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Abstract

In this thesis, we introduce random elements into the Cucker-Smale(C-S)
model and provide quantitative analyses for those uncertainties. In real ap-
plications of the Cucker-Smale dynamics, we can expect that the C-S model
contains some intrinsic uncertainties in itself and misses some extrinsic fac-
tors that might affect the dynamics of particles. Thus, to provide a better
description for the dynamics of a C-S ensemble, one needs to incorporate such
uncertain factors to the model and evaluate their effects on the dynamics or
stability of the C-S system.

To fulfill this, we first consider the macroscopic version of the Cucker-
Smale model. Namely, we introduce random inputs from communication
weights and initial data into the hydrodynamic Cucker-Smale (HCS) model
to yield the random HCS model. Furthermore, we address extrinsic uncer-
tainties in the microscopic and mesoscopic level, respectively. For a micro-
scopic model, we introduce a randomly switching network structure to the
Cucker-Smale model and investigate sufficient conditions for the emergence of
flocking. As a mesoscopic model, we consider the kinetic Cucker-Smale equa-
tion perturbed by multiplicative white noise and study the well-posedness
and asymptotic dynamics of solutions.

Key words: Flocking, Cucker-Smale model, Uncertainty quantification, Lo-
cal sensitivity analysis, Random dynamical system, Stochastic partial differ-
ential equation

Student Number: 2016-20249
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Chapter 1

Introduction

Collective behaviors in systems of self-propelled particles are widely observed
in our nature, e.g. flocking of birds, aggregation of bacteria, synchronous
chirps of crickets, schooling of fish, herding of sheep, etc [4, 5, 100, 102, 104].
Among such collective movements, our main interest lies in the so-called
flocking phenomenon, where self-driven particles adjust their velocities based
on simple rules or limited environmental information so that they become
organized into an ordered motion. Due to recent applications in unmanned
vehicles, sensor networks and robot systems [70, 79, 80], many studies have
been dedicated to model such coherent motions. After pioneering works by
Viscek and Reynolds [87, 103], several phenomenological models were intro-
duced [8, 20, 23, 75, 76, 99, 102]. In this thesis, we are interested in the
model presented by Cucker and Smale [20]. To be specific, let x; and v; be
the position and velocity of the i-th C-S particle in R? with unit mass, re-
spectively. Then, the dynamics of C-S particles (x;,v;) is governed by the
following second order system:

(Cf;;’zvi, t>0, ie{l,--- N},
dvi _ 1y 1.0.1
dt :Nng(l‘j—xi)(vj_vi)a ( M )
j=1
[ (2:(0),0:(0)) = (27, v})
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Here, ¢ = ¢(z) is a communication weight function which is nonnegative,
bounded, Lipschitz continuous and radially symmetric:

¢(x) =o(lz[), VreR,

where ¢ : [0,00) — R, is nonnegative, bounded, Lipschitz continuous and
monotonically decreasing:

0<¢(r) <d(0) =t K, (d(r) —¢(s))(r —s) <0, Vr,s € [0,00),
|6(r) — &(s)]

and  ¢r;p = sup ———— < 0.
rts [T 4]

When there is a C-S ensemble with N particles on the phase space R??
with N very large, it becomes computationally expensive to integrate the in-
finite number of ODE system (1.0.1). Thus, we introduce a one-particle dis-
tribution function f = f(¢,z,v) for the infinite ensemble. Via the mean-field
limit N — oo in (1.0.1), the kinetic density f satisfies the Vlasov equation

(see [46, 50] for rigorous justification):
Of +v-Vof + V- (EJ[flf) =0, z,veR t>0,

F.lfl(t,z,v) = — O(r — x,) (v — vi) f(E, T, V) dsd s, (1.0.2)

R2d

f(0,2,v) = f™(x,v).

Recently, the particle and kinetic C-S model have been addressed in a
lot of extensive research activities from diverse perspectives, i.e. emergence
of mono-cluster or multi-cluster flocking [10, 20, 47, 50, 51], effects of white
noises [2, 19, 30, 49, 98], time-delay effects [27, 30], application to flight for-
mation [80], collision avoidance [1, 15, 17, 63], generalized network structures
16, 18, 21, 22, 28, 52, 53, 54, 90, 94], mean-field limit [12, 46, 50, 88], ki-
netic and hydrodynamic description [7, 29, 34, 51, 58, 64, 65, 66, 67, 77, 84],
uncertainty quantification (UQ) problems [3, 9, 37, 38, 41|, extension of the
C-S model [26, 43, 44, 45, 76], etc (see a recent survey [11] for details).

In real applications of C-S systems, modelers or performers determine
the communication weight function ¢, initial and boundary values based on

2
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the phenomenology or their interests. Hence we expect that the C-S model
contains some intrinsic uncertainties. On the other hand, the C-S model does
not incorporate the influence from the neighboring environment, such as drag
forces from the fluid, abrupt disconnection by obstruction, gravitational force,
etc. Thus, for a better description of the dynamics of the C-S ensemble, it
is necessary to introduce such intrinsic and extrinsic uncertainties to the
model (1.0.1) and assess the extent of impacts of these random elements on
the flocking dynamics. To fulfill this, the effects of uncertainties need to be
quantified, which is the essence of the uncertainty quantification (UQ). Dur-
ing the twenty-first century, UQ has received a lot of attention in diverse
disciplines such as the applied mathematics, atmospheric sciences and engi-
neering [3, 9, 55, 56, 57, 59, 60, 62, 71, 72, 74, 78, 81, 82, 83, 85, 89, 92]. Thus,
it is natural to synthesize these two emerging disciplines, UQ and emergent
flocking dynamics, in a common platform.

In this thesis, we present three works related to the uncertainty quantifi-
cation for the C-S system. First, we consider a local sensitivity analysis for
the hydrodynamic Cucker-Smale model with random inputs from the com-
munication weight and initial data.

Specifically, we consider the pressureless Euler system for the C-S ensem-
ble which is a hyperbolic system with a nonlocal source term. In this case, the
nonlocal flocking source term acts like a nonlocal damping which suppresses
the appearance of the Delta shocks for small solutions. To incorporate ran-
dom inputs to the HCS model, we consider a random vector z defined on the
sample space ) C R? with the probability density function 7 = 7(z). For the
notational simplicity, we will assume that z is an one-dimensional variable.
This random variable z registers the uncertain effects in the initial data and
communication weights. To fix the idea, we consider an ensemble of collision-
less Cucker-Smale flocking particles on the periodic domain T¢ := (R/Z)<,
d > 1, and let p := p(t,z, z) and u := u(t,z, z) be the local mass and bulk
velocity of the C-S fluid at position z € T? random vector z and time ¢,
respectively. In this setting, the dynamics of macroscopic observables (p, u)
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is governed by the Cauchy problem to the random HCS model:

(3tp+V~(pu):O, t>0, zeTe 2€Q,

Oy(pu) +V - (pu @ u) Lo
= [ e =yl ) -t Doty

\(P, ’LL)(O,%’,Z) = (p0<l‘,2),u0(33, Z))a

where V is the spatial gradient. Note that for a frozen z € Q, system (1.0.3)
becomes the deterministic pressureless Euler system with a flocking dissipa-
tion, which has been studied in previous literature, e.g., a rigorous derivation
from the kinetic equation [32], the global existence of classical solutions and
interaction with incompressible fluids [48] and existence of entropic weak
solutions in one-dimension [35].

Here, we would like to see the dynamic properties of z-variations (0% p, 0%u)
to the random HCS model (1.0.3), which is what is called the local sensi-
tivity analysis [91, 95]. Such an analysis is not only of analytical interest.
Since it yields regularities in the random space, it is important for numer-
ical methods like stochastic Galerkin or collocation methods [56, 61, 108].
This framework was applied to the particle and kinetic C-S and Kuramoto
model in [37, 38, 39, 40], and also to a wide class of random kinetic equations
in [55, 56, 57, 59, 60, 62, 71, 72], where the regularity and sensitivity were
studied using weighted Sobolev energy estimates and coercivity or hypoco-
ercivity (for perturbative solution near the global equilibrium) of the kinetic
operators.

However, the synthesis of local sensitivity analyses and collective dynam-
ics has not been made for the hydrodynamic models from collective dynamics
yet. Of course, there are some previous works [60, 74, 81, 82, 83, 85] on the
scalar conservation law and Euler system with random inputs from the point
of numerics in the context of UQ. It is well known that hydrodynamic models
arising from the theory of hyperbolic conservation laws and fluid mechanics
do not often allow sufficiently smooth solutions enough to implement a local
sensitivity analysis. In particular, hyperbolic conservation laws do not allow
a global smooth solution for generic initial data. They instead exhibit discon-
tinuous solutions for generic initial data, which makes a UQ program difficult

4
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to implement [24]. This is why the local sensitivity theory has not been well
studied in the hyperbolic conservation laws. Despite of this, hyperbolic mod-
els arising from the modeling of flocking and synchronization admit smooth
solutions for well-prepared initial data thanks to the extra nonlocal flux and
source terms, which play the role of regularizing mechanism. Thus, it seems
plausible to apply the local sensitivity analysis to the hydrodynamic models
for collective dynamics.

On the other hand, it is difficult to provide specific probabilistic estimates
in relation with the emergent dynamics via the local sensitivity analysis, since
the local sensitivity analysis is performed in an abstract and general frame-
work. Hence, our next goal is to address some probability estimates for (1.0.1)
and (1.0.2) with uncertain elements. Here, we focus on the uncertainties in
the communication weight since we expect its impact on the dynamics to be
stronger than others. In an attempt to obtain such estimates for the particle
system, we consider the Cucker-Smale model (1.0.1) with randomly switch-
ing topologies.

During the evolution of a C-S flock navigating in the free space R?, the
connection topology might undergo abrupt changes due to unknown exter-
nal disturbances, obstacles and internal processing mechanisms at unknown
instants. In this situation, two natural questions can arise:

e (Q1): How should we model the flocking dynamics of the
C-S model with randomly switching network topologies?

e (Q2): If the model is properly set up, then can we find some
framework leading to some kind of flocking behavior in terms
of system parameters and initial data?

To address the above questions, we assume that the network topology might
change along a random sequence of switching times, and at each switching
time, we choose a network topology from a given finite set of admissible
network topologies randomly, i.e., we employ two random components such
as the random switching times and random choice of network topologies. Of
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course, our chosen network topology may not contain a spanning tree which
is necessary for emergence of flocking. Thus, we assume that the union of
network topologies in the admissible set contains a spanning tree so that on
a suitable time-block with finite size, the union of network topologies contains
a spanning tree. Hence, each C-S particle repeatedly communicates with at
least one of neighboring particles during each time-block. With this setting
in mind, we consider the evolution law for the C-S flocking with randomly
switching topologies similar to the model [18]:

dx;
CZ:“” 1<i<N, t>0,
B 1 (1.0.4)

i N > X — ai) (v — i) |
1

where (ij(t)) denotes the time-dependent network topology corresponding to

the switching law o : [0,00) — {1,---, Ng}. Here, we have the set of ad-
missible (directed) graphs with N vertices S := {Gi, - ,Gn,}. The law o,
which is piecewise constant and right-continuous, tells which network topol-
ogy is used to describe the connectivity between C-S particles at a certain
instant. Moreover, the sequence of discontinuities {t,}sen would be called the
sequence of switching instants (or times). For specific description, once an
instant ¢ is given, then o(t) = o(t;) = k for some 1 < k < Ng and ¢ € N|
and the network topology (ij(t)) corresponds to the 0-1 adjacency matrix of
k-th digraph G.

In previous literature [21, 22, 52, 90], the authors considered discretized
analogues of the C-S system and y;;’s in place of x7;’s, which are assumed to
be nonnegative, independent and identically distributed random variables,
to explain the random failure of connectivity between C-S particles. In our
case, we focus on the continuous system and explore this randomness in
connectivity by introducing randomness into the switching law o and the
sequence of switching instants {t,}sen. Now, the switching law o = o(t,w)
(t >0, we Q) becomes a{l,---, Ng}-valued jump process and the sequence
{ts}ren has also certain randomness. To describe the random switching times
{ts}, we instead consider the increment process {A; := ty41 — t,} and we
assume that it follows some preassigned distribution f on the common prob-

6
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ability space (£2, F,P). On the other hand, at each switching instant, we
choose the network topology G with a probability py.

Finally, to yield specific probability estimates in the kinetic level, we
consider the kinetic equation (1.0.2) perturbed by a multiplicative noise.
To fix the idea, we incorporate a stochastic noise into the communication
weight, i.e. ¢ — ¢ + o o W,, where W, is a one-dimensional white noise on
the probability space (€2, F,P), o denotes the strength of the noise and o
denotes the stochastic integral in Stratonovich’s sense. Then formally, under
the unit mass assumption [g., f(¢, , v)dezdv = 1, the non-local operator F,|[f]
is replaced by a combination of the deterministic part F,[f] and stochastic
part involving with W;:

F[f] = FJf]+o(ve—v)oW. (1.0.5)

Now, we combine (1.0.2) and (1.0.5) to derive the stochastic kinetic C-S
equation:

8tft + v - fot -+ VU . (Fa[ft]ft) = O'VU . ((U — Uc)ft) @) Wt. (106)

Note that in chapter 5, we use the standard notation for random probability
density function fi(x,v) := f(t, x,v).

As previously mentioned, the effects of white noise perturbations were
discussed in [2, 19, 30, 49, 98] at the particle level. Moreover, a rigorous
derivation of the equation (1.0.6) as a mean-field limit of the C-S systems
with multiplicative noises was recently discussed in [12]| based on the propa-
gation of chaos result in [14], and a mean-field limit of the C-S systems with
another type of stochastic perturbations was also addressed in [88]. However,
as far as we know, the equation (1.0.6) has only been addressed in measure
spaces such as P, not in other function spaces (e.g. Sobolev spaces). For
other types of stochastic kinetic equations, we refer to [33, 86]. In this thesis,
we address the following two questions:

o (Well-posedness): Is the stochastic kinetic C-S equation (1.0.6) well-
posed in a suitable function space such as Sobolev spaces?
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e (Emergence of flocking): If so, does the solution to (1.0.6) exhibit
asymptotic flocking dynamics?

Our results in Chapter 5 provide affirmative answers to the above posed
questions. First, we introduce a concept of a strong solution to (1.0.6) and
then provide a global well-posedness for strong solutions by employing a suit-
able regularization method and stopping time argument. Second, we provide
a stochastic flocking estimate by showing that the expectation of the second
velocity moment decays to zero exponentially fast, when the communica-
tion weight function ¢ has a positive infimum ¢,, := inf, e ¢(z) and noise
strength o is sufficiently small compared to ¢,,. The main difficulty in our
analysis arises, when we prove the existence of a solution to the regularized
equation. Here, we obtain W™ *-estimates for the sequence of functions that
approximates the regularized equation. Our W™ >-estimates contain terms
with infinite expectation. Hence, even though we can find a limit function
of the sequence from the pathwise estimates, it is not certain that the limit
function becomes a solution to the regularized equation. To cope with this
problem, we used stopping time argument to get a solution to the regularized
equation.

The rest of the thesis is organized as follows. In Chapter 2, we summarize
the notation used throughout the thesis and present previous results about
the deterministic verision of the particle, kinetic and hydrodynamic C-S mod-
els without proofs. In Chapter 3, we present a local sensitivity analysis for the
hydrodynamic Cucker-Smale model with random inputs (1.0.3). In Chapter
4, we study the emergent dynamics of the Cucker-Smale flocks (1.0.4) when
the network topology changes randomly along time. In Chapter 5, we show
the global well-posedness of strong solutions to the equation (1.0.6) and its
emergent dynamics. Finally, in Chapter 6, we provide a brief summary of
the thesis and discuss the issues which will be addressed in the future. In
Appendix A and Appendix B, we present detailed proofs that we omitted in
Chapter 3 and 5, respectively.



Chapter 2

Preliminaries

In this chapter, we present the notation which will be used throughout this
thesis, and review previous results about the deterministic Cucker-Smale
model.

2.1 Notation

Throughout this thesis, (€2, F,P) denotes a generic probability space. For any
k€ NU{0} and p € [1,00], we set WH*?(F) to be the k-th order LP-Sobolev
spaces on F = T? or RY and H*(F) := W*?2(F). If there is no confusion
about the choice of the domain F, then we simply write W"? := WHP(F)
and H* := H*(F), respectively. C¥(I; B) denotes the space of k-times con-
tinuously differentiable functions from an interval [ into a Banach space B.
Moreover, V¥ denotes any partial derviative 9 with respect to z-variable
with multi-index « with |o| = k.

We set
X = (xla"'7xN)7 V= (/017"'7UN)7

and D(X) and D(V') denote position and velocity diameters:

D(X):= max |lz; —z;l, D(V):= max |lvi—wvl.

Matrix ordering is meant componentwise, e.g., for matrices A = (a;;) nxn
and B = (b;;)nxn, A > B stands for a;; > b;; for all 4, j. For a real number

9
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¢, denote by |c| the floor of ¢, i.e., the largest integer no greater than c¢. N
denotes the set of all natural numbers (including zero).

For (z,v) € R*, §,,) denotes a point mass concentrated at (z,v). For
each p € [1,00), we denote P,(R*?) by

probability measure on R?? such that

2d\ . __
PR = q o /|mw%mm<m. ’
R2d

and we write p-Wasserstein distance on P,(R??) as

W)= int [ ) - wwpay)
(e L. )

velI(pv)

where [](p, v) denotes the collection of all measures on R*? whose marginals
are 4 and v.

For a probability density function f = f(¢,z,v) with (z,v) € R?*? at time
t € Ry, we set the p-th velocity moments (p = 0,1,2) of f as

Malf(t) = [ paodo, 370 = [ ofdede,

My[f](t) :== /R?d lv|? fdwdv, t >0,

and we also write v.[f](t) := M;[f](t). If there is no confusion about the
choice of f, we write

2.2 Previous results

In this section, we provide previous results for the deterministic Cucker-Smale
model. First, we review the mono-cluster flocking result for (1.0.1) and below,
we present the definition for the flocking.

10
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Definition 2.2.1. Let {(z;,v;)} be a C-S ensemble whose dynamics is gov-
erned by (1.0.1). Then, it exhibits a mono-cluster flocking if and only if the
following two conditions hold.

sup max [[z;(t) — z;(t)|| < oo, lim max [|v;(t) —v;(t)| = 0.
0<t<oo ®J t—oco  1,j

For a given configuration (X, V'), we set

1Xlloo := max Jlzill, [Vlleo := max vl

Theorem 2.2.1. [1, 37, 50] Let (X, V) be a solution to (1.0.1) with the initial
data (X°, V) satisfying the following conditions:

N N

1 oo
E x? = E U? =0, HXOHOO > 0, HVOHOO < —/ o(2r)dr.
i=1 i=1 21X

Then, there exists a positive constant xp; > 0 such that

SUP | X (#)loe < 2ar, [V (B)lloe < [VOloce™ @@t ¢ > 0.

Next, we review the results for the kinetic equation (1.0.2) and its emer-
gent dynamics. Formally, the kinetic equation (1.0.2) can be derived as a
mean-field limit of system (1.0.1) by using the standard BBGKY hierarchy
under the molecular chaos assumption. For a brief description of BBGKY
hierarchy, we refer to [51, 68] and for rigorous derivation of the equation, we
refer to [46, 50]. Below, we provide the well-posedness and emergent behaviors
of classical solutions to (1.0.2).

Theorem 2.2.2. [51] Suppose that the initial datum fo € (C* N WH2)(R)
18 compactly supported in the phase space, i.e. the x- and v-supports of fo in
the phase space are bounded. Then for any T € (0,00), there exists a unique
classical solution f € C1([0,T) x R?*?) to (1.0.2) satisfying

ALF](1) < Alfole 2M00 Jo #)ds,

11
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where A[f] and ¢ are given by
N0 = [ o= P r e oo,
R2d

o(t) = inf{od(x —y) : f(t,z,v)f(t,y,v.) #0 for some v,v, € R}

Remark 2.2.1. As addressed in [36], we briefly explain the meaning of the
zero convergence of A ast — oo. Let f be a probability density function over
R?4. Then we use the Chebyshev inequality to obtain that, for any ¢ > 0,

MO = [ - ufpdde [ - uprdeds

|[v—ve|>e

> 82/| | fdvdr = *P[|v — v.(0)] > €].
V—Vc|>€

This gives
1
lim P[|lv — v.| > €] < = lim A[f](t) =0,

t—o00 52 t—o00

which implies the formation of velocity alignment in probability sense.

Finally, we address the deterministic hydrodynamic Cucker-Smale model.
To derive a hydrodynamic model from (1.0.2), we introduce the macroscopic
observables such as the local mass, momentum and energy densities:

p(t,x) = [ fdv, (pu)(t,x) ::/ vfdv,
Rd Rd

1 1
(E)(,t) = “plul + pe, pei= 1+ / v — (e, )2 f do.
2 2 Rd

We multiply 1,v,|v|?/2 to (1.0.2) and integrate the resulting relations with
respect to the velocity variable to derive a system of balance laws for the
macroscopic observables (p, u, E):

Op+V-(pu)=0, t>0 xcR%
O (pu) + V- (pu@u+ P) =SV, (2.2.1)
O (pE) +V - (pEu+ Pu + q) = P,

12
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where P = (pix) and ¢ = (g1, -+ ,qq) are the stress tensor and heat flow,
respectively:

pij(t, z) == /Rd(vi —u;)(v; — uy) fdv, qi(t,x) = /Rd(vi — ;) |[v — ul? fdv,

and the source terms are written as follows:

SW(t,z):=p | @ —y)ulty) —ult D)l y)dy,

SO (t,x) = p 5 o(x —y) (BE(t,z) + E(t,y) — u(t,z) - u(t,y)) p(t, y)dy.

Since system (2.2.1) is not closed as it is, one introduces a mono-kinetic
ansatz for f as a closure condition:

f(t,z,v) = p(t, 2)w—u(wr) (V).

With this ansatz, it can be observed that the internal energy, stress tensor and
heat flux in (2.2.1) vanish, and we obtain the following Cauchy problem for
a pressureless Euler system with flocking dissipation (see [32] for its rigorous
derivation):

Op+V-(pu) =0, t>0, zeT9,

O(pu)+V-(pu®@u) = p/dgb(x —y)(u(t,y) —u(t,x))p(t,y)dy, (2.2.2)

T
(p(0,2),u(0, 7)) = (pol), uo(x)), = €T

Below, we provide the standing assumptions (H1) — (H2) for the well-
posedness, stability and flocking estimates for (2.2.2). For an integer s > 4+1,

e (H1): The communication weight function ¢ : T4 — R is in C**! and
satisfies symmetric, positive conditions: for each z,y € T¢,

b —y)=dly—a) and inf G() = G > 0.

z€Td

o (#2): The initial data (pg,uo) satisfy the non-vacuum, regularity and
smallness conditions, i.e. for sufficiently small € > 0,

iél%d po(l’) > 0, (po,Uo) e H® x HSJrl, HpO”HS + HuOHHs+1 < €.

