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Abstract

Regularization methods for
image denoising and underwater

image dehazing

In this thesis, we discuss regularization methods for denoising images cor-

rupted by Gaussian or Cauchy noise and image dehazing in underwater. In

image denoising, we introduce the second-order extension of structure ten-

sor total variation and propose a hybrid method for additive Gaussian noise.

Furthermore, we apply the weighted nuclear norm under nonlocal framework

to remove additive Cauchy noise in images. We adopt the nonconvex alter-

nating direction method of multiplier to solve the problem iteratively. Sub-

sequently, based on the color ellipsoid prior which is effective for restoring

hazy image in the atmosphere, we suggest novel dehazing method adapted

for underwater condition. Because attenuation rate of light varies depending

on wavelength of light in water, we apply the color ellipsoid prior only for

green and blue channels and combine it with intensity map of red channel

to refine the obtained depth map further. Numerical experiments show that

our proposed methods show superior results compared with other methods

both in quantitative and qualitative aspects.

Key words: Denoising, Dehazing in underwater, Gaussian noise, Cauchy

noise, Structure tensor, Weighted nuclear norm, Color ellipsoid prior
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Chapter 1

Introduction

Image processing is an inter-disciplinary field crossing boundaries between

mathematics, statistics, computer science, and cognitive science. It aims at

having computers deal with and understand a digitized image as human eyes

can do and more. Research in this field involves object recognition, segmen-

tation, motion estimation, image restoration and so on. It can be used in

various areas ranging from face recognition and autonomous driving to anal-

ysis of medical data and defect detection in semiconductor manufacturing.

Among diverse research subjects mentioned above, image restoration is a

fundamental job in image processing and it seeks to restore an original image

from a given image which is distorted by several factors. It covers a wide

variety of tasks such as denoising, deblurring, inpainting and dehazing.

Image restoration is an inverse problem which consists of using a set of

observations to infer the inputs or cause that produce the measurements. A

solution of inverse problem is non-unique because there are many possible

cases of input parameters that give the same observations. Therefore, it is

required to make prior knowledge to extract a feasible solution out of numer-

ous candidates. An introduction of a prior assumption to the inverse prob-

lem, which is called regularization, is achieved explicitly by insertion of ad-

ditional mathematical term to the model or implicitly by optimization algo-
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Chapter 1. Introduction

rithm. Because information which is contained in the regularization heavily

affect the properties of acquired solution, it requires that we need meticu-

lously designed regularization to solve the inverse problem. In this thesis, we

study various regularization methods of mathematical models for denoising

and underwater dehazing which are subjects of image restoration.

1.1 Image denoising for Gaussian and Cauchy

noise

Image denoising aims at recovering image degraded by noise which occurs

necessarily by the environmental effect on image sensor during acquisition

process and instability of medium in the transmission of signal. It has been

widely studied when the noise is additive and follows Gaussian distribution.

Gaussian noise arises in electronic amplifier or detectors and also caused by

natural sources such as thermal noise which comes from reset operation of

image sensor [48]. Another type of noise, Cauchy noise, have received less

attention compared with Gaussian noise despite its frequent occurrence in

various scientific and engineering situations. Cauchy noise follows Cauchy

distribution which are heavy-tailed and it shows impulsive characteristic in

comparison to Gaussian noise. It appeared in atmospheric and underwater

acoustic signals that are used in radar and sonar applications, multi-access

networks, and power line communication channels [19, 23, 31, 33, 36, 58, 59,

71].

Following [55], we give basic model of the situation as image is composed

of discrete rectangular pixel grid and also assume that noise acts on each

pixel with independent and identically distributed manner.

Let h > 0 and nx, ny ∈ N. Discrete image of size nx×ny is given as matrix

u = (uij) where uij ∈ R (or R3) indicates intensity value (or vector) at pixel

xij = (ih, jh) and (i, j) ∈ I := {1, · · · , nx} × {1, · · · , ny}. The parameter

2



Chapter 1. Introduction

h determines a distance between each pixel, in other words, a resolution of

image. Then an additive noise n = (nij) degrades the image u as follows:

f = u + n (1.1)

where n is a matrix with same size of u and nij’s are samples from i.i.d

probability distributions. Given that we know f by observation, we study

method of finding u by variational model which is adequately adapted to

the property of noise applied to the image.

Generally, denoising techniques can be largely classified into three cate-

gories, which are filtering, variational model and deep learning-based method.

Filter-based methods [2, 17, 21, 35, 37, 38, 52] introduce a carefully designed

filters under reasonable a priori assumptions and apply them to a given im-

age. Minimizing mean squared error in local window gives adaptive filtering

to a noisy image [38]. In [2, 21, 52], the authors apply Fourier or wavelet

transform to an image so that one can conduct filtering in the frequency do-

main. Laus et al. [37] introduced a generalized myriad filter which is adapted

for Cauchy noise and apply it nonlocally for estimating the parameter of the

noise distribution. Deep learning-based methods [41, 44, 68, 69] show impres-

sive performance recently due to the huge amount of training data and deep,

complex architecture of neural network. However, to the best of our knowl-

edge, it involves considerable computational cost for training and capacity

of the model is dependent on features of training data. Furthermore, math-

ematical analysis is deficient that explains how the model actually works.

In variational framework, we define an energy functional which reflects

the properties of given noise and obtain a solution that minimizes the func-

tional. The energy functional usually consists of a fidelity term that is de-

rived from probability distribution of noise and regularization term that con-

tains a priori information and guides a solution to have specific properties.

Based on the maximum a posteriori (MAP) estimate, fidelity terms for Gaus-

3



Chapter 1. Introduction

sian and Cauchy noise can be derived. It is in the form of L2-norm for Gaus-

sian and nonconvex for Cauchy noise respectively.

Total variation (TV) [54] is one of the most widely used regularization

because of its effectiveness and low computational cost. It is capable of pre-

serving edges and discontinuities sharply while smoothing noisy parts. Subse-

quently, there follow various extensions of TV and they are applied to restor-

ing an image corrupted by Gaussian noise. These models include total gen-

eralized variation [8], higher-order TV [16, 49], fractional-order TV [67] and

structure tensor total variation (STV) [39]. In particular, STV generalizes

TV in that it maintains all the advantageous properties of TV and utilizes

additional information from the neighborhood of each point. It calculates

eigenvalues of structure tensor which is defined on every point of image and

contains information about local variation of image intensity. Although it

shows better denoising performance compared with other TV-based meth-

ods, it still exhibits cartoon-like feature called staircase artifacts which can

be seen in the results of TV-based methods.

Note that TV regularization is one of local methods which consider infor-

mation of adjacent regions of interested point. In contrast, there exist non-

local methods [10, 21, 27, 29, 34] which utilize information of every point in

image. They show superior performance over local methods because of dif-

ferences in the amount of information used for each type of methods. Among

nonlocal methods, weighted nuclear norm minimization (WNNM) [29] as-

sumes a low rank property of matrix whose column consists of vectorized

similar patches in image. The rank of a matrix can be approximated by nu-

clear norm of a matrix [12–14], i.e., the sum of singular values of a ma-

trix and it is usually used in the area of matrix completion. In accordance

with previous works, the low rank assumption is put into practice by using

weighted nuclear norm of the patch-based matrix as a regularization term.

When it comes to restoring an image corrupted by Cauchy noise, there

exist only a few variational models [45, 56] until recently. Both are based on

4



Chapter 1. Introduction

TV regularization and the difference is that the model becomes convexified

by inserting additional quadratic term in [56] while the authors of [45] solve

the nonconvex model directly by applying nonconvex alternating direction

method of multipliers (ADMM).

In this thesis, in Section 3.1, we suggest a new regularization called second-

order structure tensor total variation (STV2) which is a higher order exten-

sion of STV for denoising Gaussian noise. For defining STV2, we construct

second-order structure tensor from vectorial form of hessian as an analogue

of the structure tensor. We propose the hybrid STV which is a convex com-

bination of STV and STV2. In Section 3.2, we propose to use the weighted

nuclear norm for denoising Cauchy noise. Because the data-fidelity term of

the model is nonconvex, we apply the nonconvex ADMM to solve the prob-

lem iteratively.

1.2 Underwater image dehazing

Image dehazing aims to restore outdoor images which are often degraded

by haze, fog and smoke in the atmosphere. The air becomes turbid when it

is mixed with solid and liquid particles like dust or water-droplets. In the

presence of haze in the air, scene radiance from the object in visual range

undergoes degradation by absorption and scattering. As light travels through

the haze, it is attenuated along the line of sight. Furthermore, background

light from the scattering of ambient light due to haze is added to the di-

rectly attenuated light. As a result of the above effects, contrast and color

of an image are distorted and a visibility of the scene is limited. As the dis-

tance between camera and the scene point is farther, the amount of degra-

dation by haze increases. It is represented by transmission (visibility) of the

scene point. The image formation model for hazy scene is given as a convex

combination of the scene radiance and global atmospheric light (background

light) where the transmission is a balancing coefficient between two terms.

5



Chapter 1. Introduction

If we take an image in underwater instead of air, degradation of the im-

age is also caused by absorption and scattering of light due to medium, but

exhibits different aspects from the degradation by haze in the air. First of

all, in underwater, the amount of attenuation of light depends on the wave-

length of light as it travels through the medium while, in atmosphere, we

deal with the attenuation process independently of wavelength of light. Ad-

ditionally, there are several types of water that exhibits different degree of

attenuation with respect to wavelength. In optical oceanography, water is

categorized into 10 classes such as five oceanic and five coastal types based

on the diffuse downwelling coefficients [57]. Accordingly, transmission map

of the scene point depends on the color channel of image and type of water

in which image is taken. The image formation model for underwater scene is

a convex combination of scene radiance and global background light where

the transmissions playing a role of balancing coefficient in the model vary

depending on the color channel of the image.

For restoration of hazy outdoor images, many methods have been sug-

gested [5, 11, 24, 26, 30, 61]. In [30], the authors propose a simple yet ef-

fective image prior called dark channel prior. They observe that most local

patches in clean outdoor images possess some pixels which have very low

intensities at least one color channel. From this observation, they estimate

transmission map of the hazy image and recover a hazy-free image of good

quality. But it has some problems such as blocky artifacts and invalidity to

large white region. After that, in [11], a method to supplement the dark

channel prior is suggested. By statistically removing noisy pixels which are

unrelated to most of pixels in a patch, they estimate the transmission map

robustly. In [61], the authors propose an algorithm that estimates global at-

mospheric light by continuously decomposing the image into quarters and

selecting one region of them according to intensity and variation of the re-

gion.

For underwater image restoration problems, there also exist various meth-

6
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ods [3, 4, 18, 22, 42, 50, 70]. Applying the dark channel prior directly to the

underwater image is not effective because rapid attenuation of red light in

underwater disturb an accurate estimation of transmission map. To resolve

this drawback, the authors of [22] propose to use information of blue and

green channels when applying the dark channel prior. This method brings

an improvement over original dark channel prior method, but they assume

the uniform transmission across color channels. In [42], the authors recover

blue and green channels following the algorithm in [22]. Then, red channel is

corrected under the Gray-World assumption. In [50], rather than transmis-

sion, depth estimation method for underwater scenes is proposed. It is based

on the fact that the intensity of blurriness and attenuation of red light gets

stronger as the scene depth becomes deeper. In [3, 4], a revised underwater

image formation model is proposed so that it reflects the physical proper-

ties of attenuation in underwater more accurately. Specifically, the authors

suggest that direct and back-scattered signals are governed by distinct coef-

ficients and each of these coefficients depend on factors other than optical

properties of the water. Although the proposed model in [4] is more accurate

than previous one, it is demanding to solve the new model because it has

far more unknowns than given number of equations. Therefore, one needs

more prior assumptions and additional information such as depth to carry

out restoration task.

In this thesis, in Chapter 4, we introduce a novel method for restoring

images taken in underwater. We estimate a depth map of image utilizing two

kinds of information. First, we apply the color ellipsoid prior [11] to blue and

green channels to get a raw depth map. Then, convex combination of the ob-

tained depth map with normalized red channel gives the refined depth map.

To avoid artifacts caused by the use of patch-based method, we adopt the

superpixel segmentation method [1] when applying the color ellipsoid prior.

The rest of this thesis is organized as follows: in Chapter 2, we recall pre-

vious works related to regularization methods and optimization algorithms

7
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for image denoising and dehazing. In Chapter 3, we propose our regular-

ization methods for denoising an image corrupted by Gaussian and Cauchy

noise respectively. For each type of noise, we study the numerical algorithms

for solving the proposed models, present experimental results and compare

them with other denoising methods. In Chapter 4, a novel method for restor-

ing underwater image is proposed. We present experimental results of the

proposed method and compare them with other existing methods. In Chap-

ter 5, we conclude the thesis with a few remarks.

8



Chapter 2

Preliminaries

In this chapter, we investigate several existing image restoration mod-

els with regularization methods and numerical algorithms for solving them,

which would be helpful for grasping the materials in the following chapters.

2.1 Variational models for image denoising

Let Ω ⊂ R2 be an image domain. Suppose we have a noisy image f :

Ω→ R corrupted by additive noise n and it is represented as follows:

f = u+ n (2.1)

where u : Ω → R is a latent clean image. Unlike (1.1), we assume (2.1) to

be defined on continuous domain Ω. At each point x of Ω, the noise n is

realized from a specific probability distribution with i.i.d. manner.

2.1.1 Data-fidelity

Variational model for image denoising mostly consists of a data-fidelity

term and regularization term. A form of data-fidelity term depends on the

9
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property of given noise and it is derived from maximum a priori (MAP) esti-

mate. Let us assume that the noise n follows Gaussian distribution N(0, σ2).

From MAP principle, we expect that the probability of finding latent param-

eter u should maximize among possible parameters given the observation of

noisy image f . In other words,

u∗ = arg max
u

P (u|f).

Then, from Bayes’ rule,

u∗ = arg max
u

P (f |u)P (u)

P (f)
= arg max

u
P (f |u)P (u). (2.2)

Now, we take minus logarithm of right side of (2.2) to have the following:

u∗ = arg min
u

− logP (f |u)− logP (u)

= arg min
u

ˆ
Ω

− logP (f(x)|u(x))dx− logP (u). (2.3)

The first term in (2.3) indicates the occurrence probability of intensity f(x)

of the noisy image given intensity u(x) of the latent image at point x ∈ Ω.

Hence, because the noise follows Gaussian distribution, we have

logP (f(x)|u(x)) = −1

2
log (2π)− log σ − (u(x)− f(x))2

2σ2
,

Furthermore, a priori knowledge P (u) on the distribution of latent image u

is required and it is represented by a regularization term. After omitting the

constant terms, the resulting variational model is

arg min
u

− logP (u)−
ˆ

Ω

(u(x)− y(x))2

2σ2
dx.

