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Abstract 

Lim, Yu-Na 

School of Earth Environmental Sciences 

The Graduate School 

Seoul National University 

Recent studies have shown that the Quasi-Biennial Oscillation (QBO) 

affects the boreal winter Madden-Julian Oscillation (MJO). During the 

easterly phase of QBO (EQBO) winters, the MJO activity is amplified, and 

the opposite is shown during the westerly phase of QBO (WQBO) winters. 

Since this relationship is very recently reported with simple correlation 

analysis, it should be confirmed and understood in detail. This thesis is to 

investigate the QBO-MJO connection using a variety of datasets, such as the 

observations, dynamical core model, climate models, and subseasonal-to-

seasonal (S2S) prediction models. Their possible mechanism(s) and the 

impacts on the MJO prediction are also evaluated and discussed. 

In the observational study, it is shown that the overall MJO 

characteristics are closely linked with the stratospheric QBO. The MJO 

activity around the Maritime Continent becomes stronger and more organized 

during EQBO than during WQBO winters. The QBO-related MJO change 

explains up to 40% of the interannual variation of the boreal winter MJO 

amplitude. During EQBO winters, the MJO convections propagate further 

eastward with a slower propagation, and more enhanced MJO teleconnection 
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is also presented. These systematic changes in MJO activity confirm the 

QBO-MJO connection, emphasizing the stratospheric impact on the MJO. 

Due to the short analysis period of the observational data, the model 

outputs are helpful for a better understanding of this phenomenon. In the 

climate models, however, a weak hint of the QBO-MJO link is found only in 

the medium-resolution Max Planck Institute Earth System Model (MPI-

ESM-MR) among four CMIP5 models that internally generate the QBO. In 

this model, the MJO anomalies become slightly stronger and more organized 

during EQBO than during WQBO winters. Overall differences, however, are 

still much weaker and less organized than the observation. When daily MJO-

index amplitude is compared, their differences are not robust. The reasons for 

weak QBO-MJO connection might result from the weak QBO and MJO 

amplitudes, and weak static stability change in response to the QBO in the 

model.  

To better simulate the QBO structure and to examine the dynamical 

process, the QBO-MJO connection is tested in an idealized experiment using 

a dynamical core model. It is found that the QBO can directly change the 

MJO-related vertical structure. The MJO-induced cold anomaly near the 

tropopause becomes colder, especially over the western Pacific in the EQBO-

like experiment, which promotes the MJO activity. This result seems to be 

related to the Doppler shift effect by the QBO-related zonal wind, suggesting 

the potential impact of the dynamical process on the QBO-MJO connection.  
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Considering both of dynamical and physical processes with a better 

QBO simulation, the capability of the QBO-MJO connection is evaluated in 

the S2S prediction models. Their relationship is also applied in the MJO 

prediction skill. Ten operational models participated in the S2S prediction 

project show a higher MJO prediction skill during EQBO winters than during 

WQBO winters, based on the QBO-MJO link. For the bivariate anomaly 

correlation coefficient of 0.5, the MJO prediction skill during EQBO winters 

is enhanced by up to 10 days. This enhancement is insensitive to the initial 

MJO amplitude, indicating that the improved MJO prediction skill is not 

simply the result of a stronger MJO. Instead, a longer persistence of the MJO 

during EQBO winters likely induces a higher prediction skill by having a 

higher prediction limit. 

Even though the QBO modulates the MJO prediction skill, the QBO-

MJO connection is not fully captured even in the S2S prediction models. To 

improve the simulation of the QBO-MJO connection in these models, the 

relationship of MJO prediction skill with model biases in the mean moisture 

fields and the longwave cloud–radiation feedbacks are investigated, based on 

understanding the MJO processes. In most models, a notable dry bias 

develops within a few days of forecast lead time in the deep tropics, especially 

across the Maritime Continent. The dry bias weakens the horizontal moisture 

gradient over the Indian Ocean and western Pacific, likely dampening the 

organization and propagation of the MJO. Most S2S models also 
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underestimate the longwave cloud–radiation feedbacks in the tropics, which 

may affect the maintenance of the MJO convective envelope. In the S2S 

prediction project, the operational models with smaller bias in the mean 

horizontal moisture gradient and the longwave cloud–radiation feedbacks 

show higher MJO prediction skills, suggesting that improving those biases 

would enhance MJO prediction skill and the simulation of the QBO-MJO 

connection. 
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model during EQBO (light blue) and WQBO winters (light red). Blue and red 

closed circles denote the multi-model mean values. 

Figure 5.5. Relationships of the MJO pattern correlations of (a) OLR, (b) U850, 

and (c) U200 over the MJO active region (60-180°E, 15°S-15°N) against 

BCOR skills at the two-week forecast during EQBO (light blue) and WQBO 

winters (light red). Blue and red closed circles denote the multi-model mean 

values. 

Figure 5.6. Probability distribution function of initial MJO amplitude during ALL 

(black), EQBO (blue), and WQBO winters (red). Shown value is the ratio of 

the number of events in each bin (at bin intervals of 0.2) to the total number of 

events in each category. Seven individual models that have enough number of 

reforecasts (Table 5.1) are denoted with light colored lines, and their multi-

model mean values are denoted with dark colored lines. The bins, in which 

EQBO-WQBO differences are statistically significant at 95% confidence 

level, are marked in blue and red asterisks. A Student’s t test is used for 

significance test. 

Figure 5.7. The differences in MJO prediction skills for BCOR=0.5 between 

EQBO and WQBO winters for each MJO amplitude (bin width is 0.6). As in 

Fig. 5.6, only seven models that have enough number of reforecasts are 

considered here. 

Figure 5.8. Same as Fig. 5.7 but for each MJO phase.  

Figure 5.9. (Top) U850 and (bottom) OLR composite anomalies for MJO phase 4-

5 during (left) EQBO and (right) WQBO winters at forecast day 1 from 

ECMWF model. The anomalies from reforecasts are shaded and that from the 

observations are contoured. Model anomalies, which are statistically 

significant at 95% confidence level, are dotted in gray. A Student’s t test is 
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used for significance test. The contour intervals of U850 and OLR anomalies 

are 1 m s-1 and 6 W m-2, respectively. The sample size is denoted in the top-

left corner.  

Figure 5.10. Longitude-time evolution of (top) NOAA OLR and ERA-Interim 

U850 anomalies and (bottom) ECMWF OLR and U850 anomalies averaged 

over 15°S-5°N for MJO phase 4-5 during (left) EQBO and (right) WQBO 

winters. Shading interval of OLR anomalies is 3 W m-2 and contour interval of 

U850 anomalies is 0.5 m s-1. U850 anomalies, which are statistically 

significant at 95% confidence level, are dotted in gray. A Student’s t test is 

used for significance test. The sample size is denoted in the top-left corner, 

and MJO prediction skill for BCOR=0.5 is indicated in the parenthesis. 

Figure 5.11. Same as Figs. 5.10c,d but for (top) BoM, (middle) CMA, and 

(bottom) JMA models. 

Figure 6.1. MJO prediction errors as a function of forecast lead times: (a) BCOR, 

(b) BMSE, (c) AE̅̅̅̅ , (d) PE̅̅̅̅ , (e) AE2̅̅ ̅̅ ̅, and (f) PE2̅̅ ̅̅ ̅. The MJO cases with an initial 

amplitude greater than 1.0 are used. The model name and its reforecast size 

are indicated at the bottom. 

Figure 6.2. BCOR of each model as a function of forecast lead times for all 

reforecasts (A; black), and those initialized during strong (S; red), medium 

(M; orange), and weak MJO events (W; green). See the text for the definition 

of strong to weak MJO events. The number of reforecasts used in each 

category and their prediction skill are indicated at the bottom-left corner. Note 

that for each model the black lines are identical to the colored lines in Fig. 

6.1a. 

Figure 6.3. Same as Fig. 6.2 but for the reforecasts initialized in different MJO 

phases. 

Figure 6.4. BMSE (black), BMSEa (red), and BMSEp (blue) of each model as a 

function of forecast lead times. Note that BMSE and BMSEa, respectively, are 

identical to BMSE and AE2̅̅ ̅̅ ̅ shown in Figs. 6.1b and 6.1e. 

Figure 6.5. Relationships (a) between BMSE and BCOR, (b) PE̅̅̅̅  and AE̅̅̅̅  (c) PE2̅̅ ̅̅ ̅ 

and AE2̅̅ ̅̅ ̅, (d) AE2̅̅ ̅̅ ̅ and BCOR, and (e) PE2̅̅ ̅̅ ̅ and BCOR at the two-week 

forecasts (closed squares) and four-week forecasts (opened circles). Their 

correlation coefficients, r2 and r4, are also shown at the bottom of each panel. 

The correlation coefficients that are statistically significant at the 95% 

confidence level are denoted by an asterisk. 
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Figure 6.6. (a) Wintertime (NDJFM) climatology of CWV, derived from satellite 

observations, and (b-h) the model mean biases averaged over forecast lead 

times of 1-30 days. The model biases that are -20, -10, 10, and 20% of the 

observations are contoured in each panel.  

Figure 6.7. Relationship between the model mean biases in moisture gradient and 

the BCOR skills in the two-week forecast: (a, b) the zonal-moisture-gradient 

biases versus BCORs for the reforecasts initialized in MJO phase 2-3 and 

MJO phase 6-7, and (c-d) same with (a-b) but for the meridional-moisture-

gradient biases. See the text for the definition of zonal and meridional 

moisture gradients. The correlation coefficient, r2, that is statistically 

significant at the 95% confidence level, is denoted by an asterisk. The 

regression line is also added. The gray r2 and the gray regression line indicate 

the analysis result without the ECMWF model. 

Figure 6.8. (a) Wintertime (NDJFM) average of the CLW feedbacks, and (b-h) the 

model biases averaged over forecast lead time of 1-30 days. The model biases 

that are -60, -30, 30, and 30% of the observations are contoured in each panel.  

Figure 6.9. Same with Fig. 6.7, but for the relationship between the model biases 

in the CLW feedbacks and the BCOR skills in the two-week forecast (a) for 

the reforecasts initialized in MJO phase 2-3 and (b) in MJO phase 6-7. See the 

text for the definition of CLW feedback biases. 

Figure 7.1. Summary of this thesis 



1 

 

Chapter 1. Introduction 

The Madden–Julian Oscillation (MJO) is a planetary scale, 

equatorially trapped convective disturbance that propagates eastward with a 

period of 30–60 days (e.g., Madden and Julian 1971, 1972; Zhang 2005). The 

MJO significantly modulates not only precipitation but also large-scale 

atmospheric circulation in the tropics (Zhang 2013). For example, MJO-

related circulation anomalies affect the Indian and Australian monsoons, as 

well as the African monsoon (Yasunari 1979; Hendon and Liebmann 1990; 

Lavender and Matthews 2009). The MJO-related circulation anomalies also 

affect the genesis of tropical cyclones over all ocean basins (e.g., Hall et al. 

2001).  

The impact of the MJO is not limited to the tropics. The MJO’s 

influence is also evident in the extratropics. The upper-level divergence, 

induced by the MJO-related large-scale vertical motion, often excites the 

Rossby wave packet that propagates into the subtropical North Pacific, 

western North America, and North Atlantic region (Matthews et al. 2004; Lin 

et al. 2009; Seo and Son 2012). Through this teleconnection, the MJO 

significantly modulates surface weather and climate systems in East Asia, 

North America, and Europe (Jeong et al. 2005; Cassou 2008). 

 Given its wide influence, a variety of mechanisms have been 

suggested to better simulate the MJO. It can be largely divided into 

convectively coupled Kelvin-Rossby wave theory, moisture mode theory, and 
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multiscale interaction theory. In the convectively coupled Kelvin-Rossby 

wave theory, the MJO activity is explained by the interaction between the 

convective heating, planetary-scale equatorial waves, and the boundary layer 

moisture convergence (Wang 1988; Wang and Li 1994; Kang et al. 2013; 

Wang and Chen 2017). Secondly, moisture mode theory is based on the tight 

coupling between moisture and convection and the smallness of buoyancy 

perturbations in the tropics (Charney 1963; Sobel et al. 2001), the evolution 

of large-scale, low-frequency convective anomalies associated with the MJO 

is explained by those of moisture anomalies (Neelin and Yu 1994; Sobel and 

Maloney 2012; 2013, Adames and Kim 2016). Lastly, the multiscale 

interaction theory is that the mesoscale and synoptic scale motions influence 

the MJO dynamics (Majda and Stechmann, 2009), considering the fact that 

the MJO convection consists of multiscale convective system (Nakazawa, 

1988). In addition to these processes, the atmosphere-ocean interaction 

(Flatau et al. 1997; Wang and Xie 1998) and the cloud-radiation feedback 

(Kim et al. 2015) are also known as important MJO processes. These current 

MJO theories, however, mostly have focused on the tropospheric processes. 

Based on these understanding, the MJO prediction skill in operational 

models has been extensively developed over the past decade. Among others, 

it has been reported that the MJO prediction skills of the National Centers for 

Environmental Prediction (NCEP) and the European Centre for Medium-

Range Weather Forecasts (ECMWF) model are approximately 20 days (Wang 
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et al. 2014; Kim et al. 2014) and 31 days (Vitart et al. 2014), respectively. 

Rashid et al. (2011) documented that the MJO prediction skill of the 

Australian Bureau of Meteorology (BoM) model is approximately 21 days. 

The Japan Meteorological Agency (JMA) and China Meteorological 

Administration (CMA) coupled models, respectively, showed limits of 

approximately 25 days (Neena et al. 2014) and 16 days (Liu et al. 2017). 

Overall, these studies suggest that the MJO prediction skill in recent 

operational models is approximately 16 to 31 days. 

Changing the point of view about the Quasi-Biennial Oscillation 

(QBO), the QBO is a phenomenon that equatorial stratospheric zonal winds 

alternate from easterlies to westerlies with a period of about 28 months, 

propagating downward into the lower stratosphere from 100 to 10 hPa 

(Baldwin et al. 2001). It has been known that the QBO can directly influence 

the tropical deep convection in the seasonal mean time scale. Firstly, the 

QBO-induced zonal wind changes in the lower stratosphere can modulate the 

absolute vertical wind shear, which disrupts the enhancement of tropical deep 

convection (Gray et al. 1992). Due to the secondary circulation associated 

with QBO wind anomalies, the lower stratosphere becomes colder than 

normal during easterly QBO winters. The colder tropopause and the resulting 

destabilization in the UTLS could promote organized deep convection. (Gray 

et al. 1992; Giorgetta et al. 1999; Collimore et al. 2003). Both observational 

and modeling studies have shown the evidence of QBO-related seasonal-
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mean convection and precipitation changes (Giorgetta et al. 1999; Collimore 

et al. 2003; Liess and Geller 2012), with an enhanced deep convection over 

the western Pacific during boreal winter in the easterly phase of the QBO 

(Collimore et al. 2003; Liess and Geller 2012).  

Recent studies suggest that the QBO can influence the tropical deep 

convection in the subseasonal time scale (e.g., MJO). Liu et al. (2014) has 

shown that the boreal winter MJO becomes more active when the QBO winds 

are easterly in the lower stratosphere (EQBO) than when the winds are 

westerly (WQBO). Yoo and Son (2016) has presented that the boreal winter 

MJO is highly correlated with the QBO and suggested that the QBO-related 

static stability and vertical wind shear changes modulate the MJO convection. 

The QBO–MJO connection opens a new route for improving the MJO 

prediction. By analyzing reforecasts of the S2S prediction model of the BoM, 

the boreal winter MJO is better predicted during EQBO winters. The MJO 

prediction skill during EQBO winters is enhanced by up to 8 days based on 

the bivariate correlation of 0.5 for RMM indices (Marshall et al. 2017). This 

enhancement represents over 20% of the overall MJO prediction skill in this 

model. A possible impact of the QBO on the MJO-induced atmospheric river 

and its prediction skill is also explored (Baggett et al., 2017; Wang et al., 

2018), highlighting the crucial role of the QBO on the subseasonal climate 

variability from the tropics to extratropics. 

Due to a short observational record from the satellite era, climate 
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model analyses are necessary to better quantify the QBO-MJO connection. 

The QBO-MJO connection, however, is rarely examined with a long-term 

climate model simulation. As an initial attempt, Lee and Klingaman (2018) 

investigated the QBO-MJO relationship in the Global Ocean Mixed Layer 

configuration of the Met Office Unified Model (MetUM-GOML1). However, 

this model failed to reproduce the observed QBO-MJO relationship. This 

failure might be simply caused by the deficiency of the model itself. Although 

the MetUM-GOML1 well captures the QBO wind, the QBO-related 

temperature anomalies are substantially underestimated (Lee and Klingaman 

2018).  

Since the QBO-MJO connection has recently suggested, the QBO 

impacts on the MJO activity and its related teleconnection have not been well 

documented (Liu et al. 2014; Yoo and Son 2016; Marshall et al. 2017; 

Nishimoto and Yoden 2017). The possible mechanisms have been suggested 

(Yoo and Son 2016; Son et al. 2017; Hendon and Abhik 2018; Zhang and 

Zhang 2018), but it is not fully understood in detail. In this regard, the main 

purpose of this thesis is to understand the QBO-MJO relationship. The key 

questions are as follows: 

1) Which MJO characteristics are modulated by the QBO? 

2) How does the QBO affect the MJO and its prediction? 

3) How can we better simulate the QBO-MJO connection? 

Firstly, the QBO-related MJO and its teleconnection are examined in Chap. 
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2. To better understand the QBO-MJO relationship, a variety of model outputs 

are used in this thesis partly due to their difficulty in simulating the QBO-

MJO connection. Motivated by Lee and Klingaman (2018), the QBO-MJO 

link is revisited in multiple climate model simulations. The CMIP5 models 

that simulate realistic QBO are quantitatively evaluated in Chap. 3. Using a 

dynamical core model, the possible impact of the dynamical process on the 

QBO-MJO connection is tested (Chap. 4). Extending the result of Marshall et 

al. (2017), which used only one operational model, the QBO impact on the 

MJO is further evaluated in all available S2S project data to examine the 

QBO-MJO connection and its application to the MJO prediction skill (Chap. 

5). To better simulate the QBO-MJO connection in the S2S models, the role 

of the mean biases in MJO prediction skill is further investigated (Chap. 6). 

The contents in Chap. 2 are published in Son et al. (2017). Chapter 3 

is based on Lim and Son (2020), which is under review. The contents in Chap. 

5 and Chap. 6 are published in Lim et al. (2019) and Lim et al. (2018), 

respectively.  
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Chapter 2. QBO-MJO connection: observational features 

This chapter demonstrates that while the spatial pattern of the 

seasonal-mean convection and the MJO-related subseasonal convective 

activity is primarily controlled by the ENSO, the year-to-year variation of 

overall level of subseasonal convective activity over the central Indian Ocean 

to the western Pacific, including the MJO, is significantly modulated by the 

QBO. These different roles of the ENSO and QBO are quantified by 

performing composite and correlation analyses. After briefly evaluating their 

relative importance on the seasonal-mean convection (Sect. 2.2), their 

impacts on the MJO-related subseasonal convective activity are analyzed in 

detail in Sect. 2.3. Extending Yoo and Son (2016), particular attention is paid 

to the impact of the QBO on the MJO and the related teleconnections during 

boreal winter. The seasonality and possible mechanism(s) of the QBO–MJO 

link are also discussed. 

 

2.1. Data and methods 

This study is mostly based on observational data analyses. The only 

exception is the reanalysis data from the European Center for Medium-Range 

Weather Forecasts (ECMWF), that is, ERA-Interim (Dee et al. 2011), from 

1979 to 2015. These data are used to define the QBO and to examine the 

QBO-related atmospheric circulation changes. The QBO-related wind and 

temperature profile changes are examined using radiosonde observations 
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from the Integrated Global Radiosonde Archive (IGRA; Durre et al. 2006). 

Only six stations around the Maritime Continent are considered. In terms of 

station number and geographical location, they are stations 96163 (0.88°S, 

100.35°E), 96237 (2.17°S, 106.13°E), 97072 (0.68°S, 119.73°E), 97180 

(5.07°S, 119.55°E), 97560 (1.18°S, 136.12°E), and 97724 (3.70°S, 128.08°E). 

For the easterly QBO (EQBO) and westerly QBO (WQBO) winters, a total 

of 2176 and 3241 soundings, respectively, are used from 1979 to 2013 (see 

below for the definition of EQBO and WQBO winters). The high-resolution 

temperature profiles and the tropopause temperature distributions are also 

examined by using the global positioning system (GPS) radio occultation (RO) 

measurements from the Constellation Observing System for Meteorology, 

Ionosphere and Climate (COSMIC) mission (Anthes et al. 2008) from 2006 

to 2015. 

Various satellite observations are also used. They include the 

National Oceanic and Atmospheric Administration (NOAA) Extended 

Reconstructed Sea Surface Temperature data (ERSST.v4; Huang et al. 2016) 

from 1979 to 2013, the NOAA interpolated outgoing longwave radiation 

(OLR) data from 1979 to 2013 (Liebmann and Smith 1996), and the Tropical 

Rainfall Measuring Mission (TRMM) precipitation data from 1998 to 2013 

(Liu et al. 2012). The latter two datasets are used to infer variations in 

organized tropical convection. To examine cloud distribution near the 

tropopause, Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) 
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level-2 products (Winker et al. 2007) are also used from 2006 to 2015. Note 

that each dataset covers different time periods. Most analyses are performed 

until 2013 because NOAA OLR data are unavailable after 2014. However, for 

the COSMIC and CALIOP datasets, all available data are used to increase the 

sample size. 

