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Abstract

In this thesis, we introduce random elements into the Cucker-Smale(C-S)

model and provide quantitative analyses for those uncertainties. In real ap-

plications of the Cucker-Smale dynamics, we can expect that the C-S model

contains some intrinsic uncertainties in itself and misses some extrinsic fac-

tors that might affect the dynamics of particles. Thus, to provide a better

description for the dynamics of a C-S ensemble, one needs to incorporate such

uncertain factors to the model and evaluate their effects on the dynamics or

stability of the C-S system.

To fulfill this, we first consider the macroscopic version of the Cucker-

Smale model. Namely, we introduce random inputs from communication

weights and initial data into the hydrodynamic Cucker-Smale (HCS) model

to yield the random HCS model. Furthermore, we address extrinsic uncer-

tainties in the microscopic and mesoscopic level, respectively. For a micro-

scopic model, we introduce a randomly switching network structure to the

Cucker-Smale model and investigate sufficient conditions for the emergence of

flocking. As a mesoscopic model, we consider the kinetic Cucker-Smale equa-

tion perturbed by multiplicative white noise and study the well-posedness

and asymptotic dynamics of solutions.

Key words: Flocking, Cucker-Smale model, Uncertainty quantification, Lo-

cal sensitivity analysis, Random dynamical system, Stochastic partial differ-

ential equation
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Chapter 1

Introduction

Collective behaviors in systems of self-propelled particles are widely observed

in our nature, e.g. flocking of birds, aggregation of bacteria, synchronous

chirps of crickets, schooling of fish, herding of sheep, etc [4, 5, 100, 102, 104].

Among such collective movements, our main interest lies in the so-called

flocking phenomenon, where self-driven particles adjust their velocities based

on simple rules or limited environmental information so that they become

organized into an ordered motion. Due to recent applications in unmanned

vehicles, sensor networks and robot systems [70, 79, 80], many studies have

been dedicated to model such coherent motions. After pioneering works by

Viscek and Reynolds [87, 103], several phenomenological models were intro-

duced [8, 20, 23, 75, 76, 99, 102]. In this thesis, we are interested in the

model presented by Cucker and Smale [20]. To be specific, let xi and vi be

the position and velocity of the i-th C-S particle in Rd with unit mass, re-

spectively. Then, the dynamics of C-S particles (xi, vi) is governed by the

following second order system:

dxi
dt

= vi, t > 0, i ∈ {1, · · · , N},

dvi
dt

=
1

N

N∑
j=1

φ(xj − xi)(vj − vi),

(xi(0), vi(0)) = (x0
i , v

0
i ).

(1.0.1)

1



CHAPTER 1. INTRODUCTION

Here, φ = φ(x) is a communication weight function which is nonnegative,

bounded, Lipschitz continuous and radially symmetric:

φ(x) = φ̄(|x|), ∀x ∈ Rd,

where φ̄ : [0,∞) → R+ is nonnegative, bounded, Lipschitz continuous and

monotonically decreasing:

0 ≤ φ̄(r) ≤ φ̄(0) =: κ, (φ̄(r)− φ̄(s))(r − s) ≤ 0, ∀r, s ∈ [0,∞),

and φLip := sup
r 6=s

|φ̄(r)− φ̄(s)|
|r − s|

<∞.

When there is a C-S ensemble with N particles on the phase space R2d

with N very large, it becomes computationally expensive to integrate the in-

finite number of ODE system (1.0.1). Thus, we introduce a one-particle dis-

tribution function f = f(t, x, v) for the infinite ensemble. Via the mean-field

limit N → ∞ in (1.0.1), the kinetic density f satisfies the Vlasov equation

(see [46, 50] for rigorous justification):

∂tf + v · ∇xf +∇v · (Fa[f ]f) = 0, x, v ∈ Rd, t > 0,

Fa[f ](t, x, v) = −
∫
R2d

φ(x− x∗)(v − v∗)f(t, x∗, v∗)dv∗dx∗,

f(0, x, v) = f in(x, v).

(1.0.2)

Recently, the particle and kinetic C-S model have been addressed in a

lot of extensive research activities from diverse perspectives, i.e. emergence

of mono-cluster or multi-cluster flocking [10, 20, 47, 50, 51], effects of white

noises [2, 19, 30, 49, 98], time-delay effects [27, 30], application to flight for-

mation [80], collision avoidance [1, 15, 17, 63], generalized network structures

[16, 18, 21, 22, 28, 52, 53, 54, 90, 94], mean-field limit [12, 46, 50, 88], ki-

netic and hydrodynamic description [7, 29, 34, 51, 58, 64, 65, 66, 67, 77, 84],

uncertainty quantification (UQ) problems [3, 9, 37, 38, 41], extension of the

C-S model [26, 43, 44, 45, 76], etc (see a recent survey [11] for details).

In real applications of C-S systems, modelers or performers determine

the communication weight function φ, initial and boundary values based on

2



CHAPTER 1. INTRODUCTION

the phenomenology or their interests. Hence we expect that the C-S model

contains some intrinsic uncertainties. On the other hand, the C-S model does

not incorporate the influence from the neighboring environment, such as drag

forces from the fluid, abrupt disconnection by obstruction, gravitational force,

etc. Thus, for a better description of the dynamics of the C-S ensemble, it

is necessary to introduce such intrinsic and extrinsic uncertainties to the

model (1.0.1) and assess the extent of impacts of these random elements on

the flocking dynamics. To fulfill this, the effects of uncertainties need to be

quantified, which is the essence of the uncertainty quantification (UQ). Dur-

ing the twenty-first century, UQ has received a lot of attention in diverse

disciplines such as the applied mathematics, atmospheric sciences and engi-

neering [3, 9, 55, 56, 57, 59, 60, 62, 71, 72, 74, 78, 81, 82, 83, 85, 89, 92]. Thus,

it is natural to synthesize these two emerging disciplines, UQ and emergent

flocking dynamics, in a common platform.

In this thesis, we present three works related to the uncertainty quantifi-

cation for the C-S system. First, we consider a local sensitivity analysis for

the hydrodynamic Cucker-Smale model with random inputs from the com-

munication weight and initial data.

Specifically, we consider the pressureless Euler system for the C-S ensem-

ble which is a hyperbolic system with a nonlocal source term. In this case, the

nonlocal flocking source term acts like a nonlocal damping which suppresses

the appearance of the Delta shocks for small solutions. To incorporate ran-

dom inputs to the HCS model, we consider a random vector z defined on the

sample space Ω ⊂ Rd with the probability density function π = π(z). For the

notational simplicity, we will assume that z is an one-dimensional variable.

This random variable z registers the uncertain effects in the initial data and

communication weights. To fix the idea, we consider an ensemble of collision-

less Cucker-Smale flocking particles on the periodic domain Td := (R/Z)d,

d ≥ 1, and let ρ := ρ(t, x, z) and u := u(t, x, z) be the local mass and bulk

velocity of the C-S fluid at position x ∈ Td, random vector z and time t,

respectively. In this setting, the dynamics of macroscopic observables (ρ, u)

3



CHAPTER 1. INTRODUCTION

is governed by the Cauchy problem to the random HCS model:

∂tρ+∇ · (ρu) = 0, t > 0, x ∈ Td, z ∈ Ω,

∂t(ρu) +∇ · (ρu⊗ u)

= ρ

∫
Td
φ(x− y, z)(u(t, y, z)− u(t, x, z))ρ(t, y, z)dy,

(ρ, u)(0, x, z) = (ρ0(x, z), u0(x, z)),

(1.0.3)

where ∇ is the spatial gradient. Note that for a frozen z ∈ Ω, system (1.0.3)

becomes the deterministic pressureless Euler system with a flocking dissipa-

tion, which has been studied in previous literature, e.g., a rigorous derivation

from the kinetic equation [32], the global existence of classical solutions and

interaction with incompressible fluids [48] and existence of entropic weak

solutions in one-dimension [35].

Here, we would like to see the dynamic properties of z-variations (∂αz ρ, ∂
α
z u)

to the random HCS model (1.0.3), which is what is called the local sensi-

tivity analysis [91, 95]. Such an analysis is not only of analytical interest.

Since it yields regularities in the random space, it is important for numer-

ical methods like stochastic Galerkin or collocation methods [56, 61, 108].

This framework was applied to the particle and kinetic C-S and Kuramoto

model in [37, 38, 39, 40], and also to a wide class of random kinetic equations

in [55, 56, 57, 59, 60, 62, 71, 72], where the regularity and sensitivity were

studied using weighted Sobolev energy estimates and coercivity or hypoco-

ercivity (for perturbative solution near the global equilibrium) of the kinetic

operators.

However, the synthesis of local sensitivity analyses and collective dynam-

ics has not been made for the hydrodynamic models from collective dynamics

yet. Of course, there are some previous works [60, 74, 81, 82, 83, 85] on the

scalar conservation law and Euler system with random inputs from the point

of numerics in the context of UQ. It is well known that hydrodynamic models

arising from the theory of hyperbolic conservation laws and fluid mechanics

do not often allow sufficiently smooth solutions enough to implement a local

sensitivity analysis. In particular, hyperbolic conservation laws do not allow

a global smooth solution for generic initial data. They instead exhibit discon-

tinuous solutions for generic initial data, which makes a UQ program difficult

4



CHAPTER 1. INTRODUCTION

to implement [24]. This is why the local sensitivity theory has not been well

studied in the hyperbolic conservation laws. Despite of this, hyperbolic mod-

els arising from the modeling of flocking and synchronization admit smooth

solutions for well-prepared initial data thanks to the extra nonlocal flux and

source terms, which play the role of regularizing mechanism. Thus, it seems

plausible to apply the local sensitivity analysis to the hydrodynamic models

for collective dynamics.

On the other hand, it is difficult to provide specific probabilistic estimates

in relation with the emergent dynamics via the local sensitivity analysis, since

the local sensitivity analysis is performed in an abstract and general frame-

work. Hence, our next goal is to address some probability estimates for (1.0.1)

and (1.0.2) with uncertain elements. Here, we focus on the uncertainties in

the communication weight since we expect its impact on the dynamics to be

stronger than others. In an attempt to obtain such estimates for the particle

system, we consider the Cucker-Smale model (1.0.1) with randomly switch-

ing topologies.

During the evolution of a C-S flock navigating in the free space Rd, the

connection topology might undergo abrupt changes due to unknown exter-

nal disturbances, obstacles and internal processing mechanisms at unknown

instants. In this situation, two natural questions can arise:

• (Q1): How should we model the flocking dynamics of the

C-S model with randomly switching network topologies?

• (Q2): If the model is properly set up, then can we find some

framework leading to some kind of flocking behavior in terms

of system parameters and initial data?

To address the above questions, we assume that the network topology might

change along a random sequence of switching times, and at each switching

time, we choose a network topology from a given finite set of admissible

network topologies randomly, i.e., we employ two random components such

as the random switching times and random choice of network topologies. Of

5



CHAPTER 1. INTRODUCTION

course, our chosen network topology may not contain a spanning tree which

is necessary for emergence of flocking. Thus, we assume that the union of

network topologies in the admissible set contains a spanning tree so that on

a suitable time-block with finite size, the union of network topologies contains

a spanning tree. Hence, each C-S particle repeatedly communicates with at

least one of neighboring particles during each time-block. With this setting

in mind, we consider the evolution law for the C-S flocking with randomly

switching topologies similar to the model [18]:
dxi
dt

= vi, 1 ≤ i ≤ N, t > 0,

dvi
dt

=
1

N

N∑
j=1

χσijφ(xj − xi) (vj − vi) ,
(1.0.4)

where (χ
σ(t)
ij ) denotes the time-dependent network topology corresponding to

the switching law σ : [0,∞) → {1, · · · , NG}. Here, we have the set of ad-

missible (directed) graphs with N vertices S := {G1, · · · ,GNG}. The law σ,

which is piecewise constant and right-continuous, tells which network topol-

ogy is used to describe the connectivity between C-S particles at a certain

instant. Moreover, the sequence of discontinuities {t`}`∈N would be called the

sequence of switching instants (or times). For specific description, once an

instant t is given, then σ(t) = σ(t`) = k for some 1 ≤ k ≤ NG and ` ∈ N,

and the network topology (χ
σ(t)
ij ) corresponds to the 0-1 adjacency matrix of

k-th digraph Gk.
In previous literature [21, 22, 52, 90], the authors considered discretized

analogues of the C-S system and χij’s in place of χσij’s, which are assumed to

be nonnegative, independent and identically distributed random variables,

to explain the random failure of connectivity between C-S particles. In our

case, we focus on the continuous system and explore this randomness in

connectivity by introducing randomness into the switching law σ and the

sequence of switching instants {t`}`∈N. Now, the switching law σ = σ(t, ω)

(t ≥ 0, ω ∈ Ω) becomes a {1, · · · , NG}-valued jump process and the sequence

{t`}`∈N has also certain randomness. To describe the random switching times

{t`}, we instead consider the increment process {∆` := t`+1 − t`} and we

assume that it follows some preassigned distribution f on the common prob-

6



CHAPTER 1. INTRODUCTION

ability space (Ω,F ,P). On the other hand, at each switching instant, we

choose the network topology Gk with a probability pk.

Finally, to yield specific probability estimates in the kinetic level, we

consider the kinetic equation (1.0.2) perturbed by a multiplicative noise.

To fix the idea, we incorporate a stochastic noise into the communication

weight, i.e. φ → φ + σ ◦ Ẇt, where Ẇt is a one-dimensional white noise on

the probability space (Ω,F ,P), σ denotes the strength of the noise and ◦
denotes the stochastic integral in Stratonovich’s sense. Then formally, under

the unit mass assumption
∫
R2d f(t, x, v)dxdv = 1, the non-local operator Fa[f ]

is replaced by a combination of the deterministic part Fa[f ] and stochastic

part involving with Ẇt:

Fa[f ] =⇒ Fa[f ] + σ(vc − v) ◦ Ẇt. (1.0.5)

Now, we combine (1.0.2) and (1.0.5) to derive the stochastic kinetic C-S

equation:

∂tft + v · ∇xft +∇v · (Fa[ft]ft) = σ∇v · ((v − vc)ft) ◦ Ẇt. (1.0.6)

Note that in chapter 5, we use the standard notation for random probability

density function ft(x, v) := f(t, x, v).

As previously mentioned, the effects of white noise perturbations were

discussed in [2, 19, 30, 49, 98] at the particle level. Moreover, a rigorous

derivation of the equation (1.0.6) as a mean-field limit of the C-S systems

with multiplicative noises was recently discussed in [12] based on the propa-

gation of chaos result in [14], and a mean-field limit of the C-S systems with

another type of stochastic perturbations was also addressed in [88]. However,

as far as we know, the equation (1.0.6) has only been addressed in measure

spaces such as P2, not in other function spaces (e.g. Sobolev spaces). For

other types of stochastic kinetic equations, we refer to [33, 86]. In this thesis,

we address the following two questions:

• (Well-posedness): Is the stochastic kinetic C-S equation (1.0.6) well-

posed in a suitable function space such as Sobolev spaces?

7



CHAPTER 1. INTRODUCTION

• (Emergence of flocking): If so, does the solution to (1.0.6) exhibit

asymptotic flocking dynamics?

Our results in Chapter 5 provide affirmative answers to the above posed

questions. First, we introduce a concept of a strong solution to (1.0.6) and

then provide a global well-posedness for strong solutions by employing a suit-

able regularization method and stopping time argument. Second, we provide

a stochastic flocking estimate by showing that the expectation of the second

velocity moment decays to zero exponentially fast, when the communica-

tion weight function φ has a positive infimum φm := infx∈Rd φ(x) and noise

strength σ is sufficiently small compared to φm. The main difficulty in our

analysis arises, when we prove the existence of a solution to the regularized

equation. Here, we obtain Wm,∞-estimates for the sequence of functions that

approximates the regularized equation. Our Wm,∞-estimates contain terms

with infinite expectation. Hence, even though we can find a limit function

of the sequence from the pathwise estimates, it is not certain that the limit

function becomes a solution to the regularized equation. To cope with this

problem, we used stopping time argument to get a solution to the regularized

equation.

The rest of the thesis is organized as follows. In Chapter 2, we summarize

the notation used throughout the thesis and present previous results about

the deterministic verision of the particle, kinetic and hydrodynamic C-S mod-

els without proofs. In Chapter 3, we present a local sensitivity analysis for the

hydrodynamic Cucker-Smale model with random inputs (1.0.3). In Chapter

4, we study the emergent dynamics of the Cucker-Smale flocks (1.0.4) when

the network topology changes randomly along time. In Chapter 5, we show

the global well-posedness of strong solutions to the equation (1.0.6) and its

emergent dynamics. Finally, in Chapter 6, we provide a brief summary of

the thesis and discuss the issues which will be addressed in the future. In

Appendix A and Appendix B, we present detailed proofs that we omitted in

Chapter 3 and 5, respectively.

8



Chapter 2

Preliminaries

In this chapter, we present the notation which will be used throughout this

thesis, and review previous results about the deterministic Cucker-Smale

model.

2.1 Notation

Throughout this thesis, (Ω,F ,P) denotes a generic probability space. For any

k ∈ N ∪ {0} and p ∈ [1,∞], we set W k,p(F) to be the k-th order Lp-Sobolev

spaces on F = Td or Rd, and Hk(F) := W k,2(F). If there is no confusion

about the choice of the domain F, then we simply write W k,p := W k,p(F)

and Hk := Hk(F), respectively. Ck(I;B) denotes the space of k-times con-

tinuously differentiable functions from an interval I into a Banach space B.

Moreover, ∇k denotes any partial derviative ∂α with respect to x-variable

with multi-index α with |α| = k.

We set

X := (x1, · · · , xN), V := (v1, · · · , vN),

and D(X) and D(V ) denote position and velocity diameters:

D(X) := max
1≤i,j≤N

‖xi − xj‖, D(V ) := max
1≤i,j≤N

‖vi − vj‖.

Matrix ordering is meant componentwise, e.g., for matrices A = (aij)N×N
and B = (bij)N×N , A ≥ B stands for aij ≥ bij for all i, j. For a real number

9



CHAPTER 2. PRELIMINARIES

c, denote by bcc the floor of c, i.e., the largest integer no greater than c. N
denotes the set of all natural numbers (including zero).

For (x, v) ∈ R2d, δ(x,v) denotes a point mass concentrated at (x, v). For

each p ∈ [1,∞), we denote Pp(R2d) by

Pp(R2d) :=

µ :
probability measure on R2d such that∫

R2d

|(x, v)|pdµ(x, v) <∞.

 ,

and we write p-Wasserstein distance on Pp(R2d) as

Wp(µ, ν) :=

(
inf

γ∈
∏

(µ,ν)

∫
R4d

|(x, v)− (y, w)|pdγ
)1/p

,

where
∏

(µ, ν) denotes the collection of all measures on R4d whose marginals

are µ and ν.

For a probability density function f = f(t, x, v) with (x, v) ∈ R2d at time

t ∈ R+, we set the p-th velocity moments (p = 0, 1, 2) of f as

M0[f ](t) :=

∫
R2d

fdxdv, M1[f ](t) :=

∫
R2d

vfdxdv,

M2[f ](t) :=

∫
R2d

|v|2fdxdv, t ≥ 0,

and we also write vc[f ](t) := M1[f ](t). If there is no confusion about the

choice of f , we write

Mp(t) := Mp[f ](t), vc(t) := vc[f ](t).

2.2 Previous results

In this section, we provide previous results for the deterministic Cucker-Smale

model. First, we review the mono-cluster flocking result for (1.0.1) and below,

we present the definition for the flocking.

10



CHAPTER 2. PRELIMINARIES

Definition 2.2.1. Let {(xi, vi)} be a C-S ensemble whose dynamics is gov-

erned by (1.0.1). Then, it exhibits a mono-cluster flocking if and only if the

following two conditions hold.

sup
0≤t<∞

max
i,j
‖xi(t)− xj(t)‖ <∞, lim

t→∞
max
i,j
‖vi(t)− vj(t)‖ = 0.

For a given configuration (X, V ), we set

‖X‖∞ := max
1≤i≤N

‖xi‖, ‖V ‖∞ := max
1≤i≤N

‖vi‖.

Theorem 2.2.1. [1, 37, 50] Let (X, V ) be a solution to (1.0.1) with the initial

data (X0, V 0) satisfying the following conditions:

N∑
i=1

x0
i =

N∑
i=1

v0
i = 0, ‖X0‖∞ > 0, ‖V 0‖∞ <

1

2

∫ ∞
‖X0‖∞

φ(2r)dr.

Then, there exists a positive constant xM > 0 such that

sup
t≥0
‖X(t)‖∞ ≤ xM , ‖V (t)‖∞ ≤ ‖V 0‖∞e−φ(2xM )t, t ≥ 0.

Next, we review the results for the kinetic equation (1.0.2) and its emer-

gent dynamics. Formally, the kinetic equation (1.0.2) can be derived as a

mean-field limit of system (1.0.1) by using the standard BBGKY hierarchy

under the molecular chaos assumption. For a brief description of BBGKY

hierarchy, we refer to [51, 68] and for rigorous derivation of the equation, we

refer to [46, 50]. Below, we provide the well-posedness and emergent behaviors

of classical solutions to (1.0.2).

Theorem 2.2.2. [51] Suppose that the initial datum f0 ∈ (C1 ∩W 1,∞)(R2d)

is compactly supported in the phase space, i.e. the x- and v-supports of f0 in

the phase space are bounded. Then for any T ∈ (0,∞), there exists a unique

classical solution f ∈ C1([0, T )× R2d) to (1.0.2) satisfying

Λ[f ](t) ≤ Λ[f0]e−2M0(t)
∫ t
0 ϕ(s)ds,

11
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where Λ[f ] and ϕ are given by

Λ[f ](t) :=

∫
R2d

|v − vc|2f(t, x, v)dxdv,

ϕ(t) := inf{φ(x− y) : f(t, x, v)f(t, y, v∗) 6= 0 for some v, v∗ ∈ Rd}.

Remark 2.2.1. As addressed in [36], we briefly explain the meaning of the

zero convergence of Λ as t→∞. Let f be a probability density function over

R2d. Then we use the Chebyshev inequality to obtain that, for any ε > 0,

Λ[f ](t) =

∫
R2d

|v − vc|2fdvdx ≥
∫
|v−vc|>ε

|v − vc|2fdvdx

≥ ε2

∫
|v−vc|>ε

fdvdx = ε2P[|v − vc(0)| > ε].

This gives

lim
t→∞

P[|v − vc| > ε] ≤ 1

ε2
lim
t→∞

Λ[f ](t) = 0,

which implies the formation of velocity alignment in probability sense.

Finally, we address the deterministic hydrodynamic Cucker-Smale model.

To derive a hydrodynamic model from (1.0.2), we introduce the macroscopic

observables such as the local mass, momentum and energy densities:

ρ(t, x) :=

∫
Rd
fdv, (ρu)(t, x) :=

∫
Rd
vfdv,

(ρE)(x, t) :=
1

2
ρ|u|2 + ρe, ρe :=

1

2

∫
Rd
|v − u(x, t)|2fdv.

We multiply 1, v, |v|2/2 to (1.0.2) and integrate the resulting relations with

respect to the velocity variable to derive a system of balance laws for the

macroscopic observables (ρ, u, E):

∂tρ+∇ · (ρu) = 0, t > 0, x ∈ Rd,

∂t(ρu) +∇ · (ρu⊗ u+ P ) = S(1),

∂t(ρE) +∇ · (ρEu+ Pu+ q) = S(2),

(2.2.1)

12
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where P = (pik) and q = (q1, · · · , qd) are the stress tensor and heat flow,

respectively:

pij(t, x) :=

∫
Rd

(vi − ui)(vj − uj)fdv, qi(t, x) :=

∫
Rd

(vi − ui)|v − u|2fdv,

and the source terms are written as follows:

S(1)(t, x) := ρ

∫
Rd
φ(x− y)(u(t, y)− u(t, x))ρ(t, y)dy,

S(2)(t, x) := ρ

∫
Rd
φ(x− y) (E(t, x) + E(t, y)− u(t, x) · u(t, y)) ρ(t, y)dy.

Since system (2.2.1) is not closed as it is, one introduces a mono-kinetic

ansatz for f as a closure condition:

f(t, x, v) = ρ(t, x)δ(v−u(x,t))(v).

With this ansatz, it can be observed that the internal energy, stress tensor and

heat flux in (2.2.1) vanish, and we obtain the following Cauchy problem for

a pressureless Euler system with flocking dissipation (see [32] for its rigorous

derivation):
∂tρ+∇·(ρu) = 0, t > 0, x ∈ Td,

∂t(ρu)+∇·(ρu⊗ u) = ρ

∫
Td
φ(x− y)(u(t, y)− u(t, x))ρ(t, y)dy,

(ρ(0, x), u(0, x)) = (ρ0(x), u0(x)), x ∈ Td.

(2.2.2)

Below, we provide the standing assumptions (H1) − (H2) for the well-

posedness, stability and flocking estimates for (2.2.2). For an integer s > d
2
+1,

• (H1): The communication weight function φ : Td → R is in Cs+1 and

satisfies symmetric, positive conditions: for each x, y ∈ Td,

φ(x− y) = φ(y − x) and inf
x∈Td

φ(x) =: φm > 0.

• (H2): The initial data (ρ0, u0) satisfy the non-vacuum, regularity and

smallness conditions, i.e. for sufficiently small ε > 0,

inf
x∈Td

ρ0(x) > 0, (ρ0, u0) ∈ Hs ×Hs+1, ‖ρ0‖Hs + ‖u0‖Hs+1 < ε.

13
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Before we state previous results, we introduce a Lyapunov functional E0 for

flocking:

E0(t) :=

∫
Td
ρ|u− uc(t)|2dx, uc(t) :=

∫
Td ρudx∫
Td ρdx

= uc(0), t ≥ 0. (2.2.3)

Then, the deterministic HCS model can be summarized in the following the-

orem:

Theorem 2.2.3. [48] For a given positive constant T > 0, suppose that

conditions (H1) and (H2) hold. Then, there exist positive constants C =

C(T ) and 0 < ε � 1 such that the Cauchy problem (2.2.2) has a unique

global-in-time classical solution (ρ, u) satisfying the following properties:

1. (Propagation of the Sobolev regularity): The solution (ρ, u) satisfies the

following regularity and uniform-in-time boundedness condition:

inf
(t,x)∈[0,T ]×Td

ρ(t, x) > 0, (ρ(t), u(t)) ∈ Hs ×Hs+1, for t ∈ [0, T ],

sup
0≤t≤T

(‖ρ(t)‖Hs + ‖u(t)‖Hs+1) <
√
ε.

2. (Finite-in-time stability): For two classical solution processes (ρ, u) and

(ρ̄, ū) to (2.2.2) with initial data (ρ0, u0) and (ρ̄0, ū0) respectively,

sup
0≤t≤T

(
‖ρ(t)− ρ̄(t)‖2

L2 + ‖u(t)− ū(t)‖2
H1

)
≤ C(T )(‖ρ0 − ρ̄0‖2

L2 + ‖u0 − ū0‖2
H1).

3. (Exponential flocking estimate): The functional E0(t) decays exponen-

tially pathwise:

E0(t) ≤ e−2φm‖ρ0‖L1 tE0(0), ∀t > 0.

Remark 2.2.2. By Theorem 2.2.3, the local mass ρ stays positive. Moreover,

since the solution is classical, the momentum equations of (2.2.2) can be

rewritten as

∂tu+ u · ∇u =

∫
Td
φ(x− y)(u(t, y)− u(t, x))ρ(t, y)dy.

14



Chapter 3

A local sensitivity analysis for

the hydrodynamic

Cucker-Smale model with

random inputs

In this chapter, we present a local sensitivity analysis for the hydrodynamic

Cucker-Smale model with random inputs. Recall that the HCS model with

random inputs explains the dynamics of observables (ρ, u) governed by the

following random equation:
∂tρ+∇ · (ρu) = 0, t > 0, x ∈ Td, z ∈ Ω,

∂t(ρu) +∇ · (ρu⊗ u)

= ρ

∫
Td
φ(x− y, z)(u(t, y, z)− u(t, x, z))ρ(t, y, z)dy,

(3.0.1)

subject to random initial data:

(ρ, u)(0, x, z) = (ρ0(x, z), u0(x, z)), x ∈ Td, z ∈ Ω.

The main results of this chapter are three-fold. First, we present the prop-

agation of pathwise well-posedness of the random HCS model (3.0.1). For

s > d
2

+m+ 1, if the initial processes and their z-variations {(∂lzρ0, ∂
l
zu0)}ml=0

satisfy the non-vacuum, regularity and smallness conditions, we show that

15
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z-variations of solution processes {(∂lzρ, ∂lzu)}ml=0 exist in any finite time inter-

val, and satisfy the desired regularity and smallness conditions (see Theorem

3.1.1 and Theorem 3.1.2).

Second, we provide a finite-in-time L2-stability of the z-variations to sys-

tem (3.0.1). More precisely, let (ρ, u) and (ρ̄, ū) be solution processes to

(3.0.1) corresponding to initial processes (ρ0, u0) and (ρ̄0, ū0), respectively.

Then, there exists a positive random function C = C(T, z) such that for

each T ∈ (0,∞) and z ∈ Ω,

sup
0≤t≤T

∑
0≤l≤m

(
‖∂lzρ(t, z)− ∂lzρ̄(t, z))‖2

Hm−l + ‖∂lzu(t, z)− ∂lzū(t, z))‖2
Hm−l+1

)
≤ C(T, z)

∑
0≤l≤m

(
‖∂lzρ0(z)− ∂lzρ̄0(z)‖2

Hm−l + ‖∂lzu0(z)− ∂lzū0(z)‖2
Hm−l+1

)
.

Third, we show that the bulk velocity process and its z-variations {∂lzu}
exhibit an exponential decay toward the mean-velocity under a priori as-

sumptions, which implies the flocking estimate. We assume the uniform-in-

time boundedness for solution processes and their z-variations {(∂lzρ, ∂lzu)}ml=0,

and impose an a priori condition for the lower bound of the communication

weight function to obtain the exponential decay of {∂lzu} toward its mean-

velocity.

The rest of this chapter is organized as follows. In Section 3.1, we present

the pathwise well-posedness for the random HCS model. In Section 3.2, we

provide L2-stability estimates for the z-variations {(∂lzρ, ∂lzu)}ml=0. In Section

3.3, we present an exponential decay of the bulk velocity process and its

z-variations. In Appendix A, we provide tedious and straightforward proofs

for Lemma 3.1.2, Lemma 3.1.5, Lemma 3.2.4 and Theorem 3.3.2. Finally, we

note that this chapter is based on the joint work [41].

3.1 Pathwise well-posedness of z-variations

In this section, we present a global existence of z-variations (∂mz ρ, ∂
m
z u) to

system (3.0.1) using pathwise energy method.
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Note that in a non-vacuum regime, system (3.0.1) can be rewritten as
∂tρ+∇ · (ρu) = 0, t > 0, x ∈ Td, z ∈ Ω,

∂tu+ u · ∇u =

∫
Td
φ(x− y, z)(u(t, y, z)− u(t, x, z))ρ(t, y, z)dy,

(ρ, u)(0, x, z) = (ρ0(x, z), u0(x, z)).

(3.1.1)

First, we derive equations for the z-variations by applying z-derivative to

(3.1.1) to obtain

∂t(∂
m
z ρ) +

m∑
l=0

(
m

l

)
∇ ·
(
∂lzρ∂

m−l
z u

)
= 0,

∂t(∂
m
z u) +

m∑
l=0

(
m

l

)(
∂lzu · ∇(∂m−lz u)

)
=
∑

α+β+γ=m

m!

α!β!γ!

∫
Td
∂αz φ(x−y, z)∂βz [u(t, y, z)−u(t, x, z)] ∂γz ρ(t, y, z)dy.

(3.1.2)

Then, the following estimates directly follow from (3.1.2).

Proposition 3.1.1. Let (ρ, u) be a sufficiently smooth periodic solution to

(3.0.1). Then, for t ≥ 0, m ≥ 0 and a fixed z ∈ Ω,∫
Td
∂mz ρ(t, z)dx =

∫
Td
∂mz ρ0(z)dx,

∫
Td
∂mz (ρu)(t, z)dx =

∫
Td
∂mz (ρ0u0)(z)dx.

Proof. The proofs follow from the direct integration of (3.1.2).