10
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We can identify that the data-fidelity term of a variational model for Gaus-

sian noise is given in the form of L2-norm. In general, a variational model

for denoising Gaussian noise is given as follows:

arg min
u

R(u) +
λ

2

ˆ
Ω

|u− f |2 dx, λ > 0, (2.4)

where f is an observed noisy image, R(u) is a regularization term and λ is

a parameter balancing two terms.

2.1.2 Regularization

Regularization term of a variational model possesses information on the

characteristics of a solution that is acquired from the model and it is im-

portant that we introduce a regularization which is appropriate for a given

problem and reflects our intention.

Total variation (TV)

We recall that total variation (TV) [54] has been in great use since its

appearance. A variational model adopting TV is given as follows:

arg min
u

|u|BV(Ω) +
λ

2

ˆ
Ω

|u− f |2 dx, λ > 0. (2.5)

Here, BV(Ω) is a space of bounded variation functions and is a subspace of

L1(Ω). Note that

|u|BV(Ω) := sup

{
−
ˆ

Ω

u divφ dx | φ ∈ C∞c (Ω,RC), ‖φ(x)‖∞ ≤ 1 ∀x ∈ Ω

}
,

BV(Ω) :=
{
u ∈ L1(Ω) : |u|BV(Ω) < +∞

}
,

11
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and when u is smooth, i.e., u ∈ C1(Ω) (or W 1,1(Ω)), TV(u) becomes

|u|BV(Ω) =

ˆ
Ω

|∇u| dx.

It is well known that TV is convex and lower semi-continuous. Subsequently,

the existence and uniqueness of the solution of the problem (2.5) are ob-

tained.

Theorem 2.1.1. ([15]) Let f be in L2(Ω). Then the problem (2.5) has a

solution in BV (Ω) and it is unique.

Proof. Take a minimizing sequence {un}n∈N for the energy functional in (2.5).

Because {un}n∈N is bounded in L2(Ω), there exists a subsequence {unk}nk∈N
converging to some u in L2(Ω). By lower semi-continuity of TV and Fatou’s

lemma, u ∈ BV (Ω) and it minimizes the energy functional. The uniqueness

follows from the convexity of TV.

For denoising task, TV performs very well in that it makes homogeneous

region clear and preserves edge like boundary of object or textures. However,

the solution becomes approximately piecewise constant function and stain-

like feature called staircase artifact appear which is caused by discontinuities

between constant regions.

Combined first and second order approach

A combined first and second order approach [49] is also one of the straight-

forward higher-order extension of TV. It combines total variation of an im-

age and total variation of gradient of an image. A variational model adopt-

ing combined approach is given as follows:

arg min
u

α

ˆ
Ω

|∇u| dx+ β

ˆ
Ω

|∇2u| dx+
1

2

ˆ
Ω

|u− f |2 dx, α, β > 0. (2.6)

12
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It is known that the model (2.6) has the unique minimizer. The additional

second order term acts as an assistant to remove artifacts caused by first

order term without creating any serious blur.

Total generalized variation (TGV)

Another regularization method is total generalized variation (TGV) [8]

which is a higher-order extension of TV. It is of the form:

TGVk
α(u) = sup

{ˆ
Ω

udivkφ dx | φ ∈ Ck
c (Ω, Symk(R2)),

‖div`φ‖∞ ≤ α`, , ` = 0, 1, · · · , k − 1
}
,

where Symk(R2)) denotes the space of symmetric tensors of order k with

arguments in R2, and α` are fixed positive parameters. The second order

TGV, i.e. TGV2
α, is alternatively expressed as [9]:

TGV2
α(u) = min

w∈BD(Ω)
α1

ˆ
Ω

|∇u− w| dx+ α0

ˆ
Ω

|Ew| dx (2.7)

where BD(Ω) denotes the space of vector fields of bounded deformation, i.e.,

w ∈ L1(Ω,R2) such that the distributional symmetrized derivative Ew =
1

2
(∇w +∇wT ) is a 2× 2 symmetric matrix-valued Radon measure.

The use of second order TGV as a regularization to denoising shows a

smoothed result without staircase artifact and the solution leads to a piece-

wise affine function. Intuitively, it is explained as follows. In smooth regions

of an image u, second derivative of u is locally small. It leads that w in (2.7)

is chosen locally as ∇u and TGV2
α penalizes second derivative of u. Around

edges, on the other hand, second derivative of u is relatively larger than

∇u. It makes w close to 0 locally and TGV2
α penalizes total variation of u.

In this way, TGV becomes locally affine in smooth regions while preserving

edges of an image.

13
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2.1.3 Optimization algorithm

It needs that we find the numerical solution minimizing the given energy

functional. There are various optimization algorithms for obtaining the so-

lution. Here, we introduce the algorithms which is later related to solving

the proposed models.

Alternating direction method of multipliers (ADMM)

The alternating direction method of multipliers (ADMM) transforms con-

trained problem into unconstrained form and minimize each variable inde-

pendently. Suppose we are given the problem:

min
x,y

f(x) + g(y),

subject to Ax+By = c,

where f, g satisfy some conditions.

We define the augmented lagrangian Lβ(x, y, w) as follows:

Lβ(x, y, w) = f(x) + g(y) + 〈w,Ax+By − c〉+
β

2
‖Ax+By − c‖2

2,

where β > 0 and w is auxiliary variable.

Then, the ADMM minimizes each variable separately and update auxil-

iary variable:

xk+1 = arg min
x
Lβ(x, yk, wk),

yk+1 = arg min
y
Lβ(xk+1, y, wk),

wk+1 = wk + β(Axk+1 +Byk+1 − c).

It is known [62] that the sequence {(xk, yk, wk)} converges if f, g are convex

14
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and possibly for some nonconvex, nonsmooth cases.

Nesterov’s accelerated gradient

Suppose we have a smooth convex function f on Rn which is β-Lipschitz

gradient continuous, i.e., for any x, y ∈ Rn,

‖∇f(x)−∇f(y)‖ ≤ β‖x− y‖.

Then, it is well known that the gradient descent algorithm xn+1 = xn −
η∇f(xn) converges to minimum of f with convergence rate of order O(1/n)

if η ≤ 1
β
. Subsequently, Nesterov [46] introduce the accelerated gradient de-

scent algorithm which attains the convergence rate of order O(1/n2).

If we define t1 = 0, y1 = x1 for arbitrary initial point x1, the algorithm

is simply given as follows: for n ≥ 1,

yn+1 = xn − η∇f(xn),

tn+1 =
1 +

√
1 + 4t2n
2

,

xn+1 = yn+1 +
tn − 1

tn+1

(yn+1 − yn).

2.2 Methods for image dehazing in the air

In the presence of haze in the atmosphere, an image we take is repre-

sented by sum of attenuated direct signal from the scene point and global

atmospheric light from the scattering of background. Then, the model for

the formation of hazy image is given as follows:

I(x) = J(x)t(x) + A(1− t(x)), (2.8)
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where I is an observed hazy image, J is the scene radiance, A is the global

atmospheric light and t is the transmission of scene point describing the por-

tion of light that is not attenuated and reaches the observer. The first term

in the right hand side of (2.8) account for the direct signal attenuated by

ratio of t and the second term explains airlight by the scattering of light due

to medium.

We assume that the atmosphere is homogeneous so that the transmission

t is expressed as

t(x) = exp(−βd(x)), (2.9)

where β is a scattering coefficient of the atmosphere and d(x) is a distance

from the observer to the scene point x. In pure air, the amount of absorption

and scattering of light is a function of wavelength. But, when air contains

solid and liquid particles floating around the neighborhood of surface of the

earth, multiple scattering effects become significant and effect of wavelength

on degradation process diminishes [3].

Usually, the given image possess three color channels. To restore scene

radiance J given hazy image I in (2.8), we need to know the transmission

t and global atmospheric light A which is more than the number of given

equations. It requires that we introduce some regularization to make up the

shortage of given information.

2.2.1 Dark channel prior

In [30], the authors observe that most of local patches in clean image

contain pixels with very low intensities at least one color channel. Under

the observation, they assume that such low intensity is zero.

We can verify the validity of the above assumption if we think on the

contrary. Let us assume that for a local patch of haze-free image, all pix-

els in the patch has high intensities at all color channels. Then, the patch

would be very bright and close to white color. Such patch rarely exists in
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clean image except the sky region or large object with color close to white.

The dark channel of an image is defined as each local patch of the dark

channel has the intensity which is smallest among all pixels and color chan-

nels of the corresponding patch of the image. An example of the dark chan-

nel of clean outdoor image is presented in Figure 2.1.

(a) (b)

Figure 2.1: Illustration of validity of the dark channel prior. (a) Clean out-

door image, (b) The result of identifying dark channel value at each patch

of the image.

By applying the dark channel prior, we can restore the hazy image. At

first, assume that global atmospheric light A is known. For a local patch

Ω(x) around x, take minimum over pixels in the patch on (2.8). Then, we

have:

min
y∈Ω(x)

(Ic(y)) = t̃(x) min
y∈Ω(x)

(J c(x)) + (1− t̃(x))Ac,

where c indicates each color channel and we assume that transmission in the

local patch Ω(x) is the same as t̃(x). Dividing both sides by Ac and taking

minimum over color channels. Then, it leads to:

min
c

( min
y∈Ω(x)

(
Ic(y)

Ac
)) = t̃(x) min

c
( min
y∈Ω(x)

(
J c(y)

Ac
)) + (1− t̃(x)). (2.10)
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By the dark channel prior, the first term on the right-hand side of (2.10)

becomes zero because Ac is always positive. Then, we earn the transmission

map as follows:

t̃(x) = 1−min
c

( min
y∈Ω(x)

(
Ic(y)

Ac
)).

Global atmospheric light A is also obtained by the use of dark channel.

Therefore, from t and A, we can recover scene radiance J as:

J(x) =
I(x)−A

max (t(x), t0)
+ A,

where the constant t0 is adopted to prevent the transmission map from being

close to zero.

In Figure 2.2, we present the exemplar dehazing result using the dark

channel prior. We can identify that visibility of the image is improved, but

there are block artifacts in the background due to the use of patch-based

method.

(a) (b)

Figure 2.2: Example of dehazing using the dark channel prior. (a) Hazy out-

door image, (b) The result of dehazing using the dark channel prior.
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2.2.2 Color ellipsoid prior

Although the dark channel prior performs fairly well for dehazing task,

there are still some drawbacks. These include blocky artifacts in the back-

ground, invalidity to large white region and vulnerability to noise in a local

patch.

The color ellipsoid prior, introduced in [11], tries to make improvement

so that the dark channel method is more robust to irregular pixels in a local

patch. If pixels in a local patch are scattered in RGB space, the cluster re-

gion is approximated by ellipsoid while excluding statistically deviated pix-

els from the most pixels in the patch. Regarding the constructed ellipsoid as

valid data of the patch, the dark channel prior is applied. Under this pro-

cess called the color ellipsoid prior method, random and irregular pixels in

the patch can be statistically ruled out. In Figure 2.3. we present an illus-

tration of constructing the color ellipsoid for data of a local patch in RGB

space.

Let us normalize pixels in a local patch Ω by global atmospheric light

A = [Ar, Ag, Ab]T at each channel:

Ī =

[
Ir

Ar
,
Ig

Ag
,
Ib

Ab

]T
,

and construct the ellipsoid E approximating the normalized pixels Ī:

E = {z | (z − µ)TΣ−1(z − µ) ≤ 1},

where µ is a mean vector of normalized pixels Ī and Σ is a covariance matrix

Σ =
1

|Ω|
∑
Ī∈Ω

(Ī − µ)(Ī − µ)T =

σ2
r σrg σrb

σgr σ2
g σgb

σbr σbg σ2
b

 .
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Figure 2.3: Illustration of distribution of image patch in RGB space and

color ellipsoid approximating the cluster of pixels.

Subsequently, applying the dark channel prior to the ellipsoid E requires

to find minimum among distances from surface of the ellipsoid to RG, RB,

BG planes. The minimum occurs when normal vector of point on the ellip-

soid is parallel with one of the normal vectors of RG, RB, BG planes. Then,

it leads that the transmission t̃ can be obtained as follows:

t̃(x) = 1−min
c

(µc − σc),

where c indicates color channels of the image.

Remark 2.2.1. There is a possibility that if we scatter pixels of a local
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patch in RGB space, there exist two distinct clusters which are not random

noise but indication of different objects. Then, it is impossible to approxi-

mate the patch by a single ellipsoid. It causes the occurrence of halo arti-

facts and requires additional post-processing.
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Chapter 3

Image denoising for Gaussian and

Cauchy noise

3.1 Second-order structure tensor and hybrid

STV

Structure tensor total variation (STV) [39] regularization is a generaliza-

tion of the total variation (TV) or ROF model [54]. STV is different from

TV in that at each point of image, STV adaptively takes the directions of

highest and smallest intensity variation of neighborhood of a point while TV

always considers vertical and horizontal directions. Thus, STV shows better

ability to detect edge and smooth region than TV. Nevertheless, STV still

produces staircase artifacts because it is a TV based regularization.

In this chapter, to remove staircase artifacts, we introduce a second-order

structure tensor total variation (STV2), which is a higher order extension of

structure tensor total variation. For STV2, we use the eigenvalues of weighted

averaged matrix whose column is a vectorial form of Hessian of each channel

of image. However, the valuable edges of an image can be attenuated when

using only second order STV. Therefore, we suggest a hybrid STV which is a
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convex combination of STV and STV2. It improves image restoration tasks

such as denoising and deblurring by sufficiently smoothing homogeneous re-

gions while preserving edge parts.

3.1.1 Structure tensor total variation

Structure tensor

Let us denote an image domain by Ω ⊂ R2 and assume u = [u1, · · · , uM ] :

Ω→ RM to be an image with M channels. For example, if we have a color

image with RGB channels, M equals 3.

At a point x ∈ Ω, TV or vectorial TV (VTV) [7] considers a gradient

vector ∇ui(x) (1 ≤ i ≤ M) of an image u. It can be acquired by concen-

trating on the targeted point, thus limiting the amount of information we

can get. Accordingly, a new concept called structure tensor is introduced to

take into account information from neighborhood of the point.

Let n be a unit normal vector at a point x ∈ Ω. Then intensity variation

of each channel of image u in the direction n is given as follows:

∂u

∂n
= (Ju(x))n,

where Ju is the Jacobian matrix of u and it is defined as

Ju(x) = [∇u1(x), · · · ,∇uM(x)]T .

Then, the magnitude of intensity variation at x is given by∥∥∥∥∂u

∂n

∥∥∥∥
2

=
√

nT (Ju(x))T (Ju(x))n.