13



CHAPTER 2. PRELIMINARIES

Before we state previous results, we introduce a Lyapunov functional & for
flocking:

_ de pudx
Jra pd

Then, the deterministic HCS model can be summarized in the following the-

Eolt) = /T plu— Bz, uft): —u(0), £>0. (2.2.3)

oremni:

Theorem 2.2.3. [48] For a given positive constant T > 0, suppose that
conditions (H1) and (H2) hold. Then, there exist positive constants C =
C(T) and 0 < ¢ < 1 such that the Cauchy problem (2.2.2) has a unique
global-in-time classical solution (p,u) satisfying the following properties:

1. (Propagation of the Sobolev regularity): The solution (p,u) satisfies the
following reqularity and uniform-in-time boundedness condition:

inf p(t,z) >0, (p(t),u(t)) € H* x H'  fort e [0,T),

(t,z)€[0,T)xTd

sup ([lp(t)]
0<t<T

Hs + Hu(t)||Hs+1) < \/g

2. (Finite-in-time stability): For two classical solution processes (p,u) and
(p,u) to (2.2.2) with initial data (po,uo) and (po, Uo) respectively,
sup (llp(t) — p(®)II7> + llu(t) — a(t)|lZ1)
0<t<T

< C(T)(llpo = pollze + lluo — Toll7)-

3. (Exponential flocking estimate): The functional Ey(t) decays exponen-
tially pathwise:

go(t) < 672¢ml|p0”th(€O(0), vt > 0.

Remark 2.2.2. By Theorem 2.2.3, the local mass p stays positive. Moreover,
since the solution is classical, the momentum equations of (2.2.2) can be
rewritten as

Ou+u-Vu = N oz —y)(ult,y) — ult,x))p(t, y)dy.

14



Chapter 3

A local sensitivity analysis for
the hydrodynamic
Cucker-Smale model with
random inputs

In this chapter, we present a local sensitivity analysis for the hydrodynamic
Cucker-Smale model with random inputs. Recall that the HCS model with
random inputs explains the dynamics of observables (p,u) governed by the
following random equation:

Op+V-(pu)=0, t>0 2T 2€Q,

O(pu) +V - (pu @ ) (3.0.1)

=0 [ 6 =g ult.p.2) =t 2plt, . )y
subject to random initial data:
(p,’UJ(O,ZC,Z) = (po(x,z),uo(x,z)), IETd, z € Q.

The main results of this chapter are three-fold. First, we present the prop-
agation of pathwise well-posedness of the random HCS model (3.0.1). For
s > 44 m+ 1, if the initial processes and their z-variations {(d.po, dLuo)}1"
satisfy the non-vacuum, regularity and smallness conditions, we show that

15



CHAPTER 3. A LOCAL SENSITIVITY ANALYSIS FOR THE
HYDRODYNAMIC CUCKER-SMALE MODEL WITH RANDOM

INPUTS l . L
z-variations of solution processes {(9.p, d'u)}™, exist in any finite time inter-

val, and satisfy the desired regularity and smallness conditions (see Theorem
3.1.1 and Theorem 3.1.2).

Second, we provide a finite-in-time L2-stability of the z-variations to sys-
tem (3.0.1). More precisely, let (p,u) and (p,u) be solution processes to
(3.0.1) corresponding to initial processes (po,uo) and (po, o), respectively.
Then, there exists a positive random function C' = C(T, z) such that for
each T' € (0,00) and z € Q,

sup S (1050t 2) — 0Ep(t, 2) 2t + 080l 2) — Dbt 2)) i)

0<t<T 0<I<m

< O(T,2) Y (188p0(2) = 0po(2)IFm1 + 102u0(2) — Lo (2) | m-1s1) -

0<i<m

Third, we show that the bulk velocity process and its z-variations {dLu}
exhibit an exponential decay toward the mean-velocity under a prior: as-
sumptions, which implies the flocking estimate. We assume the uniform—in—
time boundedness for solution processes and their z-variations {(d'p, dLu)} ™,
and impose an a priori condition for the lower bound of the commumcatlon
weight function to obtain the exponential decay of {9Lu} toward its mean-
velocity.

The rest of this chapter is organized as follows. In Section 3.1, we present
the pathwise well-posedness for the random HCS model. In Section 3.2, we
provide L%-stability estimates for the z-variations {(&'p, d'u)}™,. In Section
3.3, we present an exponential decay of the bulk velocity process and its
z-variations. In Appendix A, we provide tedious and straightforward proofs
for Lemma 3.1.2, Lemma 3.1.5, Lemma 3.2.4 and Theorem 3.3.2. Finally, we
note that this chapter is based on the joint work [41].

3.1 Pathwise well-posedness of z-variations

In this section, we present a global existence of z-variations (07'p, 07'u) to
system (3.0.1) using pathwise energy method.

16
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Note that in a non-vacuum regime, system (3.0.1) can be rewritten as
Op+V-(pu)=0, t>0 2T 2€Q,
Ou~+u-Vu :/Ed(b(x —y,2)(ult,y, z) —u(t,z, 2)p(t,y, z)dy,  (3.1.1)
(0, u)(0, 2, 2) = (po(x, 2), uo(2, 2)).

First, we derive equations for the z-variations by applying z-derivative to
(3.1.1) to obtain

o)+ Y (1) @pertu) o,
01 (0Mu) + Z (7) (0w - V(0 ) (3.1.2)
=2 algwl/ 02¢(x—y, )0 [u(t,y, ) —u(t, v, 2)] 1 p(t, y, z)dy.

a+pB+y=m

Then, the following estimates directly follow from (3.1.2).

Proposition 3.1.1. Let (p,u) be a sufficiently smooth periodic solution to
(3.0.1). Then, fort >0, m >0 and a fized z € (2,

Ognp(t,z)dx:/ 07 po(z / o7 (pu)(t zda:-/ 07 (pouo)(
Td d

Proof. The proofs follow from the direct integration of (3.1.2). m

For a global well-posedness of the z-variations, we provide our standing
assumptions (A1) — (A2) as follows: For an integer s > % + m + 1,

e (Al): The communication weight function ¢ : T¢ x Q@ — R is in
C*H(T? x Q) and satisfies symmetric, non-negative and boundedness
conditions: for each x,y € T and z € €,

¢ —y,2) = oy —x,2) =0,

|olls .= max sup |8§@fgb(m,z)| < 0.
lal+B|<s+1 (5 2)eTdxQ

17
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e (A2): The initial data (po,ug) satisfy the non-vacuum, regularity and
smallness conditions: for each z € Q and [ =0,--- ,m,

inf po(e,2) >0, (Bpo(2), Dhug(2)) € H*' x H* 1,

x€Td
-+ [|0Luo(2))]

max ([[0po(2)]

0<i<m

Hs—l+l) < E(Z),

where € = €(z) is a positive random function such that supe(z) < 1.
2eQ

For the simplicity of notation, we suppress z-dependence in (p,u) and ¢, i.e.

p(t,x) == p(t,z, z), u(t,z) == u(t, z, z), o(z) = o(x, 2).

To derive a priori estimates, we employ a mathematical induction on m.

3.1.1 First-order z-variations

In this subsection, we consider a global well-posedness for the first-order z-
variations (0,p, d,u) for the initial step of induction process on m. To provide
a global well-posedness, we construct a sequence of approximated solutions
(0", 0,u™™) to (3.1.2). For a given solution (p,u) and m = 1, we may
construct the sequence as follows:

at (azpn—i-l
81‘, (azun+1

~—

+ V- (0.p" ) + V(pd,u™) =0, n=0,1,2,---
+ 0.u" - Vu+u- V(0,u")

_ / 0.0(x — y)(ult,y) — ult,z))p(t, y)dy

P(x —y)(Qu"(t,y) — O.u"(t,x))p(t,y)dy

~—

(3.1.3)

¢(x —y)(ult,y) — ult, 2))d.p" " (t,y)dy
(azp07 azu(J) = (8z,00, azUO>7

subject to the fixed initial data:

(azpn+1<07 x)? azun—H (07 CL‘)) - (azpo(x>v azuo(‘r))

18
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Since the pathwise well-posedness for (p,u) can be similarly obtained from
Theorem 2.2.3, there is no need for (p,u) to be involved in the iteration
scheme (3.1.3). Thus, the iteration procedure in (3.1.3) will be carried out
only for the z-variations (0,p,d,u). We proceed by induction on n for the
sequence (0,p", d,u™). First, we state the results on the uniform-in-n bound
estimates.

Lemma 3.1.1. Suppose that assumptions (Al)-(A2) and induction hypoth-
esis hold: for each z € €,

sup [|0.4 (t, 2)|| s < V/e(2).
0<j<n
0<t<T

Then, there exists a unique 0,p" ' = 0,p" " (t,z) € H*! satisfying relation
(3.1.3)1 and a bound:

e(2)
5

sup [|0.p" (¢, 2)|| o1 <
0<t<T

Proof. Since system (3.1.3) is linear with respect to d,p""!, the existence and

n+1

uniqueness for 0,p" " are obvious. Thus, it suffices to show the boundedness

of the solution. Here, we split the estimates into the zeroth-order case and
higher-order case.

e Step A (The zeroth-order estimates): First, we multiply (3.1.3); by 9,p"*!
and integrate it over T¢ to yield

10 n
§§||5z,0 HH%z
1

_ ! / (V- )]0, Pda — / (V- um)0.p" e
Td

2 Td

—/ pV - (0,u™)0.p" dx
Td

Yl
- 2

IV -l lolhwrs g o, Dol o
< (Bplem y Bl ) o, 4 Dol g, o,

< 20" s + 2,

(3.1.4)
10" 122 + Nlpllwroc 0™ ([ 102" 2

19
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where we used Young’s inequality on the second inequality and Theorem
2.2.3 on the last inequality. Then, we integrate the previous relation (3.1.4)
to derive

t
o e < € (22 [ o s + %) 319
0

e Step B (Higher-order estimates): For higher-order estimates, let 1 < k <
s — 1. Then, we apply V* to (3.1.3);, multiply by V*(9.p"!) and integrate
the resulting relation over T? to yield
10
20t

1 n
=3/, V(0" )V - u)de

= [ [VH e V0 — - V(0.0 )| V0.

IV (2:p™ )17

_ / azpn+1vk(v . u>vk(azpn+1>dx
Td
_ / [Vk(azpn—i-lv . U) _ azpn+1vk(v . u)] V’“(@Zp”“)dx
Td
—/ VE(Vp) - 0.u"V*(0.p" ) dx
Td
. / {vk(azu”vp) — Q- Vk(Vp)] VR (8. ") dx
Td
—/ pV*(V - 0,u™)V*(0.p" ) dx
Td
— / [Vk(p(v - 0u™)) — pVE(V - (9Zu")] VE(0,p" ) dx,
Td
8
= ZIM
i=1
Below, we estimate the terms Z;; separately as follows:

o (Estimates for Zy;, i = 2,4,6,8) : We use the commutator estimate from
Lemma 3.4 in [73] to obtain

I < C[IIWHLOOIIV’“(ﬁzP"H)HLz + IV (0:p" )l [V 0l 2 | V(09" | e
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<C

|

2
Hs—1

et [[VH (02" ) 2 + 11020 e [V ul 22 | [V (020" | 2

< 061/2|’82pn+1|

where ¢ and C' are positive random functions independent of n and we used

the assumptions, Theorem 2.2.3 and the Sobolev embedding:

[Vullze < Cllull (g1, < Clulls.

(3.1.6)

For other terms, one uses the commutator estimate, (3.1.6), Theorem 2.2.3

and Young’s inequality to get

T < C_HV(@p”“)HLwIIVkUI\Lz+IIV'UIILwllvk(azp"“)lle}IIV'“(ﬁzp"“)lle

< 20" e,
Tis < e[ IV @) |1V pll 22 + [V pll o<1V (0 2] 95D )2
(V2] VH(0.pm ) |22 + £72),
Tis < e[ Vallo=IV* (@0 llz2 + |7 - (0119 pll 2 | I (0222

< C(M2|VH (0.1 |22 + £972).

<C

o (Estimates for Zy;, i = 1,3,5,7): By direct calculations, one easily obtains

YA
i3

115

Ti7

IVE(0.p" )72 < eIV (0:0" )] 2

< 100" | oo [V ][ 2 [ VF (820" ) | 2
< CEV20,p" | %0s + £%/7),

< IVl 2 |02 || oo [V (020" | 2
< CEVPIVHO.pM Y5 + %),

< |lpll L= IV @) | 2]V (09" | 2
< CE VA 0 B+ ).

Yl
- 2

We combine all results for Z;;’s to obtain

10

20t

IVE(0.p" )72 < C(e2]|0:p" [Fes +€%2).
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Summing (3.1.7) over 1 < k < s — 1 and adding these to (3.1.5) yields

0
QH@P"W Ha1 < 0(51/2”8an+1| Hrao 53/2)'

Then, Gronwall’s lemma and the smallness of € yield the desired estimate:
n 1/2 1/2 £
10:p 3+ < Tl + (T 1) < =

]

Lemma 3.1.2. Suppose that assumptions (A1)-(A2) hold and let (0,p°, 0,u/)
be the j-th iterate satisfying the following assumptions: for each z € (Q,

max sup ([0.(1.2)|

B j
max sup. pret 1100 (8, 2)|

we) < Vel(z2).

Then for each z € §, there emists a unique O,u™* = du"*(t,z) € H*
satisfying relation (3.1.3)9 and the following bound:

e(z
sup ||0.u" (¢, 2)||gs < 2( ),
0<t<T

for each =z € €.

Proof. Since the proof is similar to that of Lemma 3.1.1, we leave it to Ap-
pendix A.1. O

Remark 3.1.1. From Lemmas 3.1.1 and 3.1.2, one can find out that if
assumptions (A1) and (A2) hold, the induction on n yields that for every n
and z € Q:

sup (||0.p"(t, 2)|| gs—1 + || 00" (¢, 2)||ms) < Ve(2).
0<t<T

Now, we provide estimates for the convergence of the sequence (9,p", d,u")
in L2 x H.

Lemma 3.1.3. Suppose that assumptions (A1)-(A2) hold. Then, for each
z€Q andn € N,

1(0:p™ 4 = 0:p™)(t, 2)IIZ2 + 10" — Dou™)(¢, 2) I

< C(2) (/0 (10:=p" = 0:2p") (s, 2)IIZ2 + (0™ = D.u™) (s, 2) |7 ) ds

t
+ / ||(azun - azun_l)(87 Z)‘ﬁ{ld‘s) )
0
where C' = C(z) is a positive random function independent of n.
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Proof. 1t follows from (3.1.3); that

10
20t

= ——/ V|0.p" ™ — 0.p" | u da
2 Td

V- (p(0u" — 0.u"1))(0:p" = 0.p")d
Td

<V UHLoo

—N0.p" = 0.p"|[72

10:p" " — 029" 172
+ HPHWI,ooHazu — 0:u" | 1|0=p"" = 02p" | 12
< C'(||8an+1 - azan%? + [|0.u" — azun_lniﬂ)'
We integrate the above relation to see
1(0:p"" = 0:p™) (8, 2) 72

) . - ) (3.1.8)
<O (1004 =005 b N0~ 0205, s
Next, one uses (3.1.3)q to yield

n|2
A P

= —/ (O.u™ — 0.u™ ) - Vu - (O.u" — 0,u™)dx
Td

1
- —/ u - V]0.u"t — 0.u"Pdx
Td

2
b [ ot=po. | T 0 oot - i@y

T2d

+ | oz —y)(uly) - w(@))(0.p" = 8.0") (y) (Bu"t — O.u™) (x)dyda
’]1‘2
< ||Vu|pe||0u™ — qu”_lﬂLz|]8zu”+l — 0, u"|| e
1 n n
+ §HV sl peo | Ou™ T — Du”||7

+2[10llllpllz2llO-u” = D™ 2| 0w — O™ 2
+ 2016 llsllullz210=p"" = 0p" 12|02 — O™ 2.

23
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We use Young’s inequality and integrate the previous relation over [0,t] to

get

1(0:u" " = 0.u™)(t, 2) |22

< <(/DM =0 o N0 0 s

Q/nau - >@zmpm>

For the H'-estimate for (9,u™™ —d,u™), we use the Cauchy-Schwarz inequal-

ity to get

_ ny (|2
L0 9.0 — o) s
V((0.u" — 3"t - Vu) : V(O,u™™ — o,u™)dx
Td
V(u-V(0.u" —0,u™) : V(0,u" — 0.u™)dx
']l‘d

; vwwwn[w“ww“” p@V@WH—@MMMWx

724 —(u" = u" ) (x)

— d(x — )V (0,u™ — 0u™ N (2)p(y) : V(O,u" — 0u™)(x)dydz

T2d
vt — ey [ @7 = 00 (0)
# [ Tt — ) — ooy | O SN0y
< o — 0 s e [V (Do — Do)
V - e n n
+ %HV(@ZU +1_ azu )H%Q

+2||gllsllollz2ll0:u™ — D™l [V (@0 = 0.u™) | 2
+ 2|0 llsllull 1= = 0.p" |21V (Dou™ — O™ | 2.

Again, using Young’s inequality and integration along [0, t] give
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IV (00" = 0.u™)(t, 2)]IZ2

go<z>< [ 0077 =00 5,2 100 =00 5,2 s

¢
+/ IV (0.u™t — 0.u™) (s, z)||%2ds>.
0

Finally, one combines (3.1.8), (3.1.9) and (3.1.10) to yield the desired result.
[l

(3.1.10)

Now, we are ready to state our first result on the well-posedness of a global
solution to (3.1.3).

Theorem 3.1.1. Suppose that assumptions (Al)-(A2) hold. Then for each
z € Q, there exists a unique solution (9,p(2),0,u(z)) € H*™' x H* satisfying
system (3.1.3) and uniform bound estimates:

|lus) < \Ve(z), foreach z€Q.

Proof. For each n € N and z € €2, define

0smp (10.p(t, 2) || zrs—1 + || O u(t, 2)

An(t,2) = [10:p" = 0op" 72 + 00" — O™ 7.

We can deduce from Lemma 3.1.3 that for each z € €2,

At 2) < O(2) ( /0 tAnH(s,z)dH /0 tAn(s,z)ds>, t € [0, 7).

Then, the Gronwall-type lemma in [6] gives, for each z € Q,

oo (10=p" = 0=p" 1) (L, 2) 172 + [[(Dzu™ — D) (L, 2)||7p) < (C(iﬂ

This implies that {9.p"} and {d.u"} are Cauchy sequences in C([0,T]; L?)
and C([0,T]; H'), respectively. From here, one can follow the proof of The-
orem 3.1 in [48] to complete the proof. O
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3.1.2 Higher-order z-variations

In this subsection, we consider higher-order z-variations, i.e. the case when
m > 2 in (3.1.2), in order to complete the induction process on m. Similar
to the case m = 1, we again construct a sequence of approximated solutions
(0t 9™t to (3.1.2) as follows:

B, (O™ ") + V- (A7 p™ ) + V - (p0™u)

P Y () (0 por ) = 0, (3.1.11)

1<l<m—1

(O u" ) + 0™ - Vu +u - V(9 u" )

+ Y ( >3lu V(07 )

1<i<m-—1
|
= Y e 0@t - )iy
a+pB+y=m
Boy#m (3.1.12)

+ [ #la =)@t (y) - o ()e(y)dy

+ y o(x —y)(uly) — uw(x))or " (y)dy,
(00, 8u’) = (92" po, O o),
subject to the initial data:
(02" (0, 2), 7 u" (0, 2)) = (97 po(2), O uo(2)).

Similar to the previous subsection, we first show the uniform boundedness of
the sequence {(9"p", O u™)}5%,.

Lemma 3.1.4. For m > 2 and n € N, suppose that the following conditions
hold:

1. Assumptions (A1)-(A2) hold.

2. Forl < m—1, the l-th z-variations {(0.p, OLu)};",! satisfy the following
boundedness condition:

Hs l+1) \ &€ Z Vz S Q.

max sup (||8l (t,2)]

0<Ii<m-—1 0<
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3. The sequence approximating the m-th z-variation of the bulk velocity
process satisfies the following boundedness condition:

Hs—mt+1 < \/8(Z), Vz € Q.

Orgjagl oililgT 0"t 2)

Then, there exists a unique O™ p" ™' € H*™™ which satisfies relation (3.1.11)
and the bound:

V() Vz e Q.

R

sup |07 (¢, 2)|
0<t<T

Proof. We split the estimates into zeroth-order and higher-order cases as fol-
lows:

e Step A (The zeroth-order estimates): We multiply (3.1.11) by 97p""! and
integrate the resulting relation over T¢ to get

10 .
5&”@ P +1H%2

1
= ——/ (V-U)lé’inp”“\de—/ V- (pdu™) O p
Td Td

2
ZI(@) V- (@) O da
l Td

1<l<m-—1
IV - ull e 02" 1T + [lpllwre 07 6™ || 1 102 07 ] 2

m m— mo N
S (71 1otol 02l 07

1<l<m—1
< CE P07 B+ e%2),

<

+ DN | =

where C' is a positive constant independent of n and we used Young’s in-
equality. Integrating the above relation along [0, t] gives, for each z € ,

t
H@Wﬂ@scem/uwwww@w+ﬂﬁ. (3.1.13)
0

e Step B (Higher-order estimates): For 1 < k < s — m, we apply V* to
(3.1.11), multiply by V*(07p"*!) and integrate the resulting relation over
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T to obtain
19
20t
= — [ VT @ ) VO

Td

— | VHV - (p0u") VRO p" ) ) dee

Td

- > (m) VH(V - (0L pd ) VR0 p ) dae

1<Ii<m-—1
3
= E 1-21‘.
=1

We separately estimate Zy;’s as follows.

IV (@ o™ )17

o (Estimate for Zy;): We use the commutator estimate, Sobolev embedding
theorem, Cauchy-Schwarz inequality and Young’s inequality to get

1
L= [ V@ s
Td

_ /Td [Vk(u NP — - Vk(v<8;npn+l)):| vk(a;ner»l)dx

= [ Op V(Y u) VRO )

.
= [ [FH @ (7 w) = o VRV )| 90

< IV ulle [ @7 )

eIVl D0 2 IV (02 el VPl 2] 074
S At 1Y o P A P8

o [ [P et P e P i s 1 [N o P

< OO e+ €57%),

where ¢ and C' are positive random functions independent of n.
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o (Estimate for Zy) : Similar to the previous case,

T =~ | VH(Vp)- 00 VA @
- /T d [vk(a;"un - Vp) — " V’Wp)} VE (O™ d
— /’]I‘d pVE(V - 0 u™)VF (0 o da
= [ [FH0A9 - 0y = poH(v - o | W@z

< [V pll 20 e V(")
+ (19 @) e IV pllz2 + 9ol [ @) |22 ]I * (0"l
e V@O e VO
+ e[ Vol IVH@ ) 12 + 1V - 0 [ 94pl) IVH (74
< CEPIVHEr s +<¥2)

where ¢ and C are positive random functions independent of n.

o (Estimates for Zy3): By direct calculation,

Tn=— ), (m>{ Tdvk(v(ﬁip))-0?‘luvk(5?p"+l)dx

)
1<i<m—1

L[y o

+/ AL pVE(V - 0" ) VR (0 p" ) de
Td

Vk(aip(v ’ 8:171“)) k(am n+1
= | Dot ey | T

<C ) (I!V’”l@i/)!\m!l@?ZUHLQHV’“(@T/)"“)HLQ
1

1<I<m—

+ IV (02 ) | Lo [V H (D) | 21V (02" 0" ) | 2
+ V() el VH (02 ) 2| VE(O2 ") | 2
+ |0 pll [VHFH (02 ) 2 [ VE (02 ") 22
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+ IV () e V(07 )| 2 [ VH (02 o) | 2
+ V- 32"IUHLwHV'“(aip)|!L2||Vk(02”,0"“)HL2)
< C(E2IVHOr p" Y172 +€¥2),
where C' is a positive random function independent of n.