For a global well-posedness of the z-variations, we provide our standing

assumptions (A1)− (A2) as follows: For an integer s > d
2

+m+ 1,

• (A1): The communication weight function φ : Td × Ω → R is in

Cs+1(Td × Ω) and satisfies symmetric, non-negative and boundedness

conditions: for each x, y ∈ Td and z ∈ Ω,

φ(x− y, z) = φ(y − x, z) ≥ 0,

‖φ‖s := max
|α|+|β|≤s+1

sup
(x,z)∈Td×Ω

|∂αz ∂βxφ(x, z)| <∞.
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• (A2): The initial data (ρ0, u0) satisfy the non-vacuum, regularity and

smallness conditions: for each z ∈ Ω and l = 0, · · · ,m,

inf
x∈Td

ρ0(x, z) > 0, (∂lzρ0(z), ∂lzu0(z)) ∈ Hs−l ×Hs−l+1,

max
0≤l≤m

(
‖∂lzρ0(z)‖Hs−l + ‖∂lzu0(z)‖Hs−l+1

)
< ε(z),

where ε = ε(z) is a positive random function such that sup
z∈Ω

ε(z)� 1.

For the simplicity of notation, we suppress z-dependence in (ρ, u) and φ, i.e.

ρ(t, x) := ρ(t, x, z), u(t, x) := u(t, x, z), φ(x) := φ(x, z).

To derive a priori estimates, we employ a mathematical induction on m.

3.1.1 First-order z-variations

In this subsection, we consider a global well-posedness for the first-order z-

variations (∂zρ, ∂zu) for the initial step of induction process on m. To provide

a global well-posedness, we construct a sequence of approximated solutions

(∂zρ
n+1, ∂zu

n+1) to (3.1.2). For a given solution (ρ, u) and m = 1, we may

construct the sequence as follows:

∂t(∂zρ
n+1) +∇ · (∂zρn+1u) +∇(ρ∂zu

n) = 0, n = 0, 1, 2, · · ·
∂t(∂zu

n+1) + ∂zu
n · ∇u+ u · ∇(∂zu

n+1)

=

∫
Td
∂zφ(x− y)(u(t, y)− u(t, x))ρ(t, y)dy

+

∫
Td
φ(x− y)(∂zu

n(t, y)− ∂zun(t, x))ρ(t, y)dy

+

∫
Td
φ(x− y)(u(t, y)− u(t, x))∂zρ

n+1(t, y)dy

(∂zρ
0, ∂zu

0) = (∂zρ0, ∂zu0),

(3.1.3)

subject to the fixed initial data:

(∂zρ
n+1(0, x), ∂zu

n+1(0, x)) = (∂zρ0(x), ∂zu0(x)).
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Since the pathwise well-posedness for (ρ, u) can be similarly obtained from

Theorem 2.2.3, there is no need for (ρ, u) to be involved in the iteration

scheme (3.1.3). Thus, the iteration procedure in (3.1.3) will be carried out

only for the z-variations (∂zρ, ∂zu). We proceed by induction on n for the

sequence (∂zρ
n, ∂zu

n). First, we state the results on the uniform-in-n bound

estimates.

Lemma 3.1.1. Suppose that assumptions (A1)-(A2) and induction hypoth-

esis hold: for each z ∈ Ω,

sup
0≤j≤n
0≤t≤T

‖∂zuj(t, z)‖Hs <
√
ε(z).

Then, there exists a unique ∂zρ
n+1 = ∂zρ

n+1(t, z) ∈ Hs−1 satisfying relation

(3.1.3)1 and a bound:

sup
0≤t≤T

‖∂zρn+1(t, z)‖Hs−1 <

√
ε(z)

2
.

Proof. Since system (3.1.3) is linear with respect to ∂zρ
n+1, the existence and

uniqueness for ∂zρ
n+1 are obvious. Thus, it suffices to show the boundedness

of the solution. Here, we split the estimates into the zeroth-order case and

higher-order case.

• Step A (The zeroth-order estimates): First, we multiply (3.1.3)1 by ∂zρ
n+1

and integrate it over Td to yield

1

2

∂

∂t
‖∂zρn+1‖2

L2

= −1

2

∫
Td

(∇ · u)|∂zρn+1|2dx−
∫
Td

(∇ρ · ∂zun)∂zρ
n+1dx

−
∫
Td
ρ∇ · (∂zun)∂zρ

n+1dx

≤ ‖∇ · u‖L
∞

2
‖∂zρn+1‖2

L2 + ‖ρ‖W 1,∞‖∂zun‖H1‖∂zρn+1‖L2

≤
(
‖∇ · u‖L∞

2
+
‖ρ‖W 1,∞

2

)
‖∂zρn+1‖2

L2 +
‖ρ‖W 1,∞

2
‖∂zun‖2

H1 ,

≤ ε1/2‖∂zρn+1‖2
L2 + ε3/2,

(3.1.4)
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where we used Young’s inequality on the second inequality and Theorem

2.2.3 on the last inequality. Then, we integrate the previous relation (3.1.4)

to derive

‖∂zρn+1‖2
L2 ≤ C

(
ε1/2

∫ t

0

‖∂zρn+1(s, z)‖2
L2ds+ ε3/2

)
. (3.1.5)

• Step B (Higher-order estimates): For higher-order estimates, let 1 ≤ k ≤
s− 1. Then, we apply ∇k to (3.1.3)1, multiply by ∇k(∂zρ

n+1) and integrate

the resulting relation over Td to yield

1

2

∂

∂t
‖∇k(∂zρ

n+1)‖2
L2

=
1

2

∫
Td
|∇k(∂zρ

n+1)|2(∇ · u)dx

−
∫
Td

[
∇k(u · ∇(∂zρ

n+1))− u · ∇k(∇(∂zρ
n+1))

]
∇k(∂zρ

n+1)dx

−
∫
Td
∂zρ

n+1∇k(∇ · u)∇k(∂zρ
n+1)dx

−
∫
Td

[
∇k(∂zρ

n+1∇ · u)− ∂zρn+1∇k(∇ · u)
]
∇k(∂zρ

n+1)dx

−
∫
Td
∇k(∇ρ) · ∂zun∇k(∂zρ

n+1)dx

−
∫
Td

[
∇k(∂zu

n∇ρ)− ∂zun · ∇k(∇ρ)
]
∇k(∂zρ

n+1)dx

−
∫
Td
ρ∇k(∇ · ∂zun)∇k(∂zρ

n+1)dx

−
∫
Td

[
∇k(ρ(∇ · ∂zun))− ρ∇k(∇ · ∂zun)

]
∇k(∂zρ

n+1)dx,

=:
8∑
i=1

I1i.

Below, we estimate the terms I1i separately as follows:

� (Estimates for I1i, i = 2, 4, 6, 8) : We use the commutator estimate from

Lemma 3.4 in [73] to obtain

I12 ≤ c
[
‖∇u‖L∞‖∇k(∂zρ

n+1)‖L2 + ‖∇(∂zρ
n+1)‖L∞‖∇ku‖L2

]
‖∇k(∂zρ

n+1)‖L2
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≤ C
[
‖u‖Hs−1‖∇k(∂zρ

n+1)‖L2 + ‖∂zρn+1‖Hs−1‖∇ku‖L2

]
‖∇k(∂zρ

n+1)‖L2

≤ Cε1/2‖∂zρn+1‖2
Hs−1 ,

where c and C are positive random functions independent of n and we used

the assumptions, Theorem 2.2.3 and the Sobolev embedding:

‖∇u‖L∞ ≤ C‖u‖
H[ d2 ]+1

≤ C‖u‖Hs−1 . (3.1.6)

For other terms, one uses the commutator estimate, (3.1.6), Theorem 2.2.3

and Young’s inequality to get

I14 ≤ c
[
‖∇(∂zρ

n+1)‖L∞‖∇ku‖L2 +‖∇·u‖L∞‖∇k(∂zρ
n+1)‖L2

]
‖∇k(∂zρ

n+1)‖L2

≤ Cε1/2‖∂zρn+1‖2
Hs−1 ,

I16 ≤ c
[
‖∇(∂zu

n)‖L∞‖∇kρ‖L2 + ‖∇ρ‖L∞‖∇k(∂zu
n)‖L2

]
‖∇k(∂zρ

n+1)‖L2

≤ C(ε1/2‖∇k(∂zρ
n+1)‖2

L2 + ε3/2),

I18 ≤ c
[
‖∇ρ‖L∞‖∇k(∂zu

n)‖L2 + ‖∇ · (∂zun)‖L∞‖∇kρ‖L2

]
‖∇k(∂zρ

n+1)‖L2

≤ C(ε1/2‖∇k(∂zρ
n+1)‖2

L2 + ε3/2).

� (Estimates for I1i, i = 1, 3, 5, 7): By direct calculations, one easily obtains

I11 ≤
‖∇ · u‖L∞

2
‖∇k(∂zρ

n+1)‖2
L2 ≤ ε1/2‖∇k(∂zρ

n+1)‖2
L2 ,

I13 ≤ ‖∂zρn+1‖L∞‖∇k+1u‖L2‖∇k(∂zρ
n+1)‖L2

≤ C(ε1/2‖∂zρn+1‖2
Hs−1 + ε3/2),

I15 ≤ ‖∇k+1ρ‖L2‖∂zun‖L∞‖∇k(∂zρ
n+1)‖L2

≤ C(ε1/2‖∇k(∂zρ
n+1)‖2

L2 + ε3/2),

I17 ≤ ‖ρ‖L∞‖∇k+1(∂zu
n)‖L2‖∇k(∂zρ

n+1)‖L2

≤ C(ε1/2‖∇k(∂zρ
n+1)‖2

L2 + ε3/2).

We combine all results for I1i’s to obtain

1

2

∂

∂t
‖∇k(∂zρ

n+1)‖2
L2 ≤ C(ε1/2‖∂zρn+1‖2

Hs−1 + ε3/2). (3.1.7)
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Summing (3.1.7) over 1 ≤ k ≤ s− 1 and adding these to (3.1.5) yields

∂

∂t
‖∂zρn+1‖2

Hs−1 ≤ C(ε1/2‖∂zρn+1‖2
Hs−1 + ε3/2).

Then, Grönwall’s lemma and the smallness of ε yield the desired estimate:

‖∂zρn+1‖2
Hs−1 ≤ eε

1/2CT‖∂zρ0‖2
Hs−1 + ε(eε

1/2CT − 1) <
ε

4
.

Lemma 3.1.2. Suppose that assumptions (A1)-(A2) hold and let (∂zρ
j, ∂zu

j)

be the j-th iterate satisfying the following assumptions: for each z ∈ Ω,

max
0≤j≤n

sup
0≤t≤T

(
‖∂zρj(t, z)‖Hs−1 + ‖∂zuj(t, z)‖Hs

)
<
√
ε(z).

Then for each z ∈ Ω, there exists a unique ∂zu
n+1 = ∂zu

n+1(t, z) ∈ Hs

satisfying relation (3.1.3)2 and the following bound:

sup
0≤t≤T

‖∂zun+1(t, z)‖Hs <

√
ε(z)

2
, for each z ∈ Ω.

Proof. Since the proof is similar to that of Lemma 3.1.1, we leave it to Ap-

pendix A.1.

Remark 3.1.1. From Lemmas 3.1.1 and 3.1.2, one can find out that if

assumptions (A1) and (A2) hold, the induction on n yields that for every n

and z ∈ Ω:

sup
0≤t≤T

(‖∂zρn(t, z)‖Hs−1 + ‖∂zun(t, z)‖Hs) <
√
ε(z).

Now, we provide estimates for the convergence of the sequence (∂zρ
n, ∂zu

n)

in L2 ×H1.

Lemma 3.1.3. Suppose that assumptions (A1)-(A2) hold. Then, for each

z ∈ Ω and n ∈ N,

‖(∂zρn+1 − ∂zρn)(t, z)‖2
L2 + ‖(∂zun+1 − ∂zun)(t, z)‖2

H1

≤ C(z)

(∫ t

0

(
‖(∂zρn+1 − ∂zρn)(s, z)‖2

L2 + ‖(∂zun+1 − ∂zun)(s, z)‖2
H1

)
ds

+

∫ t

0

‖(∂zun − ∂zun−1)(s, z)‖2
H1ds

)
,

where C = C(z) is a positive random function independent of n.
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Proof. It follows from (3.1.3)1 that

1

2

∂

∂t
‖∂zρn+1 − ∂zρn‖2

L2

= −1

2

∫
Td
∇|∂zρn+1 − ∂zρn|2 · u dx

−
∫
Td
∇ · (ρ(∂zu

n − ∂zun−1))(∂zρ
n+1 − ∂zρn)dx

≤ ‖∇ · u‖L
∞

2
‖∂zρn+1 − ∂zρn‖2

L2

+ ‖ρ‖W 1,∞‖∂zun − ∂zun−1‖H1‖∂zρn+1 − ∂zρn‖L2

≤ C(‖∂zρn+1 − ∂zρn‖2
L2 + ‖∂zun − ∂zun−1‖2

H1).

We integrate the above relation to see

‖(∂zρn+1 − ∂zρn)(t, z)‖2
L2

≤C(z)

∫ t

0

[
‖(∂zρn+1−∂zρn)(s, z)‖2

L2+‖(∂zun−∂zun−1)(s, z)‖2
H1

]
ds.

(3.1.8)

Next, one uses (3.1.3)2 to yield

1

2

∂

∂t
‖∂zun+1 − ∂zun‖2

L2

= −
∫
Td

(∂zu
n − ∂zun−1) · ∇u · (∂zun+1 − ∂zun)dx

− 1

2

∫
Td
u · ∇|∂zun+1 − ∂zun|2dx

+

∫
T2d

φ(x− y)∂z

[
(un − un−1)(y)

−(un − un−1)(x)

]
ρ(y)∂z(u

n+1 − un)(x)dydx

+

∫
T2d

φ(x− y)(u(y)− u(x))(∂zρ
n+1 − ∂zρn)(y)(∂zu

n+1 − ∂zun)(x)dydx

≤ ‖∇u‖L∞‖∂zun − ∂zun−1‖L2‖∂zun+1 − ∂zun‖L2

+
1

2
‖∇ · u‖L∞‖∂zun+1 − ∂zun‖2

L2

+ 2‖φ‖s‖ρ‖L2‖∂zun − ∂zun−1‖L2‖∂zun+1 − ∂zun‖L2

+ 2‖φ‖s‖u‖L2‖∂zρn+1 − ∂zρn‖L2‖∂zun+1 − ∂zun‖L2 .
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We use Young’s inequality and integrate the previous relation over [0, t] to

get

‖(∂zun+1 − ∂zun)(t, z)‖2
L2

≤C(z)

(∫ t

0

[
‖(∂zρn+1−∂zρn)(s,z)‖2

L2 +‖(∂zun+1−∂zun)(s,z)‖2
L2

]
ds

+

∫ t

0

‖(∂zun − ∂zun−1)(s, z)‖2
L2ds

)
.

(3.1.9)

For the H1-estimate for (∂zu
n+1−∂zun), we use the Cauchy-Schwarz inequal-

ity to get

1

2

∂

∂t
‖∇(∂zu

n+1 − ∂zun)‖2
L2

= −
∫
Td
∇((∂zu

n − ∂zun−1) · ∇u) : ∇(∂zu
n+1 − ∂zun)dx

−
∫
Td
∇(u · ∇(∂zu

n+1 − ∂zun)) : ∇(∂zu
n+1 − ∂zun)dx

+

∫
T2d

∇φ(x− y)∂z

[
(un − un−1)(y)

−(un − un−1)(x)

]
ρ(y)∇(∂zu

n+1 − ∂zun)(x)dydx

−
∫
T2d

φ(x− y)∇(∂zu
n − ∂zun−1)(x)ρ(y) : ∇(∂zu

n+1 − ∂zun)(x)dydx

+

∫
T2d

∇{φ(x− y)(u(y)− u(x))}
[

(∂zρ
n+1 − ∂zρn)(y)

: ∇(∂zu
n+1 − ∂zun)(x)

]
dydx

≤ ‖∂zun − ∂zun−1‖H1‖u‖W 2,∞‖∇(∂zu
n+1 − ∂zun)‖L2

+
‖∇ · u‖L∞

2
‖∇(∂zu

n+1 − ∂zun)‖2
L2

+ 2‖φ‖s‖ρ‖L2‖∂zun − ∂zun−1‖H1‖∇(∂zu
n+1 − ∂zun)‖L2

+ 2‖φ‖s‖u‖H1‖∂zρn+1 − ∂zρn‖L2‖∇(∂zu
n+1 − ∂zun)‖L2 .

Again, using Young’s inequality and integration along [0, t] give
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‖∇(∂zu
n+1 − ∂zun)(t, z)‖2

L2

≤C(z)

(∫ t

0

[
‖(∂zρn+1−∂zρn)(s,z)‖2

L2 +‖(∂zun+1−∂zun)(s,z)‖2
H1

]
ds

+

∫ t

0

‖∇(∂zu
n+1 − ∂zun)(s, z)‖2

L2ds

)
.

(3.1.10)

Finally, one combines (3.1.8), (3.1.9) and (3.1.10) to yield the desired result.

Now, we are ready to state our first result on the well-posedness of a global

solution to (3.1.3).

Theorem 3.1.1. Suppose that assumptions (A1)-(A2) hold. Then for each

z ∈ Ω, there exists a unique solution (∂zρ(z), ∂zu(z)) ∈ Hs−1×Hs satisfying

system (3.1.3) and uniform bound estimates:

sup
0≤t≤T

(‖∂zρ(t, z)‖Hs−1 + ‖∂zu(t, z)‖Hs) <
√
ε(z), for each z ∈ Ω.

Proof. For each n ∈ N and z ∈ Ω, define

∆n(t, z) := ‖∂zρn − ∂zρn−1‖2
L2 + ‖∂zun − ∂zun−1‖2

H1 .

We can deduce from Lemma 3.1.3 that for each z ∈ Ω,

∆n+1(t, z) ≤ C(z)

(∫ t

0

∆n+1(s, z)ds+

∫ t

0

∆n(s, z)ds

)
, t ∈ [0, T ].

Then, the Grönwall-type lemma in [6] gives, for each z ∈ Ω,

sup
0≤t≤T

(
‖(∂zρn − ∂zρn−1)(t, z)‖2

L2 + ‖(∂zun − ∂zun−1)(t, z)‖2
H1

)
≤ (C(z)T )n

n!
.

This implies that {∂zρn} and {∂zun} are Cauchy sequences in C([0, T ];L2)

and C([0, T ];H1), respectively. From here, one can follow the proof of The-

orem 3.1 in [48] to complete the proof.
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3.1.2 Higher-order z-variations

In this subsection, we consider higher-order z-variations, i.e. the case when

m ≥ 2 in (3.1.2), in order to complete the induction process on m. Similar

to the case m = 1, we again construct a sequence of approximated solutions

(∂mz ρ
n+1, ∂mz u

n+1) to (3.1.2) as follows:

∂t(∂
m
z ρ

n+1) +∇ · (∂mz ρn+1u) +∇ · (ρ∂mz un)

+
∑

1≤l≤m−1

(
m

l

)
∇ · (∂lzρ∂m−lz u) = 0,

(3.1.11)

∂t(∂
m
z u

n+1) + ∂mz u
n · ∇u+ u · ∇(∂mz u

n+1)

+
∑

1≤l≤m−1

(
m

l

)
∂lzu · ∇(∂m−1

z u)

=
∑

α+β+γ=m
β,γ 6=m

m!

α!β!γ!

∫
Td
∂αz φ(x− y)(∂βz u(y)− ∂βz u(x))∂γz ρ(y)dy

+

∫
Td
φ(x− y)(∂mz u

n(y)− ∂mz un(x))ρ(y)dy

+

∫
Td
φ(x− y)(u(y)− u(x))∂mz ρ

n+1(y)dy,

(∂mz ρ
0, ∂mz u

0) = (∂mz ρ0, ∂
m
z u0),

(3.1.12)

subject to the initial data:

(∂mz ρ
n+1(0, z), ∂mz u

n+1(0, z)) = (∂mz ρ0(z), ∂mz u0(z)).

Similar to the previous subsection, we first show the uniform boundedness of

the sequence {(∂mz ρn, ∂mz un)}∞n=0.

Lemma 3.1.4. For m ≥ 2 and n ∈ N, suppose that the following conditions

hold:

1. Assumptions (A1)-(A2) hold.

2. For l ≤ m−1, the l-th z-variations {(∂lzρ, ∂lzu)}m−1
l=0 satisfy the following

boundedness condition:

max
0≤l≤m−1

sup
0≤t≤T

(
‖∂lzρ(t, z)‖Hs−l + ‖∂lzu(t, z)‖Hs−l+1

)
<
√
ε(z), ∀z ∈ Ω.
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3. The sequence approximating the m-th z-variation of the bulk velocity

process satisfies the following boundedness condition:

max
0≤j≤n

sup
0≤t≤T

‖∂mz uj(t, z)‖Hs−m+1 <
√
ε(z), ∀z ∈ Ω.

Then, there exists a unique ∂mz ρ
n+1 ∈ Hs−m which satisfies relation (3.1.11)

and the bound:

sup
0≤t≤T

‖∂mz ρn+1(t, z)‖Hs−m <

√
ε(z)

2
, ∀z ∈ Ω.

Proof. We split the estimates into zeroth-order and higher-order cases as fol-

lows:

• Step A (The zeroth-order estimates): We multiply (3.1.11) by ∂mz ρ
n+1 and

integrate the resulting relation over Td to get

1

2

∂

∂t
‖∂mz ρn+1‖2

L2

= −1

2

∫
Td

(∇ · u)|∂mz ρn+1|2dx−
∫
Td
∇ · (ρ∂mz un)∂mz ρ

n+1dx

−
∑

1≤l≤m−1

(
m

l

)∫
Td
∇ · (∂lzρ∂m−lz u)∂mz ρ

n+1dx

≤ 1

2
‖∇ · u‖L∞‖∂mz ρn+1‖2

L2 + ‖ρ‖W 1,∞‖∂mz un‖H1‖∂mz ρn+1‖L2

+
∑

1≤l≤m−1

(
m

l

)
‖∂lzρ‖W 1,∞‖∂m−lz u‖H1‖∂mz ρn+1‖L2

≤ C(ε1/2‖∂mz ρn+1‖2
L2 + ε3/2),

where C is a positive constant independent of n and we used Young’s in-

equality. Integrating the above relation along [0, t] gives, for each z ∈ Ω,

‖∂mz ρn+1‖2
L2 ≤ C

(
ε1/2

∫ t

0

‖∂mz ρn+1(s)‖2
L2ds+ ε3/2

)
. (3.1.13)

• Step B (Higher-order estimates): For 1 ≤ k ≤ s − m, we apply ∇k to

(3.1.11), multiply by ∇k(∂mz ρ
n+1) and integrate the resulting relation over
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Td to obtain

1

2

∂

∂t
‖∇k(∂mz ρ

n+1)‖2
L2

= −
∫
Td
∇k(∇ · (∂mz ρn+1u))∇k(∂mz ρ

n+1)dx

−
∫
Td
∇k(∇ · (ρ∂mz un)∇k(∂mz ρ

n+1))dx

−
∑

1≤l≤m−1

(
m

l

)∫
Td
∇k(∇ · (∂lzρ∂m−lz u))∇k(∂mz ρ

n+1)dx

=:
3∑
i=1

I2i.

We separately estimate I2i’s as follows.

� (Estimate for I21): We use the commutator estimate, Sobolev embedding

theorem, Cauchy-Schwarz inequality and Young’s inequality to get

I21 =
1

2

∫
Td
|∇k(∂mz ρ

n+1)|2(∇ · u)dx

−
∫
Td

[
∇k(u · ∇(∂mz ρ

n+1))− u · ∇k(∇(∂mz ρ
n+1))

]
∇k(∂mz ρ

n+1)dx

−
∫
Td
∂mz ρ

n+1∇k(∇ · u)∇k(∂mz ρ
n+1)dx

−
∫
Td

[
∇k(∂mz ρ

n+1(∇ · u))− ∂mz ρn+1∇k(∇ · u)
]
∇k(∂mz ρ

n+1)dx

≤ 1

2
‖∇ · u‖L∞‖∇k(∂mz ρ

n+1)‖2
L2

+c
[
‖∇u‖L∞‖∇k(∂mz ρ

n+1)‖L2+‖∇(∂mz ρ
n+1)‖L∞‖∇ku‖L2

]
‖∇k(∂mz ρ

n+1)‖L2

+ ‖∇k+1u‖L2‖∂mz ρn+1‖L2‖∇k(∂mz ρ
n+1)‖L2

+ c
[
‖∇(∂mz ρ

n+1)‖L∞‖∇ku‖L2+‖∇·u‖L∞‖∇k(∂mz ρ
n+1)‖L2

]
‖∇k(∂mz ρ

n+1)‖L2

≤ C(ε1/2‖∂mz ρn+1‖2
Hs−m + ε3/2),

where c and C are positive random functions independent of n.
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� (Estimate for I22) : Similar to the previous case,

I22 = −
∫
Td
∇k(∇ρ) · ∂mz un∇k(∂mz ρ

n+1)dx

−
∫
Td

[
∇k(∂mz u

n · ∇ρ)− ∂mz un · ∇k(∇ρ)
]
∇k(∂mz ρ

n+1)dx

−
∫
Td
ρ∇k(∇ · ∂mz un)∇k(∂mz ρ

n+1)dx

−
∫
Td

[
∇k(ρ(∇ · ∂mz un))− ρ∇k(∇ · ∂mz un)

]
∇k(∂mz ρ

n+1)dx

≤ ‖∇k+1ρ‖L2‖∂mz un‖L∞‖∇k(∂mz ρ
n+1)‖L2

+ c
[
‖∇(∂mz u

n)‖L∞‖∇kρ‖L2 + ‖∇ρ‖L∞‖∇k(∂mz u
n)‖L2

]
‖∇k(∂mz ρ

n+1)‖L2

+ ‖ρ‖L∞‖∇k+1(∂mz u
n)‖L2‖∇k(∂mz ρ

n+1)‖L2

+ c
[
‖∇ρ‖L∞‖∇k(∂mz u

n)‖L2 + ‖∇ · ∂mz un‖L∞‖∇kρ‖L2

]
‖∇k(∂mz ρ

n+1)‖L2

≤ C(ε1/2‖∇k(∂mz ρ
n+1)‖2

L2 + ε3/2),

where c and C are positive random functions independent of n.

� (Estimates for I23): By direct calculation,

I23 = −
∑

1≤l≤m−1

(
m

l

){∫
Td
∇k(∇(∂lzρ)) · ∂m−lz u∇k(∂mz ρ

n+1)dx

+

∫
Td

[
∇k(∂m−lz u · ∇(∂lzρ))

−∂m−lz u∇k(∇(∂lzρ))

]
∇k(∂mz ρ

n+1)dx

+

∫
Td
∂lzρ∇k(∇ · ∂m−lz u)∇k(∂mz ρ

n+1)dx

+

∫
Td

[
∇k(∂lzρ(∇ · ∂m−lz u))

−∂lzρ∇k(∇ · ∂m−lz u)

]
∇k(∂mz ρ

n+1)dx

}

≤ C
∑

1≤l≤m−1

(
‖∇k+1∂lzρ‖L2‖∂m−lz u‖L2‖∇k(∂mz ρ

n+1)‖L2

+ ‖∇(∂m−lz u)‖L∞‖∇k(∂lzρ)‖L2‖∇k(∂mz ρ
n+1)‖L2

+ ‖∇(∂lzρ)‖L∞‖∇k(∂m−lz u)‖L2‖∇k(∂mz ρ
n+1)‖L2

+ ‖∂lzρ‖L∞‖∇k+1(∂m−lz u)‖L2‖∇k(∂mz ρ
n+1)‖L2
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+ ‖∇(∂lzρ)‖L∞‖∇k(∂m−lz u)‖L2‖∇k(∂mz ρ
n+1)‖L2

+ ‖∇ · ∂m−lz u‖L∞‖∇k(∂lzρ)‖L2‖∇k(∂mz ρ
n+1)‖L2

)
≤ C(ε1/2‖∇k(∂mz ρ

n+1)‖2
L2 + ε3/2),

where C is a positive random function independent of n.

Now, we gather all the results for I2i’s to yield that for each z ∈ Ω,

∂

∂t
‖∇k(∂mz ρ

n+1)‖2
L2 ≤ C(ε1/2‖∂mz ρn+1‖2

Hs−m + ε3/2). (3.1.14)

Summing (3.1.14) over 1 ≤ k ≤ s−m, integrating over [0, t] and combining

with (3.1.13) give

‖∂mz ρn+1‖2
Hs−m ≤ C

(
ε1/2

∫ t

0

‖∂mz ρn+1(s)‖2
Hs−mds+ ε3/2

)
.

Finally, one can use Grönwall’s lemma to obtain the desired result.

Lemma 3.1.5. For m ≥ 2 and n ∈ N, suppose that the following conditions

hold:

1. Assumptions (A1)-(A2) hold.

2. For l ≤ m−1, the l-th z-variations {(∂lzρ, ∂lzu)}m−1
l=0 satisfy the following

boundedness condition:

max
0≤l≤m−1

sup
0≤t≤T

(
‖∂lzρ(t, z)‖Hs−l + ‖∂lzu(t, z)‖Hs−l+1

)
<
√
ε(z), ∀z ∈ Ω.

3. The sequence approximating the m-th z-variation of the local mass and

bulk velocity processes satisfies the following boundedness condition:

max
0≤j≤n

sup
0≤t≤T

(
‖∂mz ρj(t, z)‖Hs−m + ‖∂mz uj(t, z)‖Hs−m+1

)
<
√
ε(z).

Then for each z ∈ Ω, there exists a unique ∂mz u
n+1 = ∂mz u

n+1(t, z) ∈ Hs−m+1

satisfying relation (3.1.12) and the bound:

sup
0≤t≤T

‖∂mz un+1(t, z)‖Hs−m+1 <

√
ε(z)

2
, ∀z ∈ Ω.
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Proof. We leave its proof to Appendix A.2.

Remark 3.1.2. For m ≥ 2 and n ∈ N, suppose that the following conditions

hold:

1. Assumptions (A1)-(A2) hold.

2. For l ≤ m−1, the l-th z-variations {(∂lzρ, ∂lzu)}m−1
l=0 satisfy the following

boundedness condition:

max
0≤l≤m−1

sup
0≤t≤T

(
‖∂lzρ(t, z)‖Hs−l + ‖∂lzu(t, z)‖Hs−l+1

)
<
√
ε(z), ∀z ∈ Ω.

Then, it follows from Lemmas 3.1.4 and 3.1.5, that for every n,m ∈ N and

z ∈ Ω:

sup
0≤t≤T

(‖∂mz ρn(t, z)‖Hs−m + ‖∂mz un(t, z)‖Hs−m+1) <
√
ε(z), ∀z ∈ Ω.

Now, we assert that the sequence is Cauchy under the induction hypoth-

esis on m.

Lemma 3.1.6. For m ≥ 2 and n ∈ N, suppose that the following conditions

hold:

1. Assumptions (A1)-(A2) hold.

2. For l ≤ m−1, the l-th z-variations {(∂lzρ, ∂lzu)}m−1
l=0 satisfy the following

boundedness condition:

max
0≤l≤m−1

sup
0≤t≤T

(
‖∂lzρ(t, z)‖Hs−l + ‖∂lzu(t, z)‖Hs−l+1

)
<
√
ε(z), ∀z ∈ Ω.

Then, for each z ∈ Ω,

‖(∂mz ρn+1 − ∂mz ρn)(t, z)‖2
L2 + ‖(∂mz un+1 − ∂mz un)(t, z)‖2

H1

≤ C(z)

(∫ t

0

(
‖(∂mz ρn+1 − ∂mz ρn)(s, z)‖2

L2 + ‖(∂mz un+1 − ∂zun)(s, z)‖2
H1

)
ds

+

∫ t

0

‖(∂mz un+1 − ∂mz un)(s, z)‖2
H1ds

)
,

where C = C(z) is a positive random function independent of n.

31



CHAPTER 3. A LOCAL SENSITIVITY ANALYSIS FOR THE
HYDRODYNAMIC CUCKER-SMALE MODEL WITH RANDOM
INPUTS

Proof. We can replace ∂z in the proof of Lemma 3.1.3 by ∂mz to get the desired

proof. The details will be omitted.

Finally, we are ready to present our result on the well-posedness.

Theorem 3.1.2. Suppose that assumptions (A1)-(A2) hold. Then for each

m ∈ N and z ∈ Ω, there exists a unique pair (∂mz ρ(z), ∂mz u(z)) ∈ Hs−m ×
Hs−m+1 satisfying system (3.1.2) and the following uniform bound estimates:

sup
0≤t≤T

(‖∂mz ρ(t, z)‖Hs−m + ‖∂mz u(t, z)‖Hs−m+1) <
√
ε(z), ∀z ∈ Ω.