Because n is an arbitrary directional vector, (Ju(x))T (Ju(x)) determines

the magnitude of intensity variation at x. We convolve the above quantity
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with the nonnegative, rotationally symmetric kernel K so that information

of neighborhood of a point is additionally considered [39].

Definition 3.1.1. Let the image u is given. The structure tensor SKu(x)

of u at point x is

SKu(x) = K ∗ [JuTJu](x),

where J is the Jacobian operator and K is a nonnegative, rotationally sym-

metric kernel.

Note that structure tensor SKu(x) is a 2 × 2 symmetric, positive semi-

definite matrix and it has two nonnegative eigenvalues λ+(x), λ−(x) (λ+(x) ≥
λ−(x)). The root mean square of weighted magnitude of intensity variation

at x is represented by eigenvalues of structure tensor:

Let w ∈ (−π, π] is an angle between the directional vector n and unit-

eigenvector θ+ corresponding to λ+, then we have√
K ∗

∥∥∥∥∂u

∂n

∥∥∥∥2

2

=
√

nT (SKu)n =
√
λ+ cos2w + λ− sin2w. (3.1)

It informs that
√
λ+ and

√
λ− represents maximum and minimum weighted

magnitude of intensity variation with respect to direction, respectively.

If we consider an ellipse P (w) whose axis are θ+ and θ− with radius
√
λ+

and
√
λ− respectively,

P (w) = (
√
λ+ cosw)θ+ + (

√
λ− sinw)θ−, w ∈ (−π, π],

then (3.1) can be also interpreted as a distance from a point on ellipse to

the center of an ellipse where a line connecting center to the point makes

an angle w with θ+. We can visualize the structure tensor using the ellipse

P (w). When both eigenvalues are small at a point x, we can see that there

is relatively small variations in a neighborhood of x. If λ+ is large and λ−

is small relatively, then there is a wide difference between the magnitude of
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variation with regard to the direction from x. Two large eigenvalues indicate

that there are high variations in all directions. An illustration of visualized

structure tensors at different points is presented in Figure 3.1.

Figure 3.1: Visualized structure tensors at different points using P (w). The

shape of an ellipse varies according to the position of point and it indicates

the magnitude of variation around point.

Structure tensor as a regularization

Now, we define a regularizer called STV using the eigenvalues obtained

from the structure tensor SKu [39]:

Definition 3.1.2. For an image u ∈ W 1,2(Ω,RM) and p ≥ 1, the structure
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tensor total variation (STV) is defined as follows:

STVp(u) =

ˆ
Ω

∥∥∥(
√
λ+,
√
λ−)
∥∥∥
p
dx,

where λ+, λ− are eigenvalues of structure tensor SKu at each point x ∈ Ω.

STV acts as a regularization by constraining maximum and minimum

intensity variation of a neighborhood of each point. It reflects the variation

of a wider area around a point than TV does.

Remark 3.1.3. Suppose that we use the delta function δ(x) as a kernel

K(x) when constructing the structure tensor SKu. If an image u is a grayscale

(M = 1), it becomes that the eigenvalues λ+, λ− of structure tensor are

‖∇u‖2
2, 0 respectively. Then, in this case, STVp(u) = TV(u) for p ≥ 1. Sim-

ilarly, when M > 1 and p = 2, we have STV2(u) = VTV(u). It suggests

that STV is an generalization of TV in that STV takes more information

than TV by considering a neighborhood of a targeted point.

Remark 3.1.4. Throughout this section, we fix p = 1 and denote STV1(u) =

STV(u).

Using STV as a regularization, we can restore an noisy image which is

corrupted by Gaussian noise. In Figure 3.2, we present the denoising results

when we use TV and STV as a regularization, respectively, i.e., insert TV

or STV to R(u) in (2.4).

In Figure 3.2, we present denoising results for noisy image corrupted by

Gaussian noise using TV and STV as a regularization, respectively. By com-

paring the smoothness and remaining noisy features of the two results, we

can identify that the image restored by STV shows better restoration quality

than that by TV. It is also supported by quantitative results such as PSNR

and SSIM which will be explained later. But we notice that there still exist

staircase artifacts and stain-like features in both images.
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(a) (b) (c)

Figure 3.2: Comparison of denoising results by TV and STV. (a) Noisy im-

age corrupted by Gaussian noise σ = 0.1, (b) Restored image using TV as

a regularization and (c) Restored image using STV as a regularization.

3.1.2 Proposed model

In the previous section, we verify that the solution of (2.4) using STV

as a regularizer shows similar geometry to that of the ROF model - it is

close to a piecewise constant function and shows staircase artifacts. Now,

we propose a new regularizer which is a higher-order extension of STV and

expect that use of the new regularizer would mitigate an occurrence of stair-

case artifacts. We utilize second-order derivative of an image to define the

regularizer analogous to STV.

For an image u : Ω ⊂ R2 → RM , u = (u1, · · · , uM), we consider a Hes-

sian operator H as follows:

Hu(x) = [Hu1(x), · · · , HuM(x)]T ,

where Hui(x) =
[∂2ui
∂x2

,
∂2ui
∂x∂y

,
∂2ui
∂y∂x

,
∂2ui
∂y2

]T
for 1 ≤ i ≤M .

Definition 3.1.5. We define the second-order structure tensor S
(2)
K u at point
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x as

S
(2)
K u(x) = K ∗ (HuTHu)(x)

where K is a nonnegative, rotationally symmetric kernel.

Because the second-order structure tensor is a 4 × 4 symmetric positive

semi-definite matrix, it has four nonnegative eigenvalues. Note that hessian

vector of an image can be viewed as a gradient of gradient of an image. If

we have a vector n = [nT1 ,n
T
2 ]T ∈ R4 which consists of unit direction vectors

n1,n2 ∈ R2, the variation of gradient of each channel of image u with respect

to n at point x can be expressed as follows:

∂(Ju)

∂n
:= (Hu(x))n

where J is the Jacobian operator. If we are to include information of a neigh-

borhood of a point, the magnitude of variation of gradient of image in local

region is√
K ∗

∥∥∥∥∂(Ju)

∂n

∥∥∥∥2

2

=

√
nT (S

(2)
K u)n

=
√
λ1〈n, θ1〉2 + λ2〈n, θ2〉2 + λ3〈n, θ3〉2 + λ4〈n, θ4〉2,

where λ1, λ2, λ3, λ4 and θ1, θ2, θ3, θ4 are eigenvalues and eigenvectors of S
(2)
K u

respectively. It indicates that the eigenvalues of second order structure ten-

sor are related to the magnitude of variation of gradient of an image in the

local area.

Analogous to STV, we define the second order structure tensor TV (STV2)

using the eigenvalues of the second order structure tensor.

Definition 3.1.6. For an image u ∈ W 2,2(Ω,RM) and q ≥ 1, the second
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order structure tensor total variation (STV2) is defined as follows:

STV2q(u) =

ˆ
Ω

∥∥∥(
√
λ1,
√
λ2,
√
λ3,
√
λ4)
∥∥∥
q
dx,

where λ1, λ2, λ3, λ4 are eigenvalues of structure tensor S
(2)
K u at each point

x ∈ Ω.

Remark 3.1.7. If we take the kernel K(x) to be the delta function δ(x) for

constructing the second order structure tensor S
(2)
K (u), then its eigenvalues

are ‖Hu‖2
2, 0, 0, 0 when u is a grayscale image. Then, STV2q(u) corresponds

to ‖∇2u‖1 for any q ≥ 1.

Remark 3.1.8. As STV, we fix q = 1 for STV2 throughout this section and

denote STV2q(u) = STV2(u).

Note that STV2 contains second-order derivative information of an im-

age. When STV2 is used as a regularizer in a variational model for denoising,

we expect that the solution avoids staircasing artifacts unlike STV which fa-

vors a piecewise-constant solution. Therefore using both STV and STV2 as

regularizations simultaneously gives us benefits of each regularizer. We ex-

pect that while the solution preserves edges well, it does not produce stair-

casing artifacts. By combining both regularizations, we consider the hybrid

STV minimization problem :

arg min
u

τ1STV(u) + τ2STV2(u) +
1

2
‖u− f‖2

2, τ1, τ2 > 0, (3.2)

where f is a given noisy image.

Now, we provide the convex properties of each functional, STV and STV2.

Its proof is given in Appendix A.1.

Theorem 3.1.9. For u ∈ W 2,2(Ω,RM), STV(u) and STV2(u) are convex.
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3.1.3 Discretization of the model

In previous sections, we assume the model is on a continuous domain. In

real photography, an image sensor in camera receives light so that each cell

in the sensor determines intensity of an image. Therefore, to obtain practi-

cal results of our proposed model, it requires us to deal with the model on

a discrete domain.

Let an image u = [u1, · · · , uM ] be defined on the discrete rectangular do-

main where each channel ui, (1 ≤ i ≤ M), is vectorized and has N pixels.

For n-th pixel xn in the domain, we compute SKu(xn), S
(2)
K u(xn) and de-

note it by [SKu]n, [S
(2)
K u]n respectively. In the computation, we consider the

kernel K to be also defined on the discrete domain and restrict it to have a

compact support P = {−LK , · · · , LK}2 where LK is a positive integer.

Then, we define the discrete versions of STV and STV2 as follows:

STV(u) =
N∑
n=1

∥∥∥(√λ+
n ,
√
λ−n

)∥∥∥
1
,

STV2(u) =
N∑
n=1

∥∥∥(√λ1,n,
√
λ2,n,

√
λ3,n,

√
λ4,n

)∥∥∥
1
,

where λ+
n , λ

−
n , (λ+

n ≥ λ−n ), are non-negative eigenvalues of [SKu]n and λ1,n, λ2,n,

λ3,n, λ4,n are non-negative eigenvalues of [S
(2)
K u]n with decreasing order.

The optimization of discrete version of the energy functional (3.2) using

the above regularizers is tough and burdensome. We seek to manageable rep-

resentation of both regularizers. For simplicity, consider the case M = 1, i.e.,

a grayscale image. If we calculate [SKu]n, we have

[SKu]n =K ∗ [∇u∇uT ](xn)

=
∑
s∈P

K(s) ·

[
(∇xu(xn − s))2, ∇xu(xn − s) · ∇yu(xn − s)

∇xu(xn − s) · ∇yu(xn − s), (∇yu(xn − s))2

]
,
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where s ranges over compact support P of kernel K. It is noteworthy that

the summation can be decomposed into multiplication of elaborately defined

matrices. The patch-based Jacobian is introduced in [39] as a linear mapping

JK : RN → X ,

[JKu]n =


√
K(s1)∇xu(xn − s1),

√
K(s1)∇yu(xn − s1)

...
...√

K(sL)∇xu(xn − sL),
√
K(sL)∇yu(xn − sL)

 ,
where X = RN×(L×2), L = (2LK + 1)2, s1, · · · , sL ∈ P and [JKu]n is L × 2

matrix at each pixel xn. Then, we can observe by direct calculation that

[SKu]n = [JKu]Tn [JKu]n. (3.3)

The above argument can be extended to the case M > 1. In this case,

the patch-based Jacobian has the following form:

[JKu]n =



√
K(s1)∇xu1(xn − s1),

√
K(s1)∇yu1(xn − s1)

...
...√

K(sL)∇xu1(xn − sL),
√
K(sL)∇yu1(xn − sL)

...
...√

K(s1)∇xuM(xn − s1),
√
K(s1)∇yuM(xn − s1)

...
...√

K(sL)∇xuM(xn − sL),
√
K(sL)∇yuM(xn − sL)


, (3.4)

where the patch-based Jacobians of each channel are concatenated vertically

and we can identify that (3.3) still holds for multi-channel image u. Anal-

ogously, we introduce the patch-based Hessian operator PHK : RNM → Y ,
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where Y = RN×(LM×4).

[PHKu]n =



∇̃2u1(xn − s1)
...

∇̃2u1(xn − sL)
...

∇̃2uM(xn − s1)
...

∇̃2uM(xn − sL)


, (3.5)

where ∇̃2ui(xn − sj) equals√
K(sj)

[
∆xx(xn − sj), ∆xy(xn − sj), ∆yx(xn − sj), ∆yy(xn − sj)

]
,

L = (2LK + 1)2, s1, · · · , sL ∈ P , ∆z1z2 is the discrete second order partial

derivative with respect to z1, z2 and [PHKu]n is LM × 2 matrix at each

pixel xn. Then, the second-order structure tensor is decomposed into the

multiplication using the patch-based Hessian.

Proposition 3.1.10. The discrete STV and STV2 of u at pixel xn are de-

composed into multiplications utilizing patch-based Jacobian (3.4) and path-

based Hessian (3.5) as follows:

[SKu]n = [JKu]Tn [JKu]n,

[S
(2)
K u]n = [PHKu]Tn [PHKu]n.

The Proposition 3.1.10 enables that finding square roots of eigenvalues

of STV and STV2 boils down to calculating singular values of patch-based

Jacobian and patch-based Hessian. Moreover, because patch-based operators

are linear, it is appropriate to apply mathematical theory for optimization

process. Now, let us define the norm which represents the p-norm of singular
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vector of a matrix:

Definition 3.1.11. For a matrix X ∈ CN1×N2 , let σ1, · · · , σmin(N1,N2) be the

singular values of X. Then the Schatten norm of order p of X is defined as

‖X‖Sp =

min(N1,N2)∑
n=1

σpn

 1
p

.

Then we can represent the STV, STV2 using Schatten 1-norm:

STV(u) =
N∑
n=1

‖[JKu]n‖S1 = ‖JKu‖1,1,

STV2(u) =
N∑
n=1

‖[PHKu]n‖S1 = ‖PHKu‖1,1,

where ‖·‖1,1 denotes the mixed `1-S1 norm.

Subsequently, let us equip inner product 〈·, ·〉X on space X = RN×(LM×2)

which are codomain of patch-based Jacobian operator: for X1, X2 ∈ X ,

〈X1, X2〉X =
N∑
i=1

trace(XT
2,nX1,n),

where X1,n, X2,n ∈ RLM×2 and inner product 〈·, ·〉Y on space Y = RN×(LM×4)

which are codomain of patch-based Hessian operator can be also defined

analogously.

Then, we are able to write the discrete versions of STV and STV2 using

the dual norm of mixed `1-S1 norm. See the following Lemma 3.1.12:

Lemma 3.1.12. ([40]) Let p ≥ 1, and let q be the conjugate exponent of

p, i.e., 1
p

+ 1
q

= 1. Then, the mixed norm ‖·‖∞,q is dual to the mixed norm

‖·‖1,p.
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By the above Lemma and the fact that dual of dual norm is original norm

itself, the mixed `1-S1 norm ‖·‖1,1 on space X can be written as follows: for

X = [XT
1 , · · · , XT

N ]T ∈ X ,

‖X‖1,1 = max
Ω∈BX∞,∞

〈Ω, X〉X ,

where BX∞,∞ denotes the unit ball with respect to the `∞-S∞ norm,

BX∞,∞ = {Ω = [ΩT
1 , · · · ,ΩT

N ]T ∈ X : ‖Ωn‖S∞ ≤ 1,∀n = 1, · · · , N}.

