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Abstract 

Manipulation of Matrix-Isolated Molecules and 

Molecular Clusters with Electrostatic Fields 

 

Youngwook Park 

Department of Chemistry, Physical Chemistry 

The Graduate School 

Seoul National University 

 

This dissertation aims to demonstrate how a strong external electrostatic field on the 

order of 108 V/m manipulates molecular properties, such as orientation, structure, 

dynamics, etc., of small molecules and molecular clusters isolated in cold inert 

matrices. A combination of the ice film nanocapacitor method and the matrix 

isolation technique enabled the application of unprecedentedly intense external 

electric dc fields across the isolated molecules and molecular clusters. Changes in 

molecular properties driven by external fields were investigated by means of 

vibrational spectroscopy.  

Chapter 1 provides a background of molecular-control studies with 

external forces. A brief history of molecular manipulation using electrostatic, 

magnetic, and optical fields is introduced, with more detailed examples on molecular 

control with electrostatic fields in both gas-phase and condensed-phase molecular 

systems. A concise introduction to the methodology of research in the present 

dissertation is also given.  
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Detailed experimental methods are described in Chapter 2. The 

fundamentals and practical aspects of the ice film nanocapacitor method for applying 

intense external fields, the matrix isolation technique for preparing isolated 

molecular species, and the reflection–absorption infrared spectroscopy for detecting 

molecular behaviors are summarized. A description on the instrumentation used in 

the experiments is provided.  

Chapter 3 presents the spectroscopic study on the field-driven change in 

inversion tunneling dynamics of ammonia molecule. An ammonia molecule isolated 

in the Ar matrix, which undergoes a rapid umbrella inversion tunneling across the 

barrier of the symmetric double-minimum potential energy surface when 

undisturbed, reorients into the direction of an strong external field by Stark mixing 

of inversion states with close energy levels and opposite parities. An external field 

results in the asymmetrization of the double-minimum potential and thereby the 

quenching of inversion dynamics. The static infrared spectra recorded at 

systematically scanned-field strengths, which encrypt such field-induced behavior 

of ammonia, were decoded with the help of potential energy surface, localization of 

wavefunctions, and transition selection rule under the external dc field.  

Chapter 4 reports the experimental measurement of the vibrational Stark 

sensitivity of small hydrogen-bonded water and ammonia clusters ((D2O)3, (D2O)4, 

(NH3)3, NH3–HCl, NH3–H2O, and (ND3)3). The vibrational Stark effect manifests the 

frequency shift as a result of the field-induced manipulation of potential energy 

surfaces of molecular vibrations. The Stark sensitivity of vibrations of the clusters 

was found to significantly differ from the corresponding uncomplexed monomer. 

The clustering effect on the Stark sensitivity is discussed in the perspective of 

anharmonicity, geometric effect, and intermolecular vibrational coupling. As an 

extreme example of the clustering through hydrogen-bonding, Stark spectra of a 
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crystalline ice were qualitatively interrogated and compared with those of the 

isolated water monomer.  

Chapters 5 and 6 demonstrate that a strong electrostatic field enables the 

dislocation of an acidic proton. In Chapter 5, vibrational Stark spectroscopy was 

conducted for hydrogen chloride–water (HCl–H2O, HCl–D2O) complexes to 

examine the field-induced behavior of the proton in hydrated acids. The spectra of 

the complexes showed an extraordinarily large Stark shift of the proton stretching 

frequency compared to that of uncomplexed HCl molecule. In the case of HCl–D2O, 

the vibrational coupling between the proton stretching and the symmetric stretching 

of D2O was modified by external fields. Spectral analysis aided by a quantum 

calculation reveals the reversible and asymmetric translocation of the acidic proton 

along the proton-transfer coordinate in the HCl–water complexes by applied fields. 

Chapter 6 reports the Stark spectra of HCl complexes with ammonia and methylated 

amines (methylamine, dimethylamine, and trimethylamine), a prototypical example 

of proton-transferring molecular system. Not only the proton stretching vibration 

which is a parallel/anti-parallel motion of proton along the proton-transfer coordinate 

but also the perpendicular proton bending mode showed exceptionally drastic 

spectral changes under the influence of external fields. The spectral changes by fields 

were characteristic of each complex with different degree of proton transfer. The 

studies on the hydrated acids and the proton-transfer complexes provide the 

spectroscopic evidence of the large protonic polarizability, a concept which occupies 

a prominent position in the behavior and spectroscopy of proton in chemistry.  

Chapter 7 summarizes the dissertation. The significance and prospect of 

the research presented in this dissertation are briefly addressed in the perspective of 

intermolecular processes in chemistry and molecular manipulation in quantum 

technology.  
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Figure 3-1. (a) RAIR spectra of the ν2 umbrella vibration of matrix-isolated NH3, 

measured as a function of the strength of applied electric field. The v=0→1 

vibrational band origin (968 cm−1) is indicated by the gray arrow. In the spectra, 

transitions occurring within K=0 rotational levels are shown in red, while transitions 

in |K|=1 states are shown in blue. The evolution of peaks induced by the external 

field is depicted by dotted red and blue lines. (b) Schematic drawings of the double-

minimum potential, energy states and allowed transitions at different stages of Stark 

shifts and mixings. Likewise, the red and blue color-coding indicates features that 

belong to K=0 and |K|=1, respectively. (Bottom) A symmetric double-minimum 

potential at zero field. The transition shown in R(00
−), which is prominent at zero 

field. (Middle) The slightly “tilted” asymmetric double-minimum potential in the 

intermediate field region. Energy levels and expected transitions are shown for K=0 

(red) and |K|=1 (blue). The red and blue potential curves are identical, but shifted 

horizontally for clarity. Two strong transitions observed in the intermediate field 

region are marked with two solid arrows. The dotted blue arrow is an originally-

allowed transition at zero field but that becomes a forbidden transition as the field 

strength increases. (Top) Strongly asymmetric double-minimum potential in the high 

field region. Transitions are localized in the deeper well of the potential and the two 

transitions coincide in energy. 

 

Figure 3-2. Schematic picture of energy levels of NH3 umbrella inversion–rotation–

vibration states and allowed transitions at (a) zero field, (b) intermediate field, and 

(c) strong field. Those relevant to the spectroscopic observation in this work are 
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displayed. Energy levels marked with black and gray horizontal lines are those of 

K=0 and |K|=1, respectively, which are shown horizontally dislocated for visual 

clarity. Dotted horizontal lines in diagram (a) indicate the energy levels that are 

absent due to nuclear permutation symmetry. In diagram (c), strong field orientation 

makes ammonia molecules become a harmonic librator bound in the potential well 

of the electrostatic dipole–field interaction. The quantum number N in diagram (c) 

indicates the vibrational quanta of the harmonic librator, which is defined as � =
2�� − |� + 
| where �� designates the value of the J quantum number of the free-

rotor state that adiabatically correlates with the state under external electrostatic 

fields [15]. The K and M, the projections of the rotational angular momentum J on 

the c-axis in the molecular frame and Z-axis in the laboratory frame, respectively, 

remain good quantum numbers under the electrostatic field that is collinear with the 

radiative field of the IR beam. The correlation diagram between the freely-rotating 

symmetric top states (without inversion tunneling) and the harmonic librator states 

has been reported [15, 16]. According to the correlation diagram, the 00 and 11 

rotational levels of a symmetric top at zero field evolve into the lowest-lying 

harmonic librator states (N=0) at strong field. A similar correlation diagram is 

expected for ammonia because it behaves like a polar symmetric top at strong field 

due to the quenching of inversion tunneling and the localization of ν2 transitions in 

the lower well of the asymmetric double-minimum potential. Because these 

correlations between the rotational and librational states exist for both v=0 and 1, the 

two ν2 transitions in K=0 and |K|=1 observed at intermediate field merge into one 

peak at strong field. The symbols ‘a’, ‘b’, and ‘c’ correspond to the observed 

transitions marked with identical symbols in Figure 3-1(a). 

 

Figure 3-3. (a) A symmetric double-minimum potential at zero field. Energy levels 
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and corresponding wavefunctions of the inversion doublet states in the ground and 

first excited vibrational levels are shown within the potential. The color of 

wavefunctions illustrates the selection rule: transitions are allowed between the same 

color wavefunctions (“bottom-to-top” and “top-to-bottom”). (b) An asymmetric 

double-minimum potential in the presence of the external field. The energy splittings 

of doublets are Δ�  and Δ
  for the ground and excited vibrational levels, 

respectively. For simplicity, wavefunctions that are fully localized by complete (1:1) 

Stark mixing are shown, although Δ� and Δ
 represent intermediate Stark mixing. 

Notice that the left well wavefunctions do not overlap with the right well 

wavefunctions. (c) Schematic plot of the energy splittings as a function of external 

field strength. The dashed line indicates the dipole–field interaction energy (|�| =
|� ∙ �|). 
 

Figure 3-4. (a) Plot of relative peak positions of umbrella vibrational mode of 

ammonia isotopologues as a function of external field strength. The term ‘relative 

peak position’ in the plot is used to visually present the frequency separations of two 

coalescing peaks and the linear shift in the strong field regime for each isotopologue. 

The absolute values in the ordinate and the vertical spacing between the data points 

of different isotopologues have no physical meaning. The dashed lines show the 

trend. The linear field-dependence of the frequency in the strong field regime is the 

result of the vibrational Stark effect of field-oriented molecules. (b) Plot of the 

frequency separation between the pair of coalescing peaks as a function of external 

field strength for NH3 and NH2D. (c) Stark spectra of the umbrella vibrational mode 

of matrix-isolated ammonia isotopologues. The (bottom, middle, top) spectra were 

recorded under external fields at strengths of (1.3, 2.1, 3.6), (1.0, 1.9, 3.4), (1.0, 1.9, 
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3.4), and (1.3, 2.1, 3.5) × 107 V/m for NH3, NH2D, NHD2, and ND3, respectively. 

The peak separations are marked by the double-headed arrows. 

 

Figure 4-1. RAIR spectra of the Ar film containing D2O molecules inside, (a) at zero 

field and (b) under field of 1.9 × 108 V/m. (c) Difference spectrum of (b) and (a). 

The spectral bands for the bonded OD stretch vibrations of (D2O)3 and (D2O)4 are 

highlighted with gray shades. The spectra were acquired with a spectral resolution 

of 4 cm−1. 

 

Figure 4-2. Vibrational Stark spectra (difference absorbance; black solid lines) of the 

bonded OD stretch mode of (D2O)3 isolated in the Ar matrix acquired at various field 

strengths with fit (red solid lines). The zero-field absorbance for each difference 

spectrum is displayed with gray dotted lines. The contributions on the fit of the zeroth, 

first, and second derivatives of zero-field absorbance are depicted with cyan, green, 

and blue dashed lines, respectively. The experimental spectra were acquired with a 

spectral resolution of 4 cm−1. 

 

Figure 4-3. Vibrational Stark spectra of the umbrella vibration of the matrix-isolated 

(NH3)3 with (a) difference absorbance fit and (b) Stark absorbance fit. The color-

coding of lines in (a) is identical with that in Figure 4-2. In the case of (b), black 

solid lines, red solid lines, and gray dotted lines correspond to the Stark absorbance, 

simulated Stark absorbance, and zero-field absorbance, respectively. The field 

strength at which each Stark spectrum was acquired and the magnitude of vibrational 

Stark sensitivity (|Δμ|) obtained by fitting the spectrum are marked in each plot in 

units of V/m (black) and cm−1/(108 V/m) (red), respectively. The experimental 

spectra were acquired with a spectral resolution of 1 cm−1. 
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Table 1. Resonant frequency and magnitude of Stark sensitivity of the OD stretching 

and the ammonia umbrella vibrations for various clusters. 

 

Figure 4-4. Simplified schematic of clustering effect on Stark sensitivity of 

vibrations. (a) Increase of anharmonic character of the OD stretching by hydrogen-

bonding. (b) Suppression of field-driven HNH angle change in NH3 when hydrogen-

bonded. (c) Symmetrized potential energy surface of out-of-phase coupling of the 

NH3 umbrella vibration. 

 

Figure 4-5. (a) Stark spectra of D2O crystalline ice in the stretching region (2300–

2700 cm−1) and the bending region (1000–1400 cm−1). The film structure was 

Cs+/H2O(amorphous; 14 nm)/Ar(70 nm)/D2O(crystalline; 46 nm)/Pt. The D2O 

crystalline ice was prepared by adsorption of D2O molecules at 140 K followed by 

150 K annealing for a short period (~100 seconds). Solid line is an absorbance 

spectrum at zero field. Dashed line is a difference absorbance between the spectra 

under 1.4 × 108 V/m and at zero field. Spectral resolution: 4 cm−1. (b) Stark spectra 

of the symmetric stretching (2657.7 cm−1) and the bending (1174.6 cm−1) vibrational 

bands of field-oriented D2O monomer isolated in the Ar matrix. Solid line spectrum 

was acquired at 3.3 × 107 V/m. Dashed line is a difference spectrum between the 

spectra under 1.2 × 108 V/m and 3.3 × 107 V/m. The magnitude of Stark sensitivity 

is shown in the unit of cm−1/(108 V/m). Gray dotted vertical lines visually guide the 

degree of field-induced peak position shift. Spectral resolution: 1 cm−1. 

 

Figure 5-1. (a) RAIR spectra of the νstretch(H‒Cl) of the matrix-isolated HCl‒H2O 1:1 

complex, acquired as a function of external electric field strength. (b) RAIR spectra 
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of the HCl‒D2O 1:1 complex acquired in a similar manner. The features related to 

the proton vibration are marked with ‘a’ and ‘b’ at the zero field spectrum. The 

dashed profiles at the ‘a2’ peak position indicate the intensity of νsym.stretch(D2O) band 

of D2O monomer in the matrices at each stage of field strength (see Figure 5-S3). 

The peak at 2615 cm−1 is assigned to νstretch(D2O) of (D2O)2 in the Ar matrix, which 

is beyond the scope of this work. (c) Plot of the position of the peaks shown in (a) 

and (b) as a function of the field strength. The slopes of linear fit for the peak position 

shift are marked in the unit of cm−1/(108 V/m). 

 

Figure 5-2. (a, b) Comparison of field-induced spectral changes of the proton 

vibrations between (a) HCl‒H2O and (b) HCl‒D2O complexes. The black, red, and 

blue lines indicate the spectra at zero field, spectra acquired under external fields, 

and the difference spectra, respectively. (Top) Under moderate fields (3.8 × 107 V/m 

for HCl‒H2O, 3.9 × 107 V/m for HCl‒D2O). (Bottom) Under strong fields (1.2 × 108 

V/m for HCl‒H2O, 1.3 × 108 V/m for HCl‒D2O). The red dotted lines show the 

contribution of the νsym.stretch(D2O) of D2O monomer for the spectra of HCl‒D2O. (c, 

d) Simulated spectra for (c) HCl‒H2O and (d) HCl‒D2O 1:1 complexes. The black 

lines correspond to the zero-field spectrum, which is simulated for the strongest-

coupling geometry between the H‒Cl stretching and D2O symmetric stretching for 

the HCl‒D2O complex. The spectra are calculated upon the artificial change of r(H‒

Cl): one half of the ensemble with decreased r(H‒Cl) (green dashed lines) from the 

zero-field geometry and the other half with increased r(H‒Cl) (gray dashed lines). 

The red lines are the sum of the green and gray lines at each plot. The blue lines are 

the difference between the red and black lines. (Top panel) Δ[r(H‒Cl)] = ±0.05 pm; 

(bottom panel) Δ[r(H‒Cl)] = −0.1, +0.3 pm. (e) Spectral evolution calculated for 

HCl‒H2O and HCl‒D2O complexes upon artificial changes in r(H‒Cl), both 
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positively and negatively from the strongest-coupling geometry marked with Δ[r(H‒

Cl)] = 0. 

 

Figure 5-S1. RAIR spectra of the Ar film containing HCl and H2O molecules inside, 

(a) at zero field and (b) under field whose strength is 3.2 × 107 V/m. (c) Difference 

spectrum of (b) and (a). The spectral region for the νstretch(H–Cl) of HCl–H2O 1:1 

complex (2663 cm−1) is marked by the shaded gray and shown magnified in the inset. 

 

Figure 5-S2. Stark spectra of the film containing HCl and D2O acquired at various 

pressure ratios of Ar, HCl, and D2O, (a) series of constant D2O pressure and (b) 

constant HCl. The black and gray solid lines indicate the spectra at zero field and 

under fields (about 1.2 × 108 V/m), respectively, and the difference spectra between 

them are displayed with dotted lines. 

 

Figure 5-S3. This figure illustrates how the symmetric stretching band of D2O 

monomer, marked with dashed lines in Figure 5-1(b) and red-dotted lines in Figure 

5-2(b), which overlaps with the band of the HCl–D2O complex in the Stark spectra, 

was estimated. Black solid line in (a) is the spectrum of the matrix-isolated HCl–

D2O complex under the external field whose strength is about 1 × 108 V/m. Line in 

(b) shows the difference spectrum of the black line with its zero field spectrum (not 

shown) in the bending vibration region of D2O monomer isolated in the film. The 

intense rise in the difference spectrum (b) corresponds to the bending vibration origin 

peak of D2O monomer oriented to the external field direction. The gray solid line in 

(c) displays the difference spectrum, between the spectra under 1 × 108 V/m field 

and at zero field, of the matrix which is comprised only of D2O. The difference 

spectrum in (c) was scaled by a certain factor to make the intensity of the bending 
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vibration peak of D2O monomer identical with that of the difference spectrum in (b). 

Under this circumstance, the symmetric stretching band of D2O monomer in the line 

at 2658 cm−1 in (c) is extracted (gray dotted line in (a)) and used as an estimation of 

that involved in the Stark spectrum of the HCl–D2O complex. Black dashed line in 

(a) is the result of subtracting the gray dotted line from the black solid line in (a).  

 

 

Figure 5-S4. (a) Simulated spectra of the HCl–D2O complex in the H–Cl stretching 

and D2O symmetric stretching region. H–Cl distance (r(H–Cl)) was artificially 

changed both positively and negatively from the strongest-coupling structure as a 

reference point, which is marked as Δ[r(H–Cl)] = 0 in the Figure. The distance r(H–

Cl) at the strongest-coupling structure was 129.15 pm. See the main text for details 

on the calculation. (b) The calculated frequency and IR intensity of the proton 

vibrations of HCl–H2O and HCl–D2O. 