Now, we gather all the results for Z;’s to yield that for each z € ,

0
IR @Y 2 < OO e+ £52), (3.1.14)

Summing (3.1.14) over 1 < k < s —m, integrating over [0,¢] and combining
with (3.1.13) give

t
”a:mpn—i-luils_m <C (51/2/ H@;npn—i_l(S)H%[s_mds + 63/2> ‘
0
Finally, one can use Gronwall’s lemma to obtain the desired result.
O

Lemma 3.1.5. For m > 2 and n € N, suppose that the following conditions
hold:

1. Assumptions (A1)-(A2) hold.

2. Forl < m—1, the l-th z-variations {(8'p, O'u)} ;"' satisfy the following
boundedness condition:

max sup ([10Lp(t, 2)|

[
0<i<m 10< Hs— l+ ||a (t Z

Hs z+1) \E Z Vz €.

3. The sequence approrimating the m-th z-variation of the local mass and
bulk velocity processes satisfies the following boundedness condition:

max su " (t, 2
i sup (1077(.)

pre-m + |07 (8, 2) || re—m+1) < V/e(2).

Then for each z € Q, there exists a unique O™ u™ = 9™y *1(¢t,2) € H~™*!
satisfying relation (3.1.12) and the bound:

sup |7 (, 2| pemmer < Y 52(2) vz e Q.

)
0<t<T
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Proof. We leave its proof to Appendix A.2. m

Remark 3.1.2. Form > 2 and n € N, suppose that the following conditions
hold:

1. Assumptions (A1)-(.A2) hold.

2. Forl < m—1, the l-th z-variations {(8'p, OLu)} ;™" satisfy the following
boundedness condition:

H.s l+1) \/ € Z Vz S Q.

Then, it follows from Lemmas 3.1.4 and 3.1.5, that for every n,m € N and
z €

max sup (||8l (t,2)]

0<Ii<m-—1 0<

Sup (Ham n(t Z)HHS m + ||am n(t A HHS 7n+1 \/ Z VZ E Q

0<t<T

Now, we assert that the sequence is Cauchy under the induction hypoth-
esis on m.

Lemma 3.1.6. For m > 2 and n € N, suppose that the following conditions
hold:

1. Assumptions (A1)-(A2) hold.

2. Forl < m—1, the l-th z-variations {(8'p, O'u)} ;"' satisfy the following
boundedness condition:

max sup ([10Lp(t, 2) || o=t + |OLult, 2) || ro-11) < V/E(2), Vze€ Q.

0<i<m-—1 0<t<

Then, for each z € 2,
18" = O p")(t, 2) |72 + (1 u™ ! = O ™) (t, 2) ||

t
<C(2) ( [t = o ) + @2 = 0) (5,2 ) ds
t
w [ = oy, z)!l?pds) ,
0

where C' = C(z) is a positive random function independent of n.
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Proof. We can replace 0, in the proof of Lemma 3.1.3 by 02" to get the desired
proof. The details will be omitted. ]

Finally, we are ready to present our result on the well-posedness.

Theorem 3.1.2. Suppose that assumptions (A1)-(A2) hold. Then for each
m € N and z € §, there exists a unique pair (07 p(2),00u(z)) € H*™ x
H~ ™+ satisfying system (3.1.2) and the following uniform bound estimates:

(197 0(t, )l s-m + 1107 ult, D) emsr) < V), V2 € Q.

sup

0<t<T
Proof. One can use induction on m, Lemma 3.1.6 and follow the proof of
Theorem 3.1.1 to show that {(97"p"(z), 0l"u"(2))}22, is a Cauchy sequence

in C([0,T]; L*) x C([0,T]; H') for each z € Q. From here, we again refer to
[48] to complete the rest of the proof. O

3.2 The local sensitivity analysis for stability

estimates

In this section, we conduct a local sensitivity analysis for the L2-stability
estimates of the solution processes to (3.0.1) and their z-variations.

3.2.1 Higher-order L?-stability

In this subsection, we derive a higher-order L2-stability estimate of solution
processes to (3.0.1) which will be used in the L?-stability of the z-variations.
First, we begin with the L2-stability estimate for the local mass processes.

Lemma 3.2.1. Suppose that assumptions (A1)-(A2) hold, and let (p,u) and
(p, ) be two classical solution processes to (3.0.1) corresponding to the initial
data (po,uo) and (po, o), respectively. Then,

%H(p = )t 2)[Em < C(T,2)(I(p = p)(E 2)lgm + Nl (w = @) (E, 2) [Fgmes)

where C' = C(T, z) is a positive random function.
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Proof. 1t follows from Theorem 2.2.3 that
= = s s+1 : d
(p,u), (p,u) € H* x H w1ths>§~|—m+1.

Since the proof for the case m = 0 is analogous to the higher-order case, we
only consider the higher-order estimates. So we first apply V¥ to (3.0.1), for
1 <k <mto get

aV*(p—p)+ V*V - ((p — p)u+ p(u — @) = 0. (3.2.1)

Then, we multiply (3.2.1) by V*(p — p) and integrate the resulting relation
over T? to obtain
10

S 1940 = )

0<r<k r
-5 (5) L9 - a9 - s
- (I:) 5 Vi = D)V (V(p—p)) - (V"0)]da
-2 () L0 p o et

Next, we estimate Z3;’s one by one as follows:
o (Estimates for Z3;) : We use the Sobolev embedding theorem to obtain

Zu=- Y (5) [ 7= 0 @0 (7 (0 - e

0<r<k
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IN

k _ . _
5 ()19l 194 = a9 = )

0<r<k

<0 3 (5ol 1940~ P9 - D

0<r<k

< C(T, 2)(IV*(p = P[22 + llu = all)-

A

o (Estimates for Zs) : Similarly,

To== 3 (1) [70- T n@ mas

k r — —r _
<> (T’)HV olle=1V*(p = Pl |75 (u — @)

0<r<k

k - . )
S (r)”f’”ﬂs—IHV’“(p—p>||Lszk L — )|

0<r<k

< C(T,2)(IV*(p = Pl + [l — allne).
o (Estimates for Zs3) : One has

To=- % (1) [ 700" (V=) - (¢ 0o

0<r<k

k —r = — r _
< X (D)l - e o e

0<r<k—1

‘s / VM= PV - ad

<c ¥ ()

0<r<k—1
+C||V*(p — p)||3:|1l
< CO(T,2)|lp — pliage.

=V (o = D)1 221V (o = D) 2

Hs—m
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o (Estimates for Zs4) : We have

Tu=—Y (k> [ 940~ AT~ ) (T (V )

0<r<k
<y ()nv’f e [V = D)2 197 (0 = 7)o
0<r<k
kY, _ N . _
<y (T)Hums VE (o= DV (0= )1
0<r<k

< C(T.2)llp = Pl

By collecting all results for Zs;’s, summing over 1 < k£ < m and combining
with lower-order estimates, one gets the desired estimate. O

Next, we return to the L?-stability of the bulk velocity processes.

Lemma 3.2.2. Suppose that assumptions (A1)-(A2) hold, and let (p,u) and
(p,u) be two classical solution processes to (3.0.1) corresponding to the initial
data (po, uo) and (po,ug), respectively. Then,

0 _ _ _
il =)&) mer < CT,2) ([ (= @)t 2) s + [1(0 = P)(E 2)][22),
where C'= C(T, z) is a positive random function.

Proof. As in the proof of Lemma 3.2.1, we only consider the higher-order
estimates. Applying V* to (3.0.1), for 1 <k < m + 1 gives

OV*(u—1a) + V¥((u—a) - Vu) + V¥a - V(u—a))

_ ok o —u ) | @) —u(@)(p(y) = p(y))
=V Ly >[ oy (uly) — aly) — ply)(ulz) — a(x) |

Then, we use commutator estimates, Sobolev embedding and Young’s in-
equality to get

k =\ |2
IV )
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= — | V¥(u—a)- Vu]V(u — a)dx

- /Td VEa - V(u—a)|V*(u — a)dw

+ [ V*o@ —y,2)(uly) —u(@)(ply) — o) VF(u(z) — u(z))dydx

T2d

+ | Vol —y,2)p(y)(uly) — a(y))] VF(ule) — a(x))dydz

- [ Vol =y 2)pto)ule) — i) V¥ u(o) — ata)dyd
< Cllullelu = @l + Cloll

+ C||Blsl1pll e llu — @l %
< C(T, 2)(|lu — alle + llp — pll32)-

m+(llp = pllZz + IV (u = @)ll72)

We sum the above relation over 1 < k£ < m + 1 and combine with lower-
order estimates, which can be obtained analogously, to get the higher-order
estimates. ]

Finally, we combine Lemma 3.2.1 and Lemma 3.2.2 to derive our second
main result as follows.

Theorem 3.2.1. Suppose that assumptions (A1)-(A2) hold, and let (p,u)
and (p,u) be two classical solution processes to (3.0.1) corresponding to the
initial data (po,uo) and (po,Ug), respectively. Then, there exists a positive
random function C(T, z) such that

Sup_ (IGe = p) (&, 2)[agm + 1 (w = @) (E, 2) [y

0<
< C(T. 2)(ll(po = £o) () [Zim + [[(uo = Tio) (2)[[37m+1).
Proof. We combine Lemma 3.2.1 and Lemma 3.2.2 to get

2 (o= P+ 10 = D))

< CT,2) (100 — §) 2 + 1t — ) 2rrs)

Here, one can use Gronwall’s lemma to yield the desired result. O]
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3.2.2 [L’-stability estimates for z-variations

In this subsection, we discuss the L2-stability estimates for the z-variations
of the solution processes. First, we consider the L2-stability estimates for the
z-variations {0!p} of local mass processes.

Lemma 3.2.3. Suppose that assumptions (A1)-(A2) hold, and let (p,u) and

(p,u) be two solution processes to (3.0.1) corresponding to the initial data

(po,wo) and (po, o), respectively. Then,

0 _ _ _

S o <)Y (102602 0 ) ).
0<i<m 0<i<m

where C' = C(T, z) is a positive random function.

Proof. As in Lemma 3.2.1, we only consider the higher-order estimates. For
1<k<m-—1land 1<I<m, weapply V¥0' to (3.0.1) to get

) _o;q(rl) () LT 0= 90t ) 94 —
Z(l) (5) [ (7700 = vm9 - @) VH(@L(o — e
Z(l) (1) L (@) 9ot ) 0k = )i
_Z(l) (k)/ (V7200 )V (V- 8 (w = @) ) V(L (p — p)de

Below, we estimate Z4;’s separately.

o (Estimates for Zy;): In this case, we have
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== ¥ ()(E) L] Versaln | et - mas

< T (LI [

0<r;<l
0<ro<k
(r1,m2)# (k)

1

+3 [ (V0T - p)Ps

< X (o (T

0<ri1 <l
0<ro<k
(Tl 7T2)7£(lfk)

1 _
29wl 14— I
(Y e 90—

<C ai Tlu s—l( z . L
=¢ 2 (o) Gt (YT A0~ I

0<ro<k

(T17T2)7£(l7k)

+ Cllullgn 94 — D)2
<C(T.2) 31000 - )

0<r<i

o (Estimates for Z,5) : By direct calculation, one has

e 2 (LT it

0<ri1<l
0<ro<k
“Y(F VI (p = p) k(o _
0;<l (7"1> (7“2) /Td ( . Vk*m(v.aifnw V*(0,(p — p))dz
og_rglik

(T17T2)7£(l7k)
- [ (7wl = p)Ps
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< = (Cwmara (LG )

0<ri<i
0<ro<k
(r1,m2)#(l,k)

IV ull e [VH(L(p — ) 122

[ k
< l—r1
<o ¥ (D(Herr
O<7‘1<l

0<ro<k
(r1,m2)# (k)

T Cllull e [ V5@ (0 — 2))]2
< C(T,2) 3 1020 — P

0<r<i

( 197202 (0 = P11 )
T HIVEEL (o — p))I122

o (Estimates for Zy3): Similarly, one gets

fa ( D) LT oy ) vt e

0<7‘2<k)

> (D (e (Noig ot i)

0<ra<k
VE-r29t-m (u — u)HLz
3 (O ()
0<rm <l ) ||V (@(P‘P))HL?
0<r2<k

< O(T,2) Y (V"o = p))lIz2 + 105 (w = @3- -

0<r<l

o (Estimates for Zy4): By direct estimates, one obtains

Tu=- ), (:1) (i) / (V;(ka T;% (O (u— u)))v’“(ai(p —p))dzx

0<r; <l
0<r2<k

« 2 (Ve (G

0<r <l
0<r2<k
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<o ¥ (1)(5)es

0<rm <I
0<r2<k

<O(T,2) Y (VM@0 = PDze + 192 (w = @) Fpnren) -

0<r<l

( |VF=r 4 (@ (u — @) )
" V@ — 7)o

Finally, we collect all estimates for Zy;’s, sum them over 1 < k < m — [,
0 <1 < m and add the zeroth-order estimate to get the desired result. [

Next, we provide estimates for z-variations {0'u} of the bulk velocity
processes.

Lemma 3.2.4. Suppose that assumptions (A1)-(A2) hold, and let (p,u) and
(p,w) be two classical solution processes to (3.0.1) corresponding to the initial
data (po,uo) and (po,uo), respectively. Then, we have

9

ot Y N (=)l < C(T,2) Y (I10Ep = P)IIZ2 + 105 — @)[Fmrer)

0<i<m 0<i<m
where C' = C(T, z) is a positive random function.

Proof. Since the proof will be straightforward and similar to that of Lemma
3.2.2, we leave its proof to Appendix A.3. n

Finally, we combine Lemma 3.2.3 with Lemma 3.2.4 and use Gronwall’s
lemma to deduce the following result.

Theorem 3.2.2. Suppose that assumptions (Al)-(A2) hold, and let (p,u)

and (p,w) be two classical solution processes to (3.0.1) with initial data (pg, uo)

and (po, o), respectively. Then, there exists a positive random function C (T, z)
such that

sup D (19200 = p)(t, 2) | s+ 10w = @)(t, 2) [ Fym-rs1)

0<t<T 0<i<m

<CT.2) 3 (10400 — 20} (2) s + 19 (utg — 10)(2) i)

0<i<m
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3.3 A local sensitivity analysis for flocking es-

timate

In this section, we provide a local sensitivity analysis for the flocking behav-
ior to system (3.0.1).

It follows from Proposition 3.1.1 that

/W p(t, z)dx = /Td po(z)dz, /Td(pu)(t,z)dx = /Td(pou())(z)dx’ t>0, 2 € Q.

Then, without loss of generality, we may assume that the average bulk ve-

locity is zero:
o puds

 Jpapdz

For a given z-variations {07"u}, we introduce a family of flocking functionals

Em:

0.

ue(t, z) :

Enl(t, z) = / p|0™u|*dx, m>1,
Td

where &y(t, z) is defined in Theorem 2.2.3. Although the functionals &,, are
not z-variations of a certain quantity, estimates for these functionals will be
of our concern since they play a role in estimating ||07*ul| ;2. Based on the
estimates for &,,, we provide estimates for the exponential decay of ||07ul| .

under the following a priori assumptions (B): for an integer s > g +m+1,
T € (0,00) and each z € Q,

(B1) The solution process (p, u) and their z-variations {(9.p, d'u)}7, satisfy
the following uniform boundedness condition:

e sup (10p(t, )llgres + 0u(t, 2)leinr) < UC),
0<i<m ¢¢(o,T]

for some positive random function U = U(z).

(B2) The initial mass p, satisfies the non-vacuum condition:

inf po(z,2z) >0, foreach z € Q.
zeTd
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(B3) The communication weight function ¢ : T¢ x Q — R is in C**1(T9 x
) and satisfies symmetric, positive, boundedness conditions: for each
z,y € T and 2z € Q,

demna = g
. . ‘U Lee
Jnf, 0(@,2) = 6m(2) > sup ( 2Moollz ) /

‘= max su 0% p(x, 2)| < o0.
o1l |a|+\ﬁ|§s+1(x,z)em%m|z S

Remark 3.3.1. The lower bound assumption for ¢ given in (B3) implies a
sufficient condition for system (3.0.1) to exhibit the decay of the bulk velocity
toward the average bulk velocity. To be precise, the condition means the align-
ment force is so strong that it surpasses the tendency of bulk velocity field to
deviate from the mean velocity, and it will lead to the velocity alignment.

In the following lemma, we study the exponential decay of ||ul|zz.

Lemma 3.3.1. Let (p,u) be a classical solution to system (3.0.1) and suppose
that the a priori assumptions (B) hold for (p,u). Then we have

lu(t, 2)|22 < Fo(2)e 22t e 0,T),

where Fy(z) and A(z) are positive random functions.

Proof. 1t follows from (3.0.1) that

10 ,
52& TW‘U’d%
—— [V udet [ oa = )u) - u(@) - u(@hp(o)dyds
Td Td xTd
L vowpldet [ e — y)(ul) — u@)) - ulx)p(y)dyda
2 Td Td Td
V - ullreo
< IV gz, — ol s + sl pullos o
sup V -u)(t)| e
S <__¢me0“L1%_ 0<f<T|K2 )()HL +_5> HUH2
2
100t 2),
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where & is the functional defined in (2.2.3) and the positive constant 6 > 0
satisfies the following relation:

sup [|(V- ) (t)]| o
0<t<T

—0>0.

Smllpolls — ;

We let A(2) 1= by | pol| 1 — TRost=t ”(j'u)(t)”mo —d. Then, we have

B 5 R
a”“”%z < —2A(2)|lull7z + Fo(z)e A, (3.3.1)

where random functions A and Fj are given by the following relations:

R 2
AG) = dullpolur, Fo(2) = 102y ol

Now, we apply Gronwall’s lemma to (3.3.1) to obtain
(

~—

F;
o(z (672A(z)t _ 672A(z)t>

sup [[(V - u)(

0<t<T

lullfs < lluollzae ™" +

|~

)| £ + 260

S f-o(z)efﬂ\(z)t7

where Fy(z) is given by

F()(Z)
sup [|(V - u)(t

0<t<T

Folz) = ||uol|?> + )
U( ) H OHL )HLOO"‘Qé

This implies our desired result.

[]

Next, we derive the temporal decay estimates for functional &, (t, z) and
|07 u|| based on the induction argument.

Theorem 3.3.1. Suppose that a priori assumptions (B) and the following
induction hypotheses hold for 0 <1 <m —1:

&(t,z) < El(g)eff\(z)t7 Haiu”?ﬂ < f-l(z)e—[x(z)t’

where Ey(z) and Fi(z) are positive random functions and A(z) is given in
Lemma 3.3.1. Then, there ezists a positive random function E,,(z) such that

Emlt,2) < Ep(z)e 0,
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Proof. 1t follows from (3.1.2) that

0
Egm(t, Z)

= / Op|0u|*dx + 2/ pOTu - Op(0T u)dx
Td Td
— _/ V- (pu)|0ruPdr — 2 Z (m> / pO™u - (0w - VO ') dx
Td =0 l Td

! 02(x — 9)(0uly) - Fu(a))
22 L. ( - p(y)pla) - () )dydx

_ —Qi (T;‘) /T pdu- (- VO u)de
T Iy B T i P

131~ o o
el 9 p(y)p(x) - 07 u(x)
=: Is1 + Lso.

Next, we separately estimate Z5; and Zs5 as follows:

o (Estimates for Zs;) : First,

/ pOZu- (07w Viude = — | V- (pd7'u ® O'u) - udx
Td T
<V - (p0u @ 07w || 2 |ull 2 < UP(2) 7/ Fo(z)e 2,

For m =1, one gets ~
Ty <U(2)\/Fo(z)e 21,

For m > 2,

m—1
m
2 Z ( / ) /Td pO™u - (0w - VO ) dw
=1

<2 (T) IV 0) e n(t, 2Dt 2)
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m—1

<ogzinn)+ MY (7)) weete.o),

=1

where ¢ is the same as that in Lemma 3.3.1 and we used Young’s inequality.

Hence, we can obtain that if m > 2,

m—1 2 i
Ts1 < 0E(t. 2) + mTl > (”;) U (2)EX(, 2) + U (2)\/ Fo(z)e N,
=1

o (Estimates for Zs53): By direct calculation, one has

o =2 | oz —y)(0 uly) — 0 u(@))p(y)p(x) 07 u(x)dyds

T2d

m! 02¢(x — y)(9uly) — 0 u(x)) .
i 2%;:7” alply! /w ( - 02p(y)p(x) - 07 u(x) ) v

- [ ot~ piarut) — )P otw)pte)iyda
|

- 02¢(x — y)(97u(y) — u(x)) )

12 / ( 0 Zu(y) — 9 s

Oé-‘rﬁ;m Oé'/B"Y' T2d . agp(y)p(g;) . az U(I)

B#m
< —2¢m|lpoll21Em (t 2)
102w 32 pl| 1 | PO | 11 )

+ 2 ¢ ( z z pe IL

a+g2;;=m H || +||83;0||L1||P65U32 UHLl

< <2ulnlnnt.
40 ,5,,||¢|| 020l /Tl e 1022l 12 /B, 2)

a+p+y=m

algl [

B#m
< (=20mllpollzr + 6)Em(t, 2)
2 (M;mw_g ~
T S P N P R [ S O

where we used
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and Young’s inequality. Therefore, we collect all results for Z5; and Zs, to
yield

oEn(t,2) < ~2omllooll — (e, 2) + Bnl2)e N, (33

where E,,(z) is given by

Bi(z) = W EWVFG + 5 61U ) Fol2),

Bn(2) 1= UM (2) Fole) + E2.(8, 2) + 2=t () 2)E(2)

=1

243
P S (el >) Folz), m>2

a+pB+y=m
p#m

Now, we integrate (3.3.2) with respect to time to get
En(t, z) < En0, 2)6—2(¢mllpollL1—5)t
En(2)
omlinll — ) — A
< B (2)e AR

(e AP _ o=2Imlpoll 1=}t

where E,,(z) is written as
2(¢mllpollLr = 6) — A(2)

This gives our desired result. [

En(2) :=&,(0,2) +

Finally, we provide all estimates for the L?-decay of the z-variations toward
the corresponding z-variations of the average bulk velcoity process.