The dual representation of the mixed `1-S1 norm ‖·‖1,1 on space Y can

be also obtained similarly.

3.1.4 Numerical algorithm

Now, we reformulate the proposed model (3.2) in discrete domain uti-

lizing the dual representation of the mixed `1-S1 norm ‖·‖1,1. So to speak,

STV and STV2 are represented in a different way,

STV(u) = max
Ω1∈BX∞,∞

〈Ω1,JKu〉X , STV2(u) = max
Ω2∈BY∞,∞

〈Ω2,PHKu〉Y ,

where BY∞,∞ is the unit ball on Y with respect to the mixed norm ‖·‖1,1 and,

accordingly, we need to minimize the following energy functional:

min
u

τ1 max
Ω1∈BX∞,∞

〈Ω1,JKu〉X + τ2 max
Ω2∈BY∞,∞

〈Ω2,PHKu〉Y +
1

2
‖u− f‖2

2

= min
u

max
Ω1∈BX∞,∞
Ω2∈BY∞,∞

τ1〈Ω1,JKu〉X + τ2〈Ω2,PHKu〉Y +
1

2
‖u− f‖2

2. (3.6)

It is noteworthy that the objective function in (3.6) is convex with re-

spect to u and concave with respect to Ω1,Ω2. It leads the strong max-min
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property, i.e., the order of the maximum and the minimum has nothing to

do with the solution. Therefore, we have that (3.6) is equal to

max
Ω1∈BX∞,∞
Ω2∈BY∞,∞

min
u

τ1〈Ω1,JKu〉X + τ2〈Ω2,PHKu〉Y +
1

2
‖u− f‖2

2. (3.7)

By differentiating with respect to u, we earn that

u = f − τ1J
∗
KΩ1 − τ2PH∗KΩ2, (3.8)

where J∗K and PH∗K denote the adjoint of patch-based Jacobian and patch-

based Hessian, respectively. If we substitute (3.8) into (3.7), then we have

max
Ω1∈BX∞,∞
Ω2∈BY∞,∞

τ1〈J∗KΩ1, f〉2 −
τ 2

1

2
‖J∗KΩ1‖2

2 + τ2〈PH∗KΩ2, f〉2 −
τ 2

2

2
‖PH∗KΩ2‖2

2

− τ1τ2〈J∗KΩ1,PH∗KΩ2〉2.

(3.9)

We can solve the (3.9) using the projected gradient method. If we denote

the objective function in (3.9) by d(Ω1,Ω2), then its gradients with respect

to variables Ω1,Ω2 are given as follows:∇Ω1d = τ1JK(f − τ1J
∗
KΩ1 − τ2PH∗KΩ2),

∇Ω2d = τ2PHK(f − τ1J
∗
KΩ1 − τ2PH∗KΩ2).

(3.10)

After updating each variable Ω1,Ω2 using the gradients obtained in (3.10),

we project these onto the constrained spaces BX∞,∞,BY∞,∞. It can be accom-

plished by projecting each component of Ω1,Ω2 onto the unit S∞-norm ball

independently.

For Ω1 ∈ X , each component Ω1,n ∈ RLM×2 of Ω1 runs the SVD decom-

position Ω1,n = UnΣnV
T
n . Then we change diagonal components of Σn to 1 if

they are bigger than 1 and keep untouched unless. For Ω2 ∈ Y , a projection
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process is same.

The entire algorithm for solving the proposed model is given in Algo-

rithm 1. Here, we adopt the Nesterov’s acceleration method [46] to gain a

faster convergence rate than the standard gradient ascent method. Also, the

step size of gradient ascent should be suitably chosen to guarantee the con-

vergence. We can show that the objective function in (3.9) is Lipschitz con-

tinuous gradient with proper Lipschitz constants with respect to Ω1,Ω2, re-

spectively. From the Lipschitz constants, we are able to determine the suit-

able step sizes for updating Ω1 and Ω2. See Appendix A.2 for further de-

tails.

Algorithm 1 Algorithm for solving the model (3.2)

1: Given noisy image f

2: Parameters τ1 > 0 and τ2 > 0

3: Initialize Ψ1
1 = Ω0

1 = 0 ∈ X , Ψ1
2 = Ω0

2 = 0 ∈ Y , t1 = 1, n = 1

4: repeat

5: Ωn
1 ← ProjBX∞,∞

(
Ψn

1 + 1
8τ1

Jk(f − τ1J
∗
KΨn

1 − τ2PH∗KΨn
2 )
)

6: Ωn
2 ← ProjBY∞,∞

(
Ψn

2 + 1
64τ2

PHk(f − τ1J
∗
KΨn

1 − τ2PH∗KΨn
2 )
)

7: tn+1 ←
1+
√

1+4t2n
2

8: Ψn+1
i ← Ωn

i + tn−1
tn+1

(Ωn
i − Ωn−1

i ) for i = 1, 2

9: n← n+ 1

10: until a stopping criterion is satisfied

11: Output u = f − τ1J
∗
KΩn

1 − τ2PH∗KΩn
2

3.1.5 Experimental results

We show the experimental results of image denoising problems by the

proposed model and compare it with the other variational methods such as

STV, TGV [8], TV-TV2 [49]. Throughout experiments, we rescale image in-

tensities to have values in range [0, 1] and use 8 test images as shown in
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.3: Test images. a Barbara face (250× 250), b Child (255× 255), c

Walkbridge (256× 256), d Woman (256× 256), e Face (254× 336), f Desert

(321× 481), g Girl (321× 481), h Undersea (321× 481).

Figure 3.3.

We generate a noisy image by adding Gaussian noise with a standard

deviation σ = 0.05, 0.1 to a clean image u0:

f = u0 + n, n ∼ N(0, σ2),

where noise acts on each pixel with i.i.d. manner.

For a quantitative measure of the restored image, we adopt the peak

signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) [63]

which are defined as follows:

PSNR = 10 log10

(
NM

‖u− u0‖2
2

)
,

SSIM =
(2µuµu0 + C1)(2σuu0 + C2)

(µ2
u + µ2

u0
+ C1)(σ2

u + σ2
u0

+ C2)
,

(3.11)
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where u is the restored image, u0 is the original image with N pixels and M

channels, µu, µu0 , σu, σu0 are the means and standard deviations of u, u0 re-

spectively, σuu0 is the cross-covariance for u, u0 and C1, C2 are positive con-

stants.

For an image whose domain consists of N1×N2 pixels without consider-

ing the number of channels, we pad it symmetrically to make an 2N1× 2N2

image and apply an denoising algorithm under the periodic boundary con-

dition. After the process is terminated, we cut it to obtain an N1 ×N2 im-

age. Basically, parameters are selected to give a best PSNR result for each

model. But there is a case where PSNR value is highest but SSIM value is

relativley low and restored image is not visually fine. In this case, param-

eters are slightly adjusted to obtain both relatively high PSNR and SSIM

values. The non-negative, rotationally symmetric convolution kernel used in

STV and the proposed model is the Gaussian kernel with support 3×3 pix-

els and standard deviation σ = 0.5. For TGV, we use the second order ver-

sion, i.e. TGV2. For TV-TV2 and TGV, color image is processed for each

channel respectively.

In Table 3.1, 3.2, we report the PSNR, SSIM values of the four different

methods for 8 test images. The proposed method attains highest PSNR and

SSIM values for all test images. Let us see the qualitative aspects. Since

the proposed method is a combined version of first and second order regu-

larizer, it smoothes homogeneous regions with much less staircase artifacts

than the first order model. In Figures 3.4, 3.5, 3.6, 3.7 and 3.8, we demon-

strate the noisy and enlarged restored images by STV and our method. Let

us compare the results of our method with those of STV. For the Desert

image in Figure 3.4, our method removes the noise in the sky region better.

For the Walkbridge image in Figure 3.5, pay attention to water and pebbles

where our method represents the details better. For the Woman image in

Figure 3.6, the texture of hair is recovered better and staircase artifacts in

the cheek of woman are reduced in our method. Lastly, for the Face and
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Child image in Figure 3.7 and 3.8, staircase artifacts around nose and cheek

are mitigated in our method.

From the Figures, we can see that the results of our method show some

blurry feature in return for removing staircase artifact.

PSNR SSIM

Noisy TGV TV-TV2 STV Ours Noisy TGV TV-TV2 STV Ours

Barbara face 26.01 29.62 27.24 30.50 30.82 0.6786 0.8516 0.8097 0.8875 0.8967

Child 26.01 32.83 33.18 32.86 33.31 0.6555 0.9153 0.9259 0.9249 0.9287

Walkbridge 25.99 29.11 27.86 29.34 29.59 0.7792 0.8651 0.8305 0.8673 0.8786

Woman 25.99 33.41 32.99 33.67 34.14 0.5688 0.9192 0.9109 0.9133 0.9233

Face 26.01 35.73 35.74 35.16 36.11 0.5403 0.9418 0.9348 0.9337 0.9476

Desert 26.03 31.63 31.27 32.39 32.53 0.7823 0.9271 0.9210 0.9388 0.9399

Girl 26.03 32.54 31.65 33.38 33.57 0.7995 0.9509 0.9478 0.9625 0.9634

Undersea 26.03 30.42 29.64 31.15 31.58 0.8912 0.9582 0.9533 0.9643 0.9676

Table 3.1: PSNR and SSIM values for the noisy and restored images by dif-

ferent methods (σ = 0.05).

PSNR SSIM

Noisy TGV TV-TV2 STV Ours Noisy TGV TV-TV2 STV Ours

Barbara face 19.99 26.11 25.52 26.60 26.87 0.4278 0.7335 0.7115 0.7586 0.7746

Child 19.99 29.85 29.70 29.22 30.23 0.4044 0.8659 0.8666 0.8622 0.8676

Walkbridge 19.97 25.68 25.77 25.98 26.17 0.5197 0.7280 0.7373 0.7452 0.7572

Woman 19.97 30.47 30.29 30.39 30.84 0.3063 0.8569 0.8559 0.8552 0.8686

Face 19.99 32.57 32.31 31.70 32.72 0.2654 0.9042 0.8862 0.8776 0.9043

Desert 20.01 28.74 29.02 29.37 29.48 0.4937 0.8625 0.8693 0.8789 0.8820

Girl 20.01 29.48 29.46 30.14 30.35 0.5869 0.9153 0.9169 0.9266 0.9274

Undersea 20.01 27.17 27.37 27.77 28.02 0.6988 0.9152 0.9207 0.9261 0.9303

Table 3.2: PSNR and SSIM values for the noisy and restored images by dif-

ferent methods (σ = 0.1).
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Ground truth Noisy image

STV Ours

Figure 3.4: Enlarged denoising results on image Desert by STV and pro-

posed method (σ = 0.05).
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Ground truth Noisy image

STV Ours

Figure 3.5: Enlarged denoising results on image Walkbridge by STV and pro-

posed method (σ = 0.05).
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Ground truth Noisy image

STV Ours

Figure 3.6: Enlarged denoising results on image Woman by STV and pro-

posed method (σ = 0.1).
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Ground truth Noisy image

STV Ours

Figure 3.7: Enlarged denoising results on image Face by STV and proposed

method (σ = 0.1).
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Ground truth Noisy image

STV Ours

Figure 3.8: Enlarged denoising results on image Child by STV and proposed

method (σ = 0.1).
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3.2 Weighted nuclear norm minimization for

Cauchy noise

Recently, weighted nuclear norm minimization (WNNM), which regular-

izes singular values of an input matrix with different strengths according to

given weights, has demonstrated impressive results in low-level vision tasks

such as additive Gaussian noise removal, deblurring and image inpainting

[28, 29, 65]. In this section, we apply WNNM to remove additive Cauchy

noise in images. A variational model is adopted based on maximum a pos-

teriori (MAP) estimate, which contains a data fidelity term that is appropri-

ate for noise following Cauchy distribution. Weighted nuclear norm is used

as a regularizer in the proposed algorithm, and we utilized similar patches in

the image by nonlocal similarity. We adopted the nonconvex alternating di-

rection method of multiplier (ADMM) to solve the problem iteratively. Nu-

merical experiments are presented to demonstrate the superior denoising per-

formance of our algorithm compared with other existing methods in terms

of quantitative measure and visual quality.

3.2.1 Variational models for Cauchy noise

As explained in the introduction, the impulsive-like noise appears in many

scientific and engineering circumstances and it can be modeled by utilizing

Cauchy distribution. We assume that the image y is degraded by the ad-

ditive Cauchy noise n which follows Cauchy distribution C(δ, γ) is given as

follows:

y = u0 + n,

where the original image u0 is defined on a bounded domain Ω ⊂ R2, and the

probability density function (PDF) of Cauchy distribution C(δ, γ) for each
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x ∈ Ω is given by:

P (x; δ, γ) =
1

πγ

γ2

γ2 + (x− δ)2
, (3.12)

where γ > 0, δ ∈ R are called the scale and localization parameter, respec-

tively.

Cauchy distribution

Cauchy distribution is a special case of an analytically expressible α-

stable distribution [47]. An α-stable distribution has four parameters: an

index of stability α ∈ (0, 2], a skewness parameter β ∈ [−1, 1], a scale pa-

rameter γ ≥ 0, and a location parameter δ ∈ R. For a distribution to be

symmetric, the skewness parameter β should be 0. If a random variable X

follows the symmetric α-stable distribution, then its PDF p(x) is given by:

p(x) =
1

2π

ˆ ∞
−∞

exp (itδ − γα|t|α)e−itxdt.

The index of stability α is a parameter that determines the thickness of

the tail in the distribution, δ is the location parameter that indicates the po-

sition of the distribution peak, and γ is the scale parameter that represents

the half-width at half-maximum. Specifically, α = 1 and α = 2 represent

Cauchy distribution and normal distribution, respectively. Figure 3.9 shows

the difference in shape between α-stable distributions while α varies. We can

see that, as α decreases, the tail of the distribution becomes thicker, imply-

ing that noise following Cauchy distribution has more impulsive characteris-

tic than that following the normal distribution. The PDF of Cauchy distri-

bution is given in (3.12), and the cumulative distribution function (CDF) of

Cauchy distribution [25] is given by

F (x; δ, γ) =
1

π
arctan

(
x− δ
γ

)
+

1

2
.
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(a) (b)

Figure 3.9: Graphs of (a) probability density functions and (b) cumulative

distribution functions of α-stable distribution. The normal distribution cor-

responds to the case when α = 2 and Cauchy distribution corresponds to

the case when α = 1.