 

Figure 5-S5. (Top) Calculated energies of the HCl–water 1:1 complex upon the 

displacement of proton. The energy and dipole moment was calculated for the 

optimized structure with frozen r(H–Cl), as mentioned in the main text in detail. The 

dipole–field energy shown in the plot is the absolute magnitude of � = −� ∙ � 

under the influence of the external field with 2 × 108 V/m strength which is parallel 

(or anti-parallel) to the dipole moment. The dipole–field energy in increasing r(H–

Cl) direction exceeds the chemical destabilization energy up to Δ[r(H–Cl)] = +0.2 

pm at 2 × 108 V/m, whereas in decreasing r(H–Cl) direction, the field-driven energy 

gain hardly overcomes the destabilization. (Bottom) Simulated potential energy 

surfaces calculated from the sum of zero-field potential surface with the dipole–field 

interaction energy. 
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Figure 6-1. Vibrational correlation diagram of A···H···B complexes (A = Cl; B = 

H2O, NH3, MeNH2, Me2NH, Me3N) isolated in the Ar matrix. The proton stretching 

frequency of each complex is plotted as a function of proton affinity of the acceptor 

(B). 

 

Figure 6-2. RAIR spectra of the Ar matrix containing HCl and NH3 acquired as a 

function of field strength. The bands that correspond to HCl–NH3 1:1 complex are 

highlighted with shades. Dotted line indicates the difference absorbance between the 

Stark spectrum at 2.4 × 107 V/m and the zero-field spectrum. The broad band at 1220 

cm−1 is of the bending vibration of D2O layer capping the Ar matrix, used for the ice 

film nanocapacitor. 

 

Figure 6-3. Stark spectra of HCl–MeNH2 complex. The slash pattern around 800 

cm−1 shows the spectral region with large instrumental error. 

 

Figure 6-4. Stark spectra of HCl–Me2NH complex.  

 

Figure 6-5. Stark spectra of HCl–Me3N complex. The dashed gray spectrum was 

acquired from the Ar matrix containing only Me3N, without HCl. The dotted vertical 

lines indicate the peak positions of the matrix-isolated HCl–Me3N 1:1 complex. 

 

Figure 6-6. Schematic of proton displacement induced by parallel/anti-parallel and 

perpendicular external fields. 

 

Figure 6-7. Peak frequency plot as a function of external field strength for different 



xvii 

 

matrix-isolated complexes of HCl with NH3, MeNH2, Me2NH, and Me3N. The Stark 

sensitivity values, clocal|Δμ|/cdist, estimated from the frequency change under external 

fields, are shown in the right-side of the plot. 
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Chapter 1 

Introduction 

 

Manipulation of molecules with controllable external forces is a dream of chemists. 

The molecular manipulation includes the control of rotation, vibration, and 

translation of molecules as well as quantum states, dynamics, and reactivity. 

Molecules are inherently quantum-mechanical systems, control of which potentially 

can lead to quantum technology, such as quantum memory and quantum computing. 

One of the traditional interest in physical chemistry, termed chemical stereodynamics, 

is to direct molecular orientation or alignment, control molecular collisions, and 

thereby control chemical reactions using external fields [1]. The possibility of 

controlling chemical reactions with dc electric fields [2–9] and ac fields [10, 11] has 

been examined.  

External forces which can be utilized to manipulate molecular states include 

electrostatic fields, magnetic fields, and electromagnetic optical fields. Among these, 

electrostatic manipulation of molecules and molecular clusters is the focus of this 

dissertation. Electrostatic field is a fundamental concept in chemistry since non-

covalent intermolecular interactions are mostly electrostatic [12, 13]. Electrostatic 

manipulation of molecules is, therefore, at the heart of the interrogation on 

intermolecular interactions and molecular engineering. This research effort has been 

limited by the lack of appropriate techniques that can achieve a high-field strength. 

The ice film nanocapacitor method [14] developed recently in our research group 

was combined with the matrix-isolation approach [15–18] to provide sufficiently 

strong external electrostatic fields to isolated molecules and molecular clusters. 
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Introduced in the rest of this dissertation are the subjects that exemplify the 

molecular control using electrostatic forces.  

Three subheadings comprise the Introduction. 1.1 introduces briefly the 

history of molecular manipulation with external fields. Among those, examples of 

electrostatic manipulation are described in 1.2. Lastly, 1.3 includes a brief 

description on the experimental approach and the contents of this dissertation.  

 

 

1.1. Manipulation of Molecules with External Fields 

The motion of molecules was controlled in various methods ever since the first 

experimental electric-field deflection of polar molecules performed by Wrede [19], 

a graduate student of Stern who is famous for Stern-Gerlach experiment on spatial 

quantization. Inhomogeneous electric fields [20–24] or intense laser fields [25–27] 

were utilized for the field control of molecular beams, including the transverse 

motion control (focusing the beam) and longitudinal motion control (deceleration 

and acceleration of the molecules). Conceptually, the field control of molecular 

beams uses the high-field-seeking or low-field-seeking property of states in the 

molecules: it is basically state-selective. Longitudinal control was found to be much 

more challenging than transverse control.  

The deceleration of molecules leads to the field trapping of molecules. The 

trapping of molecules, in line with the trapping of molecular ionic species [28–30], 

widens the scope of spectroscopic studies by enormously extending the time of 

interrogation. Magnetic traps [31], electrostatic traps [23, 32, 33], and laser field 

traps [34–36] have been proposed and realized. 

Essence of chemical stereodynamics is the control of molecular orientation 
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and alignment, which was enabled by field control of molecular rotation. Weak 

electrostatic fields of a hexapole were used to mix near-degenerate states and thereby 

change the orientation for symmetric top molecules [37–39]. In the case of other 

types of rigid rotor, namely linear and asymmetric top, high-field strength and 

rotational cooling to low temperatures below 10 K were required for brute-force 

orientation. This electrostatic manipulation of molecular orientation through 

pendularization with homogeneous fields is described in detail in 1.2. Magnetic and 

off-resonant laser ac fields resulted the alignment of molecules. Note that orientation 

is related with <cosθ> while alignment, with <cos2θ>. An electric field mixes 

molecular states with the opposite parity while a magnetic and or a laser field mixes 

states with the same parity. Electrostatic fields were combined with off-resonant ac 

fields to achieve better orientation [40–42], where ac fields can generate near-

degenerate doublets with opposite parity which can be actively mixed by 

electrostatic fields. Short laser pulses interacting with molecules result in non-

adiabatic alignment and orientation of the molecules [43, 44].  

Listed above is a brief summary, with a limited amount of examples, on the 

history of molecular control with external fields in the gas phase. A detailed review 

with an extensive amount of references can be found elsewhere [45]. The systematic 

field control of molecular properties has been restricted mostly to gas phase studies, 

since molecules in the condensed phase have much more complicated states and 

strong interactions with neighboring molecules, a problem difficult to overcome with 

currently available technique and achievable field strength.  
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1.2. Manipulation of Molecules with Homogeneous 

Electrostatic Fields 

An electrostatic field influences a gas-phase molecule by mixing its internal quantum 

states with opposite parity. The matrix elements in Hamiltonian which illustrate the 

effect of a dc electric field on the molecule is given by eq. (1-1).  

�� =  −� ∙ � [�: dipole moment, �: electric field] eq. (1-1) 

A dimensionless parameter μF/Δ± characterizes the interaction between a molecule 

and a dc electric field [45]. where Δ± corresponds to the energy splitting between 

opposite parity levels at zero field. For example, in the case of a linear molecule, the 

states with opposite parity are J and J+1, which makes the value of Δ± correlated 

with the rotational constant. In the case of ammonia, Δ± corresponds to the tunneling 

splitting. 

Field strength achievable in the gas-phase experiments was limited to <107 

V/m. Molecules with small rotational constant and large dipole moment were 

oriented by dc electric fields, with the aid of rotational cooling. The external dc fields 

hybridized rotational energy levels to produce pendular states. Molecules behave as 

a harmonic librator in the extreme field strength. The pendularization induced by 

external dc fields resulted in the drastic spectral changes in IR spectra, studies on 

which were termed pendular states spectroscopy. Friedrich and Herschbach are 

pioneers of the field [46–49]. The pendular behavior under electrostatic fields has 

been examined for different classes of rigid rotor, namely linear [46, 49, 50], 

symmetric top [42, 51], and asymmetric top [52–54]. Loesch and coworkers oriented 

molecules and investigated stereodynamics of molecular collisions [55–57]. Miller 

and coworkers attributed field-induced spectral changes to field manipulation of 

structure and dynamics of molecules and molecular clusters [58, 59]. The pendular 
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state spectroscopy was expanded toward the large biomolecules trapped in He 

nanodroplet, to determine the direction of vibrational transition dipole moments in 

those large molecules by means of field orientation [60, 61].  

Boxer and coworkers investigated field-induced frequency shifts of 

molecular vibrations in the condensed phase [62, 63]. The maximum field strength 

applicable in the condensed phase is about 108 V/m, one order of magnitude larger 

than that in the gas phase. Electrostatic fields manipulate the potential energy 

surfaces and thereby the resonant frequency [64]. With a linearly polarized detecting 

IR beam, Boxer and coworkers were able to observe broadening of a vibrational band 

of an oscillator under the influence of strong electric fields. In the case of the 

condensed molecules, dc electric fields hardly influence the molecular orientation 

due to severely large intermolecular interactions. The vibrational Stark sensitivity of 

an oscillator could be determined from spectral changes under fields. Boxer and 

coworkers locate the oscillator with the known Stark sensitivity inside solvents and 

protein structures as an electric field probe to determine the field strength inside such 

natural environments [65–67].  

Shin et al. developed a device called ice film nanocapacitor [14]. Inside the 

nanocapacitor, electrostatic fields <4 × 108 V/m were applied across the frozen 

chemically-tailored molecular films. Field-induced phenomena in the condensed-

phase molecular systems, including dipolar polarization of acetone film [68], Stark 

manipulation of hydroxyl stretch vibration of ice [69], internal rotation of 1,2-

dichloroethane induced by fields [70], and enhancement of acid–base reactivity [71], 

were interrogated.  
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1.3. Approach and Contents of This Dissertation 

In this dissertation, intense electrostatic fields generated by the ice film 

nanocapacitor method were applied across the cold inert gas matrices (~10 K) 

containing molecules and molecular clusters of interest. The feasibility has been 

verified by the previous publications on field manipulation of matrix-isolated small 

molecules including formaldehyde, hydrogen chloride, and water [15–17]. This 

experimental approach combines two advantageous aspects, each of the gas- and 

condensed-phase studies. One is that the molecules and molecular clusters isolated 

in the inert matrices are, as those in the gas phase, easier to manipulate with external 

forces compared to molecules in the bulk. The other is the advantage of condensed-

phase experiments; that is, high-field strength is achievable. Moreover, molecules 

and clusters are translationally trapped inside the rigid matrices, which enables long-

time spectroscopic interrogation.  

Quoting a sentence directly from a review on the field manipulation of 

molecules [45]: “The interactions of the electrons and nuclei with the static and far-

off-resonant optical fields used in experiments give rise to matrix elements with 

magnitudes ≤100 GHz (~3.3 cm−1).” With an unprecedentedly intense electrostatic 

field which resulted one order of magnitude larger interaction (>30 cm−1) than the 

previous, it was possible to explore beyond the boundary of traditional field control 

studies. This dissertation includes examples of significantly large field-induced 

spectral changes of molecules and molecular clusters, an indication of electrostatic 

manipulation of orientation, structure, and dynamics.  

The contents of the rest of this dissertation are as following. Chapter 2 

describes the experimental methods in detail. Chapter 3 presents the field control of 

inversion tunneling dynamics of matrix-isolated ammonia, encoded in the 
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frequency-domain spectra. Chapter 4 illustrates the experimental determination of 

the vibrational Stark sensitivity of hydrogen-bonded clusters and the examination on 

clustering effect on the vibrational Stark sensitivity. The field-induced proton 

dislocation in the hydrogen chloride–water complexes and hydrogen chloride–

ammonia (or amines) complexes is discussed in Chapter 5 and 6, respectively, 

evidenced by extraordinarily large spectral changes under the influence of 

electrostatic fields. Chapter 7 summarizes the dissertation.  
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Chapter 2 

Method 

 

2.1. A Combined Technique of Ice Film Nanocapacitor and 

Matrix Isolation  

To experimentally study the behavior of molecules or molecular clusters under the 

influence of external fields, they should be isolated from other molecules. One of the 

simple ways to provide the molecules or clusters such circumstance is to conduct 

experiments in the gas phase. There have been several studies which explored the 

effect of electric fields on the gas-phase molecules or those trapped in helium (He) 

nanodroplets [1–7]. To apply homogenous external electrostatic fields, the gas-phase 

studies utilized the conventional parallel metal plate capacitor, the fields applied by 

which were only moderately strong (106 V/m order) such that the observations were 

limited to small field-driven changes.  

When it comes to the condensed phase, the applicable field strength 

becomes substantially larger. Boxer and coworkers reported the vibrational Stark 

effect spectroscopy on the frozen molecular films under the field strength of 108 V/m 

[8–12]. In the group of Kang, a method called the ice film nanocapacitor was recently 

developed to apply external electrostatic fields up to about 4 × 108 V/m across the 

ice and other kinds of molecular films [13–17]. In these condensed-phase Stark 

experiments, the strength of external fields is rather strong but the molecules in the 

condense phase interact with neighboring molecules with much larger extent, which 

restricts the proper examination of molecular behaviors under the influence of 
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external fields.  

 Applying the external fields using the ice film nanocapacitor across the 

molecules or molecular clusters isolated in the inert matrices satisfies both 

requirements: the isolation of molecules or molecular clusters from neighboring 

molecules and the capability of employing intense external electrostatic fields in the 

condensed phase. The combination of the ice film nanocapacitor method with 

matrix-isolation technique has been verified to enable the exploration on field-

induced manipulation of molecular properties including orientation, molecular states, 

and internal dynamics [18–21].  

Starting from the pioneering work of G. C. Pimentel [22], the matrix-

isolation method has been widely used in the spectroscopic studies on the unstable, 

transient species, with the help of the rapid development of low temperature 

technique [23]. The molecules or molecular clusters are isolated by co-adsorbing the 

gas of target molecules with the matrix gas on the cold substrate (spectroscopic lens 

or mirror) in pressure ratios on the order of 1:1000. Most commonly used matrix has 

been traditionally nitrogen (N2) and argon (Ar) which are generally regarded as inert 

species. Neon (Ne) and para-hydrogen (p-H2) joined the list with better cryogenic 

technique available recently. Except for the p-H2 matrix which is known to have a 

quantum behavior, the cold solid matrices are rigid with respect to diffusion, 

enabling the preparation of well-defined molecules or molecular clusters inside the 

matrices.  

The matrix-isolated species are readily detected with spectroscopic tools 

since most of the matrices are transparent in the spectral region of interest (usually 

infrared). From the point of view of an isolated molecule, the influence of 

surrounding matrix is not significant, and thereby the properties of the molecule 

resemble those of the gas-phase molecule. The vibrational frequencies of a matrix-
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isolated molecule are similar to the gas phase frequencies. In addition, the absorption 

features in spectra are sharp compared to those in the conventional liquid or solid 

spectroscopy. In the case of large molecules or clusters isolated in the rigid matrices, 

contrary to gas-phase vibrational spectroscopy, the rotational features do not appear 

in the spectra. Instead, the resultant sharpened absorption at vibrational fundamentals 

allow better interpretation on the molecular properties and behavior under the 

influence of external perturbations.  

 Though the influence of the inert matrices on the isolated species is 

generally regarded to be small, limitations of the matrix-isolation technique mainly 

originate from the non-negligible matrix effect. Compared to gas-phase or He 

nanodroplet spectroscopy, the matrix-shift, defined as the discrepancy in vibrational 

frequencies between matrix-isolated species and gas-phase species, is apparent. Ab 

initio calculations are generally employed in the molecular spectroscopy, but the 

matrix effect is not easy to be included in the calculations. In the case of Ar matrix 

which is mostly used in the experiments introduced in this dissertation, it has been 

thought to have a face-centered cubic lattice structure with a molecule trapped in a 

substitutional site. The diameter of a singly-substitutional spherical cavity of Ar 

lattice was estimated to be 3.755 Å at 4 K or 3.760 Å at 20 K. For a molecule whose 

size is comparable or slightly smaller, it is thought to locate inside the singly-

substitutional site with 12 nearest neighboring Ar atoms. There could be, however, 

different trapping sites for smaller or larger molecules or molecular clusters. For 

small molecules, they can be trapped in the octahedral (Oh) and tetrahedral (Td) 

interstitial site, whose diameters are 1.56 Å and 0.85 Å, respectively, in the case of 

Ar matrix. For larger molecules or molecular clusters, they require the substitution 

of two or more Ar atoms to be trapped inside the lattice. There even can be multiple 

trapping sites for one kind of molecule. In general, the information on the trapping 
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sites is properly postulated based on the size and spectroscopic properties of the 

isolated molecules.  

 The ice film nanocapacitor method utilizes the fact that the large Cs+ ions 

thermodynamically prefer to locate on the surface of ice instead of being inside the 

bulk [13]. On top of the matrix which isolates the target molecules or clusters, 

amorphous solid water film is prepared to accommodate Cs+ ions on the surface. 

Low energy (< 30 eV) Cs+ ions are soft-landed on the surface of ice to prevent the 

surface sputtering and introduced with a de-focused trajectory to guarantee the 

uniform surface distribution. Once the Cs+ ions are introduced, the equivalent 

amount of negative charges is derived on the surface of a metal substrate on which 

the matrix and ice films are adsorbed sequentially. This system forms a plate 

capacitor with the nanoscale separation of opposite charges. The electric fields 

formed across the nanocapacitor have a strength on 108 V/m scale. To increase the 

strength of field, the amount of Cs+ ions on the ice surface is increased. To decrease 

the field strength, low energy (< 5 eV) electrons are introduced to compensate the 

positive charge of Cs+ ions at the surface.  

 The strength of external fields applied by means of the ice film 

nanocapacitor is estimated based on the film voltage measurement with a Kelvin 

probe and the film thickness measurement with temperature-programmed desorption 

(TPD) spectrometry. The strength of the macroscopic field (��) that is applied across 

the Ar matrix is determined from the film voltage (�����) developed as a consequence 

of Cs+ by considering the division of the voltage between the Ar matrix and the ice 

layer.  

�� =  ���� !"#$!�%& '"#'�%&
      eq. (2-1) 

Here, ()* and (�+, are the thicknesses of the Ar and ice layers, respectively. The 
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relative permittivity of each dielectric layer is -)* = 1.6 and -�+, = 2.0 [24, 25]. 

 The actual field (�) that a matrix-isolated molecule or cluster experiences, 

also called the local field, is stronger than the macroscopic field (�.) according to 

classical electrostatics and the reaction field theory proposed by L. Onsager [26, 27]. 

The correction factor (/�0+1�) which relates the local field and macroscopic field can 

be estimated by assuming that the isolated molecule is located inside a spherical 

cavity of the dielectric continuum of the matrix (Onsager model). Two factors are 

involved: the cavity field and the reaction field.  