The ENSO is simply defined by the Niño-3.4 (5°S–5°N, 170°–

120°W) SST anomaly. When the DJF-mean Niño-3.4 SST anomaly is greater 

than 0.5 standard deviation, it is set to the El Niño winter. The opposite (i.e., 

SST anomaly smaller than 20.5 standard deviation) is set to the La Niña 

winter. For the analysis period of 1979–2013, a total of 10 and 12 years are 

identified as El Niño and La Niña winters, respectively. Strong ENSO years, 

addressed below, are also defined with plus or minus one standard deviation. 

The QBO is typically characterized by the downward propagation of 

zonal-mean zonal wind in the equatorial stratosphere (Baldwin et al. 2001). 

As such, several indices with varying vertical levels have been used in the 

literature. In this study, the QBO is defined by zonal-mean zonal wind at 50 

hPa averaged over 10°S–10°N (U50) from ERA-Interim data, unless 

otherwise specified. When the seasonal-mean U50 is easterly and smaller 

than -0.5 standard deviation, it is set to the EQBO. Likewise, the opposite (i.e., 

westerly and greater than 0.5 standard deviation) is set to the WQBO. Note 

that the QBO has been often defined by using long-term rawinsonde 

observations in the tropics (e.g., Naujokat 1986). Although station datasets 
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are always preferable, one or two stations may not effectively represent the 

QBO-related zonal-mean circulation change as they could be influenced by 

local circulation. The fact that the QBO oscillates approximately every 28 

months (Baldwin et al. 2001) implies that the number of EQBO and WQBO 

years can be different. For the analysis period of 1979–2013, a total of 10 and 

15 years are identified as EQBO and WQBO winters, respectively. When 

strong ENSO years are excluded, they become more evenly distributed with 

eight EQBO and nine WQBO winters. Here it should be emphasized that 

although the QBO is driven by equatorial waves, which systematically break 

in the stratosphere, those waves are only partly (not all) excited by large-scale 

tropical convection. As such, the QBO is only weakly 

correlated with the ENSO. The maximum correlation between the Niño-3.4 

index and various QBO indices at different levels is only 0.21, and this value 

is not statistically significant. 

The MJO phase and amplitude are defined by the OLR-based MJO 

index (OMI; Kiladis et al. 2014). Unlike the real-time MJO index (Wheeler 

and Hendon 2004), this index is solely based on the satellite-derived OLR and 

more directly discriminates convective signature of the MJO. The OMI 

consists of the leading pair of empirical orthogonal functions of bandpass-

filtered OLR over 20°S–20°N. The two leading principal components (i.e., 

PC1 and PC2, which are directly obtained online from the NOAA/Earth 

System Research Laboratory website (http://www.esrl.noaa.gov/psd/mjo/ 
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mjoindex), are then used to define the MJO phase and amplitude. Following 

the convention of Wheeler and Hendon (2004), the MJO phase is determined 

in the PC1–PC2 space. Likewise, the MJO amplitude (more precisely, the 

OMI amplitude) is defined by the square root of the sum of the 

squared daily values of the two leading PCs [i.e., (PC12+PC22)1/2]. Although 

not shown, other MJO indices are also tested (Yoo and Son 2016). It turns out 

that overall results are not sensitive to the choice of the MJO index. 

 

2.2. Interannual variation of seasonal-mean tropical convection by the ENSO 

 We first examine the relative importance of the ENSO and the QBO 

on the seasonal-mean and subseasonal tropical convection (Fig. 2.1). Figure 

2.1a presents the climatological distribution of the DJF-mean convection in 

terms of OLR. Three hot spots are evident across the intertropical 

convergence zone. On interannual time scale, these convective centers, 

especially those over the western to central Pacific, undergo a significant 

variation in response to the ENSO (e.g., Martin et al. 2004). Between El Niño 

and La Niña winters, seasonal-mean OLR exhibits statistically significant 

differences across the Pacific. Here, statistical significance is tested with 

Welch’s t test (Inoue et al. 2011). Quantitatively, ENSO-related seasonal-

mean OLR change is up to 10% of the climatological OLR, with mean 

convection shifted eastward to the date line and weakened around the 

Maritime Continent during El Niño winters (cf. Figs. 2.1a,b). The opposite is 
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true during La Niña winters. These changes reflect a weakened (strengthened) 

Walker circulation during El Niño (La Niña) winters. Not surprisingly, 

correlations between DJF-mean OLR, averaged across the Maritime 

Continents (110°–140°E), and various ENSO indices are very high and 

statistically significant (see the first OLR column in Table 2.1). In contrast, 

the QBO-related change in seasonal-mean OLR is rather minor (Fig. 2.1c). 

As reported in the previous studies, an enhanced convection over the western 

Pacific and a weakened convection over the eastern Pacific are observed 

during EQBO winters (e.g., Collimore et al. 2003; Liess and Geller 2012). 

However, these changes are much smaller than ENSO related changes and 

not statistically significant. As such, no meaningful correlations are observed 

between the DJF-mean OLR, averaged across the Maritime Continent, and 

various QBO indices (Table 2.1).  

The above result (i.e., regulation of the DJF-mean convection by the 

ENSO with a minor contribution of the QBO) is largely insensitive to the 

season (Table 2.1). In all seasons, seasonal-mean OLR anomalies around the 

Maritime Continent–western Pacific are highly correlated with ENSO. 

Although correlations are relatively weak during boreal summer, they are still 

statistically significant. In contrast, in all seasons, no significant correlations 

are found for the QBO. These results confirm that the interannual variation of 

the seasonal-mean tropical convection is predominantly controlled by the 

ENSO. 
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Figure 2.1. DJF-mean OLR and band-pass (20-100 days) filtered OLR 

variance: (top) long-term climatology, (middle) interannual difference 

between El Niño and La Niña winters, and (bottom) difference between 

EQBO and WQBO winters. 
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Table 2.1. Correlations of seasonal-mean OLR, averaged over the Maritime 

Continents (15°S-5°N, 110°E-140°E), and MJO amplitude against various 

ENSO and QBO indices from 1979/1980 winter to 2012/2013 winter. For 

ENSO indices, Niño3, Niño3.4 and Niño4 indices are used. Likewise, for 

QBO indices, zonal-mean zonal wind, averaged over 10°N-10°S, at 10 hPa 

(U10), 20 hPa (U20), 30 hPa (U30), and 50 hPa (U50) are used. Statistically 

significant values at the 95% confidence levels are denoted with asterisk. 

 

OLR (Maritime continent) MJO amplitude 

DJF MAM JJA SON DJF MAM JJA SON 
 

 
Niño 

3 
0.84* 0.47* 0.70* 0.83* -0.08 -0.19 0.04 -0.14 

 

ENSO 
Niño 

3.4 
0.85* 0.64* 0.83* 0.86* -0.01 0.00 0.20 -0.15 

 

 
Niño 

4 
0.74* 0.69* 0.79* 0.81* 0.11 0.26 0.24 -0.08 

 

 U10 0.02 0.15 0.11 -0.03 0.63* 0.20 -0.01 -0.18 
 

QBO U20 -0.04 0.09 0.20 0.23 0.33 0.22 -0.17 -0.18 
 

 U30 0.04 0.02 0.10 0.32 -0.16 0.19 -0.23 -0.03 
 

 U50 0.18 -0.04 -0.05 0.18 -0.57* -0.09 -0.09 0.10 
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2.3. Interannual modulation of subseasonal tropical convective activity by the 

QBO 

On subseasonal time scale, tropical convection exhibits substantial 

variability. Figure 2.1d presents the spatial distribution of bandpass-filtered 

(20–100 days) OLR variance during boreal winter. Strong variability is 

observed mostly in the Indo-Pacific warm pool region, largely representing 

the MJO. This localized OLR variance resembles the regional pattern of 

seasonal-mean convection (cf. Fig. 2.1a). However, there is a subtle 

difference over the Maritime Continent (e.g., Sobel et al. 2010). While the 

maximum seasonal mean convection is found at the island (Fig. 2.1a), the 

maximum variance is observed over the ocean around 5°S (Fig. 2.1d). This 

may suggest that the detailed processes that determine seasonal-mean 

convection and subseasonal convective variability are somewhat different.  

As in seasonal-mean convection, the subseasonal convective activity 

varies significantly from year to year (e.g., Hendon et al. 1999). Figure 2.1e 

presents the ENSO related OLR variance change in DJF. A significant change 

appears around the date line, with an enhanced variance during El Niño 

winters. This change is consistent with an eastward extension of mean 

convection during El Niño winters as depicted in Fig. 2.1b. However, across 

the Maritime Continent, the ENSO-related OLR variance change is almost 

negligible. This result indicates that although subseasonal convective activity, 

including the MJO, tends to extend farther eastward during El Niño winters 
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(Gualdi et al.1999; Hendon et al. 1999, 2007; Gushchina and Bewitte 2012), 

its intensity around the Maritime Continent is not strongly regulated by the 

ENSO. The same result is also found in other seasons (Table 2.1).  

It should be noted that the above result, which is based on linear 

correlation and composite analyses, does not necessarily indicate that ENSO 

has no impacts on MJO amplitude. In fact, recent studies reported a significant 

ENSO–MJO link during boreal winter (Feng et al. 2015; Pang et al. 2016). 

Such a relationship, however, is nonlinear and highly dependent on the 

characteristics of ENSO itself. For example, it is shown that the MJO 

becomes stronger than normal during the central Pacific El Niño winters 

whereas it becomes weaker during the eastern Pacific El Niño winters (Feng 

et al. 2015; Pang et al. 2016). The sum of these contrasting responses likely 

results in no systematic changes in MJO amplitude during all El Niño winters. 

As such, the above result, summarized in Fig. 2.1 and Table 2.1, should be 

taken as a first-order linear relationship. 

Apart from nonlinear impacts of the ENSO, what determines the 

interannual variation of MJO-related subseasonal convective activity? Figure 

2.1f suggests that it is likely the QBO. Near-equatorial OLR variances, across 

the central Indian Ocean and western Pacific, are typically stronger during 

EQBO winters (i.e., when DJF U50 is easterly) than WQBO winters. Their 

differences reach up to 40%–50% of the climatological OLR variance around 

the Maritime Continents (cf. Figs. 2.1d,f). More importantly, unlike the 
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ENSO-related OLR variance change (Fig. 2.1e), the QBO-related change is 

centered at 5°S and almost exclusively present in the Indo-Pacific region, 

from 60°E to 180°, where MJO is active during boreal winter [see also Yoo 

and Son (2016)].  

The ENSO–MJO and QBO–MJO relationships are further evaluated 

by correlation analyses. Linear correlations are computed for the DJF-mean 

MJO amplitude against various ENSO and QBO indices (see the MJO column 

in Table 2.1). No significant link is found between ENSO and MJO amplitude 

in all seasons, supporting previous studies (e.g., Hendon et al. 1999, 2007). 

In contrast, during boreal winter, statistically significant correlations with the 

QBO, which are greater than ±0.5, are observed from the upper stratosphere 

(i.e., 10 hPa) to the lower stratosphere (i.e., 50 hPa) with a switching sign. 

This height-dependent correlation represents a quasiperiodic downward 

propagation of zonal-mean zonal wind in association with the QBO (see also 

Fig. 2.6b, which is discussed later). Note that the correlation coefficient for 

the zonal-mean zonal wind at 10hPa (U10) is larger than the one at 50 hPa 

(U50). This is partly due to the internal variability of zonal-mean zonal wind 

in the lower stratosphere, which is introduced by the wave activities in the 

upper troposphere and lower stratosphere. Note also that the QBO–MJO link 

appears only in the boreal winter (Table 2.1). This seasonality is discussed in 

Sect. 2.3.4. 
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Figure 2.2. Composite of band-pass (20-100 days) filtered OLR anomaly for 

each MJO phase during (left) EQBO and (right) WQBO winters. Only days 

when OMI amplitude is greater than 1.0 are used, and seasonal-mean values 

in each year are subtracted to remove interannual variation of background 

flow. Sample size is denoted at top-left corner of each panel, and statistically 

significant values at the 95% confidence level are contoured. 
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2.3.1. MJO Characteristics with the QBO 

 To establish the QBO–MJO coupling more directly, composite OLR 

anomalies are presented for each MJO phase (Fig. 2.2). Here, a statistical 

significance test is performed using a Student’s t test by counting the number 

of degrees of freedom only when each day in a given phase is separated by at 

least seven days (Garfinkel et al. 2012). It is evident from Fig. 2.2 that, for 

most MJO phases, the OLR anomalies, subject to bandpass filtering (20–100 

days), are stronger during EQBO winters than WQBO winters. If only active 

MJOs are considered (i.e., when the MJO amplitude exceeds 1 and 

consistently propagates eastward in time), their differences become even 

larger and statistically significant for all MJO phases (Yoo and Son 2016). 

Although not shown, this result is not sensitive to the inclusion or exclusion 

of strong ENSO years.  

Although OLR is widely used to quantify tropical deep convection, 

it does not necessarily represent precipitating clouds. In other words, the 

QBO–MJO relationship, illustrated in Fig. 2.2, may simply represent 

nonprecipitating cloud changes in the upper troposphere. To test such a 

possibility, the same analysis is repeated with high-resolution precipitation 

data (Fig. 2.3). The same result, with a much larger difference between EQBO 

and WQBO winters, is obtained. This result clearly indicates that, on 

interannual time scales, the MJO-related subseasonal convective activity is 

more sensitive to the stratospheric mean state change than the SST change 
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associated with ENSO.  

The QBO–MJO link is evident not only in the MJO amplitude but 

also in the propagation speed and frequency of MJO. Eastward propagation 

of OLR anomalies and the associated lower-tropospheric circulations become 

more pronounced during EQBO winters (Fig. 2.4). Their propagation speed 

is also somewhat slower [see also Nishimoto and Yoden (2017)]. Most 

importantly, the period of MJO, estimated by the distance from the center of 

blue shading at negative lags to that at positive lags in Fig. 2.4, becomes 

longer during EQBO winters. Based on auto-lag correlation of PC1, it is 

found that the MJO period during EQBO winters is about 50 days. This is 

about 10 days longer than the estimated MJO period during WQBO winters.  

A slower propagation and longer period of MJO during EQBO 

winters may be simply explained by the MJO amplitude change itself. A 

simple composite analysis has shown that strong MJO events, regardless of 

the QBO, tend to propagate more slowly across the Maritime Continent than 

weak MJO events (Seo and Kumar 2008). They also exhibit a longer period 

than the latter (Seo and Kumar 2008). Although the MJO propagation is not 

simply controlled by the equatorial waves, it is at least in part influenced by 

the phase speed of planetary-scale Kelvin waves. In a simple model, the 

Kelvin waves become slower when diabatic heating (or precipitation rate) 

increases [e.g., Chang (1977) or, more recently, Kang et al. (2013)]. This may 

imply a slower MJO propagation when the MJO-related convection becomes 
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stronger. If a new MJO over the Indian Ocean is initiated by the decaying 

MJO over the western Pacific (e.g., Zhao et al. 2013), a slower MJO 

propagation to the Pacific would then result in a delayed MJO initiation. This 

may lead to a longer period of MJO events. Based on these speculations, we 

argue that a key factor of the QBO–MJO coupling is the QBO-related MJO 

amplitude change.  
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Figure 2.3. Same as Fig. 2.2 but for TRMM precipitation. 

  



23 

 

 
Figure 2.4. Correlation coefficient of OLR (shading) and 850-hPa zonal wind 

anomalies (contour), averaged over 15°S-5°N, against OLR anomaly over the 

Maritime continent (15°S-5°N, 100°E-130°E) during boreal winter.  Shading 

and contour intervals are 0.3 and 0.1, respectively. Zero lines are omitted. 
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2.3.2. MJO teleconnection with the QBO 

A stronger and more organized MJO during EQBO winters also 

implies an enhanced MJO-related tropical–extratropical teleconnection. This 

is indeed the case. Figure 2.5 presents the time-lagged composite of 300 hPa 

stream function anomalies for the MJO phases 2 and 3 when the MJO 

convection is located over the Indian Ocean. The MJO teleconnections [i.e., 

strong positive anomaly over South Asia and a wave train across the North 

Pacific (e.g., Lin et al. 2009)] is more pronounced during EQBO winters (Figs. 

2.5a-b). In contrast, the overall pattern is less organized during WQBO 

winters especially at lag 10 days (Figs. 2.5c-d). Here it should be emphasized 

that the enhanced MJO teleconnections appear to be primarily driven by the 

strengthened convection itself. This contrasts with the ENSO modulation of 

the MJO teleconnections that is associated with background flow change 

(Moon et al. 2011). Although the QBO also accompanies a subtropical jet 

change (Baldwin et al. 2001; Garfinkel and Hartmann 2010), such a change 

is much weaker than the one for the ENSO and does not likely affect the MJO 

teleconnections. More details of QBO-induced MJO teleconnection changes 

will be documented in a future study.
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Figure 2.5. Lagged composite of 300-hPa stream function anomaly for MJO 

phase 2 and 3 when convections are located at the eastern Indian Ocean. (top) 

Lag 5 and (bottom) lag 10 days are shown for (left) EQBO and (right) WQBO 

winter, separately. Only days when OMI amplitude is greater than 1.0 are used, 

and seasonal-mean values in each year are subtracted to remove interannual 

variation of background flow. To reduce noises, 5-day running mean average 

is also applied. Statistically significant values at the 95% confidence level are 

contoured. 
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2.3.3. Lead-lag relationship 

 The above results do not necessarily reveal a causal relationship as 

time lags are not taken into account. That is, the QBO–MJO coupling may 

not result from the downward influence of the QBO. It could be instead 

caused by the upward influence of the MJO. In fact, it is well established that 

the QBO is influenced by the convectively coupled gravity waves (Baldwin 

et al. 2001) and is better simulated when a parameterization of convectively 

driven gravity waves is implemented in the model (Kim et al. 2013b). Figure 

2.6a shows the lead–lag correlation of 3-month running-mean U50 against 

the DJF MJO amplitude. Negative lags indicate that the former leads the latter. 

Statistically significant correlations are observed from lag -6 (June–August) 

to lag 2 months (February–April). Although it is not distinguishable by eyes, 

the maximum negative correlation is found at lag -2, that is, U50 leading DJF 

MJO amplitude about two months [see also Marshall et al. (2017)]. To better 

understand this lead–lag relationship, the analysis is extended to the whole 

stratosphere (Fig. 2.6b). Unlike at 50 hPa, maximum correlation at 10 hPa 

appears at positive lags, possibly indicating a modulation of QBO by the MJO. 

However, even at 10 hPa, significant correlations start to appear at negative 

time lags. More importantly, they propagate downward in time, reflecting a 

quasi-periodic oscillation of the QBO, with a much longer time scale than the 

time scale of MJO itself. This result suggests that the QBO–MJO coupling is 

mostly downward from the stratosphere to the troposphere although the 
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upward influence is not negligible. A possible two-way interaction between 

the QBO and MJO deserves further analysis. 

 

 
Figure 2.6. (a) Lead-lag correlation of U50 against the DJF MJO amplitude 

and (b) its extension to the whole stratosphere. Statistically significant values 

at the 95% confidence level are denoted with filled circles in (a) and are 

contoured in (b). Positive lag indicates that the DJF MJO amplitude leads 

QBO. 
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2.3.4. Seasonality  

 As highlighted in Yoo and Son (2016), the QBO–MJO coupling 

appears only in the boreal winter (see Table 2.1). No significant relationships 

are found in other seasons. Even in spring when MJO is still active, the QBO–

MJO link is almost absent. This seasonal dependency may partly result from 

the seasonality of the QBO phase transition. The QBO tends to change its 

phase approximately every 14 months. During the analysis period (1979–

2013), it primarily occurred in spring with a minimum variance of U50 (not 

shown). In other words, the QBO-related mean state is relatively weak in 

spring compared to other seasons, possibly explaining a rather weak influence 

of the QBO on springtime MJO. Other possible factor is a seasonal cycle of 

tropopause. The tropical tropopause is highest during boreal winter (Kim and 

Son 2012). This observation suggests that the QBO changes tropopause 

properties most effectively during boreal winter. If the MJO is influenced by 

the dynamical processes near the tropopause, this suggests more effective 

modulation of the MJO by the QBO during boreal winter than during boreal 

spring. During summer and fall, the MJO itself is weak and not well organized 

(Zhang 2013). In particular, the summertime MJO tends to propagate 

northward, away from the equator where the QBO is active. These conditions 

may explain a negligible QBO–MJO connection in these seasons (Yoo and 

Son 2016). To confirm these speculations, further studies are needed. 
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2.3.5. Possible mechanism(s) of the QBO-MJO connection 

 It is unclear how the QBO affects the MJO. One of the possible 

mechanisms is the static stability change in the upper troposphere (Reid and 

Gage 1985; Gray et al. 1992; Giorgetta et al. 1999; Garfinkel and Hartmann 

2011; Yoo and Son 2016). The downward propagation of zonal-mean zonal 

wind accompanies the secondary circulation in the subtropical stratosphere as 

a result of the thermal wind balance (Baldwin et al. 2001). The net result is a 

vertical pair of adiabatic cooling and warming at the equatorial stratosphere 

(Figs. 2.7a,b). Although less organized, a hint of adiabatic warming and 

cooling also appears in the Northern Hemisphere subtropics, reflecting 

returning flow of the secondary circulation. The zonal wind and temperature 

anomalies also appear in the polar stratosphere (Figs. 2.7a,b). This is caused 

by planetary-scale wave and zonal mean flow interaction in the extratropical 

stratosphere (Holton and Tan 1980) and not directly relevant to the QBO–

MJO link. 

 The observed zonal wind and temperature profiles are further 

illustrated in Figs. 2.7c and 2.7d from long-term radiosonde observations. In 

spite of large interannual variability, QBO-related temperature anomalies that 

are greater than ±1 K are evident in the lower stratosphere. More importantly, 

these temperature anomalies, centered at 70 hPa, are not confined within the 

stratosphere but extend to the upper troposphere below 100 hPa (Note that the 

DJF-mean tropopause in this region is located at 100 hPa). The static stability 
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changes, which are proportional to the vertical gradient of temperature 

profiles, are observed even at 150 hPa (Fig. 2.7e). A qualitatively similar 

result is also found in the high-resolution temperature profiles derived from 

the COSMIC GPS RO measurements (not shown). 