Note that an interesting relationship exists between the normal distribution

and Cauchy distribution:

Proposition 3.2.1. Let N(µ, σ2) denote the normal distribution with mean

µ, standard deviation σ, and X and Y be two independent random variables.

Assume that X ∼ N(0, σ2
x) and Y ∼ N(0, σ2

y). Then, for the random variable

Z = X/Y , Z ∼ C(0, σ
2
x

σ2
y
).

Proof. The joint distribution of X and Y has the following PDF:

fX,Y (x, y) =
1

2πσxσy
e
− x2

2σ2x
− y2

2σ2y .
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From [20], the PDF of the distribution of Z = X/Y is as follows:

p(z) =

ˆ ∞
−∞
|y|fX,Y (zy, y)dy =

1

πσxσy

ˆ ∞
0

ye
−y2

(
z2

2σ2x
+ 1

2σ2y

)
dy

=
1

πσxσy

1
z2

σ2
x

+ 1
σ2
y

=
1

π

σx/σy

z2 + (σx/σy)
2 .

Therefore, according to (3.12), p(z) is the PDF of Cauchy distribution with

location parameter 0 and scale parameter σx/σy.

Numerically, Proposition 3.2.1 is useful. We can generate Cauchy noise

with arbitrary scale parameter γ if we could generate Gaussian noise with

the corresponding standard deviation.

Denoising model via MAP estimate

We use MAP estimate to derive a variational model for the additive Cauchy

noise assuming some priors on the distribution of images as in Section 2.1.1.

We define Ω as an image domain and assume that a clean image is contam-

inated by additive Cauchy noise, which follows C(0, γ). Therefore, by the

MAP, the estimated image u from noisy image y can be obtained as follows:

u∗ = arg max
u

P (u|y) = arg max
u

P (y|u)P (u)

P (y)

= arg max
u

P (y|u)P (u). (3.13)

We take the logarithm of (3.13). Then, we have

u∗ = arg min
u

− logP (y|u)− logP (u)

= arg min
u

ˆ
Ω

− logP (y(x)|u(x))dx− logP (u). (3.14)
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The first term in (3.14) indicates the occurrence probability of a noisy pixel

value y(x) given a clean pixel value u(x). It is noteworthy that the noise

distribution affecting each x ∈ Ω is independent and identically distributed.

Hence, from the PDF of Cauchy distribution (3.12), we have

logP (y(x)|u(x)) = − log π + log γ − log(γ2 + (u(x)− y(x))2).

Furthermore, a priori knowledge on the distribution of clean image u is

required. For example, the Gibbs prior is used in [45, 56] such that P (u) =
1

Z
exp (−β

´
Ω
|Du|) where β > 0, Z is a normalization factor. After omitting

the constant terms, the resulting variational model is

arg min
u

ˆ
Ω

log (γ2 + (u(x)− y(x))2)dx− logP (u). (3.15)

It is noteworthy that the first term in (3.15) serves as data fidelity for

denoising an image corrupted by Cauchy noise.

Previous models for denoising Cauchy noise

Several approaches have been proposed to address image corruption by

Cauchy noise. Chang et al. [17] suggested a recursive restoration algorithm

based on a Markov random field model. Achim and Kuruoğlu [2] designed

a bivariate maximum a posteriori (MAP) estimator and restored a degraded

image through complex wavelet transform. Laus et al. [37] introduced a gen-

eralized myriad filter and utilized it nonlocally for estimating the localization

parameter of Cauchy distribution, which can be considered as the latent orig-

inal pixel value of the image. Sciacchitano et al. [56] introduced a variational

model via the MAP with a TV regularizer. It is written as follows:

inf
u∈BV(Ω)

ˆ
Ω

|Du|+ λ

2

ˆ
Ω

log
(
γ2 + (u− y)2

)
, (3.16)
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where Du denotes the distributional derivative of u. Because the data fi-

delity term in (3.16) is nonconvex, the authors subsequently proposed a con-

vexified model by inserting a quadratic term additionally:

inf
u∈BV(Ω)

ˆ
Ω

|Du|+ λ

2

(ˆ
Ω

log
(
γ2 + (u− y)2

)
+ ρ‖u− ũ‖2

2

)
, (3.17)

where ρ > 0 and ũ is obtained by applying a median filter to y. If γ, ρ

in (3.17) satisfy 8ργ2 ≥ 1, the (3.17) becomes strictly convex. From the

convexity of the model, we can guarantee the uniqueness of the solution ir-

respective of the initial condition, but the presence of the quadratic term

induces a deviation from the model (3.16) derived from the MAP principle,

which could bias the solution.

Mei et al. [45] adopted the nonconvex ADMM [62] which established the

global convergence of an algorithm for nonconvex nonsmooth optimization

with linear constraints and directly applied it to (3.16) which outperformed

the results in [56].

The previously mentioned variational models are based on a TV regu-

larization, and only considers the local properties of an image. However, re-

cent studies demonstrated that nonlocal similarity-based approaches achieved

better performance in restoring images corrupted by Gaussian noise [10, 21].

Primarily, WNNM which is stemmed from methods approximating a low-

rank matrix, has demonstrated performance comparable to that of state-of-

the-art methods for the denoising problem [28, 29, 60, 64].

Based on low-rank matrix approximation, we establish a variational model

to restore images corrupted by Cauchy noise using the weighted nuclear norm.

Our contribution is threefold. First, we connect the variational approach of

Cauchy noise model to the WNNM model. Next, we apply the nonconvex

ADMM to our proposed model for Cauchy noise and prove the convergence

of the algorithm to a stationary point. Finally, we present novel methods for

obtaining similar patches based on the median filter and defining weights for
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the nuclear norm, which is suitable for Cauchy noise.

3.2.2 Low rank minimization by weighted nuclear norm

Low-rank matrix approximation aims to recover a low-rank matrix from

limited or degraded information. It is required in many instances such as the

Netflix problem as a representative example in the area of recommendation

systems, triangulation from incomplete data and a low-dimensional embed-

ding of data in Euclidean space [12, 53]. It also has shown excellent perfor-

mance in image processing such as image restoration and alignment [51, 60].

In image denoising, nonlocal-based methods have demonstrated notable re-

sults. Not being confined to the local information of a given patch, they

utilize similar patches across the entire image. If we flatten and stack those

similar patches into a matrix, we may assume that the stacked matrix ex-

hibit the low-rank property. For a local patch yj of the image y, we can

construct a matrix Y ∈ Rn×m by stacking the similar flattened patches of

yj as columns. Then, for the noisy image corrupted by Gaussian noise, we

consider the following low-rank minimization problem:

arg min
X

1

2
‖Y −X‖2

F + ‖Σ‖0,

where Σ is a diagonal matrix whose diagonal elements are singular values of

X (i.e., UΣV T is the singular value decomposition (SVD) of X) and ‖ ·‖0 is

`0 quasi-norm, which counts the number of nonzero values. Because a direct

minimization of the `0 quasi-norm is a NP-hard problem, a relaxed model

that replaces non-convex `0 quasi-norm with convex `1 norm is suggested [12,

53]:

arg min
X

1

2
‖Y −X‖2

F + ‖X‖∗,
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where ‖X‖∗ is the sum of singular values of X and is called the nuclear

norm of X, which satisfies ‖X‖∗ = ‖Σ‖1. However, because the `1 norm only

approximates the `0 quasi-norm, it is insufficient for achieving the desired

low-rank property.

Candés et al. [14] demonstrated that the weighted `1 norm could enhance

the sparsity of the `1 norm. The weighted nuclear norm was first applied to

an image denoising model as a regularizer by Gu et al. [29]. They applied

the weighted nuclear norm to the Gaussian denoising problem. Specifically,

for a noisy matrix Y ∈ Rn×m whose columns are flattened patches similar to

the reference patch, the denoised matrix X̂ ∈ Rn×m is given as follows:

X̂ = arg min
X

1

2
‖Y −X‖2

F + ‖X‖w,∗, (3.18)

where ‖X‖w,∗ =
∑

iwiσi(X) is the weighted nuclear norm for wi ≥ 0, i =

1, · · · , n0, n0 = min(m,n) and w = [w1, w2, . . . , wn0 ]. In general, the weighted

nuclear norm is non-convex, thus rendering the problem (3.18) more chal-

lenging to solve owing to the presence of local minima. However, according

to [66], we can obtain the optimal solution of (3.18).

Theorem 3.2.2. Let Y = UΣV T be the SVD of Y ∈ Rn×m. If the weights

satisfy 0 ≤ w1 ≤ · · · ≤ wn0 , n0 = min(n,m), the problem (3.18) has an

optimal solution,

X̂ = UsoftW (Σ)V T , (3.19)

where W is the diagonal matrix such that Wii = wi for i = 1, · · · , n0, and

softW (Σ) is the generalized soft-thresholding operator:

softW (Σ)ij = max(Σij −Wij, 0).

Proof. The solution to the problem (3.18) should satisfy the following:

0 ∈ Y − X̂ + ∂‖X̂‖w,∗.
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Here, ∂‖X̂‖w,∗ denotes the subgradient of the weighted nuclear norm ‖X̂‖w,∗.
Let the SVD of a matrix X ∈ Rn×m be UXΣXV

T
X and rank(X) = r. There-

fore, according to [66], the subgradient of the weighted nuclear norm has the

following property.

∂‖X‖w,∗ =
{
UXWrV

T
X + Z :Z ∈ Rn×m, UT

XZ = 0, ZVX = 0,

σi−r(Z) ≤ wi for i = r + 1, . . . , n0

}
,

(3.20)

where Wr is a diagonal matrix whose first r diagonal elements are w1, · · · , wr
and all other elements are zero.

We can rewrite Σ as Σ0 + Σ1 where Σ0 is the diagonal matrix whose i-

th diagonal element is σi(Y ) if it is larger than wi and 0 otherwise; con-

versely, Σ1 is a diagonal matrix whose i-th diagonal element is σi(Y ) if it is

smaller than or equal to wi and 0 otherwise. Additionally, we define U0, V0

(resp. U1, V1) whose columns consist of the singular vectors of Y if they cor-

respond to the singular values in Σ0 (resp. Σ1) and zero vectors otherwise.

Subsequently, the SVD of Y = UΣV T can be written as U0Σ0V
T

0 +U1Σ1V
T

1 .

Let us define X̂ as

X̂ = U0softWk
(Σ0)V T

0 ,

where Wk is the diagonal matrix with the main diagonal elements

[w1, · · · , wk, 0, · · · , 0] and k is the rank of Σ0. Then, we have

Y − X̂ = U0WrV
T

0 + U1Σ1V
T

1

= U0WrV
T

0 + Z, (3.21)

where Z is the substitution of U1Σ1V
T

1 . Here, it is sufficient to show that

(3.21) satisfies (3.20). By the definitions of U0, U1, V0, and V1, it follows that

UT
0 Z = 0 and ZV0 = 0. Furthermore, the singular values of Z are the diag-

onal entries of Σ1; therefore, σi(Z) ≤ wi+r for i = 1, · · · , n0 − r.
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Moreover, according to [28], the solution (3.19) becomes the global opti-

mum solution.

3.2.3 Proposed method

Now, we introduce our variational model for denoising Cauchy noise, which

adopts the nonlocal method that uses the weighted nuclear norm as a reg-

ularization. We combine the pertinent fidelity term for Cauchy noise with

the weighted nuclear norm. A direct insertion of the weighted nuclear norm

as a regularization of the model (3.15) is not reasonable because the natu-

ral image is not guaranteed to be a low-rank. Instead, following the process

in [29], we adopt the nonlocal approach, where we group similar patches ac-

cording to a specific metric, then vectorize and stack them to form a two-

dimensional matrix. On the matrix that we construct, we apply the WNNM

with the data fidelity term for Cauchy noise. In other words, for a noisy im-

. . .

Figure 3.10: Illustration of the process of constructing matrix composed of

similar patches.

age y, we consider a small patch yj as a reference. Next, we obtain a group

of patches similar to the reference, then flatten, and stack them to form Yj.

55



Chapter 3. Image denoising for Gaussian and Cauchy noise

On this Yj, we solve the following problem:

arg min
Xj

‖Xj‖w,∗ +
∑

x∈Xj ,y∈Yj

log (γ2 + (x− y)2), (3.22)

where ‖X‖w,∗ is the weighted nuclear norm of X, and we adopted the dis-

crete version of the fidelity term in (3.15).

3.2.4 ADMM algorithm

The minimization problem (3.22) still needs to be solved. In [45], the

nonconvex ADMM algorithm was used for Cauchy noise denoising where

the variational model consisted of a total variation regularizer and a fidelity

term of the form as in (3.15). In this Section, we investigate the noncon-

vex ADMM algorithm and apply it to solve our problem. We can reformu-

late (3.22) as follows:

arg min
X

‖X‖w,∗ +
λ

2
〈log (γ2 + (X − Y )2),1〉, (3.23)

where discrete image Y ∈ Rn×m is given and 〈·, ·〉 is the inner product con-

sidering X, Y as vectors with mn elements. We substitute X in the fidelity

term with the auxiliary variable V to such that the problem is of the con-

strained form.

arg min
X,V

‖X‖w,∗ +
λ

2
〈log (γ2 + (V − Y )2),1〉, X = V. (3.24)

Next, we introduce the corresponding augmented Lagrangian of (3.24)

with Lagrangian multiplier W ∈ Rn×m and penalty parameter β > 0:

Lβ(X, V,W ) = ‖X‖w,∗+
λ

2
〈log (γ2 + (V − Y )2),1〉+〈W,X−V 〉+ β

2
‖X−V ‖2.

(3.25)
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Subsequently, the nonconvex ADMM asserts that we can alternatively

minimize the Lagrangian Lβ above with respect to X and V to solve the

given constrained problem (3.24). The corresponding algorithm is given in

Algorithm 2.

Algorithm 2 Nonconvex-ADMM for (3.22)

1: Given noisy Y

2: Parameter β > 0

3: Initialize X0, V 0, W 0, k = 0

4: repeat

5: Xk+1 = arg min
X
‖X‖w,∗ +

β

2

∥∥∥∥X − V k +
W k

β

∥∥∥∥2

2

6: V k+1 = arg min
V

λ

2

〈
log
(
γ2 + (V − Y )2

)
,1
〉

+
β

2

∥∥∥∥Xk+1 − V +
W k

β

∥∥∥∥2

2

7: W k+1 = W k + β(Xk+1 − V k+1)

8: k ← k + 1

9: until Xk+1 satisfies the stopping criterion

10: Output Xk+1

Following [45, 62], we can prove the convergence results of Algorithm 2

under suitable conditions.

Theorem 3.2.3. Let {(Xk, V k,W k)}k∈N be the sequence generated by Al-

gorithm 2. If β >
2λ

γ2
, the sequence {(Xk, V k,W k)} has at least one limit

point and each limit point is a stationary point of Lβ.