Theorem 3.3.2. For a positive constant T' € (0,00), let (p,u) be a classical
solution process on [0,T] and suppose that a priori assumptions (B) hold.
Moreover, assume the following induction hypotheses hold for 0 <1 < m and
0<p<m-—1:

&(t,z) < El(z)e—f\(z)t’ ||a§u”%2 < ]:-p(z)e—f\(z)t7
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where Ey(z) and F,(z) are positive random functions. Then, there exists a
positive random function F,,(z) such that

187 ul|2, < Fr(z)e N,

Proof. We leave its detailed proof in Appendix A.4. ]
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Chapter 4

On the stochastic flocking of
the Cucker-Smale flock with
randomly switching topologies

In this chapter, we present an emergent stochastic flocking dynamics of the
Cucker-Smale ensemble (1.0.4) under randomly switching topologies. Recall
that the evolution of the C-S system with randomly switching topologies is
determined by the following second order system:

dz;
d—i v, 1<i<N, >0,
N
d’UZ‘ 1 o (401>
i N ZXij¢($J i) (v; — vi),

where (ij(t)) denotes the time-dependent network topology correspond-
ing to the switching law o : [0,00) X @ — {1, -+, Ng}. Note that once
w € Q is fixed, o(,w) a {1, -+, Ng}-valued, piecewise constant function
whose discontinuities are {t;(w)} and Go(,(w)w) € {G1, -+ ,Gn, } is chosen as
the network topology during the interval [t,(w), tr41(w)).

We briefly discuss our main result on the emergence of stochastic flocking
of the model (4.0.1). We assume that the probability density function f,
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choice probability pp and communication weight function ¢ satisfy

kb(N — 1 1
swplf) € fat],  —HESD <1 o060 w ro
1<k<Ng & Top

where ¢ is a small positive constant. Then, under the above set of assump-
tions, we show that any solution process (X, V') to (4.0.1) satisfies the mono-
cluster flocking with probability one (Theorem 4.2.1):

]P’(w €Q: 32 >0st sup DX(tw)) <2®, lim D(V(t,w)) = 0) ~ 1
0<t<oo t—o00

The rest of this chapter is organized as follows. In Section 4.1, we review
several basic concepts on directed graphs, scrambling and state transition
matrices. In Section 4.2, we present our sufficient framework and main result
for the stochastic mono-cluster flocking estimate. In Section 4.3, we first
provide a priori flocking estimates along the sample path under two a priori
assumptions on the network topologies and position diameter, and then we
replace a priori condition for the position diameter by suitable conditions on
the system parameters and communication weight, and the a priori condition
for the network topology will be shown to hold with probability one for a
suitably chosen time-block sequence. Finally, note that this chapter is based
on the joint work [25].

4.1 Preliminaries

In this section, we first study the dissipative structure of system (4.0.1), and
briefly review several notions on the directed graphs, scrambling matrices
and state transition matrices.

4.1.1 Pathwise dissipative structure

In this subsection, we study the dissipative structure of system (4.0.1) with
randomly switching topologies. For the symmetric network topology, the
R.H.S. of (4.0.1), is skew-symmetric under the exchange symmetry ¢ <— j.
Hence, the total momentum Zf;l v; 18 a constant of motion. In contrast, for
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a digraph topology, the R.H.S. of system (4.0.1) may not be skew-symmetric
under the exchange symmetry. This breaks up the conservation law for the
total momentum. Despite of this, we can still see that the velocity diameter
is non-increasing pathwise.

Lemma 4.1.1. Let (X, V) be a solution process to (4.0.1). Then, the velocity
diameter D(V') is non-increasing pathwise: for each w € Q,

%D(V(t,w)) <0, ae t>0.
Proof. For a given t > 0 and w € €, let ¢ and j be indices satisfying the
relation:
DV (t,w)) = [[vs(t,w) — v(t, ). (4.1.1)
In the sequel, for a notational simplicity, we suppress ¢ and w dependence in
vy
v; = vi(t,w).

Then, for such ¢ and 7, we have

N
1 (o}
= <Uz Vj NZXikm(vk v@)>
=1 (4.1.2)
1 N
+ <Uj ~ Vi, 3 D Xk (vr — Uj)>
k=1

= jl + j27

where (-, -) denotes the standard inner product in R and we wrote

¢1j = ¢($Z_m]>a i)j:1727”'aN

for convenience. Below, we estimate the terms J;, ¢ = 1,2 one by one.

e (Estimate of J7): For k =1,--- N, we use the relation (4.1.1) to get

= vk = will* = llve = will® = Jlvi = v)?

(v — v, v —v;) = 5 : )
4.1.3
< [vi — vy]|* = g — lloi —v5ll* _ 0.
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This yields

N
1
= 5 D Xaie (vi — vy, 06 — vi) < 0. (4.1.4)
k=1

e (Estimate of [75) : Similar to (4.1.3), we also have

v = vill* = llow = jll* = llv; — vill®

(Uk —vj,v5 —v;) =

2
< vi= ullP =0 =l —ull* _,
2
This again implies
| XN
To =5 D Xk (g — vi, ve — v5) <0, (4.1.5)
k=1

In (4.1.2), we use D(V') = ||v; —v;|| and combine estimates (4.1.4) and (4.1.5)

to get
d
%D(V(t)) <0, ae.t>0.
If D(V(t)) > 0, then we can divide the above inequality by D(V (t)) to obtain

the desired estimate.

D(V (1))

On the other hand, if D(V(t)) = 0 and diffrentiable at ¢, then D(V)
attains a global minimum at ¢, so £D(V(t)) = 0. Hence we have the following
differential inequality:

d
%D(V(t)) <0, ae t>0.

]

Remark 4.1.1. Note that the result of Lemma 4.1.1 illustrates that the ve-
locity diameter is non-increasing in time. Now, our job is to find some con-
ditions leading to the zero convergence of velocity diameter. This will be done
wn Section 4.35.
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4.1.2 A directed graph

In this subsection, we review jargons for network topology modeling by a
directed graph (digraph). A digraph G = (V(G),E(G)) consists of two sets: a
set of vertices (nodes) V(G) = {1,--- , N} with |G| = N, and a set of edges
E(G) CV x V consisting of ordered pairs of vertices:

(5:1) € £(9)
<= vertex i receives an information (or signal) from the vertex j

<= jis a neighbor of 7.
In this case, we define a neighbor set N of the vertex i:
Ni={jeV(@): (j,i) € &G}

If (7,7) € £(G), then we say that G has a self-loop at 7. If G does not have a
self-loop at any vertices, then G is said to be simple.

For a given digraph G = (V(G),£(G)), we consider its (0, 1)-adjacency
matrix x = (xi5):
il ._{ 1 if o (4,4) € €(G),
YT 0 i () € €0).
A path in G from i to j is a sequence of ordered distinct vertices (ip =
by 72n:j)
i=iyg —> i — - iy =
such that (iy,—1,im) € £(G) for every 1 <m < n.

If there is a path from 7 to j, then we say j is reachable from ¢. Moreover, a
digraph G is said to have a spanning tree if G has a vertex ¢ from which any
other vertices are reachable. As long as there is no confusion, we suppress
G-dependence in G = (V(G),E(G)) throughout this chapter:

V=V(G), &=E&Q).
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4.1.3 A scrambling matrix

Next, we recall the concept of scrambling matrices. First, we introduce several
concepts of nonnegative matrices in the following definition.

Definition 4.1.1. Let A = (a;;) be a nonnegative N x N matriz, i.e. a
matrix whose entries are nonnegative.

1. A is a stochastic matriz, if its row-sum is equal to unity:

N
» a;=1, 1<i<N,

Jj=1

2. A is a scrambling matriz, if for each pair of indices i and j, there exist
an index k such that

aixy >0 and aj, > 0.

3. A is an adjacency matrix of a digraph G if the following holds:
a; >0 <= (j,i) €€.
In this case, we write G = G(A).

Remark 4.1.2. Define the ergodicity coefficient of A as follows.

N
p(A) := min Z min{a;, i} (4.1.6)
"=

Then, it is easy to see that
1. A is scrambling if and only if u(A) > 0.
2. For nonnegative matrices A and B,

A>B = u(A)>u(B). (4.1.7)

93



CHAPTER 4. ON THE STOCHASTIC FLOCKING OF THE
CUCKER-SMALE FLOCK WITH RANDOMLY SWITCHING
TOPOLOGIES

For a N x N matrix A = (a;;), the Frobenius norm of A is defined as
follows.

|A||F := /trace(AA*) = \/trace(A*A).

In the following lemma, we state some properties of scrambling matrices
without proofs.

Lemma 4.1.2. (Lemma 2.2, [26]) Suppose that a nonnegative N x N matriz
A = (ai;) 1is stochastic, and let B = (b]), Z = (z]) and W = (w]) be N x d

matrices such that

W =AZ+ B.

Then, we have
max [lw; — wil| < (1= p(A)) max ||z — 2l + V2| Bl r,
where

zi= (20,20, b= (bl b)), wyi=(w), oo wd), i=1,---,N.

[t 7

Proposition 4.1.1. (Theorem 5.1, [107]) Let A; be nonnegative N x N ma-
trices with positive diagonal elements. Suppose that G(A;) has a spanning tree
foralll <i < N —1. Then, one has

A1As ... An_1 is a scrambling matriz.

4.1.4 A state transition matrix

In this subsection, we discuss the notion and properties of state transition
matrices. Let ¢y € R and A : [ty, 00) — RY*YN be an N x N matrix of piece-
wise continuous function.

Consider the following Cauchy problem for the time-dependent linear
ODE:

dg(t)
== A(t)E(t), t>to, (4.1.8)
€|t:t0 = f(to)-
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Then, the solution of (4.1.8) is given by

§(t) = ®(L,t0)(to), t = to,

where ®(t, tg) is called the state transition matrix or the fundamental matrix

for (4.1.8).

Note that we can write the state transition matrix ®(t,t,) corresponding
to system (4.1.8) as the Peano-Baker series (see [96]):

S t 1 Tn—1
O(t,tg) =1+ Z/ / - / A(m)A(12) - - - A()dmy, - - - drody,
n=1 to Jto to
where [ is the N x N identity matrix.

Let to € R, c € R and A : [tg,00) — RN be an N x N matrix
of continuous functions. Then, for such time-dependent matrix A, we set
(t,to) and V(¢ ty) to be the state transition matrices corresponding to the
following linear ODEs, respectively:

dg(t) dé(t)
= = AW and = = [A(0) +ellE(D), > to.

In the next lemma, we study a relation between ®(t,ty) and V(t, ty) to be
used in Lemma 4.3.1.

Lemma 4.1.3. [26] The following relation holds.
D(t,ty) = e UTOT(L,tg), or V(L ty) =Dt 1), t >t

Proof. The proof can be found in Lemma 2.3 of [26]. O

4.1.5 Previous results

Before we present our main result, we review the previous result [18] about
the Cucker-Smale system with deterministic switching topologies. We con-
sider the following deterministic version of (4.0.1):
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d.fL'i

=v;, 1<i<N, t>0,

iy (4.1.9)
d’Ui o 1.
i inﬂ(% — ;) (v —vi),
j=1
where () is given by
K
TS P —
(14 [)
Note that the switching law o : [0,00) — {1, -+, Ng} becomes deterministic.

Now, we assume the following condition on the switching law:

The sequence of switching times {t }sen satisfies 7o < tp1—t, < T
for some positive constants 79 < T for all £ € N.

For convenience, we also set the following quantities:

R\ DO
a:=2T(N—-1), n:=e V5 min Tg( b (—) )
2<q<| 2L ] 2
aD(V(0))

Now, we state the main result for the deterministic model (4.1.9).

Theorem 4.1.1. [18] Assume that one of the following Assume that one of
the following three hypotheses holds:

(1) B <1/(2(N = 1)),
(i) B=1/(2(N =1)) and by < 1,

(iii) B> 1/(2(N — 1)) and

B (0-0)

Then the agents converge to flocking exponentially fast.
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4.2 A description of main result

In this section, we present a framework and main result for the emergence of
stochastic flocking to the C-S model with randomly switching topologies.

4.2.1 Standing assumptions

Let {t;}sen be an increasing sequence of “random switching times” such
that the increment sequence {t;11 — t¢}ren is a sequence of i.i.d. positive
random variables on the common probability space (€2, F, P) with probability
density function f. We also assume that the switching law {0}~ satisfies
the following conditions:

e For cach ¢ > 0 and w € Q, 04(w) = o(t,w) is constant on the interval
t € [to(w), teyr(w)).
o {01,}i>0 is a sequence of i.i.d. random variables such that for any ¢ > 0,
P(oy, = k) =py, foreachk=1---, Ng,
where py, - -+, pn, are given positive constants with p; +---+pn, = 1.

For each k = 1,--- | Ng, let G, = (V, &) be the k-th admissible digraph,
and for each t > 0 and w € €2, the time-dependent network topology (x7;) =

(X;’].t(w)) is determined by

(','t(w) — 1 if (], ’L) € Sgt(w),
v 0 if (4,7) & Eopw)

For technical reasons and without loss of generality, we assume that each G
has a self-loop at each vertex. For later use, we define the union graph of
Goy(w) for t € [so,s1) and w € Q as

G([so.s))w) = | 7 =(V. U Ew

tE€[so,s1) tE€[so,s1)

Note that the network topology might not actually ‘switch’ at the (pos-
sibly) switching instants. In other words, it might happen that oy,  (w) =
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ot,(w) for some £ > 0 and w € §2. Now, we are ready to provide a framework
for stochastic flocking to the random dynamical system (4.0.1).

For a set of admissible digraphs and the probability density function f
of increments of switching times, we impose the following assumption (A) as
our standing assumption throughout this chapter.

e (A1l): The union digraph of all available network topologies in the set
S has a spanning tree:

U Gr = <V, U 8k> has a spanning tree.

1<k<Ng 1<k<Ng

e (A2): f is supported on some bounded interval with a positive lower
bound, say
suppf C [a,b] C (0, 00).

4.2.2 Main result

Below, we first briefly sketch our proof strategy and then present our main
result. Basically, we will use matrix theory discussed in the previous section
as key tools for the flocking estimate along sample paths. More precisely, we
delineate our proof strategy in four steps.

e Step A (Matrix formulation): In order to use matrix theory, we rewrite
the momentum equation (4.0.1), as a matrix form:

d 1
i’ W=y

where L,,(t) is the Laplacian matrix to be defined in (4.3.3) - (4.3.4).

Lo, ()V (1),

e Step B (A priori velocity alignment estimate along a sample path): For
each sample point w € 2, we introduce a priori conditions:
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1. (P1): there exist n € N and ¢ > 0 such that kb(N — 1)c < 1, and
the subsequence {t; }sen C {t¢}een defined by ¢ := t,,(n,) satisfies

G([t;,t;41))(w) has a spanning tree for all £ > 0,
where the explicit construction of a,(n, c) will be given in (4.3.7).

2. (P2): the position diameter is uniformly bounded pathwise:

sup D(X(t,w)) < 2™ < 0.
0<t<oo
Note that the constant x> can be chosen independent of w in this
step.

Under the above two a priori assumptions, we show that the velocity
alignment estimate can emerge (Proposition 4.3.1):

lim D(V (t,w)) = 0.

t—o00

e Step C (Flocking along a sample path): We replace the a priori assump-
tion (P2) by a suitable condition on the system parameters and com-
munication weight, and derive flocking estimates along sample path:
for each w € Q satisfying (P1),

sup D(X(t,w)) < x*° < o0, tli}rilOD(V(t,w)) = 0.

0<t<o0o

e Step D (Stochastic flocking): We look for a suitable condition for the
choice probability p, for the network selection, and construct a suitable
time-block guaranteeing an existence of spanning tree in each time-
block, and then under these well-prepared setting, the a priori assump-
tion (P1) can be attained with probability one.

We perform the above outlined strategy one by one to derive our main
result on the flocking estimate of (4.0.1) .
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Theorem 4.2.1. Suppose that the framework (A1) — (A2) holds, and sys-
tem parameters b, N, pr’s and communication weight ¢ satisfy the following

conditions:
b(N —1 1
" ( l )1 <1 and = =0(") as r — o0,
 Jnin, log o o(r)

where € is a positive constant satisfying the following relation:

0<e< 1 kb
E —
- N -1 min log —
1<k<Ng Pk

Then, for any solution process (X,V) to (4.0.1), the asymptotic flocking
emerges with probability one:

]P’(w €Q: 3% >0st sup DX(w) <z®, lim D(V(tw)) = o) ~ 1

0<t<oo t—0o0

Remark 4.2.1. 1. The first condition on system paramters in Theorem 4.2.1
implies that b should be small enough:

kb(N — 1) .
1&%111\[(; log 1=p

Indeed, the network topology should switch frequently enough so that even if
each element of S has very few edges, chances of the union digraph G([sg, $1))
containing a spanning tree will be good enough for [sg, $1)’s with small length,
meaning that the network topology will be ‘connected enough’ in some sense.

2. The second condition

1 1 b

—=00°) as r—+4oo forsome 0<e< — - " T
N -1 min log —

1<k<Ng Pk

asserts that the rate of decrease of ¢ should be slow enough so that the strength
of the interaction between each pair of agents does not decay too fast as the
distance between them increases.
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4.3 Emergent behavior of the randomly switch-

ing system

In this section, we present a proof for Theorem 4.2.1 following the outline
depicted in Section 4.2.2.

4.3.1 A matrix formulation
In this subsection, we first reformulate the momentum equations in (4.0.1),

so that we can use tools from matrix theory documented in Section 4.1.

Consider the momentum equations:
| N
b= ;nggb(g;j — ) (v; —v;), 1<i<N. (4.3.1)

We rearrange the terms in (4.3.1) as follows.

o=—+|( ﬁ RN i XGolw —a). (4.32)

For the matrix formulation of (4.3.2), we introduce N x N Laplacian matrices
Li(t) (k=1,---,Ng) as follows:

Li(t) :== Dy(t) — Ag(t), (4.3.3)
where Ag(t) = (af;(t)) and Dy (t) = diag (df(t),--- ,d}(t)) are written as

aj;(t) = x0(wi(t) — ;(t)) and di(t) = Z oo (i(t) — z;(1)). (4.3.4)

Thus, system (4.3.2) can be rewritten as

d 1
vy =-—=
dt (t) N
Let ®(ta,t1) be the state transition matrix associated with (4.3.5) on the

interval [t1,t2]. Then we have the representation formula for V:

Lo, (OV (D). (4.3.5)

V(ts) = B(ta, 1)V (t), o>t > 0. (4.3.6)
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4.3.2 Pathwise flocking under a priori assumptions

In this subsection, we study the emergence of stochastic flocking estimate
under a priori assumption on the uniform bound for position diameter. From
now on, we present a priori flocking estimates for each fixed sample w € €.
In the sequel, as long as there is no confusion, we frequently suppress the
w-dependence of solution processes or parameters for convenience.

A priori assumptions: For each positive integer n and positive real num-
ber ¢ > 0, we define an increasing sequence {as(n, ¢)}sen of integers by the
following recurrence relation:

ag(n,c) =0, apr1(n,c) = ag(n, c)+n+|clog(l+1)], (¢ eN). (4.3.7)

Let w € Q be fixed, and let (X, V) be a solution process to (4.0.1). Then,
our two a priori assumptions are as follows:

e (P1): there exist n € N, n > 0 and ¢ > 0 such that kb(N — 1)c < 1,
and the subsequence {t; }sen C {t¢}een defined by &} := t4,(n,¢) in (4.3.7)
satisfies

G([t;,t;+1))(w) has a spanning tree for all £ > 0,

e (P2): the position diameter is uniformly bounded in time:

sup D(X(t,w)) <z < 0.

0<t<oo

Lemma 4.3.1. Suppose that w € Q satisfies the a priori assumptions (P1)
and (P2) and let x> > sup D(X(t,w)) be given. Then, the transition ma-

0<t<o0o
triz (ID(t:f(Nfl),tafl)(Nfl)) s stochastic and its ergodicity coefficient satisfies

N—1

* * —k(t* ¥ a < oo _
(@ r(Nfl)vt(rfl)(N—l))) > ¢ - - w-n) <N> o(z>)NL (4.3.8)
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Proof. First, we focus on the second assertion, and we claim:

D(trn_1)s tir—1)(N-1))
. i N—1 _ —1 4.3.9
Z efn(t7,(N71>715(7_1)(1\/,1)) (%) ¢(:L,OO)N—1 E, ( )

i=1

where, for each i = 1,..., N — 1, F; is the (0, 1)-adjacency matrix of the
union digraph

Gt -1y (1) i1 L1y (N—1)14))-
Proof of claim (4.3.9): Let {ty,,ts,,...,1,,,} be the subsequence of {£;}¢>0

contained in the interval [tfr_l)(N_l)H_l, t?r—l)(N—l)—i—J such that
by, = t>(kr—1)(N—1)+i—1 and by = t>(kr—1)(N—1)+i‘

We set
oy =k, fortelty,, t,, )andp=1,...,q.

Then we have

(I)(tz(r—l)(N—l)—f—i’ tz(r—l)(N—l)-i-i—l) = (I)kq (t€q+1at€q) o Dy (téza t&)» (4-3'10)

where, for p = 1,...,q, ®,(t,,,,t,) is the state transition matrix corre-
sponding to system (4.3.6) on [tg,, 1y, ,,). We need to estimate @y, (t,,,,tr,)
and for this, we estimate the coefficient matrix for (4.3.5) as follows:

— %Lkp(t) = %(Akp(t) — ka(t)) > %Akp — k1, (4.3.11)

where 4, = (QZ’? ) is given by

Q;; -

kp — {Xff@g(xoo)v i 7£ j?

K, 1= 7.
Then, the relation (4.3.11) implies

1 1
=l () +RI > A, 20, (4.3.12)
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On the other hand, let Wy (t,,,,t,,) be the state transition matrix of

1
_NLkp (t) + &I on [tgp, tzp+1).
Then it follows from Lemma 4.1.3 that
Oy, (L, ote,) = o700 (). (4.3.13)

Now, we can apply (4.3.12) to the Peano-Baker series to obtain

q/kp (tgzﬂrl ) tﬁp)

NS /t/ / [ mﬁfﬁ)&?ﬁj) dr, - dn
L/ / N_k dTn~--dﬁ (4.3.14)

e ()
> 1+ Nékp
We combine (4.3.13) with (4.3.14) to obtain

¥, (toyrste,) = e ™) (1424, ). (4.3.15)

Then, the relation (4.3.15) and (4.3.10) yield

¢(tfr_1)(zv_1)+z‘> t?r—l)(N—l)H'—l)
—k(te,yq —tey) @
> e + <I—i— NAk") <I+ NA/ﬂ) (4.3.16)

Kk(tF

- — - 'Lit*rf - i— ) a
> e Mr-nw-n+i T r-nav-n+ 1N(A’“q A

Here, one has

> ¢(z) F;. (4.3.17)

___;rx_-l! E CI.'II
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Now, we combine (4.3.16) with (4.3.17) to obtain

O(t* -t . > e*”(t?rfn(N71)+¢*t?r71)(N71)+¢71)g_ x> Fi-
( (r—1)(N—1)+%> (rfl)(N71)+zfl) = N¢( )

This implies

Dty (n-1) tir—1)(N-1))
N-1
— TT 0 i vens ooy tist)
(r—1)(N=1)+4i> Lr—1) (N—1)4i—1
E (4.3.18)

-1
N-—1
—k(t* —t a 7 N-1
> e (trN—n) "ty (v—1)) (N) ¢(x°°) F;.
i=1

This verifies the claim (4.3.9). Since the union digraph

g([t?r—l)(N—l)—i-i—l’ t?r—l)(N—l)—Hl)) = g(‘FZ)

has a spanning tree, we apply Proposition 4.1.1 to see that FiF5 ... Fy_1 is
scrambling and moreover, (4.1.6) yields

1 (1:[1 F) > 1. (4.3.19)

Hence, we use (4.1.7) and (4.3.19) to get

* * —k(t* —t¥ a\N-1 - oo\ N—
:u(q)(t'r(N—l)vt(r—l)(N—l))) >e (v~ -1y (v—1)) (N) qﬁ(gg )N 1

This verifies the relation (4.3.8).