 The cavity field is the field inside a spherical cavity in a dielectric. When a 

uniform macroscopic field is applied to a dielectric with relative permittivity -, the 

cavity field (�2) is expressed as eq. (2-2) by solving Laplace’s equation.  

�2 =  3454$6 �.      eq. (2-2) 

The reaction field, in general, is defined as the field exerted on a dipole inside the 

cavity by surrounding matter that is polarized by an inhomogeneous field of the 

dipole. According to Onsager, the reaction field is proportional to the dipole moment 

and is inversely proportional to the size of the cavity. The reaction field (7 ) is 

expressed as 7 = 8�, where � is the dipole moment and 8 is the reaction field 

factor. The reaction field factor is expressed as eq. (2-3).  

8 =  69:  5(4<6)54$6       eq. (2-3) 

Here, > is the radius of the cavity. A macroscopic field generates the reaction field 

which is parallel to the macroscopic field by creating the induced dipole (?�) of the 

trapped molecule, where ?  is the polarizability. Therefore, the reaction field 

generated by a macroscopic field is 7 = 8?�.  

 With both contributions from the cavity field and the reaction field, the local 

field (�) is given by the eq. (2-4, 2-5): 
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� = �2 + 8?�      eq. (2-4) 

or 

� =  66<@A  �2 =  66<@A  3454$6  �.    eq. (2-5) 

The real circumstance would be different for the matrix-isolated molecules 

or clusters, as being surrounded by discrete Ar atoms with an uncertain shape and 

size of the cavity. Therefore, the local field correction factor has been practiced in 

many previous reports of the vibrational Stark effect of molecules to be left as /�0+1�, 
instead of a specific value. Generally, /�0+1� is thought to be in the range of 1–2 

depending on the system [12, 18]. 

 

 

2.2. Reflection–Absorption Infrared Spectroscopy of Matrix-

Isolated Molecules under the Influence of External Fields 

Vibrational spectroscopy is a powerful tool to investigate the changes in molecular 

states owing to the sensitiveness of molecular vibration to the environment. For 

instance, a slight change in the bond properties induced by any perturbations is 

immediately reflected in the frequency of stretching vibration of the specific bond. 

Besides, the molecular vibration is a vector quantity, enabling the detection of 

molecular orientation by using a polarized beam.  

 To study the molecules and clusters isolated in the nanoscopic film of inert 

matrices formed on the surface of a metal substrate, reflection–absorption infrared 

spectroscopy (RAIRS) was used. In contrast to conventional transmittance IR 

spectroscopy where the absorbance is determined from the difference in the intensity 

of transmitted beam with and without the sample, the absorbance is measured from 
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the difference in reflectance with and without the target film on the metal surface in 

RAIRS. To maximize the sensitivity of the detection, the p-polarized infrared beam 

with a grazing angle close to 87° is almost invariably utilized [28]. In the case of s-

polarized beam, a complete out-of-phase reflection at the metal surface results in the 

destructive interference of the light. For p-polarized light, the grazing-angle 

reflection at the metal surface gives rise to an enhancement of the surface normal 

component [28, 29]. Because the absorption of polarized light by an oscillator is 

proportional to cos5E  where E  is the angle of transition dipole moment with 

respect to the polarization of detecting light, the vibrations with their dipoles 

directing perpendicular to the surface are selectively detected in the RAIR 

spectroscopic measurements with the p-polarized incident beam.  

 In the experimental scheme used in the present dissertation study, the 

external electrostatic field applied across the film is normal to the surface [13], and 

therefore collinear with the polarization of the IR beam. This serves as an 

indisputable advantage for the observation of field-induced manipulations of matrix-

isolated molecules and clusters. For small molecules that could reorient into the 

direction of external fields inside the matrix, the change of absorbance is a direct 

indication of molecular orientation under the influence of fields. Assuming that the 

orientation distribution of a polar molecule follows Boltzmann distribution with 

dipolar potential energy, � = F�cosE, where F is the permanent dipole moment of 

the molecule, � is the field strength, and E is the angle between the dipole moment 

and the field, absorbance of the vibration with the transition dipole collinear to the 

permanent dipole moment is expected to be: 

G = H |IJKL|M
NOPQRS/UVWKXYL !LZ[ H 
NOPQRS/UVWKXYL !LZ[ = 1 − 5] ^/_`ℎb − 6]c  eq. (2-6) 

where b = F� def⁄ , with f the temperature of the film and de the Boltzmann 
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constant. The relation was confirmed for the C=O stretching vibration of the matrix-

isolated formaldehyde (CH2O) molecule which underwent a reorientation under the 

influence of external fields [18].  

For even smaller molecules which rotate nearly freely inside the matrix, 

such as hydrogen chloride (HCl) and water (H2O) [19, 20], they in general show 

rotational structures in the vibrational spectra. When the external fields are applied 

to these molecules, the rotational motion transforms into the pendular-like motion. 

The rotational energy levels at zero field evolve into the pendular states under fields, 

and ultimately toward the harmonic librator limit at extreme [30–33], which is 

responsible for the spectral changes [1, 34]. The collinearity between the static and 

radiative fields results in the transition selection rule which expects the considerably 

intensified transition at the vibrational band origin. This enabled the observation of 

vibrational transitions and measurement of vibrational Stark sensitivities of 

molecules including HCl and H2O, which would not be feasible without the spatial 

orientation driven by the strong external fields collinear with the radiative field, due 

to the weak oscillator strengths. An example of field-driven manipulation of internal 

dynamics of molecule was also observed for ammonia (NH3) with the help of the 

substantial amount of spatial orientation achieved in the methodology [21].  

For larger molecules or molecular clusters which are unable to change the 

orientation in the rigid matrices under external fields, vibrational bands are subjected 

to broadening without significant change of intensity. Strong external fields modify 

the potential energy surface, resulting in the change of frequency in vibrational 

spectra. In general, this is called the vibrational Stark effect [8, 9]. The band 

broadening is expected for the molecules or clusters which have an isotropic 

distribution of orientation, as a result of the vibrational Stark effect by external fields 

that are collinear with the radiative field. As mentioned earlier, since they are trapped 
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in the rigid cage of solid matrices, the molecules and clusters show relatively sharp 

bands in IR spectra which are purely vibrational without hindrance of rotational 

structures. This feature provides a benefit in spectral interpretation.  

 

 

2.3. Instruments 

All experiments described in this dissertation were conducted inside an ultrahigh 

vacuum (UHV) chamber. The stainless-steel chamber was vacuum-pumped with 

turbomolecular pumps (TMP; Leybold) backed by rotary vane pumps (Edwards) to 

maintain the base pressure on the order of 10−10 torr. The pressure inside the chamber 

was monitored by a hot-filament ionization gauge (Granville-Phillips). In the center 

of the chamber, a platinum (Pt) substrate with a well-defined (111) surface was 

located. The Pt substrate was held by a home-designed sample holder made of 

vacuum-compatible copper which is connected to a sample manipulator (McAllister), 

enabling the rotation and translation of the substrate for a certain extent. The Pt 

substrate had a thermal contact with a closed-cycle helium cryocooler (coldhead: 

Coldedge CH-204SN, compressor: Sumitomo HC-4E1) which enabled to cool the 

temperature of the substrate down to ~10 K. The Pt substrate was electrically floated 

so that the voltage could be biased with respect to the electrical ground. The 

molecular films were prepared on the Pt surface by sequential deposition of the 

corresponding gaseous species introduced through variable leak valves into the UHV 

chamber. Some gases which might seriously contaminate the vacuum were guided 

to the surface with tube dosers. For in situ analysis of the films, the chamber was 

equipped with a Fourier-transform infrared (FTIR) spectrometer (Bruker Vertex 70), 

a quadrupole mass spectrometer (Extrel), a Kelvin probe (McAllister KP6500) for 
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film voltage measurements, and a low-energy Cs+ ion gun (Kimball Physics Inc.).  

 The matrix-isolation was achieved by co-adsorbing the gases of target 

molecules and the matrix gas (Ar) with a much higher pressure, where each gas was 

introduced into the chamber through an individual leak valve. The pressure ratio of 

the guest and the host was on the order of 1:1000. During the co-adsorption, the 

pressure of Ar gas was monitored with the ionization gauge. The pressure of the 

guest, which was about three orders of magnitude smaller than that of Ar and 

therefore was difficult to be quantitated with the ionization gauge during the co-

adsorption, was monitored by the mass spectrometer on a residual gas analyzer mode.  

The temperature was measured by using a type N thermocouple (Nicrosil–

Nisil) spot-welded on the substrate. The molecular films on the Pt substrate was 

heated with high-energy (2 keV) electron bombardment. A home-built electron gun 

located in the rear side of the Pt substrate enabled to increase the temperature up to 

about 1200 K. The temperature of the sample was maintained or linearly ramped 

with a PID controller (Eurotherm) by means of modifying the amount of electron 

emission from the electron gun. Taking advantage of this elaborate temperature 

control and the quadrupole mass spectrometer, a temperature-programmed 

desorption (TPD) spectrometry was available even at low temperature of ~10 K. The 

surface of the Pt substrate was cleaned before every experiment by 2 kV Ar+ ion 

sputtering followed by several 1200 K annealing cycles. 

Reflection–absorption infrared spectroscopic (RAIRS) measurements were 

conducted using a Fourier-transform infrared (FTIR) spectrometer with a liquid 

nitrogen-cooled mercury–cadmium–telluride (MCT) detector (Infrared Associates 

Inc. ID316-L). The incident IR beam was focused by mirrors and p-polarized by a 

wire grid polarizer (Specac GS57510). The IR beam passed into the UHV chamber 

through a zinc selenide (ZnSe) viewport, reflected at the surface of the Pt substrate 



26 

 

with the grazing angle (~85°), passed out of the chamber through another ZnSe 

viewport, and arrived at the MCT detector. The beam path outside the UHV chamber 

was purged with dry nitrogen gas. The RAIR spectra were acquired at spectral 

resolution of 0.5–4 cm−1 in spectral range of 650–4000 (or 5000) cm−1. The aperture 

size of the beam (3–6 mm) and phase resolution (4–16) were adjusted accordingly 

with the spectral resolution. The spectra were averaged 256–1024 times.  
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Chapter 3 

Electric Field-Control of Inversion Dynamics of 

Ammonia in an Argon Matrix 

 

Abstract 

Ammonia is special. It is non-planar, yet it has a zero permanent electric dipole 

moment. It is a favorite pedagogical example of tunneling in a symmetric double-

minimum potential. Tunneling is a dynamical concept, yet the quantitative 

characteristics of tunneling are expressed in a static, eigenstate-resolved spectrum. 

The inverting-umbrella tunneling motion in ammonia is both large-amplitude and 

profoundly affected by an external electric field. We report how a uniquely strong 

(up to 108 V/m) DC electric field causes a richly detailed sequence of reversible 

changes in the frequency-domain infrared spectrum (the v=0→1 ν2 umbrella-mode 

transition) of ammonia, freely rotating in a 10 K Ar matrix. Although the spectrum 

is static, encoded in it is the complete inter- and intra-molecular picture of tunneling 

dynamics.  
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3.1. Introduction 

Ammonia is a textbook example of a symmetric top rotor molecule with a highly 

fluxional inversion motion. The ro–vibrational energy levels of free NH3 are split 

due to inversion tunneling through the barrier along the ν2 umbrella mode vibrational 

coordinate. With an energy barrier of about 2000 cm−1 in the symmetric double-

minimum potential, the inversion splitting is 0.79 cm−1 for the vibrational ground 

state and 36 cm−1 for the v=1 of the ν2 mode [1]. Energy level diagrams for ammonia 

can be found in the literature [2, 3].  

 The ammonia molecule is known to behave similarly in the gas phase and 

in inert gas matrices. The matrix-isolated ammonia monomer is nearly a free rotor 

and also undergoes inversion tunneling [4–6]. The sum of the inversion splitting in 

the vibrational ground and excited states is different for ammonia molecules in the 

gas-phase (0.79 cm−1 + 36 cm−1) and in the Ar matrix (about 24 cm−1) [4]. Ro–

vibrational peaks observed in the IR spectra of matrix-isolated ammonia corresponds 

to transitions between the inversion–rotation–vibration energy levels. These 

transitions are governed by the same selection rules as in the gas phase. The selection 

rules for the vibrational and rotational transitions are well known: Δv=±1 for the 

vibrational transition, and ΔJ=±1 (for K=0) or ΔJ=0, ±1 (for K≠0) and ΔK=0 for all 

rotational transitions of a rigid rotor symmetric top. For the inversion transition in a 

symmetric top rotor, only transitions between + and − inversion symmetries are 

allowed.  

 Since the proton (H) is a fermion, the inversion–rotation–vibration 

wavefunctions of NH3 must be anti-symmetric with respect to the exchange of any 

two protons. This permutation symmetry requirement results in nuclear spin statistics 

that gives different weights to inversion–rotation–vibration energy states. According 
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to the nuclear spin statistics for NH3, several energy levels are absent. The absent 

energy levels are + levels for even J and − levels for odd J when K=3n (n=0, 1, 2, 

⋯). For example, denoting inversion–rotation energy levels with a symbol JK
(inversion 

parity), the states 00
+, 10

−, 20
+, 30

−, ⋯ are absent. As a result, the 00
− level in the 

vibrational ground state is the lowest in energy. Taking the relatively large B 

rotational constant of NH3 (about 10 cm−1 in the gas phase and about 9.4 cm−1 in the 

Ar matrix) into consideration, the dominant transition is expected to be the R(00
−) 

([v=0, J=0, K=0, inversion parity −] → [v=1, J=1, K=0, inversion parity +]) transition 

at the low temperature (~10 K). The next most populated rotational levels are 11
+ and 

11
− (since NH3 is oblate), meaning that the Q(11) or R(11) transitions are expected to 

be the second-strongest transitions.  

 ND3 undergoes less efficient tunneling between two wells in the symmetric 

double-minimum potential. The tunneling rate, i.e. the rate at which the ammonia 

molecule inverts from one form to the other, is related to the inversion splitting 

frequency. The time τ for inversion is expressed as τ = (2 ∆ν)<6 [7]. The values 

of τ in the gas phase are 2.1 × 10−11 s for NH3, 2.2 × 10−11 s for 15NH3, and 3.1 × 10−10 

s for ND3. Values of the inversion splitting term (summation of tunneling-splitting 

in the ground and the first excited vibrational states) are 3.7 cm−1 for gas phase ND3 

and about 2 cm−1 for ND3 in the Ar matrix [1, 4]. 

 In this study, strong external electrostatic fields on the order of 108 V/m 

were applied, using the ice film nanocapacitor method, to ammonia molecules 

isolated in the Ar matrix. The field-driven changes in transitions between inversion–

rotation–vibration energy levels of matrix-isolated ammonia were recorded with IR 

spectroscopy. The spectral changes indicated that the inversion dynamics was 

quenched for the ammonia molecules which were spatially oriented along the 
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direction of external fields.  

 

 

3.2. Experimental Details 

The experiments were performed in an ultrahigh vacuum (UHV) chamber, the 

detailed description of which can be found elsewhere [8, 9]. The molecular film was 

prepared on a Pt(111) substrate surface maintained at a cryogenic temperature (about 

10 K) by sequential deposition of corresponding gases. 

D2O (Aldrich, 99 atom% D) was purified by freeze–pump–thaw cycles. Ar 

and NH3 gases were used directly from commercially available gas cylinders. ND3 

were prepared by thermal evaporation of ND3 molecules from ND4OD solution (Alfa 

Aesar, 99 atom% D, 23.0–27.0 wt% sol), utilizing the large vapor pressure of 

ammonia relative to that of water. NH2D and NHD2 were prepared similarly, from a 

roughly 1:1 mixture of NH4OH solution (Samchun Chemical Co., Ltd., Korea, 28.0–

30.0 wt% sol) and liquid D2O to give an isotopologue distribution of 

NH3:NH2D:NHD2:ND3 = 1:3:3:1. 

 A thin film sample of matrix-isolated ammonia was prepared by co-

deposition of ammonia and Ar gases with a predetermined partial-pressure ratio on 

the order of 10−3. The sample had a stacked structure of an Ar film (144–960 ML 

thickness; ML = monolayer; 1 ML = 1.1 × 1015 molecules/cm2) that contained 

ammonia molecules, sandwiched between two Ar spacer layers (48–120 ML each). 

The spacer layers prevent the ammonia molecules from being affected by interfacial 

effects. The upper Ar film was capped by an amorphous D2O film (25 ML). The 

thickness of the entire sample was 150–710 nm. 

 A static electric field was generated across the film using the previously 
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demonstrated [8, 10] ice film nanocapacitor method. The strength of the externally 

applied electric field within the Ar matrix was estimated from the film voltage 

measured with a Kelvin probe. All measured values of field strength given in this 

paper are the macroscopic field (��), estimated simply by dividing voltage across the 

film by the thickness of the film. The actual field strength (�) that a matrix-isolated 

molecule experiences is expressed by � = /�0+1���, with the local field correction 

factor, /�0+1�, estimated to be in the range of 1–2 [8].  

 Reflection–absorption infrared spectroscopic (RAIRS) measurements were 

conducted with a Fourier transform infrared (FTIR) spectrometer with a liquid 

nitrogen-cooled mercury–cadmium telluride detector in grazing angle reflection 

geometry (85°). An incident IR beam was p-polarized by a wire grid polarizer. The 

RAIR spectra were averaged 256 times at a spectral resolution of 1 cm−1. 

 

 

3.3. Results and Discussion 

Figure 3-1(a) shows the RAIR spectrum of matrix-isolated NH3 in the ν2 region and 

its evolution with increasing field strength. In the zero-field spectrum, the peak at 

about 975 cm−1 corresponds to the R(00
−) ro–vibrational transition of the ν2 mode [4]. 

Features due to ammonia aggregates (dimer, trimer, etc.) appeared at higher 

frequencies (> 990 cm−1, not shown in Figure 3-1(a)) [4, 11] and could be 

distinguished from the monomer peak by examining their intensity variation with 

respect to the change in the Ar:NH3 ratio. The external field induced drastic changes 

in the frequency, intensity, and shape of the ν2 band of NH3. The R(00
−) peak became 

slightly red-shifted and a new peak appeared at field strength above 1.3 × 107 V/m, 

resulting in two peaks at 963 and 972 cm−1. The two peaks tuned closer to each other 
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as the field increased and eventually merged into a single feature above 4.7 × 107 

V/m. The merged peak shifted continuously to the blue with increasing field. In 

addition, the intensity of the ν2 band increased as the field strength increased. These 

changes were reversible with respect to an increase or decrease of field strength.  