Proof. One can use induction on m, Lemma 3.1.6 and follow the proof of

Theorem 3.1.1 to show that {(∂mz ρn(z), ∂mz u
n(z))}∞n=0 is a Cauchy sequence

in C([0, T ];L2) × C([0, T ];H1) for each z ∈ Ω. From here, we again refer to

[48] to complete the rest of the proof.

3.2 The local sensitivity analysis for stability

estimates

In this section, we conduct a local sensitivity analysis for the L2-stability

estimates of the solution processes to (3.0.1) and their z-variations.

3.2.1 Higher-order L2-stability

In this subsection, we derive a higher-order L2-stability estimate of solution

processes to (3.0.1) which will be used in the L2-stability of the z-variations.

First, we begin with the L2-stability estimate for the local mass processes.

Lemma 3.2.1. Suppose that assumptions (A1)-(A2) hold, and let (ρ, u) and

(ρ̄, ū) be two classical solution processes to (3.0.1) corresponding to the initial

data (ρ0, u0) and (ρ̄0, ū0), respectively. Then,

∂

∂t
‖(ρ− ρ̄)(t, z)‖2

Hm ≤ C(T, z)(‖(ρ− ρ̄)(t, z)‖2
Hm + ‖(u− ū)(t, z)‖2

Hm+1),

where C = C(T, z) is a positive random function.
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Proof. It follows from Theorem 2.2.3 that

(ρ, u), (ρ̄, ū) ∈ Hs ×Hs+1 with s >
d

2
+m+ 1.

Since the proof for the case m = 0 is analogous to the higher-order case, we

only consider the higher-order estimates. So we first apply ∇k to (3.0.1)1 for

1 ≤ k ≤ m to get

∂t∇k(ρ− ρ̄) +∇k∇ · ((ρ− ρ̄)ū+ ρ(u− ū)) = 0. (3.2.1)

Then, we multiply (3.2.1) by ∇k(ρ − ρ̄) and integrate the resulting relation

over Td to obtain

1

2

∂

∂t
‖∇k(ρ− ρ̄)‖2

L2

= −
∫
Td
∇k(ρ− ρ̄)∇k[∇ · (ρ(u− ū)) +∇ · ((ρ− ρ̄)ū)]dx

= −
∑

0≤r≤k

(
k

r

)∫
Td
∇k(ρ− ρ̄)[∇r(∇ρ) · (∇k−r(u− ū))]dx

−
∑

0≤r≤k

(
k

r

)∫
Td
∇k(ρ− ρ̄)[(∇rρ)(∇k−r(∇ · (u− ū)))]dx

−
∑

0≤r≤k

(
k

r

)∫
Td
∇k(ρ− ρ̄)[∇r(∇(ρ− ρ̄)) · (∇k−rū)]dx

−
∑

0≤r≤k

(
k

r

)∫
Td
∇k(ρ− ρ̄)[(∇r(ρ− ρ̄))(∇k−r(∇ · ū))]dx

=:
4∑
i=1

I3i.

Next, we estimate I3i’s one by one as follows:

� (Estimates for I31) : We use the Sobolev embedding theorem to obtain

I31 = −
∑

0≤r≤k

(
k

r

)∫
Td
∇k(ρ− ρ̄)[∇r(∇ρ) · (∇k−r(u− ū))]dx
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≤
∑

0≤r≤k

(
k

r

)
‖∇r+1ρ‖L∞‖∇k(ρ− ρ̄)‖L2‖∇k−r(u− ū)‖L2

≤ C
∑

0≤r≤k

(
k

r

)
‖ρ‖Hs‖∇k(ρ− ρ̄)‖L2‖∇k−r(u− ū)‖L2

≤ C(T, z)(‖∇k(ρ− ρ̄)‖2
L2 + ‖u− ū‖2

Hk).

� (Estimates for I32) : Similarly,

I32 = −
∑

0≤r≤k

(
k

r

)∫
Td
∇k(ρ− ρ̄)[(∇rρ)(∇k−r(∇ · (u− ū)))]dx

≤
∑

0≤r≤k

(
k

r

)
‖∇rρ‖L∞‖∇k(ρ− ρ̄)‖L2‖∇k−r+1(u− ū)‖L2

≤ C
∑

0≤r≤k

(
k

r

)
‖ρ‖Hs−1‖∇k(ρ− ρ̄)‖L2‖∇k−r+1(u− ū)‖L2

≤ C(T, z)(‖∇k(ρ− ρ̄)‖2
L2 + ‖u− ū‖2

Hk+1).

� (Estimates for I33) : One has

I33 = −
∑

0≤r≤k

(
k

r

)∫
Td
∇k(ρ− ρ̄)[∇r(∇(ρ− ρ̄)) · (∇k−rū)]dx

≤
∑

0≤r≤k−1

(
k

r

)
‖∇k−rū‖L∞‖∇k(ρ− ρ̄)‖L2‖∇r+1(ρ− ρ̄)‖L2

+
1

2

∫
Td
|∇k(ρ− ρ̄)|2(∇ · ū)dx

≤ C
∑

0≤r≤k−1

(
k

r

)
‖ū‖Hs−1‖∇k(ρ− ρ̄)‖L2‖∇r+1(ρ− ρ̄)‖L2

+ C‖∇k(ρ− ρ̄)‖2
L2‖ū‖Hs−m

≤ C(T, z)‖ρ− ρ̄‖2
Hk .
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� (Estimates for I34) : We have

I34 = −
∑

0≤r≤k

(
k

r

)∫
Td
∇k(ρ− ρ̄)[(∇r(ρ− ρ̄))(∇k−r(∇ · ū))]dx

≤
∑

0≤r≤k

(
k

r

)
‖∇k−r+1ū‖L∞‖∇k(ρ− ρ̄)‖L2‖∇r(ρ− ρ̄)‖L2

≤ C
∑

0≤r≤k

(
k

r

)
‖ū‖Hs‖∇k(ρ− ρ̄)‖L2‖∇r(ρ− ρ̄)‖L2

≤ C(T, z)‖ρ− ρ̄‖2
Hk .

By collecting all results for I3i’s, summing over 1 ≤ k ≤ m and combining

with lower-order estimates, one gets the desired estimate.

Next, we return to the L2-stability of the bulk velocity processes.

Lemma 3.2.2. Suppose that assumptions (A1)-(A2) hold, and let (ρ, u) and

(ρ̄, ū) be two classical solution processes to (3.0.1) corresponding to the initial

data (ρ0, u0) and (ρ̄0, ū0), respectively. Then,

∂

∂t
‖(u− ū)(t, z)‖2

Hm+1 ≤ C(T, z)(‖(u− ū)(t, z)‖2
Hm+1 + ‖(ρ− ρ̄)(t, z)‖2

L2),

where C = C(T, z) is a positive random function.

Proof. As in the proof of Lemma 3.2.1, we only consider the higher-order

estimates. Applying ∇k to (3.0.1)2 for 1 ≤ k ≤ m+ 1 gives

∂t∇k(u− ū) +∇k((u− ū) · ∇u) +∇k(ū · ∇(u− ū))

= ∇k

∫
Td
φ(x− y, z)

[
(u(y)− u(x))(ρ(y)− ρ̄(y))

+ρ̄(y)(u(y)− ū(y))− ρ̄(y)(u(x)− ū(x))

]
dy.

Then, we use commutator estimates, Sobolev embedding and Young’s in-

equality to get

1

2

∂

∂t
‖∇k(u− ū)‖2

L2
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= −
∫
Td
∇k[(u− ū) · ∇u]∇k(u− ū)dx

−
∫
Td
∇k[ū · ∇(u− ū)]∇k(u− ū)dx

+

∫
T2d

∇k [φ(x− y, z)(u(y)− u(x))(ρ(y)− ρ̄(y))]∇k(u(x)− ū(x))dydx

+

∫
T2d

∇k [φ(x− y, z)ρ̄(y)(u(y)− ū(y))]∇k(u(x)− ū(x))dydx

−
∫
T2d

∇k [φ(x− y, z)ρ̄(y)(u(x)− ū(x))]∇k(u(x)− ū(x))dydx

≤ C‖u‖Hs‖u− ū‖2
Hk + C‖φ‖s‖u‖Hs(‖ρ− ρ̄‖2

L2 + ‖∇k(u− ū)‖2
L2)

+ C‖φ‖s‖ρ̄‖L2‖u− ū‖2
Hk

≤ C(T, z)(‖u− ū‖2
Hk + ‖ρ− ρ̄‖2

L2).

We sum the above relation over 1 ≤ k ≤ m + 1 and combine with lower-

order estimates, which can be obtained analogously, to get the higher-order

estimates.

Finally, we combine Lemma 3.2.1 and Lemma 3.2.2 to derive our second

main result as follows.

Theorem 3.2.1. Suppose that assumptions (A1)-(A2) hold, and let (ρ, u)

and (ρ̄, ū) be two classical solution processes to (3.0.1) corresponding to the

initial data (ρ0, u0) and (ρ̄0, ū0), respectively. Then, there exists a positive

random function C(T, z) such that

sup
0≤t≤T

(
‖(ρ− ρ̄)(t, z)‖2

Hm + ‖(u− ū)(t, z)‖2
Hm+1

)
≤ C(T, z)(‖(ρ0 − ρ̄0)(z)‖2

Hm + ‖(u0 − ū0)(z)‖2
Hm+1).

Proof. We combine Lemma 3.2.1 and Lemma 3.2.2 to get

∂

∂t

(
‖(ρ− ρ̄)‖2

Hm + ‖(u− ū)‖2
Hm+1

)
≤ C(T, z)

(
‖(ρ− ρ̄)‖2

Hm + ‖(u− ū)‖2
Hm+1

).
Here, one can use Grönwall’s lemma to yield the desired result.
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3.2.2 L2-stability estimates for z-variations

In this subsection, we discuss the L2-stability estimates for the z-variations

of the solution processes. First, we consider the L2-stability estimates for the

z-variations {∂lzρ} of local mass processes.

Lemma 3.2.3. Suppose that assumptions (A1)-(A2) hold, and let (ρ, u) and

(ρ̄, ū) be two solution processes to (3.0.1) corresponding to the initial data

(ρ0, u0) and (ρ̄0, ū0), respectively. Then,

∂

∂t

∑
0≤l≤m

‖∂lz(ρ−ρ̄)‖2
Hm−l ≤C(T, z)

∑
0≤l≤m

(
‖∂lz(ρ−ρ̄)‖2

Hm−l+‖∂lz(u−ū)‖2
Hm−l+1

)
,

where C = C(T, z) is a positive random function.

Proof. As in Lemma 3.2.1, we only consider the higher-order estimates. For

1 ≤ k ≤ m− l and 1 ≤ l ≤ m, we apply ∇k∂lz to (3.0.1) to get

1

2

∂

∂t
‖∇k(∂lz(ρ− ρ̄))‖2

L2

= −
∑

0≤r1≤l
0≤r2≤k

(
l

r1

)(
k

r2

)∫
Td

(
∇r2∇(∂r1z (ρ− ρ̄)) · ∇k−r2(∂l−r1z u)

)
∇k(∂lz(ρ− ρ̄))dx

−
∑

0≤r1≤l
0≤r2≤k

(
l

r1

)(
k

r2

)∫
Td

(
∇r2∂r1z (ρ− ρ̄)∇k−r2∇ · (∂l−r1z u)

)
∇k(∂lz(ρ− ρ̄))dx

−
∑

0≤r1≤l
0≤r2≤k

(
l

r1

)(
k

r2

)∫
Td

(
∇r2∇(∂r1z ρ̄) · ∇k−r2∂l−r1z (u− ū)

)
∇k(∂lz(ρ− ρ̄))dx

−
∑

0≤r1≤l
0≤r2≤k

(
l

r1

)(
k

r2

)∫
Td

(
∇r2(∂r1z ρ̄)∇k−r2(∇ · ∂l−r1z (u− ū))

)
∇k(∂lz(ρ− ρ̄))dx

=:
4∑
i=1

I4i.

Below, we estimate I4i’s separately.

� (Estimates for I41): In this case, we have
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I41 = −
∑

0≤r1≤l
0≤r2≤k

(
l

r1

)(
k

r2

)∫
Td

[
∇r2∇(∂r1z (ρ− ρ̄))

·∇k−r2(∂l−r1z u)

]
∇k(∂lz(ρ− ρ̄))dx

= −
∑

0≤r1≤l
0≤r2≤k

(r1,r2)6=(l,k)

(
l

r1

)(
k

r2

)∫
Td

[
∇r2∇(∂r1z (ρ− ρ̄))

·∇k−r2(∂l−r1z u)

]
∇k(∂lz(ρ− ρ̄))dx

+
1

2

∫
Td

(∇ · u)|∇k(∂lz(ρ− ρ̄))|2dx

≤
∑

0≤r1≤l
0≤r2≤k

(r1,r2) 6=(l,k)

(
l

r1

)(
k

r2

)
‖∇k−r2(∂l−r1z u)‖L∞

(
‖∇r2+1(∂r1z (ρ− ρ̄))‖L2

· ‖∇k(∂lz(ρ− ρ̄))‖L2

)

+
1

2
‖∇ · u‖L∞‖∇k(∂lz(ρ− ρ̄))‖2

L2

≤ C
∑

0≤r1≤l
0≤r2≤k

(r1,r2)6=(l,k)

(
l

r1

)(
k

r2

)
‖∂l−r1z u‖Hs−l

(
‖∇r2+1(∂r1z (ρ− ρ̄))‖2

L2

+‖∇k(∂lz(ρ− ρ̄))‖2
L2

)

+ C‖u‖Hs−m‖∇k(∂lz(ρ− ρ̄))‖2
L2

≤ C(T, z)
∑

0≤r≤l

‖∂rz(ρ− ρ̄)‖2
Hm−r .

� (Estimates for I42) : By direct calculation, one has

I42 = −
∑

0≤r1≤l
0≤r2≤k

(
l

r1

)(
k

r2

)∫
Td

(
∇r2(∂r1z (ρ− ρ̄))

· ∇k−r2(∇ · ∂l−r1z u)

)
∇k(∂lz(ρ− ρ̄))dx

= −
∑

0≤r1≤l
0≤r2≤k

(r1,r2)6=(l,k)

(
l

r1

)(
k

r2

)∫
Td

(
∇r2∂r1z (ρ− ρ̄)

· ∇k−r2(∇ · ∂l−r1z u)

)
∇k(∂lz(ρ− ρ̄))dx

−
∫
Td

(∇ · u)|∇k(∂lz(ρ− ρ̄))|2dx
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≤
∑

0≤r1≤l
0≤r2≤k

(r1,r2) 6=(l,k)

(
l

r1

)(
k

r2

)
‖∇k−r2+1∂l−r1z u‖L∞

(
‖∇r2(∂r1z (ρ− ρ̄))‖L2

· ‖∇k(∂lz(ρ− ρ̄))‖L2

)

+ ‖∇ · u‖L∞‖∇k(∂lz(ρ− ρ̄))‖2
L2

≤ C
∑

0≤r1≤l
0≤r2≤k

(r1,r2) 6=(l,k)

(
l

r1

)(
k

r2

)
‖∂l−r1z u‖Hs−l

(
‖∇r2(∂r1z (ρ− ρ̄))‖2

L2

+‖∇k(∂lz(ρ− ρ̄))‖2
L2

)

+ C‖u‖Hs−m‖∇k(∂lz(ρ− ρ̄))‖2
L2

≤ C(T, z)
∑

0≤r≤l

‖∂rz(ρ− ρ̄)‖2
Hm−r .

� (Estimates for I43): Similarly, one gets

I43 = −
∑

0≤r1≤l
0≤r2≤k

(
l

r1

)(
k

r2

)∫
Td

(
∇r2∇(∂r1z ρ̄)

· ∇k−r2(∂l−r1z (u− ū))

)
∇k(∂lz(ρ− ρ̄))dx

≤
∑

0≤r1≤l
0≤r2≤k

(
l

r1

)(
k

r2

)
‖∇r2+1(∂r1z ρ̄)‖L∞

(
‖∇k−r2∂l−r1z (u− ū)‖L2

· ‖∇k(∂lz(ρ− ρ̄))‖L2

)

≤ C
∑

0≤r1≤l
0≤r2≤k

(
l

r1

)(
k

r2

)
‖∂r1z ρ̄‖Hs−l

(
‖∇k−r2∂l−r1z (u− ū)‖L2

· ‖∇k(∂lz(ρ− ρ̄))‖L2

)

≤ C(T, z)
∑

0≤r≤l

(
‖∇k(∂lz(ρ− ρ̄))‖2

L2 + ‖∂rz(u− ū)‖2
Hm−r

)
.

� (Estimates for I44): By direct estimates, one obtains

I44 = −
∑

0≤r1≤l
0≤r2≤k

(
l

r1

)(
k

r2

)∫
Td

(
∇r2(∂r1z ρ̄)

· ∇k−r2∇ · (∂l−r1z (u− ū))

)
∇k(∂lz(ρ− ρ̄))dx

≤
∑

0≤r1≤l
0≤r2≤k

(
l

r1

)(
k

r2

)
‖∇r2(∂r1z ρ̄)‖L∞

(
‖∇k−r2+1(∂l−r1z (u− ū))‖L2

· ‖∇k(∂lz(ρ− ρ̄))‖L2

)
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≤ C
∑

0≤r1≤l
0≤r2≤k

(
l

r1

)(
k

r2

)
‖∂r1z ρ̄‖Hs−l−1

(
‖∇k−r2+1(∂l−r1z (u− ū))‖L2

· ‖∇k(∂lz(ρ− ρ̄))‖L2

)

≤ C(T, z)
∑

0≤r≤l

(
‖∇k(∂lz(ρ− ρ̄))‖2

L2 + ‖∂rz(u− ū)‖2
Hm−r+1

)
.

Finally, we collect all estimates for I4i’s, sum them over 1 ≤ k ≤ m − l,

0 ≤ l ≤ m and add the zeroth-order estimate to get the desired result.

Next, we provide estimates for z-variations {∂lzu} of the bulk velocity

processes.

Lemma 3.2.4. Suppose that assumptions (A1)-(A2) hold, and let (ρ, u) and

(ρ̄, ū) be two classical solution processes to (3.0.1) corresponding to the initial

data (ρ0, u0) and (ρ̄0, ū0), respectively. Then, we have

∂

∂t

∑
0≤l≤m

‖∂lz(u−ū)‖2
Hm−l+1 ≤ C(T, z)

∑
0≤l≤m

(
‖∂lz(ρ− ρ̄)‖2

L2 + ‖∂lz(u− ū)‖2
Hm−l+1

)
,

where C = C(T, z) is a positive random function.

Proof. Since the proof will be straightforward and similar to that of Lemma

3.2.2, we leave its proof to Appendix A.3.

Finally, we combine Lemma 3.2.3 with Lemma 3.2.4 and use Grönwall’s

lemma to deduce the following result.

Theorem 3.2.2. Suppose that assumptions (A1)-(A2) hold, and let (ρ, u)

and (ρ̄, ū) be two classical solution processes to (3.0.1) with initial data (ρ0, u0)

and (ρ̄0, ū0), respectively. Then, there exists a positive random function C(T, z)

such that

sup
0≤t≤T

∑
0≤l≤m

(
‖∂lz(ρ− ρ̄)(t, z)‖2

Hm−l + ‖∂lz(u− ū)(t, z)‖2
Hm−l+1

)
≤ C(T, z)

∑
0≤l≤m

(
‖∂lz(ρ0 − ρ̄0)(z)‖2

Hm−l + ‖∂lz(u0 − ū0)(z)‖2
Hm−l+1

)
.
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3.3 A local sensitivity analysis for flocking es-

timate

In this section, we provide a local sensitivity analysis for the flocking behav-

ior to system (3.0.1).

It follows from Proposition 3.1.1 that∫
Td
ρ(t, z)dx =

∫
Td
ρ0(z)dx,

∫
Td

(ρu)(t, z)dx =

∫
Td

(ρ0u0)(z)dx, t ≥ 0, z ∈ Ω.

Then, without loss of generality, we may assume that the average bulk ve-

locity is zero:

uc(t, z) :=

∫
Td ρudx∫
Td ρdx

≡ 0.

For a given z-variations {∂mz u}, we introduce a family of flocking functionals

Em:

Em(t, z) :=

∫
Td
ρ|∂mz u|2dx, m ≥ 1,

where E0(t, z) is defined in Theorem 2.2.3. Although the functionals Em are

not z-variations of a certain quantity, estimates for these functionals will be

of our concern since they play a role in estimating ‖∂mz u‖L2 . Based on the

estimates for Em, we provide estimates for the exponential decay of ‖∂mz u‖L2

under the following a priori assumptions (B): for an integer s > d
2

+ m + 1,

T ∈ (0,∞) and each z ∈ Ω,

(B1) The solution process (ρ, u) and their z-variations {(∂lzρ, ∂lzu)}ml=0 satisfy

the following uniform boundedness condition:

max
0≤l≤m

sup
t∈[0,T ]

(
‖∂lzρ(t, z)‖Hs−l + ‖∂lzu(t, z)‖Hs−l+1

)
≤ U(z),

for some positive random function U = U(z).

(B2) The initial mass ρ0 satisfies the non-vacuum condition:

inf
x∈Td

ρ0(x, z) > 0, for each z ∈ Ω.
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(B3) The communication weight function φ : Td × Ω → R is in Cs+1(Td ×
Ω) and satisfies symmetric, positive, boundedness conditions: for each

x, y ∈ Td and z ∈ Ω,

φ(x− y, z) = φ(y − x, z),

inf
x∈Td

φ(x, z) =: φm(z) > sup
0≤t≤T

(
‖(∇ · u)(t)‖L∞

2‖ρ0‖L1

)
,

‖φ‖s := max
|α|+|β|≤s+1

sup
(x,z)∈Td×Ω

|∂αz ∂βxφ(x, z)| <∞.

Remark 3.3.1. The lower bound assumption for φ given in (B3) implies a

sufficient condition for system (3.0.1) to exhibit the decay of the bulk velocity

toward the average bulk velocity. To be precise, the condition means the align-

ment force is so strong that it surpasses the tendency of bulk velocity field to

deviate from the mean velocity, and it will lead to the velocity alignment.

In the following lemma, we study the exponential decay of ‖u‖L2 .

Lemma 3.3.1. Let (ρ, u) be a classical solution to system (3.0.1) and suppose

that the a priori assumptions (B) hold for (ρ, u). Then we have

‖u(t, z)‖2
L2 ≤ F0(z)e−2Λ̃(z)t, t ∈ [0, T ],

where F0(z) and Λ̃(z) are positive random functions.

Proof. It follows from (3.0.1) that

1

2

∂

∂t

∫
Td
|u|2dx

= −
∫
Td

(u · ∇u) · udx+

∫
Td×Td

φ(x− y)(u(y)− u(x)) · u(x)ρ(y)dydx

=
1

2

∫
Td

(∇ · u)|u|2dx+

∫
Td×Td

φ(x− y)(u(y)− u(x)) · u(x)ρ(y)dydx

≤ ‖∇ · u‖L
∞

2
‖u‖2

L2 − φm‖ρ0‖L1‖u‖2
L2 + κ‖ρu‖L1‖u‖L1

≤
(
−φm‖ρ0‖L1 +

sup0≤t≤T ‖(∇ · u)(t)‖L∞
2

+ δ

)
‖u‖2

+
‖φ‖2

s

4δ
‖ρ‖L2E0(t, z),
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where E0 is the functional defined in (2.2.3) and the positive constant δ > 0

satisfies the following relation:

φm‖ρ0‖L1 −
sup

0≤t≤T
‖(∇ · u)(t)‖L∞

2
− δ > 0.

We let Λ̃(z) := φm‖ρ0‖L1 − sup0≤t≤T ‖(∇·u)(t)‖L∞
2

− δ. Then, we have

∂

∂t
‖u‖2

L2 ≤ −2Λ̃(z)‖u‖2
L2 + F̂0(z)e−2Λ(z)t, (3.3.1)

where random functions Λ and F̂0 are given by the following relations:

Λ(z) := φm‖ρ0‖L1 , F̂0(z) :=
‖φ‖2

s

2δ
U(z)‖√ρ0u0‖2

L2 .

Now, we apply Grönwall’s lemma to (3.3.1) to obtain

‖u‖2
L2 ≤ ‖u0‖2

L2e−2Λ̃(z)t +
F̂0(z)

sup
0≤t≤T

‖(∇ · u)(t)‖L∞ + 2δ

(
e−2Λ̃(z)t − e−2Λ(z)t

)
≤ F0(z)e−2Λ̃(z)t,

where F0(z) is given by

F0(z) := ‖u0‖2
L2 +

F̂0(z)

sup
0≤t≤T

‖(∇ · u)(t)‖L∞ + 2δ
.

This implies our desired result.

Next, we derive the temporal decay estimates for functional Em(t, z) and

‖∂mz u‖ based on the induction argument.

Theorem 3.3.1. Suppose that a priori assumptions (B) and the following

induction hypotheses hold for 0 ≤ l ≤ m− 1:

El(t, z) ≤ El(z)e−Λ̃(z)t, ‖∂lzu‖2
L2 ≤ Fl(z)e−Λ̃(z)t,

where El(z) and Fl(z) are positive random functions and Λ̃(z) is given in

Lemma 3.3.1. Then, there exists a positive random function Em(z) such that

Em(t, z) ≤ Em(z)e−Λ̃(z)t.
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Proof. It follows from (3.1.2) that

∂

∂t
Em(t, z)

=

∫
Td
∂tρ|∂mz u|2dx+ 2

∫
Td
ρ∂mz u · ∂t(∂mz u)dx

= −
∫
Td
∇ · (ρu)|∂mz u|2dx− 2

m∑
l=0

(
m

l

)∫
Td
ρ∂mz u · (∂lzu · ∇∂m−lz u)dx

+ 2
∑

α+β+γ=m

m!

α!β!γ!

∫
T2d

(
∂αz φ(x− y)(∂βz u(y)− ∂βz u(x))

· ∂γz ρ(y)ρ(x) · ∂mz u(x)

)
dydx

= −2
m∑
l=1

(
m

l

)∫
Td
ρ∂mz u · (∂lzu · ∇∂m−lz u)dx

+ 2
∑

α+β+γ=m

m!

α!β!γ!

∫
T2d

(
∂αz φ(x− y)(∂βz u(y)− ∂βz u(x))

· ∂γz ρ(y)ρ(x) · ∂mz u(x)

)
dydx

=: I51 + I52.

Next, we separately estimate I51 and I52 as follows:

� (Estimates for I51) : First,∫
Td
ρ∂mz u · (∂mz u · ∇)udx = −

∫
Td
∇ · (ρ∂mz u⊗ ∂mz u) · udx

≤ ‖∇ · (ρ∂mz u⊗ ∂mz u)‖L2‖u‖L2 ≤ U3(z)
√
F0(z)e−Λ̃(z)t.

For m = 1, one gets

I51 ≤ U3(z)
√
F0(z)e−Λ̃(z)t.

For m ≥ 2,

2
m−1∑
l=1

(
m

l

)∫
Td
ρ∂mz u · (∂lzu · ∇∂m−lz u)dx

≤ 2
m−1∑
l=1

(
m

l

)
‖∇(∂l−rz u)‖L∞Em(t, z)El(t, z)
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≤ δE2
m(t, z) +

m− 1

δ

m−1∑
l=1

(
m

l

)2

U2(z)E2
l (t, z),

where δ is the same as that in Lemma 3.3.1 and we used Young’s inequality.

Hence, we can obtain that if m ≥ 2,

I51 ≤ δE2
m(t, z) +

m− 1

δ

m−1∑
l=1

(
m

l

)2

U2(z)E2
l (t, z) + U3(z)

√
F0(z)e−Λ̃(z)t.

� (Estimates for I52): By direct calculation, one has

I52 = 2

∫
T2d

φ(x− y)(∂mz u(y)− ∂mz u(x))ρ(y)ρ(x)∂mz u(x)dydx

+ 2
∑

α+β+γ=m
β 6=m

m!

α!β!γ!

∫
T2d

(
∂αz φ(x− y)(∂βz u(y)− ∂βz u(x))

· ∂γz ρ(y)ρ(x) · ∂mz u(x)

)
dydx

= −
∫
T2d

φ(x− y)|∂mz u(y)− ∂mz u(x)|2ρ(y)ρ(x)dydx

+ 2
∑

α+β+γ=m
β 6=m

m!

α!β!γ!

∫
T2d

(
∂αz φ(x− y)(∂βz u(y)− ∂βz u(x))

· ∂γz ρ(y)ρ(x) · ∂mz u(x)

)
dydx

≤ −2φm‖ρ0‖L1Em(t, z)

+ 2
∑

α+β+γ=m
β 6=m

m!

α!β!γ!
‖φ‖s

(
‖∂βz u ∂γz ρ‖L1‖ρ∂mz u‖L1

+‖∂γz ρ‖L1‖ρ∂βz u · ∂mz u‖L1

)

≤ −2φm‖ρ0‖L1Em(t, z)

+ 4
∑

α+β+γ=m
β 6=m

m!

α!β!γ!
‖φ‖s‖∂γz ρ‖L2

√
‖ρ‖L∞‖∂

β
z u‖L2

√
Em(t, z)

≤ (−2φm‖ρ0‖L1 + δ)Em(t, z)

+
∑

α+β+γ=m
β 6=m

[
m!

α!β!γ!
‖φ‖s‖∂γz ρ‖L2

√
‖ρ‖L∞

]2 ((m+1)(m+2)
2

−1
)

δ
Fβ(z)e−Λ̃(z)t,

where we used ∑
α+β+γ=m

1 =
(m+ 2)(m+ 1)

2
,
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and Young’s inequality. Therefore, we collect all results for I51 and I52 to

yield

∂

∂t
Em(t, z) ≤ −2(φm‖ρ0‖L1 − δ)Em(t, z) + Êm(z)e−Λ̃(z)t, (3.3.2)

where Êm(z) is given by

Ê1(z) := U3(z)
√
F0(z) +

4

δ
‖φ‖2

sU3(z)F0(z),

Êm(z) := U3(z)
√
F0(z) + E2

m(t, z) +
m− 1

δ

m−1∑
l=1

(
m

l

)2

U2(z)El(z)

+
m2 + 3m

2δ

∑
α+β+γ=m

β 6=m

(
m!

α!β!γ!
‖φ‖sU3/2(z)

)2

Fβ(z), m ≥ 2.

Now, we integrate (3.3.2) with respect to time to get

Em(t, z) ≤ Em(0, z)e−2(φm‖ρ0‖L1−δ)t

+
Êm(z)

2(φm‖ρ0‖L1 − δ)− Λ̃(z)
(e−Λ̃(z)t − e−2(φm‖ρ0‖L1−δ)t)

≤ Em(z)e−Λ̃(z)t,

where Em(z) is written as

Em(z) := Em(0, z) +
Êm(z)

2(φm‖ρ0‖L1 − δ)− Λ̃(z)
.

This gives our desired result.

Finally, we provide all estimates for the L2-decay of the z-variations toward

the corresponding z-variations of the average bulk velcoity process.

Theorem 3.3.2. For a positive constant T ∈ (0,∞), let (ρ, u) be a classical

solution process on [0, T ] and suppose that a priori assumptions (B) hold.

Moreover, assume the following induction hypotheses hold for 0 ≤ l ≤ m and

0 ≤ p ≤ m− 1:

El(t, z) ≤ El(z)e−Λ̃(z)t, ‖∂pzu‖2
L2 ≤ Fp(z)e−Λ̃(z)t,
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where El(z) and Fp(z) are positive random functions. Then, there exists a

positive random function Fm(z) such that

‖∂mz u‖2
L2 ≤ Fm(z)e−Λ̃(z)t.

Proof. We leave its detailed proof in Appendix A.4.
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Chapter 4

On the stochastic flocking of

the Cucker-Smale flock with

randomly switching topologies

In this chapter, we present an emergent stochastic flocking dynamics of the

Cucker-Smale ensemble (1.0.4) under randomly switching topologies. Recall

that the evolution of the C-S system with randomly switching topologies is

determined by the following second order system:
dxi
dt

= vi, 1 ≤ i ≤ N, t > 0,

dvi
dt

=
1

N

N∑
j=1

χσijφ(xj − xi) (vj − vi) ,
(4.0.1)

where (χ
σ(t)
ij ) denotes the time-dependent network topology correspond-

ing to the switching law σ : [0,∞) × Ω → {1, · · · , NG}. Note that once

ω ∈ Ω is fixed, σ(·, ω) a {1, · · · , NG}-valued, piecewise constant function

whose discontinuities are {t`(ω)} and Gσ(t`(ω),ω) ∈ {G1, · · · ,GNG} is chosen as

the network topology during the interval [t`(ω), t`+1(ω)).