 Figure 2.7e indicates that the near-tropopause static stability is 

relatively weaker during EQBO winters. If the MJO, which is well organized 

in the vertical, is influenced by the static stability near the tropical tropopause, 

such a destabilization could enhance the MJO. This possibility is supported 

by the recent modeling study (Nie and Sobel 2015). On the other hand, since 

the QBO may regulate only organized high-top clouds (Collimore et al. 2003), 

its influence on seasonal-mean convection, which consists of various clouds 

such as low-, mid-, and high-top clouds, would be rather minor (Fig. 2.1c).  

 The near-tropopause static stability change, caused by adiabatic 

heating associated with the QBO-induced secondary circulation, may be 

further enhanced by the diabatic process resulting from cirrus clouds. As 

shown in Fig. 7d, tropopause temperature is much colder during EQBO 

winters than WQBO winters. This may allow more frequent formation of 

cirrus clouds near the tropopause. Figures 2.8a and 2.8b illustrate the spatial 

distribution of the DJF-mean temperature at the cold-point tropopause as 

derived from COSMIC GPS RO measurements. Because the longitudinal 

distribution of the tropical tropopause temperature is largely determined by 

the underlying convection (Kim and Son 2012), its spatial pattern follows the 
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DJF-mean OLR distribution very well (cf. Fig. 2.1a and Figs. 2.8a,b). 

However, the QBO-related tropopause temperature change, up to -2 K, is 

largely homogeneous in the deep tropics. 

 Figures 2.8d–f show that the fraction of cirrus clouds, estimated from 

CALIOP measurements, is sensitive to the tropopause temperature. For colder 

tropopause temperature during EQBO winter, cirrus clouds form more 

frequently especially across the Maritime Continent and central Pacific (Fig. 

2.8f). Because near-tropopause cirrus clouds result in a net radiative cooling 

in the lower stratosphere and warming in the troposphere (Hartmann et al. 

2001; Yang et al. 2010; Hong et al. 2016), this may destabilize the tropical 

upper troposphere, especially near the tropopause, helping a development of 

the organized deep convection. Note that even without cirrus clouds, the cold 

tropopause itself could provide a favorable environment for organized deep 

convection (e.g., Emanuel et al. 2013). 

 The adiabatic and diabatic processes described above may not be the 

sole potential mechanism that affects the MJO. Other mechanisms, which 

may include vertical wind shear (Gray et al. 1992; Collimore et al. 2003; Ho 

et al. 2009), absolute vorticity (Collimore et al. 2003), and tropopause 

changes (Reid and Gage 1985; Gray et al. 1992), are not exclusive. 

Presumably, the QBO–MJO link is associated with multiple factors. To 

identify the exact mechanism(s), further studies, using both observations and 

numerical models, are needed. In this regard, a cloud-resolving model 
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experiment (e.g., Nie and Sobel 2015) would be very useful. 

 

Figure 2.7. Difference in zonal-mean (a) zonal wind (m s-1) and (b) 

temperature (K) between EQBO and WQBO winters from the ERA-Interim. 

(c) Observed zonal wind, (d) temperature, and (e) vertical temperature 

gradient anomalies averaged over six IGRA stations around the Maritime 

Continent, during EQBO (blue) and WQBO (red) winters. The 0.5 standard 

deviation range is shown in gray. 
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Figure 2.8. Spatial distribution of DJF-mean temperature at the cold-point 

tropopause (K), derived from the COSMIC GPS RO measurements, for (a) 

EQBO and (b) WQBO winters and (c) their difference. (d)–(f) As in (a)–(c), 

but for the near-tropopause cirrus frequency (%) from the CALIOP 

measurements. 
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Chapter 3. QBO-MJO connection in current climate models 

In Chap. 3, the QBO-MJO relationship is quantitatively evaluated 

using CMIP5 models (Taylor et al. 2013) that simulate realistic QBO. The 

QBO and MJO simulations in the four CMIP5 models are presented in Sect. 

3.2. The MPI-ESM-MR simulations, which show a weak QBO-MJO 

connection, are further discussed in Sect. 3.3. 

 

3.1. Data and methods 

The four CMIP5 models that internally generate the QBO [see Fig. 1 

of Butchart et al. (2018)] are analyzed. They are MIROC-ESM, MIROC-

ESM-CHEM, HadGEM2-CC, and MPI-ESM-MR as listed in Table 3.1. We 

use only historical runs from 1950’s to 2005. To increase a sample size, all 

available ensemble members are used. Except for MIROC-ESM-CHEM that 

has only one ensemble member, all models have three ensemble members.  

The model output is verified against ERA-Interim reanalysis data 

from the ECMWF (Dee et al. 2011) and OLR (Liebmann and Smith 1996) 

and Extended Reconstructed Sea Surface Temperature v5 (Huang et al. 2017) 

from the NOAA for the period of 1979-2017. These reference datasets are 

simply referred to as the observations in this chapter. The one-to-one 

comparison is then performed by interpolating both the model simulations 

and the observations onto a common resolution of 2.5°×2.5°. Note that the 

analysis period differs between the model simulations and the observation. 
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This difference is not an issue in this study because only composite analyses 

(not time series) are conducted below. 

To exclude the ENSO influence on the MJO, all analyses are 

conducted for the ENSO-neutral winters. The ENSO indices are derived from 

monthly SST data in the observation and in the model simulations, 

respectively. The SST anomalies are simply averaged over the Niño 3.4 

region (170°W-120°W, 5°S-5°N) to compute the ENSO index. The El Niño 

or La Niña winters are defined in each model when the DJF-mean ENSO 

index is greater than 1.0 standard deviation or smaller than -1.0 standard 

deviation. 

The QBO index is defined by 50-hPa zonal-mean zonal wind 

anomalies over the tropics (10°S-10°N), same with Chap. 2. When the DJF-

mean QBO index is smaller than -0.5 standard deviation in each model, it is 

defined as EQBO winter. The opposite is true for WQBO winter. By 

excluding ENSO winters, a total of 9 and 12 winters are identified as EQBO 

and WQBO winters in the observation. In the model simulations, EQBO and 

WQBO winters are at least 17 and 16 years as summarized in Table 3.1 

(rightmost column). If MIROC-ESM-CHEM is excluded, EQBO and WQBO 

winters are more than 27 and 40 years. 
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Table 3.1. A list of four models used in Sect. 3.2 

Model 
Model resolution 

(Model top) 
Period 

Ensemble 

size 

EQBO/WQBO 

years 

HadGEM2-CC 
1.25°x1.875° L60 

(85 km) 

1959.12 

-2005.11 
3 35/40 

MIROC-ESM 
T42 (~2.8°) L80 

(0.0036 hPa) 

1950.01 

-2005.12 
3 27/47 

MIROC-ESM-

CHEM 

T42 (~2.8°) L80 

(0.0036 hPa) 

1950.01 

-2005.12 
1 17/16 

MPI-ESM-MR 
T63 (~1.9°) L95 

(0.01 hPa) 

1950.01 

-2005.12 
3 37/49 
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The real-time multivariate MJO (RMM) indices (Wheeler and 

Hendon 2004) are computed to quantify MJO activities. Following 

Henderson et al. (2016), equatorially averaged (15°S-15°N) 250-zonal wind 

(U250), 850-hPa zonal wind (U850), and OLR anomalies are projected onto 

the Combined Empirical Orthogonal Functions (CEOFs) from Wheeler and 

Hendon (2004). More specifically, the RMM indices are calculated as follows: 

the averaged values of the previous 120 days are removed from each variable 

to reduce the influence of interannual variability, and then the first three 

harmonics of the daily climatology are removed to reduce the seasonal cycle. 

By using the standard deviation of each variable from the observation, the 

three variables are normalized and projected onto the CEOFs to obtain the 

RMM1 and RMM2. Unlike in Wheeler and Hendon (2004) who used 200-

hPa zonal wind, 250-hPa zonal wind is used here since 200-hPa data is not 

available in the model. The daily RMM amplitude is then defined by 

√RMM12 + RMM22 . Only active MJO days when the MJO amplitude is 

greater than 1.0 are considered in the composite analyses. 

The OMI indices are also used in this study for the sensitivity test. 

The OMI indices are generated as follows: first, the OLR between 20°S and 

20°N is 20-96 day bandpass filtered, and then is projected onto the time-

varying spatial Empirical Orthogonal Functions downloaded from website 

(https://www.esrl.noaa.gov/psd/mjo/mjoindex/) to obtain OMI1 and OMI2. 

Following Kiladis et al. (2014), we normalize OMI1 to have a standard 
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deviation of one, and the same scaling with OMI1 is used to normalize OMI2 

to consider its relative weighting with respect to OMI1. 

 

3.2. QBO and MJO simulations in CMIP5 models 

Figure 3.1 displays the time series of equatorially averaged (10°S-

10°N) zonal-mean zonal wind anomalies in the lower stratosphere from the 

ERA-Interim reanalysis and four CMIP5 models. Only the first ensemble 

member is used in Figs. 3.1b-e for a common analysis period of 1979-2005. 

Except for this figure in this study, all other figures are based on all available 

datasets (39 years for observations and at least 46 years for model simulations; 

Table 1) excluding strong ENSO years. 

An alteration of zonal wind from easterly to westerly and its 

downward propagation are evident in Fig. 3.1a. The period of wind change is 

approximately 28 months, and its downward propagation is limited to the 

tropopause level. These characteristics are reasonably well captured by the 

climate models (Figs. 3.1b-e), although the QBO amplitude below 30 hPa is 

slightly weaker, and the descent rate is somewhat slower than the observations 

(e.g., Schenzinger et al. 2017). Consistent with the observations, the westerly 

winds at 70 hPa remain for a longer time with a slower descent rate than the 

easterly winds. The mean periods of zonal wind are also similar to the 

observation, ranging from about 26 months to 30 months. Most importantly, 

the downward propagation of QBO anomalies is well reproduced near the 
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tropopause level. Based on Table 3 of Schenzinger et al. (2017), the lowest 

levels of the QBO activity in HadGEM2-CC and MPI-ESM-MR simulations, 

which are defined as the level of 10% of the maximum amplitude, are only 3 

hPa and 2 hPa higher than that of observation (i.e., 86 hPa; Table 3 of 

Schenzinger et al. 2017). Although not shown, essentially the same results are 

also found in the other ensemble members. 

A subtle difference between the models is also evident in Figs. 3.1b-

e. For instance, MIROC-ESM exhibits the weakest QBO amplitude among 

the four models. The MIROC-ESM-CHEM, which is a coupled version of 

MIROC-ESM, has a relatively weak QBO downward propagation, with its 

lowest level at about 10 hPa higher than the observation (Table 3 of 

Schenzinger et al. 2017). As the MJO convection depends on both the 

amplitude and the height of the QBO-related temperature anomalies (Martin 

et al. 2019), these differences in the simulated QBO could affect the QBO-

MJO connection in the model. 
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Figure 3.1. Time-height cross section of equatorially averaged (10°S-10°N) 

zonal-mean zonal winds in (a) the observation and (b-e) model simulations. 
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The MJO simulations in the four CMIP5 models are also briefly 

evaluated in Fig. 3.2 (left column). A 20-100 day bandpass filter is applied to 

OLR anomalies and its standard deviation is computed for December-

February in each year. The standard deviation in each year is then averaged 

for all winters using all ensemble members. 

In the observation (Fig. 3.2a), the MJO-related OLR variability is 

maximized near 120°E. The second maxima are also found over the eastern 

Indian Ocean and the western Pacific where sea surface temperature is warm. 

This spatial structure is not well reproduced by climate models (see also Ahn 

et al. 2017). The HadGEM2-CC shows the maximum MJO activity over the 

Indian Ocean and western Pacific but not over the Maritime Continents (Fig. 

3.2c). The overall amplitude is also weaker than the observation. Both 

MIROC-ESM and MIROC-ESM-CHEM fail to capture the MJO-related 

OLR variability (Figs. 3.2e,g). Ahn et al. (2017) reported that these models 

have a weak OLR variance and negligible MJO eastward propagation. In 

contrast, MPI-ESM-MR exhibits a stronger OLR standard deviation than the 

observation with a maximum value over the Maritime Continents (Fig. 3.2i). 

As illustrated later, this model also simulates an eastward propagation of MJO 

anomalies. 

 The above analyses suggest that MPI-ESM-MR has the most realistic 

QBO and MJO. However, a successful simulation of both the QBO and MJO 

does not guarantee a realistic representation of the QBO-MJO connection 
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(e.g., Lee and Klingaman 2018). In Fig. 3.2 (right column), the QBO-MJO 

connection is tested by computing the difference in bandpass filtered OLR 

standard deviation between EQBO and WQBO winters. Consistent with the 

previous studies (Yoo and Son, 2016; Son et al. 2017), MJO activities become 

stronger during EQBO winters than during WQBO winters in the observation 

(Fig. 3.2b). The largest difference is observed over the Maritime Continents 

and extended eastward into the Pacific Ocean.  

The observed QBO-MJO connection is not well reproduced in most 

models (Figs. 3.2d,f,h,j). The HadGEM2-CC exhibits no significant 

difference in MJO-filtered OLR standard deviation. Although not shown, 

HadGEM2-CC has positive OLR biases, indicating that the cloud top height 

is lower than the observation. The lower cloud top is unlikely influenced by 

the QBO. Both MIROC-ESM-CHEM and MIROC-ESM also show 

negligible differences. This result is anticipated because the MJO variability 

itself is not realistic in these two models (Figs. 3.2e,g). In contrast to these 

three models, the MPI-ESM-MR exhibits a weak hint of the QBO-MJO 

connection especially over the western Pacific (Fig. 3.2j). The MJO activity 

is enhanced over 150°E-160°W during EQBO winters as in the observation 

(compare Figs. 3.2j and 3.2b), and this enhancement is statistically significant 

in some regions. This model, however, fails to capture the QBO-MJO 

connection over the Indian Ocean and Maritime Continents. Based on this 

finding, below we focus on the QBO-MJO connection in MPI-ESM-MR 
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simulations. 

 

 

 

 

Figure 3.2. (a) Standard deviation of 20-100 day bandpass filtered OLR 

anomalies in DJF and (b) the difference between EQBO and WQBO winters 

in the observation. (c-j) Same with (a-b) but in the four CMIP5 models. The 

values that are statistically significant at the 95% confidence level are 

contoured in the right column. 
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3.3. QBO-MJO connection in MPI-ESM-MR simulations 

Figure 3.3a presents the eastward propagation of MJO wind and OLR 

anomalies in the observations. The 20-100 day filtered OLR anomalies are 

averaged over 10°S-10°N and regressed onto the OLR anomalies over the 

Maritime Continents (110°-130°E, 10°S-10°N). The regression coefficients 

are calculated in each winter and then averaged over all winters as in Fig. 3.2a. 

The resulting OLR anomalies are multiplied by -1, representing negative 

anomalies the enhanced convection. The same analyses are also performed 

with the MPI-ESM-MR simulations (Fig. 3.3d). As addressed earlier, all 

available datasets (i.e., three ensemble members for 55-year long MPI-ESM-

MR simulations) excluding strong ENSO years are considered. 

Both the observation and model simulations show the enhanced 

convection over the eastern Indian Ocean at lag -10, which propagates 

eastward across the western Pacific at about lag 10. The suppressed 

convection is accompanied by the enhanced convection. The MJO period, 

which is qualitatively estimated by the time distance between the two red 

shadings near 120°E, is also similar between the two datasets (Figs. 3.3a,d). 

However, the modeled MJO amplitude is significantly weaker than the 

observation. The traveling distance of the MJO anomalies is also much 

shorter than the observation. These are well-known biases of CMIP5 models, 

possibly caused by the lack of convection-circulation coupling and the lack 

of physical parameterizations (e.g., Ahn et al. 2017; Gonzalez and Jiang 2017). 
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Next, we evaluate the temporal evolution of the QBO-MJO 

connection in this model. Figures 3.3b and c show the regression maps of the 

observed OLR and U850 anomalies during EQBO and WQBO winters as in 

Fig. 3.3a. Consistent with previous studies (e.g., Nishimoto and Yoden 2017; 

Son et al. 2017), the MJO convective anomalies during EQBO winters 

propagate further eastward than those during WQBO winters with a slightly 

slower propagation speed (5.5 m s-1 for EQBO and 6.9 m s-1 for WQBO 

winters). The formers also remain for a longer time than the latters. Based on 

the auto-lag correlation of RMM1 (not shown), the MJO period during EQBO 

winters is approximately 10 days longer than that during WQBO winters. 
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Figure 3.3. Time-lagged-regression of 20-100 day bandpass filtered OLR 

anomalies (shaded) and 850-hPa zonal wind anomalies (contour interval of 

0.4 m s-2) during (left) ALL, (middle) EQBO, and (right) WQBO winters in 

(a-c) the observation and (d-f) MPI-ESM-MR simulations. OLR and zonal 

wind anomalies are averaged over 10°S-10°N and regressed onto OLR 

anomalies averaged over the eastern Indian Ocean (110°-130°E, 10°S-10°N). 

The regression coefficients are then multiplied by negative one standard 

deviation of the eastern Indian Ocean OLR anomalies.
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Figure 3.4 further illustrates two-dimensional structure of MJO 

convection and lower-tropospheric wind anomalies. The composites of 20-

100 day filtered OLR (shading) and U850 anomalies (contours) are shown for 

each MJO and QBO phase. Their differences between EQBO and WQBO 

winters are also shown in the rightmost column where significantly enhanced 

or suppressed OLR anomalies at the 95% confidence level are contoured. 

Following Garfinkel et al. (2012), Student’s t test is used to test the 

significance by counting the number of degrees of freedom only when each 

day in a given phase is separated by at least seven days. It is evident that both 

OLR and U850 anomalies are stronger during EQBO winters (left) than 

during WQBO winters (middle). Their differences are statistically significant 

over the Maritime Continents to western Pacific (contours in the rightmost 

column). This result confirms an enhanced MJO activity during EQBO 

winters (e.g., Yoo and Son 2016) even with excluding strong ENSO years. 

The same analyses are repeated with the model output as shown in 

Figs. 3.3d-f and 5. Although weak and not well organized, MJO activities 

during EQBO winters are slightly stronger than those during WQBO winters 

(Figs. 3.3e,f). These results are qualitatively similar to the observations, 

although the EQBO-WQBO differences are much weaker than those in the 

observations (compare Figs. 3.3a-c with Figs. 3.3d-f). 
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Figure 3.4. Composite of 20-100 day bandpass filtered OLR (shaded) and 850-hPa zonal wind anomalies (contour interval of 1 m s-

1; the left two columns) for each MJO phase during (left) EQBO and during (middle) WQBO winters and (right) their difference in 

the observation. Only days when the MJO amplitude is greater than 1.0 are used, and the number of analyzed days is denoted at the 

top-right corner of each panel in parenthesis. The values that are statistically significant at the 95% confidence level are contoured in 

the right column; black for stronger MJO anomalies during EQBO winters, and purple for WQBO winters. 
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Figure 3.5. Same with Fig. 3.4, but for the MPI-ESM-MR simulations. 
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A similar result is also found from Fig. 3.5. For most MJO phases, 

OLR anomalies are slightly stronger during EQBO winters than during 

WQBO winters (Fig. 3.5). The enhanced negative anomalies are found over 

the eastern Indian Ocean and the western Pacific during MJO phases 4 and 6. 

The strengthened positive anomalies are also found from Maritime 

Continents to the western Pacific (see MJO phases 2 and 8). Consistent with 

OLR anomalies, U850 anomalies are also slightly stronger during EQBO 

winters, compared to those during WQBO winters. However, the overall 

EQBO-WQBO difference in the model is again much smaller than the 

observation (compare Figs. 3.4 and 3.5). 

Figure 3.6 presents the composite RMM amplitudes for each MJO 

phase. Same with Fig. 3.5, only active MJO days are used. The observation 

shows that EQBO favors stronger amplitudes over the Maritime Continents 

and western Pacific (MJO phases 4-7 in Fig. 3.6a) as shown in Zhang and 

Zhang (2018). In the Indian Ocean (MJO phases 1-3) and central Pacific 

(MJO phase 8), the RMM amplitude during EQBO winters is stronger or 

weaker than during WQBO winters but not statistically significant. 

The MPI-ESM-MR simulations also show a hint of RMM amplitude 

difference between EQBO and WQBO winters, but it differs from the 

observation (Fig. 3.6b). A stronger RMM amplitude is found in MJO phases 

7-8 and 1 during EQBO winters. However, RMM amplitude becomes weaker 

in MJO phases 2-6. This nonsystematic or even opposite result in MJO phases 
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2-6 indicates that the model simulations do not fully reproduce the observed 

QBO-MJO connection. This result is partly consistent with Lee and 

Klingaman (2018). 

Note that the RMM amplitude differences are smaller than the OLR 

and U850 differences (Figs. 3.5 and 3.6). To understand this inconsistency, 

the RMM amplitude is compared for each variable, as in Kim et al. (2014) 

(not shown). In general, the RMM amplitude of zonal wind components is 

distinctively larger than that of OLR, reflecting that the large-scale zonal 

winds dominate the RMM indices (Straub 2013). It turns out that stronger 

RMM amplitude in MJO phases 2, 3 and 5 during WQBO winters (Fig. 3.6b) 

mainly results from U250 anomalies.  