*

For the first assertion, @(t:(N_l),t(r_l)(N_l)) is nonnegative by (4.3.18). So
it remains to show that each of its rows sums to 1. Note that the constant
state £(t) = [&1(t), - ,En()]T = [1,--- ,1]7 is a solution to (4.3.5):

d 1
() = = L (0E(D).

Hence,
[17 T 1]T = (I)<t:(N71)7 f{rfl)(Nfl))[L Ty 1]T
This implies that @(t:(N_l), tTr—1)(N—1)) is stochastic.
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Proposition 4.3.1. (A priori velocity alignment) Suppose that w € Q satis-

fies the a priori assumptions (P1) — (P2) and let x> > sup D(X(t,w)) be
0<t<o0o

gwen. Then, for all t € [t:(N_l), t?r+1)(N—1)) with r € N, we have

- N—1
agb(xoo)efmbn(N_l)fnbc (T_i_l)lfﬁb(Nfl)c_l
DV (t)<D(V(0 -
V()< D <>>exp[ ( o T
Proof. Since ®(t7 1), t(,_1)v_1)) is stochastic (Lemma 4.3.1), we combine
Lemma 4.1.2 and Lemma 4.3.1 to obtain that for ¢ € [t; vy, ¢{, 1y v_1))s

D

V(1))
<D (V(tin_1))

- #(é(t:(zv—nv t?r—l)(zv—l))> D(V(f(kr—l)(N—l)))

</ oorny N-1
1 — e "8~ thnv-1) M

(700 N-1
e "Ny Ty v—1) ap(z>)
exp [ e N

VAN

IN

DV (t—1y(v-1)))

IA

DV (t{,—1yn-1))

S [_ (F7) et | o)
i _( OO) N-—1 T
=T (w; ) D emrtlai-n O =ei-nw-n el | D(V(0))
L i=1
[ &( OO) N i(N— .
= eXp — (a ]\',’i ) Ze—ﬁb<( )n+2] (i— 1)(N 1)+1L010g]J> D(V(O))
L i=1
[ aqg(xoo) N-1 r
<exp |— ( N ) Zewb D(n+elogli(N=1) | D(1/(0))
[ A (0 ,—KbN N—1 —kbe\ N—=1 7
=exp |— (a¢(:c )e N( ) Zi—nb(N—l)c D(V(O))
- i=1
[ (00 p—KbN 1 \—kbe\N—1 prp1
< exp | — (cub(x )e N(N 1) > / TN Dege | DV (0))
1
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ad(x°)e—ron _1\—kbe\V—1 r 1—kb(N—1)c _
. [_( e)e (N~ ) ( i)ﬁbw_l}c oo,

]

Next, we assert that our a priori condition on the uniform boundedness of
distances between C-S particles can be obtained from other existing a priori
conditions. Before we move on, we present a technical lemma.

Lemma 4.3.2. For any x > 0 and § > 0, we have the following inequality:

b
et < (é) 0,
e

Proof. By differentiation, we can check that the function = +— —z + dlogx
attains its maximal value at x = . Hence

—xr+d0loge < —d+dlogd, x>0,0>0.

We take the exponential of both sides to get 5
—z,6 —5 56 —z 0\ s
e’ <e ) = e*< (—) x°.

]

Next, we show that the a priori assumption (P2) on the position diameter
can be replaced by the condition on the initial data so that we can establish
pathwise flocking estimate only under the a priori condition (P1).

Proposition 4.3.2. Suppose that w € Q satisfies a priori condition (P1)
and there exist 6 > 0 and x> > 0 independent of a sample point such that

D(X(0)) +D(V(0)b(N — 1)(n + clog((N — 1)))
é CL_ > efnbn _ 1\—kbc —(N-1)é
- D(V(0))b(N — 1)(2) ( $(z™) N(N D )
e r 1—kb(N—1)c __ =6
XZ (n+clog((7‘+1)(N—1)))(( Ti)nb(N—l)c 1) ]<x°°,

and let (X, V') be a solution process to (4.0.1). Then, a priori condition (P2)
holds: for w € Q,

(4.3.20)

sup D(X(t,w)) < 2% < 0.

0<t<o0
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Proof. We use a contradiction argument for the desired estimate. For this,
we define a set 7 and its supremum as follows:

T = {T >0: max D(X(1) < xm}, T* = supT.

0<t<T

By assumption (4.3.20) and the continuity of D(X), the set T is nonempty.
Now, we claim:
sup T = oo.

Suppose not, i.e. T* :=supT < co. Then, we have
D(X(T™)) = x*=. (4.3.21)

It follows from Proposition 4.3.1 and Lemma 4.3.2 that we have
T*

™ =D(X(T") <DX(0)+ [ DV (t)dt

0

< D(X(0)) + D(V(0) ) [(’f?mxzvn —tiwv-)

aq_s(l,oo)ef;bn(N _ 1)7ﬁbc N-1 (7" + 1)1fnb(N71)c -1

xexp(—( N ) 1—krb(N —1)c >]
< D(X(0)) +D(V(0) ) [b(N —1)(n+ clog((r + 1)(N = 1)))
aqg(l,oo)efnbn(N _ 1)71~ebc N-1 (7" + 1)1fnb(N71)c -1

Xexp(—( N ) 1 —kb(N —1)c >]

< D(X(0)) + D(V(0))b(N = 1)(n + clog((N —1)))

+D(V(0) Y [N = 1)(n+ clog((r+ 1)(N — 1))) (g)
y <(aq_5(xoo)enbn<N _ 1>KbC)N_]‘ (7,, 4 1)17%17(]\771)0 _ 1> 6]
N 1 —kb(N —1)c
< x™.

This yields a contradiction to (4.3.21). Therefore we have sup7 =oco. [
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As a corollary, we can use Proposition 4.3.2 to prove that a priori condi-
tion on network structures together with conditions in Theorem 4.2.1 implies
the uniform boundedness of distances between particles and the velocity re-
laxation estimates for any initial configuration.

Corollary 4.3.1. Suppose that w € Q satisfies a priori condition (P1) holds,
and in addition, the communication weight ¢ satisfies

1
o(r)

=0(r®) asr — oo,

. . . . . 1—kb(N—1)c
where € 1s a positive constant satisfying the relation 0 < e < —x——. Then

the mono-cluster flocking emerges pathwise for any initial configuration:

sup D(X(t,w)) < oo and lim D(V(t,w)) = 0.

0<t<oo t—o0
Proof. We choose a positive number § > 0 such that

1 1
1= rb(NV = 1)c <6d< N1 (4.3.22)

The left-hand side in (4.3.22) implies

0 r 1—rb(N—=1)c __ =6
Z (n+clog((r+1)(N —1))) (( Ti)/gb(N— e 1) ] < 0.

Moreover, the right-hand side in (4.3.22) implies
gz_ﬁ(r)_(N_l)‘s = O(T(N_l)‘sg) as r — 00.

Hence, one has
6r) s

lim = 0.

|z]—o0 r
This implies the existence of 2> satisfying (4.3.20) for ¢ chosen in (4.3.22).
Hence the condition (4.3.20) is satisfied, and the results follow from Propo-
sition 4.3.1 and Proposition 4.3.2. [
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4.3.3 Emergence of stochastic flocking

In the previous section, we verified the emergence of pathwise flocking under
the a priori assumption on the network structure (P1). In the sequel, we will
show that the a priori assumption (P1) can be guaranteed with probability
one.

Next step is to prove that a priori assumption (P1) on network structure
can be satisfied for most of w € €2, once we determine appropriate values for
n and c.

Proposition 4.3.3. Let (X, V) be a solution process to (4.0.1), and letn € N
and ¢ > 0 be such that

Al 1 1
Z(l —n)t s 2 and ¢ > min log ——
k=1 1<k<Ng 8 (1—px)

Then, the following assertions hold.

1. The subsequence {t}}ien C {ti}ien, defined by t; = ty,(ne) in (4.3.7),
satisfies

P(u) 1 G([t7,t741))(w) has a spanning tree for any € > O)

Ng o0
> exp (—(210g2 D (L—pi)™ ) (1= py)lel f+1>J) .

k=1 =0

2. The series Y (1 — pp)lee D] converges for all k =1,--- | Ng.
=0

Proof. (i) For any ¢, r € N, we have the following estimate:

P(w : G([tg, tg+r))(w) does not have a spanning tree)
<]P’(w'5|1 <k < Ng such that o, ,(w) #kfor VO <i<r—1)

Ng

<ZIP>w o (W) #FkforVO<i<r—1)= Z(l_pky,

k=1
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where the last inequality follows from the independence of {t;,1 — t;}sen.

This implies

Ng

P(w : G([t4, tg+r))(w) has a spanning tree) > 1 — Z(l —pr)"
k=1

Here, we substitute ay(n,c) and ayi1(n,c) for ¢ and ¢ + r, respectively, and
take the product over £ € N to see the following relations:

P(w : G([t},t;,1))(w) has a spanning tree for any ¢ € N)

G([t;,t;,1))(w) has a spanning tree )

Na
2 ( =Y (A —p)T a’f)
=0 k=1

= exp Zlog (1 — (1 —py )"+Lclog(é+1)J>)
k=1
[e.9] NG
> exp | —(2log2) Z Z(l _ pk)n+L610g(€+1)J>
(=0 k=1
Ng oo
=exp | —(2log2) Z(l — pi)" 2(1 — pk)tclog(@rl)J) ’
k=1 =0

where we used the following inequality:

log(l1 —z) > —(2log2)z, 0<uz<

N —

(ii) The convergence of the series > (1—pj )L+ 1) can be shown as follows:
=0
by comparison test, it suffices to show that

Z log (e+1)— ) <o = Z(l —pk)dogz < 0.
=0 =1
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By Cauchy’s condensation test, the right-hand side of the above is equivalent
to

S 21— ) 37 (2(1 - )62’ < oo,
(=1 (=1
The condition ¢ > o (11 T is equivalent to 0 < 2(1 — pg)©°82 < 1. Thus, we
— Pk
have the desired result. O

The proof of Theorem 4.2.1: We choose ¢ to satisfy

0<e<— wb
8 _
- N -1 min log 1_1
1<k<Ng Pk
valent] 1 - 1—¢(N-1)
or equivalen ,
4 ¥ nin log Kb(N — 1)
1<k<Ng Pk
and we set
1 1 n 1—¢e(N-1)
c:= — - T
2  Jnin log 1= kb(N — 1)

Then, it is easy to see that the constant ¢ defined above satisfies

1 1—rb(N —1
c> : —, kb(N—=1)c<1l, and 0<e< didt )C.
min log — N -1

1<k<Ng Pk

Now, we choose any n € N such that

and we define p(n) as

p(n) :=exp [—(21og 2) Za(l — )" i(l _ pk)Lclog(Z+1)J] ‘

k=1 (=0
With this choice of n and ¢, Proposition 4.3.3 implies, for 7 := t,,(n.0),
]P’{w :G([t;,t,1))(w) has a spanning tree for any ¢ > 0} > p(n).
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Hence, it follows from Corollary 4.3.1 that

]P’{o.) :32% >0st sup D(X(t,w)) < 2> and limD(V(t,w)) = 0} > p(n).

0<t<oo t—ro0

Since n can be arbitrarily large and p(n) — 1 as n — oo, our desired result
follows.
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Chapter 5

Collective stochastic dynamics
of the Cucker-Smale ensemble
under uncertain communication

In this chaper, we consider the kinetic Cucker-Smale equation perturbed by
a multiplicative noise (1.0.6):

Oufe +v-Vaofy + V- (Fulfift) =0V - ((v—2)f;) 0 Wt> t>0, (5.0.1)
subject to deterministic initial data
fo(z,v) = f™(z,v), (x,v) € R*.

Main results of this chapter are two-fold. First, we prove a global well-
posedness for strong solutions by employing three tools, i.e. regularization of
initial data, W™ *>-estimates along the stochastic characteristics and a suit-
able choice of a stopping time. Second, we show the emergence of flocking in
the kinetic level by showing dissipation estimates for the second velocity mo-
ment. If the communication weight function ¢ has a positive infimum, then
the second velocity moment converges to 0 for each sample path. Moreover,
once noise strength o is sufficiently smaller than ¢,,, then the expectation of
the second velocity moment converges to 0 at an exponential rate.
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The rest of this chapter is organized as follows. In Section 5.1, we pro-
vide a rigorous derivation of equation (5.0.1) from the C-S system with a
multiplicative noise, and then briefly discuss our main results on the global
well-posedness for strong solutions and asymptotic flocking estimates of clas-
sical solutions. In Section 5.2, we provide several a priori estimates for clas-
sical solutions to (5.0.1). In Section 5.3, we show our global well-posedness
and emergent dynamics for strong solutions to (5.0.1). Finally, note that this
chapter is based on the joint work [42].

5.1 Preliminaries

In this section, we provide a rigorous derivation of the equation (5.0.1) and
present our main results on the global well-posedness of strong solutions to
(5.0.1) and emergent flocking dynamics.

5.1.1 Derivation of the SPDE

In this subsection, following [12], we present a derivation of (5.0.1) from the
C-S system perturbed by a multiplicative noise. To be specific, we begin our
discussion with the C-S model [20].

Let (zi,v!) € R? x R? be the position and velocity of the i-th particle at
time t > 0, respectively. Then, the ensemble of C-S particles is governed by
the following system:

del =vidt, t>0, 1<i<N,

N
. o 1 (5.1.1)
dvy = Fo[pi (z,vp)dt, g = N § Ot vi)»
i=1

where the flocking force Fj is given in (1.0.2),. However, in a real world
situation, the communication among particles is subject to the neighboring
environment, which is an extrinsic randomness missing in the model. To re-
flect these effects in the communication, stochastic noises can be incorporated
into the communication weight ¢ appearing in system (5.1.1). To address a
stochastic perturbation in system (5.1.1), we replace ¢ by ¢ + ¢ o W; and
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yield the following system of stochastic differential equations:
de! =vidt, t>0,1<i<N,

i Ny(oi i - i T 1 o i (5.1.2)
d/Ut _ Fa[ut ](xt,Ut)dt+U(Ut — /Ut) @) th, Vy i = N;Ut

Let us compare (5.1.2) with the model presented in [2], where the authors
replaced ¢ in (5.1.1) by ¢+0W, to obtain the C-S system with a multiplicative
noise in Ito’s sense. However, we adopt the integral in Stratonovich’s sense
rather than Ito’s sense, since it enables us to use the method of stochastic
characteristics once we derive a stochastic partial differential equation from
system (5.1.2). Moreover, it is natural in the following sense: for each 1 <
1 < N, let Wf’g be a smooth approximation to the Wiener process W} (e.g.
approximation by using a mollifier). Now, we consider the following system
of deterministic equations:

det® =vidt, t>0, 1<i<N,

dvi = F,[p) ¢ (ah®, 0P dt + o (05 — v%) dW}*,
Then, the Wong-Zakai theorem [97, 105, 106] implies that the solution to
system (5.1.3) converges in probability to the solution to system (5.1.2).

(5.1.3)

Here, we note that system (5.1.2) is equivalent to the following [t6 equation
[31]:

drl = vidt,
A R | o (514)
i = Pl (ah) = o0 = )] e+ o = v

When W?s are i.i.d Wiener processes, a similar analysis as in [36] yields
the mean field limit of system (5.1.4) as N — oo, which is the following
Fokker-Planck type equation: for ¢t > 0 and (z,v) € R?*¢,

Of +v-Vaf £V, KFa[f] - 2w v)) f] — oA (v — vf2f).

where v, := fRded v fdxdv. However, if each T} is identical to a single Wiener
process W, i.e. W* = W, we can use a propagation of chaos result [12] to ob-
tain that the empirical measure Y associated with system (5.1.2) converges
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to a measure-valued solution to (5.0.1). Let us summarize the results on the

mean-field limit and asymptotic flocking estimates in [12] as follows.

Theorem 5.1.1. Suppose that T' > 0 and consider a communication weight
¢ with ¢ € CL(R,), and let g, fio € Po(R? x RY) be compactly supported in
velocity. Then, the following assertions hold.

1.

If i and i are two measure-valued solutions to (5.0.1) with compactly
supported initial data pg and fig in velocity, then

Wa(pae, fir) < CWalpo, fig)e” W20 - for a.s.t € 0,7,

where the constant C' depends only on ¢, T, o, SUPsefo,7] |By|, and the
support in velocity of po and [ig.

If plf = % Zf\il Oai i) 18 an initial atomic measure such that
WZ(MO?M{]V)_)O GSN—>OO,

then the empirical measure pl¥ = % Zfil O(ai iy associated with system
(5.1.2) is a measure-valued solution to (5.0.1) with initial data p.
Moreover, it converges almost surely to the measure-valued solution
corresponding to the initial measure p:

sup Walpe, ') < CWalpio, g )eCHEWaluo ) — 0. as N — oo,
<t<

Note that the stability estimate in Wasserstein metric implies the unique-
ness of (measure-valued) solutions in Py(R? x RY).

Theorem 5.1.2. Suppose that the communication weight function ¢ satisfies

0<om <ox) <k forzeRY,

and let p; be a measure-valued solution to (5.0.1). Then we have

]E[Eo]e_Q(li—a2)t S ]E[Et] S E[EO]€_2(¢W_02)t

Y

where E; is defined as

Bom [ - oPudnd), o= [ op(de,do)
R4 x R4 R xR
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Remark 5.1.1. The results in [12] imply that the equation (5.0.1) can be
derived as a mean-field limit of the particle system (5.1.2). Now, our objective
18 to establish solutions with higher reqularity than measure-valued solutions.

5.1.2 Presentation of main results

In this subsection, we provide our main results on the global well-posedness
of (5.0.1) and emergent flocking dynamics. First, we provide a definition for
a strong solution to the Cauchy problem (5.0.1) as follows.

Definition 5.1.1. For a given T € (0,00], fi = fi(x,v) is a strong solution
to (5.0.1) on [0,T] if it satisfies the following relations:

1. (Regularity): For k> 1, f; € C([0,T]; Wr>(R?*)) a.s. w € Q.

2. (Integral relation): f; satisfies the equation (5.0.1) in distribution sense:
for v € C2([0, T] x R*),

fi dvdx

R2d

_ [ dude +/ £ (0 Vb + Fof)] - Vo) dvdeds (5.1.5)
0 JR2d

R2d

— a/t (/ (v =) fs] - Voo dvdx) odWs, a.s.w €.
0 “Jr2

Remark 5.1.2. 1. We say f; is a classical solution to (5.0.1) if it is a Fy-
semimartingale satisfying relation (5.0.1) pointwise and the regularity con-
dition f; € L>(Q;C([0,T];C>(R2%))) for some § € (0,1). We require this
reqularity condition to use Ito’s formula and the relation between Ito and
Stratonovich integration without any restriction.

2. As can be seen later, the representation of a classical solution to (5.0.1) via
the stochastic characteristics shows that f; can not satisfy the L>-boundedness
over ) due to the exponential Wiener process. To handle this, we would use
a suitable stopping time.
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Next, we are ready to provide a framework (F) and main results below:

e (F1): The initial datum f™ is nonnegative, compactly supported in z
and v and independent of w.

o (F2): For k > 1, fi™ and ¢ are assumed to be in W"*(R??) and
C>°(R?%), respectively.

e (F3): The first two moments of f™ are normalized as follows:

/ fdvdr = 1, / vf"dvdx = 0.
R2d R2d

Under the framework (F), our main results can be summarized as follows.

Theorem 5.1.3. Let T € (0,00) and assume that f and ¢ satisfies the
framework (F). Then, there exists a strong solution f; to (5.0.1) on [0,T]

such that
, od)?
Bl < 7o exo { (a6 + 5 ) o},

E[M,)(t) < My(0) exp(20%t), t€[0,T).

Moreover, if a strong solution f; exists on (0,00) and ¢y, := inf gy ¢(x) >
a2, then one obtains an asymptotic flocking estimate:

E[M,](t) < M5(0) exp(—2(¢, — 0°)t), ¢ > 0.

Proof. For a proof, we first regularize the initial datum using the standard
mollification and then solve the linearized system for (5.0.1) to get a sequence
of approximate solutions. Then, we use the stopping time argument to get a
strong solution for (5.0.1) with the given initial datum. The detailed proof
will be presented in Section 5.3. O]

Remark 5.1.3. 1. Note that for k > 3, a strong solution f; to (5.0.1) can
be shown to satisfy the equation (5.0.1) pointwise within our framework.

2. Since the uniqueness of measure-valued solution is guaranteed, it suffices
to prove the existence result for the global well-posedness of strong solutions.
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5.1.3 Elementary lemmas

Before we move on, we provide two useful lemmas used throughout this
chapter. First, we begin with estimate on a variant of geometric brownian
motion.

Lemma 5.1.1. Let {X;}1>0 be a solution satisfying the following Cauchy
problem:

dXt = (Clt + tht)dt + CXtth, t> 0,

XO =X Z 0,
where {a;}1>0 and {b:}+>o are stochastic processes with continuous sample

paths, and c is a constant. Then one has

2

X; =xexp [/t (bs — %)ds—i—cVVt]
0

+/tasexp[/t (bf—%z)dT—l-c(Wt—Ws) ds.
0 S

Proof. The proof is exactly given in Example 19.7 from [93]. So, we refer to
93] for its proof.
O

Lemma 5.1.2. (Comparision principle) Suppose that two stochastic pro-
ceeses { Xt }i>0 and {Yi}iso satisfy

dX; < (a; + bX})dt + c X dW,, Xo=z2>0,
dY; = (at + bY;)dt + CY;th, Yb =T,

where {a;}+>o is a stochastic process with continuous sample paths. Then, we
have

Proof. Let {Y,°}1>0, (6 > 0) be a stochastic process satisfying

AY? = (a, + bYP)dt + cYPdW,, t > 0,
Y9 =2+ 9,
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and we set
70 =Y - X,

Then, we have
dZ? > bZ0dt + cZ2dW,, t>0 and Zy=0, t=0.

We use [t0’s lemma to get

2
(dZ%) - (dZ?) > (bt . %) dt + c dW,.

Again, we integrate the above relation to get

t 2
Zt‘SZ(Sexp{/ (bs—%) dercVVt} > 0.
0

X; SY;S for all t > 0.

This yields

It follows from the representation formula in Lemma 5.1.1 that

t 2
Ytdz(x—l—é)exp{/ (bs—%) ds+cVVt}
0
c

+/OtaseXp [/St (bT - §>dT+C(Wt - WS)}ds,

t 2
Yt—xexp{/ (bs—§>ds+th}
0
t t C2
+/asexp / by — = )dm + c¢(W, — W,)|ds.
asexp | [ (b= 5 )dr W=,

This yields the desired result:

Y, = liminf Y? > X,.
6—0
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5.2 A priori estimates for classical solutions

In this section, we study a priori estimates for classical solutions to (5.0.1).
First, we study several equivalent relations to the weak formulation (5.1.5),
when a strong solution satisfies suitable conditions.