We briefly discuss our main result on the emergence of stochastic flocking

of the model (4.0.1). We assume that the probability density function f ,
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choice probability pk and communication weight function φ satisfy

supp(f) ⊂ [a, b],
κb(N − 1)

min
1≤k≤NG

log 1
1−pk

< 1,
1

φ̄(r)
= O(rε) as r →∞,

where ε is a small positive constant. Then, under the above set of assump-

tions, we show that any solution process (X, V ) to (4.0.1) satisfies the mono-

cluster flocking with probability one (Theorem 4.2.1):

P
(
ω ∈ Ω : ∃ x∞ > 0 s.t sup

0≤t<∞
D(X(t, ω)) ≤ x∞, lim

t→∞
D(V (t, ω)) = 0

)
= 1.

The rest of this chapter is organized as follows. In Section 4.1, we review

several basic concepts on directed graphs, scrambling and state transition

matrices. In Section 4.2, we present our sufficient framework and main result

for the stochastic mono-cluster flocking estimate. In Section 4.3, we first

provide a priori flocking estimates along the sample path under two a priori

assumptions on the network topologies and position diameter, and then we

replace a priori condition for the position diameter by suitable conditions on

the system parameters and communication weight, and the a priori condition

for the network topology will be shown to hold with probability one for a

suitably chosen time-block sequence. Finally, note that this chapter is based

on the joint work [25].

4.1 Preliminaries

In this section, we first study the dissipative structure of system (4.0.1), and

briefly review several notions on the directed graphs, scrambling matrices

and state transition matrices.

4.1.1 Pathwise dissipative structure

In this subsection, we study the dissipative structure of system (4.0.1) with

randomly switching topologies. For the symmetric network topology, the

R.H.S. of (4.0.1)2 is skew-symmetric under the exchange symmetry i←→ j.

Hence, the total momentum
∑N

i=1 vi is a constant of motion. In contrast, for
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a digraph topology, the R.H.S. of system (4.0.1) may not be skew-symmetric

under the exchange symmetry. This breaks up the conservation law for the

total momentum. Despite of this, we can still see that the velocity diameter

is non-increasing pathwise.

Lemma 4.1.1. Let (X, V ) be a solution process to (4.0.1). Then, the velocity

diameter D(V ) is non-increasing pathwise: for each ω ∈ Ω,

d

dt
D(V (t, ω)) ≤ 0, a.e. t > 0.

Proof. For a given t ≥ 0 and ω ∈ Ω, let i and j be indices satisfying the

relation:

D(V (t, ω)) = ‖vi(t, ω)− vj(t, ω)‖. (4.1.1)

In the sequel, for a notational simplicity, we suppress t and ω dependence in

vi:

vi = vi(t, ω).

Then, for such i and j, we have

1

2

d

dt
‖vi − vj‖2 =

〈
vi − vj,

dvi
dt
− dvj

dt

〉
=

〈
vi − vj,

1

N

N∑
k=1

χσikφik(vk − vi)

〉

+

〈
vj − vi,

1

N

N∑
k=1

χσjkφjk(vk − vj)

〉
=: J1 + J2,

(4.1.2)

where 〈·, ·〉 denotes the standard inner product in Rd, and we wrote

φij := φ(xi − xj), i, j = 1, 2, · · · , N

for convenience. Below, we estimate the terms Ji, i = 1, 2 one by one.

• (Estimate of J1): For k = 1, · · · , N , we use the relation (4.1.1) to get

〈vk − vi, vi − vj〉 =
‖vk − vj‖2 − ‖vk − vi‖2 − ‖vi − vj‖2

2

≤ ‖vi − vj‖
2 − 0− ‖vi − vj‖2

2
= 0.

(4.1.3)
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This yields

J1 =
1

N

N∑
k=1

χσikφik 〈vi − vj, vk − vi〉 ≤ 0. (4.1.4)

• (Estimate of J2) : Similar to (4.1.3), we also have

〈vk − vj, vj − vi〉 =
‖vk − vi‖2 − ‖vk − vj‖2 − ‖vj − vi‖2

2

≤ ‖vj − vi‖
2 − 0− ‖vj − vi‖2

2
= 0.

This again implies

J2 =
1

N

N∑
k=1

χσjkφjk 〈vj − vi, vk − vj〉 ≤ 0. (4.1.5)

In (4.1.2), we use D(V ) = ‖vi−vj‖ and combine estimates (4.1.4) and (4.1.5)

to get

D(V (t))
d

dt
D(V (t)) ≤ 0, a.e. t > 0.

If D(V (t)) > 0, then we can divide the above inequality by D(V (t)) to obtain

the desired estimate.

On the other hand, if D(V (t)) = 0 and diffrentiable at t, then D(V )

attains a global minimum at t, so d
dt
D(V (t)) = 0. Hence we have the following

differential inequality:

d

dt
D(V (t)) ≤ 0, a.e. t > 0.

Remark 4.1.1. Note that the result of Lemma 4.1.1 illustrates that the ve-

locity diameter is non-increasing in time. Now, our job is to find some con-

ditions leading to the zero convergence of velocity diameter. This will be done

in Section 4.3.
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4.1.2 A directed graph

In this subsection, we review jargons for network topology modeling by a

directed graph (digraph). A digraph G = (V(G), E(G)) consists of two sets: a

set of vertices (nodes) V(G) = {1, · · · , N} with |G| = N , and a set of edges

E(G) ⊂ V × V consisting of ordered pairs of vertices:

(j,i) ∈ E(G)

⇐⇒ vertex i receives an information (or signal) from the vertex j

⇐⇒ j is a neighbor of i.

In this case, we define a neighbor set Ni of the vertex i:

Ni := {j ∈ V(G) : (j, i) ∈ E(G)}.

If (i, i) ∈ E(G), then we say that G has a self-loop at i. If G does not have a

self-loop at any vertices, then G is said to be simple.

For a given digraph G = (V(G), E(G)), we consider its (0, 1)-adjacency

matrix χ = (χij):

χij :=

{
1 if (j, i) ∈ E(G),

0 if (j, i) /∈ E(G).

A path in G from i to j is a sequence of ordered distinct vertices (i0 =

i, · · · , in = j):

i = i0 −→ i1 −→ · · · −→ in = j

such that (im−1, im) ∈ E(G) for every 1 ≤ m ≤ n.

If there is a path from i to j, then we say j is reachable from i. Moreover, a

digraph G is said to have a spanning tree if G has a vertex i from which any

other vertices are reachable. As long as there is no confusion, we suppress

G-dependence in G = (V(G), E(G)) throughout this chapter:

V = V(G), E = E(G).
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4.1.3 A scrambling matrix

Next, we recall the concept of scrambling matrices. First, we introduce several

concepts of nonnegative matrices in the following definition.

Definition 4.1.1. Let A = (aij) be a nonnegative N × N matrix, i.e. a

matrix whose entries are nonnegative.

1. A is a stochastic matrix, if its row-sum is equal to unity:

N∑
j=1

aij = 1, 1 ≤ i ≤ N.

2. A is a scrambling matrix, if for each pair of indices i and j, there exist

an index k such that

aik > 0 and ajk > 0.

3. A is an adjacency matrix of a digraph G if the following holds:

aij > 0 ⇐⇒ (j, i) ∈ E .

In this case, we write G = G(A).

Remark 4.1.2. Define the ergodicity coefficient of A as follows.

µ(A) := min
i,j

N∑
k=1

min{aik, ajk}. (4.1.6)

Then, it is easy to see that

1. A is scrambling if and only if µ(A) > 0.

2. For nonnegative matrices A and B,

A ≥ B =⇒ µ(A) ≥ µ(B). (4.1.7)
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For a N × N matrix A = (aij), the Frobenius norm of A is defined as

follows.

‖A‖F :=
√

trace(AA∗) =
√

trace(A∗A).

In the following lemma, we state some properties of scrambling matrices

without proofs.

Lemma 4.1.2. (Lemma 2.2, [26]) Suppose that a nonnegative N ×N matrix

A = (aij) is stochastic, and let B = (bji ), Z = (zji ) and W = (wji ) be N × d
matrices such that

W = AZ +B.

Then, we have

max
i,k
‖wi − wk‖ ≤ (1− µ(A)) max

l,m
‖zl − zm‖+

√
2‖B‖F ,

where

zi := (z1
i , · · · , zdi ), bi := (b1

i , · · · , bdi ), wi := (w1
i , · · · , wdi ), i = 1, · · · , N.

Proposition 4.1.1. (Theorem 5.1, [107]) Let Ai be nonnegative N ×N ma-

trices with positive diagonal elements. Suppose that G(Ai) has a spanning tree

for all 1 ≤ i ≤ N − 1. Then, one has

A1A2 . . . AN−1 is a scrambling matrix.

4.1.4 A state transition matrix

In this subsection, we discuss the notion and properties of state transition

matrices. Let t0 ∈ R and A : [t0,∞)→ RN×N be an N ×N matrix of piece-

wise continuous function.

Consider the following Cauchy problem for the time-dependent linear

ODE:

dξ(t)

dt
= A(t)ξ(t), t > t0,

ξ|t=t0 = ξ(t0).
(4.1.8)
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Then, the solution of (4.1.8) is given by

ξ(t) = Φ(t, t0)ξ(t0), t ≥ t0,

where Φ(t, t0) is called the state transition matrix or the fundamental matrix

for (4.1.8).

Note that we can write the state transition matrix Φ(t, t0) corresponding

to system (4.1.8) as the Peano-Baker series (see [96]):

Φ(t, t0) = I +
∞∑
n=1

∫ t

t0

∫ τ1

t0

· · ·
∫ τn−1

t0

A(τ1)A(τ2) · · ·A(τn)dτn · · · dτ2dτ1,

where I is the N ×N identity matrix.

Let t0 ∈ R, c ∈ R and A : [t0,∞) → RN×N be an N × N matrix

of continuous functions. Then, for such time-dependent matrix A, we set

Φ(t, t0) and Ψ(t, t0) to be the state transition matrices corresponding to the

following linear ODEs, respectively:

dξ(t)

dt
= A(t)ξ(t) and

dξ(t)

dt
= [A(t) + cI]ξ(t), t > t0.

In the next lemma, we study a relation between Φ(t, t0) and Ψ(t, t0) to be

used in Lemma 4.3.1.

Lemma 4.1.3. [26] The following relation holds.

Φ(t, t0) = e−c(t−t0)Ψ(t, t0), or Ψ(t, t0) = ec(t−t0)Φ(t, t0), t ≥ t0.

Proof. The proof can be found in Lemma 2.3 of [26].

4.1.5 Previous results

Before we present our main result, we review the previous result [18] about

the Cucker-Smale system with deterministic switching topologies. We con-

sider the following deterministic version of (4.0.1):
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dxi
dt

= vi, 1 ≤ i ≤ N, t > 0,

dvi
dt

=
N∑
j=1

χσijψ(xj − xi) (vj − vi) ,
(4.1.9)

where ψ(x) is given by

ψ(x) :=
K

(1 + ‖x‖2)β
.

Note that the switching law σ : [0,∞)→ {1, · · · , NG} becomes deterministic.

Now, we assume the following condition on the switching law:

The sequence of switching times {t`}`∈N satisfies τ0 ≤ t`+1−t` ≤ T

for some positive constants τ0 < T for all ` ∈ N.

For convenience, we also set the following quantities:

α := 2T (N − 1), η := e−NKα min
2≤q≤b 2T

τ0
c
τ
q(N−1)
0

(
K

2

)(q−1)(N−1)

,

γ := 2β(N − 1), b1 :=
αD(V (0))

ηKN−1
, b2 := D(X(0)) + 1.

Now, we state the main result for the deterministic model (4.1.9).

Theorem 4.1.1. [18] Assume that one of the following Assume that one of

the following three hypotheses holds:

(i) β < 1/(2(N − 1)),

(ii) β = 1/(2(N − 1)) and b1 < 1,

(iii) β > 1/(2(N − 1)) and(
1

b1

) 1
γ−1

((
1

γ

) 1
γ−1

−
(

1

γ

) γ
γ−1

)
> b2.

Then the agents converge to flocking exponentially fast.

56



CHAPTER 4. ON THE STOCHASTIC FLOCKING OF THE
CUCKER-SMALE FLOCK WITH RANDOMLY SWITCHING
TOPOLOGIES

4.2 A description of main result

In this section, we present a framework and main result for the emergence of

stochastic flocking to the C-S model with randomly switching topologies.

4.2.1 Standing assumptions

Let {t`}`∈N be an increasing sequence of “random switching times” such

that the increment sequence {t`+1 − t`}`∈N is a sequence of i.i.d. positive

random variables on the common probability space (Ω,F ,P) with probability

density function f . We also assume that the switching law {σt}t≥0 satisfies

the following conditions:

• For each ` ≥ 0 and ω ∈ Ω, σt(ω) = σ(t, ω) is constant on the interval

t ∈ [t`(ω), t`+1(ω)).

• {σt`}`≥0 is a sequence of i.i.d. random variables such that for any ` ≥ 0,

P(σt` = k) = pk, for each k = 1, · · · , NG,

where p1, · · · , pNG are given positive constants with p1 + · · ·+ pNG = 1.

For each k = 1, · · · , NG, let Gk = (V , Ek) be the k-th admissible digraph,

and for each t ≥ 0 and ω ∈ Ω, the time-dependent network topology (χσij) =

(χ
σt(ω)
ij ) is determined by

χ
σt(ω)
ij :=

{
1 if (j, i) ∈ Eσt(ω),

0 if (j, i) /∈ Eσt(ω).

For technical reasons and without loss of generality, we assume that each Gk
has a self-loop at each vertex. For later use, we define the union graph of

Gσt(ω) for t ∈ [s0, s1) and ω ∈ Ω as

G([s0, s1))(ω) :=
⋃

t∈[s0,s1)

Gσt(ω) =

V , ⋃
t∈[s0,s1)

Eσt(ω)

 .

Note that the network topology might not actually ‘switch’ at the (pos-

sibly) switching instants. In other words, it might happen that σt`+1
(ω) =
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σt`(ω) for some ` ≥ 0 and ω ∈ Ω. Now, we are ready to provide a framework

for stochastic flocking to the random dynamical system (4.0.1).

For a set of admissible digraphs and the probability density function f

of increments of switching times, we impose the following assumption (A) as

our standing assumption throughout this chapter.

• (A1): The union digraph of all available network topologies in the set

S has a spanning tree:

⋃
1≤k≤NG

Gk :=

(
V ,

⋃
1≤k≤NG

Ek

)
has a spanning tree.

• (A2): f is supported on some bounded interval with a positive lower

bound, say

suppf ⊂ [a, b] ⊂ (0,∞).

4.2.2 Main result

Below, we first briefly sketch our proof strategy and then present our main

result. Basically, we will use matrix theory discussed in the previous section

as key tools for the flocking estimate along sample paths. More precisely, we

delineate our proof strategy in four steps.

• Step A (Matrix formulation): In order to use matrix theory, we rewrite

the momentum equation (4.0.1)2 as a matrix form:

d

dt
V (t) = − 1

N
Lσt(t)V (t),

where Lσt(t) is the Laplacian matrix to be defined in (4.3.3) - (4.3.4).

• Step B (A priori velocity alignment estimate along a sample path): For

each sample point ω ∈ Ω, we introduce a priori conditions:
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1. (P1): there exist n ∈ N and c > 0 such that κb(N − 1)c < 1, and

the subsequence {t∗`}`∈N ⊂ {t`}`∈N defined by t∗` := ta`(n,c) satisfies

G([t∗` , t
∗
`+1))(ω) has a spanning tree for all ` ≥ 0,

where the explicit construction of a`(n, c) will be given in (4.3.7).

2. (P2): the position diameter is uniformly bounded pathwise:

sup
0≤t<∞

D(X(t, ω)) ≤ x∞ <∞.

Note that the constant x∞ can be chosen independent of ω in this

step.

Under the above two a priori assumptions, we show that the velocity

alignment estimate can emerge (Proposition 4.3.1):

lim
t→∞
D(V (t, ω)) = 0.

• Step C (Flocking along a sample path): We replace the a priori assump-

tion (P2) by a suitable condition on the system parameters and com-

munication weight, and derive flocking estimates along sample path:

for each ω ∈ Ω satisfying (P1),

sup
0≤t<∞

D(X(t, ω)) ≤ x∞ <∞, lim
t→∞
D(V (t, ω)) = 0.

• Step D (Stochastic flocking): We look for a suitable condition for the

choice probability pk for the network selection, and construct a suitable

time-block guaranteeing an existence of spanning tree in each time-

block, and then under these well-prepared setting, the a priori assump-

tion (P1) can be attained with probability one.

We perform the above outlined strategy one by one to derive our main

result on the flocking estimate of (4.0.1) .
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Theorem 4.2.1. Suppose that the framework (A1) − (A2) holds, and sys-

tem parameters b, N , pk’s and communication weight φ satisfy the following

conditions:

κb(N − 1)

min
1≤k≤NG

log 1
1−pk

< 1 and
1

φ̄(r)
= O(rε) as r →∞,

where ε is a positive constant satisfying the following relation:

0 ≤ ε <
1

N − 1
− κb

min
1≤k≤NG

log 1
1−pk

.

Then, for any solution process (X, V ) to (4.0.1), the asymptotic flocking

emerges with probability one:

P
(
ω ∈ Ω : ∃ x∞ > 0 s.t sup

0≤t<∞
D(X(t, ω)) ≤ x∞, lim

t→∞
D(V (t, ω)) = 0

)
= 1.

Remark 4.2.1. 1. The first condition on system paramters in Theorem 4.2.1

implies that b should be small enough:

κb(N − 1)

min
1≤k≤NG

log 1
1−pk

< 1.

Indeed, the network topology should switch frequently enough so that even if

each element of S has very few edges, chances of the union digraph G([s0, s1))

containing a spanning tree will be good enough for [s0, s1)’s with small length,

meaning that the network topology will be ‘connected enough’ in some sense.

2. The second condition

1

φ̄(r)
= O(rε) as r → +∞ for some 0 ≤ ε <

1

N − 1
− κb

min
1≤k≤NG

log 1
1−pk

asserts that the rate of decrease of φ̄ should be slow enough so that the strength

of the interaction between each pair of agents does not decay too fast as the

distance between them increases.
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4.3 Emergent behavior of the randomly switch-

ing system

In this section, we present a proof for Theorem 4.2.1 following the outline

depicted in Section 4.2.2.

4.3.1 A matrix formulation

In this subsection, we first reformulate the momentum equations in (4.0.1)2

so that we can use tools from matrix theory documented in Section 4.1.

Consider the momentum equations:

v̇i =
1

N

N∑
j=1

χσijφ(xj − xi) (vj − vi) , 1 ≤ i ≤ N. (4.3.1)

We rearrange the terms in (4.3.1) as follows.

v̇i = − 1

N

[( N∑
j=1

χσijφ(xi − xj)
)
vi −

N∑
j=1

χσijφ(xi − xj)vj
]
. (4.3.2)

For the matrix formulation of (4.3.2), we introduce N×N Laplacian matrices

Lk(t) (k = 1, · · · , NG) as follows:

Lk(t) := Dk(t)− Ak(t), (4.3.3)

where Ak(t) =
(
akij(t)

)
and Dk(t) = diag

(
dk1(t), · · · , dkN(t)

)
are written as

akij(t) := χkijφ(xi(t)− xj(t)) and dki (t) =
N∑
j=1

χkijφ(xi(t)− xj(t)). (4.3.4)

Thus, system (4.3.2) can be rewritten as

d

dt
V (t) = − 1

N
Lσt(t)V (t). (4.3.5)

Let Φ(t2, t1) be the state transition matrix associated with (4.3.5) on the

interval [t1, t2]. Then we have the representation formula for V :

V (t2) = Φ(t2, t1)V (t1), t2 ≥ t1 ≥ 0. (4.3.6)
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4.3.2 Pathwise flocking under a priori assumptions

In this subsection, we study the emergence of stochastic flocking estimate

under a priori assumption on the uniform bound for position diameter. From

now on, we present a priori flocking estimates for each fixed sample ω ∈ Ω.

In the sequel, as long as there is no confusion, we frequently suppress the

ω-dependence of solution processes or parameters for convenience.

A priori assumptions: For each positive integer n and positive real num-

ber c > 0, we define an increasing sequence {a`(n, c)}`∈N of integers by the

following recurrence relation:

a0(n, c) = 0, a`+1(n, c) = a`(n, c)+n+bc log(`+1)c, (` ∈ N). (4.3.7)

Let ω ∈ Ω be fixed, and let (X, V ) be a solution process to (4.0.1). Then,

our two a priori assumptions are as follows:

• (P1): there exist n ∈ N, n > 0 and c > 0 such that κb(N − 1)c < 1,

and the subsequence {t∗`}`∈N ⊂ {t`}`∈N defined by t∗` := ta`(n,c) in (4.3.7)

satisfies

G([t∗` , t
∗
`+1))(ω) has a spanning tree for all ` ≥ 0,

• (P2): the position diameter is uniformly bounded in time:

sup
0≤t<∞

D(X(t, ω)) ≤ x∞ <∞.

Lemma 4.3.1. Suppose that ω ∈ Ω satisfies the a priori assumptions (P1)

and (P2) and let x∞ ≥ sup
0≤t<∞

D(X(t, ω)) be given. Then, the transition ma-

trix Φ(t∗r(N−1), t
∗
(r−1)(N−1)) is stochastic and its ergodicity coefficient satisfies

µ
(
Φ(t∗r(N−1), t

∗
(r−1)(N−1))

)
≥ e−κ(t∗

r(N−1)
−t∗

(r−1)(N−1)
)
( a
N

)N−1

φ̄(x∞)N−1. (4.3.8)
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Proof. First, we focus on the second assertion, and we claim:

Φ(t∗r(N−1), t
∗
(r−1)(N−1))

≥ e−κ(t∗
r(N−1)

−t∗
(r−1)(N−1)

)
( a
N

)N−1

φ̄(x∞)N−1

N−1∏
i=1

Fi,
(4.3.9)

where, for each i = 1, . . . , N − 1, Fi is the (0, 1)-adjacency matrix of the

union digraph

G([t∗(r−1)(N−1)+i−1, t
∗
(r−1)(N−1)+i)).

Proof of claim (4.3.9): Let {t`1 , t`2 , . . . , t`q+1} be the subsequence of {t`}`≥0

contained in the interval [t∗(r−1)(N−1)+i−1, t
∗
(r−1)(N−1)+i] such that

t`1 = t∗(r−1)(N−1)+i−1 and t`q+1 = t∗(r−1)(N−1)+i.

We set

σt = kp for t ∈ [t`p , t`p+1) and p = 1, . . . , q.

Then we have

Φ(t∗(r−1)(N−1)+i, t
∗
(r−1)(N−1)+i−1) = Φkq(t`q+1 , t`q) · · ·Φk1(t`2 , t`1), (4.3.10)

where, for p = 1, . . . , q, Φkp(t`p+1 , t`p) is the state transition matrix corre-

sponding to system (4.3.6) on [t`p , t`p+1). We need to estimate Φkp(t`p+1 , t`p)

and for this, we estimate the coefficient matrix for (4.3.5) as follows:

− 1

N
Lkp(t) =

1

N
(Akp(t)−Dkp(t)) ≥

1

N
Akp − κI, (4.3.11)

where Akp = (a
kp
ij ) is given by

a
kp
ij :=

{
χ
kp
ij φ̄(x∞), i 6= j,

κ, i = j.

Then, the relation (4.3.11) implies

− 1

N
Lkp(t) + κI ≥ 1

N
Akp ≥ 0. (4.3.12)
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On the other hand, let Ψkp(t`p+1 , t`p) be the state transition matrix of

− 1

N
Lkp(t) + κI on [t`p , t`p+1).

Then it follows from Lemma 4.1.3 that

Φkp

(
t`p+1 , t`p

)
= e−κ(t`p+1

−t`p )Ψkp

(
t`p+1 , t`p

)
. (4.3.13)

Now, we can apply (4.3.12) to the Peano-Baker series to obtain

Ψkp

(
t`p+1 , t`p

)
= I +

∞∑
n=1

∫ t`p+1

t`p

∫ τ1

t`p

· · ·
∫ τn−1

t`p

[ (
− 1

N
Lkp(τ1) + κI

)
· · ·
(
− 1

N
Lkp(τn) + κI

) ] dτn · · · dτ1

≥ I +
∞∑
n=1

∫ t`p+1

t`p

∫ τ1

t`p

· · ·
∫ τn−1

t`p

( 1

N
Akp

)n
dτn · · · dτ1

= I +
∞∑
n=1

1

n!
(t`p+1 − t`p)n

( 1

N
Akp

)n
≥ I +

a

N
Akp .

(4.3.14)

We combine (4.3.13) with (4.3.14) to obtain

Φkr

(
t`p+1 , t`p

)
≥ e−κ(t`p+1

−t`p )
(
I +

a

N
Akp

)
. (4.3.15)

Then, the relation (4.3.15) and (4.3.10) yield

Φ(t∗(r−1)(N−1)+i, t
∗
(r−1)(N−1)+i−1)

≥ e−κ(t`q+1
−t`1 )

(
I +

a

N
Akq

)
· · ·
(
I +

a

N
Ak1

)
≥ e−κ(t∗

(r−1)(N−1)+i
−t∗

(r−1)(N−1)+i−1
) a

N
(Akq + · · ·+ Ak1).

(4.3.16)

Here, one has

Akq + · · ·+ Ak1 ≥ φ̄(x∞)Fi. (4.3.17)
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Now, we combine (4.3.16) with (4.3.17) to obtain

Φ(t∗(r−1)(N−1)+i, t
∗
(r−1)(N−1)+i−1) ≥ e−κ(t∗

(r−1)(N−1)+i
−t∗

(r−1)(N−1)+i−1
) a

N
φ̄(x∞)Fi.

This implies

Φ(t∗r(N−1), t
∗
(r−1)(N−1))

=
N−1∏
i=1

Φ(t∗(r−1)(N−1)+i, t
∗
(r−1)(N−1)+i−1)

≥ e−κ(t∗
r(N−1)

−t∗
(r−1)(N−1)

)
( a
N

)N−1

φ̄(x∞)N−1

N−1∏
i=1

Fi.

(4.3.18)

This verifies the claim (4.3.9). Since the union digraph

G([t∗(r−1)(N−1)+i−1, t
∗
(r−1)(N−1)+i)) = G(Fi)

has a spanning tree, we apply Proposition 4.1.1 to see that F1F2 . . . FN−1 is

scrambling and moreover, (4.1.6) yields

µ

(
N−1∏
i=1

Fi

)
≥ 1. (4.3.19)

Hence, we use (4.1.7) and (4.3.19) to get

µ
(
Φ(t∗r(N−1), t

∗
(r−1)(N−1))

)
≥ e−κ(t∗

r(N−1)
−t∗

(r−1)(N−1)
)
( a
N

)N−1

φ̄(x∞)N−1.

This verifies the relation (4.3.8).

For the first assertion, Φ(t∗r(N−1), t
∗
(r−1)(N−1)) is nonnegative by (4.3.18). So

it remains to show that each of its rows sums to 1. Note that the constant

state ξ(t) := [ξ1(t), · · · , ξN(t)]> ≡ [1, · · · , 1]> is a solution to (4.3.5):

d

dt
ξ(t) = − 1

N
Lσt(t)ξ(t).

Hence,

[1, · · · , 1]> = Φ(t∗r(N−1), t
∗
(r−1)(N−1))[1, · · · , 1]>.

This implies that Φ(t∗r(N−1), t
∗
(r−1)(N−1)) is stochastic.
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Proposition 4.3.1. (A priori velocity alignment) Suppose that ω ∈ Ω satis-

fies the a priori assumptions (P1)− (P2) and let x∞ ≥ sup
0≤t<∞

D(X(t, ω)) be

given. Then, for all t ∈ [t∗r(N−1), t
∗
(r+1)(N−1)) with r ∈ N, we have

D(V (t))≤D(V (0)) exp

[
−
(
aφ̄(x∞)e−κbn(N−1)−κbc

N

)N−1
(r+1)1−κb(N−1)c−1

1−κb(N − 1)c

]
.

Proof. Since Φ(t∗r(N−1), t
∗
(r−1)(N−1)) is stochastic (Lemma 4.3.1), we combine

Lemma 4.1.2 and Lemma 4.3.1 to obtain that for t ∈ [t∗r(N−1), t
∗
(r+1)(N−1)),

D (V (t))

≤ D
(
V (t∗r(N−1))

)
≤
[
1− µ

(
Φ(t∗r(N−1), t

∗
(r−1)(N−1))

)]
D(V (t∗(r−1)(N−1)))

≤

[
1− e−κ(t∗

r(N−1)
−t∗

(r−1)(N−1)
)

(
aφ̄(x∞)

N

)N−1
]
D(V (t∗(r−1)(N−1)))

≤ exp

[
−e−κ(t∗

r(N−1)
−t∗

(r−1)(N−1)
)

(
aφ̄(x∞)

N

)N−1
]
D(V (t∗(r−1)(N−1)))

≤ · · · ≤ exp

[
−
(
aφ̄(x∞)

N

)N−1 r∑
i=1

e−κ(t∗
i(N−1)

−t∗
(i−1)(N−1)

)

]
D(V (0))

≤ exp

[
−
(
aφ̄(x∞)

N

)N−1 r∑
i=1

e−κb(ai(N−1)(n,c)−a(i−1)(N−1)(n,c))

]
D(V (0))

= exp

[
−
(
aφ̄(x∞)

N

)N−1 r∑
i=1

e
−κb

(
(N−1)n+

∑i(N−1)
j=(i−1)(N−1)+1

bc log jc
)]
D(V (0))

≤ exp

[
−
(
aφ̄(x∞)

N

)N−1 r∑
i=1

e−κb(N−1)(n+c log(i(N−1)))

]
D(V (0))

= exp

[
−
(
aφ̄(x∞)e−κbn(N − 1)−κbc

N

)N−1 r∑
i=1

i−κb(N−1)c

]
D(V (0))

≤ exp

[
−
(
aφ̄(x∞)e−κbn(N − 1)−κbc

N

)N−1∫ r+1

1

x−κb(N−1)cdx

]
D(V (0))
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≤ exp

[
−
(
aφ̄(x∞)e−κbn(N − 1)−κbc

N

)N−1
(r + 1)1−κb(N−1)c − 1

1− κb(N − 1)c

]
D(V (0)).

Next, we assert that our a priori condition on the uniform boundedness of

distances between C-S particles can be obtained from other existing a priori

conditions. Before we move on, we present a technical lemma.

Lemma 4.3.2. For any x > 0 and δ > 0, we have the following inequality:

e−x ≤
(
δ

e

)δ
x−δ.

Proof. By differentiation, we can check that the function x 7→ −x + δ log x

attains its maximal value at x = δ. Hence

−x+ δ log x ≤ −δ + δ log δ, x > 0, δ > 0.

We take the exponential of both sides to get

e−xxδ ≤ e−δδδ =⇒ e−x ≤
(
δ

e

)δ
x−δ.

Next, we show that the a priori assumption (P2) on the position diameter

can be replaced by the condition on the initial data so that we can establish

pathwise flocking estimate only under the a priori condition (P1).

Proposition 4.3.2. Suppose that ω ∈ Ω satisfies a priori condition (P1)

and there exist δ > 0 and x∞ > 0 independent of a sample point such that

D(X(0)) +D(V (0))b(N − 1)(n+ c log((N − 1)))

+D(V (0))b(N − 1)

(
δ

e

)δ (
aφ̄(x∞)e−κbn(N − 1)−κbc

N

)−(N−1)δ

×
∞∑
r=1

[
(n+c log((r+1)(N−1)))

(
(r+1)1−κb(N−1)c−1

1− κb(N−1)c

)−δ]
<x∞,

(4.3.20)

and let (X, V ) be a solution process to (4.0.1). Then, a priori condition (P2)

holds: for ω ∈ Ω,

sup
0≤t<∞

D(X(t, ω)) < x∞ <∞.
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Proof. We use a contradiction argument for the desired estimate. For this,

we define a set T and its supremum as follows:

T :=
{
T > 0 : max

0≤t≤T
D(X(t)) < x∞

}
, T ∗ := sup T .

By assumption (4.3.20) and the continuity of D(X), the set T is nonempty.

Now, we claim:

sup T =∞.