The RMM indices do not use the time-filter for the subseasonal 

timescale and largely depend on the circulation fields. In this regard, the OMI 

indices, which are only based on the 20-96 day filtered OLR data, are tested 

for the sensitivity test (Figs. 3.6c-d). In all MJO phases, the OMI amplitude 

is stronger during EQBO winters not only in the observation but also in the 

model simulations. The EQBO-WQBO OMI amplitude is still smaller in the 

model simulations than the observation. 
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Figure 3.6. RMM amplitude in (a) the observation and (b) MPI-ESM-MR 

simulations during (blue) EQBO and (red) WQBO winters. The values that 

are significantly larger in one phase than the other phase are denoted with an 

asterisk. 
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The above result suggests that the QBO-MJO connection shown in 

Figs. 3.3d-f and 3.5 is only marginally significant. This is consistent with Lee 

and Klingaman (2018). Why does the model have a weak QBO-MJO 

connection? Collimore et al. (2003) and Yoo and Son (2016) proposed that 

QBO-induced tropical convection changes are likely mediated by the static 

stability and vertical wind shear changes in the upper troposphere-lower 

stratosphere (UTLS; between 200 and 50 hPa). Due to the secondary 

circulation associated with QBO wind anomalies, the lower stratosphere 

becomes colder than normal during EQBO winters. The colder (and higher) 

tropopause and the resulting destabilization in the UTLS could promote 

organized deep convection. These are pronounced over the active MJO 

regions and have been proposed to be one of the key factors for the enhanced 

MJO convection during EQBO winters (Yoo and Son 2016; Son et al. 2017; 

Hendon and Abhik 2018; Martin et al. 2019; also in Sect. 2.3.5). Additionally, 

Hendon and Abhik (2018) focuses on the cold cap above the enhanced MJO 

convection, which is associated with a vertically propagating Kelvin wave 

(e.g., Kiladis et al. 2005; Ryu et al. 2008). Hendon and Abhik (2018) suggests 

that the stronger and more stretched cold cap during EQBO winters may 

further enhance the MJO convection and slow down the MJO propagation. 

Figure 3.7a shows the difference in zonal-mean zonal wind and 

temperature anomalies between EQBO and WQBO winters in the observation. 

The maximum difference in zonal-mean zonal wind is located at 50 hPa. Due 
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to the thermal wind balance, the anomalous adiabatic cooling and warming 

are shown below and above 50 hPa, respectively. A similar structure also 

appears in the model simulations (Fig. 3.7d). However, overall magnitudes 

are much weaker than the observation. Considering the fact that the QBO-

MJO connection may depend on the magnitude of the QBO temperature 

anomaly (Martin et al. 2019), a weaker temperature anomaly in the model 

may result in an underestimation of the QBO-MJO connection. 

Figures 3.7b-c and e-f further illustrate the zonal wind and 

temperature profile averaged over the active MJO region (60°-180°E, 5°S-

5°N) in the observation and the model simulations. It turns out that the 

EQBO-WQBO temperature difference in the model, which is approximately 

-1.6 K at 70 hPa, is much weaker than in the observation (approximately -3 

K). For the zonal wind, the EQBO-WQBO differences are 25 m s-1 and 18 m 

s-1 at 50 hPa in the observation and the model simulations. The temperature 

and zonal wind responses are underestimated by 50% and 25% than the 

observation, respectively. In terms of relative change, this result indicates that 

the QBO-related temperature change is weaker than the zonal wind change in 

the model.  

A larger underestimation in the temperature, compared to the zonal 

wind, gives a hint for why the QBO-MJO connection is underestimated in the 

model. It is well documented that the QBO-induced temperature anomalies 

are determined not only by the adiabatic process but also by the diabatic 
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process associated with the water vapor and ozone changes. Among others, 

QBO-induced ozone change can effectively modulate the shortwave radiation 

in the lower stratosphere. When the easterly shear zone with upward motion 

is dominant, the vertical advection of ozone-poor air from the upper 

troposphere to the lower stratosphere results in the anomalously cold region 

in the tropical lower stratosphere. Due to the feedback process, the ozone-

induced temperature changes further affect the QBO secondary circulation. 

This indicates that weaker temperature response than zonal wind response, 

shown in Figs. 3.7e-f, could be partly attributed to ozone transport, which is 

absent in the model. In fact, it is shown that the diabatic heating related to the 

ozone QBO in the coupled chemistry models enhanced their modeled 

temperature QBO by 25~35%, relative to the uncoupled chemistry models (Li 

et al. 1995; Butchart et al. 2003; Tian et al. 2006). 

It was also suggested that QBO-induced cirrus change could affect 

the QBO-MJO connection (Son et al. 2017). During EQBO winters, cirrus 

clouds in the tropical tropopause layer become broader, possibly resulting in 

the radiative warming in the upper troposphere (Hartmann et al. 2001; Yang 

et al., 2010; Hong et al. 2016). This may help the UTLS destabilization. 

However, the longwave radiation in the model does not change much during 

the QBO winters. The rather weak negative temperature anomalies during 

EQBO winters appear below 150 hPa. This result may indicate that not only 

dynamical processes but also diabatic processes in the UTLS are not well 
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represented in the model. 

 

 

 

 

Figure 3.7. (a, d) Difference in zonal-mean zonal wind (contoured) and 

temperature (shaded) anomalies between EQBO and WQBO winters in the 

observation and MPI-ESM-MR simulations. The contour intervals are 5 m s-

1. (b, e) Zonal wind and (c, f) temperature anomalies averaged over the MJO 

active region (60°-180°E, 5°S-5°N) during EQBO (blue) and WQBO (orange) 

winters. 
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Hendon and Abhik (2018) argued that zonally asymmetric 

temperature change is more important than zonal-mean temperature change. 

Figures 3.8a-b present the 20-100 day bandpass filtered temperature 

anomalies over the tropics (10°S-10°N) as a function of longitude and 

pressure. The anomalies in MJO phase 4 for each QBO phase are 

representatively shown for the observation. A stronger diabatic warming in 

the troposphere and a stronger cold cap near the tropopause are found during 

EQBO winters than during WQBO winters, consistent with Hendon and 

Abhik (2018). 

The model simulations qualitatively capture a dipolar temperature 

change (Figs. 3.8c-d). However, due to the weaker MJO convection in the 

model simulations (i.e., Figs. 3.3d-f, 3.5, and 3.6), the diabatic heating in the 

troposphere is generally weaker than the observation especially during EQBO 

winters. This causes relatively small differences in the overriding cold cap 

between EQBO and WQBO winters (Figs. 3.8c-d) than in the observation 

(Figs. 3.8a-b). Considering the fact that the cold cap can be strengthened by 

the enhanced static stability near the tropopause (Ryu et al. 2008), smaller 

cold cap differences could be also attributed to the weak QBO-related static 

stability change in the model simulations (Fig. 3.7). A weak cold cap change 

may reduce its impact on the MJO convection, although the feedback process 

requires to be further understood by a modeling study.  
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Figure 3.8. Composite of 20-100 day bandpass filtered temperature (shaded) 

and zonal-vertical wind anomalies (vectors) for MJO phase 4 during (left) 

EQBO and during (right) WQBO winters in (top) the observation and (bottom) 

the model simulations. Only days when the MJO amplitude is greater than 1.0 

are used. 

  



59 

 

Chapter 4. Dynamical mechanism of the QBO on the MJO 

This chapter examines whether the QBO can dynamically influence 

the MJO structure, based on a primitive equation model. The model 

description and experiment design are described in Sect. 4.1. The results and 

possible mechanism are discussed in Sect. 4.2.  

 

4.1. Model description and experiment design 

The numerical model used in this study is the primitive equation 

model based on the dry dynamical core of the Geophyical Fluid Dynamics 

Laboratory general circulation model (Feldstein 1994; Kim and Lee 2001; 

Son et al. 2005; Ryu et al. 2008). Rhomboidal 30 resolution is used and there 

is no topography. The vertical levels are defined in sigma coordinates. There 

are 75 levels, starting from 0.975 near the surface up to 0.0001. To accurately 

resolve upper-troposphere – lower stratosphere features, more fine vertical 

resolution is used from 500 hPa. The vertical resolution in the middle to upper 

troposphere is approximately 10 hPa, and that in the lower stratosphere is 5 

hPa (marked in Fig. 4.1). Note that the weakly nonlinear solution is 

convergent if more than 15 vertical levels and a horizontal resolution greater 

than rhomboidal 30 is used (Feldstein 1994). 

 To evaluate the impact of the QBO-related background state, EQBO- 

and WQBO-like background state are defined as follows. The zonal wind, 

meridional wind, temperature, and surface pressure fields from ERA-Interim 
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are averaged for 10 EQBO years, defined in Chap. 2, and then used as EQBO-

like background state. The WQBO-like background state is defined by 

calculating the departure of EQBO-like background state from the DJF-mean 

climatology and then excluding them from the climatology, to have a same 

amount but opposite forcing with EQBO-like background state. To focus on 

the impact of the upper troposphere and lower stratosphere, the background 

state above 250 hPa is only changed. Figure 4.1 shows the vertical profiles of 

zonal-mean zonal wind and temperature in EQBO and WQBO experiments, 

respectively. 

Even though the background state is defined as the time-mean values, 

it is still not balanced. Following Franzke et al. (2004), a time-independent 

additional forcing is added to the model equations to obtain a balanced state. 

This additional forcing is calculated by initializing the model with the 

background state and then by integrating forward in time by a one-time step. 

Their residual term at the one-time step is used for the additional forcing and 

is added in all time steps. 

For the MJO-like dipole heating, an elliptic horizontal distribution is 

used, which is similar to Seo and Son (2012). One is diabatic heating for 

mimicking the enhanced convection and the other is diabatic cooling for the 

suppressed convection. Similar to the MJO phase 3 heating, the enhanced 

heating field, which is centered at 100°E and the equator, is shown in Fig. 4.2. 

The zonal and meridional extents of the heating are 25° and 10° with the 
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maximum value of 5.0 K day-1 at 𝜎 = 0.450. The vertical profile of the 

heating takes the form of Yoo et al. (2012). Likewise, the suppressed 

convection like heating is centered at 160°E and the equator, and the 

minimum value of -5.0 K day-1 at 𝜎 = 0.450, shown in Fig. 4.2a. 

 

 

 

 

Figure 4.1. (a) The zonal-mean zonal wind and (b) temperature averaged over 

the tropics (10°S-10°N) used in EQBO (blue) and WQBO (red) experiments. 
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Figure 4.2. (a) The horizontal structure of the idealized heating and cooling 

at 450 hPa. (b) The vertical profile of the idealized heating at 100°E and 

cooling at 160°E, respectively. The closed circles indicate each vertical level 

defined in the model. 
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4.2. Model results 

Figure 4.3 displays the temperature anomalies averaged over the 

tropics (10°S-10°N) at day 3, 6, and 9 in EQBO and WQBO experiments (left 

two columns in Fig. 4.3). The MJO-related temperature vertical structure is 

partly captured in the dynamical core model. The upper tropospheric heating 

induced by the thermal forcing is presented and is centered to the east of 

thermal forcing (see also Fig. 3.8). It results from the easterly winds in the 

background states. Above the tropospheric heating, the vertically eastward 

tilted cold anomaly is shown. The cold anomaly has been demonstrated by 

the result from the hydrostatic adjustment to maintain hydrostatic balance in 

response to the diabatic warming related to the tropical deep convection 

(Holloway and Neelin 2007; Hendon and Abhik 2018). With time integration, 

the warm anomaly is developed above the cold anomaly, which is known as 

the vertically propagating equatorial Kelvin wave (e.g., Kiladis et al. 2001). 

These cold regions above the tropospheric heating have been called for “cold 

cap” (e.g., Hendon and Abhik 2018). 

Comparing the cold cap responses between EQBO and WQBO 

experiments, the cold cap in the EQBO experiment is more vertically 

stretched with a longer vertical scale. It is colder at near 100 hPa than that in 

the WQBO experiment, based on the -1.6 K value.  More quantitatively, the 

rightmost column of Fig. 4.3 reveals the vertical temperature profile over the 

minimum cold region at near 100 hPa (110°-130°E, 10°S-10°N; solid lines). 
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The vertical profile over the maximum warm region (180°-160°W, 10°S-

10°N) is indicated by dotted line. The EQBO-WQBO difference increases 

with time integration, and their difference is about -0.5 K on day 9. This result 

indicates that the cold cap response can be intensified up to 28 % only by 

dynamic process.  

 

  



65 

 

 

Figure 4.3. Longitude-height cross section of perturbed temperature, 

generated in (left) EQBO and (middle) WQBO experiments at (top to bottom) 

day 3, 6, and 9. The vertical profile of temperature averaged over two regions 

(110°-130°E, 10°S-10°N and 180°-160°W, 10°S-10°N) are denoted by solid 

and dotted lines, respectively in the rightmost column. The blue (red) lines 

indicate the results from EQBO (WQBO) experiment. 
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To further investigate the importance of the QBO-like background 

state in the cold cap changes, the dependency on the QBO amplitude is 

examined. Figure 4.4 shows the vertical temperature profile averaged over 

the cold cap region, which is the same with the rightmost column in Fig. 4.3, 

but the results are obtained in 2xEQBO, 3xEQBO, 2xWQBO, and 3xWQBO 

experiments. Regardless of the QBO amplitude, the cold cap responses in 

EQBO-like experiments are colder than those in WQBO-like experiments. In 

each QBO experiment, the cold cap responses to the QBO amplitude are 

slightly different. When the easterly winds become stronger in the EQBO-

like experiments, the height of the minimum temperature moves upward and 

its magnitude becomes colder. On the contrary, when the westerly winds 

become stronger in the WQBO-like experiments, the height of the minimum 

temperature moves downward, but its magnitude is not changed. 

The thermal response to the QBO background state is sensitive to the 

location of thermal forcing. The warm cap response overlying the 

tropospheric cooling in central Pacific is different from the cold cap. The 

magnitude of the temperature anomaly is distinctively weaker than that in the 

western Pacific. This result is consistent with the results from Ryu et al. 

(2008), which shows that the strongest Kelvin wave response occurs over the 

western Pacific. This result might provide a hint for how the QBO-MJO 

connection is well presented, especially in the western Pacific.  
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Figure 4.4. Same with the right bottom of Fig. 4.3. The results from EQBO, 

2xEQBO, 3xEQBO, WQBO, 2xWQBO, and 3xWQBO experiments are 

additionally shown. 
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How does the QBO modulate the Kelvin wave? We try to understand 

the cold cap response, based on the characteristics of Kelvin wave in linear 

wave theory. The dispersion relation of Kelvin wave is written as below 

(Andrews et al. 1987). 

𝜔 = ± 𝑁𝑘 𝑚⁄  (4.1) 

𝜔 is absolute wave frequency, 𝑘 and 𝑚 are zonal and vertical wavenumber, 

respectively. 𝑁 is background buoyancy frequency. The zonal and vertical 

group velocities of the Kelvin wave are as follows. 

𝐶𝑔𝑥 =
𝜕𝜔

𝜕𝑘
= ±

𝑁

𝑚
, (4.2) 

𝐶𝑔𝑧 =
𝜕𝜔

𝜕𝑚
= ∓

𝑁𝑘

𝑚2
 (4.3) 

For our convention, k is positive. The Kelvin wave propagates upward from 

the troposphere, and thus 𝐶𝑔𝑧 is positive. Therefore, the zonal and vertical 

group velocities are rewritten as 𝐶𝑔𝑥 = −𝑁 𝑚⁄  and 𝐶𝑔𝑧 = 𝑁𝑘 𝑚2⁄ . As the 

Kelvin wave propagates eastward, 𝑚  should be negative. Since the 

background zonal wind is nonzero and constant, the Doppler-shifted 

frequency is considered, and therefore the group velocities are 𝐶𝑔𝑥 = 𝑈 −

𝑁 𝑚⁄  and 𝐶𝑔𝑧 = 𝑁𝑘 𝑚2⁄ . The group velocity is determined by the 

background state.  

 Based on the fact that more energy is transported when the group 

velocity is faster, we hypothesize that the weaker temperature perturbation is 

formed due to smaller energy. If the WQBO background state contributes to 
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the faster group velocity, it results in the weaker cold cap response. Figures 

4.4 and 4.5 show the zonal and vertical group velocity in each QBO 

experiments, respectively. Following Ryu et al. (2008), the value of k is 1.57 

x 10-7 m-1, corresponding to zonal wavenumber 1 of Kelvin wave. 

Considering that the vertical scale of the Kelvin wave in EQBO experiment 

is larger, we calculate the group velocity with two vertical scales (i.e., 8 and 

10 km). The structure of 𝐶𝑔𝑥 follows the distribution of zonal wind, and the 

structure of 𝐶𝑔𝑧 follows the distribution of buoyancy frequency, consistent 

with Ryu et al. (2008). The 𝐶𝑔𝑥 in the UTLS is slower in EQBO experiments 

regardless of the vertical scale. The 𝐶𝑔𝑧  is smaller in EQBO than WQBO 

experiments, but their difference is very small relative to that in 𝐶𝑔𝑥. Based 

on the facts that the 𝐶𝑔𝑥 is distinctively larger than 𝐶𝑔𝑧 (cf. Figs. 4.5 and 4.6) 

and the 𝐶𝑔𝑥 in EQBO-like background state is weaker than that in WQBO-

like background state, we can conclude that the stronger cold cap during 

EQBO is demonstrated by the Doppler-shift effect. 
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Figure 4.5. Longitude-height cross section of the zonal Kelvin wave group 

velocity in (a,c) EQBO and (b,d) WQBO experiments. The expected values 

with two different vertical scales (i.e., 8 and 10 km) are presented in top and 

bottom, respectively. 

 

 

Figure 4.6. Same with Fig. 4.5, but for the vertical Kelvin wave group 

velocity.  
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Chapter 5. QBO-MJO connection in the S2S prediction 

models 

This chapter is to examine the robustness of the QBO modulation of 

MJO prediction skill in a range of operational forecast models. The S2S 

models (Vitart et al. 2017), verification data, and methods are described in 

Sect. 5.1. After briefly evaluating the QBO prediction skill in Sect. 5.2, the 

QBO impact on MJO prediction skill is quantified by using various MJO 

evaluation metrics in Sect. 5.3. Potential causes of the different MJO 

prediction skills between EQBO and WQBO winters are also analyzed. 

 

5.1. Data and methods 

5.1.1. Data 

 As a reference, daily zonal wind from ERA-Interim reanalysis data 

(Dee et al. 2011) are used. These data are utilized to define the QBO phase 

and MJO index. NOAA OLR data (Liebmann and Smith 1996) are also used 

to describe tropical convective activity. Since NOAA OLR data are available 

only up to 2013 (as of February 2017), the maximum evaluation period is 

from 1981 to 2013. Based on the 2.5° × 2.5° resolution of NOAA OLR data, 

all datasets, including model output, are interpolated into a common 

horizontal resolution of 2.5° × 2.5°. 

 Almost all reforecasts during boreal winter months are considered. 

As of February 2017, reforecasts are available in the S2S archive from BoM, 
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CMA, Institute of Atmospheric Sciences and Climate of the National 

Research Council (CNR-ISAC), Météo-France/Centre National de 

Recherches Météorologiques (CNRM), Environment and Climate Change 

Canada (ECCC), ECMWF, Hydrometeorological Centre of Russia (HMCR), 

JMA, NCEP, and United Kingdom Met Office (UKMO) models (Table 5.1). 

As summarized in Table 5.1, each model has a different resolution. The 

reforecast frequency and length are also appreciably different among the 

models. Note that Table 5.1 is identical to the data used in Chap. 6, except 

that MJO events initialized only in December–February (DJF) are considered. 

These three months are chosen because the QBO–MJO link is stronger in DJF 

than in the extended winter (Yoo and Son 2016). Because of the unavailability 

of OLR data since 2014, the reforecasts initialized in December 2013 are not 

examined. 

 All available reforecasts are used. Exceptions are the CMA and 

NCEP models, which are initialized every day. Due to a storage issue, the 

reforecasts of these two models are subsampled six times per month 

(initialized on the 1st, 6th, 11th, 16th, 21st, and 26th), similar to the reforecast 

frequency of the BoM model. Since each reforecast is integrated for at least 

31 days, MJO activity in March is included in the MJO events initialized in 

February.  

 In Table 5.1, it is important to note that not all models resolve the 

stratosphere. Based on the model top at and above 1 hPa, only six models (i.e., 
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CMA, CNRM, ECMWF, JMA, NCEP, and UKMO models) have a reasonable 

vertical resolution in the stratosphere. These six models are referred to as 

high-top models, while the other four models (i.e., BoM, CNR-ISAC, ECCC, 

and HMCR models) are referred to as low-top models (Table 5.2). However, 

even low-top models have a realistic initial condition in the stratosphere 

because all models are initialized with reanalysis data. 

The QBO index is defined by 50-hPa zonal-mean zonal wind 

anomalies over the tropics (10°S–10°N), following previous studies (e.g., Yoo 

and Son 2016; Marshall et al. 2017; Son et al. 2017; Same with Chap. 2-4). 

When the DJF QBO index is above 0.5 standard deviation (approximately 5 

m s-1), it is defined as WQBO winter. Similarly, EQBO winter is defined when 

the index is less than -0.5 standard deviation. The selected QBO years are 

denoted by a triangle in Fig. 5.1. For the analysis period from January 1981 

to February 2013, a total of 9 and 15 years are defined as EQBO and WQBO 

winters, respectively. Each S2S model has a different number of QBO winters 

due to the different reforecast periods (third column in Table 5.1). For instance, 

the number of WQBO winters ranges from 5 years in the NCEP model to 15 

years in the BoM model. Likewise, the number of EQBO winters ranges from 

5 years in the NCEP model to 9 years in the BoM model. Due to this sampling 

issue, the detailed comparisons between EQBO and WQBO winters are 

primarily conducted using only seven models that have large samples 

(indicated by a superscript “+” in Table 5.1). 
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Properties of the MJO, such as amplitude and phase, can be 

quantified by the RMM indices (Wheeler and Hendon 2004). The RMM 

indices are calculated in reforecasts and observations following previous 

studies (e.g., Gottschalck et al. 2010; Vitart 2017; Lim et al. 2018). Briefly, 

the RMM indices are derived from observed and forecasted OLR, 200 hPa 

(U200), and 850 hPa zonal winds (U850) averaged over the deep tropics 

(15°S–15°N). The seasonal cycle is removed using the daily climatology from 

observations and from the lead-time dependent climatology of the reforecasts. 

