Fh(v

H), vH ∈ V H,0. (2.4)

2.2.2 Framework of nonconforming GMsFEM

Success of GMsFEM depends on the construction of corresponding finite el-

ement space. V H must contain the essential properties of Vh as well as the

coefficient κ, while the dimension of V H is significantly reduced compared to

that of Vh.

The generalized multiscale finite element space V H is composed of two

components. First one is the offline function space which is a spectral decom-

position of the snapshot function space, and used to represent the solution

in each macro element. Second one is the moment function space which is

used to impose continuity between local offline functions. Let microscale basis

function space Vh be given. For each macro element T ∈ T H , denote the re-

striction of Vh to T by Vh(T ). Also denote the set of all macro edges in T H by

EH :=
⋃NE

J=1{EJ}, and the set of all interior macro edges by EH,0. Then the

process of constructing GMsFE spaces is organized into the following frame-

work:

1. Construct a snapshot function space V snap =
⋃

T∈T H V snap(T ), where
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V snap(T ) is a subspace of Vh(T ) for each macro element T ∈ T H . In

general, V snap(T ) is chosen to be the span of κ−harmonic functions in

T .

2. Construct an offline function space V off =
⋃

T∈T H V off(T ), where V off(T )

is obtained by applying a suitable dimension reduction technique to

V snap(T ) for each macro element T ∈ T H . We may use generalized

eigenvalue decomposition, the singular value decomposition, the proper

orthogonal decomposition, and so on.

3. Construct a moment function space MH =
⋃

E∈EH MH(E). MH(E)

may consist of local κ−harmonic functions in appropriate neighborhood

of E. The moment functions are used to glue offline functions through

each macro interior edge E ∈ EH,0.

4. Construct the nonconforming GMsFE spaces V H and V H,0 based on

V off and MH . They are defined as

V H =
{
ψ ∈ V off

∣∣∣ < [ψ]E , ζ >E= 0, ∀ζ ∈ MH(E), ∀E ∈ EH,0
}
,

V H,0 =
{
ψ ∈ V off

∣∣∣ < [ψ]E , ζ >E= 0, ∀ζ ∈ MH(E), ∀E ∈ EH
}
.

Here [ψ]E stands for the jump of ψ across macro edge E.

2.3 Construction of multiscale finite element spaces

In this section we present the detailed process for constructing GMsFE spaces.

We may set microscale space Vh as the DSSY nonconforming finite element

space. It is remarkable that Vh can be another finite element space or any space

associated with Th induced by finite difference method, spectral method, and

so on.
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2.3.1 Snapshot function space V snap

We first construct local snapshot function space V snap(T ) in each macro ele-

ment T ∈ T H . Since snapshot functions are used to compute multiscale basis

functions, we may choose V snap(T ) as all microscale basis functions in T . Or

smaller space such as the span of κ−harmonic functions in T can be consid-

ered to reduce the cost of constructing V H . Let ϕ̃Tj ∈ Vh(T ) be the solutions

of following local κ−harmonic problems:
−∇ ·

(
κ(x)∇ ϕ̃Tj

)
= 0 in T,

ϕ̃Tj = δTj on ∂T,
(2.5)

where δTj ∈ Vh(T ) is the function which equals to one for the j−th microscale

mesh DOF on ∂T and zeros for the other DOFs on ∂T . Denote the number

of all snapshot functions in T by N snap(T ) and zero extension of ϕ̃Tj outside

T by ϕTj . Then the local snapshot function space V snap(T ) is defined as the

space spanned by ϕTj :

V snap(T ) = Span
{
ϕTj ∈ Vh(T )

∣∣∣ j = 1, · · · ,N snap(T )
}
.

Finally the snapshot function space V snap is defined as the union of such local

snapshot function spaces:

V snap =
⋃

T∈T H

V snap(T ).

Oversampling technique

We can apply the oversampling technique to reduce the resonance error caused

by wrong (local) boundary condition δTj . We solve (2.5) on an extended region
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T+ and restrict the solution ϕT
+

j to the original domain T . We denote the

local oversampled snapshot function space by V snap,+(T+), which is defined

as

V snap,+(T+) = Span
{
ϕT

+

j ∈ Vh(T
+)
∣∣∣ j = 1, · · · ,N snap,+(T+)

}
.

Then the oversampled snapshot function space V snap,+ is given as follows:

V snap,+ =
⋃

T∈T H

V snap,+(T+).

2.3.2 Offline function space V off

Offline function space V off is obtained by applying a suitable dimension re-

duction technique to the snapshot function space V snap. For example, we may

use generalized eigenvalue decomposition. For each macro element T ∈ T H ,

consider the following spectral problem to find (λTj , ψ
T
j ) ∈ R× V snap(T ) :

aT (ψ
T
j , ϕ

T ) = λTj (κψ
T
j , ϕ

T )T , ∀ϕT ∈ V snap(T ), (2.6)

where aT (ψ, ϕ) =
∑

Tj∈T
∫
Tj
κ∇ψ · ∇ϕdx. We suppose that the eigenvalues

are sorted in ascending order as

0 ≤ λT1 ≤ λT2 ≤ · · · ≤ λN snap(T ),

and the eigenfunctions are normalized by (κψT
j , ψ

T
j ) = 1. Then the local of-

fline function space V off(T ) is defined as the space spanned by a number of

dominant eigenfunctions ψT
j , which is related to j−th smallest eigenvalue λTj .

We may choose L(T ) eigenfunctions, where L(T ) is considerably small number
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Figure 2.1. Multiscale mesh on Ω. T1, T2 are macro elements and ω(E)+ is an
oversampled neighborhood of macro edge E.

compared to N snap(T ). In short, V off(T ) is given by

V off(T ) = Span
{
ψT
j ∈ V snap(T )

∣∣∣ j = 1, · · · ,L(T )
}
,

and the offine function space V off is defined as

V off =
⋃

T∈T H

V off(T ).

2.3.3 Moment function space MH

Since the offline functions are defined independently in each macro element

T ∈ T H , we need to glue those functions through each macro interior edge

46



E ∈ EH,0. Moment functions play a important role here, as they are used to

impose continuity between offline functions in neighboring macro elements.

On each macro edge E, let ω(E)+ be an oversampled neighborhood of E. As

we construct local snapshot space, the moment function ζEj ∈ Vh(ω(E)+) can

be obtained by solving local κ−harmonic problem
−∇ ·

(
κ(x)∇ ζEj

)
= 0 in ω(E)+,

ζEj = δEj on ∂ω(E)+,
(2.7)

where δEj ∈ Vh(ω(E)+) is the function which equals to one for the j−th mi-

croscale mesh DOF on ∂ω(E)+ and zeros for the other DOFs. We collect the

traces of ζEj on E and perform a singular value decomposition to them. De-

note m(E) linearly independent singular vectors by sEk , where s
E
k is arranged

in descending order with respect to its norm:

||sEk ||2E = µEk , µE1 ≥ µE2 ≥ · · · ≥ µEm(E) > 0. (2.8)

Then the local moment function space MH(E) on E is given by

MH(E) = Span
{
sEk

∣∣∣ 1 ≤ k ≤ L(E)
}
,

and the moment function space MH is defined as

MH =
⋃

E∈EH

MH(E).

Another method for constructing moment function space

We may consider another method for constructing moment function space in

order to reduce the computational cost. That is, the moment function space
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can be made up of the traces of the snapshot functions. For each macro edge

E ∈ EH , denote the collection of such traces by

Mh(E) := Span
{
ϕT |E

∣∣∣ϕT ∈ V snap(T ), E ⊂ ∂T
}
.

We perform a singular value decomposition to Mh(E) and choose the first

L(E) dominant modes ofMh(E), which span the local moment function space.

This method makes us avoid to solve local boundary value problems (2.7).

2.3.4 Nonconforming GMsFE spaces V H and V H,0

The nonconforming GMsFE spaces V H and V H,0 are defined as

V H =
{
ψ ∈ V off

∣∣∣ < [ψ]E , ζ >E= 0, ∀ζ ∈ MH(E), ∀E ∈ EH,0
}
, (2.9)

V H,0 =
{
ψ ∈ V off

∣∣∣ < [ψ]E , ζ >E= 0, ∀ζ ∈ MH(E), ∀E ∈ EH
}
. (2.10)

Since V off and MH are defined as the union of local function spaces, it is

possible to construct V H and V H,0 locally. Let E ∈ EH,0 be a common macro

edge for two macro elements T1 and T2 (see Figure 2.1.) Suppose that the local

moment function space MH(E) is constructed from κ−harmonic functions in

ω(E) := T1 ∪ T2. Then the continuity condition for ψ ∈ V off(T1) ∪ V off(T2)

imposed by MH(E) is given as follows:

< [ψ]E , ζ >E = 0, ∀ζ ∈ MH(E),

< ψ, ζ >E′ = 0, ∀ζ ∈ MH(E′), ∀E′ ⊂ ∂ω(E).
(2.11)

Finally we define the local GMsFE space V H(ω(E)) as

V H(ω(E)) =
{
ψ ∈ V off(T1) ∪ V off(T2)

∣∣∣ψ satisfies (2.11)
}
.