 

 

Figure 3-1. (a) RAIR spectra of the ν2 umbrella vibration of matrix-isolated NH3, 



37 

 

measured as a function of the strength of applied electric field. The v=0→1 

vibrational band origin (968 cm−1) is indicated by the gray arrow. In the spectra, 

transitions occurring within K=0 rotational levels are shown in red, while transitions 

in |K|=1 states are shown in blue. The evolution of peaks induced by the external 

field is depicted by dotted red and blue lines. (b) Schematic drawings of the double-

minimum potential, energy states and allowed transitions at different stages of Stark 

shifts and mixings. Likewise, the red and blue color-coding indicates features that 

belong to K=0 and |K|=1, respectively. (Bottom) A symmetric double-minimum 

potential at zero field. The transition shown in R(00
−), which is prominent at zero 

field. (Middle) The slightly “tilted” asymmetric double-minimum potential in the 

intermediate field region. Energy levels and expected transitions are shown for K=0 

(red) and |K|=1 (blue). The red and blue potential curves are identical, but shifted 

horizontally for clarity. Two strong transitions observed in the intermediate field 

region are marked with two solid arrows. The dotted blue arrow is an originally-

allowed transition at zero field but that becomes a forbidden transition as the field 

strength increases. (Top) Strongly asymmetric double-minimum potential in the high 

field region. Transitions are localized in the deeper well of the potential and the two 

transitions coincide in energy. 

 

 The intensity increase of the ν2 peak at stronger field indicates that the 

ammonia molecules became dipole-oriented along the direction of the field. This 

occurred because the external field was collinear (Z-axis) with the polarization of 

infrared beam [8], and the molecular electric dipole moment became parallel to the 

ν2 transition dipole moment. The evolution of the ro–vibrational spectrum caused by 

field-induced molecular orientation has been well studied for linear polar molecules 

in the gas phase [12, 13] and in Ar matrices [14]. These studies showed that, when 
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the static and radiative fields were collinear, the rotational features in the spectrum 

gradually disappeared and the vibrational band origin peak ([v=0, J=0] → [v=1, J=0]) 

became dominant upon the field-induced molecular orientation [12–14]. Symmetric 

top rigid rotors show a similar behavior, with slight variation in quantum number 

dependence [15, 16]. Ammonia has a zero electric dipole moment along the c-axis 

due to tunneling inversion, but the external field mixes the symmetric and 

antisymmetric inversion states of ammonia thereby generating a permanent electric 

dipole moment, which is electrostatically stabilized by becoming oriented parallel to 

the field.  

 The increase of ν2 intensity approached a saturation point at field strength 

beyond the range displayed in Figure 3-1(a) [17]. This indicated that the degree of 

field-orientation of molecules asymptotically approached perfect orientation. At the 

same time, the peak showed a blue-shift that is linearly dependent on the field 

strength, which manifests the vibrational Stark shift of the ν2 frequency of spatially 

oriented molecules [8]. 

 To explain the field-driven spectral changes in the intermediate field region 

(< 5 × 107 V/m), namely the evolution of the R(00
−) peak, the appearance of a new 

peak near 963 cm−1, and the merging of these two peaks, it was examined how an 

external electrostatic field is expected to modify the inversion–rotation–vibration 

energy levels of NH3. Note that only the rotational states with small (J<2 and |K|<2) 

quantum numbers are significantly populated at low matrix temperature (10 K). Also, 

under the influence of electric fields, K remains a good quantum number, indicating 

that neither electric-dipole-allowed transitions nor field-induced interactions (Stark 

mixing) occur between states with different K values. Therefore, the field-induced 

changes can be discussed separately for K=0 and |K|=1 states.  

 For |K|=1 states, Q(11
+) and Q(11

−) ([v=0, J=1, |K|=1, ±] → [v=1, J=1, |K|=1, 
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∓] transitions at zero field are expected to be located at 956 and 980 cm−1, 

respectively [4]. Transitions within |K|=1 states are colored blue in the spectra and 

energy diagrams in Figure 3-1. In the zero-field spectrum shown in Figure 3-1(a), 

two blue peaks correspond to Q(11
+) and Q(11

−) transitions, though they are very 

weak due to the smaller population in the J=1 level than J=0. At zero field, the 

allowed v=0→1 transitions between the pairs of inversion doublets in the symmetric 

potential are “bottom-to-top” and “top-to-bottom”, as required by the dipole 

selection rule for transitions between opposite parity inversion–rotation–vibration 

states. The Q(11
+), Q(11

−) pair of transitions are “top-to-bottom” and “bottom-to-top”, 

respectively (Figure 3-2(a)).  
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Figure 3-2. Schematic picture of energy levels of NH3 umbrella inversion–rotation–

vibration states and allowed transitions at (a) zero field, (b) intermediate field, and 

(c) strong field. Those relevant to the spectroscopic observation in this work are 

displayed. Energy levels marked with black and gray horizontal lines are those of 

K=0 and |K|=1, respectively, which are shown horizontally dislocated for visual 

clarity. Dotted horizontal lines in diagram (a) indicate the energy levels that are 

absent due to nuclear permutation symmetry. In diagram (c), strong field orientation 

makes ammonia molecules become a harmonic librator bound in the potential well 

of the electrostatic dipole–field interaction. The quantum number N in diagram (c) 

indicates the vibrational quanta of the harmonic librator, which is defined as � =
2�� − |� + 
| where �� designates the value of the J quantum number of the free-

rotor state that adiabatically correlates with the state under external electrostatic 

fields [15]. The K and M, the projections of the rotational angular momentum J on 

the c-axis in the molecular frame and Z-axis in the laboratory frame, respectively, 

remain good quantum numbers under the electrostatic field that is collinear with the 

radiative field of the IR beam. The correlation diagram between the freely-rotating 

symmetric top states (without inversion tunneling) and the harmonic librator states 

has been reported [15, 16]. According to the correlation diagram, the 00 and 11 

rotational levels of a symmetric top at zero field evolve into the lowest-lying 

harmonic librator states (N=0) at strong field. A similar correlation diagram is 

expected for ammonia because it behaves like a polar symmetric top at strong field 

due to the quenching of inversion tunneling and the localization of ν2 transitions in 

the lower well of the asymmetric double-minimum potential. Because these 

correlations between the rotational and librational states exist for both v=0 and 1, the 

two ν2 transitions in K=0 and |K|=1 observed at intermediate field merge into one 

peak at strong field. The symbols ‘a’, ‘b’, and ‘c’ correspond to the observed 
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transitions marked with identical symbols in Figure 3-1(a). 

 

 An external field along the direction of the molecular c-axis distorts the 

double-minimum potential by stabilizing one of wells by the dipole–field interaction 

energy (� = −� ∙ �) and destabilizing the other by the same energy. In the field-

asymmetrized potential, wavefunctions become localized in either of two wells via 

Stark mixing of zero-field eigenstates, and become neither symmetric nor anti-

symmetric with respect to the barrier maximum. This wavefunction localization is 

mathematically illustrated for a 1D double-minimum potential [18]. Significantly, 

the selection rules change from symmetry-allowed (“bottom-to-top” and “top-to-

bottom”) “delocalized” transitions at zero field to “localized” transitions in the field-

asymmetrized potential. In the strong field limit, transitions that originate from the 

localized wavefunctions in each well dominate, which results in the “bottom-to-

bottom” and “top-to-top” transition propensity rules. Figure 3-3 illustrates these 

features.  

 

 

Figure 3-3. (a) A symmetric double-minimum potential at zero field. Energy levels 

and corresponding wavefunctions of the inversion doublet states in the ground and 

first excited vibrational levels are shown within the potential. The color of 
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wavefunctions illustrates the selection rule: transitions are allowed between the same 

color wavefunctions (“bottom-to-top” and “top-to-bottom”). (b) An asymmetric 

double-minimum potential in the presence of the external field. The energy splittings 

of doublets are Δ�  and Δ
  for the ground and excited vibrational levels, 

respectively. For simplicity, wavefunctions that are fully localized by complete (1:1) 

Stark mixing are shown, although Δ� and Δ
 represent intermediate Stark mixing. 

Notice that the left well wavefunctions do not overlap with the right well 

wavefunctions. (c) Schematic plot of the energy splittings as a function of external 

field strength. The dashed line indicates the dipole–field interaction energy (|�| =
|� ∙ �|). 
 

 The effect of an external electric field on a near-degenerate pair of inversion 

doublet components can be modeled by near-degenerate perturbation theory. The 

field-perturbed energy of a two-level system is expressed by eq. (3-1) [19, 20]. 

k = lm[$lM[5 ± o^lm[<lM[5 c5 + �5F655 p6/5
   eq. (3-1) 

k6� and k5� are the energies of two interacting adjacent levels at zero field, and 

�5F655   is the square of the off-diagonal element of the two-by-two Hamiltonian 

matrix. � denotes the field strength. The Stark interaction mixes the corresponding 

eigenstates. 

q6 = ?(�)q6� + b(�)q5�     eq. (3-2-1) 

q5 = −b(�)q6� + ?(�)q5�    eq. (3-2-2) 

The 0 superscript indicates zero-field. The mixing coefficients are expressed as 

follow, and they become 1:1 in the high field strength limit. The 1:1 linear 

combination of the two zero-field wavefunctions (complete Stark mixing) results in 
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the “localized” wavefunctions. 

? = rstM$u�MvmMM $t
5stM$u�MvmMM w

6/5
     eq. (3-3-1) 

b = rstM$u�MvmMM <t
5stM$u�MvmMM w

6/5
     eq. (3-3-2) 

x = k6� − k5�      eq. (3-3-3) 

As shown in eq. (3-1), the two interacting levels repel each other in the presence of 

the Stark field (Figure 3-2(b)).  

The peak that emerged at 963 cm−1 is the “bottom-to-bottom” transition in 

|K|=1, shown as a blue solid arrow in the middle potential energy surface (PES) 

diagram in Figure 3-1(b). The 963 cm−1 peak blue-shifted as the field strength 

increased until it merged with the red peak. This is principally attributed to the energy 

shift of the |K|=1 states in v=0. The energy shift at weak field is larger for the v=0 

state than for the v=1 state, because the zero-field inversion splitting is much smaller 

in v=0 (< 1 cm−1) than in v=1 (about 24 cm−1). The “bottom” level of |K|=1 in v=0, 

originally 11
− at zero field, shifts downward, while that in v=1 shifts very little. This 

results in the observed blue-shift of the “bottom-to-bottom” transition. The rate of 

the blue-shift was observed to be 2.6 cm−1 per 107 V/m (illustrated by Figure 3-4(a)), 

which agrees with the dipole–field interaction energy (� = −� ∙ �) of about 2.4 cm−1 

at 107 V/m. The “bottom-to-top” transition, shown as a blue dashed arrow in the 

middle PES diagram in Figure 3-1(b), is also expected to be blue-shifted as the 11
− 

level in v=0 shifts downward at stronger field, but this transition disappears due to 

the change in transition selection rule mentioned above. The Q(11
−) peak around 980 

cm−1, though only barely observable in the spectra in Figure 3-1(a), followed this 

expectation.  
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Figure 3-4. (a) Plot of relative peak positions of umbrella vibrational mode of 

ammonia isotopologues as a function of external field strength. The term ‘relative 

peak position’ in the plot is used to visually present the frequency separations of two 

coalescing peaks and the linear shift in the strong field regime for each isotopologue. 

The absolute values in the ordinate and the vertical spacing between the data points 
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of different isotopologues have no physical meaning. The dashed lines show the 

trend. The linear field-dependence of the frequency in the strong field regime is the 

result of the vibrational Stark effect of field-oriented molecules. (b) Plot of the 

frequency separation between the pair of coalescing peaks as a function of external 

field strength for NH3 and NH2D. (c) Stark spectra of the umbrella vibrational mode 

of matrix-isolated ammonia isotopologues. The (bottom, middle, top) spectra were 

recorded under external fields at strengths of (1.3, 2.1, 3.6), (1.0, 1.9, 3.4), (1.0, 1.9, 

3.4), and (1.3, 2.1, 3.5) × 107 V/m for NH3, NH2D, NHD2, and ND3, respectively. 

The peak separations are marked by the double-headed arrows.  

 

For K=0 states, when the field is absent, the R(00
−) transition at 975 cm−1 is 

prominent, with a barely noticeable P(10
+) transition ([v=0, J=1, K=0, +] → [v=1, 

J=0, K=0, −]) at 961.5 cm−1. The R(00
−) transition exhibited the following field-

dependent behavior: (1) red-shift (peak position 975 cm−1 at zero field → 972 cm−1 

at 1.3 × 107 V/m); (2) gradual monotonic increase of intensity; (3) narrowing width 

(the 2.5 cm−1 full width at half maximum at zero field decreased to 1 cm−1 at 1.3 × 

107 V/m). The gradual increase of intensity and the narrowing of band width imply 

that this formerly ro–vibrational transition changed into a vibrational band origin 

transition for a field-oriented molecule [12, 14]. This may be possible through Stark 

mixing of the 00
− and 10

+ states in v=1, which are located close to each other (00
− 

being about 4 cm−1 higher in energy than 10
+) in contrast to their large separation in 

v=0. Note that the 00
− and 10

+ states have proper symmetries for Stark-mixing. The 

lower-lying 10
+ state in v=1 shifts downward as the field increases, even faster than 

00
− state in v=0, resulting in the red-shift observed in the Stark spectra. The mixing 

of wavefunctions gives some 00
− character to the 10

+ state, making this transition 

behave more like a vibrational band origin at a stronger field.  
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The K=0 and |K|=1 transitions evolved in frequency in the field range of 1.3 

× 107 V/m – 3.8 × 107 V/m to eventually merge into one peak. In the strong field 

extreme, the molecular c-axis is nearly parallel to the field direction and the potential 

is highly asymmetric. This makes both transitions localized in the lower well of the 

asymmetric double-minimum potential. Also, the highly oriented ammonia molecule 

liberates in the harmonic potential well of electrostatic dipole–field interaction. The 

00 and 11 rotational states of ammonia at zero field are correlated with the lowest-

lying states of harmonic librator, which are degenerate in energy (Figure 3-2(c)) [15, 

16]. Therefore, only one ν2 peak must appear for strongly oriented molecules. 

Similar experiments of deuterated ammonia molecules (NH2D, NHD2, and 

ND3) were conducted to make qualitative observations of isotope effect on the field-

driven spectral changes. It is expected [4] that deuterium substitution would reduce 

the inversion tunneling rate and the magnitude of the inversion splitting. Figure 3-

4(c) shows the Stark spectra of ammonia isotopologues in the field region of 1 × 107 

V/m – 4 × 107 V/m. The coalescent behavior of two peaks was well resolved in the 

spectra of NH3 and NH2D, whereas the evolution of the peaks could only be deduced 

from changes of the band shape and width for NHD2 and ND3 because the peak 

separation was narrower than the inherent bandwidth. NH2D showed a smaller 

energy separation and lower-field coalescence of the peaks compared to NH3 (Figure 

3-4(a) and 3-4(b)). In the case of ND3, “top-to-bottom” and “bottom-to-top” 

transitions in |K|=1, which are Q(11
+) and Q(11

−), appeared predominantly at zero 

field at 760 and 762 cm−1, respectively [4]. As the field increases, these transitions 

become forbidden and the intensity of the “bottom-to-bottom” transition increases. 

The situation is equivalent to the case of |K|=1 states in NH3; however, the energy 

splitting of the inversion doublets at zero field is much smaller for ND3 so that the 

signature of spectral evolution induced by electrostatic fields was not clearly 



47 

 

resolved. The energy levels and transition selection rules that govern the Stark 

response would be different for NH2D and NHD2 since they are asymmetric top 

rotors, unlike NH3 and ND3. Detailed analysis will not be discussed in this work. 

Nevertheless, the isotopologue dependence of the energy separation between 

transitions, which is marked by horizontal double-headed arrows in Figure 3-4(c), 

follows well the decreasing trend of inversion splitting with increased deuteration 

(24, 12, 6, and 2 cm−1 for NH3, NH2D, NHD2, and ND3) [4]. These isotope effects 

confirm the field-induced asymmetrization of the PES and the corresponding 

modification of inversion states. 

 

 

3.4. Conclusion 

In summary, a very strong DC electric field can reversibly orient ammonia molecules 

in an Ar matrix along the laboratory frame electric field direction. Infrared Stark 

spectroscopy of spatially oriented ammonia molecules reveals how the external field 

modifies the PES for the ν2 umbrella vibration and produces a sequence of changes 

in the ν2 mode transition frequencies and intensities. A noteworthy feature is that 

Stark-effect vibrational spectroscopy reveals detailed information about the large-

amplitude inter- and intra-molecular dynamics encoded in static spectra recorded at 

systematically scanned field strengths. The emergence of vibrational band origin 

transitions in both K=0 and |K|=1 states and the evolution of these transitions as the 

field increases from 1.3 × 107 V/m to 3.8 × 107 V/m reveal progressive localization 

of the wavefunctions as the double-minimum potential becomes increasingly 

asymmetrized. This corresponds to a change of the inversion dynamics from efficient 

resonant tunneling to inefficient quenched tunneling. The merging of two transitions 
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and a linear blue-shift of the coalesced peak at field strength above 4.7 × 107 V/m 

indicate strong field-orientation of no-longer fluxional ammonia molecules that 

librate within the deeper minimum of the asymmetric dipole–field interaction 

potential. This work demonstrates that, with the help of a strong DC field, frequency 

domain spectroscopy can give information about the changes of molecular eigenstate 

energies and wavefunctions that develop due to the field-induced change of the PES. 

This class of DC spectroscopy gives important insights into dynamics. The accuracy 

and multi-feature nature of these frequency domain spectra offer advantages over 

time-resolved ultrafast measurements, which monitor the evolution of multiple 

wavepackets induced by ultrashort laser pulses interacting with non-oriented 

molecules.  
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Chapter 4 

Experimental Measurement of Vibrational Stark 

Sensitivity of Small Molecular Clusters: Clustering 

Effect on Stark Response of Vibrations 

 

Abstract 

The vibrational Stark sensitivity of the hydroxyl stretching and the umbrella 

vibrations in small hydrogen-bonded water and ammonia clusters, respectively, was 

measured. The clusters were isolated in the solid Ar matrix. The IR spectral changes 

under the influence of strong electrostatic fields (107–108 V/m order) were model-fit 

to extract the magnitude of Stark sensitivity of the vibrations. The magnitude of Stark 

sensitivity for the clusters was compared to that for corresponding uncomplexed 

monomers. The clustering effect on the Stark sensitivity is discussed in the 

perspective of anharmonicity, geometric effect, and intermolecular vibrational 

coupling. The field-induced spectral changes of a crystalline ice was qualitatively 

interrogated as an extreme example of clustering through hydrogen-bonding. 
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4.1. Introduction 

A vibration of a molecule is highly sensitive to its environment, which offers a 

fundamental for vibrational spectroscopy to be used as an informative tool for 

structural and dynamic studies on molecular systems [1]. Intermolecular interactions 

substantially influence the nature of vibrations, including the vibrational frequency, 

line-shape, IR intensity, etc. Based on the fact that most of intermolecular 

interactions are electrostatic [2, 3], researchers explored the change in vibrational 

properties, especially the shift of vibrational frequency, by external electrostatic 

fields, termed vibrational Stark effect or vibrational electrochromism [4–10]. The 

Stark sensitivity of a vibration, or the vibrational Stark tuning rate, was determined 

by experimentally observing the frequency change under the application of external 

electric fields [8, 11–16]. Often, the change in vibrational frequency of a molecule 

upon the clustering or solvation is expressed with the similar electrostatic description: 

molecular vibration influenced by local electric fields exerted by neighboring 

molecules. In this description, so-called the vibrational solvatochromism, the Stark 

sensitivity of a certain vibration determined from the vibrational Stark effect 

experiments is used to translate the frequency change into the magnitude of 

electrostatic fields in intermolecular interactions [17–31]. To ensure the validity of 

such approach, it should be provided that the electrostatic fields created by 

environmental molecules are uniform and the dipole–field interactions should be 

dominant compared to other contributions. It fails to electrostatically illustrate strong 

interactions such as strong hydrogen bonds, as well as the changes of vibrational 

properties induced by geometric changes upon solvation or intermolecular 

coupling/de-coupling.  