A proof of Theorem 3.2.3 is given in Appendix B.1. The overall algo-

rithm for denoising the given image corrupted by Cauchy noise is shown in

Algorithm 3.
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Algorithm 3 Algorithm for Cauchy noise denoising

1: Given noisy image y

2: Initialize x(0), k = 0

3: while x(k) do not satisfy the stopping criterion do

4: for each patch y
(k)
j in x(k) do

5: Find similar patch group and stack it to form Y
(k)
j

6: Estimate weight vector w

7: Apply nonconvex-ADMM to solve

arg min
X

(k)
j

‖Xj‖w,∗ +
∑

xk∈X
(k)
j ,yk∈Y

(k)
j

log
(
γ2 + (xk − yk)2

)

8: return improved patch y
(k+1)
j

9: end for

10: Aggregate patches y
(k+1)
j to form enhanced image x(k+1)

11: k ← k + 1

12: end while

13: Output Restored image x(k)

3.2.5 Numerical method and experimental results

We present the results of several experiments to demonstrate the perfor-

mance of the proposed algorithm for Cauchy noise removal. We used ten

256× 256 gray-scale test images in [0, 255] for our experiments, as shown in

Figure 3.11. For the original image u0, we generate the noisy image y cor-

rupted by Cauchy noise n which follows Cauchy distribution C(0, γ):

y = u0 + n = u0 + γ
η1

η2

,

where we used Proposition 3.2.1 and random variables η1, η2 following the

normal distribution N(0, 1).
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We compare our algorithm with other methods for Cauchy noise removal

including the convex total variation (CTV) method [56], nonconvex total

variation (NCTV) method [45] and weighted generalized nonlocal myriad fil-

ters (wGNMF) [37]. For a quantitative measure of the restored image, we

adopt the peak signal-to-noise ratio (PSNR) and the structural similarity in-

dex (SSIM) [63] which are defined as in (3.11).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 3.11: Test images with size of 256×256. a Barbara, b Boat, c Cam-

eraman, d Couple, e House, f Man, g Mandrill, h Peppers, i Plane, j Syn-

thetic
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The parameters related to the proposed algorithm affect the experimental

results. For the subproblem line 5 in Algorithm 2, we set the patch size to

6 × 6, stacked 70 similar patches for each reference patch moving with a

stride of 4, and set β to be slightly larger than
2λ

γ2
. For each stacked patch

Y, the weight vector w = [w1, · · · , wn] is estimated as

wi = min

(
cΘ2
√
n

σi(Y) + ε
, Θ2

)
,

where σi(Y) is the i-th largest singular value of Y, n is the number of

stacked patches and c, Θ are constants. We observed in the experiment that

as the denoising algorithm iterates, the small singular values of the newly

stacked patch matrix Y approaches 0. By applying a soft-thresholding op-

erator, the large weight corresponding to the small singular value of Y causes

the singular value to be 0; thus detailed information with respect to the im-

age is lost. To prevent the weight from being excessively large, we truncated

the weight by a constant Θ2. We set λ = 1, c = 23, Θ = 2.7 for γ = 5 and

Θ = 4 for γ = 10 in our experiments.

Initialization is another issue because our model is non-convex. We ob-

tained a starting image x(0) by eliminating noisy pixels that have extreme

values. We applied a 3× 3 median filter to a noisy image y to obtain a fil-

tered image ỹ and truncated y by the minimum and maximum of all pixel

values of ỹ. In other words,

x(0) = max(m,min(M, y)),

where m,M are minimum and maximum among all pixel values of ỹ respec-

tively.

As we did not conduct an exhaustive search for other possible choices of

parameters such as patch size and number of stacked patches, the perfor-

mance of our algorithm can be further improved.
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Block matching method

We used the Frobenius norm to compare the similarity of two patches.

For patches pa and pb, we computed the distance between them as follows:

Dist(pa, pb) = ‖pa − pb‖2
F .

However, because Cauchy noise is considerably impulsive compared with

Gaussian noise [56], noisy pixels of impulsive nature can completely remove

the original pixel value, thus complicating the similarity measurement of the

patches. Instead of determining the distance directly, we applied a 3 × 3

median filter (medfilt2 in MATLAB) to the noisy image and applied the

Frobenius norm to obtain similar patches based on the filtered image.

Because the image improves as iteration step k increases, there is a k∗-th

such that the recovered image Xk∗ has better visual quality than medfilt2(Xk∗);

which is obtained by applying the median filter to the recovered image. After

step k∗, patch matching using the reconstructed image Xk∗ produced better

results than those using the image medfilt2(Xk∗). At this point, it is better

to obtain similar patches based on the recovered image Xk∗ instead of the

filtered image. To obtain such k∗, we considered the total variation of the

recovered image. The total variation for the image u, denoted by TV(u), is

defined as follows [54]:

TV(u) =
∑
i,j

√
|ui+1,j − ui,j|2 + |ui,j+1 − ui,j|2.

We computed the ratio of the total variation of the recovered image Xk

to that of the medfilt2(Xk). At the early iteration step of the algorithm,

the noisy pixel of impulsive nature still remained in the recovered image.

The median filter erased most of these noisy pixels, thus reducing the sharp-

ness of the image. Therefore, applying the median filter to the recovered im-

age reduced the total variation of the image significantly. However, as the
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iteration proceeded, the number of such impulsive pixels in the recovered

image decreased and median filtering did not significantly reduce the to-

tal variation of the image. Hence, we set k∗ as the first step k such that

TV(Xk)/TV(medfilt2(Xk)) ≤ 3 is satisfied.

Overall, at the early stage of the algorithm, we matched the similar patches

based on medfilt2(Xk). If the criterion TV(Xk)/TV(medfilt2(Xk)) ≤ 3 is

first satisfied at the iteration step k∗, then we obtain the patches based on

Xk at the (k∗ + 1)-th step and thereafter.

Stopping criterion based on energy estimation

We define an energy function to be utilized for setting a stopping cri-

terion of our algorithm. Because the weight of the weighted nuclear norm

varies with respect to iteration, it is inappropriate to set the termination

condition using the objective function (3.23). Instead, we use the nuclear

norm for the energy function E:

E(X) = ‖X‖∗ +
λ

2

∑
x∈X,y∈Y

log (γ2 + (x− y)2),

where X is a stacked matrix of flattened similar patches of the reference

patch in the restored image and Y is the corresponding matrix whose ele-

ments are selected from the noisy image f . Theoretically, we have to com-

pute E(X) for every reference patch in the image. However, this requires

high computational cost; therefore, we computed E only for the patch p̂,

which has the smallest standard deviation among the patches of filtered im-

age medfilt2(f). Subsequently, we terminated the algorithm at iteration k

when the criterion
|E(X(k−1))− E(X(k))|

|E(X(k))|
< ε

was satisfied for threshold ε. In the experiments, we set ε = 1e−3.
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Experimental results

In Table 3.2.5 and 3.2.5, we present the PSNR and SSIM of noisy im-

ages recovered by CTV [56], NCTV [45], nonlocal myriad filters [37] and

our method. The best PSNR or SSIM values among all the denoising meth-

ods are marked in boldface. Based on the results, our proposed method per-

formed better than the other methods in terms of the PSNR and SSIM val-

ues for most of the test images.

In Figures 3.12, 3.13, 3.14, 3.15, 3.16 and 3.17, we demonstrate the noisy

and restored images by CTV, NCTV, wGNMF and the proposed method.

As shown, CTV overly smoothes the image, thus resulting in detail loss

and the appearance of staircase artifacts. NCTV preserves the details of the

image better than CTV but some noisy features of Cauchy noise still re-

main, which are shown as salt-and-pepper-like pixels. The wGNMF causes

the image to be slightly blurred. Our method exhibits sharp edges and pre-

serves detailed features in the restored images while removing most of the

impulsive-like noisy pixels. For example, for the Cameraman images in Fig-

ure 3.13, we can identify the mentioned characteristics in the background

and the camera of the restored images. Additionally, we can verify that our

method restored the details better than the compared methods, as shown in

the checked pattern of the tablecloth in the image Barbara in Figure 3.12,

and the letters on the body of the airplane in the image Plane in Figure 3.14.

Our method well restores the smooth parts of the image Synthetic in Fig-

ure 3.15. For noisy images corrupted by a stronger noise level such as γ = 10,

our method still demonstrated significantly better restoration performance

compared with other methods, as shown in Figure 3.16, 3.17.
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PSNR SSIM

Noisy CTV NCTV Myriad Ours Noisy CTV NCTV Myriad Ours

Barbara 19.21 29.41 29.49 30.98 33.17 0.4265 0.8500 0.8533 0.8871 0.9306

Boat 19.19 29.45 29.92 29.53 30.91 0.4058 0.8519 0.8693 0.8523 0.8905

Cameraman 19.23 27.97 28.36 28.96 31.00 0.3563 0.8571 0.8482 0.8376 0.9001

Couple 19.19 28.54 29.55 29.34 30.92 0.4243 0.8190 0.8650 0.8557 0.9004

House 19.13 29.04 29.33 29.55 30.49 0.4333 0.8705 0.8775 0.8699 0.9092

Man 19.20 28.67 28.84 28.83 29.85 0.4744 0.8422 0.8604 0.8582 0.8781

Mandrill 19.21 26.46 27.00 27.92 28.40 0.5000 0.7499 0.8117 0.8332 0.8525

Peppers 19.24 30.92 31.00 30.67 32.50 0.3859 0.8929 0.8854 0.8712 0.9166

Plane 19.20 30.23 30.47 30.05 31.37 0.3727 0.9021 0.8896 0.8654 0.9228

Synthetic 19.21 39.36 41.51 35.68 43.81 0.1498 0.9609 0.9728 0.8394 0.9833

Table 3.3: PSNR and SSIM for the noisy and restored images by different

methods (γ = 5).

PSNR SSIM

Noisy CTV NCTV Myriad Ours Noisy CTV NCTV Myriad Ours

Barbara 16.31 27.57 27.81 27.70 30.48 0.2871 0.7963 0.8027 0.7665 0.8758

Boat 16.30 27.25 27.75 27.11 28.86 0.2738 0.7789 0.7944 0.7245 0.8399

Cameraman 16.33 26.40 26.86 26.86 29.04 0.2427 0.8039 0.7858 0.6910 0.8627

Couple 16.32 26.88 27.27 26.73 28.64 0.2834 0.7567 0.7814 0.7270 0.8378

House 16.26 26.78 27.19 26.83 28.40 0.3026 0.8022 0.8072 0.7424 0.8631

Man 16.31 26.52 26.96 26.50 27.73 0.3227 0.7627 0.7899 0.7515 0.8049

Mandrill 16.33 24.67 25.23 25.58 26.27 0.3416 0.6279 0.7164 0.7175 0.7513

Peppers 16.36 28.69 29.00 27.79 30.49 0.2629 0.8504 0.8511 0.7419 0.8866

Plane 16.31 27.86 28.21 27.67 29.36 0.2564 0.8528 0.8250 0.7235 0.8924

Synthetic 16.33 36.48 38.15 30.85 41.39 0.0765 0.9420 0.9523 0.6187 0.9836

Table 3.4: PSNR and SSIM for the noisy and restored images by different

methods (γ = 10).
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Ground truth Noisy image

CTV [56] NCTV [45]

Myriad filter [37] Ours

Figure 3.12: Denoising results on image Barbara by different methods (γ =

5).
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Ground truth Noisy image

CTV [56] NCTV [45]

Myriad filter [37] Ours

Figure 3.13: Denoising results on image Cameraman by different methods

(γ = 5).
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Ground truth Noisy image

CTV [56] NCTV [45]

Myriad filter [37] Ours

Figure 3.14: Denoising results on image Plane by different methods (γ = 5).
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Ground truth Noisy image

CTV [56] NCTV [45]

Myriad filter [37] Ours

Figure 3.15: Denoising results on image Synthetic by different methods (γ =

5).
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Ground truth Noisy image

CTV [56] NCTV [45]

Myriad filter [37] Ours

Figure 3.16: Denoising results on image Boat by different methods (γ = 10).
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Ground truth Noisy image

CTV [56] NCTV [45]

Myriad filter [37] Ours

Figure 3.17: Denoising results on image Peppers by different methods (γ =

10).
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Chapter 4

Image restoration in underwater

In this chapter, we propose a novel method for restoring an image taken

in underwater. As we can see from the section 2.2, there exist various meth-

ods for restoring an image corrupted by haze in the atmosphere. In under-

water, the attenuation of light depends on the wavelength and it makes a

distinction between degraded image formation processes in atmosphere and

underwater. Although there are several differences in aspects of image distor-

tion process between air and underwater, we devise a restoration algorithm

for underwater based on the methods used for dehazing an image taken in

the air.

We adopt the color ellipsoid prior and modify it to utilize for image taken

in the underwater. To prevent the artifact by the patch-based method, we

extract the local region from the given image using the superpixel segmenta-

tion algorithm called SLIC. The color ellipsoid prior is applied only to green

and blue channels and information of red channel is combined afterwards.

We obtain background light by introducing an index which estimates mag-

nitude and variation of intensity in the region of interest. Numerical exper-

iments show that the proposed algorithm enhances the degraded image vi-

sually satisfactorily.

71



Chapter 4. Image restoration in underwater

4.1 Scientific background

In underwater, image formation is governed by direct attenuation of light

and background light due to scattering like hazy image formation in the at-

mosphere. However, in underwater, the degree of attenuation is not uniform

with respect to wavelength.

The irradiance incident on the camera contains three components which

are background light, direct attenuation and forward scattering [70]. Back-

ground light is due to the scattering of ambient light, direct attenuation is

due to irradiance of non-scattered but reduced light from the object and for-

ward scattering is due to scattered light from the object. Note that the ef-

fect of forward scattering is negligible [22] and therefore we can simplify the

model.

It is known that the light attenuates exponentially as it travels through

water and the transmission of object can be expressed as

tλ(x) = exp (−aλd(x)),

where aλ is the attenuation coefficient for wavelength λ and d(x) is a dis-

tance from the camera to the scene point x.

We assume that ambient light is approximately homogeneous. Then back-

ground light of the distance d is calculated by integrating the contribution

of each infinitesimal volume component with respect to distance and angle

relative to the line of camera’s sight and the direction of incident light. It

is in the form of

Bλ(d) = Bλ,∞(1− exp (−aλd)),

where Bλ,∞ is the background light at infinity.

If we gather the previously mentioned factors contributing to the degra-

dation of image altogether, we obtain the following image formation model

72



Chapter 4. Image restoration in underwater

in underwater:

Ic(x) = Jc(x)tc(x) +Bc,∞(1− tc(x)), (4.1)

where for each color channel c = R,G,B corresponding to suitable wave-

length of light, Ic is observed degraded image, Jc is the scene radiance, Bc,∞

is the background light at infinity, tc is the transmission and ac is the at-

tenuation coefficient.