48



Then the GMsFE space V H,0 can be obtained by

V H,0 =
⋃

E∈EH,0

V H(ω(E)).

V H also can be constructed similarly by considering E ∈ EH in the above

argument.

Remark 2.3.1. It is remarkable that there may exist macro bubble functions

ψ ∈ V off(T ) on T , which satisfy

< ψ, ζ >E′= 0, ∀ζ ∈ MH(E′), ∀E′ ⊂ ∂T. (2.12)

Denote the space of macro bubble functions on Tj by

BH(T ) =
{
ψ ∈ V off(T )

∣∣∣ψ satisfies (2.12)
}
.

Then the GMsFE space V H,0 is obtained by

V H,0 =
( ⋃

T∈T H

BH(T )
)⋃( ⋃

E∈EH,0

V H
(
ω(E)

))
.

Remark 2.3.2. The dimension of GMsFEM space V H,0 may depend on the

dimension of local moment function space. For each macro element T ∈ T H ,

we practically take the dimension of local offline function space as

L(T ) =
∑

E′⊂∂T

L(E′).

Then the dimension of V H
(
ω(E)

)
is given by

dim
(
V H(ω(E))

)
≥ L(T1) + L(T2)− L(E)−

∑
E′⊂∂ω(E)

L(E′) = L(E).
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If there are no macro bubble functions, it follows that

dim (V H,0) =
∑

E∈EH,0

L(E).

2.4 Error analysis

An error estimate for nonconforming GMsFEM is provided using the broken

energy norm

||v||h :=
√
ah(v, v), ∀v ∈ H1(Ω) + Vh + V H .

We only state the main theorem here and refer to [38] for the details.

Theorem 2.4.1. Let u and uH be the solutions of (2.1) and (2.4), respectively.

Suppose MH(E) is constructed from Mh(E), which consists of the traces of

snapshot functions. Then we have following error estimate

||uH − u||h ≤ CH||f ||Ω +
[ ∑
T∈T H

N snap(T )∑
j=L(T )+1

λTj (α
T
j )

2
] 1

2
+ inf

qH∈V H,0
||qH − PH ũh||h

+ µmax

[ ∑
E∈EH

∣∣∣∣∣∣∣∣∣PE
h (κ

∂p

∂ν
)
∣∣∣∣∣∣∣∣∣2

E

] 1
2

sup
wH∈V H,0

|||wH |||
||wh||h

,

(2.13)

where µmax = max
{
µEL(E)+1

∣∣∣E ∈ EH
}
.

On the above theorem, ũh ∈ V snap denotes the snapshot solution of the

following problem: 
−∇ ·

(
κ(x)∇ ũh

)
= 0 in T,

ũh = uh on ∂T,
(2.14)

where uh is the microscale solution of (2.3). It is related to the first error
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term on the right hand side of (2.13), which measures ||ũh − uh||h. If we take

V snap(T ) = Vh(T ), this term will vanish.

For the second error term in (2.13), PH denotes the projection operator

from V snap to V off . Any function ϕT ∈ V snap(T ) can be represented by eigen-

functions ψT
j in (2.6):

ϕT =

N snap(T )∑
j=1

αT
j ψ

T
j .

Then the (local) projection PH
T := PH |T : V snap(T ) → V off(T ) is defined by

PH
T (ϕT ) =

L(T )∑
j=1

αT
j ψ

T
j .

It is obvious that the second error term in (2.13) is caused by PH , while

reducing the dimension of V snap.

The third error term measures how well the offline space V off approximates

the GMsFE space V H,0. To sum up, the first three error terms in (2.13) indicate

the approximation error.

The last error term in (2.13) accounts for the consistency error. For each

E ∈ EH , the projection operator PE
h : Mh(E) → MH(E) is defined by

< PE
h ϕ

E − ϕE , sH >E= 0, ∀sH ∈ MH(E), (2.15)

where ϕE ∈Mh(E). Any function ϕE ∈Mh(E) can be represented by singular

vectors sEk in (2.8):

ϕE =

m(E)∑
k=1

βEk s
E
k ,
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and the norm ||| · |||E on Mh(E) is defined as

|||ϕE |||2E =

m(E)∑
k=1

(βEk )
2.

For wH ∈ V H,0, we define ||| · ||| as

|||wH ||| :=
∑

T∈T H

∑
E∈∂T

|||wH |||E .

2.5 Numerical results

In this section, we provide some numerical results. We use the nonparametric

DSSY nonconforming quadrilateral elements to construct microscale space Vh.

We take the same number, say k, of moment functions on each interior macro

edge E ∈ EH,0, which determines the dimension of nonconforming GMsFE

space V H,0 by Remark 2.3.2. We may adopt the oversampling technique for

constructing local snapshot function space. For practical use, we may take

oversampled region T+ as the extension of T by δ(T ) layers of micro elements

surrounding T . An oversampled neighborhood ω(E)+ of macro edge E is also

taken by extension of δ(E) microscale layers surrounding E, and used to con-

struct local moment function space.

Example 2.5.1. Consider the following elliptic problem:
−∇ ·

(
κ(x)∇u

)
= f in Ω,

u = 0 on ∂Ω,
(2.16)

where Ω = (0, 1)2 and κ(x) = 1 + (1 + x1)(1 + x2) + ϵ sin(10πx1) sin(5πx2).
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The source term f is generated by the exact solution

u(x1, x2) = sin(3πx1)x2(1− x2) + ϵ sin(πx1/ϵ) sin(πx2/ϵ).

We examine error behaviors using uniform trapezoidal meshes with pa-

rameter θ. H × H macro elements and h × h micro elements are considered

respectively. We adopt oversampling technique to construct snapshot and mo-

ment function spaces where δ(T ) = δ(E) = 1. Relative energy errors and L2

errors are reported for various θ and ϵ.

1
H

1
h dim (V H,0)

θ = 0 θ = 0.5
Rel. Energy Rel. L2 Rel. Energy Rel. L2

5 50 400 0.884 0.388 0.885 0.386

10 100 1800 0.871 0.363 0.871 0.362

20 200 7600 0.346 0.676E-01 0.347 0.674E-01

40 400 31200 0.181 0.181E-01 0.181 0.180E-01

Table 2.1. Convergence for ϵ = 0.1.

1
H

1
h dim (V H,0)

θ = 0 θ = 0.5
Rel. Energy Rel. L2 Rel. Energy Rel. L2

5 50 400 0.885 0.625 0.886 0.623

10 100 1800 0.355 0.118 0.356 0.118

20 200 7600 0.186 0.316E-01 0.186 0.314E-01

40 400 31200 0.940E-01 0.803E-02 0.942E-01 0.799E-02

Table 2.2. Convergence for ϵ = 0.2.

1
H

1
h dim (V H,0)

θ = 0 θ = 0.5
Rel. Energy Rel. L2 Rel. Energy Rel. L2

5 50 400 0.335 0.130 0.336 0.130

10 100 1800 0.173 0.342E-01 0.174 0.340E-01

20 200 7600 0.884E-01 0.879E-02 0.888E-01 0.875E-02

40 400 31200 0.444E-01 0.221E-02 0.445E-01 0.220E-02

Table 2.3. Convergence for ϵ = 0.5.
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Figure 2.2. Multiscale solution of ϵ = 0.2, θ = 0 when 1/H = 5, 1/h = 50.

Figure 2.3. Multiscale solution of ϵ = 0.2, θ = 0 when 1/H = 10, 1/h = 100.
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Figure 2.4. Multiscale solution of ϵ = 0.2, θ = 0 when 1/H = 20, 1/h = 200.

Figure 2.5. Multiscale solution of ϵ = 0.2, θ = 0 when 1/H = 40, 1/h = 400.
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Figure 2.6. Microscale reference solution of ϵ = 0.2, θ = 0 when 1/h = 400.
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Chapter 3

Algebraic Multiscale Method

3.1 Introduction

In this chapter, we study an AMS (Algebraic MultiScale) finite element method.