Suppose not, i.e. T ∗ := sup T <∞. Then, we have

D(X(T ∗)) = x∞. (4.3.21)

It follows from Proposition 4.3.1 and Lemma 4.3.2 that we have

x∞ = D(X(T ∗)) ≤ D(X(0)) +

∫ T ∗

0

D(V (t))dt

≤ D(X(0)) +D(V (0))
∞∑
r=0

[
(t∗(r+1)(N−1) − t∗r(N−1))

× exp

(
−
(
aφ̄(x∞)e−κbn(N − 1)−κbc

N

)N−1
(r + 1)1−κb(N−1)c − 1

1− κb(N − 1)c

)]

≤ D(X(0)) +D(V (0))
∞∑
r=0

[
b(N − 1)(n+ c log((r + 1)(N − 1)))

× exp

(
−
(
aφ̄(x∞)e−κbn(N − 1)−κbc

N

)N−1
(r + 1)1−κb(N−1)c − 1

1− κb(N − 1)c

)]
≤ D(X(0)) +D(V (0))b(N − 1)(n+ c log((N − 1)))

+D(V (0))
∞∑
r=1

[
b(N − 1)(n+ c log((r + 1)(N − 1)))

(
δ

e

)δ

×

((
aφ̄(x∞)e−κbn(N − 1)−κbc

N

)N−1
(r + 1)1−κb(N−1)c − 1

1− κb(N − 1)c

)−δ ]
< x∞.

This yields a contradiction to (4.3.21). Therefore we have sup T =∞.
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As a corollary, we can use Proposition 4.3.2 to prove that a priori condi-

tion on network structures together with conditions in Theorem 4.2.1 implies

the uniform boundedness of distances between particles and the velocity re-

laxation estimates for any initial configuration.

Corollary 4.3.1. Suppose that ω ∈ Ω satisfies a priori condition (P1) holds,

and in addition, the communication weight φ satisfies

1

φ̄(r)
= O(rε) as r →∞,

where ε is a positive constant satisfying the relation 0 ≤ ε < 1−κb(N−1)c
N−1

. Then

the mono-cluster flocking emerges pathwise for any initial configuration:

sup
0≤t<∞

D(X(t, ω)) <∞ and lim
t→∞
D(V (t, ω)) = 0.

Proof. We choose a positive number δ > 0 such that

1

1− κb(N − 1)c
< δ <

1

(N − 1)ε
. (4.3.22)

The left-hand side in (4.3.22) implies

∞∑
r=1

[
(n+ c log((r + 1)(N − 1)))

(
(r + 1)1−κb(N−1)c − 1

1− κb(N − 1)c

)−δ ]
<∞.

Moreover, the right-hand side in (4.3.22) implies

φ̄(r)−(N−1)δ = O(r(N−1)δε) as r →∞.

Hence, one has

lim
|x|→∞

φ̄(r)−(N−1)δ

r
= 0.

This implies the existence of x∞ satisfying (4.3.20) for δ chosen in (4.3.22).

Hence the condition (4.3.20) is satisfied, and the results follow from Propo-

sition 4.3.1 and Proposition 4.3.2.
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4.3.3 Emergence of stochastic flocking

In the previous section, we verified the emergence of pathwise flocking under

the a priori assumption on the network structure (P1). In the sequel, we will

show that the a priori assumption (P1) can be guaranteed with probability

one.

Next step is to prove that a priori assumption (P1) on network structure

can be satisfied for most of ω ∈ Ω, once we determine appropriate values for

n and c.

Proposition 4.3.3. Let (X, V ) be a solution process to (4.0.1), and let n ∈ N
and c > 0 be such that

NG∑
k=1

(1− pk)n ≤
1

2
and c >

1

min
1≤k≤NG

log 1
(1−pk)

.

Then, the following assertions hold.

1. The subsequence {t∗`}`∈N ⊂ {t`}`∈N, defined by t∗` := ta`(n,c) in (4.3.7),

satisfies

P
(
ω : G([t∗` , t

∗
`+1))(ω) has a spanning tree for any ` ≥ 0

)
≥ exp

(
−(2 log 2)

NG∑
k=1

(1− pk)n
∞∑
`=0

(1− pk)bc log(`+1)c

)
.

2. The series
∞∑̀
=0

(1− pk)bc log(`+1)c converges for all k = 1, · · · , NG.

Proof. (i) For any q, r ∈ N, we have the following estimate:

P(ω : G([tq, tq+r))(ω) does not have a spanning tree)

≤ P(ω : ∃1 ≤ k ≤ NG such that σtq+i(ω) 6= k for ∀ 0 ≤ i ≤ r − 1)

≤
NG∑
k=1

P(ω : σtq+i(ω) 6= k for ∀ 0 ≤ i ≤ r − 1) =

NG∑
k=1

(1− pk)r,
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where the last inequality follows from the independence of {t`+1 − t`}`∈N.

This implies

P(ω : G([tq, tq+r))(ω) has a spanning tree) ≥ 1−
NG∑
k=1

(1− pk)r.

Here, we substitute a`(n, c) and a`+1(n, c) for q and q + r, respectively, and

take the product over ` ∈ N to see the following relations:

P(ω : G([t∗` , t
∗
`+1))(ω) has a spanning tree for any ` ∈ N)

=
∞∏
`=0

P(ω : G([t∗` , t
∗
`+1))(ω) has a spanning tree )

≥
∞∏
`=0

(
1−

NG∑
k=1

(1− pk)a`+1−a`

)

= exp

(
∞∑
`=0

log

(
1−

NG∑
k=1

(1− pk)n+bc log(`+1)c

))

≥ exp

(
−(2 log 2)

∞∑
`=0

NG∑
k=1

(1− pk)n+bc log(`+1)c

)

= exp

(
−(2 log 2)

NG∑
k=1

(1− pk)n
∞∑
`=0

(1− pk)bc log(`+1)c

)
,

where we used the following inequality:

log(1− x) ≥ −(2 log 2)x, 0 ≤ x ≤ 1

2
.

(ii) The convergence of the series
∞∑̀
=0

(1−pk)bc log(`+1)c can be shown as follows:

by comparison test, it suffices to show that

∞∑
`=0

(1− pk)c
(

log(`+1)−1
)
<∞ ⇐⇒

∞∑
`=1

(1− pk)c log ` <∞.
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By Cauchy’s condensation test, the right-hand side of the above is equivalent

to
∞∑
`=1

2`(1− pk)c log(2`) =
∞∑
`=1

(
2(1− pk)c log 2

)`
<∞.

The condition c > 1
log 1

(1−pk)
is equivalent to 0 < 2(1− pk)c log 2 < 1. Thus, we

have the desired result.

The proof of Theorem 4.2.1: We choose ε to satisfy

0 ≤ ε <
1

N − 1
− κb

min
1≤k≤NG

log 1
1−pk

,

or equivalently
1

min
1≤k≤NG

log 1
1−pk

<
1− ε(N − 1)

κb(N − 1)
,

and we set

c :=
1

2

 1

min
1≤k≤NG

log 1
1−pk

+
1− ε(N − 1)

κb(N − 1)

 .

Then, it is easy to see that the constant c defined above satisfies

c >
1

min
1≤k≤NG

log 1
1−pk

, κb(N − 1)c < 1, and 0 ≤ ε <
1− κb(N − 1)c

N − 1
.

Now, we choose any n ∈ N such that

NG∑
k=1

(1− pk)n ≤
1

2
,

and we define p(n) as

p(n) := exp

[
−(2 log 2)

NG∑
k=1

(1− pk)n
∞∑
`=0

(1− pk)bc log(`+1)c

]
.

With this choice of n and c, Proposition 4.3.3 implies, for t∗` := tal(n,c),

P
{
ω : G([t∗` , t

∗
`+1))(ω) has a spanning tree for any ` ≥ 0

}
≥ p(n).
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Hence, it follows from Corollary 4.3.1 that

P
{
ω : ∃ x∞ > 0 s.t sup

0≤t<∞
D(X(t, ω)) ≤ x∞ and lim

t→∞
D(V (t, ω)) = 0

}
≥ p(n).

Since n can be arbitrarily large and p(n) → 1 as n → ∞, our desired result

follows.
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Chapter 5

Collective stochastic dynamics

of the Cucker-Smale ensemble

under uncertain communication

In this chaper, we consider the kinetic Cucker-Smale equation perturbed by

a multiplicative noise (1.0.6):

∂tft + v · ∇xft +∇v · (Fa[ft]ft) = σ∇v · ((v − vc)ft) ◦ Ẇt, t > 0, (5.0.1)

subject to deterministic initial data

f0(x, v) = f in(x, v), (x, v) ∈ R2d.

Main results of this chapter are two-fold. First, we prove a global well-

posedness for strong solutions by employing three tools, i.e. regularization of

initial data, Wm,∞-estimates along the stochastic characteristics and a suit-

able choice of a stopping time. Second, we show the emergence of flocking in

the kinetic level by showing dissipation estimates for the second velocity mo-

ment. If the communication weight function φ has a positive infimum, then

the second velocity moment converges to 0 for each sample path. Moreover,

once noise strength σ is sufficiently smaller than φm, then the expectation of

the second velocity moment converges to 0 at an exponential rate.
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The rest of this chapter is organized as follows. In Section 5.1, we pro-

vide a rigorous derivation of equation (5.0.1) from the C-S system with a

multiplicative noise, and then briefly discuss our main results on the global

well-posedness for strong solutions and asymptotic flocking estimates of clas-

sical solutions. In Section 5.2, we provide several a priori estimates for clas-

sical solutions to (5.0.1). In Section 5.3, we show our global well-posedness

and emergent dynamics for strong solutions to (5.0.1). Finally, note that this

chapter is based on the joint work [42].

5.1 Preliminaries

In this section, we provide a rigorous derivation of the equation (5.0.1) and

present our main results on the global well-posedness of strong solutions to

(5.0.1) and emergent flocking dynamics.

5.1.1 Derivation of the SPDE

In this subsection, following [12], we present a derivation of (5.0.1) from the

C-S system perturbed by a multiplicative noise. To be specific, we begin our

discussion with the C-S model [20].

Let (xit, v
i
t) ∈ Rd × Rd be the position and velocity of the i-th particle at

time t ≥ 0, respectively. Then, the ensemble of C-S particles is governed by

the following system:

dxit = vitdt, t > 0, 1 ≤ i ≤ N,

dvit = Fa[µ
N
t ](xit, v

i
t)dt, µNt :=

1

N

N∑
i=1

δ(xit,v
i
t)
,

(5.1.1)

where the flocking force Fa is given in (1.0.2)2. However, in a real world

situation, the communication among particles is subject to the neighboring

environment, which is an extrinsic randomness missing in the model. To re-

flect these effects in the communication, stochastic noises can be incorporated

into the communication weight φ appearing in system (5.1.1). To address a

stochastic perturbation in system (5.1.1), we replace φ by φ + σ ◦ Ẇt and
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yield the following system of stochastic differential equations:

dxit = vitdt, t > 0, 1 ≤ i ≤ N,

dvit = Fa[µ
N
t ](xit, v

i
t)dt+ σ(v̄t − vit) ◦ dW i

t , v̄t :=
1

N

N∑
i=1

vit.
(5.1.2)

Let us compare (5.1.2) with the model presented in [2], where the authors

replaced φ in (5.1.1) by φ+σẆt to obtain the C-S system with a multiplicative

noise in Itô’s sense. However, we adopt the integral in Stratonovich’s sense

rather than Itô’s sense, since it enables us to use the method of stochastic

characteristics once we derive a stochastic partial differential equation from

system (5.1.2). Moreover, it is natural in the following sense: for each 1 ≤
i ≤ N , let W i,ε

t be a smooth approximation to the Wiener process W i
t (e.g.

approximation by using a mollifier). Now, we consider the following system

of deterministic equations:

dxi,εt = vi,εt dt, t > 0, 1 ≤ i ≤ N,

dvi,εt = Fa[µ
N,ε
t ](xi,εt , v

i,ε
t )dt+ σ

(
v̄εt − v

i,ε
t

)
dW i,ε

t ,
(5.1.3)

Then, the Wong-Zakai theorem [97, 105, 106] implies that the solution to

system (5.1.3) converges in probability to the solution to system (5.1.2).

Here, we note that system (5.1.2) is equivalent to the following Itô equation

[31]:

dxit = vitdt,

dvit =

[
Fa[µ

N
t ](xit, v

i
t)−

1

2
σ2(v̄t − vit)

]
dt+ σ(v̄t − vit)dW i

t .
(5.1.4)

When W i’s are i.i.d Wiener processes, a similar analysis as in [36] yields

the mean field limit of system (5.1.4) as N → ∞, which is the following

Fokker-Planck type equation: for t > 0 and (x, v) ∈ R2d,

∂tf + v · ∇xf +∇v ·
[(
Fa[f ]− 1

2
σ2(vc − v)

)
f

]
= σ∆v(|v − vc|2f),

where vc :=
∫
Rd×Rd vfdxdv. However, if eachW i

t is identical to a single Wiener

process W , i.e. W i ≡ Wt, we can use a propagation of chaos result [12] to ob-

tain that the empirical measure µNt associated with system (5.1.2) converges
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to a measure-valued solution to (5.0.1). Let us summarize the results on the

mean-field limit and asymptotic flocking estimates in [12] as follows.

Theorem 5.1.1. Suppose that T > 0 and consider a communication weight

φ with φ̄ ∈ C1
b (R+), and let µ0, µ̃0 ∈ P2(Rd × Rd) be compactly supported in

velocity. Then, the following assertions hold.

1. If µ and µ̃ are two measure-valued solutions to (5.0.1) with compactly

supported initial data µ0 and µ̃0 in velocity, then

W2(µt, µ̃t) ≤ CW2(µ0, µ̃0)eC(1+W2(µ0,µ̃0), for a.s. t ∈ [0, T ],

where the constant C depends only on φ, T , σ, supt∈[0,T ] |Bt|, and the

support in velocity of µ0 and µ̃0.

2. If µN0 := 1
N

∑N
i=1 δ(xi0,v

i
0) is an initial atomic measure such that

W2(µ0, µ
N
0 )→ 0 as N →∞,

then the empirical measure µNt := 1
N

∑N
i=1 δ(xit,v

i
t)

associated with system

(5.1.2) is a measure-valued solution to (5.0.1) with initial data µN0 .

Moreover, it converges almost surely to the measure-valued solution µt
corresponding to the initial measure µ0:

sup
0≤t≤T

W2(µt, µ
N
t ) ≤ CW2(µ0, µ

N
0 )eC(1+W2(µ0,µN0 )) → 0, as N →∞,

Note that the stability estimate in Wasserstein metric implies the unique-

ness of (measure-valued) solutions in P2(Rd × Rd).

Theorem 5.1.2. Suppose that the communication weight function φ satisfies

0 < φm ≤ φ(x) ≤ κ for x ∈ Rd,

and let µt be a measure-valued solution to (5.0.1). Then we have

E[E0]e−2(κ−σ2)t ≤ E[Et] ≤ E[E0]e−2(φm−σ2)t,

where Et is defined as

Et :=

∫
Rd×Rd

|v̄0 − v|2µt(dx, dv), v̄0 :=

∫
Rd×Rd

vµ0(dx, dv).
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Remark 5.1.1. The results in [12] imply that the equation (5.0.1) can be

derived as a mean-field limit of the particle system (5.1.2). Now, our objective

is to establish solutions with higher regularity than measure-valued solutions.

5.1.2 Presentation of main results

In this subsection, we provide our main results on the global well-posedness

of (5.0.1) and emergent flocking dynamics. First, we provide a definition for

a strong solution to the Cauchy problem (5.0.1) as follows.

Definition 5.1.1. For a given T ∈ (0,∞], ft = ft(x, v) is a strong solution

to (5.0.1) on [0, T ] if it satisfies the following relations:

1. (Regularity): For k ≥ 1, ft ∈ C([0, T ];W k,∞(R2d)) a.s. ω ∈ Ω.

2. (Integral relation): ft satisfies the equation (5.0.1) in distribution sense:

for ψ ∈ C∞c ([0, T ]× R2d),∫
R2d

ftψ dvdx

=

∫
R2d

f inψ dvdx+

∫ t

0

∫
R2d

fs (v · ∇xψ + Fa[fs] · ∇vψ) dvdxds

− σ
∫ t

0

(∫
R2d

[(v − vc)fs] · ∇vψ dvdx
)
◦ dWs, a.s. ω ∈ Ω.

(5.1.5)

Remark 5.1.2. 1. We say ft is a classical solution to (5.0.1) if it is a Ft-
semimartingale satisfying relation (5.0.1) pointwise and the regularity con-

dition ft ∈ L∞(Ω; C([0, T ]; C3,δ(R2d))) for some δ ∈ (0, 1). We require this

regularity condition to use Itô’s formula and the relation between Itô and

Stratonovich integration without any restriction.

2. As can be seen later, the representation of a classical solution to (5.0.1) via

the stochastic characteristics shows that ft can not satisfy the L∞-boundedness

over Ω due to the exponential Wiener process. To handle this, we would use

a suitable stopping time.
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Next, we are ready to provide a framework (F) and main results below:

• (F1): The initial datum f in is nonnegative, compactly supported in x

and v and independent of ω.

• (F2): For k ≥ 1, f in and φ are assumed to be in W k,∞(R2d) and

C∞(R2d), respectively.

• (F3): The first two moments of f in are normalized as follows:∫
R2d

f indvdx = 1,

∫
R2d

vf indvdx = 0.

Under the framework (F), our main results can be summarized as follows.

Theorem 5.1.3. Let T ∈ (0,∞) and assume that f in and φ satisfies the

framework (F). Then, there exists a strong solution ft to (5.0.1) on [0, T ]

such that

E‖ft‖L∞ ≤ ‖f in‖L∞ exp

{(
dκ+

(σd)2

2

)
t

}
,

E[M2](t) ≤M2(0) exp(2σ2t), t ∈ [0, T ).

Moreover, if a strong solution ft exists on (0,∞) and φm := infx∈RN φ(x) >

σ2, then one obtains an asymptotic flocking estimate:

E[M2](t) ≤M2(0) exp(−2(φm − σ2)t), t > 0.

Proof. For a proof, we first regularize the initial datum using the standard

mollification and then solve the linearized system for (5.0.1) to get a sequence

of approximate solutions. Then, we use the stopping time argument to get a

strong solution for (5.0.1) with the given initial datum. The detailed proof

will be presented in Section 5.3.

Remark 5.1.3. 1. Note that for k > 3, a strong solution ft to (5.0.1) can

be shown to satisfy the equation (5.0.1) pointwise within our framework.

2. Since the uniqueness of measure-valued solution is guaranteed, it suffices

to prove the existence result for the global well-posedness of strong solutions.
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5.1.3 Elementary lemmas

Before we move on, we provide two useful lemmas used throughout this

chapter. First, we begin with estimate on a variant of geometric brownian

motion.

Lemma 5.1.1. Let {Xt}t≥0 be a solution satisfying the following Cauchy

problem: {
dXt = (at + btXt)dt+ cXtdWt, t > 0,

X0 = x ≥ 0,

where {at}t≥0 and {bt}t≥0 are stochastic processes with continuous sample

paths, and c is a constant. Then one has

Xt = x exp
[ ∫ t

0

(
bs −

c2

2

)
ds+ cWt

]
+

∫ t

0

as exp
[ ∫ t

s

(
bτ −

c2

2

)
dτ + c(Wt −Ws)

]
ds.

Proof. The proof is exactly given in Example 19.7 from [93]. So, we refer to

[93] for its proof.

Lemma 5.1.2. (Comparision principle) Suppose that two stochastic pro-

ceeses {Xt}t≥0 and {Yt}t≥0 satisfy

dXt ≤ (at + bXt)dt+ cXtdWt, X0 = x ≥ 0,

dYt = (at + bYt)dt+ cYtdWt, Y0 = x,

where {at}t≥0 is a stochastic process with continuous sample paths. Then, we

have

Xt ≤ Yt, ∀t ≥ 0.

Proof. Let {Y δ
t }t≥0, (δ > 0) be a stochastic process satisfying{

dY δ
t = (at + bY δ

t )dt+ cY δ
t dWt, t > 0,

Y δ
0 = x+ δ,
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and we set

Zδ
t := Y δ

t −Xt.

Then, we have

dZδ
t ≥ bZδ

t dt+ cZδ
t dWt, t > 0 and Z0 = δ, t = 0.

We use Itô’s lemma to get

d(lnZδ
t ) =

dZδ
t

Zδ
t

− 1

2

1

(Zδ
t )

2
(dZδ

t ) · (dZδ
t ) ≥

(
bt −

c2

2

)
dt+ c dWt.

Again, we integrate the above relation to get

Zδ
t ≥ δ exp

{∫ t

0

(
bs −

c2

2

)
ds+ cWt

}
≥ 0.

This yields

Xt ≤ Y δ
t for all t ≥ 0.

It follows from the representation formula in Lemma 5.1.1 that

Y δ
t = (x+ δ) exp

{∫ t

0

(
bs −

c2

2

)
ds+ cWt

}
+

∫ t

0

as exp
[ ∫ t

s

(
bτ −

c2

2

)
dτ + c(Wt −Ws)

]
ds,

Yt = x exp

{∫ t

0

(
bs −

c2

2

)
ds+ cWt

}
+

∫ t

0

as exp
[ ∫ t

s

(
bτ −

c2

2

)
dτ + c(Wt −Ws)

]
ds.

This yields the desired result:

Yt = lim inf
δ→0

Y δ
t ≥ Xt.
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5.2 A priori estimates for classical solutions

In this section, we study a priori estimates for classical solutions to (5.0.1).

First, we study several equivalent relations to the weak formulation (5.1.5),

when a strong solution satisfies suitable conditions.

Lemma 5.2.1. Suppose that for every ψ ∈ C∞c (R2d) and a random process

ft ∈ L∞(Ω × [0, T ] × R2d),
∫
R2d ftψdvdx has a continuous Ft-adapted modi-

fication, where {Ft} is a family of σ-field generated by the Wiener process.

Then, ft is a Ft-semimartingale satisfying relation (5.1.5) if and only if for

every ψ ∈ C∞c (R2d),∫
R2d

ftψ dvdx

=

∫
R2d

f inψ dvdx+

∫ t

0

∫
R2d

fs (v · ∇xψ + Fa[fs] · ∇vψ) dvdxds

− σ
∫ t

0

(∫
R2d

[(v − vc)fs] · ∇vψ dvdx
)
dWs

+
σ2

2

∫ t

0

∫
R2d

(v − vc)fs ·
[
∇v

(
(v − vc) · ∇vψ

)]
dvdxds a.s. ω ∈ Ω.

(5.2.1)

Proof. The proof is almost the same as in Lemma 13 from [33], but we provide

a sketch for a proof for readers’ convenience. Note that the following relation

between Itô and Stratonovich integrals holds:∫ t

0

hs ◦ dWs =

∫ t

0

hsdWs +
1

2
〈h,W 〉t,

where 〈·, ·〉 denotes the joint quadratic variation (see [69]). In our case, hs
corresponds to

∫
R2d [(v − vc)fs] · ∇vψdvdx. Then, to deal with 〈h,W 〉t,, one

needs to specify the stochastic part of hs. Here, if we replace ψ in (5.1.5)

by (v − vc) · ∇vψ, we can find out that the stochastic part of hs becomes

−σ
∫ t

0

[ ∫
R2d((v − vc)fs) · ∇v(v · ∇vψ)dvdx

]
dWs. This means〈∫

R2d

[(v − vc)f·] · ∇vψdvdx,W
〉
t

= −σ
∫ t

0

∫
R2d

[(v − vc)fs] · ∇v[(v − vc) · ∇vψ]dvdxds,
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and we may conclude the proof here.

Once we reformulate relation (5.1.5) to Itô form (5.2.1), we can show

that the solution process ft satisfies the following pointwise relation under

the regularity condition for f .

Lemma 5.2.2. Suppose that ft ∈ L∞(Ω; C([0, T ]; C2(R2d))) has a continuous

Ft-adapted modification and has a compact support in x and v. Then, ft
satisfies relation (5.2.1) if and only if ft satisfies the following relation:

ft(x, v) = f in(x, v)−
∫ t

0

(
v · ∇xfs +∇v · (Fa[fs]fs)

)
ds

+ σ

∫ t

0

[
∇v ·

(
(v − vc)fs

)]
dWs

+
σ2

2

∫ t

0

∇v ·
[
(v − vc)∇v ·

(
(v − vc)fs

)]
ds, P⊗ dx⊗ dv-a.s.

(5.2.2)

Proof. First, we assume that f satisfies (5.2.1). Since ft is smooth and com-

pactly supported, we use Fubini’s theorem to show that (5.2.1) is equivalent

to

∫
R2d

ftψ dvdx

=

∫
R2d

f inψ dvdx−
∫ t

0

∫
R2d

[
v · ∇xfs +∇v · (Fa[fs]fs)

]
ψ dvdxds

+ σ

∫ t

0

(∫
R2d

∇v · [(v − vc)fs]ψ dvdx
)
dWs

+
σ2

2

∫ t

0

∫
R2d

∇v ·
[
(v − vc)∇v ·

(
(v − vc)fs

)]
dvdxds a.s. ω ∈ Ω.

(5.2.3)

Note that for each ψ ∈ D(R2d), it satisfies the relation (5.2.3) outside P-zero

set depending on the choice of ψ. We recall from standard functional analysis

that D(R2d) is separable, i.e. there exists {ψi}∞i=1 ⊆ D(R2d) which is dense in

D(R2d). Here, we choose Ωi ⊂ Ω such that P(Ωi) = 1 and (5.1.5) holds for ft
and ψi over Ωi. Let Ω̃ := ∩∞i=1Ωi. Then P(Ω̃) = 1 and (5.1.5) holds for any

ψi and ft over Ω̃.
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Now, we show ft satisfies the relation (5.2.2). For this, we define functionals

Lt[f ] and M [ft] as follows:

L [ft](x, v) := ft − f in +

∫ t

0

(
v · ∇xfs +∇v · (Fa[fs]fs)

)
ds

− σ2

2

∫ t

0

∇v ·
[
(v − vc)∇v ·

(
(v − vc)fs

)]
ds,

M [ft] := ∇v · [(v − vc)ft].

For a given (x∗, v∗) ∈ R2d, we can choose a sequence {ρi} ⊂ D(R2d), using

the standard mollifier technique or other tools, such that for any i ∈ N,
∣∣∣(ρi ∗L [ft])(x

∗, v∗)−L [ft](x
∗, v∗)

∣∣∣
+

∫ t

0

∣∣∣(ρi ∗M [fs])(x
∗, v∗)−M [fs](x

∗, v∗)
∣∣∣2ds

 ≤ 1

2i+1
,

where the regularity and compact support of f can be used to guarantee the

above inequality. We also use the denseness of {ψi} to obtain {ψ̃i} ⊆ {ψi}
which satisfies, for any i ∈ N,∣∣∣(ρi − ψ̃i) ∗Lt[f ](x∗, v∗)

∣∣∣+

∫ t

0

∣∣∣(ρi − ψ̃i) ∗M [fs](x
∗, v∗)

∣∣∣2ds ≤ 1

2i+1
.

Thus, we have (
ψ̃i ∗Lt[f ]

)
(x∗, v∗) −→ Lt[f ](x∗, v∗). (5.2.4)

Moreover, we use Itô isometry to get

E
[(∫ t

0

(ψ̃i ∗M [fs]−M [fs])dWs

)2
]

= E
[∫ t

0

(ψ̃i ∗M [fs]−M [fs])
2ds

]
−→ 0.

(5.2.5)

Hence, we can obtain the convergence of (5.2.3) with ψ = ψ̃i(x
∗ − x, v∗ − v)

towards (5.2.2) at (x∗, v∗) as i → ∞, by combining (5.2.4) and (5.2.5). We

perform this procedure to obtain that for every (x∗, v∗) ∈ R2d, f satisfies

relation (5.2.2) P-a.s. and this gives

E
[∣∣∣∣L[ft]−

∫ t

0

M [fs]dWs

∣∣∣∣ (x, v)

]
= 0,
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for every (x, v) ∈ R2d. Thus, we use Fubini theorem to get

E
[∫

R2d

∣∣∣∣L[ft]−
∫ t

0

M [fs]dWs

∣∣∣∣ dvdx] = 0.

This implies our first assertion.

Next, we assume that f satisfies (5.2.2) P ⊗ dx ⊗ dv-a.s. Then by (deter-

ministic) Fubini’s theorem, the following relation is easily obtained: for every

ψ ∈ C∞c (R2d),

∫
R2d

ftψ dvdx

=

∫
R2d

f inψ dvdx+

∫ t

0

∫
R2d

fs (v · ∇xψ + Fa[fs] · ∇vψ) dvdxds

+ σ

∫
R2d

(∫ t

0

∇v · [(v − vc)fs]ψ dWs

)
dvdx

+
σ2

2

∫ t

0

∫
R2d

(v − vc)fs ·
[
∇v

(
(v − vc) · ∇vψ

)]
dvdxds a.s. ω ∈ Ω.

Since ft is in L∞(Ω; C([0, T ]; C2(R2d))) and compactly supported, we have∫
R2d

(∫ t

0

∣∣∣∇v · [(v − vc)fs]ψ
∣∣∣2ds)1/2

dvdx <∞, a.s. ω ∈ Ω.

Then, we can use the stochastic Fubini theorem (see [101] and references

therein) and deterministic Fubini’s theorem to get∫
R2d

(∫ t

0

∇v · [(v − vc)fs]ψ dWs

)
dvdx

=

∫ t

0

(∫
R2d

∇v · [(v − vc)fs]ψ dvdx
)
dWs

= −
∫ t

0

(∫
R2d

[(v − vc)fs] · ∇vψ dvdx
)
dWs.

This implies our desired result.
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Remark 5.2.1. 1. If a strong solution ft to (5.0.1) satisfies conditions in

Lemma 5.2.2, then ft satisfies the relation (5.2.2).

2. If ft is a classical solution to (5.0.1), we may use Lemma 5.2.2 in [13] to

obtain that the Itô relation (5.2.2) is equivalent to (5.0.1).

5.2.1 Quantitative estimates for classical solutions

We provide several properties of classical solutions f to (5.0.1). First, we

study the propagation of velocity moments along the stochastic flow of (5.0.1)1.

For a random density function ft, we set velocity moments:

M0(t) :=

∫
R2d

ftdvdx, M1(t) :=

∫
R2d

vftdvdx,

M2(t) :=

∫
R2d

|v|2ftdvdx, t ≥ 0.

Consider the following stochastic characteristics ϕt(x, v) := (Xt(x, v), Vt(x, v)):{
dXt = Vtdt, t > 0,

dVt = (Fa[ft](Xt, Vt)) dt+ σ(vc − Vt) ◦ dWt,
(5.2.6)

subject to the initial data:

(X0(x, v), V0(x, v)) = (x, v).

Note that if ft is compactly supported in x and v, and satisfies the regularity

condition for classical solutions, the system (5.2.6) has a unique solution and

the family {ϕs,t(x, v) := ϕt(ϕ
−1
s (x, v))}, 0 ≤ s ≤ t ≤ T , forms a stochastic

flow of smooth diffeomorphisms (we refer to Lemma 4.1 in Chapter 2 of [13]

for details). Furthermore, we define the functionals that measure spatial and

velocity supports of ft, respectively:

X (t) := sup{|x| : ft(x, v) 6= 0 for some v ∈ Rd},
V(t) := sup{|v| : ft(x, v) 6= 0 for some x ∈ Rd}.
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Lemma 5.2.3. Let ft be a classical solution to (5.0.1) which is compactly

supported in x and v and satisfies

M0(0) = 1, M1(0) = 0.

Then for t ≥ 0,

M0(t) = 1, M1(t) = 0, M2(t) ≤M2(0) exp

(
−2

∫ t

0

φ̄(2X (s))ds− 2σWt

)
.

Proof. • (Conservation of mass): It follows from Remark 5.2.1 that

ft(x, v) = f in(x, v)−
∫ t

0

(
v · ∇xfs +∇v · (Fa[fs]fs)

)
ds

+ σ

∫ t

0

(
∇v · ((v − vc)fs)

)
dWs

+
σ2

2

∫ t

0

∇v ·
[
(v − vc)∇v ·

(
(v − vc)fs

)]
ds.