When an oscillator experiences a change of its molecular environment, not 
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only the vibrational frequency but the vibrational Stark sensitivity can also be 

influenced. As an example, we have observed a matrix-dependence of the Stark 

sensitivity for vibrations of formaldehyde and deuterated water (D2O) molecules 

isolated/solvated in solid Ar, Kr, and Xe (unpublished data). Note that those matrices 

are some of the weakest-interacting solvents. If the magnitude change in the 

vibrational Stark sensitivity of a molecule induced by forming clusters or solvation 

shells is systematically investigated, additional information on intermolecular 

interactions that cannot be obtained from the frequency change would be available, 

such as the changes in anharmonicity of potential surfaces, molecular geometry, and 

intermolecular vibrational coupling. This may also be applied to the strongly 

hydrogen-bonded systems where the vibrational solvatochromism fails.  

For that, we measured the Stark sensitivity of the OD stretching of D2O and 

the umbrella vibration of ammonia (NH3, ND3) in homogeneous and heterogeneous 

small hydrogen-bonded molecular clusters. The molecular clusters were isolated in 

the solid Ar matrix. External electrostatic fields were applied across the matrix by 

using the ice film nanocapacitor method [11, 14]. The magnitudes of Stark sensitivity 

for the clusters were determined by model-fitting the experimentally spectra 

recorded under external fields in two different fit methods [8, 12], one of which failed 

for large field-induced spectral changes. The determined magnitude of vibrational 

Stark sensitivity for the clusters was compared to that for corresponding 

uncomplexed molecules to evaluate the clustering effect. Upon the clustering 

through hydrogen bonds, the magnitudes of Stark sensitivity for the OD stretching 

vibration showed an extensive enhancement, while those for the umbrella vibration 

of ammonia decreased. The rationalization of such clustering effect on the 

vibrational Stark response is proposed, which qualitatively explained the Stark 

response of the stretching and bending vibrations of D2O crystalline ice, an extreme 
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D2O cluster.  

 

 

4.2. Experimental Details 

The experiments were performed in an ultrahigh vacuum (UHV) chamber, the 

detailed description of which can be found elsewhere [13, 14]. The molecular films 

were prepared on a cold Pt(111) substrate (about 10 K) by sequential deposition of 

the corresponding gaseous species that were introduced into the UHV chamber 

through variable leak valves. H2O (Milli-Q) and D2O (Aldrich, 99 atom % D) were 

purified by freeze–pump–thaw cycles. Ar, NH3 and HCl (Sigma-Aldrich, >99%) 

gases were used directly from commercially available gas cylinders. ND3 were 

prepared by thermal evaporation of ND3 molecules from ND4OD solution (Alfa 

Aesar, 99 atom % D, 23.0–27.0 wt % sol), utilizing the large vapor pressure of 

ammonia relative to that of water [32]. Tube dosers were used to guide NH3, ND3, 

and HCl gases close to the Pt(111) substrate. Other gases were back-filled.  

The matrix-isolation of molecular clusters was achieved by co-adsorbing 

the corresponding molecules with Ar gas in a predetermined pressure ratio. For 

instance, the matrix-isolated D2O clusters (including (D2O)3 and (D2O)4) were 

prepared by co-deposition of D2O and Ar gases with pressure ratio of 1:200–1:100. 

The sample had a stacked structure of an Ar film (144–960 ML thickness; ML = 

monolayer; 1 ML = 1.1 × 1015 molecules/cm2) that contained molecular clusters to 

be investigated, which was sandwiched between two spacer layers (48–120 ML each) 

of pure Ar films. The Ar film was capped with an amorphous water film (25 ML). 

The appropriate isopologue of water was used to constitute the capping layer to 

prevent the spectral overlap with the molecular clusters of interest. The thickness of 
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the complete sample was 150–710 nm. 

Electrostatic fields were applied across the film by using the ice film 

nanocapacitor method, which has been described previously in detail [11]. The field 

strength was increased by the deposition of Cs+ ions on the capping ice film and 

decreased by spraying low energy (roughly 3 eV) electrons on the Cs+-deposited film 

[33, 34]. The strength of the applied field was estimated from the film voltage 

measured with a Kelvin probe. Measured values of field strength given in this 

chapter are the macroscopic field strength (F0), obtained simply by dividing the film 

voltage with the thickness of the film. The actual field strength (F) that a matrix-

isolated molecular cluster experiences can be expressed as F = clocalF0, with the local 

field correction factor clocal estimated to be in the range of 1–2 [14, 24]. 

Reflection–absorption infrared spectroscopic (RAIRS) measurements were 

conducted using a Fourier transform infrared spectrometer with a liquid nitrogen-

cooled mercury–cadmium–telluride detector in the grazing angle reflection 

geometry (85°). An incident IR beam was p-polarized by a wire grid polarizer. The 

RAIR spectra were averaged 256 times when acquired with 1 cm−1 spectral 

resolution, and 1024 times with 4 cm−1 resolution. The sloped baselines of all spectra, 

caused by the increasing negative reflectance–absorbance with increasing 

wavenumber [35, 36], were corrected. 

 

 

4.3. Results and Discussion 

Figure 4-1 shows the field-induced spectral changes of D2O clusters isolated in the 

Ar matrix in the OD stretch region. In the case of the bonded OD stretch, the bands 

were clearly distinguished for (D2O)n clusters of n=2–5. The bonded OD stretch 
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bands of (D2O)3 (2578 cm−1) and (D2O)4 (2488 cm−1) are marked with gray highlight 

in Figure 4-1 [37, 38]. Other vibrational bands, i.e. free OD stretch (roughly 2700–

2800 cm−1 in Figure 4-1) [37] and DOD bend (1170–1220 cm−1; not shown), were 

not clearly resolved for each cluster due to small frequency separation compared to 

the spectral resolution. Figure 4-1(a) and 4-1(b) show the spectra at zero field and 

under field whose strength is 1.9 × 108 V/m, respectively. The bonded OD stretch 

bands of (D2O)3 and (D2O)4 showed drastic changes under the external field. As can 

be seen from the difference spectrum in Figure 4-1(c), the spectral change is 

principally broadening of the band. Considering the cyclic structure of (D2O)3 and 

(D2O)4 [38–41], which implies the small net dipole moment [42], and rigidity of the 

solid Ar matrix at 10 K, the clusters would retain their initial isotropic orientation 

distribution, not being reoriented by external fields. The band broadening by the 

external field is a consequence of the vibrational Stark effect on the isotropically-

oriented dipoles [7, 8, 24].  
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Figure 4-1. RAIR spectra of the Ar film containing D2O molecules inside, (a) at zero 

field and (b) under field of 1.9 × 108 V/m. (c) Difference spectrum of (b) and (a). 

The spectral bands for the bonded OD stretch vibrations of (D2O)3 and (D2O)4 are 

highlighted with gray shades. The spectra were acquired with a spectral resolution 

of 4 cm−1. 

 

The magnitude of Stark sensitivity, |Δμ|, of a vibration can be determined 

by fitting the experimentally observed difference absorbance, as practiced by S. 

Boxer and coworkers [8]. In this method, the difference absorbance, ∆G(yz), is fit to 

a linear combination of frequency-weighted derivatives of zero-field absorbance, 

G(yz) (see eq. (4-1)). 

∆G(yz) = ?G(yz) + byz {{|} ~(|})|} + γyz {M
{|}M ~(|})|}   (yz: frequency) eq. (4-1) 

The Stark sensitivity |Δμ| is derived from the coefficient of the second derivative 

term, γ  in eq. (4-1). Figure 4-2 shows the experimentally acquired difference 

absorbance for the bonded OD stretch mode of (D2O)3 at three different field 

strengths with fit. The sensitivity values determined by the fit are written in red. Note 

that the field strength used for determining |Δμ| is the experimentally measured 

macroscopic field strength (F0) (see Experimental Details section). Since F0 has a 

relation with the actual field strength (F) that an isolated cluster experiences in the 

matrix by F = clocalF0 [14, 24], the strict expression for the sensitivity values 

determined in Figure 4-2 is the sensitivity multiplied by the local field correction 

factor, clocal|Δμ|. The clocal term is omitted in the expression for convenience in the 

rest of this article. Though the clocal term is expected to vary with respect to the 

clusters, since the local field is dependent on the polarizability of the isolated cluster 

as well as the shape and size of the cavity where the cluster is located [14, 43], the 
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difference in clocal value between different clusters is expected to be insignificant.  

 

 

Figure 4-2. Vibrational Stark spectra (difference absorbance; black solid lines) of the 

bonded OD stretch mode of (D2O)3 isolated in the Ar matrix acquired at various field 

strengths with fit (red solid lines). The zero-field absorbance for each difference 

spectrum is displayed with gray dotted lines. The contributions on the fit of the zeroth, 

first, and second derivatives of zero-field absorbance are depicted with cyan, green, 
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and blue dashed lines, respectively. The experimental spectra were acquired with a 

spectral resolution of 4 cm−1. 

 

The similar Stark analysis was conducted for the umbrella vibration of 

(NH3)3, the results of which are displayed in Figure 4-3(a). The umbrella vibrational 

band of the cluster exhibited broadening under external fields. The difference 

absorbance at 1.3 × 107 V/m (shown in top of Figure 4-3(a)) was well fit with a linear 

combination of the derivatives of zero-field absorbance. At stronger fields, however, 

namely at 2.6 and 3.6 × 107 V/m (middle and bottom of Figure 4-3(a)), where the 

band broadening was substantial so that the separation between red- and blue-

shifting components exceeded the breadth of the second derivative of zero-field 

absorbance, the model failed to reproduce the difference absorbance.  
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Figure 4-3. Vibrational Stark spectra of the umbrella vibration of the matrix-isolated 

(NH3)3 with (a) difference absorbance fit and (b) Stark absorbance fit. The color-

coding of lines in (a) is identical with that in Figure 4-2. In the case of (b), black 

solid lines, red solid lines, and gray dotted lines correspond to the Stark absorbance, 

simulated Stark absorbance, and zero-field absorbance, respectively. The field 

strength at which each Stark spectrum was acquired and the magnitude of vibrational 

Stark sensitivity (|Δμ|) obtained by fitting the spectrum are marked in each plot in 

units of V/m (black) and cm−1/(108 V/m) (red), respectively. The experimental 

spectra were acquired with a spectral resolution of 1 cm−1. 

 

 Alternatively, a numerical method to simulate the absorbance under fields 

(Stark absorbance), rather than difference absorbance, was employed to extract |Δμ| 

from the experimental observation. In this method, zero-field absorbance was 

divided into contributions from individual oscillators with an isotropic orientation. 

The frequency of each absorbance by the individual oscillator was shifted according 

to the Stark effect relationship approximated to the second-order term, given by 

∆yz ≅  −(∆� ∙ � + 65 � ∙ ∆� ∙ �)     eq. (4-2) 

where ∆yz is the frequency shift in cm−1, Δ� is the Stark sensitivity in cm−1/(108 

V/m), � is the electric field in 108 V/m, and Δ� is the second-order coefficient, 

previously termed as the difference polarizability [8]. Afterwards, the contributions 

of shifted absorbance by individual oscillators were summed to result the simulated 

Stark absorbance, which was fit to the experimentally observed Stark absorbance by 

varying the magnitude of Δ� and Δ�. The detailed description on the numerical 

simulation can be found elsewhere [12].  

 The results of Stark absorbance fit for the (NH3)3 umbrella vibration are 
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shown in Figure 4-3(b). The simulated Stark absorbance spectra well matched with 

the experimental spectra. The simulation resulted in convergent |Δμ| values for 

different field strengths. The Stark spectra were experimentally acquired and the 

Stark sensitivities were determined by simulations as well for the NH3 umbrella 

vibration of matrix-isolated NH3–HCl and NH3–H2O 1:1 complexes and the ND3 

umbrella vibration of (ND3)3. In all cases, the Stark absorbance fit provided more 

reliable Stark sensitivity than the difference absorbance fit.  

The Stark sensitivities, |Δμ|, derived by fitting the Stark absorbance for the 

various matrix-isolated molecular clusters are listed in Table 1. The Stark 

sensitivities for the symmetric stretch of D2O monomer and the umbrella vibration 

of NH3/ND3 in the Ar matrices, which were previously determined with the field-

oriented D2O and NH3/ND3 molecules [16, 32], as well as other reported values of 

relevant systems [12, 19, 44–46], are listed together in Table 1 to evaluate the 

clustering effect on the field-response of the vibrations.  

 

Table 1. Resonant frequency and magnitude of Stark sensitivity of the OD stretching 

and the ammonia umbrella vibrations for various clusters. 

Species Vibration Frequency in cm−1 
|Δμ|  

in cm−1/(108 V/m) 

(D2O)3 in Ar 
Bonded OD 

stretch 
2578 4.4a 

(D2O)4 in Ar 
Bonded OD 

stretch 
2488 2.6a 

D2O in Ar 
Symmetric 

stretch 
2658 

(band origin) 
0.33b 

HDO in liquid H2O 
Bonded OD 

stretch 
- 1.65c 

(D2O)n; n=2–6 
Bonded OD 

stretch 
- 1.76d 
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HDO in solid H2O 
(Ih) 

Bonded OD 
stretch 

~2420 6.4 – 12e 

(HDO)(H2O)7 
Bonded OD 

stretch 
- 4.8e 

(HDO)(H2O)3 
Bonded OD 

stretch 
- ~2.5f 

(HDO)(H2O)3 
Free OD 
stretch 

- ~0.3f 

HDO OD stretch - 0.13 – 0.25f 

2,6-di-t-
butylphenol in 

toluene 

OD stretch in 
weak OD•••π 

bond 
~2674 1.4g 

(NH3)3 in Ar Umbrella  1018 8.9a 

NH3–HCl in Ar 
Umbrella of 

NH3 
1070 16.3a 

NH3–H2O in Ar 
Umbrella of 

NH3 
1035 13.3a 

NH3 in Ar Umbrella 
968 

(band origin) 
14.2h 

(ND3)3 in Ar Umbrella 792 5.7a 

ND3 in Ar Umbrella 
761 

(band origin) 
9.3h 

aThis work 
bReference 16 
cReference 44 
dReference 45 
eReference 12 
fReference 46 
gReference 19 
hReference 32 
 

The |Δμ| values of the bonded OD stretch for (D2O)3 and (D2O)4 in the Ar 

matrix, 4.4 and 2.6 cm−1/(108 V/m), respectively, are about one order of magnitude 
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larger than that of the symmetric stretch of matrix-isolated D2O monomer, 0.33 

cm−1/(108 V/m) [16]. Such substantial difference in Stark sensitivity between the 

bonded OD stretch of clusters and the symmetric stretch of monomer, however, must 

not originate from the distinction between the local and coupled vibrations, but arise 

predominantly from the hydrogen-bonding. A similarly significant difference 

between cluster and monomer was reported by a quantum calculation: the Stark 

sensitivity of the bonded OD vibration of (HDO)(H2O)3 (2.5 cm−1/(108 V/m)) was 

order of magnitude larger than the OD vibration of HDO (0.13–0.25 cm−1/(108 V/m)) 

(see Table 1) [46]. Besides, in the same theoretical work, |Δμ| of the free (non-bonded) 

OD stretch of (HDO)(H2O)3 was reported to be about 0.3 cm−1/(108 V/m), similar to 

that of HDO monomer [46]. Stark sensitivities of the bonded OD stretch of other 

water clusters were calculated/observed to be much larger than those of non-bonded 

OD stretch, as listed in Table 1. This suggests that the hydrogen-bonding is 

responsible for the enlarged Stark sensitivity of stretching vibration. The potential 

energy surface for the OD stretch becomes significantly more asymmetric and 

anharmonic when it is hydrogen-bonded, thereby the potential curve becomes more 

vulnerable to vary under the influence of electric fields (Figure 4-4(a)) [10, 12]. This 

is expected to make the vibrational frequency more susceptible to external electric 

fields.  
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Figure 4-4. Simplified schematic of clustering effect on Stark sensitivity of 

vibrations. (a) Increase of anharmonic character of the OD stretching by hydrogen-

bonding. (b) Suppression of field-driven HNH angle change in NH3 when hydrogen-

bonded. (c) Symmetrized potential energy surface of out-of-phase coupling of the 

NH3 umbrella vibration.  

 

On the contrary, in the case of the umbrella vibration of ammonia molecules, 

the Stark sensitivity for the hydrogen-bonded clusters, namely (NH3)3 and (ND3)3, 

was observed to be smaller than that of the uncomplexed molecules. The |Δμ| values 

for the umbrella vibration of (NH3)3 and (ND3)3, 8.9 and 5.7 cm−1/(108 V/m), 

respectively, were about two-thirds of those of the corresponding uncomplexed 

monomers, 14.2 cm−1/(108 V/m) for NH3 and 9.3 cm−1/(108 V/m) for ND3 [32]. For 
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NH3–HCl (16.3 cm−1/(108 V/m)) and NH3–H2O (13.3 cm−1/(108 V/m)) 1:1 

complexes, the umbrella vibration of NH3 showed similar |Δμ| with the uncomplexed 

NH3. These altogether imply that the umbrella vibration of an ammonia molecule 

becomes less susceptible to electric fields when it forms homogeneous hydrogen-

bonded clusters. 