As a model problem, we consider

−∇ · (κ(x)∇u) = f in Ω, (3.1)

where κ is a heterogeneous coefficient and f ∈ H−1(Ω). Assume that a finite

element method is used to approximate (3.1) based on a microscale mesh to

get a corresponding linear system, say Ahηh = bh. But we assume that the

coefficient κ and the source term f are NOT available, although the compo-

nents of Ah and bh are available. Then the question is “By using the algebraic

information on Ahηh = bh only, is it possible to provide numerical approximate

solutions which contain similar nature and properties of those obtained by the

usual multiscale methods?”
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Motivated by the AMG (Algebraic MultiGrid) method, we try to build

macroscale linear systems, say AHηH = bH , using “the only algebraic infor-

mation” obtained from the microscale linear system, i.e., the information on

the components of Ah and bh. The procedure of constructing macroscale linear

systems uses the details of building snapshot spaces and offline spaces. We will

show that this process can be performed using only the algebraic information

on the microscale linear system. We first consider the one-dimensional case in

very detail, and present two dimensional case using the DSSY nonconforming

finite element space.

We remark that our approach is completely different from that of AMG.

The nature of AMG is to solve the original linear system Ahηh = bh iteratively,

but accurately, by using the classical geometric multigrid idea. The spirit of

the “AMS (algebraic multiscale method)” is to construct an algebraic sys-

tem AHηH = bH with significant dimension reduction such that the solutions

ηH are rough, but reasonable approximation to ηh, which follow the line of

thoughts in multiscale methods.

This chapter is organized as follows. In Section 2, we state our model prob-

lem and present the multiscale FEM to construct multiscale basis functions.

The algebraic multiscale method is then introduced in Section 3. An algebraic

formulation of a macroscale linear system AHηH = bH is built from the knowl-

edge of components of the microscale linear system Ahηh = bh. Section 4 is

devoted to the energy norm error estimate of the proposed method. In Section

5, we present some numerical results. Two-dimensional case is investigated in

Section 6.
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3.2 Preliminaries

In this section we briefly review the multiscale finite element method in one

dimension. For any open interval I, denote by Hk(I) =W k,2(I) the standard

Sobolev space equipped with inner product (·, ·)k,I and norm ||·||k,I . For k = 0,

we abbreviate (·, ·)k,I and || · ||k,I as (·, ·)I and || · ||I , respectively. Consider the
following elliptic problem:


− d

dx

(
κ(x)

du

dx

)
= f in Ω,

u = 0 on ∂Ω,

(3.2)

where Ω = (0, 1), κ is a highly heterogeneous coefficient and f ∈ H−1(Ω).

Denote by T H =
⋃NH

K=1{IK} and Th =
⋃Nh

j=1{Ij} two families of macroscale

and microscale triangulations of Ω into macroscale and microscale subintervals

such that IK = [XK−1, XK ] and Ij = [xj−1, xj ], where 0 = X0 < X1 < · · · <
XNH

= 1 and 0 = x0 < x1 < · · · < xNh
= 1. Here, and in what follows, H

and h stand for the macroscale and microscale mesh parameters given by

H = max
K=1,··· ,NH

(XK −XK−1), h = max
j=1,··· ,Nh

(xj − xj−1).

Let Vh be a finite element basis function space associated with Th. One

may solve (3.2) on the microscale mesh Th using a finite element method to

find uh ∈ Vh such that

ah(uh, vh) = (f, vh)Ω ∀vh ∈ Vh, (3.3)

where ah(uh, vh) =
∑Nh

j=1(κu
′
h, v

′
h)Ij . In a multiscale method, we solve κ–

harmonic problems in each macroscale interval IK (see (3.4) and (3.5).) Us-

ing these solutions, we construct the multiscale basis function space V H =
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{ΨK}K=1,...,NH−1 and find the multiscale solution in V H .

To construct V H , we assume that Th is a refinement of T H satisfying

0 < h ≪ H < 1. For K = 1, · · · , NH , denote by HK the size of K-th

macro interval IK = (XK−1, XK). Let {xKj }N
K
h

j=0 be the set of micro nodes

for IK and designate by IKj the j–th subinterval (xKj−1, x
K
j ) with length hKj

for j = 1, · · · , NK
h such that xK0 = XK−1 and xK

NK
h

= XK . For each K,

let Vh(I
K) = {ϕKj }j=0,··· ,NK

h
be the space of standard basis functions for the

C0–piecewise linear finite element space on IK .

Figure 3.1. Multiscale mesh on Ω.

Denote by ΨK
± the multiscale basis functions in interval IK , which can be

obtained as the solutions of κ−harmonic problems
− d

dx

(
κ
d

dx
ΨK

−
)
= 0 in IK ,

ΨK
− (XK−1) = 1, ΨK

− (XK) = 0,

(3.4)

and 
− d

dx

(
κ
d

dx
ΨK

+

)
= 0 in IK ,

ΨK
+ (XK−1) = 0, ΨK

+ (XK) = 1.

(3.5)
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Let us seek ΨK
h,± ∈ Vh(I

K) which approximate ΨK
± in the form

ΨK
h,− =

NK
h −1∑
j=1

ηKj,−ϕ
K
j + ϕK0 , (3.6a)

ΨK
h,+ =

NK
h −1∑
j=1

ηKj,+ϕ
K
j + ϕK

NK
h
. (3.6b)

Since ΨK
h,± are piecewise-linear in IK , one may set

d

dx
ΨK

h,± = γKj,± in IKj for some constant γKj,±, j = 1, · · · , NK
h . (3.7)

Proposition 3.2.1. Assume that 1
κ(x) ∈ L1(a, b). Consider the following dif-

ferential equation: 
− d

dx

(
κ
dw

dx

)
= 0, in I = (a, b),

w(a) = 0, w(b) = 1.

(3.8)

Denote by 1
κ(x) = κ−1(x). The exact solution is given by

w(x) = β

∫ x

a
κ−1(s) ds a.e. x ∈ I,

where |I|β is the harmonic mean of κ(x) over the interval I, i.e.,

|I|β =

(
1

|I|

∫
I
κ−1(s) ds

)−1

. (3.9)

Proof. We have

κ(x)
dw

dx
(x) = c, a.e. x ∈ (a, b)
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for some constant c. From this, we get

w(x) = c

∫ x

0
κ−1(s) ds a.e. x ∈ (a, b).

With the boundary condition w(b) = 1, we see that

1 = w(b) = c

∫ b

a
κ−1(s) ds.

Hence, c = β and the proposition follows.

Thanks to Proposition 3.2.1, it is easy to see that

ΨK
− (x) =

∫ XK

x κ−1(s) ds∫ XK

XK−1 κ−1(s) ds
for all x ∈ IK , (3.10a)

ΨK
+ (x) =

∫ x
XK−1 κ

−1(s) ds∫ XK

XK−1 κ−1(s) ds
for all x ∈ IK . (3.10b)

Denote an n dimensional vector with parameters K and ± as follows:

αK
± = (αK

1,±, · · · , αK
n,±)

t ∈ Rn.

Recalling (3.6), (3.7), and (3.10), and utilizing the principle of energy norm
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minimization of the finite element method, we deduce the following equalities:

min
ηK
+ ∈RNK

h

{∫
IK
κ(x)

[
d

dx

(
ΨK

+ (x)−ΨK
h,+(x)

)]2
dx

}1/2

= min
ηK
+ ∈RNK

h

NK
h∑

j=1

{∫
IKj

κ(x)

[
d

dx

(
ΨK

+ (x)−ΨK
h,+(x)

)]2
dx

}1/2

= min
γK
+

NK
h∑

j=1

{∫
IKj

κ(x)

(
β

κ(x)
− γKj,+

)2

dx

}1/2

= min
γK
j,+

NK
h∑

j=1

{∫
IKj

(
β2

κ(x)
− 2βγKj,+ + κ(x)(γKj,+)

2

)
dx

}1/2

.

After differentiating the above with respect to γKj,+, we have

γKj,+ =

(∫ xK
j

xK
j−1

β dx

)(∫ xK
j

xK
j−1

κ(x) dx

)−1

= βhKj

(∫ xK
j

xK
j−1

κ(x) dx

)−1

.

If κ(x) = 1, γKj,± = ±1 for j = 1, · · · , NK
h to make ΨK

h,± linear. Since ΨK
h,+ +

ΨK
h,− = 1 in (3.10), both ΨK

h,± can be computed from γKj,+ values. Now the

multiscale basis function ΨK ∈ V H is constructed from ΨK
h,±:

ΨK =


ΨK

h,+ in IK ,

ΨK+1
h,− in IK+1,

0, otherwise.