Since a color image contains red, green and blue channels, we select the

wavelength corresponding to color of each channel. We choose 650nm, 525nm

and 475nm for wavelengths representing red, green and blue, respectively.

Jerlov categorized waters into five oceanic types and five coastal types

based on the transmittance data from near surface water clarity measure-

ments [32]. The attenuation coefficients for selected wavelengths are obtained

for all Jerlov water types [57]. Among them, we choose the coefficient of red

light corresponding to the oceanic water type I. We can subsequently obtain

the coefficients of other color channels by the following relations [70]:

ac
aR

=
BR,∞(−0.00113λc + 1.62517)

Bc,∞(−0.00113λR + 1.62517)
, c ∈ {G,B}, (4.2)

where λc represents the wavelength of corresponding color.

Figure 4.1 describes the process of image formation by effects of direct

transmission and scattering in underwater.

4.2 Proposed method

In this section, we introduce our novel method for underwater image de-

hazing. Based on the color ellipsoid prior applied on green and blue channels

of an image, we use superpixel segmentation to reduce the artifact arising

from the use of patch and, furthermore, utilize value of red channel as an

another indicator of depth map of scene.

73



Chapter 4. Image restoration in underwater

Figure 4.1: Illustration of light transmission and image formation processes

in underwater.

4.2.1 Color ellipsoid prior on underwater

One could think of applying the dehazing methods which is useful in the

atmosphere such as the dark channel prior or the color ellipsoid prior di-

rectly to the restoration problem in underwater. Note that for hazy image

in the air, the result of applying the dark channel prior is that if haze is

denser between the scene point and the observer, the intensity of the point

becomes brighter. But, because red light attenuates rapidly in underwater,

the dark channel value of underwater image shows different aspect from that

of air such that the farther scene point from the observer becomes darker.

Therefore, it is ineffective to directly use the dark channel prior or the color

ellipsoid prior to restore an underwater image. Figure 4.2 shows the result

of applying the dark channel prior to underwater image without any modi-

fications.

Accordingly, following [22], we only consider green and blue channels of

underwater image as an effective indicator of depth information when apply-

ing the dark channel based methods. We adopt the color ellipsoid prior only
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(a) (b)

Figure 4.2: Illustration of ineffectiveness of direct application of the dark

channel prior method to the underwater image. (a) Given underwater image,

(b) the result of dark channel prior method applied to (a).

on green and blue channels of image and extract depth of the scene.

Superpixel segmentation

In [11], when applying the color ellipsoid prior to the hazy image in the

air, additional post-processing is necessary to reduce the so-called halo ar-

tifact. The artifact is primarily caused by simultaneous existence of more

than two things (for example, branches of a tree and background) in a sin-

gle patch. It makes difficult to approximate points scattered in RGB space

by a single ellipsoid. To overcome mentioned weaknesses, we propose to use

the color ellipsoid prior on a segmented region of image, not on a rectangular

patch. We adopt one of the superpixel segmentaion methods, SLIC (Simple

Linear Iterative Clustering), which is low computational and stable. A single

superpixel usually contains similar pixels in which prevents artifact from the

use of the color ellipsoid prior on the rectangular patch. Figure 4.3 shows

the segmentation result of an underwater image by SLIC algorithm.

75



Chapter 4. Image restoration in underwater

(a) (b)

Figure 4.3: Illustration of application of superpixel segmentation method

(SLIC) to the underwater image. (a) Given underwater image, (b) the result

of SLIC applied to the image (a).

Combining intensity map of red channel

Although it is not useful for application of dark channel based methods,

the intensity map of red channel still contains valuable information. Because

visibility of red light relies heavily on the distance from the observer, mod-

est intensity of red channel of a scene point indicates that the point is not

far from the observer. On the contrary, almost zero intensity of red channel

implies that the point is distant from the observer. Therefore, we utilize the

intensity map of red channel of an image by combining it with the normal-

ized depth map obtained from the color ellipsoid prior on the green and blue

channels. Fig 4.4 shows the intensity map of red channel of an underwater

image. We can see the difference of intensities with respect to the distance

from the observer.

For each superpixel Ω, the color ellipsoid prior is applied on (4.1) corre-

sponding to green and blue channels. We assume that the transmission tc is

constant on each superpixel. If we divide both sides of (4.1) by Bc,∞ and
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(a) (b)

Figure 4.4: Illustration of intensity map of red channel of the underwater

image. (a) Given underwater image, (b) Intensity map of red channel of the

image (a).

take minimum with respect to pixels in the superpixel and green, blue chan-

nels, we have

min
c∈{g,b}

(
min
y∈Ω

Ic(y)

Bc,∞

)
= min

c∈{g,b}

(
tc min

y∈Ω

(
Jc(y)

Bc,∞

)
+ (1− tc)

)
≈ min

c∈{g,b}

(
tc min

y∈Ω

(
Jc(y)

Bc,∞

))
+ min

c∈{g,b}
(1− tc)

= min
c∈{g,b}

(1− tc).

Therefore,

max
c∈{g,b}

tc = 1− min
c∈{g,b}

(
min
y∈Ω

Ic(y)

Bc,∞

)
.

By comparing the attenuation coefficients aG and aB given beforehand,

we can determine whether tG > tB or tG < tB. From the exponential rela-

tion between the depth and transmission, we can recover the depth map of

an image.
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Subsequently, we combine the intensity map IR of red channel of an im-

age with the acquired depth map. Because they have different scales, we

normalize the depth map and denote it by d. Then, we get a refined depth

map d̃ as follows:

d̃(x) = d∞ ·
2µR(1− (µR + σR)) + d(x)

2µR + 1
,

where µR, σR are average and standard deviation of IR(x) on a targeted su-

perpixel Ω and d∞ is a parameter determining a farthest distance from the

observer to scene points of the image.

From the refined depth map d̃, we earn the transmission map tc = exp (−acd̃)

so that the scene radiance is obtained from (4.1) as follows:

Jc =
Ic − (1− tc)Bc,∞

tc
. (4.3)

4.2.2 Background light estimation

To recover a scene radiance Jc in (4.3), it remains to find a background

light Bc,∞ from the given intensity map of underwater image. For hazy im-

age taken in the atmosphere, background light is estimated based on the

brightest color value [18, 30, 50]. However, because red light is attenuated

rapidly in underwater, red channel value of background light is not high.

Rather, it is more likely to belong to the darkest part of red channel of im-

age. Also, we predict that both green and blue channel values of background

light are high. Furthermore, to estimate a background light precisely, it is

better to find a homogeneous region which have no objects other than water.

As a result, the background light would be acquired in a homogeneous re-

gion where red channel value is low and green, blue channel values are high.

Along with the above assumptions, we obtain background light using the

method of [61] based on quad-tree decomposition. It repeats the process of
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dividing the interested region into four equal parts and choosing one of them

according to certain criterion. Eventually, it reaches a small, homogeneous

region whose intensity is chosen as a background light.

Figure 4.5: Illustration of process of determining background light. Itera-

tively divide the interested region into four and select one according to the

ratio of image intensity and variation.

First, we modify the red channel IR of an image to I ′R = max (IR)−IR so

that a region with low red channel values has high values of I ′R. Then, we

define the quantity Q on some region D which is a criterion for the quad-

tree decomposition:

Q =

∑
x∈D (I ′R(x) + IG(x) + IB(x))∑

x∈D ((∇I ′R(x))2 + (∇IG(x))2 + (∇IB(x))2)
. (4.4)

Let us define I0 as original image. We evenly divide I0 into rectangles
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which locate on upper-left, upper-right, lower-left and lower-right of I0, re-

spectively. We compute Q for each divided region and choose the one with

highest Q values. For the chosen region, we repeat the above process. We

terminate the process if the difference between maximum and minimum Q

values among four divided regions exceeds a certain threshold.

Finally, we get a homogeneous patch and set the pixel as the seed point

of background light which has the closest intensity to the average intensity

of pixels of the obtained patch in the grayscale. Figure 4.5 depicts an overall

process of finding the seed point of the background light.

The overall process of proposed method for restoring a given underwater

image is shown in Algorithm 4.

Algorithm 4 Overall restoration process of the proposed method

1: Given underwater image Ic, c = R,G,B

2: Parameter ac > 0

3: Segment the image I = (IR, IG, IB) into superpixels by SLIC.

4: For each superpixel, obtain the normalized depth map d by applying

the color ellipsoid prior to IG, IB.

5: Combine d with IR to get a refined depth map d̃.

6: tc = exp (−acd̃)

7: Find a background light Bc,∞ based on the quad-tree decomposition.

8: Jc = (Ic − (1− tc)Bc,∞)/tc

9: Output Jc

4.3 Experimental results

In this section, we present the results of numerical experiments to val-

idate the superior performance of proposed method compared with other

methods. Given images taken in underwater, we compare the results of our

method with those of UDCP [22], GBRC [43], Nonlocal (NL) haze-line [6]
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and IBLA [50]. The attenuation coefficients are critical factor affecting the

results of experiments. We adopt the wavelengths of red, green and blue

light for our method as 650nm, 525nm and 475nm respectively. Then, we

bring attenuation coefficient of red light from [57] and obtain those of blue,

green light by (4.2). Note that each restoration method selects their own

attenuation coefficients and adjusts its algorithm to them. Therefore, we re-

gard the attenuation coefficients as the parameters set to each method and

follow them without any modifications when carrying out numerical experi-

ments.

When we combine intensity map of red channel with depth map from the

color ellipsoid prior, we stretch the intensity map of red channel so that its

maximum and minimum takes 0 and 1 respectively and apply gamma cor-

rection with γ = 0.5.

In Figures 4.6, 4.7, 4.8 and 4.9, we demonstrate the results of numerical

experiments by various restoration methods. We can see that our method

performs well in comparison with other methods in terms of visual natural-

ness and restoration of original color of object. In Figure 4.6, our method

restores color of image satisfactorily while in the results of other methods,

red color is prevalent or the image becomes too dark. In Figure 4.7, the re-

sult of our method is visually natural but dehazing result of remote points is

not good enough compared with that of NL haze-line. In Figure 4.8 and 4.9,

the results of our method are visually natural in that the overall color of the

scene is well restored conforming to color scheme of given image.
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Underwater image UDCP [22]

GBRC [43] NL haze-line [6]

IBLA [50] Ours

Figure 4.6: Dehazing results on underwater image by different methods.
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Underwater image UDCP [22]

GBRC [43] NL haze-line [6]

IBLA [50] Ours

Figure 4.7: Dehazing results on underwater image by different methods.
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Underwater image UDCP [22] GBRC [43]

NL haze-line [6] IBLA [50] Ours

Figure 4.8: Dehazing results on underwater image by different methods.
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Underwater image UDCP [22]

GBRC [43] NL haze-line [6]

IBLA [50] Ours

Figure 4.9: Dehazing results on underwater image by different methods.
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Conclusion

In this thesis, we propose regularization methods for restoring image cor-

rupted by Gaussian or Cauchy noise and dehazing of underwater image. In

image denoising for the additive Gaussian noise, we suggest the second-order

extension of STV based on the fact that STV is a generalization of TV and

adaptively takes the directions of highest and smallest intensity variation

of neighborhood of a point, but still shows staircase artifact. We propose

a hybrid method which combines STV and second-order STV. It improves

restoration results by sufficiently smoothing homogeneous regions while pre-

serving edge parts. A computational speed can be further improved if we

use effective batched SVD algorithm which parallelizes computation of SVD

requiring for every pixel of a given image.

Furthermore, for image corrupted by the additive Cauchy noise, we apply

the weighted nuclear norm under nonlocal framework. A variational model is

adopted based on MAP estimate, which contains a data fidelity term that is

appropriate for noise following Cauchy distribution. Weighted nuclear norm

is used as a regularizer in the proposed algorithm, and we utilized similar

patches in the image on the basis of nonlocal similarity. We adopt the non-

convex ADMM to solve the problem iteratively and its convergence result is

presented.
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Subsequently, based on the color ellipsoid prior which is effective for restor-

ing hazy image in the air, we introduce novel dehazing method which is ad-

justed to underwater situation. Because attenuation coefficient of light in

water depends on wavelength of light and red light attenuates rapidly, we

apply the color ellipsoid prior only for green and blue channels of a given

image and utilize information of red channel for refining the obtained depth

map afterwards. To avoid artifact arising from the use of patch based esti-

mation of transmission map, we utilize SLIC, one of the superpixel segmen-

tation algorithms, to proceed the restoration process for each superpixel.

Numerical experiments demonstrate that our proposed methods outper-

form other compared methods in terms of both quantitative measures such

as PSNR, SSIM and qualitative aspect.
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Proofs and supplementary

material of Section 3.1

A.1 Proof of theorem 3.1.9

Proof. It is basically based on the proof in [39]. We define 2×2 matrix GKu

and 4× 4 matrix HKu as follows:

GKu(x) =

ˆ
Ω

K(t− x)Ju(t)TJu(t)dt

HKu(x) =

ˆ
Ω

K(t− x)Hu(t)THu(t)dt

where K(t) is a nonnegative, rotationally symmetric kernel and Ju, Hu are

Jacobian and Hessian operators described in Section 3.1. They corresponds

to evaluating SKu, S
(2)
K u at the x ∈ Ω, respectively and can be also repre-

89



Chapter A. Proofs and supplementary material of Section 3.1

sented in matrix form as follows:

GKu(x) =


ˆ
R2

K(t− x)
M∑
i=1

(
∂ui
∂x

(t)

)2

dt,

ˆ
R2

K(t− x)
M∑
i=1

(
∂ui
∂x

(t)
∂ui
∂y

(t)

)
dt

ˆ
R2

K(t− x)
M∑
i=1

(
∂ui
∂y

(t)
∂ui
∂x

(t)

)
dt,

ˆ
R2

K(t− x)
M∑
i=1

(
∂ui
∂y

(t)

)2

dt

,

HKu(x) =



ˆ
R2

K(t− x)
M∑
i=1

(
∂2ui
∂x2

(t)

)2

dt, · · · ,
ˆ
R2

K(t− x)
M∑
i=1

(
∂2ui
∂x2

(t)
∂2ui
∂y2

(t)

)
dt

...
. . .

...ˆ
R2

K(t− x)
M∑
i=1

(
∂2ui
∂y2

(t)
∂2ui
∂x2

(t)

)
dt, · · · ,

ˆ
R2

K(t− x)
M∑
i=1

(
∂2ui
∂y2

(t)

)2

dt


.