 Two factors are thought to be involved in such clustering effect on Stark 

sensitivity of the umbrella vibration. One is the geometric effect on the Stark 

sensitivity [16, 46]. A geometric change under external fields, HNH angle (HNH) 

of NH3 in this case, can explain the field-induced frequency shift of the NH3 umbrella 

motion. A NH3 structure with smaller HNH would have a larger dipole and can be 

better stabilized by an external field parallel to the dipole. The parallel field, 

therefore, is expected to decrease the HNH of NH3 by means of the dipole–field 

interaction. The decreased HNH results in a blue-shift of the NH3 umbrella 

vibration. An anti-parallel field would derive the opposite changes. The NH3 

umbrella vibration frequency is sensitively shifted even with a negligibly small field-

driven HNH change, which is estimated to be <0.1% with respect to the 

equilibrium HNH (107°) under <108 V/m external fields, as inferred from the large 

Stark sensitivity of 14.2 cm−1/(108 V/m). When it forms a hydrogen bond, the 

geometric change in the HNH under the influence of external fields would be 

suppressed (Figure 4-4(b)), which results in the decrease in Stark sensitivity. The 

hydrogen-bond-accepting NH3 which is expected not to experience such restriction 

in field-induced HNH change would not have the decreased Stark sensitivity 

compared to the monomer’s, as observed for NH3–HCl and NH3–H2O.  

The other is intermolecular vibrational coupling. The umbrella vibration of 

ammonia which is involved in a homogeneous cluster is expected to be coupled to 
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umbrella vibrations of other ammonia constituting the cluster. For instance, in the 

case of ammonia trimer, the intermolecular coupling between umbrella vibrations 

through hydrogen bonds would result in two near-degenerate out-of-phase and one 

in-phase umbrella vibrations. The in-phase vibration is totally symmetric with 

respect to the three-fold axis of the cluster, which means that the vibration has an 

almost zero transition dipole moment. Therefore, the umbrella vibrational band of 

ammonia trimer we observed in spectra should originate from the out-of-phase 

motion. The potential surface along the out-of-phase vibration coordinate, where 

HNH decrease in one NH3 and HNH increase in the other NH3 constituting 

(NH3)3 clusters occur synchronously, is expected to have more centrosymmetric 

shape compared to that along the umbrella vibration coordinate of the uncomplexed 

ammonia which is highly asymmetric and anharmonic as inferred from the large 

Stark sensitivity (Figure 4-4(c)). The symmetrized potential curve for the out-of-

phase umbrella vibration of ammonia trimer may account for the decrease in Stark 

sensitivity of the vibrational band.  

As an extreme of clustering through hydrogen-bonding, we report the field-

driven spectral changes of D2O crystalline ice (Figure 4-5(a)). An external field 

induced a dramatic change in the stretching region and an imperceptible change for 

the bending vibration of D2O ice. This contrasts sharply with the Stark sensitivity of 

matrix-isolated D2O monomer where the bending vibration was observed to be about 

six times more sensitive to external fields than the stretching vibration, as depicted 

in Figure 4-5(b) [16]. As shown for small water clusters, the network of hydrogen 

bond seems to be responsible for the extensive enhancement of the Stark sensitivity 

of the OD stretching in ice. In the case of bending vibration, which can be thought 

analogously to the umbrella vibration of ammonia, the rigidity of DOD in ice and 
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intermolecular coupling through hydrogen bonds seem to result the decrease in the 

Stark sensitivity. Note that, in Figure 4-5(a) and 4-5(b), the relative IR intensity 

between the stretching and bending modes is markedly reversed when D2O forms a 

large hydrogen-bonded system. The bending vibration has about an order of 

magnitude larger intensity than the stretching mode for D2O monomer [16, 47], while 

for D2O crystalline ice it is about one order of magnitude weaker than the stretching. 

This implies the substantial decrease in dipole derivative along the bending 

coordinate (DOD), for D2O ice compared to D2O monomer. The decreased dipole 

derivative anticipates the restricted external-field-induced geometric change along 

the bending coordinate, which coincides with the proposed rationalization on the 

reduced field-driven spectral changes in the bending vibration of ice.  
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Figure 4-5. (a) Stark spectra of D2O crystalline ice in the stretching region (2300–

2700 cm−1) and the bending region (1000–1400 cm−1). The film structure was 

Cs+/H2O(amorphous; 14 nm)/Ar(70 nm)/D2O(crystalline; 46 nm)/Pt. The D2O 

crystalline ice was prepared by adsorption of D2O molecules at 140 K followed by 

150 K annealing for a short period (~100 seconds). Solid line is an absorbance 
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spectrum at zero field. Dashed line is a difference absorbance between the spectra 

under 1.4 × 108 V/m and at zero field. Spectral resolution: 4 cm−1. (b) Stark spectra 

of the symmetric stretching (2657.7 cm−1) and the bending (1174.6 cm−1) vibrational 

bands of field-oriented D2O monomer isolated in the Ar matrix. Solid line spectrum 

was acquired at 3.3 × 107 V/m. Dashed line is a difference spectrum between the 

spectra under 1.2 × 108 V/m and 3.3 × 107 V/m. The magnitude of Stark sensitivity 

is shown in the unit of cm−1/(108 V/m). Gray dotted vertical lines visually guide the 

degree of field-induced peak position shift. Spectral resolution: 1 cm−1. 

 

 

4.4. Conclusion 

The Stark sensitivity of the OD stretching and the umbrella vibrations of matrix-

isolated D2O and NH3/ND3 clusters, respectively, was spectroscopically measured. 

The |Δμ| of the bonded OD stretching of (D2O)3 and (D2O)4 was about one order of 

magnitude larger than that of D2O monomer, which can be rationalized by increased 

anharmonic character of the vibration as a result of hydrogen bond. For the umbrella 

vibration of ammonia, |Δμ| decreased for hydrogen-bonded trimer to two-thirds of 

that for monomer. We proposed two plausible candidates to account for the 

phenomena: geometric effect and intermolecular vibrational coupling. The Stark 

spectra of D2O crystalline ice showed the substantial field-driven changes in the 

stretching region and imperceptible change in the bending mode. The comparison of 

the field-response of this extreme D2O cluster with that of D2O monomer supports 

the proposed explanation of the clustering effect on the Stark sensitivity. This study 

reveals a possibility that Stark sensitivity serves as a probe for interrogating the 

intermolecular interactions including the strong hydrogen bond.   
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Chapter 5 

Spectroscopic Evidence of Large Protonic 

Polarizability of Hydrogen Chloride–Water Complex 

 

Abstract 

Vibrational Stark spectroscopic experiments were conducted to examine the 

electrostatic polarizability of acidic proton in the HCl‒H2O and HCl‒D2O complexes 

isolated in solid Ar matrices under the influence of uniquely strong (108 V/m) electric 

fields. The field-dependent vibrational spectra of the complexes showed an 

extraordinarily large Stark-shift of proton vibration (H‒Cl stretch) frequency 

compared to that of isolated HCl molecule. The electric field also changed the 

coupling between the proton vibration and the normal mode of D2O in HCl‒D2O 

complex. Spectral analysis aided by quantum structure calculation reveals reversible 

displacement of the acidic proton in HCl‒water complex by the applied field. The 

protonic polarizability of the complex is very large and asymmetric with respect to 

the elongation and contraction of H‒Cl bond length.  
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Main Text 

Dissociation of a protonic acid is one of the most fundamental processes in aqueous 

solution chemistry and heterogeneous reaction chemistry. Intensive theoretical and 

experimental studies have been conducted to understand detailed mechanisms for 

the dissociation of protonic acid [1, 2]. A key concept in the discussion of acid 

dissociation is the ‘protonic polarizability’ of an acid in hydration environment [1]. 

Because the acidic proton with partial charge can be moved by electric forces, the 

electrostatic polarizability of H‒X bond for hydrogen-bonded acid molecules can be 

very large compared to that solely due to the distortion of electron clouds. Zundel [1] 

proposed that the large protonic polarizability of a hydrated acid, either in the 

molecular or dissociated form, is responsible for the appearance of IR continua in 

the absorption spectra of acidic aqueous solutions. Electric fields exerted by the local 

hydration structure can greatly shift the vibrational frequency of polarizable H‒X 

bond of an acid to produce the absorption continua, according to theoretical 

calculations on acid‒water clusters [3–6]. Wolke et al. [7] studied the vibrational 

spectra of hydronium structures complexed with various hydrogen-bonded acceptor 

molecules in gas phase. They observed that the proton vibration frequency of 

hydroniums greatly changes with the proton affinity of the complexed molecule, 

which can be attributed to internal field-induced displacement of protons in the 

complexes. Electric fields also actuate biological structures with large protonic 

polarizability, such as the proton pathways in membranes [1] and enzyme catalysis 

mechanisms [8].  

 Despite general recognition that the protonic polarizability plays a crucial 

role in acid dissociation, this property for acid has not yet been directly observed 

under the conditions of controlled external electric fields. In this communication, we 
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report the observation of large protonic polarizability of HCl‒water 1:1 complex 

isolated in a solid Ar matrix. Extensive studies have been done for small clusters of 

HCl and water generated in the gas phase or isolated in the inert solid matrix to 

understand the hydration structures and reactions of acid [2, 9–17], and the 

monohydrated HCl is one of the simplest forms of hydrated acid clusters. We have 

applied a uniquely strong (<1.5 × 108 V/m) electric field to the matrix-isolated HCl‒

H2O complex using the ice film nanocapacitor method [18, 19]. The H‒Cl stretching 

vibration of the complex exhibits a drastically large frequency shift in electric field 

due to large protonic polarizability. In the case of HCl‒D2O complex, where the H‒

Cl vibration and the symmetric stretching vibration of D2O are strongly coupled 

together, the applied field changes the intra-complex coupling behavior.  

 Figure 5-1(a) shows the result of reflection‒absorption IR spectroscopic 

(RAIRS) measurement of H‒Cl stretching vibration, νstretch(H‒Cl), of the HCl‒H2O 

1:1 complex at the scanned field strength from zero to 1.2 × 108 V/m. The νstretch(H‒

Cl) band originally appearing at 2663 cm−1 at zero field [13, 14] became broadened 

and separated into two components as the field strength increased. The spectral 

changes were reversible with respect to the increase or decrease of field strength. 

The band broadening at moderate field strength can be attributed to the Stark shift of 

the vibrational frequencies of an ensemble of isotropically orientated molecules [20]. 

The HCl‒H2O complex in the rigid Ar matrix must have retained the initial isotropic 

orientation without being reoriented by the applied field. 
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Figure 5-1. (a) RAIR spectra of the νstretch(H‒Cl) of the matrix-isolated HCl‒H2O 1:1 

complex, acquired as a function of external electric field strength. (b) RAIR spectra 

of the HCl‒D2O 1:1 complex acquired in a similar manner. The features related to 
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the proton vibration are marked with ‘a’ and ‘b’ at the zero field spectrum. The 

dashed profiles at the ‘a2’ peak position indicate the intensity of νsym.stretch(D2O) band 

of D2O monomer in the matrices at each stage of field strength (see Figure 5-S3). 

The peak at 2615 cm−1 is assigned to νstretch(D2O) of (D2O)2 in the Ar matrix, which 

is beyond the scope of this work. (c) Plot of the position of the peaks shown in (a) 

and (b) as a function of the field strength. The slopes of linear fit for the peak position 

shift are marked in the unit of cm−1/(108 V/m). 

 

 The splitting of νstretch(H‒Cl) band into two separate components at stronger 

field results from a large Stark shift of νstretch(H‒Cl), which manifests an extremely 

large field-susceptibility of this vibration. Note that a band splits, rather than 

broadens, when the frequency shift is very large and the spectrum is acquired with 

p-polarized light parallel to the applied electric field direction [21]. The field-

induced changes of the peak position of νstretch(H‒Cl), one in red and the other in blue 

direction, are plotted as circle points in Figure 5-1(c). The slope of a linear fit for the 

peak position change gives the estimation of Stark sensitivity of the vibration, 

defined as ΔF = ∆yz/�,�� where Δyz is the change of vibrational frequency under 

field and �,�� is the strength of external field. The magnitude of Δμ estimated from 

the plot of red-shifting component is cdist × 22.5 cm−1/(108 V/m), where the 

coefficient cdist is introduced to account for the isotropic angular distribution of the 

complexes with respect to the field direction. cdist is expected to be 1.2‒1.4 according 

to simple molecular geometry analysis. This Δμ value of HCl‒H2O complex is one 

order of magnitude larger than that of HCl monomer in the Ar matrix, 2.7 cm−1/(108 

V/m) [22], and that of OH stretch in hydrogen-bonded clusters, 2.3‒2.6 cm−1/(108 

V/m) [23–25]. In addition, it is about 4‒5 times larger than the Δμ value estimated 

for the blue-shift in Figure 5-1(c), cdist × 5.0 cm−1/(108 V/m).  
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 Figure 5-1(b) shows the Stark spectra of the HCl‒D2O 1:1 complex in the 

Ar matrix. The vibrational spectrum of HCl‒D2O 1:1 complex has not been reported 

previously. We interpret that two peaks in the zero-field spectrum, labeled as ‘a’ 

(2665 cm−1) and ‘b’ (2645 cm−1), are produced by vibrational coupling of the H‒Cl 

stretching mode and the symmetric stretching mode of D2O in the complex 

(Supporting Information B). Additional peaks appear in the high-field spectra. The 

peak ‘a2’ is assigned to the symmetric stretching of D2O monomer present in the Ar 

matrix, rather than the proton vibration of HCl‒D2O 1:1 complex. The field-induced 

orientation of D2O monomer in the Ar matrix makes this peak visible at high electric 

field [26]. The peak ‘b2’ is assigned to D2O vibrations in the 1:2 or 2:1 complexes. 

With the peaks ‘a2’ and ‘b2’ excluded from the features of HCl‒D2O 1:1 complex, 

the field-induced spectral changes in Figure 5-1(b) can be more clearly related to the 

proton vibration of the complex. The peak ‘a1’ exhibits a slow blue-shift with an 

increase in field strength and the peak ‘b1’, a red-shift with a much faster rate. Figure 

5-1(c) compares the Stark shifts of these peaks with those of corresponding features 

of HCl‒H2O complex. The HCl‒H2O and HCl‒D2O complexes show resemblance 

in the Stark behavior, with Δμ/cdist being about −22 cm−1/(108 V/m) for the red-

shifting peaks for both species.  

 Figure 5-2(a, b) shows two sets of Stark spectra for HCl‒H2O and HCl‒

D2O, each set under the similar strength of external field. We simulated the field-

driven spectral changes based on the model of large polarizability of acidic proton 

in the complexes. In this model, the external fields modify the potential energy 

surfaces along the proton-transfer coordinate and thereby lead to the displacement 

of proton within the complex to a certain extent. The spectral simulation was aided 

by quantum chemical calculation. The H‒Cl distance (r(H‒Cl)) in the complex was 

artificially modified and frozen, followed by optimization of the other structural 
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parameters and subsequent vibrational analysis to obtain harmonic frequency and 

intensity at each distance-modified structure. Density functional theory (DFT) 

calculations with B3LYP functional [27, 28] and 6-311++G(3df,3pd) basis sets were 

performed using the Gaussian 09 suite of programs [29].  
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Figure 5-2. (a, b) Comparison of field-induced spectral changes of the proton 

vibrations between (a) HCl‒H2O and (b) HCl‒D2O complexes. The black, red, and 

blue lines indicate the spectra at zero field, spectra acquired under external fields, 

and the difference spectra, respectively. (Top) Under moderate fields (3.8 × 107 V/m 

for HCl‒H2O, 3.9 × 107 V/m for HCl‒D2O). (Bottom) Under strong fields (1.2 × 108 

V/m for HCl‒H2O, 1.3 × 108 V/m for HCl‒D2O). The red dotted lines show the 

contribution of the νsym.stretch(D2O) of D2O monomer for the spectra of HCl‒D2O. (c, 

d) Simulated spectra for (c) HCl‒H2O and (d) HCl‒D2O 1:1 complexes. The black 

lines correspond to the zero-field spectrum, which is simulated for the strongest-

coupling geometry between the H‒Cl stretching and D2O symmetric stretching for 

the HCl‒D2O complex. The spectra are calculated upon the artificial change of r(H‒

Cl): one half of the ensemble with decreased r(H‒Cl) (green dashed lines) from the 

zero-field geometry and the other half with increased r(H‒Cl) (gray dashed lines). 

The red lines are the sum of the green and gray lines at each plot. The blue lines are 

the difference between the red and black lines. (Top panel) Δ[r(H‒Cl)] = ±0.05 pm; 

(bottom panel) Δ[r(H‒Cl)] = −0.1, +0.3 pm. (e) Spectral evolution calculated for 

HCl‒H2O and HCl‒D2O complexes upon artificial changes in r(H‒Cl), both 

positively and negatively from the strongest-coupling geometry marked with Δ[r(H‒

Cl)] = 0.  

 

 The simulated spectra for HCl‒H2O and HCl‒D2O are depicted in Figure 

5-2(c, d). Starting from the strongest-coupling point of the proton vibration and the 

symmetric stretching of D2O in HCl‒D2O complex, where the resulting transitions 

showed 24 cm−1 separation which accords with the experimentally observed 

separation between peaks ‘a’ and ‘b’ (20 cm−1), one half of intensity was subjected 

to an increase of r(H‒Cl) as a hypothetical influence of parallel external field to the 
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dipole while the other half to a decrease of r(H‒Cl) to simulate the effect of anti-

parallel field. The artificial modifications of r(H‒Cl) in Figure 5-2(c, d) were 

selected to simulate field-induced frequency changes in Figure 5-2(a, b) as similarly 

as possible. The intermolecular coupling between the H‒Cl stretch and the D2O 

symmetric stretch in the HCl‒D2O complex sensitively changes as r(H‒Cl) varies, 

as shown in Figure 5-2(e) (more detailedly in Figure 5-S4 in Supporting Information). 

This manipulation of coupling efficiency is reflected in the simulated spectra in 

Figure 5-2(d).  

 The circumstance reflected in the simulation above is an extreme. In reality, 

the dipole of complexes would have an isotropic distribution of orientation with 

respect to the field direction, rather than only parallel and anti-parallel orientation. 

Nevertheless, the simple simulation with a change in r(H‒Cl) reproduced the major 

features of the experimental results in Figure 5-2(a, b). Note that, in Figure 5-2(c, d), 

a single parametric change in r(H‒Cl) was used to model both HCl‒H2O and HCl‒

D2O spectra. The discrepancy in absolute frequency between calculations and 

experiments originates from the inaccuracy of DFT calculations (often corrected 

with 0.9‒1 scaling factors for >2000 cm−1 stretching modes) and the matrix effect 

[26, 30, 31].  