Remark 3.2.2. We may reduce the dimension of multiscale basis function

space by applying a suitable dimension reduction technique. For example, we

adopt a spectral decomposition method and take a reasonably small number of

dominant eigenfunctions as basis functions. We do not perform such process

for one-dimensional case.

63



3.3 Algebraic Multiscale Method

In this section, we present the procedure of algebraic multiscale method. We

assume that we are given all the information on the components of microscale

linear system

Ahηh = bh, (3.11)

which is obtained from (3.3). However, we assume that κ and f are not known.

We want to find uH ∈ V H satisfying

aH(uH , vH) = (f, vH)Ω ∀vH ∈ V H , (3.12)

where aH(uH , vH) =
∑NH−1

K=1 (κ(uH)′, (vH)′)IK . We will construct the corre-

sponding macroscale linear system

AHηH = bH (3.13)

using only the algebraic structure of microscale linear system (3.11).

Throughout the paper, we assume that Ah and bh are assembled by using

the standard C0 piecewise linear element on Ω = (0, 1). Also assume that the

microscale mesh is sufficiently refined so that the heterogeneous coefficient κ

is constant in each micro interval Ij = (xj−1, xj). Let κ = κj in Ij and denote

the size of Ij by hj .

3.3.1 Algebraic formulation of stiffness matrix

We need to look at the procedure of building the components of stiffness

matrices in microscale and macroscale.
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Construction of Ah

Let Vh = {ϕj}j=0,··· ,Nh
be the set of basis functions on the microscale mesh.

For 1 ≤ j ≤ Nh − 1, we have

dϕj
dx

∣∣∣
Ij

=
1

hj
and

dϕj
dx

∣∣∣
Ij+1

= − 1

hj+1
. (3.14)

The diagonals of Ah are supposed to be expressed as follows:

[Ah]j,j =

∫ xj+1

xj−1

κ(x)
dϕj
dx

dϕj
dx

dx

=

∫ xj

xj−1

κj

(
1

hj

)2

dx+

∫ xj+1

xj

κj+1

(
− 1

hj+1

)2

dx

=
κj
hj

+
κj+1

hj+1
.

(3.15)

The off-diagonals are given by

[Ah]j,j−1 = −κj
hj
,
[
Ah

]
j,j+1

= −κj+1

hj+1
. (3.16)

There is an one-to-one correspondence between the off-diagonal element of Ah

and the average of coefficient in each micro interval.

Remark 3.3.1. Instead of assuming κ to be a piecewise constant function, we

may adopt a quadrature rule for integration. For instance, we get

[Ah]j,j−1 ≈ − 1

hj
κj−1/2, [Ah]j,j+1 ≈ − 1

hj+1
κj+1/2

by using the mid-point rule.
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Construction of AH

We present the details of construction of the components of AH from the

knowledge of Ah. This procedure requires the construction of the space of

macroscale basis functions V H = {ΨK ,K = 1, ..., NH − 1} on Ω = (0, 1). We

state one of the two main results in the following theorem.

Theorem 3.3.2. All the components of the macroscale stiffness matrix AH in

(3.13) are constructed using the components of the microscale stiffness matrix

Ah in (3.11) only.

Proof. For each K, by βK denote the β value defined by (3.9) in the macro

interval IK = (XK−1, XK). Then from (3.4), (3.5), and Proposition 3.2.1 it

follows that

κ
d

dx
ΨK =


βK on IK ,

− βK+1 on IK+1.

Hence, for 1 ≤ K ≤ NH −1, the diagonal elements of AH are given as follows:

[
AH
]
K,K

=

∫ XK+1

XK−1

κ(x)
dΨK

dx

dΨK

dx
dx

= βK
∫ XK

XK−1

dΨK

dx
dx+ βK+1

∫ XK+1

XK

dΨK

dx
dx

= βK + βK+1.

(3.17)

The off-diagonals can be computed similarly:

[
AH
]
K,K−1

= −βK ,
[
AH
]
K,K+1

= −βK+1. (3.18)

Denote by MK the total number of micro nodes xLj ’s on [0, XK) = I1 ∪ I2 ∪
· · · ∪ IK−1 ∪ IK . Then IKj = (xKj−1, x

K
j ) is same as the (MK−1 + j)−th micro
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interval IMK−1+j ∈ Th. Using the relation (3.16), βK is computed by

βK =

(∫
IK
κ−1(x) dx

)−1

=

NK
h∑

j=1

∫
IKj

κ−1(x) dx

−1

=

NK
h∑

j=1

∫
IMK−1+j

κ−1(x) dx

−1

=

NK
h∑

j=1

hMK−1+j

κMK−1+j

−1

= −

NK
h∑

j=1

(
1/ [Ah]MK−1+j,MK−1+j−1

)−1

.

(3.19)

Plugging (3.19) in (3.17) and (3.18), we see that all the components of the

macroscale stiffness matrix are constructed using the components of the mi-

croscale stiffness matrix only. This completes the proof.

Construction of bH

We present the details of construction of the components of bH from the knowl-

edges of Ah and bh. We use the constructed macroscale basis function space

V H = {ΨK ,K = 1, · · · , NH − 1} on Ω = (0, 1).

Lemma 3.3.3. The coefficients of ΨK
h,−, K = 2, · · · , NH and the coefficients

of ΨK
h,+, K = 1, · · · , NH − 1 in (3.6) are computed using the components of

the microscale stiffness matrix Ah in (3.11) only.

Proof. The approximate weak problem of (3.5) is to find ΨK
h,+ ∈ Vh(I

K) such

that:

∫
IK
κ(x)

NK
h −1∑
j′=1

ηKj′,+
dϕKj′

dx

 dϕKj
dx

dx = −
∫
IK
κ(x)

dϕK
NK

h

dx

dϕKj
dx

dx (3.20)

for j = 1, · · · , NK
h − 1. Since ϕKj = ϕMK−1+j , from (3.20) we can obtain the
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following linear system



dK1 uK1

lK2 dK2 uK2

l3
. . .

. . .

. . .
. . . uK

NK
h −2

lK
NK

h −1
dK
NK

h −1





ηK1,+

ηK2,+
...
...

ηK
NK

h −1,+


=



bK1,+

bK2,+
...
...

bK
NK

h −1,+


(3.21)

where

dKj = [Ah]MK−1+j,MK−1+j , j = 1, · · · , NK
h − 1,

uKj = [Ah]MK−1+j,MK−1+j+1 , j = 1, · · · , NK
h − 2,

lKj = [Ah]MK−1+j−1,MK−1+j , j = 2, · · · , NK
h − 1,

bKj,+ =


0, if j = 1, · · · , NK

h − 2,

[Ah]MK−1+NK
h −1,MK−1+NK

h
, if j = NK

h − 1.

Note that bKj,+ can be obtained by using the components of the microscale

stiffness matrix only, if K = 1, · · · , NH−1. Since the values of dKj , uKj , lKj , and

bKj,+ come from the microscale stiffness matrix Ah and (3.21) is a tridiagonal

system of equations, ηKj,+ can be computed by using the components of Ah

and Thomas’ algorithm. ηKj,− for K = 2, · · · , NH are obtained similarly. We

thus see that the coefficients of ΨK
h,−, K = 2, · · · , NH and the coefficients of

ΨK
h,+, K = 1, · · · , NH − 1 in (3.6) are computed by using the components of

the microscale stiffness matrix only. This completes the proof.

Now we state the other of the two main results in the following theorem.

Theorem 3.3.4. All the components of the macroscale right hand side bH in

(3.13) are constructed using the components of the microscale stiffness matrix
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Ah in (3.11) and the components of the microscale right hand side bh in (3.11)

only.

Proof. First we express the multiscale basis function ΨK by the microscale

basis functions {ϕj}j=1,...,Nh
using the form of (3.6). For 1 ≤ K ≤ NH − 1,

ΨK = ΨK
h,+ +ΨK+1

h,−

=

NK
h −1∑
j=1

ηKj,+ϕ
K
j + ϕK

NK
h

+

ϕK+1
0 +

NK+1
h −1∑
j=1

ηK+1
j,− ϕK+1

j


=

NK
h −1∑
j=1

ηKj,+ϕMK−1+j + (ϕK
NK

h
+ ϕK+1

0 ) +

NK+1
h −1∑
j=1

ηK+1
j,− ϕMK+j

=

NK
h −1∑
j=1

ηKj,+ϕMK−1+j + ϕMK
+

NK+1
h −1∑
j=1

ηK+1
j,− ϕMK+j .