Lemma 5.2.1. Suppose that for every ¢ € C(R*?) and a random process
fr € L®(Q x [0,T] x R*), [o0, fibdvdz has a continuous Fy-adapted modi-
fication, where {F;} is a family of o-field generated by the Wiener process.
Then, f; is a Fi-semimartingale satisfying relation (5.1.5) if and only if for
every ¢ € C°(R??),

fi dvdx

R2d

= ™ dvdx + /t fs(v- Vb + Fyfs] - Vo) dvdads
0 RQ(i

R2d

o [[([ =) o dwte)aw,

0
+ %2 /t/ (v —v)fs - [VU((U — V) - va)}dvdxds a.s. w € Q.
0 Jr2

(5.2.1)

Proof. The proof is almost the same as in Lemma 13 from [33], but we provide
a sketch for a proof for readers’ convenience. Note that the following relation
between [to6 and Stratonovich integrals holds:

t ¢
1
/ he o dW, = / hedW, + = (h, W),
0 0 2
where (-,-) denotes the joint quadratic variation (see [69]). In our case, hs
corresponds to [pou[(v — ve) fs] - Vyoduda. Then, to deal with (h, W),,, one

needs to specify the stochastic part of hg. Here, if we replace ¢ in (5.1.5)
by (v — v.) - V1, we can find out that the stochastic part of hs becomes

—0 fot [fde((v —0e)fs) - V(v Vvi/z)dvdas] dW,. This means
{ /R (v =v0)f] Vodvde, W),
= o [ [l 0 Wl =) Voo
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and we may conclude the proof here. O]

Once we reformulate relation (5.1.5) to Ité form (5.2.1), we can show
that the solution process f; satisfies the following pointwise relation under
the regularity condition for f.

Lemma 5.2.2. Suppose that f; € L>(Q;C([0,T];C*(R?%))) has a continuous
Fi-adapted modification and has a compact support in x and v. Then, f;
satisfies relation (5.2.1) if and only if f; satisfies the following relation:

) = P = [ (0 Vaf+ Vs (R ) ds
to /t [vy (- vc)fs)} dw, (5.2.2)

J20 ¢
+ ?/ V, - [(v —0.)V, - ((v — vc)fs)}ds, P® dr ® dv-a.s.
0

Proof. First, we assume that f satisfies (5.2.1). Since f; is smooth and com-
pactly supported, we use Fubini’s theorem to show that (5.2.1) is equivalent
to

fi dvdx
R2d

— /R ™ dvda - /0 t / o Vet Vo (BRI @ dudads s

+ a/t ( » Vo [(v—2)fs]Y dvd:v) dW,

0
+ %2 /t/ V, - [(v —0.)V, - ((v - vc)fs)]dvdxds a.s. w € €.
0 Jr2

Note that for each 1 € D(R??), it satisfies the relation (5.2.3) outside P-zero
set depending on the choice of /. We recall from standard functional analysis
that D(R??) is separable, i.e. there exists {1;}22, C D(R??) which is dense in
D(R??). Here, we choose §2; C Q such that P(£2;) = 1 and (5.1.5) holds for f;
and 1; over ;. Let Q := N2,€Q;. Then P(Q) = 1 and (5.1.5) holds for any
¥; and f; over Q.
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Now, we show f; satisfies the relation (5.2.2). For this, we define functionals

Z|f] and A f;] as follows:
LU0y i= fi= 7 [ (00 9ato o (BRI )

— %2/; V, - [(v — )V, - ((v — Uc)fs)]ds,
'///[ft] =V, [(U - U6>ft}'

For a given (x*,v*) € R?*! we can choose a sequence {p;} C D(R??), using
the standard mollifier technique or other tools, such that for any i € N,

(i LD, o) = ZLf) (") .
t <
ﬁA@w%MMﬁw—%MWWﬂ

2 gs |~ 2r
where the regularity and compact support of f can be used to guarantee the
above inequality. We also use the denseness of {1;} to obtain {t;} C {u;}
which satisfies, for any 7 € N,
t
o
0

(4% 4111 " 0") — Zlf)" ). (5.2.4)

Moreover, we use It0 isometry to get

1
2i+1 :

(pi — i) * A fS) (", 07) 2ds <

(pi =) * Zilf)(a"v7)

Thus, we have

B |( [ Gealr) - it .

— [ [[Wealf) - atr)as| —o

Hence, we can obtain the convergence of (5.2.3) with ¢ = ¥;(z* — z,v* — v)
towards (5.2.2) at (z*,v*) as i — oo, by combining (5.2.4) and (5.2.5). We
perform this procedure to obtain that for every (z*,v*) € R?? f satisfies
relation (5.2.2) P-a.s. and this gives

e ||etal- [ airiaw.

(w.0)] =0
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for every (z,v) € R??. Thus, we use Fubini theorem to get

|

This implies our first assertion.

Cif) - /O 1w,

dvdm] = 0.

Next, we assume that f satisfies (5.2.2) P ® dz ® dv-a.s. Then by (deter-
ministic) Fubini’s theorem, the following relation is easily obtained: for every

P € C*(R*),

fi dvdx

R2d

= fin) dvdx + /t fs(0- Vb + F,[fs] - Vo) dvdxds
0 Jr

R2d

+ O'/RM (/tv (0 — vo) £ dWs>dvdx
+ —/ / v — V) fs VU<(U — V) - VU@D)}dvdxds a.s. w € Q.
R2d

Since f; is in L>(;C([0,T];C*(R??))) and compactly supported, we have

s

Then, we can use the stochastic Fubini theorem (see [101] and references

5 N\ 1/2
Vo [(v—v)fs] ds) dvdr < oo, as. w € Q.

therein) and deterministic Fubini’s theorem to get

/R ) / v, ve) foltb dW)dvdx
_ /0 ( /R Vo[ =v)f dvd:c)dW
__ /0 t ( /R (0= ) fi) - Vo dvd) W,

This implies our desired result. O
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Remark 5.2.1. 1. If a strong solution f; to (5.0.1) satisfies conditions in
Lemma 5.2.2, then f; satisfies the relation (5.2.2).

2. If fi is a classical solution to (5.0.1), we may use Lemma 5.2.2 in [15] to
obtain that the Ité relation (5.2.2) is equivalent to (5.0.1).

5.2.1 Quantitative estimates for classical solutions

We provide several properties of classical solutions f to (5.0.1). First, we
study the propagation of velocity moments along the stochastic flow of (5.0.1);.
For a random density function f;, we set velocity moments:

My(t) :== » fidvdx, M(t) := /R2d v frdvdz,

My(t) = /de |v]? fidvdz, t > 0.

Consider the following stochastic characteristics ¢y (z,v) := (Xy(z,v), Vi(z,v)):

dX, = V,dt, t>0,
{ e (5.2.6)

dVy = (Fu|f)(Xe, Vb)) dt + o(ve — Vi) o dW4,
subject to the initial data:
(Xo(iv, U)a VE)(SE, U)) = (l‘, U>~

Note that if f; is compactly supported in x and v, and satisfies the regularity
condition for classical solutions, the system (5.2.6) has a unique solution and
the family {¢s:(z,v) := @i(@; (z,v))}, 0 < s < ¢ < T, forms a stochastic
flow of smooth diffeomorphisms (we refer to Lemma 4.1 in Chapter 2 of [13]
for details). Furthermore, we define the functionals that measure spatial and
velocity supports of f;, respectively:

X(t) :=sup{|z| : fi(z,v) #0 for some v € R%},
V(t) :=sup{|v| : fi(z,v) #0 for some x € R}
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Lemma 5.2.3. Let f; be a classical solution to (5.0.1) which is compactly
supported in x and v and satisfies

Then fort > 0,

Mo(t) =1, Mi(t) =0, M(t) < Ma(0) exp (—2 / 52 (s))ds 20Wt> |

Proof. e (Conservation of mass): It follows from Remark 5.2.1 that

) = ) [ (0 9fs 4 9o (B s

0

= (9o (0=t (5.2
—I——/ . v—vc V,,-((v—vc)fs)]ds

We integrate (5.2.7) over (z,v) € R?? to get

fi(z,v)dvdz

R2d

N /Rm 1™ (@, v)dvds - /]R 5y / Vofs+V,- (Fa[fs]fs)>d8dvdx

+ U/R?d {/ <V ((v— vc)ft)>dWS] dvdzx
N _/ / . U )V, (v — vc)fs)}dsdvdx
R2d
= [z, v)dvdx + Jyy + Jia + Jis.
R2d

Next, we show that the terms Jy; are zero using deterministic and stochastic
Fubini’s theorems.

o (Estimate of J; and Ji3): Since f; has a compact support in (x,v), we can
use deterministic Fubini’s theorem to see

Ju+ Jiz=— //de “(vfs) + V- ( a[fs]f5)>dvda7ds
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+ %Q/Ot /R?d V- [(v —v)Vy - ((v = vc)fs)}dvd:vdx

o (Estimate of Jj5): As in the proof of Lemma 5.2.2, we can use the stochastic
Fubini theorem to get

Tis = /Ot (/Rd Vo - ((v— vc)ft)dvdx>dW5 —0.

e (Conservation of momentum): In this case, we multiply v to (5.2.7) and
use the same argument for conservation of mass to derive

My(t) = My(0) =0, ¢>0.

e (Dissipation estimate): We multiply (5.2.7) by |v|*> and use stochastic Fu-
bini’s theorem to have

AMs(t) = <2a2M2(t) n / 2 F,[f,] fsdvdx> dt — 20 My(H)dW,,  (5.2.8)
R2d
where we used the relation M (t) = 0.
We use (5.2.8) to get
M(t)
t
= M>(0) —|—/ {(/ 20 - Fa[fs]fsdvdx> + 202M2(s)] ds
0 R2d
t
— 20/ Ms(s)dWs
= M>(0) + 2/ O — ) (s — ) - vfs(xs, va) fs(x, v)dvida dvdzds
R4d
+ 20° / My(s d8—20/ My(s
= M5(0) — / (s — 1) | — a2 fs (24, v4) f (2, V) dv,d dvdds
0 R4d
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t t
+ 202/ My(s)ds — 20/ Mo (s)dW,
0 0

< My(0) — /0 52x() [ /R o= Pl ) ol v)dv*dx*dvdx} ds

¢ ¢
+ 202/ My(s)ds — 20/ My (s)dW.,
0 0

< My(0) — 2 / (5(2X(s)) — o) Ma(s)ds — 20 /0 My(s)dIW,

0

Then we use Lemma 5.1.1 and Lemma 5.1.2 to get

My(t) < My(0) exp (—2 /Ot P(2X (s))ds — 20Wt> .
O

Remark 5.2.2. In Lemma 3.3, we observe that the first momentum is pre-
served. Thus, without loss of generality, we may assume that v.(t) = 0.

Next, we discuss the size of spatial and velocity supports of f;.

Lemma 5.2.4. The support functionals X and V satisfy the following esti-

mates:
X()<X0+\/_/ v0+m/d7)exp[/¢zx dT—UW}d
()<\f<v0+n M texp{ / ds—aWt}, t>0.

Moreover, if ¢,, > 0, then

X(t) < X+ \/§/t (Vo + /i\/dMQ(O)S) exp(—oms — oWs)ds,
V() < V2 (Vo + n/dML(0)t) exp(—mt — W), ¢ 0,.

Proof. First, we consider the case when ¢,, > 0 may not hold.
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o (Estimate of V): Note that the stochastic characteristics (X, V;) =
{(2¢,v8)}4_, starting from (x,v) € suppf™ satisfy

drt =vldt, 1<i<d,

; N ; (5.2.9)
dvi = (Fa[ft](Xt,Vt)) + 50%; ) dt = ovidW.
Now, we rewrite (5.2.9)3 to have
i Lo\ i
dvy = | | — Oz — Xy) fi(2, vo)dvoda, + S
R2d
(5.2.10)

R2d

+ bz, — X )0 fi(z,, U*)dv*dx*] dt — ovidW,.
Thus, we apply Lemma 5.1.1 and Lemma 5.2.3 to (5.2.10) to get

vl exp {— /Ot { » Oz, — Xs) fs(zs, v*)dv*d:v*} ds — aWt]

Ji] =

+ /t { O, — X vl fo(s, U*>dv*dm*}
0 R2d

X exp [—/t{ O(re — XT)fT(a:*,v*)dv*dx*} dr — o(W; — WS)] ds

< lejlexp |- [ (2 (s))ds — oW
+ H/Ot 5 (s) exp {— /St 52X (7))dr — o(W, — Ws)} ds
< (1l -+ nv/ GO0 exo |- | (2 ())ds — owi].

Hence, we have

d
Vel* = Z ;]
< i <]v[’)] + nWt)Qexp {—2 /Otgb(QX(s))ds — 20’W,{|
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2 (|Vol* + dm%\@((})t%2 exp {—2 /Ot H(2X (s))ds — ZJWt} ,

where we used Young’s inequality, and this yields

t
V() < V2 (Vo + K dMg(O)lf) exp {—/ 62X (s))ds — O'Wt:| .
0
This gives the desired estimate.

o (Estimate of X'): We use 1t6’s formula and the Cauchy-Schwarz inequality
to get

This and the estimates for V(t) yield

d\;(tl <Vl < f(v0+ﬁ M, (0)1&) exp [—/Oté(QX(S))ds—aWt].

We integrate the above differential inequality to get
|Xt|<‘X0H‘\/_/ V0+:‘i dM. eXp{ /qbQX T—UWS]ds,

and this implies our desired estimate for X(¢).

When ¢, > 0, we can use ¢, < ¢(2X(s)) to get the desired results.
[

Remark 5.2.3. Here, we discuss the necessity of the lower bound condition
Om > 0 for flocking estimates. As observed in [51], the equation (5.0.1) with-
out noise exhibits flocking without the condition ¢,, > 0, but it was attainable
since the sizes of x- and v-supports increase at most in an algebraic order,
which is not the case for (5.0.1) due to the exponential Wiener process. Here,
it 1s well known that

. Wi
lim sup

t—oo  V2tloglogt

=1, foras we.
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Thus, for the pathwise flocking estimate, we require

t

lim su 0Q_§(2X(S)>d8
t—>oop Vtloglogt

However, as observed in Lemma 5.2.4, it becomes difficult to estimate

=0, foras wefll (5.2.11)

X (t) without the lower bound assumption ¢,, > 0. Accordingly, it is hard to
find a condition weaker than ¢,, > 0 which entails the estimate (5.2.11).

Now, we are ready to state the stability results for (5.0.1).

Theorem 5.2.1. (L>®-stability) Let f, and f, be two classical solutions to
(5.0.1) corresponding to reqular initial data f™ and fm, respectively, which
are compactly supported in x and v. Moreover, let o, = pi(x,v) and ¢y =
&i(x,v) be the stochastic characteristics associated to f and f, respectively.
Then, we have

1f: = Felléo + lloe — @ellgo < Dellf™ — F||%,

where Dy is a non-negatvie process with continuous sample paths and

o = @illeo 1= sup { i, ) = @i, v)| + (,0) € (suppf™) U (suppf™) }

Proof. Since the proof is rather lengthy, we postpone it to Appendix B.1. [

5.3 Global well-posedness and asymptotic dy-
namics of strong solutions

In this section, we provide global well-posedness and asymptotic flocking esti-
mates for strong solutions to (5.0.1). Here, we show our desired estimates for
(5.0.1) corresponding to regularized initial data. Then, based on the stability
estimates for classical solutions that we obtained in the previous section, we
conclude that solutions to (5.0.1) with regularized initial data converge to a
strong solution to (5.0.1). Moreover, we show that a strong solution obtained
as above satisfies the asymptotic flocking estimates.
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Let ™ be a smooth mollification of the given initial datum f™ satisfying
the framework (F). Then, consider the Cauchy problem (5.0.1) with these
regularized initial data:

Off + v Voff + Vo (F[fi1f7) = 0V - (vff) o Wi,
folx,v) = f™(x,v).
Note that due to the framework (F), the initial datum f™ and its partial

derivatives up to order k are uniformly continuous on R?? and there exists a
constant Ry > 0, such that

(5.3.1)

suppf™ C Bg,(0),

where Bg,(0) is a ball of radius Ry centered at 0 € R?’. As mentioned
above, we use a mollifier to obtain a family of regularized initial data f"*<
C>®(R*), ¢ € (0,1), so that the regularized datum satisfies the following con-
ditions:

o (F°1): {f™} are nonnegative, compactly supported, uniformly con-
verge to f in C°(R?*?) and

[V e [

o (F£2): {M5}(0) is uniformly bounded with respect to € and converges
to M5(0) as € — 0.

e (F%3): The zeroth and first moment of f™€ are initially constrained:
/ fmedady =1, / vf ™ dvdr = 0.
R2d R2d

o (F¢4): f™ has a compact support in z and v, and satisfy
supp /™ C Bp,41(0).

In the following three subsections, we will provide a global existence for
system (5.3.1).
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5.3.1 Construction of approximate solutions

In this subsection, we provide a sequence of approximate solutions to (5.3.1)
using successive approximations.

First, the zeroth iterate ff  is simply defined as the mollified initial datum:
D (x,0) = f™(x,0),  (x,0) € R¥,

For n > 1, suppose that the (n — 1)-th iterate f/' "¢ is given. Then, the
n-th iterate is defined as the solution to the linear equation with fixed initial
datum: for each n > 1,

{@ POV AV (BT = oV 0 o Wy

0" (w,v) = [ (2, 0).
The linear system (5.3.2) can be solved by the method of stochastic char-
acteristics. Let ;"% (z,v) := (X;"*(z,v), V;"*(x,v)) be the forward stochastic
characteristics, which is a solution to the following SDE:
dX;"® = V" dt,
d‘/tn,e _ Fa[ Z’L—l,E](XZl,E’ V;n’g)dt . O_‘/tn,e o th, (533>
(X{(0),Vi"*(0)) = (=, v) € suppf™=.

Note that the SDE (5.3.3) is equivalent to the following It6 SDE [31]:

dX;”" =V dt,
v = (B0 ) + ViVt — oVieaw,, (534
(Xi"(0),V"°(0)) = (=, v) € suppf™=.
Here, we can deduce from Lemma 3.1 and Theorem 3.2 in [13] and our
framework that for any m > 3, (5.3.3) has a unique solution f;"° which is a

C™-semimartingale for every n > 0 and the characteristics (5.3.3) becomes
a C™-diffeomorphism. Then, f;"° can also be represented by the following
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integral formula:

(o (,0))

= f™(z,v) exp [— /Ot Vo E[f" (s, 0™ (2,v))ds + dO’Wt]. (5.3.5)

Note that if f¢ is nonnegative, then surely f;" is also nonnegative as well.
Before we finish this subsection, we also remark that the linear, first-order
Stratonovich equation (5.3.2) is equivalent to the following parabolic It6
equation (see Corollary 3.3. in Chapter 2 from [13]):

Ouf{™ + v Vo ffS + Vo - (FlfH14)
. 2
=0V, - (Vfi")W, + %vv : [WU : (vft)], n>1, (5.3.6)

(:Lvs(xvv) = fin7s<xav>'

5.3.2 Estimates on approximate solutions

In this subsection, we provide several estimates for the approximate solutions
for (5.3.2). To be more precise, we would try to obtain n and e-independent
estimates for the later sections. Before we move on, we define p-th velocity
moments M]»*(t), p =0, 1,2:

Mg=(t) = [ f"dvdr, M{"(t):= / v duda,
R2d R2d

MPE(t) = /R ol Pedudr, MPE(0) = My,

Before we provide the uniform estimates for the p-th (p = 0,1,2) moments,

we set

Ms§ = sup M;(0), v := max{Ms;, K }. (5.3.7)
e€(0,1)

We also present a technical lemma from [6] for a later discussion.

Lemma 5.3.1. [6] Let T € (0, 00| and (an)nen be a sequence of nonnegative
continuous functions on [0,T] satisfying

¢ ¢
an(t) < A+ B/ an-1(8)ds + C/ an(s)ds, tel0,T], n>1,
0 0
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where A, B and C' are nonnegative constants.

1. If A = 0, there exists a constant A > 0 depending on B, C' and

sup ao(t) such that
te[0,7)

an(t) < , te€l[0,T], neN.

2. If A> 0 and C =0, there exists a constant A > 0 depending on A, B
and sup ao(t) such that
te[0,7

an(t) < Aexp(At), te€[0,7], neN.

Remark 5.3.1. 1. In (2) of Lemma 5.3.1, A can be explicitly written as

A= maX{A, B, sup ao(t)}.

te[0,7

2. We can also use the similar argument to obtain the following estimate for

(2):
an(t) < (A+ Ky)exp(At), t€[0,T], néeN,

where A := max{A, B} and K, := supy<,; ao(s).

Proposition 5.3.1. For everyn € N and T € (0,00), let f;"° be a solution
to (5.3.2). Then, for anyt € (0,T) we have

Mg=(t) =1, M(t) =0, My=(t) < (v + Ki) exp{(y + r)t = 20W3},
where v is a constant in (5.3.7) and K; is defined as

Kt := M3y sup exp(—ks + 20Ws).
0<s<t
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Proof. Note that f;"° satisfies relation (5.3.6) and f;"° is compactly sup-
ported in z and v, since ¢ is compactly supported in the phase space and
;¢ is a C™-diffeomorphisim. Thus, we may follow the arguments in Lemma
5.2.3 to derive the conservation estimates.

For the dissipation estimate of M;*®, we use a similar argument to Lemma
5.2.3 to have

t ¢
Myc(t) = M5(0) + 202/ M3 (s)ds — 20/ My (s)dW,

0 0

¢
+ 2/ d(w, — ) (v, —v) - vfr (2, 0,) f (2, v) dv,de . dudads
0 R4d

t t
< M5(0) + 202 / M3*(s)ds — 20 / M3 (s)dW,
0 0

t
+ 2/ H(zy — )0, - vfHE (2, 0,) 1 (2, v) dvada doda
0 JR4d
¢ ¢
< M5(0) + /<;/ My~"(s)ds + (r + 207) / M3*(s)ds
0 0

t
p / M (s)dIW,,
0

where we used Young’s inequality on the second inequality. In a differential
form, we have

kM. "71’8(15)
dMy=(t 2
> () < { +(k + 20?%) My<(t)
Then, it follows from (5.3.8) and comparison theorem (in Lemma 5.1.2) that

My™(t) < Xi,

} dt — 20 M (£)dW,. (5.3.8)

where the process X; satisfies
dX; = {kMy " (t) + (K +202) X, } dt — 20X, dW,, ¢ >0,
{XO = M5(0).
It follows from Lemma 5.1.1 that X; can be represented as

Xt = XO exp(/it — 20'Wt)

+ li/o exp{r(t — s) — 20(Wy — W)} My~ (s)ds.
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This implies
M3 (t) < M;5(0) exp(kt — 20W;)

+ /f/o exp{r(t — s) — 20 (W, — W)} M3~ (s)ds.

Now, we set
an(t) = My (t) exp{—kt + 20 W, }.