 Agreement between the calculated and experimental spectra provides a 

quantitative estimation of the protonic polarization: Δ[r(H‒Cl)]/cdist = 0.3 and 0.1 pm 

in the directions of H‒Cl bond elongation and contraction, respectively, at the 

apparent field strength 1.2‒1.3 × 108 V/m. Therefore, the protonic polarizability is 

highly asymmetric with respect to the direction of applied field. The polarization is 

driven by dipole‒electric field interaction energy, where the proton dislocation 

changes the dipole moment of the complex toward electrostatic stabilization (Figure 

5-S5 in Supporting Information).  
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This work demonstrates that external electrostatic fields with controlled 

strength can reversibly displace the acidic proton in the HCl‒water complex along 

the proton-transfer coordinate. The protonic polarizability of the complex is 

extraordinarily large, corresponding to the Stark sensitivity of Δμ > 20 cm−1/(108 

V/m), compared to that of HCl monomer. The present experiment observed the 

proton displacement of only 0.09‒0.3% of the original H‒Cl bond length (~130 pm) 

at the field strength of ~1 × 108 V/m. Yet, extension of the protonic polarizability to 

~1 × 1010 V/m, a typical field strength inside the hydration sphere [5–7], predicts 

Δ[r(H‒Cl)] ~ 30 pm and Δyz > 2000 cm−1. This estimation is consistent with the 

ionization of HCl upon hydration in aqueous solution with the appearance of IR 

absorption continua at 500‒3000 cm−1 [1]. The larger protonic polarizability in the 

direction of r(H‒Cl) elongation than contraction suggests possibility that the thermal 

fluctuations of local electric field play an important role in the acid dissociation 

mechanism. It implies the cooperativity of hydration; the directly hydrogen-bonded 

water molecules make the H‒Cl bond highly polarizable, while the electrostatic field 

arising from the surrounding molecules drives the bond dissociation.  
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Supporting Information  

 

A. Experimental details  

The experiments were performed in an ultrahigh vacuum (UHV) chamber which has 

been described in detail elsewhere [1–3]. The molecular films were prepared on a 

cold Pt(111) substrate (about 10 K) by sequential deposition of the gaseous species 

which were introduced into the UHV chamber through variable leak valves. H2O 

(Milli-Q) and D2O (Aldrich, 99 atom% D) were purified by several freeze–pump–

thaw cycles. Ar (99.999%) and HCl (Sigma-Aldrich, >99%) gases were used from 

commercially available gas cylinders without additional purification processes. A 

tube doser was used to guide HCl gas close to the Pt(111) substrate. Other gases were 

back-filled.  

The film of HCl–H2O (HCl–D2O) complexes isolated in the Ar matrix was 

prepared by co-adsorption of HCl, H2O (D2O) and Ar gases in predetermined 

pressure ratios. The sample had a stacked structure of an Ar film (288–960 ML 

thickness; ML = monolayer; 1 ML = 1.1 × 1015 molecules/cm2) containing HCl and 

H2O (D2O), sandwiched between two Ar spacer layers (96–120 ML each). The spacer 

layers prevent the isolated molecules and complexes from being affected by 

interfacial effects. The upper Ar film was capped by an amorphous H2O film (25 

ML). D2O was not used to constitute the capping layer, since its intense broad OD 

stretching band, which overlaps with HCl stretching region in the IR spectra, restricts 

a reliable observation of HCl vibrations.  

A dc electrostatic field was applied across the film using the previously 

demonstrated [1, 2, 4, 5] ice film nanocapacitor method. The strength of the 
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externally applied electric field across the Ar matrix was estimated from the film 

voltage developed by Cs+ ion deposition on the surface of the capping H2O film, 

measured with a Kelvin probe. All field strength values given in this paper are those 

of macroscopic field (��), obtained simply by dividing the voltage across the film by 

the film thickness. The actual field strength (�) that a matrix-isolated molecule or a 

complex experiences is expressed by � = /�JI9���, with the local field correction 

factor, /�JI9�, estimated to be in the range of 1–2 [2, 6].  

Reflection–absorption infrared spectroscopic (RAIRS) measurements were 

conducted with a Fourier transfrom infrared (FTIR) spectrometer with a liquid 

nitrogen-cooled mercury cadmium telluride detector in grazing angle reflection 

geometry (85°). An incident IR beam was p-polarized by a wire grid polarizer. The 

spectra were averaged 1024 times at a spectral resolution of 4 cm−1. The sloped 

baselines of spectra, caused by the increasing negative reflection–absorption with 

increasing wavenumber [7, 8], were correct for better visualization. 

 

 

B. Assignment of peaks in the zero-field spectrum of HCl–D2O 

complex 

The peaks ‘a’ (2665 cm−1) and ‘b’ (2645 cm−1) are attributed to coupling of the H–

Cl stretching vibration and the symmetric stretching vibration of D2O in the complex, 

for the reasons listed below. First, these two local vibrations are close in frequency 

and have the symmetries to be coupled with each other. Note the symmetric 

stretching frequency of D2O monomer in the Ar matrix is 2658 cm−1 [5, 9], which is 

in the vicinity of νstretch(H–Cl) frequency. Second, each peak of ‘a’ and ‘b’ in the zero-

field spectrum of Figure 5-1(b) has about half of the intensity of the 2663 cm−1 peak 
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of the HCl–H2O complex in Figure 5-1(a), when identical experimental conditions 

are used to obtain the HCl–H2O and HCl–D2O spectra at zero field. Third, the peaks 

‘a’ and ‘b’ appear at significantly different frequencies from the νstretch(H–Cl) peak 

of HCl–H2O complex. Fourth, evolution of the calculated spectrum of HCl–D2O 

complex upon artificial changes in r(H–Cl) clearly predict coupling of the H–Cl 

stretching vibration and the D2O symmetric stretching vibration (Figure 5-2(e) and 

Figure 5-S4). These features indicate that the H–Cl stretching motion in the HCl–

D2O complex is no longer localized but strongly coupled to the vibrations of 

hydrogen-bonded water. It might be considered that the peak ‘b’ is contributed by 

the O–D stretching vibrations of HCl–D2O 1:2 or 2:1 complexes that are also present 

in the matrix samples [10]. However, the field-driven changes in the peak shape of 

‘b’, especially the large red-shift of ‘b1’ feature, is too drastic to be considered to 

originate from the vibrational Stark effect of D2O vibrations in these complexes. In 

addition, the field-induced changes of the ‘a’ and ‘b’ peak shapes are independent of 

the population change of HCl–D2O 1:2 and 2:1 complexes in the samples (Figure 5-

S2 in Supporting Information). Therefore, the major intensity of the peak ‘b’ must 

originate from the 1:1 complex.  

The peak ‘a2’ is assigned as the symmetric stretching peak of D2O monomer 

present in the matrix samples, rather than the proton vibration of HCl–D2O 1:1 

complex. The peak grows in intensity without a noticeable frequency shift as the 

field increases, as depicted by the dashed peak profiles in Figure 5-1(b). Figure 5-S3 

depicts a detailed process of extracting this component. The assignment is based on 

the previous observations that the intensity of symmetric stretching peak of D2O 

monomer grows as D2O molecule is dipole-oriented along the field direction at high 

field [5].  
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The identity of the peak ‘b2’ is uncertain. We note that the ‘b2’ peak position 

is nearly identical to the ‘b’ peak position at zero field and remains unshifted when 

the field strength is changed. Therefore, it is unlikely to be due to an acidic proton 

but is possibly related to D2O vibrations in the 1:2 or 2:1 complexes. 

 

 

C. Supporting Figures 

 

Figure 5-S1. RAIR spectra of the Ar film containing HCl and H2O molecules inside, 

(a) at zero field and (b) under field whose strength is 3.2 × 107 V/m. (c) Difference 

spectrum of (b) and (a). The spectral region for the νstretch(H–Cl) of HCl–H2O 1:1 

complex (2663 cm−1) is marked by the shaded gray and shown magnified in the inset. 

Various peaks appearing at 2730–2900 cm−1 and 1600 cm−1 in Figure 5-
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S1(a) originate from other matrix-isolated species than the HCl–H2O 1:1 complex, 

which are explained in the text. The peak at 2888 cm−1 corresponds to the R(0) 

transition of HCl monomer, 2818 and 2787 cm−1 to the νstretch(H–Cl) of HCl dimer 

and trimer, respectively, 2780–2730 cm−1 to larger multimers [1, 11], features around 

1600 cm−1 to the νbend(H2O) of H2O monomer and clusters [9]. The broad features 

appearing above 3000 cm−1 and at around 1660 cm−1 originate from stretching and 

bending vibrations of bulk H2O film, respectively, which was used as a capping layer 

for the ice film nanocapacitor.  

 When the external field is applied across the film (Figure 5-S1(b)), the 

spectrum showed dramatic changes as depicted in Figure 5-S1(c), some of which 

have already reported by the previous studies in our group [1, 5]. The removal of the 

R(0) peak (2888 cm−1) and emergence of the band center peak (2871 cm−1) of HCl 

monomer is the indication of field-induced orientation of the matrix-isolated HCl 

monomer [1]. The dips at 1624 and 1608 cm−1 and the significant increase at 1589 

cm−1 is the consequence of reorientation of H2O monomer along the direction of 

external field [5]. Other spectral changes in the νstretch(H–Cl) region of HCl clusters 

are not well-explained yet.  
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Figure 5-S2. Stark spectra of the film containing HCl and D2O acquired at various 

pressure ratios of Ar, HCl, and D2O, (a) series of constant D2O pressure and (b) 

constant HCl. The black and gray solid lines indicate the spectra at zero field and 

under fields (about 1.2 × 108 V/m), respectively, and the difference spectra between 

them are displayed with dotted lines.  
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Figure 5-S3. This figure illustrates how the symmetric stretching band of D2O 

monomer, marked with dashed lines in Figure 5-1(b) and red-dotted lines in Figure 

5-2(b), which overlaps with the band of the HCl–D2O complex in the Stark spectra, 

was estimated. Black solid line in (a) is the spectrum of the matrix-isolated HCl–

D2O complex under the external field whose strength is about 1 × 108 V/m. Line in 

(b) shows the difference spectrum of the black line with its zero field spectrum (not 

shown) in the bending vibration region of D2O monomer isolated in the film. The 

intense rise in the difference spectrum (b) corresponds to the bending vibration origin 

peak of D2O monomer oriented to the external field direction. The gray solid line in 

(c) displays the difference spectrum, between the spectra under 1 × 108 V/m field 

and at zero field, of the matrix which is comprised only of D2O. The difference 

spectrum in (c) was scaled by a certain factor to make the intensity of the bending 

vibration peak of D2O monomer identical with that of the difference spectrum in (b). 

Under this circumstance, the symmetric stretching band of D2O monomer in the line 

at 2658 cm−1 in (c) is extracted (gray dotted line in (a)) and used as an estimation of 

that involved in the Stark spectrum of the HCl–D2O complex. Black dashed line in 

(a) is the result of subtracting the gray dotted line from the black solid line in (a).  
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Figure 5-S4. (a) Simulated spectra of the HCl–D2O complex in the H–Cl stretching 

and D2O symmetric stretching region. H–Cl distance (r(H–Cl)) was artificially 

changed both positively and negatively from the strongest-coupling structure as a 

reference point, which is marked as Δ[r(H–Cl)] = 0 in the Figure. The distance r(H–

Cl) at the strongest-coupling structure was 129.15 pm. See the main text for details 

on the calculation. (b) The calculated frequency and IR intensity of the proton 

vibrations of HCl–H2O and HCl–D2O.  
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Figure 5-S5. (Top) Calculated energies of the HCl–water 1:1 complex upon the 

displacement of proton. The energy and dipole moment was calculated for the 

optimized structure with frozen r(H–Cl), as mentioned in the main text in detail. The 

dipole–field energy shown in the plot is the absolute magnitude of � = −� ∙ � 

under the influence of the external field with 2 × 108 V/m strength which is parallel 

(or anti-parallel) to the dipole moment. The dipole–field energy in increasing r(H–

Cl) direction exceeds the chemical destabilization energy up to Δ[r(H–Cl)] = +0.2 

pm at 2 × 108 V/m, whereas in decreasing r(H–Cl) direction, the field-driven energy 

gain hardly overcomes the destabilization. (Bottom) Simulated potential energy 

surfaces calculated from the sum of zero-field potential surface with the dipole–field 

interaction energy.  
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Chapter 6 

Vibrational Stark Spectroscopy on Proton Vibrations 

in Proton-Transfer Complexes of Hydrogen Chloride 

with Ammonia and Methylated Amines 

 

Abstract 

The response of proton vibrations of the complexes of hydrogen chloride with 

ammonia and methylated amines to electrostatic fields was investigated. Infrared 

spectroscopic measurements were conducted for the complexes isolated in the solid 

Ar matrix under the influence of strong external electric fields (<1 × 108 V/m). The 

vibrational bands of the parallel/anti-parallel (“proton stretching”) and the 

perpendicular (“proton bending”) proton motions showed the exceptionally drastic 

field-driven changes. The Stark spectral changes were characteristic of each complex 

which represents a different degree of field-induced proton dislocation in the 

complexes. The spectroscopic observations were interpreted and discussed with the 

concept of protonic polarizability of the complexes in parallel/anti-parallel and 

perpendicular directions to the proton-transfer coordinate.  
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6.1. Introduction 

Strongly hydrogen-bonded molecular complexes, typically composed of a strong 

Brønsted-Lowry acid and a strong base, have been a target of numerous studies to 

reveal the nature of hydrogen bond and proton transfer [1–18]. Pimentel and 

coworkers used the matrix isolation technique to pioneer the studies on the strongly 

hydrogen-bonded complexes, especially on the molecular complexes of hydrogen 

halides (HX) with base molecules (B). They grouped these complexes into three 

classes according to what they called “normalized proton affinity (PA) difference” 

Δ, defined as [PA(B) – PA(X−)]/[PA(B) + PA(X−)] [1]. “Type I” complexes are those 

with largely negative Δ, in which the proton is much closer to the halide ion (X−) 

than to the base molecule. When Δ increases above a certain value, proton is nearly 

equally shared by X− and B, and they named this class of complexes as “completely 

shared” or “type II” hydrogen bond. “Type III” complexes have more positive Δ than 

“type II” and have an ion pair structure, in which proton transfer has occurred to 

have hydrogen bonding between X− and BH+ ions. Pimentel and coworkers also 

introduced a plot called “vibrational correlation diagram,” in which the frequency of 

proton vibration (X···H···B asymmetric stretching) of the molecular complexes is 

correlated with the normalized proton affinity difference. They observed that the 

proton vibration frequency, originally the H–X stretching before complexation, 

significantly red-shifts with increasing Δ, reaches a minimum frequency point at 

“type II” region, and increases back to higher frequency as Δ increases from the 

turning point. Barnes and coworkers expanded the studies by investigating a large 

variety of molecular complexes isolated in various matrices [2–4]. They observed a 

similar correlation of proton vibration frequencies to the proton affinity difference, 

with an additional consideration on the effect of matrix.  



105 

 

A prototypical example of this system is the complexes of hydrogen 

chloride (HCl) with ammonia (NH3) and methylated amines (methylamine; MeNH2, 

dimethylamine; Me2NH, trimethylamine; Me3N) [5–10]. Ammonia and amines span 

a wide range of proton affinity through methylation, complexation of which with 

HCl forms a family of complexes including all three proton-transfer types. Figure 6-

1 shows the vibrational correlation diagram of these complexes and HCl–H2O. The 

proton frequency shown in the ordinate indicates the frequency of the Cl···H···N 

asymmetric stretching in general, which can be approximated to the H–Cl and N–H 

local stretching modes for “type I” and “type III” complexes, respectively. The H–

Cl stretching retains its vibrational character when HCl is complexed with weak base 

molecules, forming “type I” complexes. It becomes, however, the Cl···H···N 

asymmetric stretching when proton is shared between Cl− and N (“type II”) and the 

N–H stretching of NH+ bond in “type III” complexes. 

The matrix effect significantly alters the proton vibration frequency of the 

isolated complex compared to the gas-phase frequency [9, 10]. In the case of HCl–

NH3 1:1 complex, the H–Cl stretching frequency differs significantly between gas-

phase (~2200 cm−1) and in the Ar matrix (1370 cm−1) [4]. This contrasts with the 

similar frequency of uncomplexed HCl monomer in the Ar matrix (2871 cm−1) to 

gas-phase frequency (2886 cm−1) [19, 20]. The substantial difference in proton 

vibrational frequency between gas-phase and in matrix may be attributed to the large 

susceptibility of proton vibration to the internal electrostatic fields of the matrix as 

well as structural confinement effect of the matrix. 
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Figure 6-1. Vibrational correlation diagram of A···H···B complexes (A = Cl; B = 

H2O, NH3, MeNH2, Me2NH, Me3N) isolated in the Ar matrix. The proton stretching 

frequency of each complex is plotted as a function of proton affinity of the acceptor 

(B).  

 

 Electrostatic fields are thought to be a critical factor on the process of 

proton transfer. In this work, the IR spectral changes of the matrix-isolated molecular 

complexes of HCl with NH3 and methylated amines under the influence of strong 

experimental fields (<108 V/m) were investigated. The external fields were 

systematically applied by using the ice film nanocapacitor method [21, 22]. Each 

proton-transfer complex showed a characteristic field-induced spectral change. The 

spectral changes were rationalized by the displacement of proton induced by 

electrostatic fields.  
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6.2. Experimental Details 

The experiments were conducted in an ultrahigh vacuum (UHV) chamber, described 

in detail elsewhere [22, 23]. The molecular films were prepared on a Pt(111) 

substrate at about 10 K by sequential deposition of the corresponding gaseous 

species introduced into the UHV chamber through variable leak valves. Ar, NH3, and 

HCl (Sigma-Aldrich, >99%) gases were used directly from commercially available 

gas cylinders. MeNH2, Me2NH, and Me3N gases were prepared by thermal 

evaporation of corresponding molecules from MeNH2 (Aldrich, 40 wt % in H2O), 

Me2NH (Aldrich, 40 wt % in H2O), and Me3N (Aldrich, 45 wt % in H2O) aqueous 

solutions, respectively, utilizing the large vapor pressure of amines relative to that of 

water. All liquid materials used in the preparation of gaseous species, including D2O 

(Aldrich, 99 atom % D), were purified by freeze–pump–thaw cycles. Tube dosers 

were used to guide gaseous HCl, NH3, and amines close to the Pt(111) substrate. 

Other gases were back-filled. 

 The matrix-isolation of molecular complexes was achieved by co-

adsorbing the corresponding molecules with excess amount of Ar gas. The sample 

had a stacked structure of an Ar film (288–960 ML thickness; ML = monolayer; 1 

ML = 1.1 × 1015 molecules/cm2) containing molecular complexes of interest, which 

was sandwiched between two spacer layers (96–120 ML each) of pure Ar films. The 

Ar film was capped with an amorphous D2O film (25 ML). The thickness of the 

complete sample was 290–710 nm. 