Thus the macroscale right hand side vector bH is computed by

[bH ]K =

∫ XK+1

XK−1

fΨK dx

=

∫ XK+1

XK−1

f

NK
h −1∑
j=1

ηKj,+ϕMK−1+j + ϕMK
+

NK+1
h −1∑
j=1

ηK+1
j,− ϕMK+j

 dx

=

NK
h −1∑
j=1

ηKj,+

∫ xMK−1+j+1

xMK−1+j−1

fϕMK−1+j dx+

∫ xMK+1

xMK−1

fϕMK
dx

+

NK+1
h −1∑
j=1

ηK+1
j,−

∫ xMK+j+1

xMK+j−1

fϕMK+j dx,

=

NK
h −1∑
j=1

ηKj,+[bh]MK−1+j + [bh]MK
+

NK+1
h −1∑
j=1

ηK+1
j,− [bh]MK+j , (3.22)
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where we used the fact that the right hand side vector bh is given by

[bh]j =

∫ xj+1

xj−1

fϕj dx, j = 1, ..., Nh − 1.

By Lemma 3.3.3 ηKj,+ and ηK+1
j,− in (3.22) are obtained by using the components

of the microscale stiffness matrix Ah. We thus see that all the components of

the macroscale right hand side vector are constructed by using the components

of the microscale stiffness matrix and the components of the microscale right

hand side vector only. This completes the proof.

3.3.2 Multiscale solution

Now we obtain the macroscale matrix system using the algebraic structure of

microscale linear systems. We solve AHηH = bH to get the multiscale solution

uH =
NH−1∑
K=1

ηKΨK .

Since the exact form of ΨK is known from (3.10), we may compute the value

of uH at every micro node.

3.4 Error analysis

In this section, we derive an error estimate for the algebraic multiscale method.

For every v ∈ H1(Ω), define the energy norm as

|||v|||h :=

√√√√∑
Ij∈Th

∫
Ij

κ(v′)2dx = ||κ 1
2 v′||h.

We will estimate |||uHms − uh|||h using microscale solution uh as a reference

solution.
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Lemma 3.4.1. [38] Let uh be the microscale solution of (3.3). Consider ũ ∈
Vh such that for each IK ∈ T H , ũ|IK satisfies

aKh (ũ, vh) :=
∑

Ij∈Th(IK)

∫
Ij

κũ′v′h = 0 in IK , ∀vh ∈ Vh(I
K)

ũ = uh on ∂IK .

Then

|||uh − ũ|||h ≤ CHmin{κ− 1
2 }||f ||Ω. (3.23)

Proof. Observe that ũ− uh|IK ∈ Vh ⊂ H1
0 (I

K) and ũ ∈ V H by formulation of

ũ. By Subtracting two equations

aKh (ũ, ũ− uh) = 0,

aKh (uh, ũ− uh) = (f, ũ− uh)IK ,

we obtain

||κ 1
2 (ũ− uh)||2h = aK(ũ− uh, ũ− uh)

=
∑

Ij∈Th(IK)

∫
Ij

κ{(ũ− uh)
′}2dx

= −
∫
IK
f(ũ− uh)dx

= −
∫
IK

(κ−
1
2 f)(κ

1
2 (ũ− uh))dx

≤ ||κ− 1
2 f ||IK ||κ

1
2 (ũ− uh)||IK

≤ CH||κ− 1
2 f ||IK ||κ

1
2 (ũ− uh)

′)||IK .

The Poincarè inequality was used in the last inequality. Summation of the

above local estimate over all IK ∈ T H yields (3.23).

71



Theorem 3.4.2. Let uh and uH be the microscale and macroscale solution of

(3.3) and (3.12) respectively. Then

|||uH − uh|||h ≤ CHmin{κ− 1
2 }||f ||Ω.

Proof. By subtracting two equation with vh = vH ,

aH(uH , vH) = (f, vH)Ω, ∀vH ∈ V H ,

ah(uh, vh) = (f, vh)Ω,∀vh ∈ Vh,

we get aH(uH − uh, v
H) = 0, ∀vH ∈ V H . Then for arbitrary v ∈ V H ,

||κ 1
2 (uH − uh)

′||20 = aH(uH − uh, u
H − uh)

= aH(uH − uh, (u
H − v) + (v − uh))

= aH(uH − uh, v − uh)

≤ ||κ 1
2 (uH − uh)

′||0 ||κ
1
2 (v − uh)

′||0.

The theorem follows by taking v = ũ ∈ V H in Lemma 3.4.1.

Remark that the energy norm can be computed by the algebraic informa-

tion on microscale systems. Since uH and uh are piecewise linear functions,

for all 1 ≤ j ≤ Nh

duH

dx

∣∣∣
(xj−1,xj)

=
uH(xj)− uH(xj−1)

hj
=

∆uH(j)

hj
,

duh
dx

∣∣∣
(xj−1,xj)

=
uh(xj)− uh(xj−1)

hj
=

∆uh(j)

hj
.
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Then the energy norm of uH is computed by

|||uH |||h =

{∫ 1

0
κ(x)

[
d

dx

(
uH(x)

)]2
dx

}1/2

=


Nh∑
j=1

∫ xj

xj−1

κ(x)

(
∆uHms(j)

hj

)2


1/2

=


Nh∑
j=1

1

hj
κj
(
∆uHms(j)

)2
1/2

=


Nh∑
j=1

[Ah]j,j−1

(
∆uHms(j)

)2
1/2

.

The energy norm of uh is obtained similarly.

3.5 Numerical results

In this section, we investigate some numerical examples to show the optimal

convergence of our scheme. In the following examples we take 210 micro element

and compute relative energy norm error

eHenergy =
|||uHms − uh|||h

|||uh|||h
.

3.5.1 Known Coefficient Case

Example 3.5.1. Consider the following elliptic problem:


− d

dx

(
κ(x)

du

dx

)
= −1 in Ω = (0, 1),

u = 0, if x = 0 or 1,

where κ(x) = 2
3(1 + x)

(
1 + cos(2πxϵ )2

)
.
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Figure 3.2. Graph of κ(x) = 2
3(1 + x)(1 + cos(2πxϵ )2), ϵ = 1

10 .

The elliptic problem has the homogenized solution

uhom(x) =
3

2
√
2

(
x− log (1 + x)

log 2

)
.

In this example, we set ϵ = 1
10 . Here we recognize the exact coefficient κ but do

not know the geometric information on microscale mesh. We may take uniform

mesh as an ideal case, or non-uniform mesh is also possible. For example, let

y0 = 0 and define

yj+1 = yj + 2× rand

Nh
for 1 ≤ j ≤ Nh.

Then choose xj =
yj
yNh

as microscale nodes to make xNh
= 1. The rand

function is used to reflect the ignorance of microscale mesh.
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Uniform microscale mesh Non-uniform microscale mesh

NH eHenergy Order NH eHenergy Order

2 5.00E-01 2 5.01E-01

4 2.50E-01 1.00 4 2.50E-01 1.00

8 1.26E-01 0.99 8 1.26E-01 0.99

16 6.27E-02 1.00 16 6.28E-02 1.00

32 3.08E-02 1.02 32 3.12E-02 1.01

64 1.55E-02 0.99 64 1.60E-02 0.96

Table 3.1. Error of Example 3.5.1.

The relative energy norm error is reported in the Table 3.1, as the number

of macroscale nodes is doubled. We observe first-order convergence in both

cases regardless of mesh types.

In Figure 3.3, the red line, the blue dashed line and the green dotted line

denote the microscale solution uh, multiscale solution uH , and the homoge-

nized solution uhom, respectively. All three graphs are almost identical. Since

we get similar consequence for other ϵ values, we do not report the result here.

3.5.2 Random Coefficient Case

Consider the following elliptic problem:


− d

dx

(
κ(x)

du

dx

)
= f in Ω = (0, 1),

u = 0, if x = 0 or 1,

where κ and f are given randomly. That is, we only have the microscale linear

system without knowing the exact form of κ and f . In the previous section
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(a) Uniform microscale mesh.

(b) Non-uniform microscale mesh.

Figure 3.3. Solution graph of Example 3.5.1 when NH = 64.
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we use the one-to-one correspondence between the off-diagonal element of the

microscale stiffness matrix Ah and the average of κ in each micro interval, to

formulate macroscale system algebraically. For our simulation, we change the

off-diagonal elements of Ah and observe the error. We consider two cases:

1. κ exhibits non-periodic behavior keeping its initial amplitude: Exam-

ple 3.5.2

2. κ exhibits non-periodic behavior while overall average amplitude grows

up: Example 3.5.3

In following examples we use the non-uniform microscale mesh in Exam-

ple 3.5.1 and the microscale right hand side vector is given by

bhj = rand for 1 ≤ j ≤ Nh − 1.