The previous 120-day averaged data are also removed to isolate intraseasonal 

variability, and each field is normalized by the square root of the area-mean 

variance. The first two empirical orthogonal functions (EOFs) are then 

obtained from a combined EOF analysis of the OLR, U200 and U850 using 

the observations. The observed and predicted RMM indices are computed by 

projecting the normalized observed and reforecast fields onto the first two 

observed EOFs. 

For each model, the RMM indices are averaged across all available 

ensemble members that are initialized on the same day. As described in Lim 

et al. (2018) and Table 5.1, the ensemble size of each model substantially 

differs from 1 to 33. Since our goal is to examine the QBO-dependent MJO 

prediction skill, only the ensemble-mean MJO prediction skill is evaluated. 
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Table 5.1. Description of the S2S models used in Chap. 5. The models used in Sect. 5.3 are indicated by cross. The models used in 

Sect. 6.3 are denoted by pound. The CMA and NCEP models, denoted with asterisk, are sub-sampled to be compared with other 

models. Note that ECMWF’s horizontal resolution is switched from Tl 639 to Tl 319 after forecast day 15. 

Modeling 

center 

Model resolution 

(Top of model) 

Reforecast 

Period 

Reforecast 

frequency 

Total number of reforecasts 

(ALL/EQBO/WQBO) 

Reforecas

t length 

Ensemble 

size 

BoM+# T47 L17 (10 hPa) 1981-2013 six times/month 588/162/264 Days 1-62 33 

CMA*+# T106 L40 (0.5 hPa) 1994-2013 six times/month 354/126/156 Days 1-60 4 

CNR-

ISAC+ 

0.75°x0.56° L54 

(roughly 6.8 hPa) 
1981-2010 every 5 days 540/144/242 Days 1-31 1 

CNRM# T255 L91 (0.01 hPa) 1993-2013 twice/month 124/42/54 Days 1-61 15 

ECCC+# 
0.45°x0.45° L40 

(2 hPa) 
1995-2013 weekly 242/91/104 Days 1-32 4 

ECMWF+# 
Tl639/319 L91 

(0.01 hPa) 
1996-2013 twice/week 424/168/184 Days 1-46 11 

HMCR+ 
1.1°x1.4° L28 

(5 hPa) 
1985-2010 weekly 338/99/156 Days 1-61 10 

JMA+# T319 L60 (0.1 hPa) 1981-2010 three times/month 270/72/123 Days 1-34 5 

NCEP*# T126 L64 (0.02 hPa) 1999-2010 six times/month 216/84/90 Days 1-44 4 

UKMO N216L85 (85 km) 1996-2009 four times/month 168/72/72 Days 1-60 3 
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5.1.2. Evaluation metrics 

 The MJO prediction skill is evaluated by computing the bivariate 

anomaly correlation coefficient (BCOR): 

 BCOR(τ) =
∑ [𝑂1(𝑡)𝑀1(𝑡, 𝜏) + 𝑂2(𝑡)𝑀2(𝑡, 𝜏)]𝑁

𝑡=1

√∑ [𝑂1
2(𝑡) + 𝑂2

2(𝑡)]𝑁
𝑡=1 √∑ [𝑀1

2(𝑡, 𝜏) + 𝑀2
2(𝑡, 𝜏)]𝑁

𝑡=1

 (5.1) 

Here, 𝑂1(𝑡) and 𝑂2(𝑡) are the verification of RMM1 and RMM2 at time 𝑡, 

and 𝑀1(𝑡, 𝜏) and 𝑀2(𝑡, 𝜏) are the respective ensemble-mean reforecasts for 

time 𝑡 for a lead time of 𝜏 days. 𝑁 is the number of reforecasts. Following 

previous studies (e.g., Lin et al. 2008; Rashid et al. 2011; Lim et al. 2018), 

MJO prediction is representatively judged to be skillful when BCOR ≥ 0.5. 

The values of 0.6, 0.7, and 0.8 are also used for the sensitivity tests. In all 

analyses, only organized MJO events with initial amplitude larger than 1.0 

are considered. 

 In order to understand the relative importance of MJO amplitude and 

phase errors, the mean-squared amplitude errors (AE2̅̅ ̅̅ ̅) and mean-squared 

phase errors (PE2̅̅ ̅̅ ̅), which are closely related to BCOR skills (Lim et al. 2018), 

are also computed. The AE2̅̅ ̅̅ ̅ and PE2̅̅ ̅̅ ̅ are defined as below. 

AE2̅̅ ̅̅ ̅(𝜏) =
1

𝑁
∑[𝐴𝑀(𝑡, 𝜏) − 𝐴𝑂(𝑡)]2

𝑁

𝑡=1

, (5.2) 

PE2̅̅ ̅̅ ̅(𝜏) =
1

𝑁
∑[𝜙𝑀(𝑡, 𝜏) − 𝜙𝑂(𝑡)]2

𝑁

𝑡=1

. (5.3) 
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Here, 𝐴𝑂, 𝐴𝑀, 𝜙𝑂, and 𝜙𝑀 are the observed and forecasted MJO amplitudes 

and phases in the RMM space, and are defined by 

𝐴𝑂(𝑡) = √𝑂1
2(𝑡) + 𝑂2

2(𝑡), 𝐴𝑀(𝑡, 𝜏) = √𝑀1
2(𝑡, 𝜏) + 𝑀2

2(𝑡, 𝜏), 

𝜙𝑂(𝑡) = 𝑡𝑎𝑛−1 (
𝑂2(𝑡)

𝑂1(𝑡)
) , and          𝜙𝑀(𝑡, 𝜏) = 𝑡𝑎𝑛−1 (

𝑀2(𝑡, 𝜏)

𝑀1(𝑡, 𝜏)
). 

 

5.2. QBO prediction skill in S2S prediction models 

The time series of the daily QBO indices from ERA-Interim and 

those from the reforecasts are illustrated in Fig. 5.1. Here, to smooth the times 

series, a 30-day average is applied. Long-term climatology is then removed. 

For instance, the observed or predicted QBO index on 1 January 1981 

represents 50-hPa zonal-mean zonal wind anomalies averaged over 30 days 

from 1 to 30 January 1981. 

All S2S models show a realistic alternation of 50-hPa zonal wind 

anomalies from easterlies to westerlies (Fig. 5.1). The correlation coefficient 

(COR) and root-mean-squared error (RMSE) with respect to ERA-Interim are 

reasonably small (Table 5.2). The low-top models generally underestimate 

the QBO in comparisons to the high-top models (Table 5.2). Among them, 

the BoM model exhibits the largest underestimation of the QBO amplitude in 

terms of the absolute value of the QBO index (Table 5.2). The low vertical 

resolution (i.e., 17 levels with only 4 levels above 100 hPa) and its low model 

top (i.e., 10 hPa) likely cause a rapid and significant reduction in stratospheric 
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wind anomalies during the forecast (Table 5.2; Marshall et al. 2017). The 

HMCR model has the second lowest vertical resolution (28 levels with 7 

levels above 100 hPa), followed by the CMA and ECCC models. The QBO 

amplitude of this model is somewhat larger than the CMA and ECCC models, 

but its variation is less well correlated with the observation (Table 5.2). 

However, COR is still greater than 0.90. This good performance simply 

results from the fact that all models are initialized with reanalysis data. 

The S2S models, except the BoM and HMCR models, can be largely 

divided into three groups according to QBO amplitude. The three European 

models (CNRM, ECMWF and UKMO models) show the largest QBO 

amplitude and closest agreement to ERA-Interim (RMSE < 2 m s-1 in Table 

5.2), while the JMA and NCEP models show a moderate QBO amplitude (2 

m s-1 < RMSE < 3 m s-1). The remaining three models (CMA, CNR-ISAC 

and ECCC models) show a relatively weak QBO amplitude (RMSE > 4 m s-

1). The difference between the first two groups may not be physically 

meaningful because they used different initial conditions. The initial 

condition of the first group is ERA-Interim but that of the second group is 

either Japanese 55-year Reanalysis (JRA-55) or Climate Forecast System 

Reanalysis. The CMA model in the third group used the NCEP-NCAR 

Reanalysis as an initial condition.  

 

 



79 

 

 
Figure 5.1. Time series of U50 QBO index from ERA-Interim (gray shading) 

and one-month predictions of each model (colored lines). Blue and red 

triangles indicate EQBO and WQBO winters, respectively. The correlation 

coefficient between ERA-Interim and each model (same with the second 

column in Table 5.2) is indicated in parenthesis. 
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Table 5.2. One-month QBO prediction skill of the S2S models. The high-top 

models are denoted with circumflex accent. 

All COR RMSE 

BoM 0.85 7.44 

CMA^ 0.95 4.63 

CNR-ISAC 0.95 4.51 

CNRM^ 0.99 1.34 

ECCC 0.96 3.99 

ECMWF^ 0.99 1.94 

HMCR 0.92 4.07 

JMA^ 0.99 2.54 

NCEP^ 0.97 2.85 

UKMO^ 1.00 0.76 
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Although the CNR-ISAC and ECCC models use ERA-Interim as an 

initial condition, the QBO amplitudes are weaker than the others. The 

underestimation of the QBO amplitude seems to be related to their vertical 

resolution which is relatively coarse (Table 5.2). It is known that a fine 

vertical resolution (less than 1 km) is necessary to capture the gravity wave 

breaking and the associated momentum deposit in the stratosphere which 

drive the QBO (Kim et al. 2013a; Schmidt et al. 2013). Geller et al. (2016) 

also documented that sufficient vertical resolution is required for the 

downward propagation of QBO by influencing the simulation of wave-mean 

flow interaction. 

 The different initial conditions (seven models with ERA-Interim but 

three models with other reanalysis datasets) may introduce artificial inter-

model differences when verifying against ERA-Interim. However, this does 

not affect the composite analyses. For instance, slightly different QBO 

amplitudes do not change the number of EQBO and WQBO winters in each 

model. Even for the MJO, its prediction skill evaluated against JRA-55 is 

comparable to that against ERA-Interim (Vitart 2017). 
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5.3. MJO prediction skill with QBO 

 The general prediction skill for the MJO using 10 S2S models has 

previously been evaluated for the boreal winter in Vitart (2017) and Lim et al. 

(2018). Figure 5.2a summarizes BCOR skill of each model. The S2S models 

exhibit a significant inter-model spread in MJO prediction skill, ranging from 

13 to 35 days (see dotted line). Here, the MJO prediction skill is evaluated 

with BCOR=0.5 unless specified. This large inter-model spread has partly 

been explained by model mean biases (Gonzalez and Jiang 2017; Lim et al. 

2018). Lim et al. (2018) showed that the models with smaller biases in the 

horizontal moisture gradient and cloud-longwave radiation feedback over the 

Maritime Continents produce a higher MJO prediction skill (see also Chap. 

6). 

 Figures 5.2b and 5.2c, respectively, present BCORs for EQBO and 

WQBO winters. The decrease in BCORs over the first two weeks of the 

forecast is more abrupt during WQBO winters than during EQBO winters. 

This is particularly true for the CMA, CNR-ISAC, CNRM, ECCC, and NCEP 

models. Overall MJO prediction skills range from 17 to 36 days during EQBO 

winters, but only from 10 to 28 days during WQBO winters. Here we note 

that the results for the BoM model are very similar, but not identical, to those 

presented in Marshall et al. (2017). A slight difference is likely caused by 1) 

inclusion of weak MJO events in Marshall et al. (2017), 2) different reference 
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data for verification, 3) different analysis period, and 4) different definition 

of QBO phase. 

This MJO prediction skill is concisely summarized in Fig. 5.3. On 

average, the MJO prediction skill is 21.2±7.2 days. This skill increases to 

23.6±6.4 days during EQBO winters, but decreases to 17.9±6.2 days during 

WQBO winters. The EQBO-WQBO difference is on average 6.0±3.2 days. 

A similar difference is also found when BCOR=0.6 (i.e., 5.2±2.4 days; see 

medium shading in Fig. 6.3), 0.7 (i.e., 4.3 ± 2.1 days; see medium-dark 

shading), or 0.8 (i.e., 2.4±1.6 days; see dark shading) is used. To test the 

robustness, the same analyses are repeated by using the real-time OLR-based 

MJO indices (Kiladis et al. 2014). Although not shown, essentially the same 

results are obtained. All models show a higher MJO prediction skill during 

EQBO winters than during WQBO winters.  

These results suggest that the S2S models have a higher MJO 

prediction skill during EQBO winters than during WQBO winters regardless 

of the choice of BCOR thresholds and MJO indices. The EQBO-WQBO MJO 

skill difference, however, significantly varies from model to model. The 

CNRM model, for instance, shows a 10-day difference. However, the NCEP 

and UKMO models show only a one-day difference. To evaluate the 

significance of these skill differences, the bootstrap significance test is 

conducted. Specifically, the confidence intervals of MJO prediction skills are 

computed with 10,000 bootstrap sampling for EQBO and WQBO winters 
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(e.g., Vitart 2017). When their confidence intervals are not overlapped, the 

skill difference is determined to be statistically significant (Lin and Brunet 

2011; Vitart 2017). It turns out that six models (i.e., BoM, CMA, CNR-ISAC, 

ECMWF, JMA, NCEP models) show statistically significant EQBO-WQBO 

skill differences at 90% confidence level for varying BCOR thresholds. But, 

only three models show significant differences at 95% confidence level, 

presumably due to small sample sizes. 

This result, however, is still physically meaningful. When the same 

analyses are repeated with respect to the two ENSO phases, no systematic 

differences are obtained (not shown). Five models show an enhanced MJO 

prediction skill during El Niño winters, but the other five show an opposite 

result. More importantly, none of 10 S2S models exhibit statistically 

significant MJO prediction skill differences between El Niño and La Niña 

winters even at 90% confidence level. This finding supports that the QBO-

MJO prediction skill relationship, shown in Figs. 5.2 and 5.3, does not likely 

occur by chance. 
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Figure 5.2. BCORs as a function of forecast days during (a) ALL, (b) EQBO, 

and (c) WQBO winters. As a reference, BCOR=0.5 is denoted with a dotted 

line. Only MJO events with initial MJO amplitude greater than 1.0 are 

considered here. The number of reforecasts used in each QBO phase is 

indicated in parenthesis. 
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Figure 5.3. BCOR skills during ALL (black), EQBO (blue) and WQBO 

winters (red). The number of reforecasts used in each category is denoted in 

white at the bottom of each bar. Light, medium, medium-dark, and dark bars 

denote the prediction skills based on BCOR of 0.5, 0.6, 0.7 and 0.8, 

respectively. The yellow double (single) asterisks indicate that 95% (90%) 

confidence intervals of BCOR skill during EQBO winters are well separated 

from those during WQBO winters. A bootstrap method is used to determine 

the confidence interval. 
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Figures 5.1 and 5.3 also reveal that a higher QBO prediction skill 

does not necessarily translate to a larger EQBO-WQBO MJO skill difference. 

For example, the ECMWF model, which produces one of the best depictions 

of the QBO and has the best MJO prediction skill, shows an eight-day 

difference in MJO prediction skill. In contrast, the BoM model, which 

produces the lowest QBO prediction skill of all the models, shows a seven-

day difference in MJO prediction skill. The same is also true for the CMA 

model. This result suggests that the QBO-related MJO prediction skill change 

may not be strongly sensitive to the model physics and dynamics in the 

stratosphere. Marshall et al. (2017) argued that the behavior of the MJO itself 

is more important than the mean state in the stratosphere.  

To better understand the prediction errors during the two QBO phases, 

the mean-squared amplitude errors (AE2̅̅ ̅̅ ̅) and the mean-squared phase errors 

(PE2̅̅ ̅̅ ̅) are further examined. Lim et al. (2018) showed that both amplitude and 

phase errors are highly correlated with BCOR skills. Figure 5.4 presents  AE2̅̅ ̅̅ ̅ 

and PE2̅̅ ̅̅ ̅ of all models and multi-model mean values in the week two forecast 

when the EQBO-WQBO MJO skill difference rapidly increases (Fig. 5.2). 

Here, the week two forecast is defined by averaging value over forecast days 

8-14 as in Lim et al. (2018). Note that AE2̅̅ ̅̅ ̅  are normalized by the MJO 

amplitude of the observation due to a larger amplitude during EQBO winters.  

Both AE2̅̅ ̅̅ ̅ and PE2̅̅ ̅̅ ̅ are smaller during EQBO winters. Except for the 

ECMWF and HMCR models, AE2̅̅ ̅̅ ̅ range from 0.10 to 0.23 in EQBO winters 
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but from 0.17 to 0.30 in WQBO winters. Likewise, PE2̅̅ ̅̅ ̅ range from 3 𝜋 16⁄  

to 4𝜋 16⁄  in EQBO winters, whereas they range from 4 𝜋 16⁄  to 6 𝜋 16⁄  in 

WQBO winters. This result indicates that both MJO amplitude and phase 

errors contribute to the MJO prediction skill differences between EQBO and 

WQBO winters. 

 

 

 

Figure 5.4. Relationship between  𝐏𝐄𝟐̅̅ ̅̅ ̅ and 𝐀𝐄𝟐̅̅ ̅̅ ̅̅  at the two-week forecast for 

each model during EQBO (light blue) and WQBO winters (light red). Blue 

and red closed circles denote the multi-model mean values. 
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Next we examine the relative roles of circulation and convection 

anomalies in MJO prediction errors (Fig. 5.5). Specifically, the pattern 

correlations of OLR, U850 and U200 anomalies are computed over the Indo-

Pacific warm pool region (60°E -180°E, 15°S-15°N) at the two-week forecast 

and then averaged over all reforecasts. To focus on the intraseasonal 

variability, the previous 120-day averaged observation is removed from each 

variable before computing the pattern correlation. It turns out that the OLR 

correlations are typically smaller than the circulation correlations. The OLR 

pattern correlations range from 0.20 to 0.40, but U200 and U850 pattern 

correlations range from 0.30 to 0.60.  

However, there is a noticeable difference between OLR and 

U850/U200 pattern correlations. While OLR pattern correlations do not differ 

much between EQBO and WQBO winters (red and blue circles in Fig. 5.5a), 

U850/U200 pattern correlations are reasonably well separated (Figs. 5.5b,c). 

This result indicates that an enhanced MJO prediction skill during EQBO 

winters is more closely related to a better prediction of zonal circulation than 

convection. It is known that MJO convection rapidly weakens within 10 days 

of model integration (e.g., Kim et al. 2014; Xiang et al. 2015; Kim 2017). 

Even though convection is weak, the associated circulations can be 

maintained for a while, resulting in a high MJO prediction skill. This behavior 

is reflected in the RMM index which is more weighted to zonal circulation 
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than to convection (Straub 2013; Kiladis et al. 2014; Kim et al. 2014; Kim 

2017). 

 

 

 

 

 
Figure 5.5. Relationships of the MJO pattern correlations of (a) OLR, (b) 

U850, and (c) U200 over the MJO active region (60-180°E, 15°S-15°N) 

against BCOR skills at the two-week forecast during EQBO (light blue) and 

WQBO winters (light red). Blue and red closed circles denote the multi-model 

mean values. 
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5.3.1. Sensitivity to initial MJO amplitude 

One of the key factors that may determine an enhanced MJO 

prediction skill is MJO amplitude. The MJO is typically stronger than normal 

during EQBO winters (Yoo and Son 2016; Nishimoto and Yoden 2017; Son 

et al. 2017), and a stronger and well-organized MJO event can be better 

predicted than a weak MJO event (e.g., Rashid et al. 2011; Kim et al. 2014; 

Lim et al. 2018). Figure 5.6 shows that the MJO events with amplitudes larger 

than 1.5 are common during EQBO winters but not during WQBO winters. 

In terms of frequency, the most frequently occurring MJO events (13%) have 

an amplitude of 1.9 during EQBO winters. In contrast, WQBO winters show 

the most frequently occurring MJO events (15%) to have an amplitude of 1.1.  

Marshall et al. (2017) already tested the above conjecture using the 

BoM model and found that the QBO-MJO prediction skill relationship is not 

simply determined by initial MJO amplitude. They showed that the MJO 

prediction skill during EQBO winters is higher than that during WQBO 

winters even when MJO events with a comparable initial amplitude are 

considered. Their analyses are extended in Fig. 5.7 for seven S2S models that 

have more than 50 MJO events in each QBO phase (cross marked in Table 

5.1). Regardless of the initial MJO amplitude, most models show a higher 

MJO prediction skill in EQBO winters than in WQBO winters. The only 

exception is strong MJO events in the CNR-ISAC model (i.e., 1.9-2.5 and 
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2.0-2.6 bins of initial amplitude). This result clearly indicates that a higher 

MJO prediction skill is not simply due to a stronger initial MJO amplitude.  

 

 

 

Figure 5.6. Probability distribution function of initial MJO amplitude during 

ALL (black), EQBO (blue), and WQBO winters (red). Shown value is the 

ratio of the number of events in each bin (at bin intervals of 0.2) to the total 

number of events in each category. Seven individual models that have enough 

number of reforecasts (Table 5.1) are denoted with light colored lines, and 

their multi-model mean values are denoted with dark colored lines. The bins, 

in which EQBO-WQBO differences are statistically significant at 95% 

confidence level, are marked in blue and red asterisks. A Student’s t test is 

used for significance test. 
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Figure 5.7. The differences in MJO prediction skills for BCOR=0.5 between 

EQBO and WQBO winters for each MJO amplitude (bin width is 0.6). As in 

Fig. 5.6, only seven models that have enough number of reforecasts are 

considered here. 
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5.3.2. Sensitivity to initial MJO phase 

The sensitivity of MJO prediction skill to initial MJO phase is also 

tested in Fig. 5.8. The positive EQBO-WQBO MJO skill differences appear 

in most phases and in most models. All seven models particularly exhibit a 

higher MJO prediction skill during EQBO winters when initialized in MJO 

phases 4-5 and 6-7. The enhanced skills for phases 4-5 and 6-7 are relatively 

large in the high-top models (i.e., CMA, ECMWF, and JMA models) 

compared to the low-top models (e.g., CNR-ISAC, ECCC, and HMCR 

models).  