(5.2.7)

We integrate (5.2.7) over (x, v) ∈ R2d to get∫
R2d

ft(x, v)dvdx

=

∫
R2d

f in(x, v)dvdx−
∫
R2d

∫ t

0

(
v · ∇xfs +∇v · (Fa[fs]fs)

)
dsdvdx

+ σ

∫
R2d

[ ∫ t

0

(
∇v · ((v − vc)ft)

)
dWs

]
dvdx

+
σ2

2

∫
R2d

∫ t

0

∇v ·
[
(v − vc)∇v ·

(
(v − vc)fs

)]
dsdvdx

=:

∫
R2d

f in(x, v)dvdx+ J11 + J12 + J13.

Next, we show that the terms J1i are zero using deterministic and stochastic

Fubini’s theorems.

� (Estimate of J11 and J13): Since ft has a compact support in (x, v), we can

use deterministic Fubini’s theorem to see

J11 + J13 = −
∫ t

0

∫
R2d

(
∇x · (vfs) +∇v · (Fa[fs]fs)

)
dvdxds
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+
σ2

2

∫ t

0

∫
R2d

∇v ·
[
(v − vc)∇v ·

(
(v − vc)fs

)]
dvdxdx

= 0.

� (Estimate of J12): As in the proof of Lemma 5.2.2, we can use the stochastic

Fubini theorem to get

J12 =

∫ t

0

(∫
R2d

∇v · ((v − vc)ft)dvdx
)
dWs = 0.

• (Conservation of momentum): In this case, we multiply v to (5.2.7) and

use the same argument for conservation of mass to derive

M1(t) = M1(0) = 0, t ≥ 0.

• (Dissipation estimate): We multiply (5.2.7) by |v|2 and use stochastic Fu-

bini’s theorem to have

dM2(t) =
(

2σ2M2(t) +

∫
R2d

2v · Fa[fs]fsdvdx
)
dt− 2σM2(t)dWt, (5.2.8)

where we used the relation M1(t) = 0.

We use (5.2.8) to get

M2(t)

= M2(0) +

∫ t

0

[(∫
R2d

2v · Fa[fs]fsdvdx
)

+ 2σ2M2(s)

]
ds

− 2σ

∫ t

0

M2(s)dWs

= M2(0) + 2

∫ t

0

∫
R4d

φ(x∗ − x)(v∗ − v) · vfs(x∗, v∗)fs(x, v)dv∗dx∗dvdxds

+ 2σ2

∫ t

0

M2(s)ds− 2σ

∫ t

0

M2(s)dWs

= M2(0)−
∫ t

0

∫
R4d

φ(x∗ − x)|v − v∗|2fs(x∗, v∗)fs(x, v)dv∗dx∗dvdxds
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+ 2σ2

∫ t

0

M2(s)ds− 2σ

∫ t

0

M2(s)dWs

≤M2(0)−
∫ t

0

φ̄(2X (s))

[∫
R4d

|v − v∗|2fs(x∗, v∗)fs(x, v)dv∗dx∗dvdx

]
ds

+ 2σ2

∫ t

0

M2(s)ds− 2σ

∫ t

0

M2(s)dWs

≤M2(0)− 2

∫ t

0

(
φ̄(2X (s))− σ2

)
M2(s)ds− 2σ

∫ t

0

M2(s)dWs.

Then we use Lemma 5.1.1 and Lemma 5.1.2 to get

M2(t) ≤M2(0) exp

(
−2

∫ t

0

φ̄(2X (s))ds− 2σWt

)
.

Remark 5.2.2. In Lemma 3.3, we observe that the first momentum is pre-

served. Thus, without loss of generality, we may assume that vc(t) = 0.

Next, we discuss the size of spatial and velocity supports of ft.

Lemma 5.2.4. The support functionals X and V satisfy the following esti-

mates:

X (t) ≤ X0 +
√

2

∫ t

0

(
V0 + κ

√
dM2(0)s

)
exp

[
−
∫ s

0

φ̄(2X (τ))dτ − σWs

]
ds,

V(t) ≤
√

2
(
V0 + κ

√
dM2(0)t

)
exp

[
−
∫ t

0

φ̄(2X (s))ds− σWt

]
, t ≥ 0.

Moreover, if φm > 0, then

X (t) ≤ X0 +
√

2

∫ t

0

(
V0 + κ

√
dM2(0)s

)
exp(−φms− σWs)ds,

V(t) ≤
√

2
(
V0 + κ

√
dM2(0)t

)
exp(−φmt− σWt), t ≥ 0, .

Proof. First, we consider the case when φm > 0 may not hold.
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� (Estimate of V): Note that the stochastic characteristics (Xt, Vt) =

{(xit, vit)}di=1 starting from (x, v) ∈ suppf in satisfydx
i
t = vitdt, 1 ≤ i ≤ d,

dvit =

((
Fa[ft](Xt, Vt)

)i
+

1

2
σ2vit

)
dt− σvitdWt.

(5.2.9)

Now, we rewrite (5.2.9)2 to have

dvit =

[(
−
∫
R2d

φ(x∗ −Xt)ft(x∗, v∗)dv∗dx∗ +
1

2
σ2

)
vit

+

∫
R2d

φ(x∗ −Xt)v
i
∗ft(x∗, v∗)dv∗dx∗

]
dt− σvitdWt.

(5.2.10)

Thus, we apply Lemma 5.1.1 and Lemma 5.2.3 to (5.2.10) to get

|vit| =

∣∣∣∣∣vi0 exp

[
−
∫ t

0

{∫
R2d

φ(x∗ −Xs)fs(x∗, v∗)dv∗dx∗

}
ds− σWt

]
+

∫ t

0

{∫
R2d

φ(x∗ −Xs)v
i
∗fs(x∗, v∗)dv∗dx∗

}
× exp

[
−
∫ t

s

{∫
R2d

φ(x∗ −Xτ )fτ (x∗, v∗)dv∗dx∗

}
dτ − σ(Wt −Ws)

]
ds

∣∣∣∣∣
≤ |vi0| exp

[
−
∫ t

0

φ̄(2X (s))ds− σWt

]
+ κ

∫ t

0

√
M2(s) exp

[
−
∫ t

s

φ̄(2X (τ))dτ − σ(Wt −Ws)

]
ds

≤
(
|vi0|+ κ

√
M2(0)t

)
exp

[
−
∫ t

0

φ̄(2X (s))ds− σWt

]
.

Hence, we have

|Vt|2 =
d∑
i=1

|vit|2

≤
d∑
i=1

(
|vi0|+ κ

√
M2(0)t

)2

exp

[
−2

∫ t

0

φ̄(2X (s))ds− 2σWt

]
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≤ 2
(
|V0|2 + dκ2M2(0)t2

)2
exp

[
−2

∫ t

0

φ̄(2X (s))ds− 2σWt

]
,

where we used Young’s inequality, and this yields

V(t) ≤
√

2
(
V0 + κ

√
dM2(0)t

)
exp

[
−
∫ t

0

φ̄(2X (s))ds− σWt

]
.

This gives the desired estimate.

� (Estimate of X ): We use Itô’s formula and the Cauchy-Schwarz inequality

to get

d|Xt|2 = 2Xt · dXt + dXt · dXt = 2Xt · Vtdt ≤ 2|Xt| · |Vt|dt.

This and the estimates for V(t) yield

d|Xt|
dt
≤ |Vt| ≤

√
2
(
V0 + κ

√
dM2(0)t

)
exp

[
−
∫ t

0

φ̄(2X (s))ds− σWt

]
.

We integrate the above differential inequality to get

|Xt| ≤ |X0|+
√

2

∫ t

0

(
V0 + κ

√
dM2(0)s

)
exp

[
−
∫ s

0

φ̄(2X (τ))dτ − σWs

]
ds,

and this implies our desired estimate for X (t).

When φm > 0, we can use φm ≤ φ(2X (s)) to get the desired results.

Remark 5.2.3. Here, we discuss the necessity of the lower bound condition

φm > 0 for flocking estimates. As observed in [51], the equation (5.0.1) with-

out noise exhibits flocking without the condition φm > 0, but it was attainable

since the sizes of x- and v-supports increase at most in an algebraic order,

which is not the case for (5.0.1) due to the exponential Wiener process. Here,

it is well known that

lim sup
t→∞

Wt√
2t log log t

= 1, for a.s. ω ∈ Ω.
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Thus, for the pathwise flocking estimate, we require

lim sup
t→∞

∫ t
0
φ̄(2X (s))ds
√
t log log t

= 0, for a.s. ω ∈ Ω. (5.2.11)

However, as observed in Lemma 5.2.4, it becomes difficult to estimate

X (t) without the lower bound assumption φm > 0. Accordingly, it is hard to

find a condition weaker than φm > 0 which entails the estimate (5.2.11).

Now, we are ready to state the stability results for (5.0.1).

Theorem 5.2.1. (L∞-stability) Let ft and f̃t be two classical solutions to

(5.0.1) corresponding to regular initial data f in and f̃ in, respectively, which

are compactly supported in x and v. Moreover, let ϕt = ϕt(x, v) and ϕ̃t =

ϕ̃t(x, v) be the stochastic characteristics associated to f and f̃ , respectively.

Then, we have

‖ft − f̃t‖2
C0 + ‖ϕt − ϕ̃t‖2

C0 ≤ Dt‖f in − f̃ in‖2
C0 ,

where Dt is a non-negatvie process with continuous sample paths and

‖ϕt − ϕ̃t‖C0 := sup
{
|ϕt(x, v)− ϕ̃t(x, v)| : (x, v) ∈ (suppf in) ∪ (suppf̃ in)

}
.

Proof. Since the proof is rather lengthy, we postpone it to Appendix B.1.

5.3 Global well-posedness and asymptotic dy-

namics of strong solutions

In this section, we provide global well-posedness and asymptotic flocking esti-

mates for strong solutions to (5.0.1). Here, we show our desired estimates for

(5.0.1) corresponding to regularized initial data. Then, based on the stability

estimates for classical solutions that we obtained in the previous section, we

conclude that solutions to (5.0.1) with regularized initial data converge to a

strong solution to (5.0.1). Moreover, we show that a strong solution obtained

as above satisfies the asymptotic flocking estimates.
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Let f in,ε be a smooth mollification of the given initial datum f in satisfying

the framework (F). Then, consider the Cauchy problem (5.0.1) with these

regularized initial data:

∂tf
ε
t + v · ∇xf

ε
t +∇v · (Fa[f εt ]f εt ) = σ∇v · (vf εt ) ◦ Ẇt,

f ε0 (x, v) = f in,ε(x, v).
(5.3.1)

Note that due to the framework (F), the initial datum f in and its partial

derivatives up to order k are uniformly continuous on R2d and there exists a

constant R0 > 0, such that

suppf in ⊆ BR0(0),

where BR0(0) is a ball of radius R0 centered at 0 ∈ R2d. As mentioned

above, we use a mollifier to obtain a family of regularized initial data f in,ε ∈
C∞(R2d), ε ∈ (0, 1), so that the regularized datum satisfies the following con-

ditions:

• (F ε1): {f in,ε} are nonnegative, compactly supported, uniformly con-

verge to f in in C0(R2d) and

‖f in,ε‖Wk,∞ ≤ ‖f in‖Wk,∞ .

• (F ε2): {M ε
2}(0) is uniformly bounded with respect to ε and converges

to M2(0) as ε→ 0.

• (F ε3): The zeroth and first moment of f in,ε are initially constrained:∫
R2d

f in,εdxdv = 1,

∫
R2d

vf in,εdvdx = 0.

• (F ε4): f in,ε has a compact support in x and v, and satisfy

suppf in,ε ⊆ BR0+1(0).

In the following three subsections, we will provide a global existence for

system (5.3.1).
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5.3.1 Construction of approximate solutions

In this subsection, we provide a sequence of approximate solutions to (5.3.1)

using successive approximations.

First, the zeroth iterate f 0,ε
t is simply defined as the mollified initial datum:

f 0,ε
t (x, v) := f in,ε(x, v), (x, v) ∈ R2d.

For n ≥ 1, suppose that the (n − 1)-th iterate fn−1,ε
t is given. Then, the

n-th iterate is defined as the solution to the linear equation with fixed initial

datum: for each n ≥ 1,{
∂tf

n,ε
t + v · ∇xf

n,ε
t +∇v · (Fa[fn−1,ε

t ]fn,εt ) = σ∇v · (vfn,εt ) ◦ Ẇt,

fn,ε0 (x, v) = f in,ε(x, v).
(5.3.2)

The linear system (5.3.2) can be solved by the method of stochastic char-

acteristics. Let ϕn,εt (x, v) := (Xn,ε
t (x, v), V n,ε

t (x, v)) be the forward stochastic

characteristics, which is a solution to the following SDE:
dXn,ε

t = V n,ε
t dt,

dV n,ε
t = Fa[f

n−1,ε
t ](Xn,ε

t , V n,ε
t )dt− σV n,ε

t ◦ dWt,

(Xn,ε
t (0), V n,ε

t (0)) = (x, v) ∈ suppf in,ε.

(5.3.3)

Note that the SDE (5.3.3) is equivalent to the following Itô SDE [31]:


dXn,ε

t = V n,ε
t dt,

dV n,ε
t =

(
Fa[f

n−1,ε
t ](Xn,ε

t , V n,ε
t ) +

σ2

2
V n,ε
t

)
dt− σV n,ε

t dWt,

(Xn,ε
t (0), V n,ε

t (0)) = (x, v) ∈ suppf in,ε.

(5.3.4)

Here, we can deduce from Lemma 3.1 and Theorem 3.2 in [13] and our

framework that for any m ≥ 3, (5.3.3) has a unique solution fn,εt which is a

Cm-semimartingale for every n ≥ 0 and the characteristics (5.3.3) becomes

a Cm-diffeomorphism. Then, fn,εt can also be represented by the following

94



CHAPTER 5. COLLECTIVE STOCHASTIC DYNAMICS OF THE
CUCKER-SMALE ENSEMBLE UNDER UNCERTAIN
COMMUNICATION

integral formula:

fn,εt (ϕn,εt (x, v))

= f in,ε(x, v) exp
[
−
∫ t

0

∇v · Fa[fn−1,ε](s, ϕn,εs (x, v))ds+ dσWt

]
.

(5.3.5)

Note that if f in,ε is nonnegative, then surely fn,εt is also nonnegative as well.

Before we finish this subsection, we also remark that the linear, first-order

Stratonovich equation (5.3.2) is equivalent to the following parabolic Itô

equation (see Corollary 3.3. in Chapter 2 from [13]):


∂tf

n,ε
t + v · ∇xf

n,ε
t +∇v · (Fa[fn−1,ε

t ]fn,εt )

= σ∇v · (vfn,εt )Ẇt +
σ2

2
∇v ·

[
v∇v · (vft)

]
, n ≥ 1,

fn,ε0 (x, v) = f in,ε(x, v).

(5.3.6)

5.3.2 Estimates on approximate solutions

In this subsection, we provide several estimates for the approximate solutions

for (5.3.2). To be more precise, we would try to obtain n and ε-independent

estimates for the later sections. Before we move on, we define p-th velocity

moments Mn,ε
p (t), p = 0, 1, 2:

Mn,ε
0 (t) :=

∫
R2d

fn,εt dvdx, Mn,ε
1 (t) :=

∫
R2d

vfn,εt dvdx,

Mn,ε
2 (t) :=

∫
R2d

|v|2fn,εt dvdx, Mn,ε
p (0) := M ε

p0.

Before we provide the uniform estimates for the p-th (p = 0, 1, 2) moments,

we set

M∞
20 := sup

ε∈(0,1)

M ε
2 (0), γ := max{M∞

20 , κ}. (5.3.7)

We also present a technical lemma from [6] for a later discussion.

Lemma 5.3.1. [6] Let T ∈ (0,∞] and (an)n∈N be a sequence of nonnegative

continuous functions on [0, T ] satisfying

an(t) ≤ A+B

∫ t

0

an−1(s)ds+ C

∫ t

0

an(s)ds, t ∈ [0, T ], n ≥ 1,

95



CHAPTER 5. COLLECTIVE STOCHASTIC DYNAMICS OF THE
CUCKER-SMALE ENSEMBLE UNDER UNCERTAIN
COMMUNICATION

where A, B and C are nonnegative constants.

1. If A = 0, there exists a constant Λ ≥ 0 depending on B, C and

sup
t∈[0,T ]

a0(t) such that

an(t) ≤ (Λt)n

n!
, t ∈ [0, T ], n ∈ N.

2. If A > 0 and C = 0, there exists a constant Λ ≥ 0 depending on A, B

and sup
t∈[0,T ]

a0(t) such that

an(t) ≤ Λ exp(Λt), t ∈ [0, T ], n ∈ N.

Remark 5.3.1. 1. In (2) of Lemma 5.3.1, Λ can be explicitly written as

Λ := max

{
A, B, sup

t∈[0,T ]

a0(t)

}
.

2. We can also use the similar argument to obtain the following estimate for

(2):

an(t) ≤ (Λ +Kt) exp(Λt), t ∈ [0, T ], n ∈ N,

where Λ := max{A,B} and Kt := sup0≤s≤t a0(s).

Proposition 5.3.1. For every n ∈ N and T ∈ (0,∞), let fn,εt be a solution

to (5.3.2). Then, for any t ∈ (0, T ) we have

Mn,ε
0 (t) = 1, Mn,ε

1 (t) = 0, Mn,ε
2 (t) ≤ (γ +Kt) exp{(γ + κ)t− 2σWt},

where γ is a constant in (5.3.7) and Kt is defined as

Kt := M∞
20 sup

0≤s≤t
exp(−κs+ 2σWs).
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Proof. Note that fn,εt satisfies relation (5.3.6) and fn,εt is compactly sup-

ported in x and v, since f in,ε is compactly supported in the phase space and

ϕn,εt is a Cm-diffeomorphisim. Thus, we may follow the arguments in Lemma

5.2.3 to derive the conservation estimates.

For the dissipation estimate of Mn,ε
2 , we use a similar argument to Lemma

5.2.3 to have

Mn,ε
2 (t) = M ε

2 (0) + 2σ2

∫ t

0

Mn,ε
2 (s)ds− 2σ

∫ t

0

Mn,ε
2 (s)dWs

+ 2

∫ t

0

∫
R4d

φ(x∗ − x)(v∗ − v) · vfn−1,ε
s (x∗, v∗)f

n,ε
s (x, v)dv∗dx∗dvdxds

≤M ε
2 (0) + 2σ2

∫ t

0

Mn,ε
2 (s)ds− 2σ

∫ t

0

Mn,ε
2 (s)dWs

+ 2

∫ t

0

∫
R4d

φ(x∗ − x)v∗ · vfn−1,ε
s (x∗, v∗)f

n,ε
s (x, v)dv∗dx∗dvdx

≤M ε
2 (0) + κ

∫ t

0

Mn−1,ε
2 (s)ds+ (κ+ 2σ2)

∫ t

0

Mn,ε
2 (s)ds

− 2σ

∫ t

0

Mn,ε
2 (s)dWs,

where we used Young’s inequality on the second inequality. In a differential

form, we have

dMn,ε
2 (t) ≤

{
κMn−1,ε

2 (t)

+(κ+ 2σ2)Mn,ε
2 (t)

}
dt− 2σMn,ε

2 (t)dWt. (5.3.8)

Then, it follows from (5.3.8) and comparison theorem (in Lemma 5.1.2) that

Mn,ε
2 (t) ≤ Xt,

where the process Xt satisfies{
dXt =

{
κMn−1,ε

2 (t) + (κ+ 2σ2)Xt

}
dt− 2σXtdWt, t > 0,

X0 = M ε
2 (0).

It follows from Lemma 5.1.1 that Xt can be represented as

Xt = X0 exp(κt− 2σWt)

+ κ

∫ t

0

exp{κ(t− s)− 2σ(Wt −Ws)}Mn−1,ε
2 (s)ds.
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This implies

Mn,ε
2 (t) ≤M ε

2 (0) exp(κt− 2σWt)

+ κ

∫ t

0

exp{κ(t− s)− 2σ(Wt −Ws)}Mn−1,ε
2 (s)ds.

Now, we set

an(t) := Mn,ε
2 (t) exp{−κt+ 2σWt}.

Then, it satisfies

an+1(t) ≤M ε
20 + κ

∫ t

0

an(s)ds.

We use Lemma 5.3.1 in the way from Remark 5.3.1 to get

an(t) ≤ (γ +Kt)eγt, t ∈ (0, T ).

This yields the desired result.

We also provide uniform estimates for the stochastic characteristic flows.

Proposition 5.3.2. For each n ∈ N and T ∈ (0,∞), let (Xn,ε
t , V n,ε

t ) be the

stochastic characteristic flow for (5.3.2) with the initial data:

(Xn,ε
0 , V n,ε

0 ) = (x, v) ∈ suppf in,ε.

Then for t ∈ (0, T ), we have

(i) |V n,ε
t |2 ≤

{
|v|2 + κ

∫ t

0

(γ +Ks) exp(γs)ds

}
exp(κt− 2σWt).

(ii) |Xn,ε
t |2 ≤ 2

|x|2 + t

∫ t

0


(
|v|2 + κ

∫ s

0

(γ +Kτ ) exp(γτ)dτ

)
× exp(κs− 2σWs)

 ds

 .
Proof. (i) It follows from Itô’s lemma and (5.3.4) that

d|V n,ε
t |2 = 2V n,ε

t · dV n,ε
t + dV n,ε

t · dV n,ε
t

= 2
(
Fa[f

n−1,ε
t ](Xn,ε

t , V n,ε
t ) · V n,ε

t + σ2|V n,ε
t |2

)
dt− 2σ|V n,ε

t |2dWt

≤
[
2

∫
R2d

φ(x∗−Xn,ε
t )(v∗ · V n,ε

t )fn−1,ε
t (x∗, v∗)dv∗dx∗ + σ2|V n,ε

t |2
]
dt
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− 2σd|V n,ε
t |2dWt

≤
(
κMn−1,ε

2 (t) + (κ+ 2σ2)|V n,ε
t |2

)
dt− 2σ|V n,ε

t |2dWt,

where dV n,ε
t ·dV

n,ε
t denotes a handy notation for a quadratic variation of V n,ε

t .

We use Proposition 5.3.1 and Lemmas 5.1.1-5.1.2 to get

|V n,ε
t |2 ≤ |v|2 exp(κt− 2σWt)

+ κ

∫ t

0

exp{κ(t− s)− 2σ(Wt −Ws)}Mn−1,ε
2 (s)ds

≤
{
|v|2 + κ

∫ t

0

(γ +Ks) exp(γs)ds

}
exp(κt− 2σWt).

(ii) For the estimate of spatial process, we use Cauchy-Schwarz inequality to

get

|Xn,ε
t |2 ≤

(
|x|2 +

∫ t

0

|V n,ε
s |2ds

)2

≤ 2

(
|x|2 + t

∫ t

0

|V n,ε
s |2ds

)

≤ 2

|x|2 + t

∫ t

0


(
|v|2 + κ

∫ s

0

(γ +Kτ ) exp(γτ)dτ

)
× exp(κs− 2σWs)

 ds

 .
This yields the desired result.

As a corollary of Proposition 5.3.2, we have estimates for the sizes of

velocity and spatial supports: We set

X n,ε(t) := sup{|x| : fn,εt (x, v) 6= 0 for some v ∈ Rd},
Vn,ε(t) := sup{|v| : fn,εt (x, v) 6= 0 for some x ∈ Rd}.

Corollary 5.3.1. For each n ∈ N and T ∈ (0,∞], let (Xn,ε
t , V n,ε

t ) be the

stochastic characteristic flow for (5.3.2) with the initial data:

(Xn,ε
0 , V n,ε

0 ) = (x, v) ∈ suppf in,ε.
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Then for t ∈ (0, T ), we have

|Vn,ε(t)| ≤ |V∞(t)| and |X n,ε(t)| ≤ |X∞(t)|,

where X∞(t) and V∞(t) are given by the following relations:

|X∞(t)|2 := 2

[
(R0+1)2 + t

∫ t

0


(

(R0 +1)2 + κ

∫ s

0

(γ+Kτ ) exp(γτ)dτ

)
× exp(κs− 2σWs)

ds
]
,

|V∞(t)|2 :=

{
(R0 + 1)2 + κ

∫ t

0

(γ +Ks) exp(γs)ds

}
exp(κt− 2σWt).

Proof. It follows from Proposition 5.3.2 that

|Vn,ε(t)|2 ≤
{
|Vn,ε(0)|2 + κ

∫ t

0

(γ +Ks) exp(γs)ds

}
exp(κt− 2σWt)

≤
{

(R0 + 1)2 + κ

∫ t

0

(γ +Ks) exp(γs)ds

}
exp(κt− 2σWt)

= |V∞(t)|2.

This yields the first estimate for velocity support. On the other hand, we also

use Proposition 5.3.2 to get

|X n,ε(t)|2

≤ 2

[
|X n,ε(0)|2 + t

∫ t

0


(
|Vn,ε(0)|2 + κ

∫ s

0

(γ+Kτ ) exp(γτ)dτ

)
× exp(κs− 2σWs)

ds
]

≤ 2

[
(R0+1)2 + t

∫ t

0


(

(R0 +1)2 + κ

∫ s

0

(γ+Kτ ) exp(γτ)dτ

)
× exp(κs− 2σWs)

ds
]

=: |X∞(t)|2.

Remark 5.3.2. Note that fn,εt has compact supports in x and v for every

sample path which are bounded uniformly in n and ε.
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Now, we are ready to state the results on the uniform bound for the sequence

{fn,εt }.

Proposition 5.3.3. For every n, m ∈ N and t ∈ (0, T ), there exists a non-

negative process Amt which has continuous sample paths and is independent

of n and ε such that

‖fn,εt ‖Wm,∞ ≤ Amt · ‖f in,ε‖Wm,∞ .

Proof. Since the proof is quite lengthy, we postpone it to Appendix B.2.

Remark 5.3.3. It is easy to see that for fixed t and ω, Amt is monotonically

increasing with respect to m.

Next, we prove that the sample paths of approximate solutions become a

Cauchy sequence in a suitable functional space.

Proposition 5.3.4. For every n and t ∈ (0, T ), there exists a nonnegative

process D̃t which has continuous sample paths and is independent of n and ε

such that

‖fn,εt − f
n−1,ε
t ‖2

C0 + ‖ϕn,εt − ϕ
n−1,ε
t ‖2

C0

≤ D̃t
[ ∫ t

0

(
‖ϕn,εs − ϕn−1,ε

s ‖2
C0 + ‖fn−1,ε

s − fn−2,ε
s ‖2

C0

)
ds

]
, n ≥ 2

Proof. Since the proof is almost the same as that of Theorem 5.2.1, we only

point out some differences. In the proof of Theorem 5.2.1, we just replace

R(t), P(t), max(‖f in‖L∞ , ‖f̃ in‖L∞) and max(‖ft‖W 1,∞ , ‖f̃t‖W 1,∞) by X∞(t),

V∞(t), ‖f in‖ and ‖f in‖W 1,∞A1
t , respectively. Then it becomes our desired

estimate and hence, we can actually get

‖fn,εt − f
n−1,ε
t ‖2

C0 + ‖ϕn,εt − ϕ
n−1,ε
t ‖2

C0

≤ B1
t

∫ t

0

C1
s

(
‖ϕn,εs − ϕn−1,ε

s ‖2
C0 + ‖fn,εs − fn−1,ε

s ‖2
C0

)
ds

+ (1+2‖f in‖W 1,∞A1
t )B2

t

[∫ t

0

C2
s (‖ϕn,εs −ϕn−1,ε

s ‖2
C0 +‖fn−1,ε

s −fn−2,ε
s ‖2

C0)ds

]
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≤ D̃t
∫ t

0

(
‖ϕn,εs − ϕn−1,ε

s ‖2
C0 + ‖fn−1,ε

s − fn−2,ε
s ‖2

C0

)
ds,

where

B1
t := 6

[
1 + t

(
d‖φ‖W 1,∞‖f in‖L∞ exp(dκt+ dσWt)

)2
]
,

C1
t := (1 + (4X∞(t)V∞(t))2d),

B2
t := 1 + 2‖φ‖W 1,∞ exp

(
4σ sup

0≤s≤t
|Ws|

)
,

C2
t := 1 + V∞(t)(4X∞(t)V∞(t))d,

D̃t := B1
t

(
sup

0≤s≤t
C1
s

)
+
(
1 + 2‖f in‖W 1,∞A1

t )
)
B2
t

(
sup

0≤s≤t
C2
s

)
.

This gives the desired result.

For each t and ω ∈ Ω, we define

∆ε
n(t, ω) := ‖fn,εt − f

n−1,ε
t ‖2

C0 + ‖ϕn,εt − ϕ
n−1,ε
t ‖2

C0 .

Corollary 5.3.2. The functional ∆ε
n(t) satisfies

∆ε
n(t, ω) ≤ (K(ω)t)n

n!
, for each t ∈ [0, T ] and a.s. ω ∈ Ω,

where K = K(ω) is a nonnegative random variable.

Proof. It follows from Proposition 5.3.4 that

∆ε
n+1(t) ≤ D̃t

(∫ t

0

(∆ε
n(s) + ∆ε

n+1(s))ds

)
.

Since D̃t is a nonnegative process with continuous sample paths, there exists

a nonnegative random variable D = D(ω) such that

sup
0≤t≤T

D̃t(ω) ≤ D(ω) <∞, for each ω ∈ Ω.
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Thus, we can use the Grönwall-type lemma in Lemma 5.3.1 to deduce

∆n(t, ω) ≤ (D̂(ω)t)n

n!
, for each t ∈ [0, T ], ω ∈ Ω,

where D̂ = D̂(ω) depends on D(ω).

Remark 5.3.4. Corollary 5.3.2 implies that for everry ω,

fn,εt (ω)→ f εt (ω) in C([0, T ]× R2d).

Since fn,εt is Ft-adapted (where Ft is a filtration generated by the Wiener

process) and f εt is a pointwise limit of fn,ε over Ω, we have f is Ft-adapted.

Moreover, we have a uniform boundedness of fn,εt in L∞([0, T ];Wm,p(R2d))

for any p ∈ [1,∞). By the property of reflexive Banach space, there exists

a subsequence {fnk,ε(ω)} ⊆ {fn,ε(ω)} which is weakly convergent to f̃t(ω)

in L∞([0, T ];Wm,p(R2d)) for each ω ∈ Ω and every p ∈ [1,∞). Since we

have already a strong convergence in the lower order, we can conclude that

f εt (ω) = f̃t(ω). However, we can not proceed further, since it is not clear

whether f εt satisfies the equation (5.0.1) at this moment. This is due to the

noise term in the right-hand side of (5.3.2). It is not certain whether the

Stratonovich integral of f εt can be defined or not. In addition, even if the

noise term can be well-defined, it is also not clear whether the Stratonovich

integral of fn,ε converges to that of f εt or not.

5.3.3 Proof of Theorem 5.1.3

In this subsection, we prove a global well-posedness of a solution to system

(5.3.2) by showing that the limit of the sequence {fn,εt } exists as n→∞ for

each ε, and that this limit is indeed a strong solution to (5.0.1) corresponding

to the regularized initial datum f in,ε.

In order to cope with the problems discussed in Remark 5.3.4, we employ

a stopping time argument. First, we define a sequence of stopping times

{τM}M∈N as follows:

τ 1
M(ω) := inf{t ≥ 0 | Ak∗t (ω) > M} ∧ T,
τ 2
M(ω) := inf{t ≥ 0 | D̃t(ω) > M} ∧ T,
τ 2
M(ω) := inf{t ≥ 0 | Dt(ω) > M} ∧ T, τM := τ 1

M ∧ τ 2
M ∧ τ 3

M ,
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where k∗ := max{k, 4} and Dt is a nonnegative process with continuous

sample paths which will be specified later. Now, we verify the existence of

regularized solutions step by step.

• (Step A: The limit n → ∞): First, we obtain the limit function f εt∧τM
which is a classical solution to equation (5.0.1) with the regularized initial

data, based on the estimates in the previous subsection.

� (Step A-1: Extracting a limit function): We can find out that for each

n ∈ N,

(i) ‖fn,εt∧τM‖Wm,∞ ≤M‖f in,ε‖Wm,∞ .

(ii) ‖fn,εt∧τM − f
n−1,ε
t∧τM ‖

2
C0 + ‖ϕn,εt∧τM − ϕ

n−1,ε
t∧τM ‖

2
C0

≤M
[ ∫ t

0

(
‖ϕn,εs∧τM − ϕ

n−1,ε
s∧τM ‖

2
C0 + ‖fn−1,ε

s∧τM − f
n−2,ε
s∧τM ‖

2
C0

)
ds
]
.