Now, let us define the operator A = A(u, t, x) such that for v = (v1, v2)T ∈
R2,

A : R2 → H = L2(R2,RM), Av = v1f1(t) + v2f2(t),

where fi(t) = k(t − x)
(∂u1

∂xi
(t), · · · , ∂uM

∂xi
(t)
)T
∈ H, (x1 = x, x2 = y), and

k(t) =
√
K(t).

Similarly, we can define the operator B = B(u, t, x) such that for w =

(w11, w12, w21, w22)T ∈ R4,

B : R4 → I = L2(R4,RM), Bw =
2∑

i,j=1

wijgij(t),

where gij(t) = k(t − x)
( ∂2u1

∂xi∂xj
(t), · · · , ∂

2uM
∂xi∂xj

(t)
)T
∈ I, (x1 = x, x2 = y)

and k(t) =
√
K(t).

It is noteworthy that H, I are Hilbert spaces and they are equipped with
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the inner products 〈·, ·〉H, 〈·, ·〉I such that for f, f ′ ∈ H,

〈f, f ′〉H =
M∑
i=1

ˆ
R2

fi(t)f ′i(t)dt,

and 〈·, ·〉I is defined similarly.

Then, there exist adjoint operators A∗ : H → R2 and B∗ : I → R4 which

satisfies

〈f, Av〉H = 〈A∗f,v〉, for all v ∈ R2, f ∈ H,
〈g,Bw〉I = 〈B∗g,w〉 for all w ∈ R4, g ∈ I.

The above adjoint relations bridge between structure tensor and operators

A,B.

〈f, Av〉H = 〈f, v1f1 + v2f2〉H =
2∑
i=1

vi〈f, fi〉H

⇒ A∗f = (〈f, f1〉H, 〈f, f2〉H)T

⇒ A∗Av = A∗(v1f1 + v2f2) =

(
〈f1, f1〉H 〈f2, f1〉H
〈f1, f2〉H 〈f2, f2〉H

)(
v1

v2

)
⇒ A∗A = GKu

By similar process, we also obtain that B∗B = HKu.

Note that both A and B are compact operators and it holds that element-

wise square root of vector consisting of eigenvalues of GKu (resp., HKu) is

equal to vector which consists of effective singular values of A (resp., B) and

whose length is equal to the rank of corresponding operator, which we will

denote as σ(A) (resp., σ(B)). Thus, we earn that

STV(u) =

ˆ
Ω

‖σ(A(x))‖1dx, STV2(u) =

ˆ
Ω

‖σ(B(x))‖1dx.
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The convexity of STV and STV2 would follows if we show the convexity of

‖σ(A)‖1 and ‖σ(B)‖1.

For compact operators A1, A2 : R2 → H, we have the following dual

representation:

‖σ(A1)‖1 = sup
‖σ(A2)‖∞=1

trace(A1A
∗
2).

Here, trace of an operator indicates that

trace(A1A
∗
2) =

2∑
m=1

2∑
n=1

σm(A1)σn(A2)〈um, ũn〉H〈vm, ṽn〉2,

if the singular decomposition of A1, A2 are represented as

A1 =
2∑

m=1

σm(A1)um ⊗ vm, A2 =
2∑

n=1

σn(A2) ũn ⊗ ṽn

where um, ũn ∈ H (resp., vm, ṽn ∈ R2) are left (resp., right) singular vectors

of A1 and A2, respectively.

Then for 0 ≤ t ≤ 1, we have

‖σ(tA1+(1− t)A′1)‖1 = sup
‖σ(A2)‖∞=1

trace
(

(tA1 + (1− t)A′1)A∗2

)
≤ sup
‖σ(A2)‖∞=1

trace(tA1A
∗
2) + sup

‖σ(A2)‖∞=1

trace((1− t)A′1A∗2)

= t sup
‖σ(A2)‖∞=1

trace(A1A
∗
2) + (1− t) sup

‖σ(A2)‖∞=1

trace(A′1A
∗
2)

= t‖σ(A1)‖1 + (1− t)‖σ(A′1)‖1

which shows that σ(A) is convex. By the same argument, we can show that

σ(B) is also convex. Therefore, for u ∈ W 2,2(R2,RM), STV(u) and STV2(u)

are convex.
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A.2 Finding the gradient step size for Algorithm 1

First, we investigate the adjoint of patch-based operators. From the def-

inition of adjoint, the adjoint of patch-based Jacobian is given by [39]:

[JKΩ1]k =
L∑
l=1

[
− div

(
T ∗sl,w ◦ Ω

((m−1)L+l,:)
1

)]
n
,

where k = (m−1)N+n with 1 ≤ n ≤ N and 1 ≤ m ≤M , div is the discrete

divergence, Tsl,w is the weighted translation operator on the gradient with

translation sl and weight w(sl) =
√
K(sl) and Ω

(i,:)
1,n is the i-th row of Ω1,n.

Similarly, the adjoint of patch-based Hessian is given as follows:

[PHKΩ2]k =
L∑
l=1

([
∆∗xx ◦ T ∗sl,w

]
n
Ω

((m−1)L+l,1)
2,n +

[
∆∗xy ◦ T ∗sl,w

]
n
Ω

((m−1)L+l,2)
2,n

+
[
∆∗yx ◦ T ∗sl,w

]
n
Ω

((m−1)L+l,3)
2,n +

[
∆∗yy ◦ T ∗sl,w

]
n
Ω

((m−1)L+l,4)
2,n

)
,

where Tsl,w is the weighted translation operator which acts on the hessian of

image.

Now, we are going to show the following proposition:

Proposition A.2.1. Let d(Ω1,Ω2) be the objective function in (3.9). Then,

it is Lipschitz continuous gradient with respect to Ω1 and Ω2 with Lipschitz

constants 8τ 2
1 and 64τ 2

2 , respectively.

Proof. For Ω
′
1,Ω

′′
1 ∈ X with Ω2 ∈ Y fixed, we have

‖∇Ω1d(Ω
′

1,Ω2)−∇Ω1d(Ω
′′

1 ,Ω2)‖X = ‖τ 2
1 JKJ∗K(Ω

′

1 − Ω
′′

1)‖X
≤ τ 2

1 ‖JKJ∗K‖ · ‖Ω
′

1 − Ω
′′

1‖X
= τ 2

1 ‖JK‖2‖Ω′1 − Ω
′′

1‖X

Note that ‖JK‖2 = ‖J∗KJK‖ and J∗KJK = −div ◦
∑L

l=1(T ∗sl,w ◦ Tsl,w) ◦ ∇.
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Therefore,

‖J∗KJKu‖2 ≤ ‖∇‖2‖T‖‖u‖2,

where T =
∑L

l=1(T ∗sl,w ◦ Tsl,w). Then, we can deduce that ‖∇‖2 ≤ 8 and

‖T‖ ≤ 1. It implies that ‖JK‖2 ≤ 8.

Also, the Lipschitz constant for ∇Ω2d follows from the fact that ‖∆xx‖,
‖∆yy‖ and ‖∆xy‖ are all smaller than 4.
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Proofs and supplementary

material of Section 3.2

B.1 Proof of theorem 3.2.3

First, let us define the following:

F : Rmn → R, F(X) = ‖X‖w,∗.

G : Rmn → R, G(X) =
λ

2
〈log (γ2 + (X − Y )2),1〉.

We need the following Lemmas:

Lemma B.1.1. The iterates {(Xk, V k,W k)}k∈N in Algorithm 2 satisfies:

1. Lβ(Xk, V k,W k) is lower-bounded and non-increasing for all k ∈ N.

2. {(Xk, V k,W k)} is bounded.

Proof. By the definition of Xk+1, we can obtain

Lβ(Xk, V k,W k)− Lβ(Xk+1, V k,W k) ≥ 0.
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Furthermore, the following equalities hold

Lβ(Xk+1, V k,W k)− Lβ(Xk+1, V k+1,W k)

= G(V k)− G(V k+1)− 〈W k, V k − V k+1〉 − β〈Xk+1 − V k+1, V k − V k+1〉

+
β

2
‖V k − V k+1‖2

= G(V k)− G(V k+1)− 〈W k+1, V k − V k+1〉+
β

2
‖V k − V k+1‖2,

Lβ(Xk+1, V k+1,W k)− Lβ(Xk+1, V k+1,W k+1)

= 〈W k −W k+1, Xk+1 − V k+1〉 = − 1

β
‖W k −W k+1‖2,

Then, we have the following

Lβ(Xk+1, V k,W k)− Lβ(Xk+1, V k+1,W k+1)

= G(V k)− G(V k+1)− 〈W k+1, V k − V k+1〉 − 1

β
‖W k −W k+1‖2 (B.1)

+
β

2
‖V k − V k+1‖2.

Here, from the first-order optimality condition of line 6 in Algorithm 2,

∇G(V k) = W k, (B.2)

and the smoothness of G implies

‖W k+1 −W k‖ = ‖∇G(V k+1)−∇G(V k)‖ ≤ L∇G‖V k+1 − V k‖, (B.3)

where the Lipschitz constant L∇G =
λ

γ2
follows from ∇2G ≤ λ

γ2
.
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Then (B.1) becomes

G(V k)− G(V k+1)− 〈∇G(V k+1), V k − V k+1〉 − 1

β
‖W k −W k+1‖2 +

β

2
‖V k − V k+1‖2

≥
(
−L∇G

2
−
L2
∇G

β
+
β

2

)
‖V k − V k+1‖2,

from (B.3) and the fact that ∇G is Lipschitz continuous.

If we let C1 = −L∇G
2
−
L2
∇G

β
+
β

2
> 0 which is equivalent to β >

2λ

γ2
, we

have

Lβ(Xk, V k,W k)− Lβ(Xk+1, V k+1,W k+1) ≥ C1‖V k − V k+1‖2, (B.4)

indicating that Lβ(Xk, V k,W k) is non-increasing for k ∈ N.

Now considering that ∇G is Lipschitz continuous, we have

F(Xk) ≥ 0, G(V k) ≥ λ

2
〈log γ2,1〉,

and

G(V k) + 〈W k, Xk − V k〉+
β

2
‖Xk − V k‖2

= G(V k) + 〈∇G(V k), Xk − V k〉+
β

2
‖Xk − V k‖2

≥ G(Xk)− L∇G
2
‖Xk − V k‖2 +

β

2
‖Xk − V k‖2

≥ λ

2
〈log γ2,1〉.

Thus, Lβ(Xk, V k,W k) is lower-bounded. Because Lβ(Xk, V k,W k) is non-

increasing and F is coercive, {(Xk, V k)} is bounded. Additionally, from (B.2),

it is clear that {W k} is bounded.

Lemma B.1.2. For all k ≥ 1, there exists a constant C2 > 0 and pk+1 ∈
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∂Lβ(Xk+1, V k+1,W k+1) such that ‖pk+1‖ ≤ C2‖V k − V k+1‖.

Proof. Here, we denote the partial of Lagrangian ∂Lβ by

∂Lβ(Xk+1, V k+1,W k+1) = (∂XLβ,∇VLβ,∇WLβ)(Xk+1, V k+1,W k+1).

By direct computation and (B.3),

‖∇VLβ(Xk+1, V k+1,W k+1)‖ = ‖W k −W k+1‖ ≤ LG‖V k − V k+1‖,

‖∇WLβ(Xk+1, V k+1,W k+1)‖ =
1

β
‖W k −W k+1‖ ≤ LG

β
‖V k − V k+1‖.

Furthermore, observe that

∂XLβ(Xk+1, V k+1,W k+1) = ∂XF(Xk+1) +W k+1 + β(Xk+1 − V k+1)

= ∂XF(Xk+1) +W k + β(Xk+1 − V k) + (W k+1 −W k) + β(V k − V k+1).

From the optimality condition of line 5 in Algorithm 2, we have 0 ∈ ∂XF(Xk+1)+

W k + β(Xk+1 − V k). Therefore, if we define pk+1 as follows:

pk+1 :=

(
(W k+1 −W k) + β(V k − V k+1), W k −W k+1,

1

β
(W k −W k+1)

)
,

then pk+1 ∈ ∂Lβ(Xk+1, V k+1,W k+1) and

‖pk+1‖ ≤
(
LG(2 +

1

β
) + β

)
‖V k − V k+1‖,

where C2 = LG(2 + 1
β
) + β.

Now, we can prove the Theorem 3.2.3.

(Proof of Theorem 3.2.3). Because {(Xk, V k,W k)} is bounded, there exists

a subsequence {(Xks , V ks ,W ks)} which converges to (X∗, V ∗,W ∗) as s→∞.

Because Lβ(Xk, V k,W k) is non-increasing and lower-bounded, it converges.
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According to (B.4), ‖V k − V k+1‖ → 0 as k →∞ . Then, by Lemma B.1.2,

there exists a sequence of subdifferentials pk ∈ ∂Lβ(Xk, V k,W k) that sat-

isfies ‖pk‖ → 0 as k → ∞. In particular, ‖pks‖ → 0 as s → ∞. Be-

cause the roots of a polynomial depend continuously on its coefficients, F is

continuous. This implies the continuity of Lβ and lim
s→∞
Lβ(Xks , V ks ,W ks) =

Lβ(X∗, V ∗,W ∗). Consequently, we have 0 ∈ ∂Lβ(X∗, V ∗,W ∗).
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국문초록

본 논문에서 우리는 가우시안 또는 코시 분포를 따르는 잡음으로 오염된 영상과

물 속에서 얻은 영상을 복원하기 위한 정규화 방법에 대해 논의한다. 영상 잡음

문제에서 우리는 덧셈 가우시안 잡음의 해결을 위해 구조 텐서 총변이의 이차

확장을 도입하고 이것을 이용한 혼합 방법을 제안한다. 나아가 덧셈 코시 잡음

문제를 해결하기 위해 우리는 가중 핵 노름을 비국소적인 틀에서 적용하고 비

볼록 교차 승수법을 통해서 반복적으로 문제를 푼다. 이어서 대기 중의 안개 낀

영상을 복원하는데 효과적인 색 타원면 가정에 기초하여, 우리는 물 속의 상황

에 알맞은 영상 복원 방법을 제시한다. 물 속에서 빛의 감쇠 정도는 빛의 파장

에 따라 달라지기 때문에, 우리는 색 타원면 가정을 영상의 녹색과 청색 채널에

적용하고 그로부터 얻은 깊이 지도를 적색 채널의 강도 지도와 혼합하여 개선된

깊이 지도를 얻는다. 수치적 실험을 통해서 우리가 제시한 방법들을 다른 방법

과 비교하고 질적인 측면과 평가 지표에 따른 양적인 측면 모두에서 우수함을

확인한다.

주요어휘: 영상 잡음 제거, 수중 영상 개선, 가우시안 잡음, 코시 잡음, 구조 텐

서, 가중 핵 노름, 색 타원면 가정

학번: 2013-22914
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