A systematic skill difference, however, does not appear during MJO 

development and decaying phases (i.e., MJO phases 2-3 and 8-1 in Fig. 5.8). 

For example, the BoM and ECMWF models, which are the best two models 

in terms of the MJO prediction skill, show either no difference or a deficit in 

prediction skill during EQBO winters compared to WQBO winters when 

initialized in MJO phase 8-1. This is also the case for the BoM, CNR-ISAC 

and HMCR models for MJO phase 2-3. This result may suggest that QBO-

MJO link is better captured when the model is initialized with well-organized 

MJO circulations. Note that a less systematic QBO-MJO prediction skill 

relationship in MJO phases 8-1 and 2-3 is not related to MJO amplitude. The 

initial MJO amplitudes in these MJO phases are robustly stronger during 

EQBO winters than during WQBO winters (not shown).  
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Figure 5.8. Same as Fig. 5.7 but for each MJO phase.  
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5.3.3. Limiting factors of MJO prediction skill 

What is the cause of different MJO prediction skill between the two 

QBO phases? We speculate that it may partly result from varying persistence 

of MJO. If the observed MJO is maintained only for two weeks, the 

theoretical limit of MJO prediction skill would be just two weeks. After two 

weeks, unorganized or random perturbations in the observation, which are not 

necessarily associated with MJO, would have small correlation with the 

predicted MJO anomalies. The fact that MJO is less organized and less 

persistent during WQBO winters (Son et al. 2017; Nishimoto and Yoden 2017; 

Hendon and Abhik 2018; Zhang and Zhang 2018) then implies that the 

theoretical limit of MJO prediction is lower in WQBO winters than in EQBO 

winters. 

Figure 5.9 presents U850 and OLR anomalies for MJO phase 4-5 in 

the observations (contour) and at forecast day 1 from the ECMWF model 

(shading). The model variables that are statistically significant at 95% 

confidence level are dotted. A Student’s t test is used here. As in Fig. 5.5, the 

previous 120-day averaged observation is subtracted from the anomalies to 

obtain the MJO-related subseasonal circulation patterns. MJO convection, 

with negative OLR anomalies over the Maritime Continents and positive 

OLR anomalies over the central Pacific, is well organized during EQBO 

winters (Fig. 5.9c). Consistent with this, lower-level westerlies over the 

Indian Ocean and easterlies over the Pacific Ocean are well defined (Fig. 
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5.9a). A similar circulation pattern appears during WQBO winters (Fig. 5.9b). 

However, lower-level westerlies over the Indian Ocean and the easterlies over 

the central Pacific exhibit a large asymmetry. The resulting low-level 

convergence is weak and spatially quite broad. 

 

 

 

 
Figure 5.9. (Top) U850 and (bottom) OLR composite anomalies for MJO 

phase 4-5 during (left) EQBO and (right) WQBO winters at forecast day 1 

from ECMWF model. The anomalies from reforecasts are shaded and that 

from the observations are contoured. Model anomalies, which are statistically 

significant at 95% confidence level, are dotted in gray. A Student’s t test is 

used for significance test. The contour intervals of U850 and OLR anomalies 

are 1 m s-1 and 6 W m-2, respectively. The sample size is denoted in the top-

left corner.  
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Figures 5.10a,b present the longitude-time evolution of OLR and 

U850 anomalies beginning from MJO phase 4-5. All variables are averaged 

over 15°S-5°N and a five-day moving average is applied. It is evident that 

initial circulation and convection anomalies are strong and well organized 

during EQBO winters (Fig. 5.10a; see also Fig. 5.9). More importantly, the 

MJO persists quite long. Especially, U850 anomalies are statistically 

significant up to four weeks, propagating all the way to the date line (see 

dotted values in Fig. 5.10a). However, during WQBO winters, significant 

U850 anomalies are obtained for only two weeks (Fig. 5.10b). After two 

weeks, no organized convection or circulation anomalies are observed. This 

result implies that the theoretical limit of MJO prediction skill would be about 

four weeks in EQBO winters but only about two weeks in WQBO winters. 

Figures 5.10c,d are same as Figs. 5.10a,b but for the ECMWF 

forecast. During EQBO winters, the model predicts both U850 (contour) and 

OLR anomalies (shading) remarkably well (compare Figs. 5.10a and 5.10c) 

although overall amplitude and eastward propagation speed are somewhat 

underestimated (see also Fig. 5.4). The model, however, exaggerates MJO 

propagation during WQBO winters (Fig. 5.10d), failing to reproduce the 

breakdown of MJO within two weeks. Instead, the predicted MJO, although 

weak, keeps propagating eastward as in EQBO winters. This result indicates 

that relatively low MJO prediction skill in WQBO winters is caused by an 

early breakdown of MJO that is not well predicted by the model. 
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Figure 5.10. Longitude-time evolution of (top) NOAA OLR and ERA-

Interim U850 anomalies and (bottom) ECMWF OLR and U850 anomalies 

averaged over 15°S-5°N for MJO phase 4-5 during (left) EQBO and (right) 

WQBO winters. Shading interval of OLR anomalies is 3 W m-2 and contour 

interval of U850 anomalies is 0.5 m s-1. U850 anomalies, which are 

statistically significant at 95% confidence level, are dotted in gray. A 

Student’s t test is used for significance test. The sample size is denoted in the 

top-left corner, and MJO prediction skill for BCOR=0.5 is indicated in the 

parenthesis. 
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The MJO evolutions are further examined for the BoM, CMA, and 

JMA models (Fig. 5.11). These models show large differences in MJO 

prediction skill for MJO phase 4-5 (Fig. 5.8). In all models, U850 anomalies 

are well maintained for about 30 days during EQBO winters (Figs. 5.11a,c,e). 

In the BoM model which is the second best model in terms of BCOR skill, 

not only U850 but also OLR anomalies are well captured up to four weeks. 

These three models, however, predict somewhat different MJOs 

during WQBO winters. Unlike the ECMWF model, the BoM model shows a 

similar spatio-temporal structure to the observation with weakened eastward 

propagating lower-level wind and convection anomalies (Fig. 5.11b). 

However, it still exaggerates MJO propagation. Although the observed MJO 

is disorganized in two weeks (Fig. 5.10b), the predicted MJO is maintained 

up to three weeks. The CMA and JMA models also successfully captured the 

MJO anomalies in the first week. These anomalies are rapidly disorganized 

in the CMA model in the second week (Fig. 5.11d). In contrast, those in the 

JMA model are maintained for almost four weeks over the Indian Ocean 

without eastward propagation. These diverse MJO predictions, which are 

particularly evident when MJO becomes disorganized in the observations, are 

responsible for relatively low MJO prediction skills during WQBO winters. 
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Figure 5.11. Same as Figs. 5.10c,d but for (top) BoM, (middle) CMA, and 

(bottom) JMA models. 
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Chapter 6. MJO prediction skill in the S2S prediction 

models: for improving the simulation of the QBO-

MJO connection 

This chapter is organized as follows. In Sect. 6.1, observations, S2S 

model datasets, and the metrics of MJO forecast skill are introduced. The 

MJO prediction skill in the S2S models and its characteristics are then 

described in Sect. 6.2. The possible cause(s) for the limited MJO prediction 

skill is discussed in Sect. 6.3. 

 

6.1. Data and methods 

6.1.1. Data 

Daily averaged upper (200-hPa) and lower (850-hPa) tropospheric 

zonal winds for the period of 1980-2013 are obtained from the ERA-interim 

reanalysis data (Dee et al. 2011) for the model evaluation. The daily NOAA 

OLR data (Liebmann and Smith 1996) and precipitation product from the 

Global Precipitation Climatology Project (GPCP; Huffman et al. 2001) are 

used to characterize the tropical convective activity for the periods of 1980-

2013 and 1996-2013, respectively. The moisture distribution is further 

quantified with column-integrated water vapor data that is derived from the 

combined precipitable water products from the Special Sensor Microwave 

Imager (SSM/I, Wentz et al. 2012) and the Tropical Rainfall Measurement 

Mission Microwave Imager (TMI, Hou et al. 2001) over 1998-2013.  
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The S2S data used in Chap. 6 are almost same with the datasets used 

in Chap. 5 (Table 5.1). Unless otherwise specified, all analyses are performed 

with ensemble-mean forecasts during NDJFM for all available years. While 

this approach does not allow a fair comparison between the models, it enables 

us to assess the best estimate of each model’s prediction skill.  

 

6.1.2. Evaluation metrics 

Using the RMM indices, the observed and forecasted MJO amplitudes, 

𝐴𝑂 and 𝐴𝑀, and their co-variability, 𝐶𝑂𝑀, are defined as below: 

 𝐴𝑂(𝑡) = √𝑂1
2(𝑡) + 𝑂2

2(𝑡), (6.1) 

 𝐴𝑀(𝑡, 𝜏) = √𝑀1
2(𝑡, 𝜏) + 𝑀2

2(𝑡, 𝜏), (6.2) 

 𝐶𝑂𝑀(𝑡, 𝜏) = 𝑂1(𝑡)𝑀1(𝑡, 𝜏) + 𝑂2(𝑡)𝑀2(𝑡, 𝜏), (6.3) 

where 𝑂1(𝑡) and 𝑂2(𝑡) are the observed RMM1 and RMM2 indices at time t, 

and 𝑀1(𝑡, 𝜏) and 𝑀2(𝑡, 𝜏) are the respective reforecasts with the lead time of 

𝜏. Likewise, the observed and forecasted MJO phases in the RMM space, 𝜙𝑂 

and 𝜙𝑀, are defined as below: 

 𝜙𝑂(𝑡) = 𝑡𝑎𝑛−1 (
𝑂2(𝑡)

𝑂1(𝑡)
), (6.4) 

 𝜙𝑀(𝑡, 𝜏) = 𝑡𝑎𝑛−1 (
𝑀2(𝑡, 𝜏)

𝑀1(𝑡, 𝜏)
). (6.5) 
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Using these properties, several MJO skill metrics are calculated. One 

of the key metrics used in this study is the so-called bivariate anomaly 

correlation coefficient (BCOR) (e.g., Rashid et al. 2011; Same with Eq. 5.1): 

 BCOR(𝜏) =
∑ 𝐶𝑂𝑀

𝑁
𝑡=1 (𝑡, 𝜏)

√∑ 𝐴𝑂
2 (𝑡)𝑁

𝑡=1 √∑ 𝐴𝑀
2 (𝑡, 𝜏)𝑁

𝑡=1

, (6.6) 

where 𝑁 is the number of reforecasts. Following previous studies, the MJO 

prediction skill of each model is determined as the forecast lead time when 

BCOR becomes lower than 0.5 (e.g., Rashid et al. 2011). Since the choice of 

this threshold value is somewhat arbitrary, other threshold value, such as 0.7, 

is also considered in the sensitivity test (e.g., Table 6.1). 

In order to track the relative importance of MJO amplitude and phase 

errors to the total error, a bivariate mean squared error (BMSE) is defined in 

this study: 

 BMSE(𝜏) =
1

𝑁
∑[(𝑀1(𝑡, 𝜏) − 𝑂1(𝑡))

2
+ (𝑀2(𝑡, 𝜏) − 𝑂2(𝑡))

2
]

𝑁

𝑡=1

. (6.7) 

This metric is the same as the square of root mean squared error (RMSE) in 

the literature (e.g., Rashid et al. 2011). As RMSE < √2 is generally used to 

determine the prediction skill, BMSE < 2.0 is set as an upper limit of the 

reliable MJO prediction in this study. BMSE can be decomposed into its 

amplitude-error component, BMSEa, and phase-error component, BMSEp, 

as below: 

 BMSE(τ) = BMSEa(τ) + BMSEp(τ), (6.8) 
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where 

 BMSEa(τ) =
1

𝑁
∑[𝐴𝑀(𝑡, 𝜏) − 𝐴𝑂(𝑡)]2

𝑁

𝑡=1

, (6.9) 

 BMSEp(τ) =
1

𝑁
∑ 2𝐴𝑀(𝑡, 𝜏)

𝑁

𝑡=1

𝐴𝑂(𝑡){1 − 𝑐𝑜𝑠(𝜙𝑀(𝑡, 𝜏) − 𝜙𝑂(𝑡))}. (6.10) 

As shown below, the BMSEa is essentially the same as the mean-squared 

amplitude error (Eq. 6.13). Note that the BMSEp is not only determined by 

the MJO phase error but also weighted by the observed and forecasted MJO 

amplitudes. As the MJO amplitude decreases with forecast lead times, an 

increasing BMSEp, which is the case for all reforecasts, is primarily 

explained by the MJO phase error (not shown). Although this decomposition 

does not clearly separate MJO amplitude and phase errors, it still allows us 

qualitatively to attribute the total model errors into amplitude-dependent and 

phase-dependent ones. 

To understand the amplitude and phase errors more directly, other 

standard metrics of MJO amplitude and phase errors are also utilized. They 

include the mean amplitude error (AE̅̅̅̅ ) and mean phase error (PE̅̅̅̅ ). 

 AE̅̅̅̅ (τ) =
1

𝑁
∑[𝐴𝑀(𝑡, 𝜏) − 𝐴𝑂(𝑡)]

𝑁

𝑡=1

, (6.11) 

 PE̅̅̅̅ (τ) =
1

𝑁
∑[𝜙𝑀(𝑡, 𝜏) − 𝜙𝑂(𝑡)]

𝑁

𝑡=1

. (6.12) 
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PE̅̅̅̅  typically ranges from − 𝜋 2⁄  to 𝜋 2⁄ . In some cases, PE̅̅̅̅  can rapidly 

increase with forecast lead times, and eventually jump from 𝜋 2⁄  to − 𝜋 2⁄  

when the MJO amplitude is small (Rashid et al. 2011). To prevent such an 

artificial jump, PE̅̅̅̅  is evaluated in units of degrees from 0° to 360°, and 

subsequently converted into radian. 

Both AE̅̅̅̅  and PE̅̅̅̅  characterize the mean errors, rather than the absolute 

errors of individual reforecasts. If the model errors are positive in some cases 

but negative in others, the mean errors would become negligible. To prevent 

such cancellation and to quantify model error better, the mean-squared 

amplitude error ( AE2̅̅ ̅̅ ̅ ) and mean-squared phase error ( PE2̅̅ ̅̅ ̅ ) are also 

considered in this study. They are computed as below: 

 AE2̅̅ ̅̅ ̅(𝜏) =
1

𝑁
∑[𝐴𝑀(𝑡, 𝜏) − 𝐴𝑂(𝑡)]2

𝑁

𝑡=1

, (6.13) 

 PE2̅̅ ̅̅ ̅(𝜏) =
1

𝑁
∑[𝜙𝑀(𝑡, 𝜏) − 𝜙𝑂(𝑡)]2

𝑁

𝑡=1

. (6.14) 
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Figure 6.1. MJO prediction errors as a function of forecast lead times: (a) 

BCOR, (b) BMSE, (c) AE̅̅̅̅ , (d) PE̅̅̅̅ , (e) AE2̅̅ ̅̅ ̅, and (f) PE2̅̅ ̅̅ ̅. The MJO cases with 

an initial amplitude greater than 1.0 are used. The model name and its 

reforecast size are indicated at the bottom. 
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6.2. MJO prediction skill 

Figure 6.1a presents the MJO prediction skill of all models in terms 

of the BCOR metric. Reforecasts with initial MJO amplitude smaller than one 

are excluded to ensure that the MJO signal is robust at least in the initial 

conditions. BCOR consistently decreases with forecast lead times and crosses 

the threshold of 0.5 in 12-36 days, which is consistent with the result of Vitart 

(2017). Among the 10 S2S models, the ECMWF model shows a relatively 

high prediction skill of 36 days, with the slowest decrease of BCOR. By 

contrast, the HMCR model shows a relatively rapid decrease of BCOR in the 

first two weeks which drops below 0.5 at the forecast lead time of 12 days. 

Except for these two models, others are clustered together in the first two-

week forecasts. 

The overall MJO prediction skill, shown in Fig. 6.1a, is summarized 

in Table 6.1 (see the first column). The multi-model mean MJO prediction 

skill is approximately three weeks. Even with a higher threshold value (e.g., 

BCOR > 0.7), the MJO is qualitatively well predicted for up to approximately 

two weeks (the numbers in parentheses). Quantitatively, the BoM, ECMWF, 

and UKMO models show relatively higher BCOR skills with retaining BCOR 

greater than 0.5 (0.7) up to more than 25 (15) days of forecast lead time. As 

discussed later, these three models also exhibit relatively higher BMSE skills, 

ranging from 28 to 40 days (see the third numbers in the first column).  
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Table 6.1. MJO prediction skills for all reforecasts (All) and the reforecasts 

initialized in different MJO phases. The MJO events with the initial MJO 

amplitude is greater than 1.0 are used. The first number, followed by 

parenthesis, denotes the BCOR skill. The number in parenthesis is also the 

BCOR skill, but based on a correlation coefficient greater than 0.7 instead of 

0.5. The second number indicates the BMSE skill. The multi-model mean 

(MMM) value and one standard deviation are also shown at the bottom. 

 All Phase 8-1 Phase 2-3 Phase 4-5 Phase 6-7 

BoM 27 (15), 28 31 (16), 28 24 (15), 28 28 (14), 28 25 (14), 31 

CMA 18 (12), 20 15 (9), 17 18 (11), 19 18 (11), 17 21 (13), 19 

CNR-ISAC 15 (11), 13 14 (10), 13 17 (12), 14 14 (11), 13 15 (11), 13 

CNRM 20 (14), 18 21 (10), 17 20 (13), 16 18 (12), 18 21 (17), 19 

ECCC 17 (12), 19 19 (13), 20 16 (11), 22 15 (12), 15 17 (13), 18 

ECMWF 36 (23), 40 38 (20), 40 40 (26), 41 36 (25), 39 31 (22), 37 

HMCR 12 (6), 11 13 (5), 13 13, (7), 10 9 (5), 5 15 (7), 19 

JMA 17 (12), 18 18 (12), 18 17 (11), 15 15 (11), 17 18 (13), 19 

NCEP 24 (12), 17 30 (12), 18 18 (14), 19 31 (13), 15 23 (12), 15 

UKMO 25 (16), 31 22 (14), 24 22 (17), 27 27 (15), 30 28 (19), 32 

MMM 

21.1±7.0 

(13.3±4.3), 

21.5±8.9 

22.1±8.3 

(12.1±4.1), 

20.8±8.1 

20.5±7.5 

(13.7±5.1), 

21.1±9.0 

21.1±8.8 

(12.9±5.0), 

19.7±9.8 

21.4±5.4 

(14.1±4.3), 

22.2±8.1 
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It is worth mentioning that the above skill estimates, 12-36 days, are 

slightly different from that reported by Vitart (2017) who showed that the 

MJO prediction skill of the S2S models ranges from 13 to 32 days. Each 

model’s performance in this result is also slightly different from that in Vitart 

(2017)’s result. For instance, the CNRM model is the second best in Vitart 

(2017) (see their Fig. 1b) but only the fifth best in this study (Fig. 6.1a and 

Table 6.1) although the model rank is not meaningful in this study. This 

difference is likely caused by multiple factors: the different sampling strategy, 

the different reforecast periods used, and the slightly different ways of 

defining the model climatology. In regarding the sampling strategy, unlike 

Vitart (2017) who used all reforecasts initialized, we exclude reforecasts that 

contains weak MJO (𝐴𝑂(1) < 1) in their initial conditions. Also, we extend 

the initial months considered in Vitart (2017) (December-March) by 

including November. The constraint of minimum MJO amplitude and the 

inclusion of November make quantitatively different results (not shown). As 

mentioned in Sect. 6.1, the present study considers the entire reforecast period 

available instead of focusing on the common reforecast period (1999-2010). 

The quantitative results are somewhat sensitive to the choice of reforecast 

period (not shown). Due to the difference in the reforecast period, the model 

climatology is also slightly different.  
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Many previous studies have shown that MJO prediction skill is 

dependent on the initial MJO amplitude. In general, models are more skillful 

when the initial MJO amplitude is stronger (Lin et al. 2008; Rashid et al. 2011; 

Kim et al. 2014; Neena et al. 2014; Xiang et al. 2015). This relationship is 

evaluated using the S2S models in Fig. 6.2. Following Kim et al. (2016), for 

each model, all reforecasts are grouped into three categories: i.e., strong 

(𝐴𝑂(1) ≥ 1.5), moderate (0.7 ≤ 𝐴𝑂(1) < 1.5), and weak (𝐴𝑂(1) < 0.7) 

MJO amplitude in the initial conditions. Note that Fig. 6.2 is the only case 

where we analyze the reforecasts with initial MJO amplitudes weaker than 1. 

On average, the S2S models show 21.7±7.2, 19.2±7.6, and 15.8±7.5 days of 

prediction skills for initially strong, moderate and weak MJO events, 

respectively (Fig. 6.2), confirming the previous findings (Rashid et al. 2011; 

Neena et al. 2014; Xiang et al. 2015). It is noteworthy that the CNR-ISAC 

and UKMO models do not show strong sensitivity of their MJO prediction 

skill to initial MJO amplitude. 