Thus, we can use the same argument as in Corolllary 5.3.2 to yield that as

n→∞, there exists a limit function f εt∧τM such that, up to a subsequence,

fn,εt∧τM → f εt∧τM in L∞(Ω; C([0, T ]× R2d)),

fn,εt∧τM ⇀ f εt∧τM in L∞(Ω× [0, T ];Wm,p(R2d)), ∀ p ∈ [1,∞).

� (Step A-2: Verification of relation (5.1.5)): Now, we need to show that f εt∧τM
satisfies (5.3.2) in the sense of Definition 5.1.1. Since fn,εt∧τM satisfies (5.3.6)

and conditions of Lemma 5.2.2, it satisfies the following relation:

∫
Σ

fn,εt∧τMψdz =

∫
Σ

f in,εψdz

+

∫ t

0

∫
Σ

fn,εs∧τM

[
v ·∇xψ+

(
Fa[f

n−1,ε
s∧τM ]+

1

2
σ2v

)
·∇vψ

]
dzds

+
1

2
σ2

∫ t

0

∫
Σ

vfn,εs∧τM · (D
2
vψ)vdzds

− σ
∫ t

0

∫
Σ

fn,εs∧τMv · ∇vψdzdWs,

(5.3.9)
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where Σ := R2d and dz = dvdx.

Next, our job is to pass n→∞ in the integral relation (5.3.9) to derive an

integral relation (5.1.5) for f εt∧τM . For this, note that the x- and v-supports of

fn,εt∧τM and f εt∧τM are uniformly bounded by |X∞t∧τM | and |V∞t∧τM | (see Corollary

5.3.1). Moreover, we can find out that |X∞t∧τM | and |V∞t∧τM | are bounded by

Ak∗t∧τM , and hence by M . We combine the strong convergence on the lower

order with these facts to yield

(i)

∫
Σ

(fn,εt∧τM − f
ε
t∧τM )ψdz → 0.

(ii)

∫ t

0

∫
Σ

(fn,εs∧τM − f
ε
s∧τM )

[
v · ∇xψ +

(
Fa[f

n−1,ε
s∧τM ] +

1

2
σ2v

)
· ∇vψ

]
dzds→ 0.

(iii)

∫ t

0

∫
Σ

f εs∧τM
(
Fa[f

n−1,ε
s∧τM ]− Fa[f εs∧τM ]

)
∇vψdzds→ 0.

(iv)
1

2
σ2

∫ t

0

∫
Σ

v(fn,εs∧τM − f
ε
s∧τM ) · (D2

vψ)vdzds→ 0,

uniformly in ω, as n goes to infinity.

Now it remains to check with the stochastic integral term in (5.3.9). For

this term, one has

E

[(∫ t

0

∫
Σ

(fn,εs∧τM − f
ε
s∧τM )v · ∇vψdzdWs

)2
]

= E

[∫ t

0

(∫
Σ

(fns∧τM − f
ε
s∧τM )v · ∇vψdz

)2

ds

]

≤ E
[∫ t

0

‖fn,εs∧τM − f
ε
s∧τM‖

2
C0ds

](∫
Σ

|v · ∇vψ|dz
)2

−→ 0, as n→∞.

This L2-convergence over Ω implies that there exists a subsequence {fnl,εt∧τM}
such that(∫ t

0

∫
Σ

fnl,εs∧τMv · ∇vψdzdWs

)
(ω) −→

(∫ t

0

∫
Σ

f εs∧τMv · ∇vψdzdWs

)
(ω),
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for a.s. ω, as l goes to infinity. Thus, we can conclude that for a.s. ω ∈ Ω,

f εs∧τM satisfies∫
Σ

f εt∧τMψdz =

∫
Σ

f in,εψdz

−
∫ t

0

∫
Σ

f εs∧τM

(
v · ∇xψ +

(
Fa[f

ε
s∧τM ] +

1

2
σ2v

)
· ∇vψ

)
dzds

− 1

2
σ2

∫ t

0

∫
Σ

vf εs∧τM · (D
2
vψ)vdzds+

∫ t

0

∫
Σ

f εs∧τMv · ∇vψdzdWs,

for every ψ ∈ D(R2d). One also has f εt∧τM is a Ft-semimartingale. Here, we use

Lemma 5.2.1 to obtain that f εt∧τM satisfies (5.0.1) in the sense of distribution.

• (Step B: The limit ε → 0): Here, we address the convergence of solutions

to the regularized system (5.3.1). Since k∗ ≥ 4, one uses the Sobolev em-

bedding theorem to get f εt∧τM ∈ L
∞(Ω; C([0, T ]; C3,δ(R2d))). Thus, it follows

from Lemma 5.2.2 and Remark 5.2.1 that f εt∧τM becomes a classical solution

to (5.3.1) corresponding to the regularized initial datum f in,ε .

� (Step B-1: Extracting a limit function): Note that the strong convergence

in Step A implies that the x-support and the v-support of f εt∧τM are bounded

by X∞ and V∞, respectively, uniformly in ε. Thus, we can follow the stability

estimate in Theorem 5.2.1 to get

‖f εt∧τM − f
ε′

t∧τM‖
2
C0 + ‖ϕεt∧τM − ϕ

ε′

t∧τM‖
2
C0

≤ Dt∧τM‖f in,ε − f in,ε
′‖2
C0 ≤M‖f in,ε − f in,ε′‖2

C0 ,
(5.3.10)

where Dt can be obtained if R(t), P(t), max(‖f in‖L∞ , ‖f̃ in‖L∞) and

max(‖ft‖W 1,∞ , ‖f̃t‖W 1,∞) in the formulation of Dt from Theorem 5.2.1 are

substituted by X∞(t), V∞(t), ‖f in‖ and ‖f in‖W 1,∞A1
t , respectively.

Since f in,ε converges uniformly to f in, it follows from the stability esti-

mate (5.3.10) that there exists ft∧τM such that

f εt∧τM → ft∧τM in L∞(Ω; C([0, T ]× R2d)).

Moreover, it follows from the weak convergence and (F ε1) that
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‖f εt∧τM‖Wk,∞ ≤ Akt ‖f in,ε‖Wk,∞ ≤M‖f in‖Wk,∞ .

Hence, we can follow the arguments in Step A to yield that ft∧τM satisfies

relation (5.2.1) and hence (5.1.5). Moreover, ft∧τM is compactly supported in

x and v.

� (Step B-2: Regularity of a strong solution): Now, we prove that ft∧τM has

the desired regularity. Since f εt∧τM is a classical solution to (5.0.1) with initial

data f in,ε, it can be uniquely written as

f εt∧τM (ϕεt∧τM (x, v))

= f in,ε(x, v) exp

[
−
∫ t∧τM

0

∇v · Fa[fs](ϕεs)ds+ dσWt∧τM

]
,

(for detail, we refer to Appendix B.1). Since we also obtain the uniform

convergence of the characteristics ϕεt∧τM as ε→ 0 from (5.3.10), the solution

ft∧τM satisfies the following relation:

ft∧τM (ϕt∧τM (x, v))

= f in(x, v) exp

[
−
∫ t∧τM

0

∇v · Fa[fs](ϕs)ds+ dσWt∧τM

]
,

(5.3.11)

and the limit ϕt∧τM (x, v) = (Xt∧τM (x, v), Vt∧τM ) is a solution to the following

SDE:
Xt∧τM = x+

∫ t∧τM

0

Vsds,

Vt∧τM = v +

∫ t∧τM

0

(Fa[fs](Xs, Vs)) ds+

∫ t∧τM

0

σ(vc − Vt) ◦ dWs.

Since the kernel Fa[ft] is smooth, ϕt∧τM (x, v) can be shown to be a Cm-

diffeomorphism for anym ∈ N, and so is its inverse ψt∧τM (x, v) := (ϕt(x, v))−1.

Thus, if we write

ft∧τM (x, v)

= f in(ψt∧τM (x, v)) exp

[
−
∫ t∧τM

0

∇v · Fa[fs](ϕs(ψt∧τM (x, v))ds+ dσWt∧τM

]
,

107



CHAPTER 5. COLLECTIVE STOCHASTIC DYNAMICS OF THE
CUCKER-SMALE ENSEMBLE UNDER UNCERTAIN
COMMUNICATION

it directly follows from the regularity of f in and ψt that ft∧τM has the desired

regularity.

• (Step C: Properties of a strong solution): We recall several properties of

regularized solutions. First, it is obvious from (5.3.11) that

‖ft∧τM‖L∞ ≤ ‖f in‖L∞ exp(dκt ∧ τM + dσWt∧τM )

Since f εt∧τM is a classical solution to (5.3.1) corresponding to the regularized

initial datum f in,ε, Lemma 5.2.3 gives

M ε
2 (t ∧ τM) ≤M ε

2 (0) exp(−2φmt ∧ τM − 2σWt∧τM ),

and the strong convergence together with compact supports gives

M2(t ∧ τM) ≤M2(0) exp(−2φmt ∧ τM − 2σWt∧τM ).

Moreover, it is obvious that

τM(ω)→ T as M →∞ for a.s. ω.

Thus, we choose a sufficiently large M for each ω ∈ Ω such that ft∧τM (ω)

satisfies the relation (5.1.5) on [0, T ].

For the expectation estimates of the solution, we use Fatou’s lemma to get,

for any p ∈ (1,∞),

E‖ft‖L∞ ≤ lim inf
M→∞

E‖ft∧τM‖L∞

≤ lim inf
M→∞

‖f in‖L∞E
[

exp(dκt ∧ τM + dσWt∧τM )
]

= lim inf
M→∞

‖f in‖L∞E

 exp

(
dσWt∧τM −

p(dσ)2

2
t ∧ τM

)
× exp

((
dκ+

p(dσ)2

2

)
t ∧ τM

)


≤ lim inf
M→∞

‖f in‖L∞E
[
exp

(
p

p− 1

(
dκ+

p(dσ)2

2

)
t ∧ τM

)](p−1)/p

= ‖f in‖L∞ exp

((
dκ+

p(dσ)2

2

)
t

)
,
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where we used the fact Xt = exp(aWt − a2t/2) is a martingale, Hölder’s

inequality and Lebesgue’s dominated convergence theorem. Then we take

the limit p→ 1 on both sides to obtain the desired result. For the dissipation

of the second velocity moment, we use a similar argument to get the desired

estimate.
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Chapter 6

Conclusion and future works

In this thesis, we covered three topics related to quantitative estimates for

intrinsic and extrinsic uncertainties in the Cucker-Smale model.

First, we have presented the local sensitivity analysis for the random hy-

drodynamic Cucker-Smale model describing the emergence of flocking in the

ensemble of Cucker-Smale flocking particles. In previous works, quantitative

estimates for the variations of the solutions in random space were derived

from particle and kinetic models for the C-S flocking. We extended the afore-

mentioned quantitative estimates to the hydrodynamic Cucker-Smale model,

e.g., the propagation of the z-variations of spatial and velocity process, where

z is the random input variable, the L2-stability and flocking estimates along

the sample path. Thanks to the regularity analysis of the deterministic HCS

model, we can lift regularity estimates to the random solution process along

the sample path. As mentioned in the Introduction, the synthesis of flock-

ing dynamics and local sensitivity analysis is not that mature yet. There

are many open questions, for example, the effect of uncertainties on the for-

mation of multi-cluster flocking and extension of the local sensitivity to the

initial and boundary problems in the context of flocking. Moreover, as far

as the authors know, the initial and boundary value problems are not well

studied in the flocking problems even for the deterministic flocking models.

We leave these issues for future works.

Second, we have introduced the Cucker-Smale model with randomly switch-
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ing topologies for flocking phenomena and provided a sufficient framework

leading to the stochastic flocking in terms of system parameters and commu-

nication weight function. For the stochastic flocking modeling, we employed

two random components for the switching times and selection of network

topology at switching instant. Our flocking analysis took two procedures:

First, we derived flocking estimates along the sample path in a priori setting

on the network topologies and position diameter. Second, we replaced a priori

assumption on the position diameter by suitable assumptions on the system

parameters and communication weight, and moreover, we also showed that

the a priori assumption on the network topology can be attained by impos-

ing some condition on the network selection probability. There are still many

questions to be investigated for the proposed model. For example, what if the

support of the probability density function f for the sequence {t`+1 − t`}`≥0

is not compactly supported, say (0,∞)? Our analysis employed in the proof

of the main result breaks down for unbounded support cases. However, it

seems that our methodology and framework is quite general so that it can

be applied to other C-S type flocking and Kuramoto type synchronization

models. These issues will be addressed in our future works.

Finally, we studied a global well-posedness of strong solutions and their

asymptotic emergent dynamics for the stochastic kinetic Cucker-Smale equa-

tion perturbed by multiplicative white noise. For a global well-posedness, we

first derive a sequence of classical solutions to the stochastic kinetic C-S equa-

tion with regularized initial data. Then, by using the properties of classical

solutions, we obtained the well-posedness of a strong solution correspond-

ing to the original initial data and asymptotic emergent stochastic dynamics

of strong solutions. Of course, there are lots of interesting issues to be ad-

dressed in a future work, e.g., a global existence of weak solutions, emergent

dynamics under other types of random perturbations and zero noise limit,

etc. These topics will be discussed in future works.
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Appendix A

Detailed proof of Chapter 3

A.1 Proof of Lemma 3.1.2

Similarly to Lemma 3.1.1, it suffices to provide the upper-bound estimates.

Again, we split the cases into the zeroth-order and higher-order estimates.

• Step A (The zeroth-order estimates) : We multiply (3.1.3)2 by ∂zu
n+1 to

get

1

2

∂

∂t
‖∂zun+1‖2

L2

= −
∫
Td
∂zu

n · ∇u · ∂zun+1dx+
1

2

∫
Td

(∇ · u)|∂zun+1|2dx

+

∫
T2d

∂zφ(x− y)(u(y)− u(x))ρ(y)∂zu
n+1(x)dydx

+

∫
T2d

φ(x− y)(∂zu
n(y)− ∂zun(x))ρ(y)∂zu

n+1u(x)dydx

+

∫
T2d

φ(x− y)(u(y)− u(x))∂zρ
n+1(y)∂zu

n+1(x)dydx

≤ ‖∇u‖L∞‖∂zun‖L2‖∂zun+1‖L2 + ‖∇u‖L∞‖∂zun+1‖2
L2

+ 2‖φ‖s‖ρ‖L2

(
‖u‖L2‖‖∂zun+1‖L2 + ‖∂zun‖L2‖∂zun+1‖L2

)
+ 2‖φ‖s‖u‖L2‖∂zρn+1‖L2‖∂zun+1‖L2

≤ C(ε1/2‖∂zun+1‖2
L2 + ε3/2),

(A.1.1)
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where C is a positive random function independent of n and we used the

Sobolev embedding theorem, Young’s inequality and Lemma 3.1.1. Now, we

apply Grönwall’s lemma for (A.1.1) to yield

‖∂zun+1‖2
L2 ≤ C

(
ε1/2

∫ t

0

‖∂zun+1(s, z)‖2
L2ds+ ε3/2

)
. (A.1.2)

• Step B (Higher-order estimates) : For 1 ≤ k ≤ s, we apply ∇k to (3.1.3)2,

multiply by ∇k(∂zu
n+1) and integrate the resulting relation over Td to obtain

1

2

∂

∂t
‖∇k(∂zu

n+1)‖2
L2

= −
∫
Td
∂zu

n · ∇(∇ku) · ∇k(∂zu
n+1)dx

−
∫
Td

[
∇k(∂zu

n · ∇u)− ∂zun · ∇k(∇u)
]
∇k(∂zu

n+1)dx

+
1

2

∫
Td

(∇ · u)|∇k(∂zu
n+1)|2dx

−
∫
Td

[
∇k(u · ∇(∂zu

n+1))− u · ∇k(∇(∂zu
n+1)

]
∇k(∂zu

n+1)dx

+

∫
Td
∇k

(∫
Td
∂zφ(x− y)(u(y)− u(x))ρ(y)dy

)
∇k(∂zu

n+1)(x)dx

+

∫
Td
∇k

(∫
Td
φ(x− y)(∂zu

n(y)− ∂zun(x))ρ(y)dy

)
∇k(∂zu

n+1)(x)dx

+

∫
Td
∇k

(∫
Td
φ(x− y)(u(y)− u(x))∂zρ

n+1(y)dy

)
∇k(∂zu

n+1)(x)dx

=:
7∑
i=1

I6i.

Here, we separately estimate I6i’s as follows.

� (Estimates for I6i, i = 1, 2, 3, 4) : We use the Cauchy-Schwarz inequality,

commutator estimates and Young’s inequality to get

I61 ≤ ‖∂zun‖L∞‖∇k+1u‖L2‖∇k(∂zu
n+1)‖L2 ≤ C(ε1/2‖∇k(∂zu

n+1)‖2
L2 + ε3/2),
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I62 ≤ c
[
‖∇(∂zu

n)‖L∞‖∇ku‖L2 + ‖∇u‖L∞‖∇k(∂zu
n)‖L2

]
‖∇k(∂zu

n+1)‖L2

≤ C(ε1/2‖∇k(∂zu
n+1)‖2

L2 + ε3/2),

I63 ≤
‖∇ · u‖L∞

2
‖∇k(∂zu

n+1)‖2
L2 ≤ ε1/2‖∇k(∂zu

n+1)‖2
L2 ,

I64 ≤ c
[
‖∇u‖L∞‖∇k(∂zu

n+1)‖L2 +‖∇(∂zu
n+1)‖L∞‖∇ku‖L2

]
‖∇k(∂zu

n+1)‖L2

≤ Cε1/2‖∂zun+1‖2
Hs .

� (Estimates for I6i, i = 5, 6, 7) : For I65, one gets

I65 =

∫
T2d

∇k(∂zφ(x− y))(u(y)− u(x))ρ(y)∇k(∂zu
n+1)(x)dydx

−
∑

0≤r≤k−1

(
k

r

)∫
T2d

∇r(∂zφ(x− y))∇k−ru(x)ρ(y)∇k(∂zu
n+1)(x)dydx

≤ C‖φ‖s‖u‖Hk‖ρ‖L2‖∇k(∂zu
n+1)‖L2

≤ C(ε1/2‖∇k(∂zu
n+1)‖2

L2 + ε3/2),

where we used the Cauchy-Schwarz inequality and Young’s inequality.

For I66, we use the same arguments as I65 to get

I66 =

∫
T2d

∇kφ(x− y)(∂zu
n(y)− ∂zun(x))ρ(y)∇k(∂zu

n+1)(x)dydx

−
∑

0≤r≤k−1

(
k

r

)∫
T2d

∇rφ(x− y)∇k−r(∂zu
n)(x)ρ(y)∇k(∂zu

n+1)(x)dydx

≤ C‖φ‖s‖ρ‖L2‖∂zun‖Hk‖∇k(∂zu
n+1)‖L2

≤ C(ε1/2‖∇k(∂zu
n+1)‖2

L2 + ε3/2).

For I67, we have

I67 =

∫
T2d

∇kφ(x− y)(u(y)− u(x))∂zρ
n+1∇k(∂zu

n+1)(x)dydx

−
∑

0≤r≤k−1

(
k

r

)∫
T2d

∇rφ(x− y)∇k−ru(x)∂zρ
n+1(y)∇k(∂zu

n+1)(x)dydx
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≤ C‖φ‖s‖∂zρn+1‖L2‖u‖Hk‖∇k(∂zu
n+1)‖L2

≤ C(ε1/2‖∇k(∂zu
n+1)‖2

L2 + ε3/2).

We gather all results for I6i’s, sum over 1 ≤ k ≤ s, integrate the resulting

relation and combine with (A.1.2) to get

‖∂zun+1‖2
Hs ≤ C

(
ε1/2

∫ t

0

‖∂zun+1(s, z)‖2
Hsds+ ε3/2

)
.

Finally, we use Grönwall’s lemma to obtain the desired result.

A.2 Proof of Lemma 3.1.5

We split the estimates into the zeroth-order and the higher-order cases.

• Step A (The zeroth-order estimates): It follows from (3.1.12) that

1

2

∂

∂t
‖∂mz un+1‖2

L2

= −
∫
Td
∂mz u

n · ∇u · ∂mz un+1dx+
1

2

∫
Td

(∇ · u)|∂mz un+1|2dx

−
∑

1≤l≤m−1

(
m

l

)∫
Td
∂lzu · ∇(∂m−lz u) · ∂mz un+1dx

+
∑

α+β+γ=m
β,γ 6=m

m!

α!β!γ!

∫
T2d

∂αz φ(x− y)(∂βz u(y)− ∂βz u(x))∂γz ρ(y)∂mz u
n+1(x)dydx

+

∫
T2d

φ(x− y)(∂mz u
n(y)− ∂mz un(x))ρ(y)∂mz u

n+1(x)dydx

+

∫
T2d

φ(x− y)(u(y)− u(x))∂mz ρ
n+1(y)∂mz u

n+1(x)dydx

≤ ‖∇u‖L∞‖∂mz un‖L2‖∂mz un+1‖L2 +
1

2
‖∇ · u‖L∞‖∂mz un+1‖2

L2

+ C
∑

1≤l≤m−1

‖∂lzu‖L∞‖∇(∂m−lz u)‖L2‖∂mz un+1‖L2

+ C
∑

α+β+γ=m
β,γ 6=m

‖∂βz u‖L2‖∂γz ρ‖L2‖∂mz un+1‖L2

115



APPENDIX A. DETAILED PROOF OF CHAPTER 3

+ 2‖φ‖s‖ρ‖L2‖∂mz un‖L2‖∂mz un+1‖L2

+ 2‖φ‖s‖u‖L2‖∂mz ρn+1‖L2‖∂mz un+1‖L2

≤ C(ε1/2‖∂mz un+1‖2
L2 + ε3/2),

where we used the Cauchy-Schwarz inequality and Young’s inequality.

• Step B (Higher-order estimates): For 1 ≤ k ≤ s−m+ 1, we have

1

2

∂

∂t
‖∇k(∂mz u

n+1)‖2
L2

= −
∫
Td
∇k(∂mz u

n · ∇u)∇k(∂mz u
n+1)dx

−
∫
Td
∇k(u · ∇(∂mz u

n+1))∇k(∂mz u
n+1)dx

−
∑

1≤l≤m−1

(
m

l

)∫
Td
∇k(∂lzu · ∇(∂m−lz u))∇k(∂mz u

n+1)dx

+
∑

α+β+γ=m
β,γ 6=m

m!

α!β!γ!

∫
T2d

∇k

[
∂αz φ(x− y)

· (∂βz u(y)− ∂βz u(x))

]
∂γz ρ(y)∇k(∂mz u

n+1)(x)dydx

+

∫
T2d

∇k
(
φ(x− y)(∂mz u

n(y)− ∂mz un(x))
)
ρ(y)∇k(∂mz u

n+1)(x)dydx

+

∫
T2d

∇k
(
φ(x− y)(u(y)− u(x))

)
∂mz ρ

n+1(y)∇k(∂mz u
n+1)(x)dydx

=:
6∑
i=1

I7i.

In the sequel, we estimate the terms I7i’s separately.

� (Estimates for I71 and I72) : For I71,

I71 = −
∫
Td
∇k(∂mz u

n) · ∇u · ∇k(∂mz u
n+1)dx

−
∫
Td

[
∇k(∂mz u

n · ∇u)− ∂mz un · ∇k(∇u)
]
∇k(∂mz u

n+1)dx

≤ ‖∇u‖L∞‖∇k(∂mz u
n)‖L2‖∇k(∂mz u

n+1)‖L2
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+ c

(
‖∇(∂mz u

n)‖L∞‖∇ku‖L2

+‖∇u‖L∞‖∇k(∂mz u
n)‖L2

)
‖∇k(∂mz u

n+1)‖L2

≤ C(ε1/2‖∇k(∂mz u
n+1)‖2

L2 + ε3/2),

where c and C are positive random functions independent of n. Similarly,

I72 =
1

2

∫
Td

(∇ · u)|∇k(∂mz u
n+1)|2dx

−
∫
Td

[
∇k(u · ∇(∂mz u

n+1))− u · ∇k(∇(∂mz u
n+1))

]
· ∇k(∂mz u

n+1)dx

≤ 1

2
‖∇ · u‖L∞‖∇k(∂mz u

n+1)‖2
L2

+ c

(
‖∇u‖L∞‖∇k(∂mz u

n+1)‖L2

+‖∇(∂mz u
n+1)‖L∞‖∇ku‖L2

)
‖∇k(∂mz u

n+1)‖L2

≤ C(ε1/2‖∂mz un+1‖2
Hs−m+1 + ε3/2),

where c and C are positive random functions independent of n.

� (Estimates for I73): One gets

I73 = −
∑

1≤l≤m−1

(
m

l

){∫
Td
∂lzu · ∇k(∇(∂m−lz u)) · ∇k(∂mz u

n+1)dx

+

∫
Td

[
∇k(∂lzu · ∇(∂m−lz u))

−∂lzu · ∇k(∇(∂m−lz u))

]
· ∇k(∂mz u

n+1)dx

}

≤ C
∑

1≤l≤m−1

 ‖∂lzu‖L∞‖∇k+1(∂m−lz u)‖L2‖∇k(∂mz u
n+1)‖L2

+‖∇(∂lzu)‖L∞‖∇k(∂m−lz u)‖L2‖∇k(∂mz u
n+1)‖L2

+‖∇(∂m−lz u)‖L∞‖∇k(∂lzu)‖L2‖∇k(∂mz u
n+1)‖L2


≤ C(ε1/2‖∇k(∂mz u

n+1)‖2
L2 + ε3/2).

� (Estimates for I74): By direct calculation,

I74 =
∑

α+β+γ=m
β,γ 6=m

m!

α!β!γ!

∫
T2d

(
∇k
(
∂αz φ(x− y)

)
(∂βz u(y)− ∂βz u(x))

· ∂γz ρ(y)∇k(∂mz u
n+1)(x)

)
dydx
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−
∑

α+β+γ=m
β,γ 6=m

0≤r≤k−1

m!

α!β!γ!

(
k

r

)∫
T2d

(
∇r
(
∂αz φ(x− y)

)
∇k−r(∂βz u(x)

)
· ∂γz ρ(y)∇k(∂mz u

n+1)(x)

)
dydx

≤
∑

α+β+γ=m
β,γ 6=m

m!

α!β!γ!
2‖φ‖s‖∂γz ρ‖L2‖∂βz u‖L2‖∇k(∂mz u

n+1)‖L2

+
∑

α+β+γ=m
β,γ 6=m

0≤r≤k−1

m!

α!β!γ!

(
k

r

)
‖φ‖s‖∂γz ρ‖L2‖∇k−r(∂βz u)‖L2‖∇k(∂mz u

n+1)‖L2

≤ C(ε1/2‖∇k(∂mz u
n+1)‖2

L2 + ε3/2).

� (Estimates for I75): In this case, we get

I75 =

∫
T2d

∇kφ(x− y)(∂mz u
n(y)− ∂mz un(x))ρ(y)∇k

(
∂mz u

n+1
)
(x)dydx

−
k−1∑
r=0

(
k

r

)∫
T2d

(
∇rφ(x− y)∇k−r(∂mz un)(x)

· ρ(y)∇k(∂mz u
n+1)(x)

)
dydx

≤ 2‖φ‖s‖ρ‖L2‖∂mz un‖L2‖∇k(∂mz u
n+1)‖L2

+
k−1∑
r=0

(
k

r

)
‖φ‖s‖ρ‖L2‖∇k−r(∂mz u

n)‖L2‖∇k(∂mz u
n+1)‖L2

≤ C(ε1/2‖∇k(∂mz u
n+1)‖2

L2 + ε3/2).

� (Estimates for I76) : One has

I76 =

∫
T2d

∇kφ(x− y)(u(y)− u(x))∂mz ρ
n+1(y)∇k(∂mz u

n+1)(x)dydx

−
k−1∑
r=0

(
k

r

)∫
T2d

(
∇rφ(x− y)∇k−ru(x)

· ∂mz ρn+1(y)∇k(∂mz u
n+1)(x)

)
dydx

≤ 2‖φ‖s‖u‖L2‖∂mz ρn+1‖L2‖∇k(∂mz u
n+1)‖L2

+
k−1∑
r=0

(
k

r

)
‖φ‖s‖∇k−ru‖L2‖∂mz ρ‖L2‖∇k(∂mz u

n+1)‖L2
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≤ C(ε1/2‖∇k(∂mz u
n+1)‖2

L2 + ε3/2).

Now, we gather all results for I7i’s, sum over 1 ≤ k ≤ s−m+ 1 and combine

with the zeroth-order estimate to yield that for each z ∈ Ω,

∂

∂t
‖∂mz un+1‖2

Hs−m+1 ≤ C(ε1/2‖∂mz un+1‖2
Hs−m+1 + ε3/2).

Thus, we integrate the above relation over [0, t] and use Grönwall’s lemma

to get the desired result.

A.3 Proof of Lemma 3.2.4

We consider only higher-order estimates. For 1 ≤ k ≤ m−l+1 and 1 ≤ l ≤ m,

we apply ∇k∂lz to (3.0.1) to get

1

2

∂

∂t
‖∇k(∂lz(u− ū))‖2

L2

=−
∑

0≤r1≤l
0≤r2≤k

(
l

r1

)(
k

r2

)∫
Td
∇r2(∂r1z (u− ū)) · ∇(∇k−r2(∂l−r1z u)) · ∇k(∂lz(u− ū))dx

−
∑

0≤r1≤l
0≤r2≤k

(
l

r1

)(
k

r2

)∫
Td
∇r2(∂r1z ū) · ∇(∇k−r2(∂l−r1z (u− ū)) · ∇k(∂lz(u− ū))dx

+
∑

α+β+γ=l

l!

α!β!γ!

∫
T2d

[{
∇k
(
∂αz φ ∂

β
z ((u− ū)(y)− (u− ū)(x))

)
· ∂γz ρ(y)∇k(∂lz(u− ū))(x)

}

+

{
∇k
(
∂αz φ ∂

β
z (ū(y)− ū(x))

)
· ∂γz (ρ− ρ̄)(y)∇k(∂lz(u− ū))(x)

}]
dydx

=:
4∑
i=1

I8i.

In the sequel, we estimate the terms I8i’s one by one.

119



APPENDIX A. DETAILED PROOF OF CHAPTER 3

� (Estimates for I81) : One has

I81 ≤
∑

0≤r1≤l
0≤r2≤k

(
l

r1

)(
k

r2

)
‖∇(∇k−r2(∂l−r1z u))‖L∞

(
‖∇r2(∂r1z (u− ū))‖L2

· ‖∇k(∂lz(u− ū)‖L2

)

≤ C
∑

0≤r1≤l
0≤r2≤k

‖∂l−r1z u‖Hs−l+1‖∇r2(∂r1z (u− ū))‖L2‖∇k(∂lz(u− ū)‖L2

≤ C
l∑

r=0

‖∂rz(u− ū)‖2
Hm−r+1 .

� (Estimates for I82) : Similarly, we have

I82 = −
∑

0≤r1≤l
0≤r2≤k

(r1,r2)6=(l,k)

∫
Td
∇r2(∂r1z ū) ·

(
∇(∇k−r2(∂l−r1z (u− ū)))

·∇k(∂lz(u− ū))

)
dx

+
1

2

∫
Td

(∇ · ū)|∇k(∂lz(u− ū))|2dx

≤
∑

0≤r1≤l
0≤r2≤k

(r1,r2)6=(l,k)

(
l

r1

)(
k

r2

)
‖∇k−r2(∂l−r1z ū)‖L∞

(
‖∇r2+1(∂r1z (u− ū))‖L2

·‖∇k(∂lz(u− ū)‖L2

)

+
‖∇ · ū‖L∞

2
‖∇k(∂lz(u− ū))‖2

L2

≤ C

l∑
r=0

‖∂rz(u− ū)‖2
Hm−r+1 .

� (Estimates for I83 and I84) : One gets

I83 ≤ C
∑

α+β+γ=l
0≤r≤k

‖∇k−r(∂βz (u− ū))‖L2‖∂γz ρ‖L2‖∇k(∂lz(u− ū))‖L2

≤ C
∑

0≤r≤l

‖∂rz(u− ū)‖2
Hm−r+1 ,
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I84 ≤ C
∑

α+β+γ=l
0≤r≤k

‖∇k−r(∂βz ū)‖L2‖∂γz (ρ− ρ̄)‖L2‖∇k(∂lz(u− ū))‖L2

≤ C

(
‖∇k(∂lz(u− ū))‖2

L2 +
∑

0≤r≤l

‖∂rz(ρ− ρ̄)‖2
L2

)
.

Now, we combine all the estimates for I8i, sum over 1 ≤ k ≤ m − l + 1,

0 ≤ l ≤ m and add the zeroth-order estimate to get the desired result.