Then, it satisfies
a1 (t) < M3, + li/t ay(s)ds.
0
We use Lemma 5.3.1 in the way from Remark 5.3.1 to get
an(t) < (v +Kye’, te(0,T).
This yields the desired result. [l
We also provide uniform estimates for the stochastic characteristic flows.

Proposition 5.3.2. For eachn € N and T € (0,00), let (X", V;"°) be the
stochastic characteristic flow for (5.3.2) with the initial data:

(X35, Vge) = (z,v) € suppf™.
Then fort € (0,T), we have
¢
(i) |V )? < {|v|2 + Ii/ (v + Ks) exp(vs)ds} exp(kt — 20W%).
0
t 2 ° d
(ZZ) |th,€|2§2 |[E|2+t/ <|U| +KJ/{) (’}/—FICT)GXP(’}/T) T dS
0 x exp(ks — 20W)
Proof. (i) It follows from It6’s lemma and (5.3.4) that

d“/tn,a’Q — 2‘/tn7a . d‘/;n,a _‘_dv;n,a . d‘/tn,g
= 2 (B[ 55 V) Vi + PV ) dit — 20(V) W,

< lZ A —X"%) (vs - V7)) tnfl’s(q:*, Uy )dvugdx, + 02|Vt"’€]2} dt
]R2d
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— 20d| V" |2dW,
< (kM3 7Y () + (5 + 200V, dt — 20|V, PdW,

where dV;"*-dV;" denotes a handy notation for a quadratic variation of V,"*.

We use Proposition 5.3.1 and Lemmas 5.1.1-5.1.2 to get
V2 < Jof? exp(st — 20T1))

+ /4:/0 exp{r(t — s) — 20(W, — W)} My~ (s)ds

t
< {]0]2 + /i/ (v + Ks) exp('ys)ds} exp(kt — 20W4).
0

(ii) For the estimate of spatial process, we use Cauchy-Schwarz inequality to
get

t 2 t
< (Jaf o [ veepas) <2l [ epas)
0 0

t 2 ’
<9 |x|2+t/ <|v| —|—/<c/0 (’7+ICT)eXp(’yT>dT> s
0

x exp(ks — 20 W)

This yields the desired result.
O

As a corollary of Proposition 5.3.2, we have estimates for the sizes of
velocity and spatial supports: We set

X" (t) :=sup{|x| : f"°(x,v) #0 for some v € R},
V(L) == sup{|v| : f"°(z,v) #0 for some x € R%}.

Corollary 5.3.1. For eachn € N and T € (0,00], let (X;"%, V™) be the
stochastic characteristic flow for (5.3.2) with the initial data:

(X%, Vo) = (z,v) € suppf™=.
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Then fort € (0,T), we have
V@I < V@] and  [X"(@)] < [X(1)],

where X*°(t) and V*(t) are given by the following relations:

S

(ROH)QH/; ((R0+1)2—|—/</0(’y+/CT)eXp(’yT)dT> ds])

x exp(ks — 20Ws)

X)) = 2

V=(1))? = {(Ro +1)2 +k /Ot(’y + ) exp(’ys)ds} exp(kt — 20W4).

Proof. Tt follows from Proposition 5.3.2 that
t
VE(t))? < {’Vn,ﬁ((])‘z + fﬁ/ (v + Ks) exp(fys)ds} exp(kt — 20W})
0

< {(Bo+ 1745 [ 04 K explrs)ds | explont — 2010
)

This yields the first estimate for velocity support. On the other hand, we also
use Proposition 5.3.2 to get

x™=(t)|”

cafaiop e[ (VP +x [+ explormiar ds]

L x exp(ks — 20Ws)
<5 _<R0+1)2+t/0t ((R0+1)2 +/£/OS(7+/CT)eXp(7T)dT) ds]

L x exp(ks — 20Wy)
= | x>t

]

Remark 5.3.2. Note that f;"° has compact supports in x and v for every
sample path which are bounded uniformly in n and .
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Now, we are ready to state the results on the uniform bound for the sequence

{fi"}-

Proposition 5.3.3. For everyn, m € N and t € (0,T), there exists a non-
negative process AJ* which has continuous sample paths and is independent
of n and £ such that

L wmee < AT (7 lrmece.

Proof. Since the proof is quite lengthy, we postpone it to Appendix B.2. [

Remark 5.3.3. It is easy to see that for fived t and w, AJ* is monotonically
increasing with respect to m.

Next, we prove that the sample paths of approximate solutions become a
Cauchy sequence in a suitable functional space.

Proposition 5.3.4. For every n and t € (0,T), there exists a nonnegative
process Dy which has continuous sample paths and is independent of n and e
such that

n—1,e

LA = £ NG + ™ = b <l

t
<D [ (It -t 4 15 = g )as] . w2
0

Proof. Since the proof is almost the same as that of Theorem 5.2.1, we only
point out some differences. In the proof of Theorem 5.2.1, we just replace

R(t)a P(t)a maX(”fanLooa ”fln“[/oo) and maX(”ft“leooa Hft”leoo) by Xoo(t)a
Veo(t), |If™ and || f™||wr.eA}, respectively. Then it becomes our desired
estimate and hence, we can actually get

LA = S 2o + oo™ = b <1z

t
<8 [ ei(ler — e+ 1 - 127 ) ds

t
+ (1+2] " lwr A B U Calllor e —gs ™ = lleo + £ = f 251G )ds
0
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t
<Dy [ (e =l 4 10270 = 220 s,
0

Bl i= 6 (Lt (d]|gllwr.~ | f7 [ exp(dnt + doWy)°]
Cp = (1+ (AX>=()Y>(1))™),

B2 =1+ 2||¢|lw1. exp (40 sup |WS|) ;
0

<s<t

o~

C2 =14 V(1) (4X>(1)V>(1))4,

D, =B} (sup Csl) + (142" lwreAL)) B <sup C?) :

0<s<t 0<s<t

This gives the desired result.

For each t and w € 2, we define
A5t w) = (17 = 77 + [leh = or 2o

Corollary 5.3.2. The functional AZ(t) satisfies

Al (tw) < m, for each t €[0,T] and a.s. w € Q,
n!

where K = KC(w) is a nonnegative random variable.

Proof. 1t follows from Proposition 5.3.4 that
3 t
N0 < B ([ (83200 + 59 ).
0

Since D, is a nonnegative process with continuous sample paths, there exists
a nonnegative random variable D = D(w) such that

sup Dy(w) < D(w) < oo, for each w € Q.
0<t<T
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Thus, we can use the Gronwall-type lemma in Lemma 5.3.1 to deduce

(D(w)t)"

n!

A, (tw) < , foreach t€[0,T], weQ,

where D = D(w) depends on D(w). O
Remark 5.3.4. Corollary 5.3.2 implies that for everry w,
{(w) = filw) i C([0,T] x R*).

Since f{"° is Fi-adapted (where F; is a filtration generated by the Wiener
process) and ff is a pointwise limit of f™° over Q, we have f is Fi-adapted.
Moreover, we have a uniform boundedness of f;"° in L>([0,T]; W™P(R?))
for any p € [1,00). By the property of reflexive Banach space, there exists
a subsequence {f™*(w)} C {f™(w)} which is weakly convergent to fy(w)
in L>([0, T]; W™P(R?d)) for each w € Q and every p € [1,00). Since we
have already a strong convergence in the lower order, we can conclude that
filw) = ft(w) However, we can not proceed further, since it is not clear
whether ff satisfies the equation (5.0.1) at this moment. This is due to the
noise term in the right-hand side of (5.3.2). It is not certain whether the
Stratonovich integral of f; can be defined or not. In addition, even if the
noise term can be well-defined, it is also not clear whether the Stratonovich
integral of f™ converges to that of f; or not.

5.3.3 Proof of Theorem 5.1.3

In this subsection, we prove a global well-posedness of a solution to system
(5.3.2) by showing that the limit of the sequence {f;"“} exists as n — oo for
each €, and that this limit is indeed a strong solution to (5.0.1) corresponding
to the regularized initial datum f™*.

In order to cope with the problems discussed in Remark 5.3.4, we employ
a stopping time argument. First, we define a sequence of stopping times
{Tam} men as follows:

Ty (W) == inf{t > 0| A (w) > M} AT,
T2 (w) == inf{t > 0| Dy(w) > M} AT,
W) =inf{t >0 | Z(w) > M} AT, Ty =7y ATy ATip,
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where k. := max{k,4} and %, is a nonnegative process with continuous
sample paths which will be specified later. Now, we verify the existence of
regularized solutions step by step.

e (Step A: The limit n — o0): First, we obtain the limit function f7,
which is a classical solution to equation (5.0.1) with the regularized initial
data, based on the estimates in the previous subsection.

o (Step A-1: Extracting a limit function): We can find out that for each
n €N,

(@) [1f MTMHWMO < M| ™ e

(@0) 1fikms = Finmi 2o + 1000, — Pinmys ll2o

t
<[ [ (Ve — ermtell + Mzt — Aok )

Thus, we can use the same argument as in Corolllary 5.3.2 to yield that as
n — oo, there exists a limit function fg, =~ such that, up to a subsequence,

B o Fomy i L0, T] X R2)),
Jiey = foamy W0 L¥(Qx [0, T WP RM), ¥ p € [1,00)

o (Step A-2: Verification of relation (5.1.5)): Now, we need to show that f7,
satisfies (5.3.2) in the sense of Definition 5.1.1. Since f/y; = satisfies (5.3.6)
and conditions of Lemma 5.2.2, it satisfies the following relation:

[ vtz = [ gneua:
/ / WM[U Vzw+( [S”M;;H;a v) vvw} dzds

+ a //v e (Do)udzds

— a// o, U VohdzdW,
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where ¥ := R? and dz = dvdzx.

Next, our job is to pass n — oo in the integral relation (5.3.9) to derive an
integral relation (5.1.5) for f7,. . For this, note that the z- and v-supports of
firzy, and fr, are uniformly bounded by | X%, | and [Vix_ | (see Corollary
5.3.1). Moreover, we can find out that |[X5° | and [Viy,, | are bounded by

AMTM, and hence by M. We combine the strong convergence on the lower
order with these facts to yield

( ) /(ft/\T]\,j fta/\TA[>1/}dZ — 0
“ / / 8/\TM sE/\‘rM) |:U vzd} + < [ :/\T}VIE] + %UZU> : va:| dzds — 0.
ZZZ // fsE/\TM ;L/\T}\IE] - F [ s/\TM]) V dedS — O

(iv) —0 // e = fone,) - (D2)vdzds — 0,
uniformly in w, as n goes to infinity.

Now it remains to check with the stochastic integral term in (5.3.9). For
this term, one has

( / / R SN R v ¢dzdw>2]
[ ([ = e vadz)zdsl

t 2
<E [/ | fos, — f,\TMHgods] (/ v - va|dz> — 0, as n— .
0 s

=K

This L*-convergence over €2 implies that there exists a subsequence {f/\ }
such that

( /0 | /E !Xva'WddeQ (w) — < /0 t /Z fjATMv-VWddes> (w),
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for a.s. w, as [ goes to infinity. Thus, we can conclude that for a.s. w € €,

€
SATM

[ Foyvdz = [ preva:
s s
! 1
- / / sE/\TM (U ' V:}:w + (Fa[ s/\TM] + _0_2'U> : Vqﬂﬂ) dzds
0o Jx 2
1 2 ' 5 2 ‘ €
— -0 Ufinm, - (Dyv)vdzds + Jonm, U+ VotbdzdWs,
2 0o Je 0 Jx

for every ¢ € D(R??). One also has Jinm, 18 a Fi-semimartingale. Here, we use
Lemma 5.2.1 to obtain that f7,  satisfies (5.0.1) in the sense of distribution.

satisfies

e (Step B: The limit ¢ — 0): Here, we address the convergence of solutions
to the regularized system (5.3.1). Since k, > 4, one uses the Sobolev em-
bedding theorem to get ff,,, € L>(Q;C([0,T];C3*(R*))). Thus, it follows
from Lemma 5.2.2 and Remark 5.2.1 that f;, becomes a classical solution
to (5.3.1) corresponding to the regularized initial datum f€ .

o (Step B-1: Extracting a limit function): Note that the strong convergence
in Step A implies that the z-support and the v-support of f,, —are bounded
by A and V*°, respectively, uniformly in . Thus, we can follow the stability
estimate in Theorem 5.2.1 to get

’ ’
Hff/\T]\/j - ftE/\TMHgO + ||g0§/\7']\/1 - goi/\ﬂu”?:o

in,e in,e (|12 in,e in,e’ (12 <5310)
< Dinead 1T = [ lco < ML f™ = [ Cos

where 2, can be obtained if R(t), P(t), max(|| f ||z, || f" ||z ) and
max(|| fi|lwr.ee, || fillwie) in the formulation of D; from Theorem 5.2.1 are
substituted by X*°(t), V>=(t), || /™| and || f™|lw1.«.A}, respectively.

Since f™¢ converges uniformly to f, it follows from the stability esti-
mate (5.3.10) that there exists fiar,, such that

mwaﬁmlm_wmxmjwk%)

Moreover, it follows from the weak convergence and (F<¢1) that
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1 finras e < AGIF™ Nlwre < ML fpnce.

Hence, we can follow the arguments in Step A to yield that fia-,, satisfies
relation (5.2.1) and hence (5.1.5). Moreover, firr,, is compactly supported in
x and v.

o (Step B-2: Regularity of a strong solution): Now, we prove that fi.,,, has
the desired regularity. Since f;, . is a classical solution to (5.0.1) with initial
data f€, it can be uniquely written as

fta/\T]\/[ (<ID§/\TJW (LU, U))

tATM
_ () exp [_ / Vo Fu[f)(¢5)ds + doWinr,, | |
0

(for detail, we refer to Appendix B.1). Since we also obtain the uniform
convergence of the characteristics ¢5,,, as ¢ — 0 from (5.3.10), the solution
finry, satisfies the following relation:

ft/\TM (Spt/\TM (.T, U))

| tAr (5.3.11)
= f"(z,v)exp [—/0 Vo Fulfsl(ps)ds + daWtATM} ,

and the limit wiar,, (2, v) = (Xiar, (2, v), Viar, ) is a solution to the following
SDE:

tATM
Xt/\T]u = + ‘/;ds7
AT tATAL
Vinruy ZU—I—/ (Fa[fs](Xs,Vs))ds+/ o(v. — V;) o dW.
0 0

Since the kernel F,[f;] is smooth, @i, (z,v) can be shown to be a C™-

diffeomorphism for any m € N, and so is its inverse ¥, (7, v) := (@2, v)) L.

Thus, if we write

ft/\’TM (ff, U)

= fin(wt/\TM (xy U)) exp |:_ /0 : vv ' Fa[fs](gos (wt/\TM (I, U))dS + daWtATA4:| ?
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it directly follows from the regularity of f and 1); that fi\,, has the desired
regularity.

e (Step C: Properties of a strong solution): We recall several properties of
regularized solutions. First, it is obvious from (5.3.11) that

[ fenmallzoe < 117 |20 exp(dit A Tap + doWins,, )

Since f,,,, is a classical solution to (5.3.1) corresponding to the regularized
initial datum f>¢, Lemma 5.2.3 gives

M28<t A TM) S M;(O) eXp<_2¢mt A T™ — 2O—M/vt/\TM)a

and the strong convergence together with compact supports gives

My(t A 7ar) < My(0) exp(—2¢mt A Tar — 20Winsy, )-

Moreover, it is obvious that
Tv(w) =T as M — oo for a.s. w.

Thus, we choose a sufficiently large M for each w € 2 such that fir.,, (w)
satisfies the relation (5.1.5) on [0, 7.
For the expectation estimates of the solution, we use Fatou’s lemma to get,
for any p € (1, 00),

E”ftHL‘X’ < lirninf]EHft/\ﬂ'Jvf”LOo

M—o0
< limin | fi"\]LooE[eXp(dnt ATar 4+ daWMTM)]
—00

[ p(do)”

exp (daWMTM — tA Ty

| xew ((dm + p<d20)2)t /\TM)

' r do)2 (r—1)/p
< lg\gn_goléf 1f" | _exp <]% <d/§ + p(TU)>t A TM>:|

— 7o ( (2 + 250 ).
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where we used the fact X; = exp(aW; — a%t/2) is a martingale, Holder’s
inequality and Lebesgue’s dominated convergence theorem. Then we take
the limit p — 1 on both sides to obtain the desired result. For the dissipation
of the second velocity moment, we use a similar argument to get the desired
estimate.
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Chapter 6

Conclusion and future works

In this thesis, we covered three topics related to quantitative estimates for
intrinsic and extrinsic uncertainties in the Cucker-Smale model.

First, we have presented the local sensitivity analysis for the random hy-
drodynamic Cucker-Smale model describing the emergence of flocking in the
ensemble of Cucker-Smale flocking particles. In previous works, quantitative
estimates for the variations of the solutions in random space were derived
from particle and kinetic models for the C-S flocking. We extended the afore-
mentioned quantitative estimates to the hydrodynamic Cucker-Smale model,
e.g., the propagation of the z-variations of spatial and velocity process, where
z is the random input variable, the L2-stability and flocking estimates along
the sample path. Thanks to the regularity analysis of the deterministic HCS
model, we can lift regularity estimates to the random solution process along
the sample path. As mentioned in the Introduction, the synthesis of flock-
ing dynamics and local sensitivity analysis is not that mature yet. There
are many open questions, for example, the effect of uncertainties on the for-
mation of multi-cluster flocking and extension of the local sensitivity to the
initial and boundary problems in the context of flocking. Moreover, as far
as the authors know, the initial and boundary value problems are not well
studied in the flocking problems even for the deterministic flocking models.
We leave these issues for future works.

Second, we have introduced the Cucker-Smale model with randomly switch-
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ing topologies for flocking phenomena and provided a sufficient framework
leading to the stochastic flocking in terms of system parameters and commu-
nication weight function. For the stochastic flocking modeling, we employed
two random components for the switching times and selection of network
topology at switching instant. Our flocking analysis took two procedures:
First, we derived flocking estimates along the sample path in a priori setting
on the network topologies and position diameter. Second, we replaced a priori
assumption on the position diameter by suitable assumptions on the system
parameters and communication weight, and moreover, we also showed that
the a priori assumption on the network topology can be attained by impos-
ing some condition on the network selection probability. There are still many
questions to be investigated for the proposed model. For example, what if the
support of the probability density function f for the sequence {ts11 — tr}e>0
is not compactly supported, say (0,00)? Our analysis employed in the proof
of the main result breaks down for unbounded support cases. However, it
seems that our methodology and framework is quite general so that it can
be applied to other C-S type flocking and Kuramoto type synchronization
models. These issues will be addressed in our future works.

Finally, we studied a global well-posedness of strong solutions and their
asymptotic emergent dynamics for the stochastic kinetic Cucker-Smale equa-
tion perturbed by multiplicative white noise. For a global well-posedness, we
first derive a sequence of classical solutions to the stochastic kinetic C-S equa-
tion with regularized initial data. Then, by using the properties of classical
solutions, we obtained the well-posedness of a strong solution correspond-
ing to the original initial data and asymptotic emergent stochastic dynamics
of strong solutions. Of course, there are lots of interesting issues to be ad-
dressed in a future work, e.g., a global existence of weak solutions, emergent
dynamics under other types of random perturbations and zero noise limit,
etc. These topics will be discussed in future works.
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Appendix A

Detailed proof of Chapter 3

A.1 Proof of Lemma 3.1.2

Similarly to Lemma 3.1.1, it suffices to provide the upper-bound estimates.
Again, we split the cases into the zeroth-order and higher-order estimates.

e Step A (The zeroth-order estimates) : We multiply (3.1.3), by d,u"™ to
get

10 n
5@”59% HHZﬁ

1
=— [ Ou"-Vu-0.u"dr + 5 / (V- u)|0.u" *dx
Td

Td

+ [, 00 —y)(uly) - w())p(y)d.u™ () dydax

+ [ oz —y)(0.u"(y) — d.u"(x))p(y)Oou™ u(x)dyde
T2 (A.1.1)

- oz —y)(uly) — u(2))d.p"" (y)0:u" " () dyd

< IVullz|0-u™ 2[00 | 2 + | Vull e [ 020 22

+ 2H¢|IsllpHL2(HUIIHIIH@ZU”HHH + H@zun|\L2|lf9zU"“HL2>
+ 2016 llsllull 2 [10-" | 2[00 2

< 2] 0u" M 7a + %),
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where C' is a positive random function independent of n and we used the
Sobolev embedding theorem, Young’s inequality and Lemma 3.1.1. Now, we
apply Gronwall’s lemma for (A.1.1) to yield

¢
|0.u" 3. < C <51/2/ 10.u" (s, 2)||72ds +€3/2) : (A.1.2)
0

e Step B (Higher-order estimates) : For 1 < k < s, we apply V* to (3.1.3)s,
multiply by V#(9,u™*1) and integrate the resulting relation over T¢ to obtain

S IV @

o.u™ - V(VFu) - VF(0.u" ) dw
d

I
| |
—
4

(Ou" - Vu) — 0u™ - Vk(Vu)} vV (0,u" ) dx

(V- u) [V (0.u) P dar

l\DI»—
— i

k(u V(9. "+1))—u-vk(V(azunH)}vk(azun“)dx
= (f
(
(

[ ote = wioarts) - au())@mw)v%@wHUWMx
A /qb y) —u(z))0. 0" (y )dy) VH(Ou™ ) () dx

d
Td

_|_

0,6(z —y) <w—uu»mw@)v%@wHU@Mx

U

d

=

<9
=

+

' +
ﬂ@\%\@\\
<

I
N

1S9

s
I
—

Here, we separately estimate Zg;’s as follows.

o (Estimates for Zg;, i = 1,2,3,4) : We use the Cauchy-Schwarz inequality,
commutator estimates and Young’s inequality to get

Tor < (100" o [V ]| 2 V(@™ )12 < C2[VH (0072 + €77%),
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Lsr < C[HV(@U")HLwHV'“uHLz + HWHLOOHV’“(azun)HLQ]HV'“@U"“)HB
< O VH@um)I[72 + €72,

1.63§‘

V- ul g
Il e a2 < 29 D) e

Zea < C{HWHL%HV'“(@ZU"“)HLQ+ HV(@U"H)HLOOI\V'“uHLz}HV’“(@U”“)HLZ

< CeY?||0um %

o (Estimates for Zg;, i = 5,6,7) : For Zgs5, one gets

Tos = / VH(0.0(2 — 1) (uly) — u(@))p(y) V* (0™ (@) dyda

_Z(k) [, V(@600 = )V ulw)o) VH 0.0 )y

< Cligllsllull e loll 2]V (02" | 2
< CEV?VH@aum )7 + %%,

where we used the Cauchy-Schwarz inequality and Young’s inequality.

For Zgg, we use the same arguments as Zgs; to get

Tos = | V'o(x —y)(0:u"(y) — 0:u"(2)p(y) V* (0.u™) () dyd

T2d

- > (’“) [ V0l )V (0 (2)o(0) V@) ()

< Cl Il 2l e |4 (@) 1.
< CEPIVH@r [ + ).