Figure 6.2 also reveals a large difference in the BCORs among the 

three groups, especially at early period in the reforecast. That is, the BCORs 

of the initially weak MJO events are considerably lower than those of the 

initially moderate and strong MJO events. For the initially moderate and 

strong MJO events, the BCORs also tend to decay rather slowly with forecast 

lead times than that of the initially weak MJO events. Due to these differences, 

the sensitivity of MJO prediction skill to initial MJO amplitude becomes 
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larger if a higher threshold value of BCOR is used. For example, when MJO 

prediction skill is evaluated with BCOR > 0.7, the S2S models show MJO 

prediction skills of 14.3±4.4, 9.7±4.8, and 7.5±6.3 days for the initially strong, 

moderate, and weak MJO events, respectively. For weak MJO events, more 

than half of the models (i.e., BoM, CMA, CNR-ISAC, CNRM, HMCR, and 

NCEP models) either exhibit only a one-day prediction skill or none with 

BCOR > 0.8. This result again confirms that models predict the MJO better 

when initial MJO amplitude is strong. 
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Figure 6.2. BCOR of each model as a function of forecast lead times for all 

reforecasts (A; black), and those initialized during strong (S; red), medium 

(M; orange), and weak MJO events (W; green). See the text for the definition 

of strong to weak MJO events. The number of reforecasts used in each 

category and their prediction skill are indicated at the bottom-left corner. Note 

that for each model the black lines are identical to the colored lines in Fig. 

6.1a. 
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Several studies have documented that MJO prediction skill is sensitive 

to the initial MJO phase. In particular, models show relatively lower skill 

when initial MJO phase is 2 or 3, indicating that the models have difficulty in 

representing the MJO’s propagation across the Maritime Continents (Vitart 

and Molteni 2010; Wang et al. 2014). This relatively poor MJO prediction 

skill with initial MJO phase 2-3 is often referred to as the Maritime Continent 

prediction barrier. However, more recent studies have reported that in the 

latest operational models the Maritime Continent prediction barrier is not as 

pronounced as in the old models (Kim et al. 2014; Neena et al. 2014; Xiang 

et al. 2015). Therefore, it is of a great interest to see whether the Maritime 

Continent prediction barrier is present in the S2S models.  

Figure 6.3 illustrates the sensitivity of MJO prediction skill to initial 

MJO phase. Most models show some sensitivity to initial MJO phase, though 

the sensitivity differs among the models. In other words, the S2S models show 

no systematic sensitivity of their MJO prediction skill to initial MJO phase. 

These results also suggest that the Maritime Continent prediction barrier is 

not a common symptom of operational models. The only model that shows a 

hint of the Maritime Continent prediction barrier is the NCEP model (Fig. 

6.3i), the descendant of the model used in Wang et al. (2014). In terms of 

BCOR skill, MJO prediction skills of the NCEP model are 30, 18, 31, and 23 

days for initial MJO phases 8-1, 2-3, 4-5, and 6-7, respectively (Table 6.1). 

On the other hand, the ECMWF model shows the highest prediction skill in 
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initial MJO phase 2-3 (38, 40, 36, and 31 days of the MJO prediction skills in 

each initial MJO phase group).  
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Figure 6.3. Same as Fig. 6.2 but for the reforecasts initialized in different 

MJO phases. 
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Figure 6.1b presents the BMSE time series of each model. Not 

surprisingly, BMSE steadily increases with forecast lead times and crosses 

the threshold value (2.0, gray dotted line in Fig. 6.1b) on forecast lead times 

of about 11-40 days. When averaged across all models, the MJO prediction 

skill evaluated with BMSE < 2.0 is approximately three weeks (see the third 

numbers in the first column of Table 6.1). Among the 10 S2S models, the 

BoM, ECMWF, and UKMO models show relatively higher BMSE skills, as 

for the BCOR skills (Table 6.1). 

The advantage of the BMSE metric over the BCOR metric is that it 

can be decomposed into the amplitude-error-dependent component, BMSEa, 

and the phase-error-dependent component, BMSEp, as described in Sect. 6.1. 

In Fig. 6.4, the time evolutions of BMSEa (red) and BMSEp (blue) are 

displayed for each model. Overall, BMSEp is larger than BMSEa during the 

40-day period considered, suggesting that MJO phase error dominates the 

total error. Although BMSEa is initially larger than BMSEp in some models 

(i.e., ECCC, HMCR, and JMA models), the latter becomes dominant after 

two weeks (Figs. 6.4e, g, and h). In the CNR-ISAC, CNRM, and NCEP 

models, BMSEp is even twice as large as BMSEa (Figs. 6.4c, d, and i). Here, 

one notable exception is the ECMWF model (Fig. 6.4f), which shows BMSEp 

that is comparable to BMSEa during the 40-day period. Note that the results 

presented in Fig. 6.4 are not significantly affected by initial MJO amplitude 

or phase (not shown). These results suggest that BMSEp plays a more 
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important role than BMSEa in the growth of BMSE and MJO prediction skill. 

The results also imply that the improved MJO prediction in the S2S models 

can be effectively achieved by reducing the source(s) of MJO phase errors. 

As discussed later, such errors are partly associated with the model mean 

biases in moisture distribution. 
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Figure 6.4. BMSE (black), BMSEa (red), and BMSEp (blue) of each model 

as a function of forecast lead times. Note that BMSE and BMSEa, 

respectively, are identical to BMSE and AE2̅̅ ̅̅ ̅ shown in Figs. 6.1b and 6.1e. 
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Figures 6.1c-f display AE̅̅̅̅ , PE̅̅̅̅ , AE̅̅̅̅ 2 and PE̅̅̅̅ 2  obtained using all 

available reforecasts for each model. AE̅̅̅̅ , and  PE̅̅̅̅  show negative values for 

all models throughout the 40-day period considered, indicating that most S2S 

models underestimate MJO amplitude and phase speed (Figs. 6.1c,d). Their 

temporal evolutions of AE̅̅̅̅ s differ, although all models have negative AE̅̅̅̅ s 

(Fig. 6.1c). They can be largely grouped into four categories in terms of the 

evolution of AE̅̅̅̅ . The group of the CNR-ISAC, CNRM, and NCEP models 

has almost negligible AE̅̅̅̅  throughout the forecast. In another group of three 

models, i.e., the ECCC, HMCR, and JMA models, AE̅̅̅̅  grows rapidly with a 

minus sign during the first week and remains at approximately -0.7 afterward. 

The rapid development of AE̅̅̅̅  is quite systematic especially in the latter two 

models. The third group, consisting of the CMA, ECMWF, and UKMO 

models, shows an almost linear increase of negative AE̅̅̅̅  with forecast lead 

times. The last group is the BoM model. This model does not belong to any 

of above three categories. Its AE̅̅̅̅  is substantially high at forecast day 1 (about 

-0.30) as in the HMCR model. However, its temporal evolution is markedly 

different from any of the other models. The AE̅̅̅̅  of the BoM model decreases 

with forecast lead times until day 10 and then increases afterward consistent 

with Fig. 6.4c of Rashid et al. (2011). This nonlinear evolution is mainly due 

to the positive and negative errors in the reforecasts cancelling each other out, 

as it does not appear in AE̅̅̅̅ 2 (Fig. 6.1e). 
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Focusing on the absolute magnitude of the errors, the mean-squared 

amplitude errors are illustrated in Fig. 6.1e. Unlike AE̅̅̅̅ , AE̅̅̅̅ 2 quasi-linearly 

increases with forecast lead times. Furthermore, its inter-model spread is 

smaller than that in AE̅̅̅̅ , especially at later forecast lead times. As such, the 

models cannot be simply divided into four groups. Some models, such as the 

JMA and HMCR models, show a relatively rapid increase at early forecast 

lead times, whereas others show a quasi-linear increase. Although not 

distinctive, the ECMWF model exhibits the minimum AE̅̅̅̅ 2 until forecast day 

25. 

Figure 6.1d presents the time series of PE̅̅̅̅  for each model. Unlike AE̅̅̅̅  

which shows a large inter-model spread even at day one with respect to the 

maximum spread around day 20-30,  PE̅̅̅̅  shows a relatively small inter-model 

spread, especially during the first five days.  PE̅̅̅̅ s in the CNR-ISAC and 

UKMO models are near zero, whereas the maximum  PE̅̅̅̅ s of the CNRM and 

NCEP models are about −3𝜋 16⁄ . None of the S2S models show  PE̅̅̅̅ s smaller 

than −𝜋 4⁄  (about one phase in the RMM space) throughout the forecast. 

Figure 6.1f illustrates the PE̅̅̅̅ 2 , which show a steady increase with 

forecast lead times. Unlike PE̅̅̅̅ , the square of the phase error tends to increase 

linearly. Although the inter-model spread of PE̅̅̅̅  becomes small at forecast 

day 40, the spread of PE̅̅̅̅ 2 increases continuously with forecast lead times. In 

contrast to AE̅̅̅̅ 2, PE̅̅̅̅ 2 does not saturate with forecast lead times, suggesting 

that the overall MJO prediction skill could be more sensitive to the MJO phase 
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error than to the amplitude error at longer forecast lead times. Note that the 

ECMWF model has the smallest PE̅̅̅̅ 2 throughout the forecast, whereas the 

HMCR model has a large PE̅̅̅̅ 2 during the first two weeks. These two models 

have the best and worst BCOR and BMSE skills (Table 6.1; see also Figs. 

6.1a,b). 

Figure 6.5 summarizes relationships among the MJO prediction skill 

scores in the two-week (squares) and four-week forecasts (circles). Here, the 

two-week and four-week forecasts are defined by averaging values over 

forecast lead days 8-14 and 22-28, respectively. Not surprisingly, the BCOR 

and BMSE values are highly correlated with each other (Fig. 6.5a). The 

correlation coefficient between the two in the two-week forecast (𝑟2) is -0.97. 

This one-to-one relationship indicates that the BMSE metric is comparable to 

the BCOR metric. Their ratio, that crosses BCOR=0.5 (dashed horizontal line) 

and BMSE=2.0 (dashed vertical line), further suggests that the BMSE skill 

can replace the BCOR skill. In fact, as summarized in Table 6.1 (see the first 

column), the BMSE skills are quantitatively similar to the BCOR skills in 

most models (approximately 21 days in MMM prediction skills). Although 

these two skill metrics tend to diverge at longer lead times, they are still 

significantly correlated at the four-week forecast (𝑟4=-0.8). 
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Figure 6.5. Relationships (a) between BMSE and BCOR, (b) PE̅̅̅̅  and AE̅̅̅̅  (c) 

PE2̅̅ ̅̅ ̅ and AE2̅̅ ̅̅ ̅, (d) AE2̅̅ ̅̅ ̅ and BCOR, and (e) PE2̅̅ ̅̅ ̅ and BCOR at the two-week 

forecasts (closed squares) and four-week forecasts (opened circles). Their 

correlation coefficients, r2 and r4, are also shown at the bottom of each panel. 

The correlation coefficients that are statistically significant at the 95% 

confidence level are denoted by an asterisk. 
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The two representative mean error metrics, i.e., AE̅̅̅̅  and PE̅̅̅̅ , are not 

closely related with each other (Fig. 6.5b). This result is again due to 

cancellations between large positive and negative errors. AE2̅̅ ̅̅ ̅ and PE2̅̅ ̅̅ ̅ are 

significantly correlated, even in the four-week forecast (Fig. 6.5c). Models 

with a smaller PE2̅̅ ̅̅ ̅ have a smaller AE2̅̅ ̅̅ ̅. Their correlation coefficient across 

all 10 models is 0.91 and 0.87 at the two-week and four-week forecast, 

respectively, suggesting that the amplitude and phase errors are inherently 

related with each other.  

The relationship of AE2̅̅ ̅̅ ̅ and PE2̅̅ ̅̅ ̅ with the BCOR is evaluated in Figs. 

6.5d and e, respectively. As anticipated from Figs. 6.5a and c, both AE2̅̅ ̅̅ ̅ and 

PE2̅̅ ̅̅ ̅ are highly correlated with BCOR with a correlation coefficient greater 

than -0.94 in the two-week forecast and -0.87 in the four-week forecast. 

Between them, PE2̅̅ ̅̅ ̅ shows a higher correlation with BCOR than AE2̅̅ ̅̅ ̅. Their 

correlation coefficient remains -0.98 even in the four-week forecast. This 

result again suggests that the MJO prediction skill in the S2S models is more 

sensitive to the phase error than the amplitude error, especially at longer 

forecast lead times (see also Fig. 6.4). 
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6.3. Mean-state biases and their impact on MJO prediction skill 

There is a growing body of thought that considers the MJO as a 

‘‘moisture mode’’ on an equatorial beta plane (Neelin and Yu 1994; Raymond 

2001; Sobel and Maloney 2012, 2013; Adames and Kim 2016; Fuchs and 

Raymond 2017). Under this framework, which is based on the tight coupling 

between moisture and convection (e.g., Bretherton et al. 2004) and the 

smallness of buoyancy perturbations in the tropics (Charney 1963; Sobel et 

al. 2001), the evolution of large-scale, low-frequency convective anomalies 

associated with the MJO is explained by those of moisture anomalies. The 

moisture mode theory has provided a framework for studying and interpreting 

the column-integrated moisture budget of the MJO in observations and in 

models. The results of the budget studies collectively indicate that horizontal 

moisture advection, especially the advection of the mean moisture by the 

MJO perturbation wind, is the key process that moistens ahead (east) and 

dries behind (west) the region of enhanced moisture anomalies, controlling 

the MJO propagation (Kiranmayi and Maloney 2011; Andersen and Kuang 

2012; Adames and Wallace 2015; Wang et al. 2017). 

These results suggest that, to accurately forecast the MJO, the 

operational models may need to represent a realistic horizontal distribution of 

the mean moisture. Gonzalez and Jiang (2017) showed that GCMs’ MJO 

simulation performances have a close relationship with their ability to 

represent accurately the basic state moisture distribution over the Indo-Pacific 
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warm pool. Kim (2017) examined the column-integrated moist static energy 

(MSE) budget of the MJO in the European Center for Medium-Range 

Weather Forecasts (ECMWF) reforecast dataset and showed that a dry bias in 

the mean moisture distribution caused a weakening of horizontal moisture 

advection, resulting in an early disruption of the MJO in the reforecasts.  

The cloud–longwave radiation (CLW) feedback process has also been 

suggested as the key process for the MJO’s maintenance (Kiranmayi and 

Maloney 2011; Andersen and Kuang 2012; Adames and Kim 2016). The 

increase of moisture and clouds during the active phase of the MJO reduces 

the amount of longwave cooling, causing an anomalous longwave warming 

in the troposphere. This anomalous warming is balanced by upward motion, 

which moistens the column by vertical advection of moisture (Chikira 2014; 

Janiga and Zhang 2016; Wolding et al. 2016). Through this moistening, the 

increase of cloud amounts that is caused by the enhanced convection provides 

a favorable condition for further development of the anomalous convection. 

 

6.3.1. Mean moisture field 

As mentioned above, previous studies of column-integrated moisture 

or moist static energy have shown that the CLW feedbacks and horizontal 

distribution of the mean state moisture are key to the MJO maintenance and 

propagation of the observed MJO. In this section, we investigate the 

relationship between the MJO prediction skills in the S2S models and model 
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biases in the basic-state moisture distribution and CLW feedbacks. Among 

the 10 S2S models, only seven models provide column-integrated wave vapor 

as indicated in Table 5.1 (indicated by pound). Therefore, all analyses below 

are performed with these seven models. 

Figure 6.6a shows the NDJFM mean CWV from the satellite 

observations, described in Sect. 6.1. The observed CWV distribution exhibits 

a distinct maximum in the Indo-Pacific warm pool region, featuring large-

scale zonal and meridional gradients of CWV across the Indo-Pacific warm 

pool region. The CWV maximum over the warm pool area is typically 

underestimated in the S2S models (Figs. 6.6b-h). Each model’s CWV, 

averaged over the first 30-day forecast, exhibits a significant dry bias around 

the Maritime Continent. In the subtropics (poleward of 15°S/N), most models 

show either dry biases that are weaker than equatorial dry biases (e.g., CMA, 

ECMWF, JMA, and NCEP models) or wet biases (e.g., BoM, CNRM and 

ECCC models). This pattern of moisture biases suggests that both zonal and 

meridional gradients of the background moisture are underestimated in most 

models. 
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Figure 6.6. (a) Wintertime (NDJFM) climatology of CWV, derived from 

satellite observations, and (b-h) the model mean biases averaged over forecast 

lead times of 1-30 days. The model biases that are -20, -10, 10, and 20% of 

the observations are contoured in each panel.  
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If all other conditions (e.g., large-scale circulations) are equal, a 

weaker horizontal moisture gradient would damp horizontal moisture 

advection associated with the MJO. Because it is the horizontal moisture 

advection that dominates the moistening and drying tendencies to the east and 

west of the enhanced MJO convections, respectively, and thereby pushing the 

MJO convection anomalies to move eastward, a weaker horizontal advection 

would slow down the eastward propagation of the MJO. This line of 

consideration leads us to hypothesize that the models with a smaller moisture-

gradient bias may have a better MJO prediction skill.  

The above hypothesis is qualitatively tested by examining the 

relationship between MJO prediction skill and moisture-gradient bias among 

the S2S models (Fig. 6.7). In Fig. 6.7, the reforecasts initialized in initial MJO 

phase 2-3 (Figs. 6.7a, c) and 6-7 (Figs. 6.7b, d) with a minimum amplitude of 

1.0 are used. For the reforecasts with initial MJO phase 2-3, a scalar metric 

of zonal moisture gradient is computed by taking the difference between the 

area-averaged CWV in the western Maritime Continent (100°E-120°E, 10°S-

10°N) and that of the eastern Indian Ocean (60°E-80°E, 10°S-10°N). The 

meridional moisture gradient is defined by the difference between the area-

averaged CWV over the equatorial (60°E-120°E, 5°S-5°N) and subtropical 

(60°E-120°E, 25°S-20°S and 60°E-120°E, 15°N-20°N) regions. For the 

reforecasts with initial MJO phase 6-7, slightly different domains are used 

when computing the zonal and meridional moisture gradients. Specifically, 
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the zonal gradient is defined by taking the difference between the central 

Pacific (170°E-190°E, 10°S-10°N) and the Maritime Continent (110°E-

130°E, 10°S-10°N), whereas the meridional gradient is quantified by the 

difference between the equatorial (110°E-170°E, 10°S-5°S) and subtropical 

(110°E-170°E, 35°S-30°S and 110°E-170°E, 10°N-15°N) regions. 

It is evident from Fig. 6.7 that the BCOR skills are closely related with 

the horizontal moisture gradient biases. The ECMWF model, which shows 

the highest prediction skill of MJO phase 2-3 (40-day BCOR skill; Table 6.1) 

has the smallest moisture gradient biases, whereas the JMA model with a 

prediction skill of only 17 days (Table 6.1), shows the largest moisture 

gradient biases. Note that the meridional moisture gradients have a higher 

correlation with MJO prediction skill than zonal moisture gradients (compare 

correlation coefficients in Fig. 6.7a and those in Fig. 6.7c). This result partly 

explains the different MJO prediction skills among the BoM, CMA, CNRM, 

and ECCC models which have similar zonal moisture gradient biases. As 

shown in Figs. 6.7b, d, essentially the same result is found for MJO phase 6-

7. One difference from MJO phase 2-3 is that the BCOR skills are more 

closely related with the zonal moisture gradient biases than the meridional 

moisture gradient biases (compare Figs. 6.7b, d). These results presented in 

Fig. 6.7 are only weakly sensitive to the domain used to calculate the zonal 

and meridional moisture gradients. 
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Figure 6.7. Relationship between the model mean biases in moisture gradient 

and the BCOR skills in the two-week forecast: (a, b) the zonal-moisture-

gradient biases versus BCORs for the reforecasts initialized in MJO phase 2-

3 and MJO phase 6-7, and (c-d) same with (a-b) but for the meridional-

moisture-gradient biases. See the text for the definition of zonal and 

meridional moisture gradients. The correlation coefficient, r2, that is 

statistically significant at the 95% confidence level, is denoted by an asterisk. 

The regression line is also added. The gray r2 and the gray regression line 

indicate the analysis result without the ECMWF model. 
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The above analyses are repeated for the four-week forecasts (not 

shown). As anticipated, the linear relationship becomes weaker. For instance, 

the correlation of BCOR skills to the zonal moisture gradient biases is 

lowered from 0.76 in the two-week forecasts (Fig. 6.7a) to 0.57 in the four-

week forecasts. None of the four-week correlations are statistically significant. 

It is however important to note that a qualitative similar relationship still holds 

even in the four-week forecasts. It is worthwhile to note that the correlation 

coefficients become lower when the ECMWF model is excluded (see gray 

lines in Figs. 6.7 and 6.9). This suggests that a larger number of models would 

be useful to better understand the factors that influence MJO prediction skills 

in operational models.  

 

6.3.2. Cloud-longwave radiation feedback 

Next, we examine the relationship between MJO prediction skill and 

model biases in the CLW feedbacks. The strength of the observed CLW 

feedbacks is presented in Fig. 6.8a. Here, the CLW feedbacks are quantified 

by regressing OLR anomalies against precipitation anomalies (both in unit of 

W m-2) and then multiplying -1 to the resulting regression coefficients (Lin 

and Mapes 2004). To isolate the MJO-related feedbacks, both OLR and 

precipitation anomalies are obtained by subtracting the daily climatology and 

the mean of 120-day segment that ends on the day of interest. The resulting 
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values (Fig. 6.8a) indicate the ratio of anomalous longwave heating rate to 

anomalous condensational heating rate in the column. 

Figures 6.8b-h show that the S2S models have a wide spread in their 

representation of the CLW feedbacks, possibly suggesting an important role 

of physical parameterizations (e.g., cloud microphysics, radiation). Although 

the bias patterns differ substantially among the models, most models exhibit 

negative biases in the CLW feedbacks over the Indo-Pacific warm pool region 

(60°E -180°E, 15°S-15°N). An exception is the ECMWF model that shows 

somewhat stronger CLW feedbacks over the Indian Ocean than their 

observational counterparts. 