A.4 Proof of Theorem 3.3.2

It follows from (3.1.2) that

1

2

∂

∂t

∫
Td
|∂mz u|2dx

= −
∫
Td

(∂mz u · ∇u) · ∂mz udx−
∫
Td

(u · ∇(∂mz u)) · ∂mz udx

−
m−1∑
l=1

(
m

l

)∫
Td

(∂lzu · ∇(∂m−lz u)) · ∂mz udx

+
∑

α+β+γ=m
β 6=m

m!

α!β!γ!

∫
T2d

∂αz φ(x− y)(∂βz u(y)− ∂βz u(x))∂γz ρ(y) · ∂mz u(x)dydx

+

∫
T2d

φ(x− y)(∂mz u(y)− d∂mz u(x))ρ(y) · ∂mz u(x)dydx

=:
5∑
i=1

I9i.

Next, we estimate each I9i separately.

� (Estimates for I91 and I92) : One gets

I91 =
1

2

∫
Td

(∇ · u)|∂mz u|2dx ≤
‖∇ · u‖L∞(R+×Td)

2
‖∂mz u‖2

L2 ,

I92 ≤ ‖∇(∂mz u)‖L∞‖u‖L2‖∂mz u‖L2 ≤ δ

4
‖∂mz u‖2

L2 +
U(z)2

δ
‖u‖2

L2
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≤ δ

4
‖∂mz u‖2

L2 +
U(z)2

δ
F0(z)e−2Λ̃(z)t.

� (Estimates for I93) : Note that this term does not appear when m = 1. If

m ≥ 2,

I93 ≤
m−1∑
l=1

(
m

l

)
‖∇(∂m−lz u)‖L∞‖∂lzu‖L2‖∂mz u‖L2

≤ δ

4
‖∂mz u‖2

L2 +
m− 1

δ

m−1∑
l=1

(
m

l

)2

U2(z)‖∂lzu‖2
L2

≤ δ

4
‖∂mz u‖2

L2 +
m− 1

δ

m−1∑
l=1

(
m

l

)2

U2(z)Fl(z)e−Λ̃(z)t.

� (Estimates for I94 and I95) : One has

I94 ≤
∑

α+β+γ=m
β 6=m

m!

α!β!γ!
‖φ‖s

(
‖∂βz u ∂γz ρ‖L1‖∂mz u‖L1 + ‖∂γz ρ‖L1‖∂βz u · ∂mz u‖L1

)
≤ 2

∑
α+β+γ=m

β 6=m

m!

α!β!γ!
‖φ‖s‖∂γz ρ‖L2‖∂βz u‖L2‖∂mz u‖L2

≤ δ

4
‖∂mz u‖2

L2 + 4
∑

α+β+γ=m
β 6=m

(
‖φ‖s

m!

α!β!γ!
U(z)

)2 (m+1)(m+2)
2

− 1

δ
‖∂βz u‖2

L2

≤ δ

4
‖∂mz u‖2

L2 +
∑

α+β+γ=m
β 6=m

(
‖φ‖s

m!

α!β!γ!
U(z)

)2
2m2 + 6m

δ
Fβ(z)e−Λ̃(z)t,

I95 = −
∫
Td
φ(x− y)|∂mz u(x)|2ρ(y)dydx

+

∫
Td
φ(x− y)∂mz u(y) · ∂mz u(x)ρ(y)dydx

≤ −φm‖ρ0‖L1‖∂mz u‖2
L2 + ‖φ‖s‖ρ∂mz u‖L1‖∂mz u‖L1

122



APPENDIX A. DETAILED PROOF OF CHAPTER 3

≤ −
(
φm‖ρ0‖L1 − δ

4

)
‖∂mz u‖L2 +

‖φ‖2
s‖ρ‖L2

δ
Em(t, z)

≤ −
(
φm‖ρ0‖L1 − δ

4

)
‖∂mz u‖L2 +

‖φ‖2
s‖ρ‖L2

δ
Em(z)e−Λ̃(z)t.

Finally, we gather the estimates for I9i (i = 1, · · · , 5) to obtain

∂

∂t
‖∂mz u‖2

L2 ≤ −2Λ̃(z)‖∂mz u‖2
L2 + F̂m(z)e−Λ̃(z)t, (A.4.1)

where F̂m(z) is given by, for m ≥ 2,

F̂1(z) :=
U(z)2

δ
F0(z) +

16

δ
U2(z)F0(z) +

‖φ‖2
sU(z)

δ
E1(z),

F̂m(z) :=
U(z)2

δ
F0(z) +

m− 1

δ

m−1∑
l=1

(
m

l

)2

U2(z)Fl(z)

+
∑

α+β+γ=m
β 6=m

(
‖φ‖s

m!

α!β!γ!
U(z)

)2
2m2 + 6m

δ
Fβ +

‖φ‖2
sU(z)

δ
E1(z).

We apply Grönwall’s lemma for (A.4.1) to yield

‖∂mz u‖2
L2 ≤ ‖∂mz u0‖2

L2e−2Λ̃(z)t +
F̂m(z)

Λ̃(z)
(e−Λ̃(z)t − e−2Λ̃(z)t)

≤ Fm(z)e−Λ̃(z)t,

where Fm(z) is defined as

Fm(z) := ‖∂mz u0‖2
L2 +

F̂m(z)

Λ̃(z)
.

This implies the desired estimate.
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Detailed proof of Chapter 5

B.1 A proof of Theorem 5.2.1

First, we define η and η̃ as follows:

ηt(x, v) := f in(x, v)−
∫ t

0

ηs(x, v)(∇v · Fa[fs])(ϕs)ds+ σd

∫ t

0

ηs(x, v) ◦ dWs,

η̃t(x, v) := ηt((ϕt)
−1).

We use the generalized Itô’s formula from Theorem 3.3.2 in [69] to obtain

that η̃t satisfies the relation (5.0.1). Since the classical solutions can become

measure-valued solutions and the uniqueness of measure-valued solutions is

guaranteed in Theorem 5.1.1, we have

η̃t(x, v) = ft(x, v).

Moreover, since η is a geometric Brownian motion, a unique classical solution

f corresponding to the initial datum f in can be represented by

ηt(x, v) = ft(ϕt(x, v)) = f in(x, v) exp

[
−
∫ t

0

∇v · Fa[fs](ϕs)ds+ dσWt

]
.

Now, we consider another classical solution f̃ corresponding to the initial

datum f̃ in and the associated stochastic flow ϕ̃t(x, v). Moreover, we set

R(t) := sup
{
|x| : ft(x, v) 6= 0 or f̃t(x, v) 6= 0 for some v ∈ Rd

}
,
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P(t) := sup
{
|v| : ft(x, v) 6= 0 or f̃t(x, v) 6= 0 for some x ∈ Rd

}
.

Then, we claim

(i) ‖ft − f̃t‖2
L∞≤ B1

t

 ‖f in − f̃ in‖2
L∞

+

∫ t

0

C1
s

(
‖ϕs − ϕ̃s‖2

L∞ + ‖fs − f̃s‖2
L∞

)
ds


+ 2 max(‖ft‖W 1,∞ , ‖f̃t‖W 1,∞)‖ϕt − ϕ̃t‖2

L∞ ,

(ii) ‖ϕt − ϕ̃t‖2
L∞ ≤ B2

t

( ∫ t

0

C2
s (‖ϕs − ϕ̃s‖2

L∞ + ‖fs − f̃s‖2
L∞)ds

)
,

(B.1.1)

where Bit and Cit (i = 1, 2) are nonnegative processes which have continuous

sample paths.

(i) First, we derive the L∞-estimates for classical solutions:

f(ϕt(x, v))− f̃t(ϕ(x, v))

=
(
f(ϕt(x, v))− f̃(ϕ̃t(x, v))

)
+
(
f̃(ϕ̃t(x, v))− f̃(ϕt(x, v))

)
=: J21 + J22.

• (Estimate of J21): By direct estimate, one has

I21 = f in(x, v) exp

[
−
∫ t

0

∇v · Fa[fs](ϕs)ds+ dσWt

]
− f̃ in(x, v) exp

[
−
∫ t

0

∇v · Fa[f̃s](ϕs)ds+ dσWt

]
≤ ‖f in − f̃ in‖L∞ exp

[
−
∫ t

0

∇v · Fa[fs](ϕs)ds+ dσWt

]

+ ‖f̃ in‖L∞ exp(dσWt)

 exp

(
−
∫ t

0

∇v · Fa[fs](ϕs)ds
)

− exp

(
−
∫ t

0

∇v · Fa[f̃s](ϕ̃s)ds
)


≤ ‖f in − f̃ in‖L∞ exp (dκt+ dσWt)

+ ‖f̃ in‖L∞ exp(dκt+ dσWt)

∣∣∣∣∫ t

0

(
∇v ·Fa[fs](ϕs)−∇v ·Fa[f̃s](ϕ̃s)

)
ds

∣∣∣∣ ,
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where we used the mean-value theorem, and we have∣∣∣∇v · Fa[fs](ϕs)−∇v · Fa[f̃s](ϕ̃s)
∣∣∣

≤ d

∫
R2d

∣∣∣φ(x∗ −Xs)− φ(x∗ − X̃s)
∣∣∣ fsdv∗dx∗

+ d

∫
R2d

φ(x∗ − X̃t)|fs − f̃s|dv∗dx∗

≤ dφLip|Xs − X̃s|+ dκ(4R(s)P(s))d‖fs − f̃s‖L∞ .

Thus, we get

J21 ≤ ‖f in − f̃ in‖L∞ exp (dκt+ dσWt)

+ ‖f̃ in‖L∞ exp(dκt+ dσWt)

∫ t

0

dφLip|Xs − X̃s|ds

+ ‖f̃ in‖L∞ exp(dκt+ dσWt)

∫ t

0

dκ(4R(s)P(s))d‖fs − f̃s‖L∞ds.

• (Estimate of J22): By direct estimate, one has

J22 ≤ ‖f̃t‖W 1,∞‖ϕt − ϕ̃t‖L∞ .

Hence, we take the supremum over (x, v) ∈ Rd × Rd, and use Young’s in-

equality and the Cauchy-Schwarz inequality to get

‖ft − f̃t‖L∞
≤ 2J2

21 + 2J2
22

≤ 6‖f in − f̃ in‖2
L∞ exp (2dκt+ 2dσWt)

+ 6‖f̃ in‖2
L∞ exp (2dκt+ 2dσWt)

(∫ t

0

dφLip|Xs − X̃s|ds
)2

+ 6‖f̃ in‖2
L∞ exp (2dκt+ 2dσWt)

(∫ t

0

dκ(4R(s)P(s))d‖fs − f̃s‖L∞ds
)2

+ 2‖f̃t‖2
W 1,∞‖ϕt − ϕ̃t‖2

L∞

≤ 6‖f in − f̃ in‖2
L∞ exp (2dκt+ 2dσWt)

+ 6t
(
dφLip‖f̃ in‖L∞ exp (dκt+ dσWt)

)2
∫ t

0

‖ϕs − ϕ̃s‖2
L∞ds

126



APPENDIX B. DETAILED PROOF OF CHAPTER 5

+ 6t
(
‖f̃ in‖L∞ exp (dκt+ dσWt)

)2
∫ t

0

dκ(4R(s)P(s))2d‖fs − f̃s‖2
L∞ds

+ 2‖f̃t‖2
W 1,∞‖ϕt − ϕ̃t‖2

L∞ .

Setting

B1
t := 6

[
1 + t

(
d‖φ‖W 1,∞ max(‖f in‖L∞ , ‖f̃ in‖L∞) exp(dκt+ dσWt)

)2
]
,

C1
t := (1 + (4R(t)P(t))2d),

we obtain the desired result (i) of (B.1.1).

(ii) Now, we estimate ‖ϕt − ϕ̃t‖L∞ . It follows from (5.2.6) and Itô’s lemma

that

d|Vt − Ṽt|2 = 2(Vt − Ṽt)d(Vt − Ṽt) + d(Vt − Ṽt)d(Vt − Ṽt)

= 2

(Vt − Ṽt)(Fa[ft](ϕt)− Fa[f̃t](ϕ̃t))︸ ︷︷ ︸
=:J23.

+σ2|Vt − Ṽt|2
 dt

− 2σ|Vt − Ṽt|2dWt.

Here, we have

J23 ≤
∫
R2d

∣∣∣φ(x∗ −Xt)− φ(x∗ − X̃t)
∣∣∣ |(v∗ − Vt) · (Vt − Ṽt)|ftdv∗dx∗

−
∫
R2d

φ(x∗ − X̃t)|Vt − Ṽt|2ftdv∗dx∗

+

∫
R2d

φ(x∗ − X̃t))|(v∗ − Ṽt) · (Vt − Ṽt)||ft − f̃t|dv∗dx∗

=: J231 + J232 + J233.

We separately estimate the J23i’s as follows:

J231 ≤ 2φLipP(t)|Xt − X̃t||Vt − Ṽt| ≤ 2φLipP(t)‖ϕt − ϕ̃t‖2
L∞ , J232 ≤ 0,
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J233 ≤ 2κP(t)|Vt − Ṽt|‖ft − f̃t‖L∞(4R(t)P(t))d

≤ κP(t)(4R(t)P(t))d
(
‖ft − f̃t‖2

L∞ + ‖ϕt − ϕ̃t‖L∞
)2

.

Thus, by Lemma 5.1.1 we get

|Vt − Ṽt|2 ≤ κ

∫ t

0

P(s)(4R(s)P(s))d‖fs − f̃s‖2
L∞ exp(−2σ(Wt −Ws))ds

+ (2φLip + κ)

∫ t

0

[
P(s)(4R(s)P(s))d‖ϕs − ϕ̃s‖2

L∞

× exp(−2σ(Wt −Ws))

]
ds

≤ 2‖φ‖W 1,∞ exp

(
4σ sup

0≤s≤t
|Ws|

)
×
∫ t

0

P(s)(4R(s)P(s))d(‖ϕs − ϕ̃s‖2
L∞ + ‖fs − f̃s‖2

L∞)ds.

Moreover, it is easy to obtain that

d|Xt − X̃t|2 = 2(Xt − X̃t) · (Vt − Ṽt) ≤ 2‖ϕt − ϕ̃t‖2
L∞ .

Thus, if we define B2
t and C2

t as

B2
t := 1 + 2‖φ‖W 1,∞ exp

(
4σ sup

0≤s≤t
|Ws|

)
, C2

t := 1 + P(t)(4R(t)P(t))d,

then (ii) of (B.1.1) can be fulfilled with the above B2
t and C2

t .

Therefore, we add (i) in (B.1.1)1 to (1 + 2 max(‖ft‖W 1,∞ , ‖f̃t‖W 1,∞)) times

(ii) in (B.1.1)2 and obtain

‖ft − f̃t‖2
L∞ + ‖ϕt − ϕ̃t‖2

L∞

≤ B1
t

[
‖f in − f̃ in‖2

L∞ +

∫ t

0

C1
s

(
‖ϕs − ϕ̃s‖2

L∞ + ‖fs − f̃s‖2
L∞

)
ds
]

+(1+2 max(‖ft‖W 1,∞ , ‖f̃t‖W 1,∞)B2
t

[∫ t

0

C2
s (‖ϕs− ϕ̃s‖2

L∞ + ‖fs− f̃s‖2
L∞)ds

]
≤ B1

t ‖f in − f̃ in‖2
L∞ + B̃t

∫ t

0

(
‖ϕs − ϕ̃s‖2

L∞ + ‖fs − f̃s‖2
L∞

)
ds,
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where B̃t is given by

B̃t := B1
t

(
sup

0≤s≤t
C1
s

)
+
(

1+2 max(‖ft‖W 1,∞ , ‖f̃t‖W 1,∞)
)
B2
t

(
sup

0≤s≤t
C2
s

)
.

Then, letting yt :=
∫ t

0

(
‖ϕs − ϕ̃s‖2

L∞ + ‖fs − f̃s‖2
L∞

)
ds, we have

dyt ≤
(
B1
t ‖f in − f̃ in‖2

L∞ + B̃tyt
)
dt.

Then, by Grönwall’s lemma we get

yt ≤ ‖f in − f̃ in‖2
L∞

∫ t

0

B1
s exp

(∫ t

s

B̃τdτ
)
ds,

and this gives

‖ft − f̃t‖2
L∞ + ‖ϕt − ϕ̃t‖2

L∞

≤ ‖f in − f̃ in‖2
L∞

[
B1
t + B̃t

∫ t

0

B1
s exp

(∫ t

s

B̃τdτ
)
ds

]
.

Hence, defining

Dt := B1
t + B̃t

∫ t

0

B1
s exp

(∫ t

s

B̃τdτ
)
ds,

we arrive at the desired estimate.

B.2 A proof of Proposition 5.3.3

Recall that fn,εt satisfies a differential form:

∂tf
n,ε
t = −v · ∇xf

n,ε
t −∇v · (Fa[fn−1,ε

t ]fn,εt ) + σ∇v · (vfn,εt ) ◦ Ẇt,

i.e., it satisfies

fn,εt = f in,ε −
∫ t

0

v · ∇xf
n,ε
s ds−

∫ t

0

∇v · (Fa[fn−1,ε
t ]fn,εt )ds

+ σ

∫ t

0

∇v · (vfn,εt ) ◦ dWs.

(B.2.1)
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Next, we claim: there exists a nonnegative process Amt with continuous sam-

ple paths such that

‖ft‖Wm,∞ ≤ ‖f in‖Wm,∞Amt .

In the sequel, we provide L∞-estimate of ft and its derivatives to provide a

proof of Proposition 5.3.3.

• (Zeroth-order estimate): It follows the formula (5.3.5) that

fn,εt (ϕn,εt (x, v)) = f in,ε(x, v) exp

[
−
∫ t

0

∇v · Fa[fn−1,ε
s ](ϕn,εs (x, v))ds+ dσWt

]
≤ ‖f in,ε‖L∞ exp(dκt+ dσWt).

This implies the zeroth-order estiamte:

‖fn,εt ‖L∞ ≤ ‖f in,ε‖L∞ exp(dκt+ dσWt). (B.2.2)

• (Higher-order estimates): Let α and β be multi-indices satisfying

1 ≤ |α|+ |β| ≤ m.

Then, we apply ∂αx∂
β
v to the relation (B.2.1) using Theorem 3.1.2 in [69]:

∂αx∂
β
v f

n,ε
t = ∂αx∂

β
v f

in,ε

−
∑
|µ1|≤1

(
β

µ1

)∫ t

0

∂µ1v (v) · ∇x(∂
α
x∂

β−µ1
v fn,εs )ds

−
∑
µ2≤α
|µ3|≤1

(
α

µ2

)(
β

µ3

)∫ t

0

∇v · (∂µ2x ∂µ3v Fa[fn−1,ε
s ]∂α−µ2x ∂β−µ3v fn,εs )ds

+ σ
∑
|µ4|≤1

(
β

µ4

)∫ t

0

∇v · (∂µ4v (v)∂αx∂
β−µ4
v fn,εs ) ◦ dWs,

(B.2.3)

where we used the relation:

∂µ3v Fa[f
n−1,ε
t ] = 0, for |µ3| ≥ 2.

Note that the differentiation equality (B.2.3) is only true outside a P-

zero set in Ω which depends on (x, v), according to Theorem 3.1.2 in [69].
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However, we can use the argument in Lemma 5.2.2 to obtain that the equality

also holds P⊗dx⊗dv-a.s. Now, we rearrange the previous relation to obtain

∂αx∂
β
v f

n,ε
t = ∂αx∂

β
v f

in,ε

−
∫ t

0

[
v · ∇x(∂

α
x∂

β
v f

n,ε
s ) + Fa[f

n−1,ε
s ] · ∇v(∂

α
x∂

β
v f

n,ε
s )
]
ds

+ σ

∫ t

0

v · ∇v(∂
α
x∂

β
v f

n,ε
s ) ◦ dWs

− d+ |β|
d

∫ t

0

∇v · Fa[fn−1,ε
s ]∂αx∂

β
v f

n,ε
s ds

+ σ(d+ |β|)
∫ t

0

∂αx∂
β
v f

n,ε
s ◦ dWs −

∫ t

0

Lα,β(s)ds,

(B.2.4)

for P⊗dx⊗dv-a.s., where the process Lα,β is given by the following relation:

Lα,β :=
∑
|µ1|=1

(
β

µ1

)
∂µ1v (v) · ∇x(∂

α
x∂

β−µ1
v fn,εs )

+
∑

06=µ2≤α

(
α

µ2

)
∇v · (∂µ2x Fa[fn−1,ε

s ])∂α−µ2x ∂βv f
n,ε
s

+
∑

06=µ2≤α
|µ3|=1

(
α

µ2

)(
β

µ3

)
∂µ2x ∂

µ3
v Fa[f

n−1,ε
s ] · ∇v(∂

α−µ2
x ∂β−µ3v fn,εs )

+
∑

06=µ2≤α

(
α

µ2

)
∂µ2x Fa[f

n−1,ε
s ] · ∇v(∂

α−µ2
x ∂βv f

n,ε
s ).

Next, we define λ and λ̃ as follows:

λt(x, v) := ∂αx∂
β
v f

in,ε(x, v)− d+ |β|
d

∫ t

0

λs(x, v)(∇v · Fa[fn−1,ε
s ])(ϕn,εs )ds

+ σ(d+ |β|)
∫ t

0

λs(x, v) ◦ dWs −
∫ t

0

Lα,β(ϕn,εs )ds,

λ̃t(x, v) := λt((ϕ
n,ε
t )−1).

By using generalized Itô’s formula from Theorem 3.3.2 in [69], λ̃t satisfies the

relation (B.2.4). Thus, by the uniqueness,

λ̃t = ∂αx∂
β
v f

n,ε
t ,
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and we use Itô’s formula on λt to get

∂αx∂
β
v f

n,ε
t (ϕn,εt )

= ∂αx∂
β
v f

in,ε(x, v) exp
[
− d+ |β|

d

∫ t

0

∇v · Fa[fn−1,ε
s ](ϕn,εs )ds+σ(d+ |β|)Wt

]
−
∫ t

0

exp

 −d+ |β|
d

∫ t

s

∇v · Fa[fn−1,ε
τ ](ϕn,ετ )dτ

+σ(d+ |β|)(Wt −Ws)

Lα,β(s, ϕn,εs )ds.

For detailed explanation for the above realtion, we refer to the proof of The-

orem 3.2 in [13].

Note that the following estimates hold:

• If |β| = 1, one has

|∂αx∂βvFa[f
n−1,ε
t ]| ≤ ‖φ‖Cm .

• If |α| ≥ 1, one gets

|∂αxFa[f
n−1,ε
t ](ϕn,εt )| ≤ ‖φ‖Cm

∫
R2d

|v∗ · V n,ε
t |f

n−1,ε
t (x∗, v∗)dv∗dx∗

≤ ‖φ‖Cm(Vn−1,ε(t))|V n,ε
t | ≤ ‖φ‖Cm(V∞(t))2.

We set Cα,β(t) to be

Cα,β(t) := ‖φ‖Cm

∑
|µ1|=1

(
β

µ1

)
+
∑

0 6=µ2≤α

(
α

µ2

)
+
∑

0≤µ2≤α
|µ3|=1

(
α

µ2

)(
β

µ3

)(1 + (V∞(t))2).

This yields

|Lα,β(t, ϕn,εt )| ≤ Cα,β(t)‖fn,εt ‖Wm,∞ .

Thus, we have

∂αx∂
β
v f

n,ε
t (ϕn,εt )

≤ ‖∂αx∂βv f in,ε‖L∞ exp((d+ |β|)(κt+ σWt)

+

∫ t

0

exp((d+ |β|){κ(t−s)+σ(Wt−Ws)}Cα,β(s)‖fn,εs ‖Wm,∞ds.

(B.2.5)
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Now, we take the supremum over all characteristic flow, sum (B.2.5) over all

1 ≤ |α|+ |β| ≤ m and combine this with (B.2.2) to obtain

‖fn,εt ‖Wm,∞ ≤ ‖f in,ε‖Wm,∞Mm
t

+Mm
t

∫ t

0


∑

|α|+|β|≤m

exp(−σ(d+ |β|)Ws)Cα,β(s)

× exp(−(d+m)κs)‖fn,εs ‖Wm,∞

 ds,
where the process Mm

t is given by the following relation:

Mm
t := exp((d+m)κt)

∑
|β|≤m

exp(σ(d+ |β|)Wt).

Note that Mm
t is independent of n and ε. We set

bn(t) := ‖fn,εt ‖Wm,∞(Mm
t )−1.

Then, one gets

bn+1(t) ≤ b0 +

∫ t

0

Ñm
s bn+1(s)ds,

where the process Ñm
s is

Ñm
s :=

∑
|β|≤m

exp(σ(N + |β|)Ws)


∑
|β|≤m

exp(−σ(N + |β|)Ws)


×

 ∑
|α|+|β|≤m

Cα,β(s)

 .

Thus, we can use Grönwall’s lemma to obtain

‖fn,εt ‖Wm,∞ ≤ ‖f in,ε‖Wm,∞Amt ,

where the process Amt is given by the following relation:

Amt := exp((d+m)κt)
∑
|β|≤m

exp(σ(d+ |β|)Wt) exp

[∫ t

0

Ñm
s ds

]
.
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2017), 299-331.

[12] Choi, Y.-P., Salem, S.: Cucker-Smale flocking particles with mul-

tiplicative noises: Stochastic mean-field limit and phase transition.

Kinet. Relat. Models 12 (2019), 573-592.

[13] Chow, P.-L.: Stochastic Partial Differential Equations, Chapman and

Hall/CRC, 2015.

[14] Coghi, M. and Flandoli, F.: Propagation of chaos for interacting par-

ticles subject to environmental noise. Ann. Appl. Probab. 26 (2016),

1407-1442.

[15] Cucker, F. and Dong, J.-G.: Avoiding collisions in flocks. IEEE Trans.

Automat. Contr. 55 (2010), 1238-1243.

135



BIBLIOGRAPHY

[16] Cucker, F. and Dong, J.-G.: On flocks influenced by closest neighbors.

Math. Models Methods Appl. Sci. 26 (2016), 2685-2708.

[17] Cucker, F. and Dong, J.-G.: A general collision-avoiding flocking

framework. IEEE Trans. Automat. Contr. 56 (2011), 1124-1129.

[18] Cucker, F. and Dong, J.-G.: On flocks under switching directed inter-

action topologies. SIAM J. Appl. Math. 79 (2019), 95-110.

[19] Cucker, F. and Mordecki, E.: Flocking in noisy environments. J.

Math. Pures Appl. 89 (2008), 278-296.

[20] Cucker, F. and Smale, S.: Emergent behavior in flocks. IEEE Trans.

Automat. Control 52 (2007), 852-862.

[21] Dalmao, F. and Mordecki, E.: Cucker-Smale flocking under hierar-

chical leadership and random interactions. SIAM J. Appl. Math. 71

(2011), 1307-1316.

[22] Dalmao, F. and Mordecki, E.: Hierarchical Cucker-Smale model sub-

ject to random failure. IEEE Trans. Automat. Contr. 57 (2012), 1789-

1793.

[23] Degond, P. and Motsch, S.: Large-scale dynamics of the persistent

turing Walker model of fish behavior. J. Stat. Phys. 131 (2008), 989-

1022.

[24] Despres, B. and Perthame, B.: Uncertainty propagation; Intrusive ki-

netic formulations of scalar conservation laws. SIAM/ASA J. Uncer-

tainty Quantification 4 (2016), 980–1013.

[25] Dong, J.-G., Ha, S.-Y., Jung, J. and Kim, D.: On the stochastic

flocking of the Cucker-Smale flock with randomly switching topolo-

gies. Submitted.

[26] Dong, J.-G., Ha, S.-Y. and Kim, D.: Emergent behaviors of continu-

ous and discrete thermomechanical Cucker-Smale models on general

digraphs. Math. Models Meth. Appl. Sci. 29 (2019), 589-632.

136



BIBLIOGRAPHY

[27] Dong, J.-G., Ha, S.-Y. and Kim, D.: Interplay of time-delay and ve-

locity alignment in the Cucker-Smale model on a general digraph.

Discrete Contin. Dyn. Syst.-Ser. B. 22 (2019), 1-28.

[28] Dong, J.-G. and Qiu, L.: Flocking of the Cucker-Smale model on gen-

eral digraphs, IEEE Trans. Automat. Contr. 62 (2017), 5234-5239.

[29] Duan, R., Fornasier, M. and Toscani, G.: A kinetic flocking model

with diffusion. Commun. Math. Phys. 300 (2010), 95-145.

[30] Erban, R., Haskovec, J. and Sun, Y.: A Cucker-Smale model with

noise and delay, SIAM J. Appl. Math. 76 (2016), 1535-1557.

[31] Evans, L. C.: An introduction to stochastic differential equations.

American Mathematical Soc., 2012.

[32] Figalli, A. and Kang, M.: A rigorous derivation from the kinetic

Cucker-Smale model to the pressureless Euler system with nonlocal

alignment. Analysis and PDE 12 (2019), 843-866.

[33] Flandoli, F., Gubinelli, M. and Priola, E.: Well-posedness of the trans-

port equation by stochastic perturbation. Invent. Math. 180 (2010),

1-53.

[34] Fornasier, M., Haskovec, J. and Toscani, G.: Fluid dynamic descrip-

tion of flocking via Povzner-Boltzmann equation. Physica D 240

(2011), 21-31.

[35] Ha, S.-Y., Huang, F. and Wang, Y.: A global unique solvability of

entropic weak solution to the one-dimensional pressureless Euler sys-

tem with a flocking dissipation. J. Differential Equations 257 (2014),

1333-1371.

[36] Ha, S.-Y., Jeong, J., Noh, S. E., Xiao, Q. and Zhang, X.: Emergent dy-

namics of Cucker-Smale flocking particles in a random environment.

J. Differential Equations 262 (2017), 2554-2591.

[37] Ha, S.-Y. and Jin, S.: Local sensitivity analysis for the Cucker-Smale

model with random inputs. Kinetic Relat. Models 11 (2018), 859-889.

137



BIBLIOGRAPHY

[38] Ha, S.-Y., Jin, S. and Jung, J.: A local sensitivity analysis for the

kinetic Cucker-Smale equation with random inputs. J. Differential

Equations 265 (2018), 3618-3649.

[39] Ha, S.-Y., Jin, S. and Jung, J.: A local sensitivity analysis for the

kinetic Kuramoto equation with random inputs. Netw. Heterog. Media

14 (2019), 317-340.

[40] Ha, S.-Y., Jin, S. and Jung, J.: Local sensitivity analysis for the

Kuramoto-Daido model with random inputs in a large coupling regime.

Submitted.

[41] Ha, S.-Y., Jin, S., Jung, J. and Shim, W: A local sensitivity analy-

sis for the hydrodynamic Cucker-Smale model with random inputs. J.

Differential Equations. 268 (2020), 636-679.
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국문초록

본 학위 논문에서는, 쿠커-스메일 모형에 임의적 요소를 도입하여 그러한 불

확실성에 대한 정량적 해석을 제시한다. 쿠커-스메일 모형의 다이나믹스를

실제로 응용함에 있어 우리는 쿠커-스메일 모형 자체가 몇몇 내적 불확실성을

포함하고 있으며 입자들의 다이나믹스에 영항을 줄 수 있는 몇 가지 외부적

요인을 놓치고 있음을 예상할 수 있다. 그러므로 쿠커-스메일 총체의 다이나

믹스를더잘서술하기위해,이러한불확실성이있는요소를모형에도입하여

그것들이 쿠커-스메일 계의 다이나믹스나 안정성에 주는 영향을 평가할 필요

가 있다.

이를 달성하기 위해, 우리는 우선 쿠커-스메일 모형의 거시적인 형태를

고려한다. 즉, 우리는 통신 가중치 함수와 초기값에서 오는 임의적 입력치를

유체역학 쿠커-스메일 모형에 포함시켜 임의적 유체역학 쿠커-스메일 모형을

유도한다. 더 나아가 미시적 그리고 중간보기적 단계에서 외적 불확실성에 대

해다룬다.미시적모형에대해서,쿠커-스메일모형에임의로변하는네트워크

구조를도입하여플로킹의창발에대한충분조건을알아본다.중간보기적단계

의 모형으로서, 우리는 곱셈 백색 소음으로 동요된 쿠커-스메일 운동방정식을

고려하고 해의 존재성 및 유일성과 점근적 다이나믹스를 공부한다.

주요어휘: 플로킹, 쿠커-스메일 모형, 불확실성 정량화, 국소 민감도 분석, 임

의적 동역학계, 확률편미분방정식

학번: 2016-20249
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