For Zg7, we have

Ter = | V'o(x —y)(uly) — u(x))d.p" ' VF(0.u") (z)dydx
TZd
- (k) Vo(a — y) V" u()d.0" (y) V(0.0 (0)dyda
0<r<k—1 T2d
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< Cllllsl10:p" |2 lJull e [V (Do) | 2
< OV 0u ) II7 +€%72).

We gather all results for Zg;’s, sum over 1 < k < s, integrate the resulting
relation and combine with (A.1.2) to get

t
e (/ [ 1oaris )
0

Finally, we use Gronwall’s lemma to obtain the desired result.

||azun+1|

hds + 297

A.2 Proof of Lemma 3.1.5

We split the estimates into the zeroth-order and the higher-order cases.

e Step A (The zeroth-order estimates): It follows from (3.1.12) that

10, m n
55”@ w2
=— [ oM™ Vu- 0" Mdr + L / (V- u)|0ru" T *dx
Td 2 Td
Z (7) Obu - V(0™ ) - 0" u"  da
1<i<m—1 T¢
m!
s 3 T [ 0ot - )(02uly) — 2ule)Olpl)or " w)dyds
a+,8+’y:ma.5.,y' T2d
By#m
+ (x — ) (07" (y) — OTu™ () p(y) L u™ (z)dyda
TQd
. oz —y)(uly) — u(x))0r p" (y) 0w+ (x)dyda
TQ

1
< IVl oo |07 6 | 2|07 | 12 + §HV'UHL<>°H<92”U"“1@2
+C Y 10kl V(@7 ) |2 07 | e
1<I<m—1

+C Z 107ull 2107 pl| L2 ]| OF u™ 1| 2

a+p+y=m
Byy#m
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+ 200l O a9
+ 20l 00" 2O
< CEPoru 3 + ),

where we used the Cauchy-Schwarz inequality and Young’s inequality.

e Step B (Higher-order estimates): For 1 < k < s—m+ 1, we have
19
20t
= — / VEOm ™ - Vu)VFE (0 d

Td

IV (@2 um )2

—/ VE(u - V(0" u" ) VF (0" u" ) da
Td

> (7) VF(OLu - V(O ) ) VE (T dae
Td

1<I<m—1

m! k| 0%0(z —y) R
Lgma!ﬁ!v!/wv [ - (@2uly) - a?u(:U))}az PVHO ™) () dyde
By#m

+ [ V(6 =)@ (o) - 07 @) ) ola) VHE ) )y

+ [ V4 (0 = ) (ut) = @) )T () VH O @)y

In the sequel, we estimate the terms Z7;’s separately.
o (Estimates for Z7; and Zry) : For Z,

Tn=— [ VHO™") - Vu- VO u")dx

Td

— / [Vk(a:;”u" -Vu) — O™ - VH(Vu) | VE( O™ da
Td
< [Vl [ VE (02 u™) || 2 V(00" | 2
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IV (0 u™) || o | VE ]| 2 > k +1
+ ; —
( +|| V| e || VE (07 u™) || 12 IVA( e

< C(EVIVH@r w72 + %),
where ¢ and C are positive random functions independent of n. Similarly,

1
Toy= 1 / (V - ) [VE (@m0 Pda
2 Td

- [ [FH vty - ue Vv @z )] - v s

IV - wll e [ VH (06 22

R T TR
¢ ’ VO u"
(+||V(8;”u"“>||m||Vku||L2 IVH (@)l

2 3/2
Hs—m+1 +8 / )7

<

N —

+
S 0(61/2||a:1un+1|

where ¢ and C are positive random functions independent of n.

o (Estimates for Zz3): One gets

Trg=— ) (m){ Olu - VF(V (0" ) - VRO u" ) da
1<I<m—1 T¢
VHOLu - V(07 ) ; 1
z z . m_ . n d
=[] Vo wrwian oy | 7z
10l oo [ VEHH (O ) [ 2 [ VR (0w 1) | 2
HIV(0o) | oo [[VF (O ) [ 2 [ VF(OF U™ ) | 2
HIV (0 u) | oo [V (O) [ 22 [ VF(OF U™ ) | 2

<C ).

1<I<m—1

< O VMo um )72 + 7).

o (Estimates for Z74): By direct calculation,

_ m! VH(a20(e =) (@2uly) = 02u@))\ ,
Try = Z a!Bly! /TM ( . 8gp(y)v’“(8?u”“)(x) ) dyd

a+f+y=m
Br#Em
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T ) LA e
i BN S - 97 py) V(O ()
By#Em
0<r<k—1

< X am 20l o2l 02l | H (B

a+B+y=m
Br#FEm

t Z alfly |< )||¢|| 102l 22|V (90w || 22| VF (97 ™) | 2

0<r<k 1

< C(EPVHorum )7 + 7).

o (Estimates for Z75): In this case, we get

Is= | V¥(x —y)(0ru"(y) — 0lu"(2))p(y) V* (T ") (x)dyda

T2d
k-1 r _ k—r(am,n

-y (k) / < V(e = y) VT (Orur) () ) dyde
o \r) Jra \ - p(y) VE(OI ) (2)

< 2[lgllsllll 22 102" " |2 [V (02 u" ) | e

k—1 k

# 3 () 1ol ol 9 @2 o 902 o
r=0

< O VH@rum )7 + 7).

o (Estimates for Zz) : One has

s = | VE(z —y)(uly) — u(x))drp™ (y) V(O u") (z)dydx

']I*Qd

: Z < ) /T < ?Taq;inily&gviz;}?n+l><x> > dydz

< 2||¢>|ISIIUIIL2||32”p”+IHL2IIV’“(@?U"“)IIB
k—1 L
+ 3 () 1ol Iv ullalor ol V@) s
r=0
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< O VRO )72 + 7).

Now, we gather all results for Z;’s, sum over 1 < k < s—m+ 1 and combine
with the zeroth-order estimate to yield that for each z € €2,

gnam n+1|

2Hs—m+1 S C(él/QHa’Zﬂu”H] ?{S_m+1 -+ 53/2).

Thus, we integrate the above relation over [0,¢] and use Gronwall’s lemma
to get the desired result.

A.3 Proof of Lemma 3.2.4

We consider only higher-order estimates. For 1 <k <m—I[+land1 <[ <m,
we apply V*&' to (3.0.1) to get

ZatHV’“@l(u a))|3:
5 <l< )<k) V07 (u = ) - V(VR (0 ) - RO (0 — ) )da
l< )< ) V() - V(VET (0 (w— 1)) - VHOL(u — 1) )da

! V(926 92((u —0)(y) ~ (u — 1)(x)))
B Z alfly! /W H - A py)VF (O (u — u))(z) }

a+B+vy=l
. { A (8% 0 (aly) — u(x )> dedx
- 0(p—p)y)V —u))(z)

o
53
=

4
== ZI&
i=1

In the sequel, we estimate the terms Zg;’s one by one.
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o (Estimates for Zg;) : One has

res ¥ () ()i (e )

O<r2<k
<C Y 0l e V7202 (= @) |22 [V (DL = )| 2
0<r <l
0<r2<k
< OZ -

o (Estimates for Zgy) : Similarly, we have

e Lo (R

0<r;<i
0<T‘2 <k
(r1,m2)#(1,k)

1

+3 /Td(v )| VF (O (u — 1))|Pdx

< ¥ (O(Epemeran- (Tt

0<r <l
0<ro<k
(Tl’TQ);é(lvk)

IV - all~
* 2

< OZ 107 = ) 3

IV*(02(u — @)) 7

o (Estimates for Zgg and Zgy) : One gets

Ty < C Y V(02 (u— @)l 2102 pll 2 | VH (DL — @) | 2

a+B+y=l
0<r<k

<C Y 0= @)

0<r<i
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Tu <C Y V(020020102 (p — P2 | VM (0L (u — @) 12

a+pB+y=l
0<r<k

< (I @i - )l + 3 10t - Al )

0<r<i

Now, we combine all the estimates for Zg;, sum over 1 < k < m — [ + 1,
0 <1 < m and add the zeroth-order estimate to get the desired result.

A.4 Proof of Theorem 3.3.2

It follows from (3.1.2) that

2(%/ |0 u|*d

/ (07w - Vu) - 0T'udx —/ (u-V(07'u)) - 07 udx
Td

Td

mZ( )/ (Ou- V(O ) - 0 uda
+ 2

oot — ) @Zuty) — O2u@)0pta) O u(w)dyds

a+p+y= ma'ﬂ ")/‘
B#m
+ - o(x — y) (9 uly) — doSu(z))p(y) - 07 u(z)dydzx

5
= ZIQZ
i=1

Next, we estimate each Zy; separately.

o (Estimates for Zg; and Zgys) : One gets

1 V'U/ oo
Tn = [ (V- w)orups < 2 ey,
Td
" ol ) < Sz, UG
Too < [V (0wl ull 2192 ull = < 1O ull7 + =5 ull7»
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5 2 ;
< Sporuls + L Fyzpeen

o (Estimates for Zy3) : Note that this term does not appear when m = 1. If
m > 2,

m—1

m _ m
Zw < 3 () ) IV @l 1oLul 102l

=1

m—1 2
m m—1 m
ol + ™Y (l) ()l
=

IN
qxlon NGRS

¢ (Estimates for Zgy and Zgys) : One has

Tu< )y, '6' ,H¢|l (102w A2 pll o l|02 o + 1107 pll 2 107w - O] 1)

a+p+y=m
B#m
<2 > oo ,H¢H 102 pll 2102l 21107l
a+pB+y=m
B#m
5 ml 2 (mt1)(m+2) _
< glorullf +4 0 Y7 (Ilqﬁl!s—a,ﬁ, ,u(z>> L |oulf.
a+pB+y=m Y
B#mM
0 om > 2m?2 + 6m Al
< Zlomulz+ Y (||¢|| e ()) 2O e
o

Ty =~ [ 0o~ ploru()Pply)dyds
Td
+ | oz —y)duly) - O ulx)p(y)dyde
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0
~ (amlnles = § )tz + 12 g 2

0 m Qb sIPl L2 Az
- (¢m‘|p0HL1 - Z) |07 ul| 12 + WEm(Z)G Ayt

Finally, we gather the estimates for Zo; (i = 1,--- ,5) to obtain

D Jorall < —2RGOTal: + P, (Ad)

where F,(z) is given by, for m > 2,

Fi(z) == U(é) Fo(z) + ?Uz(z)}"o(z) + wEl(z),
) =L )+ mT‘l > (7)) were)
I=1
n Z (l|¢|| |ﬁ' ' U )) 2m ;—6me+ ||¢”5(§/[(Z)E1<Z)
oc—&-g;zzn:m

We apply Gronwall’s lemma for (A.4.1) to yield

J07ule < ool Bae A0 4 T (oo _ pmaicn
< fm(2>€_[\(z)t,
where F,,(z) is defined as

Fn(2)
fm = 8m 22 + — .
() = Il +

This implies the desired estimate.
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Detailed proof of Chapter 5

B.1 A proof of Theorem 5.2.1

First, we define n and 77 as follows:

m(x,v) = "z, 0) - / ne(2,0) (Vs - Falfi)(0)ds + od / ne(,v) o dIV,,
i, 0) = () ™).

We use the generalized It6’s formula from Theorem 3.3.2 in [69] to obtain
that 7, satisfies the relation (5.0.1). Since the classical solutions can become
measure-valued solutions and the uniqueness of measure-valued solutions is
guaranteed in Theorem 5.1.1, we have

ﬁt(xav) = ft(mvv)'

Moreover, since 7 is a geometric Brownian motion, a unique classical solution
f corresponding to the initial datum £ can be represented by

wla.0) = fleloo)) = (o) exp | [ Y, s + o]

Now, we consider another classical solution f corresponding to the initial
datum f™ and the associated stochastic flow @;(z,v). Moreover, we set

R(t) := sup {|x\ : fi(z,v) £ 0 or  fiz,v) #0 for some v e Rd},
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P(t) ::sup{\v] : fi(z,v) #0 or  filz,v) #0 for some xeRd}.

Then, we claim

L — o2
@)ﬁ—ﬂ&ﬂB4 ’ ]

t
+ [ et(llee = Gulle + 15 - Rl )as
0
+ 2max((| fllwrcm. | Fllwsoe)lle — Gl

t
(i1) lor — el < BY ( /0 Cllps = @ollzee + 1S5 = sz%oo)dS) ,

(B.L.1)

where B} and C; (i = 1,2) are nonnegative processes which have continuous
sample paths.

(i) First, we derive the L*>-estimates for classical solutions:
f((pt(xv U)) - f?ﬁ(‘ﬁ(%v))

= (Florle, ) = Fgulw, ) + (F@ilw,0) - Floz,v))
=: Jo1 + Joa.

e (Estimate of Jy1): By direct estimate, one has
t
oy = f™(x,v) exp [—/ Vo EFulfs](ps)ds + daWt]
0
t
— f™(z,v) exp [—/ Vo Fulfs](ps)ds + dth]
0

< Hfm - finHL‘x’ exXp {_A VU : Fa[fs](gos)ds + dO’Wt:|

_ eXp ( - / Vo - Fa[fs](SOS)d5>
+ (1" )| oo exp(doWr) ‘

t

~ew (- [ v Eifle0s)

< 1" = Fl e exp (dnt + do W)

7 exp(dnt -+ doWi)| [ (9 FulF)o0) = Vo FEN 2. )ds

Y
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where we used the mean-value theorem, and we have

‘Vv : Fa[fs](gos) - Vv : Fa[fs](@s)

¢($* - Xs) - ¢($* - Xs)

fedv,dax,

+d | d(x.— X)) fs — foldv.de,
RQd
< dopp|Xs — Xl + du(d4R(s)P(5)) fs = fill -
Thus, we get
Jor < ||f™ = f|pee exp (dit + do W)

t
+ 1F™ || o exp(drt + dchVt)/ dorip| Xs — Xs|ds
0
t
™ exp(dnt + doWW) / AR(4R($)P(8) 1 fs — Fullpds.
0

o (Estimate of Jys): By direct estimate, one has

Jag < Hﬁ“wlmu% — @t oo

Hence, we take the supremum over (z,v) € R? x R, and use Young’s in-
equality and the Cauchy-Schwarz inequality to get

aFars
< 2J3 +2J3,
< 6| f™ — f2 exp (2dkt + 2do W)

¢ 2
I 6||me%°° exp (2dkt + 2doWy) </ Ao rip| Xs — Xs|ds>
0

+ 6Hme%oo exp (2dkt + 2doWy) (/0 dr(4R(s)P ()| fs — szLoods)

+ 2| fllis e e — @ill7o
<6 f™ — f™|F exp (2drt + 2do W)

- 2 [t
+ 6t (d¢Lip||fm||L°° exp (drt + dUWt)) / HQDS - QESH%OOdS
0
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~. 2 rt ~
6 (|17 exp (dit + da W) / di(AR ()P ()| fo = fillT~ds
0
+ 2]l fellreollor — Gl 7o

Setting

B =6 {1 +t (ngbHWl,oo max (|| £ oo, H]anHLoo) exp(drt + daWt)>2} ,
Ct = (1+ (4R(H)P(1))*),

we obtain the desired result (i) of (B.1.1).

(ii) Now, we estimate ||¢; — @¢||r. It follows from (5.2.6) and It6’s lemma

that
|V, — Vi[> = 2(V, = V))d(V; = Vi) + d(V, = V,)d(V;, — V)

/

=2 (th — VO(Falf)(¢0) = Fulfil(&1)) +0°|Vi = ‘7tl2) dt

~~
=:Ja93.

— 20|V, — V,|2dw,.

Here, we have

Jaz < /
R2d

- /2d ¢<x* o Xt)“/t - ‘725‘2ftdv*d$*
R

d(r. — Xy) — ¢ — Xo)| (v = Vi) - (V; = Vi)| fedv,da,

+ [ dlee = X)) = Vi) - (Vi = VIl fe = fildvoda,

RQd
=: Jog1 + Jogz + Joss.

We separately estimate the Jos;’s as follows:

Jaz1 < 260, P(1)| Xy — Xi||Vi = Vi| < 200, P()|l0r — @il 2, oz <O,

127



APPENDIX B. DETAILED PROOF OF CHAPTER 5

Jogs < 26P(O)|Vi = Vil[| fs — Fill e (AR ()P(2))"

~ 2
< sPOURMOPEO) (I1fy = il + llon — Billi=)
Thus, by Lemma 5.1.1 we get

Vi TP < [ PUERIP()I. — Flf exp(=2 0V, = Wo)ds

"1 P(s)(4R(s)P(s)) s — Psll7o
+ (261 + /@)/0 [ x exp(—20(W; — Wy)) ds

< 2@ exp (40 sup |Ws|)
0<s<t

t
< [ POUREGPE e, =l + 1.~ Flf)ds
Moreover, it is easy to obtain that
dIXe— Xo? = 2(X; — Xi) - (Vi = Vi) < 2llps — Bl 7.

Thus, if we define B? and C? as

BZ =1+ 2||¢|ly1. exp (40 sup |W8|) , Ci=14+PHARM)P(1))?,

0<s<t

then (ii) of (B.1.1) can be fulfilled with the above B? and C?.

Therefore, we add (i) in (B.1.1); to (1 + 2max (|| f|[wr.ee, || fi]lwie)) times
(#7) in (B.1.1)2 and obtain

1fe = FellZee + lor — 7o
t
<B(Irm = o+ [ (o= Bl + 1. - Filf ) as]
0

t
+H(L+2max(|| fellwres, [ fellw.o) BY U Cllps = Pslliee + NI —fs||ioo)d8}

0

t
< B = Pl + B [ (o= @ulle 4110 - ol ),
0
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where B, is given by

B, = B! ( sup c;) n <1—|—2maX(Hft||W1,oo, Hftnwm)) B2 ( sup cg) .

0<s<t 0<s<t

Then, letting y, := fg (Hgos — Ps|20 + |Ifs — sz%w)ds, we have

dy. < (BUS™ = (13~ + Buye) d.

Then, by Gronwall’s lemma we get

t t
ye < 1F" = )7 / B! exp ( / der) ds,
0 s

I1fs = FillZe + e — Bll3o0

t t
< = e {B} LB / B! exp ( / lg’TdT) ds] |
0 s

Hence, defining
D, = B} + Bt/ B! exp (/ BTdT) ds,
0 s

we arrive at the desired estimate.

and this gives

B.2 A proof of Proposition 5.3.3

Recall that f;"° satisfies a differential form:
Oft = =0 Vo fi5 = Vo - (FLfTTELF) + 0V - (0f{°) 0 Wi,

i.e., it satisfies

t t
T KA A R G
" 0 (B.2.1)

¢
+cr/ Vo (0f"%) o dWs.
0
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Next, we claim: there exists a nonnegative process A" with continuous sam-
ple paths such that

[ fellwmoe < LF™ llwrmee AT

In the sequel, we provide L*>-estimate of f; and its derivatives to provide a
proof of Proposition 5.3.3.

e (Zeroth-order estimate): It follows the formula (5.3.5) that

t
(e (w,0)) = f7F(x, v) exp [—/ Vo Bl fi7 (00 (2, 0))ds + do W,
0
< || f™€|| 2o exp(drt + doW).
This implies the zeroth-order estiamte:

17 oo < (| F7™5] L exp(dit + doWy). (B.2.2)

e (Higher-order estimates): Let o and § be multi-indices satisfying
L <ol +[6] <m.
Then, we apply 920° to the relation (B.2.1) using Theorem 3.1.2 in [69]:

RO = 0]
5 t
=S (1) [ vu@mor e o
K1/ Jo

lpa|<1

> (;) (5) /tvv'(35235‘31%[f?‘l’a]é‘g‘maf—%fgvs)ds (B.2.3)
2 3 0

p2<a
lus|<1

t
oy (5) / Vo - (044 (0) 0505 f1°) o W,
| 4/ J0

pa|<1

where we used the relation:
IF,[f ] =0, for |us| > 2.

Note that the differentiation equality (B.2.3) is only true outside a P-
zero set in  which depends on (z,v), according to Theorem 3.1.2 in [69].
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However, we can use the argument in Lemma 5.2.2 to obtain that the equality

also holds P® dx ® dv-a.s. Now, we rearrange the previous relation to obtain
070 f]° = 070 f

B / [0 V(0000 £2) + B2 (0005 £27) | ds

t

+a/ v - Vo (0%0P f12) o dW,
0

_d+ 18]

(B.2.4)

t
/ V, - B[ 1e]000f freds
0 t t
o(d+ |8)) / 0208 1< o d1V, — / Los(s)ds
0 0

for P® dx ® dv-a.s., where the process L, g is given by the following relation:

L= 3 (Poww)-utazor e

=1 M1
O ) L ARC AT PR
0#p2<a Kz
w2 ()] oo nia vz o
A M2/ \ 3
|pal=1
b X (D ornin v ol
0#£p2<a H2

Next, we define A and \ as follows:

M(@,0) 1= 920 Fn () ‘”'6’ (V- Elf) ()ds

+a(d+|ﬁ|)/ s(z,v) 0 dW, — /Eag “)ds,

0

e, 0) = Al(p) 7).

By using generalized It6’s formula from Theorem 3.3.2 in [69], A, satisfies the
relation (B.2.4). Thus, by the uniqueness,

= RO f,
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and we use Ito’s formula on \; to get
0707 1 (1)

= o0 7 () exp - T / V.- ELf7 (o) ds Ho(d + AW

t d+’6| nla
’ +0(d+\5\)(Wt W)

For detailed explanation for the above realtion, we refer to the proof of The-
orem 3.2 in [13].
Note that the following estimates hold:
e If || =1, one has
207 Ful £ < ln.

o If || > 1, one gets

O FL L] (00)] < [1Bllem / 0, VR (2, 02 dundr,
< [1Bllem (V= ENIVI] < [16llen (VZ (1)),

We set C, 5(t) to be

Caslt)i= Il | ()4 35 () +Z(j)(f) (14 (=(1)?).

[ua]=1 0#pu2<a <pa<
lnsl=1

This yields
[La,s(t: 07 < Ca @) [wmee.
Thus, we have
050 £ (0}
< (10207 f | = exp((d + [B]) (st + o W)

t (B.2.5)
" / exp((d-+[B){A(t = )+ o (Wy = W) }Cas () | S2* [symmds.
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Now, we take the supremum over all characteristic flow, sum (B.2.5) over all
1 <l|a| 4+ |5] < m and combine this with (B.2.2) to obtain

£ wmee < || 75 || wrmace M
[ D0 exp(—o(d+|B)W,)Cals)

+M§”/ jal+[B<m s,

0

x exp(—=(d + m)ks) || £ lwm.e

where the process MJ" is given by the following relation:

My = exp((d+m)wt) Y exp(o(d+|B)W).

|BI<m

Note that M7 is independent of n and €. We set

b (t) 1= |Lf7 llwm.oo (M) 7
Then, one gets
t
bua(®) < o [ Nbia(s)ds,
0

where the process N is

N =0 S " exp(o(N +[B)W,) p 4 D exp(—a(N + |B))W.)

18]<m 18]<m

x| D Capls)

laf+|B|<m

Thus, we can use Gronwall’s lemma to obtain

£ e < I e AT

where the process A} is given by the following relation:

A = exp((d +m)st) Y exp(o(d + |5))W7) exp [ /0 t /C/Smds} .

|BI<m
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