Figure 6.9 shows that MJO prediction skill is tightly linked to the 

CLW feedback bias. Here the CLW feedback bias is averaged over the Indo-

Pacific warm pool region by only considering the oceanic grid points. 

Consistent with Fig. 6.7, only the two-week forecasts, initialized in MJO 

phase 2-3 or 6-7, are considered. Although not shown, the overall results are 

not sensitive to the MJO phase. When all MJO events are considered, the 

correlation coefficient between the MJO prediction skills and CLW feedback 

biases becomes slightly larger (0.85 for BCOR in Fig. 6.9a). 

The above results suggest that the MJO prediction skills in the S2S 

models are closely related with model biases in the mean state moisture 

distribution and in the CLW feedbacks. Here it should be stated that the 

moisture gradient and CLW biases are not independent with each other. They 
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are physically related through precipitation biases in the Maritime Continent. 

In fact, the correlation of the zonal moisture gradient biases to the CLW biases 

is 0.53 for MJO phase 2-3 and -0.78 for MJO phase 6-7. This suggests that 

the moisture gradient and CLW biases mutually, not independently, influence 

on the MJO prediction errors. 

 

 

 

Figure 6.8. (a) Wintertime (NDJFM) average of the CLW feedbacks, and (b-

h) the model biases averaged over forecast lead time of 1-30 days. The model 

biases that are -60, -30, 30, and 30% of the observations are contoured in each 

panel.  
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Figure 6.9. Same with Fig. 6.7, but for the relationship between the model 

biases in the CLW feedbacks and the BCOR skills in the two-week forecast 

(a) for the reforecasts initialized in MJO phase 2-3 and (b) in MJO phase 6-7. 

See the text for the definition of CLW feedback biases. 
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Chapter 7. Summary and discussions 

In this thesis, the QBO impacts on the MJO are examined. Figure 7.1 

summarizes the key results. Observational study presents the boreal winter 

MJO is systematically intensified during EQBO (Chap. 2). These QBO-MJO 

relationship results in the enhancement of the MJO-induced teleconnection 

during EQBO winters. Due to the short analysis period of the observation, 

various model data are used to evaluate and understand the QBO-MJO 

connection. Among current climate models, only one model simulates a weak 

QBO-MJO connection (Chap. 3). A weaker MJO activity during EQBO 

winters is presented with partly reproducing the QBO-induced less stable 

upper-troposphere and lower stratosphere. In the dynamical core model, it is 

found that the zonal wind QBO can dynamically change the MJO-related 

vertical structure, forming a more appropriate structure for developing the 

MJO (Chap. 4). In S2S models, all models capture the QBO-MJO connection, 

resulting in a higher MJO prediction skill during EQBO winters (Chap. 5). 

Above model outputs, however, still show a weaker relationship than the 

observation. To better simulate the QBO-MJO connection at least in the S2S 

models, it is found that the improvement of the mean moisture field biases 

and cloud-radiation feedback biases are important (Chap. 6).  
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Figure 7.1. Summary of this thesis 

 

 

 

 

For more detail, in the observational analysis (Chap. 2), before 

understanding the QBO-MJO coupling, the relative importance of ENSO and 

QBO on the intraseasonal variation of large-scale tropical convection is 

evaluated. The ENSO also affects the spatial distribution of subseasonal 

convective activity such as MJO. The MJO activity tends to extend farther 

into the central Pacific during El Niño winters and the opposite during La 

Niña winters. However, ENSO does not systematically change overall 

amplitude of the MJO. The MJO amplitude is instead highly modulated by 

the QBO. In terms of linear correlation, the QBO explains about 30%–40% 

of interannual variation of the DJF MJO amplitude. Such a link between QBO 
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and MJO is also found in other MJO properties (i.e., a stronger amplitude, 

slower propagation, and longer period of MJO during EQBO winters). The 

MJO-induced teleconnections are also more pronounced during EQBO 

winters. 

This QBO-MJO relationship is revisited in the four CMIP5 models 

internally generating the QBO, since there is a big advantage to understand 

the phenomena due to its long-term dataset (Chap. 3). Three models do not 

show any hint of the QBO-MJO connection because of either unrealistic QBO 

or unrealistic MJO in the models. The only model that shows the QBO-MJO 

connection is the MPI-ESM-MR. This model, which qualitatively well 

simulates both the QBO and MJO, shows stronger MJO anomalies during the 

easterly QBO phase than during the westerly phase. However, the modeled 

QBO-MJO connection is weaker than the observation and is only significant 

in the western Pacific. 

There are several possible reasons why a climate model fails to 

reproduce or underestimate the QBO-MJO connection. Firstly, the modeled 

QBO is weaker and narrower than the observation even in the best model. If 

the modeled QBO is as strong as in the observation, the QBO-MJO 

connection might be better captured. In this regard, a higher vertical 

resolution and more physically constraint gravity wave parameterization 

would be helpful (e.g., Schmidt et al. 2013; Geller et al. 2016). By integrating 

cloud resolving model, Martin et al. (2019) showed that the QBO-MJO 
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connection depends on the vertical location and amplitude of the UTLS 

temperature anomaly. The coupled chemistry model, which allows ozone 

transport, will help to better simulate the realistic QBO-related temperature 

anomalies in the lower stratosphere. Secondly, the MJO convection itself is 

not well organized in many models. Since the QBO may regulate only 

organized deep convection (Collimore et al., 2003), the less organized MJO 

convection might be only weakly affected by the QBO. Thirdly, the QBO-

related temperature and static stability changes in the lower stratosphere are 

significantly underestimated in the model. More realistic cold cap simulation 

would be also helpful for the simulation of more realistic QBO-MJO 

connection (Hendon and Abhik, 2018). Hendon and Abhik (2018) proposed 

that the overriding cold cap induced by the enhanced convection may 

influence the MJO convection. Lastly, other physical and dynamical 

processes responsible for the QBO-MJO connection, that are not yet 

identified, may not work in the model. 

Based on the dynamical core model, it is found that the QBO can 

directly change the MJO-related vertical structure. The MJO-induced cold 

anomaly near the tropopause becomes colder in the EQBO-like background 

state. The opposite is also captured in the WQBO-like background state. This 

result seems to be related to the Doppler shift effect by the QBO-related zonal 

wind, emphasizing the potential impact of the dynamical process on the QBO-

MJO connection.  
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Although the cold cap structure in the UTLS has been emphasized as 

an important factor for the QBO-MJO connection, the feedback processes are 

not yet understood. Compared to the observation and more complicated 

models (Fig. 5.8), the difference of cold cap amplitude is still weaker in the 

model. The more extended cold cap structures, mentioned in Hendon and 

Abhik (2018), are not captured in the idealized model experiment (Fig. 4.3). 

In terms of the possible impact of the cirrus clouds (Virts et al. 2010; Son et 

al 2017; Tseng and Fu 2017), the radiative process may affect the feedback 

process. To understand their interaction between dynamic and physical 

processes, the thermodynamic budget analysis might be useful in the future 

study. 

In S2S models, the QBO-MJO connection is also examined (Chap. 

5). Since the QBO is an interannual variability, and the S2S models are 

initialized by the reanalysis data, these models have a big advantage of better 

simulating the QBO rather than the climate models and the dry dynamic core. 

Also, in terms of the application, the impact of the QBO on MJO prediction 

skill can be analyzed. All models show an enhanced MJO prediction skill 

during EQBO winters than during WQBO winters by 1-10 days, confirming 

the result of Marshall et al. (2017). Although the enhanced MJO prediction 

skill might be simply caused by stronger MJOs during EQBO winters, the 

overall result does not change when only MJO events with the similar initial 

amplitudes are examined. Instead, the difference in prediction skill is partly 
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associated with varying MJO persistence by the QBO (Marshall et al. 2017). 

The MJOs in WQBO winters are often rapidly disorganized within a few 

weeks. This breakdown of MJO is not well captured by the S2S models, 

reducing the theoretical limit of MJO prediction. It is however unclear why 

the observed MJO is less persistent during WQBO winters.  

The EQBO-WQBO MJO prediction skill difference could be also 

influenced by the model deficiency. Although all models show systematically 

higher MJO prediction skills during EQBO winters, their differences from 

WQBO winters vary widely among the models. Such an inter-model 

difference could be associated with the model deficiency. The S2S models 

mostly exhibit pronounced dry biases around the Maritime Continent, and 

underestimate the CLW feedbacks (Chap. 6). The former results in a weak 

horizontal moisture gradient over the Indian Ocean and the western Pacific, 

which would weaken MJO organization and propagation. These results show 

that the model with a larger moisture gradient bias has lower MJO prediction 

skill. Likewise, the model with a larger bias in CLW feedbacks has relatively 

low prediction skill. These results suggest that MJO prediction skill could be 

improved by correcting these model biases, and thus the QBO-MJO 

connection can be better simulated. Modeling studies with varying cloud 

parameterizations or radiation schemes could also be useful. 
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국문 초록 

 

최근 성층권 준 2 년주기진동이 북반구 겨울철에 매든-줄리안 

진동에 영향을 미칠 수 있다는 가능성이 제시된 바 있다. 성층권 

준 2 년주기진동이 동풍일 때, 겨울철 매든-줄리안 진동의 대류 활동이 

서풍일 때에 비해 활발해지는 경향이 있는데, 이는 최근에 발표된 연구로써 

구체적인 현상과 그 원인에 대한 이해가 부족할 뿐만 아니라, 현업 예측 

모형의 계절내 시간 규모의 예측성 향상에도 직접적으로 연관되어 있다는 

점에서 이 현상을 이해하는 것은 매우 중요하다.  이에 따라, 본 학위논문은 

성층권 준 2 년주기진동이 매든-줄리안 진동에 미치는 영향과 그 원인을 

다양한 방법을 바탕으로 이해해보고자 하였다. 

관측 자료를 바탕으로, 성층권 준2년주기진동의 위상에 따라 매든-

줄리안 진동의 활동 특성뿐만 아니라 매든-줄리안 진동의 원격 상관성까지 

변화하는 것으로 나타났다. 성층권 준 2 년주기진동이 동풍일 때, 단순히 

매든-줄리안 진동의 대류 활동 강도뿐만 아니라 대류 활동의 동진 속도가 

느려지고 지속기간이 길어지는 경향이 있으며, 더 나아가, 매든-줄리안 

진동의 중위도 원격상관성 강도까지 강화시키는 것으로 나타났다. 이러한 

성층권 준2년주기진동에 따른 매든-줄리안 진동의 체계적인 변화는 현상에 

대한 당위성을 높임과 동시에 이에 대한 검증 및 이해의 필요성을 더욱 

높였다. 따라서, 다양한 예측 모형을 활용하여 다음과 같이 현상을 

이해하고자 하였다.  
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첫 번째로 성층권 준 2 년주기진동과 매든-줄리안 진동을 직접 

모의하는 기후 모형을 이용하여 현상이 존재하는 지 검증해보고자 하였고, 

대부분의 모형에서 모의하지 못하였으나, 하나의 기후모형에서 유일하게 

관측에 비해서는 약하지만 현상을 모의하였다. 성층권 준 2 년주기진동이 

매든-줄리안 진동에 영향을 미칠 수 있는 원인으로 크게 성층권 

준 2 년주기진동에 따른 대류권 상부와 성층권 하부 간 동서방향평균 정적 

안정도의 변화, 그리고 매든-줄리안 진동의 연직 구조 변화로 인한 

정적안정도의 지역적 변화가 주요 원인으로 알려져 있는데, 기후 모형에서 

이를 약하지만 모의하는 것으로 나타났고 현상을 모의하는데 기여했을 

것으로 추정되었다. 두 번째로는 역학코어모형을 바탕으로 성층권 

준2년주기진동이 매든-줄리안 진동의 연직 구조 변화에 역학적으로 영향을 

미칠 수 있는지 검증해보았고, 정적 안정도 이외에도 다른 역학적 영향 

가능성이 있음을 확인하였다. 마지막으로 10 개의 현업 기관 예측 모형을 

바탕으로 현상에 대해 검증해본 결과, 현상이 모의될 뿐 아니라 매든-줄리안 

진동의 예측성에도 영향을 미치는 것으로 나타났다. 모형에 따라 차이가 

있으나, 성층권 준 2 년주기진동이 동풍일 때, 매든-줄리안 진동의 예측성이 

1-10 일 더 높은 것으로 확인되었다. 

현재까지 여러 모형에서 두 현상의 상관성을 약하게 나타내긴 

하였으나, 그럼에도 불구하고 모형에서 성층권 준 2 년주기진동과 매든-

줄리안 진동 현상 각각을 모의하는 데 한계가 있기 때문에, 관측에서 나타난 

만큼 두 현상의 높은 상관성을 모의하기에는 어려움이 있었다. 이를 향후 
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개선하기 위한 방안 중 하나로써, 매든-줄리안 진동의 주요 물리 과정을 

바탕으로 구름-복사 피드백 작용과 수분의 평균적 공간 분포 모의 능력이 

매든-줄리안 진동의 모의에 중요한 것을 확인하였다. 이러한 물리 과정의 

모의 능력이 향상된다면, 향후 성층권 준 2 년주기진동과 매든-줄리안 

진동의 상관관계를 이해하고 예측성 향상에도 크게 기여할 것으로 기대된다. 

  



156 

 

감사의 글 

 

드디어 제게도 이 글을 적을 수 있는 날이 왔네요. 연말 시상식 수상 

소감처럼 진부하게 적고 싶지 않았는데, 이제 정말 사회에 첫 발을 내딛는다 

생각하니, 제가 변하지 않길 바라면서도 아마 오늘이 제 인생에 남은 날 

중에서 제가 가장 순수한 날이 아닐까 싶어서요. 이 논문은 운이 좋게도 

정말로 많은 분들이 도움을 주신 덕분에 완성된 것이고, 먼 훗날 이 글을 

펼쳤을 때 지금의 감사함을 떠올릴 수 있다면, 제가 앞으로 살아갈 날들에 

더욱 큰 힘이 되지 않을까 싶어 진부하지만 이렇게 적어봅니다.  

가장 먼저, 우리 교수님. 포기하지 않고, 제가 졸업할 수 있게 

지원해주시고 지도해주셔서 감사했습니다. 제가 학위 하는 동안 변함없이 

인생을 정말 열심히 사는 게 무엇인지, 연구적으로나 인생을 살아가는 데 

있어서 항상 모범적인 모습을 직접 보여주셨고, 내공이 부족한 제가 그 

모습을 본받으려 하니 힘에 부치긴 했지만, 그 덕에 (아직도 갈 길이 

멀었지만) 조금씩 성장해왔고 저는 점점 더 제 자신이 마음에 들게 되었어요. 

세상이 요지경인데, 제 지도 교수님을 존경할 수 있어서 너무 좋았고, 그런 

분이 제 지도 교수님이라 자랑스럽고, 감사했습니다 (물론 지금도요).  

제 학위 때문에 바쁜 시간 내어 지도해주시고 심사해 주신 허창회 

교수님, 서경환 교수님, 김혜미 교수님, 김대현 교수님, 유창현 교수님, 

그리고 제가 고민이 있을 때 항상 들어주신 김주완 교수님께도 다시 한 번 

감사드립니다. 진심으로 항상 제 연구를 함께 고민해주시고 도와주셔서 

감사했습니다. 다른 사람들과 일할 때에도 교수님들께서 제게 보여주신 모습 

항상 생각하면서, 그들에게 좋은 연구자이자 동료로 성장할 수 있도록 

노력하겠습니다. 

운 좋게도 정말 많은 분들이 제 학위에 함께 해주었는데요. 저를 너무 

잘 알아서 늘 이해해주고, 먼저 챙겨준 제 오랜 친구들인 지훈이, 수정이, 

필수, 서연이, 민희, 이주언니, 은동오빠, 친구들이 준 믿음과 사랑 덕분에 

보잘 것 없는 박사과정생이었지만 보잘 것 없다 느끼지 못하고, 외로운 줄 



157 

 

모르고 20대를 보냈습니다. 받기만 한 것 같아서 미안하고, 감사합니다.  

다들 힘들었을 텐데 내색하지 않고, 학위과정을 버텨준 501A호 

식구들. 영찬오빠, 현성오빠, 두성오빠, 형안오빠, 상무오빠, 승언이. 그리고 

진우. 제게 버티고 이겨나가는 걸 몸소 보여주시고, 힘들 때 고민을 나눌 수 

있는 전우가 되어 주셔서 감사했습니다.  

제게 사회 생활을 가르쳐준 주환이, 그리고 어딘가에는 좋은 세상을 

만들겠다는 원대한 꿈을 갖고 사는 진실한 사람이 있다는 걸 알려준 여주와 

최영돈 교수님께도 감사의 인사를 전합니다. 뒤늦게 좋은 추억 많이 

만들어주시고, 뜻깊은 경험들을 할 수 있게 해준 수영 식구들과 오랜 시간 

함께 해주시고 응원해주신 뉴폴더 여러분들께도 감사의 인사를 남깁니다. 

함께해서 참 즐겁고 행복했습니다. 

우리 실험실 식구들. 정말 고마운 일들이 너무나도 많은데, 글자 수 

가지고 혹시나 서로 경쟁할 까봐 개별적인 언급은 개인적으로 하겠습니다:) 

지도 교수님의 배려로 개성이 강하고 자기애가 높은 게 우리 실험실의 

장점이다 보니, 정말 모든 실험실 식구들의 개개인이 가진 눈부신 장점들을 

보며 많이 배웠습니다. 고난과 역경에도 그 빛을 잃지 않고 더 멋진 사람으로 

앞으로도 제 곁에 함께 있어 주시길 바래요.  

마지막으로 우리 가족. 학위과정동안 그간 마음 졸이며 지원해 

주시고 지지해준 우리 가족들에게 그간 걱정시켜서 미안하고, 고맙다는 말을 

전하고 싶습니다. 아마 아빠의 욕심과 근성이 가득한 유전자와 엄마의 

책임감과 전폭적인 지원, 오빠의 장남 부심 덕분에 잘 마칠 수 있었습니다. 

든든한 가족이 늘 항상 뒤에 있어서 버텼고, 여유 있지는 않았지만 마음만은 

부족함 못 느끼게 키워주신 덕에 성격이 모나지 않아서 그런지, 운이 좋게도 

주변에 좋은 분들을 너무 많이 만났고 학위도 잘 마무리 할 수 있었습니다. 

다시 한 번 모두에게 감사의 인사를 전합니다. 

 


	1. Introduction
	2. QBO-MJO connection: observational features
	2.1. Data and methods
	2.2. Interannual variation of seasonal-mean tropical convection by the ENSO
	2.3. Interannual modulation of subseasonal tropical convective activity by the QBO
	2.3.1. MJO characteristics with the QBO
	2.3.2. MJO teleconnection with the QBO
	2.3.3. Lead-lag relationship
	2.3.4. Seasonality
	2.3.5. Possible mechanism(s) of the QBO-MJO connection


	3. QBO-MJO connection in climate models
	3.1. Data and methods
	3.2. QBO and MJO simulations in CMIP5 models
	3.3. QBO-MJO connection in MPI-ESM-MR simulations

	4. A possible mechanism of the QBO-MJO connection
	4.1. Model description and experimental design
	4.2. Model results

	5. QBO-MJO connection in the S2S prediction models
	5.1. Data and methods
	5.1.1. Data
	5.1.2. Evaluation metrics

	5.2. QBO prediction skill in S2S prediction models
	5.3. MJO prediction skill with QBO
	5.3.1. Sensitivity to initial MJO amplitude
	5.3.2. Sensitivity to initial MJO phase
	5.3.3. Limiting factors of MJO prediction skill


	6. MJO prediction skill in the S2S prediction models: for improving the simulation of the QBO-MJO connection
	6.1. Data and methods
	6.1.1. Data
	6.1.2. Evaluation metrics

	6.2. MJO prediction skill
	6.3. Mean-state biases and their impact on MJO prediction skill
	6.3.1. Mean moisture field
	6.3.2. Cloud-longwave radiation feedback


	7. Summary and discussions
	References
	Abstract (Korean)


<startpage>17
1. Introduction 1
2. QBO-MJO connection: observational features 7
 2.1. Data and methods 7
 2.2. Interannual variation of seasonal-mean tropical convection by the ENSO 11
 2.3. Interannual modulation of subseasonal tropical convective activity by the QBO 15
  2.3.1. MJO characteristics with the QBO 19
  2.3.2. MJO teleconnection with the QBO 24
  2.3.3. Lead-lag relationship 26
  2.3.4. Seasonality 28
  2.3.5. Possible mechanism(s) of the QBO-MJO connection 29
3. QBO-MJO connection in climate models 34
 3.1. Data and methods 34
 3.2. QBO and MJO simulations in CMIP5 models 38
 3.3. QBO-MJO connection in MPI-ESM-MR simulations 44
4. A possible mechanism of the QBO-MJO connection 59
 4.1. Model description and experimental design 59
 4.2. Model results 63
5. QBO-MJO connection in the S2S prediction models 71
 5.1. Data and methods 71
  5.1.1. Data 71
  5.1.2. Evaluation metrics 76
 5.2. QBO prediction skill in S2S prediction models 77
 5.3. MJO prediction skill with QBO 82
  5.3.1. Sensitivity to initial MJO amplitude 91
  5.3.2. Sensitivity to initial MJO phase 94
  5.3.3. Limiting factors of MJO prediction skill 96
6. MJO prediction skill in the S2S prediction models: for improving the simulation of the QBO-MJO connection 102
 6.1. Data and methods 102
  6.1.1. Data 102
  6.1.2. Evaluation metrics 103
 6.2. MJO prediction skill 108
 6.3. Mean-state biases and their impact on MJO prediction skill 125
  6.3.1. Mean moisture field 126
  6.3.2. Cloud-longwave radiation feedback 132
7. Summary and discussions 136
References 142
Abstract (Korean) 153
</body>