Example 3.5.2. The off-diagonal elements of Ah are given by

[
Ah

]
j,j−1

= rand for 1 ≤ j ≤ Nh − 1.

We observe the relative energy norm error in the Table 3.2. The coefficients

are randomly defined by rand functions so that two representative simulation

results are reported. The convergence order is oscillatory around 1 in both

cases. In Figures 3.5 and 3.6, the red solid line and the blue dashed line

denote the microscale solution uh and multiscale solution uH , respectively.

We can see that uH converges to uh as the number of macro nodes gradually

increases.
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(a) Example 3.5.2.

(b) Example 3.5.3.

Figure 3.4. Graph of coefficients κ in simulation 1.
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Simulation 1 Simulation 2

NH eHenergy Order NH eHenergy Order

2 3.93E-01 2 5.13E-01

4 2.27E-01 0.79 4 2.66E-01 0.95

8 8.93E-02 1.34 8 1.20E-01 1.15

16 4.40E-02 1.02 16 6.10E-02 0.97

32 2.07E-02 1.09 32 2.86E-02 1.15

64 1.01E-02 1.04 64 1.39E-02 0.99

Table 3.2. Error of Example 3.5.2.

Figure 3.5. Solution graph of Example 3.5.2 for simulation 1.
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Figure 3.6. Solution graph of Example 3.5.2 for simulation 2.

Example 3.5.3. The off-diagonal elements of Ah are given by

[
Ah

]
j,j−1

= j ∗ rand for 1 ≤ j ≤ Nh − 1.

We see more fluctuating convergence orders in Table 3.3 compared to the

previous examples. The range of coefficient in Example 3.5.3 is about 1000

times wider than that of Example 3.5.2 as shown in Figure 3.4. This reflects

Theorem 3.4.2 that the error is bounded by the minimum of κ−
1
2 . Overall

convergence order is almost 1 in both cases. Solution graph is depicted in

Figures 3.7 and 3.8 which shows the convergence behavior of uH to uh.
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Simulation 1 Simulation 2

NH eHenergy Order NH eHenergy Order

2 2.85E-01 2 5.86E-01

4 1.61E-01 0.82 4 4.49E-01 0.38

8 7.60E-01 1.09 8 1.49E-02 1.59

16 4.48E-02 0.76 16 6.80E-02 1.13

32 2.00E-02 1.17 32 3.42E-02 0.99

64 8.70E-03 1.20 64 1.69E-02 1.02

Table 3.3. Error of Example 3.5.3.

Figure 3.7. Solution graph of Example 3.5.3 for simulation 1.
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Figure 3.8. Solution graph of Example 3.5.3 for simulation 2.

3.6 2D case

Consider the following elliptic problem:
−∇ ·

(
κ(x)∇u

)
= f in Ω,

u = 0 on ∂Ω,
(3.24)

where Ω = (0, 1)2, κ is a highly heterogeneous coefficient and f ∈ H−1(Ω).

Denote by T H = {ΩJK}J,K and Th = {Ωjk}j,k two families of macroscale

and microscale triangulations of Ω into macroscale and microscale rectangles

such that ΩJK = (XJ−1, XJ)× (Y K−1, Y K) and Ωjk = (xj−1, xj)× (yk−1, yk)

where 0 = X0 < X1 < · · · < XNX = 1, 0 = Y 0 < Y 1 < · · · < Y NY = 1 and
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0 = x0 < x1 < · · · < xnx = 1, 0 = y0 < y1 < · · · < yny = 1. Also denote by

HJK and hjk diameters of ΩJK and Ωjk. H and h represent the macroscale

and microscale mesh parameters given by

H = max
J,K

(HJK), h = max
j,k

(hjk). (3.25)

3.6.1 Implementation of the DSSY nonconforming element

We use rectangular triangulation to implement the DSSY nonconforming ele-

ment. Since the DSSY elements are based on the horizontal–type and vertical–

type edges, it is more natural to label the edges and basis functions in these two

types. For j = 1, · · · , Nx and k = 1, · · · , Ny, let Ωjk be the (j, k)-rectangle

with the four vertices (xj , yk), (xj−1, yk), (xj−1, yk−1), (xj , yk−1), with edges

ejk, fjk, ej−1,k, and fj,k−1, on which the basis functions are respectively given

by ψj,k(l, ·, ·) : Ωjk → R, l = 1, 2, 3, 4. If hx and hy denote the lengths of the

horizontal and vertical edges, after translating the center of Ωjk to the ori-

gin (0, 0) so that Ωjk is translated to K̂ := (−hx
2 ,

hx
2 ) × (−hy

2 ,
hy

2 ), the basis

functions are given by

ψ(l, x, y) =



1
4 + x

hx
+

θ( 2x
hx

)−θ( 2y
hy

)

4θ(1) , l = 1,

1
4 + y

hy
+

θ( 2y
hy

)−θ( 2x
hx

)

4θ(1) , l = 2,

1
4 − x

hx
+

θ( 2x
hx

)−θ( 2y
hy

)

4θ(1) , l = 3,

1
4 − y

hy
+

θ( 2y
hy

)−θ( 2x
hx

)

4θ(1) , l = 4,
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where θ(t) = t2 − 5
3 t

4. The gradients ∇ψ(l, x, y) on K̂ are given by

∇ψ(l, x, y) =



 1
hx

+
θ′( 2x

hx
)

2hxθ(1)

−
θ′( 2y

hy
)

2hyθ(1)
,

 , l = 1,

 − θ′( 2x
hx

)

2hxθ(1)

1
hy

+
θ′( 2y

hy
)

2hyθ(1)

 , l = 2,

− 1
hx

+
θ′( 2x

hx
)

2hxθ(1)

−
θ′( 2y

hy
)

2hyθ(1)

 , l = 3,

 − θ′( 2x
hx

)

2hxθ(1)

− 1
hy

+
θ′( 2y

hy
)

2hyθ(1)

 , l = 4.

One may solve (3.24) on the microscale mesh using finite element method.

Let Vh = Span({ψjk}j,k
⋃{ϕjk}j,k) be the DSSY finite element space associ-

ated with Th, where {ψj,k}j,k is the set of DSSY basis functions associated

with DOF at midpoint on each horizontal micro edge, and {ϕj,k}j,k is the set

of DSSY basis functions associated with DOF at midpoint on each vertical

micro edge (see Figure 3.9).

We assume that all the components in A and b in the microscale linear

system Ax = b are known, which is constructed by a known finite element

method to find uh ∈ Vh such that

ah(uh, vh) = (f, vh)Ω ∀vh ∈ Vh, (3.26)

where ah(uh, vh) =
∑

j,k(κ∇uh,∇ vh)Ωjk
. Here, we do not assume that any

a priori knowledge is given for the coefficient κ and the exterior source term

f . Typically the size of the microscale linear system Ax = b is too huge to

solve, and hence we apply certain multiscale finite element method to build a
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Ωjk

(xj , yk)(xj−1, yk)

(xj−1, yk−1)(xj , yk−1)

ϕjk

ψjk

ϕj−1k

ψjk−1

Figure 3.9. Basis functions associated with vertical and horizontal type edges
on micro element Ωjk.

reasonable size of macroscale linear system AMxM = bM .

In generalized multiscale finite element method, we solve κ−harmonic

problems in each macro element. Using these local solutions, we construct

the multiscale basis space V H and find the solution in V H . To construct V H ,

we assume that Th is a refinement of T H satisfying h << H < 1.

Our approach to the algebraic multiscale method is to construct the macroscale

linear system for the macroscale basis functions ψJK , ϕJK , which are derived

from the microscale linear system Au = f for the microscale basis functions

ψjk, ϕjk. On our procedure, we use the generalized multiscale finite element

method and the following assumptions are imposed:

1. the microscale mesh is rectangular;

2. the linear system is constructed by using the DSSY nonconforming finite

element method;

3. the coefficient κ is assumed to be constant on each micro element.

For the sake of convenience, by ϕjk and ψjk denote the basis functions
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associated with the edges ejk and fjk so that the solution uh is represented by

uh =

nx∑
j′=0

ny∑
k′=1

αj′k′ϕj′k′ +

nx∑
j′=1

ny∑
k′=0

βj′k′ψj′k′ . (3.27)

Test (3.26) with uh represented by (3.27) against vh = ϕjk and vh = ψjk to

obtain

nx∑
j′=0

ny∑
k′=1

αj′k′ah(ϕj′k′ , ϕjk) +

nx∑
j′=1

ny∑
k′=0

βj′k′ah(ψj′k′ , ϕjk)

= (f, ϕjk), j = 0, · · · , nx, k = 1, · · · , ny, (3.28a)
nx∑
j′=0

ny∑
k′=1

αj′k′ah(ϕj′k′ , ψjk) +

nx∑
j′=1

ny∑
k′=0

βj′k′ah(ψj′k′ , ψjk)

= (f, ψjk), j = 1, · · · , nx, k = 0, · · · , ny. (3.28b)

Taking into account of the supports of basis functions, we get the following

linear system:

Aα,α
jkjkαjk +Aα,α

j−1kjkαj−1k +Aα,α
j+1kjkαj+1k

+Aβ,α
jkjkβjk +Aβ,α

jk−1jkβjk−1 +Aβ,α
j+1kjkβj+1k +Aβ,α

j+1k−1jkβj+1k−1

= fαjk, j = 0, · · · , nx, k = 1, · · · , ny, (3.29a)

Aβ,β
jkjkβjk +Aβ,β

jk−1jkβjk−1 +Aβ,β
jk+1jkβjk+1

+Aα,β
jkjkαjk +Aα,β

j−1kjkαj−1k +Aα,β
jk+1jkαjk+1 +Aα,β

j−1k+1jkαj−1k+1

= fβjk, j = 1, · · · , nx, k = 0, · · · , ny, (3.29b)

where Aα,α
j′k′jk = ah(ϕj′k′ , ϕjk), A

α,β
j′k′jk = ah(ϕj′k′ , ψjk), A

β,α
j′k′jk = ah(ψj′k′ , ϕjk),

Aβ,β
j′k′jk = ah(ψj′k′ , ψjk), f

α
jk = (f, ϕjk) and f

β
jk = (f, ψjk).

A direct computation of the component of the stiffness matrix on Ωjk =
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(xj−1, xj)× (yk−1, yk) gives

(∇ϕjk,∇ϕjk)Ωjk
=

37

28

hxj

hyk
+

65

28

hyk
hxj

,

(∇ψjk,∇ϕjk)Ωjk
= (∇ψjk−1,∇ϕjk)Ωjk

= −37

28

h2xj
+ h2yk

hxjhyk
,

(∇ϕj−1k,∇ϕjk)Ωjk
=

37

28

hxj

hyk
+

9

28

hyk
hxj

.

(3.30)

Analogous components are obtained by replacing Ωjk by Ωjk−1. Furthermore,

we have similar results for ψjk; just hxj and hyk are exchanged in (3.30). Set

γjk =
hyk
hxj

. By a direct computation, one gets the following expressions:

Aβ,β
jkjk =

(65
28

1

γjk
+

37

28
γjk

)
κjk +

(65
28

1

γjk+1
+

37

28
γjk+1

)
κjk+1,

Aβ,β
jk−1jk =

( 9

28

1

γjk
+

37

28
γjk

)
κjk,

Aβ,β
jk+1jk =

( 9

28

1

γjk+1
+

37

28
γjk+1

)
κjk+1,

Aα,β
jkjk = Aα,β

j−1kjk = −37

28

( 1

γjk
+ γjk

)
κjk,

Aα,β
jk+1jk = Aα,β

j−1k+1jk = −37

28

( 1

γjk+1
+ γjk+1

)
κjk+1.

First, we need to deduce the coefficient values κjk and mesh sizes hxj , hyk

from the microscale linear system (3.29). The result is formulated as the fol-

lowing proposition.

Proposition 3.6.1. κjk and hxj , hyk , can be determined from the linear sys-

tem (3.29).

Proof. At each rectangular elements, except for the 4 corner elements, we can

derive at least two information about κjk from the stiffness matrix. One is

Aα,α
j−1kjk or Aβ,β

jk−1jk and the other is one of Aα,β
jkjk, A

α,β
jkjk−1, A

α,β
j−1kjk, A

α,β
j−1kjk−1

(see Table 3.4.) For example, when we have Aβ,β
jk−1jk and Aα,β

jkjk for left vertical
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element, we can derive the following equalities:

Aβ,β
jk−1jk +Aα,β

jkjk = −κjk
γjk

(< 0)

Aα,β
jkjk

Aβ,β
jk−1jk +Aα,β

jkjk

=
37

28
(1 + γ2jk)

Hence,

γjk =

√√√√28

37

( Aα,β
jkjk

Aβ,β
jk−1jk +Aα,β

jkjk

)
− 1

κjk = −(Aβ,β
jk−1jk +Aα,β

jkjk)γjk

κjk and γjk can be derived for other cases in a similar way.

At the corner, we cannot get the value of Aα,α
j−1kjk or Aβ,β

jk−1jk from the

stiffness matrix. That is, there is only one valid information about κjk and γjk.

In this case, we need the ratio information from adjacent elements to derive

the coefficient and the ratio. First, we can derive γjk using following relation

about ratio, γjk =
γjk+1γj+1k

γj+1k+1
. Since the above formula are valid at every micro

element except corners, three of γjk, γjk+1, γj+1k, γj+1k+1 are known and

the unknown one would be determined by the ratio information. Then, κjk

can be easily derived from the ratio information and one of Aα,β
jkjk, A

α,β
jkjk−1,

Aβ,α
jkjk, A

β,α
jkj−1k. Now we have every κjk and γjk value across all elements. By

summation,
nx∑
j=1

1

γjk
=

∑nx
j=1 hxj

hyk
=

1

hyk

ny∑
k=1

γjk =

∑ny

k=1 hyj
hxj

=
1

hxj

we can determine hxj and hyk .
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Position of element Known information

Left vertical Aβ,β
jk−1jk, A

α,β
jkjk, A

α,β
jkjk−1

Right vertical Aβ,β
jk−1jk, A

α,β
j−1kjk, A

α,β
j−1kjk−1

Upper horizontal Aα,α
j−1kjk, A

α,β
j−1kjk−1, A

α,β
j−1kjk−1

Lower horizontal Aα,α
j−1kjk, A

α,β
j−1kjk, A

α,β
jkjk

Interior Aβ,β
jk−1jk, A

α,α
j−1kjk, A

α,β
jkjk, A

α,β
jkjk−1, A

α,β
j−1kjk−1, A

α,β
j−1kjk

Table 3.4. Known information with respect to the position of element.

3.6.2 Construction of multiscale finite element spaces

We construct multiscale finite element spaces using the approximated values

κjk and hxj , hyk . Suppose that T ∈ T H is composed of nTx ×nTy micro elements.

Denote by ϕTjk and ψT
jk the basis functions on T associated with vertical and

horizontal edges, respectively.

Snapshot function space

We first consider local snapshot function space V snap(T ) for T ∈ T H using

the same notation in §2.3. Recall that the snapshot functions ũTl ∈ Vh(T ) are

the solutions of following κ−harmonic problems
−∇ ·

(
κ(x)∇ ũTl

)
= 0 in T,

ũTl = δTl on ∂T,
(3.31)

where δTl is one of ϕT0k, ϕ
T
nT
x k
, ψT

j0, ψ
T
jnT

y
for j = 1, · · · , nTx and k = 1, · · · , nTy .

That is, ũTl is the solution of

aT (ũ
T
l , v

T ) = 0 ∀ vT ∈ Vh,0(T ) (3.32)
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satisfying ũTl − δTl ∈ Vh,0(T ). Let ũ
T
l ∈ Vh(T ) is represented by

ũTl =

nT
x∑

j′=0

nT
y∑

k′=1

αT
j′k′ϕ

T
j′k′ +

nT
x∑

j′=1

nT
y∑

k′=0

βTj′k′ψ
T
j′k′ .

Then (3.32) leads to the following equations by setting vT = ϕTjk and vT = ψT
jk:

nT
x∑

j′=0

nT
y∑

k′=1

αT
j′k′aT (ϕ

T
j′k′ , ϕ

T
jk) +

nT
x∑

j′=1

nT
y∑

k′=0

βTj′k′aT (ψ
T
j′k′ , ϕ

T
jk) = 0,

j = 0, · · · , nTx , k = 1, · · · , nTy , (3.33a)

nT
x∑

j′=0

nT
y∑

k′=1

αT
j′k′aT (ϕ

T
j′k′ , ψ

T
jk) +

nT
x∑

j′=1

nT
y∑

k′=0

βTj′k′aT (ψ
T
j′k′ , ψ

T
jk) = 0,

j = 1, · · · , nTx , k = 0, · · · , nTy . (3.33b)

If we take the supports of basis functions into consideration, we have the

following linear system for the snapshot function ũTl :

Ãα,α
jkjkαjk + Ãα,α

j−1kjkαj−1k + Ãα,α
j+1kjkαj+1k

+Ãβ,α
jkjkβjk + Ãβ,α

jk−1jkβjk−1 + Ãβ,α
j+1kjkβj+1k + Ãβ,α

j+1k−1jkβj+1k−1

= 0, j = 0, · · · , nTx , k = 1, · · · , nTy , (3.34a)

Ãβ,β
jkjkβjk + Ãβ,β

jk−1jkβjk−1 + Ãβ,β
jk+1jkβjk+1

+Ãα,β
jkjkαjk + Ãα,β

j−1kjkαj−1k + Ãα,β
jk+1jkαjk+1 + Ãα,β

j−1k+1jkαj−1k+1

= 0, j = 1, · · · , nTx , k = 0, · · · , nTy , (3.34b)

where Ãα,α
j′k′jk = aT (ϕ

T
j′k′ , ϕ

T
jk), Ã

α,β
j′k′jk = aT (ϕ

T
j′k′ , ψ

T
jk), Ã

β,α
j′k′jk = aT (ψ

T
j′k′ , ϕ

T
jk),

and Ãβ,β
j′k′jk = aT (ψ

T
j′k′ , ψ

T
jk). Since each component of the system (3.34) can be

computed from the approximate values of κjk and hxj , hyk , we can construct

the snapshot function space V snap(T ). Notice that we can also adopt the over-
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sampling technique introduced in §2.3, which only requires us to replace T to

a oversampled domain T+.

Offline function space

For offline functions, we need to solve the spectral problem to find (λTl , u
T
l ) ∈

R× V snap(T ) :

aT (u
T
l , v

T ) = λTl (κu
T
l , v

T )T , ∀vT ∈ V snap(T ). (3.35)

Since any function v ∈ V snap(T ) is represented by

vT =

nT
x∑

j′=0

nT
y∑

k′=1

αT
j′k′ϕ

T
j′k′ +

nT
x∑

j′=1

nT
y∑

k′=0

βTj′k′ψ
T
j′k′ ,

we can construct the linear system of (3.35) and find offline function uTl .

Nonconforming GMsFE space

The moment functions on macro edge E are created by local κ−harmonic

functions in Vh(ω(E)). Thus we can construct the moment function space by

the same process to build the snapshot function space. Then the nonconform-

ing GMsFE spaces V H and V H,0 are constructed based on the offline function

space and the moment function space. Recall that V H and V H,0 are defined

as

V H =
{
ψ ∈ V off

∣∣∣ < [ψ], ζ >E= 0, ∀ζ ∈ MH(E), ∀E ∈ EH,0
}
,

V H,0 =
{
ψ ∈ V off

∣∣∣ < [ψ], ζ >E= 0, ∀ζ ∈ MH(E), ∀E ∈ EH
}
.
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Construction of bH

Now we have the GMsFE space V H,0 = Span({ψL
JK}J,K,L

⋃{ϕLJK}J,K,L), where

ψL
JK and ϕLJK denote the L-th multiscale basis function associated with the

JK−th horizontal macro edge fJK and JK−th vertical macro edge eJK , re-

spectively. Suppose that ΩJK ∪ ΩJ+1K is composed of nJKx × nJKy microscale

elements. Then ϕLJK is represented by

ϕLJK =

nJK
x∑

j′=0

nJK
y∑

k′=1

αJK
j′k′ϕ

JK
j′k′ +

nJK
x∑

j′=1

nJK
y∑

k′=0

βJKj′k′ψ
JK
j′k′ ,

where ϕJKj′k′ and ψ
JK
j′k′ is the microscale basis functions of vertical and horizontal

type in ΩJK∪ΩJ+1K , respectively. Therefore it is obvious that the components

of bH can be derived from the summation of that of bh. We have same argument

for ψL
JK , which completes the construction of bH .

3.6.3 Numerical results

Example 3.6.2. Consider the following elliptic problem:
−∇ ·

(
κ(x)∇u

)
= f in Ω,

u = 0 on ∂Ω,

where Ω = (0, 1)2 and κ(x) = 1 + (1 + x1)(1 + x2) + ϵ sin(10πx1) sin(5πx2).

The source term f is generated by the exact solution

u(x1, x2) = sin(3πx1)x2(1− x2) + ϵ sin(πx1/ϵ) sin(πx2/ϵ).

We compare numerical results of GMsFEM and AMS(algebraic multiscale

method). We use uniform rectangular mesh and H/h is fixed to 10. Relative
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energy and L2 errors are reported for various ϵ. We observe almost same error

behaviors in both methods.

1
H

1
h dim (V H,0)

GMsFEM AMS
Rel. Energy Rel. L2 Rel. Energy Rel. L2

5 50 400 0.884 0.388 0.884 0.389

10 100 1800 0.871 0.363 0.871 0.363

20 200 7600 0.346 0.676E-01 0.346 0.678E-01

40 400 31200 0.181 0.181E-01 0.181 0.182E-01

Table 3.5. Convergence for ϵ = 0.1.

1
H

1
h dim (V H,0)

GMsFEM AMS
Rel. Energy Rel. L2 Rel. Energy Rel. L2

5 50 400 0.885 0.625 0.885 0.625

10 100 1800 0.355 0.118 0.355 0.119

20 200 7600 0.186 0.316E-01 0.186 0.320E-01

40 400 31200 0.940E-01 0.803E-02 0.939E-01 0.823E-02

Table 3.6. Convergence for ϵ = 0.2.

1
H

1
h dim (V H,0)

GMsFEM AMS
Rel. Energy Rel. L2 Rel. Energy Rel. L2

5 50 400 0.335 0.130 0.335 0.132

10 100 1800 0.173 0.342E-01 0.173 0.351E-01

20 200 7600 0.884E-01 0.879E-02 0.885E-02 0.928E-02

40 400 31200 0.444E-01 0.221E-02 0.444E-01 0.246E-02

Table 3.7. Convergence for ϵ = 0.5.
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Figure 3.10. Algebraic multiscale solution of ϵ = 0.2 when 1/H = 5, 1/h = 50.

Figure 3.11. Algebraic multiscale solution of ϵ = 0.2 when 1/H = 10, 1/h =
100.
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Figure 3.12. Algebraic multiscale solution of ϵ = 0.2 when 1/H = 20, 1/h =
200.

Figure 3.13. Algebraic multiscale solution of ϵ = 0.2 when 1/H = 40, 1/h =
400.
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Figure 3.14. Microscale reference solution of ϵ = 0.2 when 1/h = 400.
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국문초록

본 학위논문에서는 일반적인 사각형에서 정의되는 비모수적 DSSY 비순응

유한요소공간을 고려한다. 1장에서는 유한요소법을 이용해 이차 타원형 문제를

해결할 때 수치 적분법이 해의 수렴속도에 작용하는 효과를 분석한다. 최적의

수렴 속도를 변화시키지 않는 수치 적분법의 충분 조건을 구하고, 이를 이용해

DSSY유한요소에적합한새로운구적법공식을고안한다.단 3개의점만을이용

해최적의수렴속도를얻을수있음을보이고다양한수치적결과들을제시한다.

2장에서는비모수적 DSSY비순응유한요소공간을적용한일반화된멀티스케

일 비순응유한요소법을 연구한다. 일반화된 멀티스케일 유한요소공간은 두 개의

함수공간으로구성된다.첫번째는 offline함수공간으로국소적조화문제를풀어

얻어지는 snapshot 함수공간에 스펙트럼 분해를 적용하여 얻어진다. 두 번째는

moment함수공간으로국소적으로얻어진 offline함수들간의연속성을부여하는

데 이용된다. 이러한 논의와 함께 1장에서 고안한 구적법 공식을 적용한 수치적

결과들을 제시한다.

3장에서는 대수적 멀티스케일 방법을 소개한다. 이차 타원형 문제의 계수와

소스 항을 모르는 상태에서 단지 미시적 스케일의 선형 시스템만 알고 있을 때,

이 시스템의 구성 성분에 대한 대수적 정보만을 바탕으로 거시적 스케일의 선

형 시스템을 건설한다. 먼저 일차원 문제를 구체적으로 분석하고 이차원 문제를

일반화된 멀티스케일 비순응유한요소법을 이용하여 연구한다. 수치적 결과들을

보여준다.

주요어 : DSSY 유한요소, 비모수 유한요소, 일반화된 멀티스케일 유한요소법,

대수적 멀티스케일 방법, 수치 적분, 구적법 공식, 타원형 문제

학번 : 2012-20258
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