 Electrostatic fields were applied across the film by using the ice film 

nanocapacitor method, the detailed description of which can be found elsewhere [21]. 
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The field strength was increased by the deposition of Cs+ ions on the capping ice 

film and decreased by spraying low energy (roughly 3 eV) electrons on the film [24, 

25]. The strength of the applied field was estimated from the film voltage measured 

with a Kelvin probe. The macroscopic field strength (F0), given in this paper, was 

obtained simply by dividing the film voltage with the thickness of the film. The 

actual field strength is expected to be clocalF0, with the local field correction factor 

clocal roughly estimated to be in the range of 1–2 [22, 26]. 

 Reflection–absorption infrared spectroscopic (RAIRS) measurements were 

conducted using a Fourier transform infrared spectrometer with a liquid nitrogen-

cooled mercury–cadmium–telluride detector in the grazing angle reflection 

geometry (85°). An incident IR beam was p-polarized by a wire grid polarizer. The 

RAIR spectra were averaged 1024 times with 4 cm−1 resolution. The sloped baselines 

of RAIR spectra, caused by the increasing negative reflectance–absorbance with 

increasing wavenumber [27, 28], were corrected for better visualization.  

 

 

6.3. Results 

In a simplified point of view, the proton in the Cl···H···NHnMe3−n (n=0–3) 

complexes has three degrees of motional freedom. One of them is the movement 

along the proton-transfer coordinate which results in the stretching vibration of 

proton. The proton vibrations that are essentially the proton motion parallel to the 

proton-transfer coordinate corresponds to the H–Cl stretching for “type I”, the 

Cl···H···N asymmetric stretching for “type II”, and the N–H stretching for “type III” 

complexes. In the rest of this article, we use a term “proton stretching” to indicate 

all these stretching vibrations. Other two degrees of freedom are perpendicular 
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motions with respect to the proton-transfer coordinate. The vibrations predominantly 

composed of proton motion perpendicular to the axis are termed “proton bending” 

in this work. For C3v complexes, Cl···H···NH3 and Cl···H···NMe3, the perpendicular 

proton motions result in the doubly-degenerate Cl···H···N bending vibrations.  

The IR spectrum of each Cl···H···NHnMe3−n (n=0–3) complex, in addition 

to vibrational bands of the NHnMe3−n molecule, is expected to show an intense band 

originating from the proton stretching and bands from the proton bending, the field-

induced spectral changes of which are the main focus of this research. In the case of 

Cl···H···NH3 and Cl···H···NMe3 complexes, the proton bending band were reported 

to be as intense as the proton stretching band [5, 6]. The low-frequency motions such 

as the intermolecular stretching (or Cl···H···N symmetric stretching) and the 

libration of HCl or NHnMe3−n molecules are also expected to be IR active, though 

those were not investigated in this work. The proton stretching and bending motions 

can vibrationally couple with the vibrations of the NHnMe3−n molecule, which 

complicates the normal mode analysis of the complexes.  

The proton stretching (H–Cl stretching) vibration of HCl–NH3 1:1 complex 

isolated in the Ar matrix displays a broad band at 1370 cm−1 [5, 7]. The band is 

shaded gray in Figure 6-2. When external fields were applied, the band became split 

into two components, accompanied by the decrease of intensity (dotted difference 

spectrum in Figure 6-2). The band located at 1070 cm−1 corresponds to the umbrella 

vibration of NH3 in HCl–NH3 complex. The umbrella vibration of uncomplexed NH3 

monomer in the Ar matrix has 968 cm−1 frequency [29, 30]. It became Stark-

broadened by the external field, with the magnitude of Stark sensitivity (|Δμ|; ΔF =
∆yz/�,��; Δyz = frequency change; �,�� = external field strength) estimated to be 

around 16 cm−1/(108 V/m) (see Chapter 4), which is similar to that of the umbrella 

vibration of the matrix-isolated NH3 monomer (14 cm−1/(108 V/m)) [29]. The band 
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at 1290 cm−1 was assigned, by Barnes et al., to the proton bending (Cl···H···N 

bending) motion [5], while Andrews and coworkers reassigned it as the first overtone 

of H–Cl libration which locates at 734 cm−1 [7]. In both assignments, the band is 

correlated with predominantly the protonic motion where the proton is oscillating 

perpendicular to the main axis of the complex. The large field-induced spectral 

change of 1290 cm−1 band agrees with the assignment of the band to protonic motion. 

The bands in 1400–1470 cm−1 and 1080–1120 cm−1 were assigned to larger 

aggregates of HCl and NH3 [5, 7].  

 

 

Figure 6-2. RAIR spectra of the Ar matrix containing HCl and NH3 acquired as a 

function of field strength. The bands that correspond to HCl–NH3 1:1 complex are 

highlighted with shades. Dotted line indicates the difference absorbance between the 

Stark spectrum at 2.4 × 107 V/m and the zero-field spectrum. The broad band at 1220 
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cm−1 is of the bending vibration of D2O layer capping the Ar matrix, used for the ice 

film nanocapacitor. 

 

Ab initio calculations on the HCl–NH3 complex expect the extraordinarily 

large IR intensity for proton stretching motion, but not for the perpendicular proton 

motions. The calculated IR intensity for perpendicular motions was about two orders 

of magnitude smaller than that for proton stretch. In experimental observations on 

the matrix-isolated HCl–NH3 complex, however, the IR bands at 1290 cm−1 and 734 

cm−1, which were assigned to perpendicular proton motions, had comparable 

intensity with 1370 cm−1 band [5, 7]. The reason for this discrepancy between 

experiments and calculations is uncertain. It may originate from the poor estimation 

of quantum calculations on IR intensity and/or frequency of intermolecular 

vibrational motions.  

Figure 6-3 shows the field-induced spectral changes of matrix-isolated 

HCl–MeNH2 1:1 complex. The broad band at 743 cm−1, gray-highlighted in Figure 

6-3, corresponds to the proton stretching motion [6]. It has lower frequency than its 

correspondence of HCl–NH3 complex. Upon the application of external fields, the 

position of the band became blue-shifted (743 cm−1 at zero-field → 750 cm−1 at 3.5 

× 107 V/m) and the width of the band became larger (full width at half maximum 17 

cm−1 at zero-field → 24 cm−1 at 3.5 × 107 V/m). The transition with small intensity 

at 915 cm−1, shaded light gray in Figure 6-3, was assigned to the NH2 wagging 

weakly mixed with proton motion [6]. The peak seemed to undergo field-induced 

broadening, though the small intensity restricts a clear observation. Note that the 

increase of frequency of NH3 umbrella vibration (968 cm−1 for NH3 monomer in Ar 

→ 1070 cm−1 for HCl–NH3 in Ar) [29, 30] and NH2 wagging (796 cm−1 for MeNH2 

monomer in Ar → 915 cm−1 for HCl–MeNH2 in Ar) [6] upon complexation of NH3 
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and MeNH2 with HCl, respectively, was both about 100 cm−1. The slash pattern in 

Figure 6-3 around 800 cm−1 indicates the spectral region where abnormally large 

instrumental errors in the equipment used in the present work forbade a proper 

analysis.  

 

 

Figure 6-3. Stark spectra of HCl–MeNH2 complex. The slash pattern around 800 

cm−1 shows the spectral region with large instrumental error.  

 

The frequency of the proton stretching bounces back to higher frequency 

under additional methylation from HCl–MeNH2. It appeared at 843 cm−1 for HCl–

Me2NH complex isolated in the Ar matrix [6], as shown in Figure 6-4 with gray 
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shade. The external fields induced the band at 843 cm−1 to be split into two 

components and decreased the intensity of the band, similarly to 1370 cm−1 band of 

HCl–NH3. Barnes et al. assigned the peak at 915 cm−1 to the NH in-plane bending of 

HCl–Me2NH complex in Ar (note: the NH in-plane bending of Me2NH monomer in 

Ar locates at 734 cm−1) [6], an analogous motion to the NH3 umbrella vibration in 

HCl–NH3 and the NH2 wagging in HCl–MeNH2. Though too weak to be clearly 

identified, this peak at 915 cm−1, shaded light gray in Figure 6-4, seemed to be 

broadened by external fields. Features at 850–900 cm−1 are thought to originate from 

aggregates of HCl and Me2NH [6].  

 

 

Figure 6-4. Stark spectra of HCl–Me2NH complex.  
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In Figure 6-5, the IR spectrum of the Ar matrix containing Me3N and HCl 

(black line, zero-field) was compared with that of Me3N only (gray dashed line). 

1472, 1455, 1439 cm−1 transitions were assigned to the CH3 deformation (A1, E), 

1271 cm−1 to the CN stretch (E), 1185 cm−1 to the CH3 rock (A1), and 1097, 1040 

cm−1 to the CH3 rock (E) of Me3N monomer isolated in solid Ar matrix [6, 31]. Three 

bands in HCl–Me3N spectra were evidently distinguishable from Me3N-only spectra: 

1486, 1030, and 1019 cm−1 transitions. Barnes et al. assigned 1486 cm−1 band to the 

proton stretching of HCl–Me3N complex and 1030 and 1019 cm−1 bands to proton 

bending strongly coupled with the CH3 rocking (E) mode [6].  

 

 

Figure 6-5. Stark spectra of HCl–Me3N complex. The dashed gray spectrum was 

acquired from the Ar matrix containing only Me3N, without HCl. The dotted vertical 
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lines indicate the peak positions of the matrix-isolated HCl–Me3N 1:1 complex.  

 

 The external fields resulted little effect on 1486 cm−1 peak, but significantly 

influenced 1030 and 1019 cm−1 peaks. As inferred from the difference absorbance 

shown with dotted line in Figure 6-5, 1030 and 1019 cm−1 transitions shifted toward 

lower frequency as external field became stronger. The transitions which correspond 

to Me3N monomer were unchanged by external fields on the scale displayed in 

Figure 6-5.  

 

 

6.4. Discussion 

The HCl complexes with NH3 and amines are a representative homologous series in 

that they share a common essential structure during proton transfer: for instance, 

when the equilibrium structure is calculated for HCl–NH3 complex with a fixed H–

Cl distance (r(H–Cl)) which coincides with that of HCl–Me3N, the resulting H-N 

distance (r(H–N)) and N–Cl distance (r(N–Cl)) would be almost identical for both 

complexes. This makes the family of the complexes serve as a prototypical system 

of proton-transfer complexes with HCl and N-base molecules. 

In the rigid Ar matrix, the strongly hydrogen-bonded molecular complexes 

are expected to retain their initial isotropic distribution of orientation under the 

external fields of <108 V/m applied in this work. The field-driven splitting of the 

proton stretching band at 1370 cm−1 of HCl–NH3 complex results from the 10−1 pm 

order displacement of proton along the proton-transfer axis induced by external 

fields (<108 V/m), as the previous work on HCl–H2O complex under fields has 

demonstrated (see Chapter 5). The external fields parallel to the dipole would induce 
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the elongation of r(H–Cl), translocating proton closer to NH3 by means of the dipole–

field stabilization energy, resulting in the red-shift of the proton stretching. The anti-

parallel fields affect in an opposite manner, blue-shifting the band.  

 The proton bending vibration of HCl–NH3 complex has a transition dipole 

perpendicular to the proton-transfer coordinate (main axis of the complex). This 

implies that the complexes whose proton bending vibration contributes dominantly 

to the experimentally observed intensity have perpendicular orientation with respect 

to external electrostatic fields collinear with the IR radiative field. These complexes 

undergo little parallel or anti-parallel displacement of proton (see Figure 6-6). 

Instead, the proton may be displaced perpendicularly by the perpendicular external 

fields. The large intensity of the proton bending in the zero-field experimental 

spectra, comparable to that of the proton stretching, implies the significant 

perpendicular displacement of proton by radiative fields, which provides the 

feasibility of perpendicular proton dislocation by an external dc field. When the 

proton is perpendicularly displaced by a dc field, the proton bending vibration is 

expected to be manipulated in two manners: 1) the frequency would change 

unidirectionally (presumably to lower frequency due to the lowered force constant 

upon perpendicular proton displacement), since the complex has an approximately 

cylindrical symmetry (rigorously C3v) and perpendicular fields are applied in radial 

direction, 2) the double-degeneracy (E symmetry in C3v) would be broken.  
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Figure 6-6. Schematic of proton displacement induced by parallel/anti-parallel and 

perpendicular external fields.  

 

The ensemble of HCl–NH3 complexes isolated in the Ar matrix has an 

isotropic distribution of orientation with respect to an external field. This means that 

the majority of IR intensities of the proton stretching and bending would experience 

the field neither parallel/anti-parallel nor perpendicular, which may result in the two-

dimensional (parallal/anti-parallal + perpendicular) proton displacement. Therefore, 

in addition to the spectral changes of the proton stretching induced by parallel/anti-

parallel fields and those of the proton bending by perpendicular fields discussed 

above, the cross terms, namely the response of the proton stretching vibration by 

perpendicular dislocation and that of the proton bending by parallel/anti-parallel 

dislocation, should be taken into consideration in order to account for the 

experimental Stark spectral changes. Quantum calculations on the complex will be 
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needed to elucidate these effects and ultimately to confidently interpret the observed 

Stark spectra. This approach may account for the intensity decrease of the proton 

stretching band (1370 cm−1) under the influence of an external field as shown in 

Figure 6-2, the reason for which is unexplainable by the known vibrational Stark 

effect of a single oscillator with an isotropic orientation distribution [32, 33]. 

The unidirectional blue-shift of the proton stretching band (743 cm−1) of 

HCl–MeNH2 seems to originate from the field-induced parallel/anti-parallel 

displacement of proton in the complex. Since the HCl–MeNH2 complex isolated in 

the Ar matrix, with the lowest proton stretching frequency among the family of 

molecular complexes of HCl with NH3 and methylated amines, can be classified as 

a complex with “completely shared” or “type II” hydrogen bond, proton 

displacement in both parallel and anti-parallel directions would result in the increase 

of proton stretching frequency. In other words, the extremely broad minimum of the 

potential energy surface along the proton stretching coordinate becomes narrower by 

external fields regardless of their parallel/anti-parallel directions.  

In the case of HCl–Me2NH, the proton stretching band at 843 cm−1 showed 

a similar field-response with that of HCl–NH3 complex. This implies that the 

behavior of proton in HCl–Me2NH, which slightly deviates from “type II” to “type 

III” class, would be similar to that of HCl–NH3, “type I” complex.  

The 1486 cm−1 band of HCl–Me3N, which was assigned to the proton 

stretching by Barnes and coworkers [6], changed little under the influence of external 

fields. This contrasts to the substantially large field-induced spectral change of 

proton stretching vibrations of other complexes. Two possibilities may account for 

the little field-driven spectral change of HCl–Me3N: 1) the 1486 cm−1 band originates 

mostly from the CH3 deformation (A1), only weakly associated with the proton 

stretching, 2) The parallel/anti-parallel proton displacement is not significant in this 
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complex. The latter can be rationalized by the complex being an ion pair structure 

and the proton is bound to N as N–H+ bond. Spectral analysis based on quantum 

structure calculation will be needed to distinguish these possibilities.  

 The significantly field-modified 1030 and 1019 cm−1 bands of HCl–Me3N 

possibly correspond to the proton bending vibration coupled with the CH3 rock (E) 

of Me3N molecule, as suggested previously [6]. Those may alternatively correspond 

to the proton stretching coupled to the totally-symmetric (A1) vibrations of Me3N, 

but the nearest A1 symmetry bands (CH3 rock: 1185 cm−1, CN stretch: 823 cm−1) are 

not in enough vicinity from 1030, 1019 cm−1 bands to be coupled. Besides, the 

experimentally observed unidirectional red-shift by external fields cannot be 

explained with frequency change of proton stretching vibration induced by 

parallel/anti-parallel proton displacement. We speculate that the Stark spectra 

revealed the frequency change of the proton bending vibration of HCl–Me3N caused 

by substantial perpendicular displacement of proton in the complex. Again, the large 

intensity of the proton bending band implies that the proton is prone to be displaced 

perpendicularly by perpendicular fields. The frequency of the proton bending is 

expected to be red-shifted and the double-degeneracy would be destroyed upon the 

perpendicular proton displacement. In addition, as the frequency of proton bending 

evolves away from that of CH3 rock (E) of Me3N (~1040 cm−1), the intermolecular 

coupling between those two motions would be weakened.  

 Figure 6-7 is a plot of peak frequency as a function of external field strength, 

compiled for the molecular complexes investigated in this work. From the linear 

frequency change, the magnitude of Stark sensitivity, clocal|Δμ|/cdist, can be estimated, 

where clocal (1–2) is the local field correction factor and cdist (1.2–1.4) accounts for 

the isotropic angular distribution of dipoles with respect to the direction of external 

field. For the band split into two components by external fields, the average rate of 
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frequency shifts was used for the estimation. Since the spectral changes of the 

complexes do not have a definitive interpretation yet, we cannot guarantee that those 

values simply estimated from the linear frequency change would be physically 

meaningful. It can be argued, however, with certainty, that the proton-involved 

vibrations of HCl complexes with NH3 and amines are extremely sensitive to 

external electrostatic fields, with Stark sensitivity values about an order of magnitude 

larger than that of uncomplexed HCl (2.7 cm−1/(108 V/m)) [20].  
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Figure 6-7. Peak frequency plot as a function of external field strength for different 

matrix-isolated complexes of HCl with NH3, MeNH2, Me2NH, and Me3N. The Stark 

sensitivity values, clocal|Δμ|/cdist, estimated from the frequency change under external 

fields, are shown in the right-side of the plot.  

 

 

6.5. Conclusion 

The IR spectra of the proton-transfer complexes of HCl with NH3, MeNH2, Me2NH, 

and Me3N were investigated under the influence of external electrostatic fields of <1 

× 108 V/m. The bands for the proton stretching and the proton bending showed 

drastic changes by fields. The spectral changes observed for different complexes 

were characteristic of different stages of proton transfer in acid–base complex. The 

large field-susceptibility of the proton stretching and the proton bending is proposed 

to originate from the protonic polarizability of complexes in parallel/anti-parallel and 

perpendicular directions, respectively. The parallel/anti-parallel polarization of 

proton by electrostatic fields implies the important role of electrostatics in various 

proton transfer processes including coupled electron and proton transfer reactions. 

As a novel concept which has hardly been proposed previously, the perpendicular 

proton polarization may open a new perspective on protonic behavior in molecular 

physics and chemistry. This study would provide an insight on the veiled electrostatic 

behavior of proton.  
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Chapter 7 

Summary 

 

This dissertation explores the experimental manipulation of molecules and 

molecular clusters with external electrostatic fields. The molecules and molecular 

clusters of interest have been isolated in the inert Ar matrices. Strong external 

electrostatic fields (<2 × 108 V/m) have been applied across the matrices containing 

the target molecules and clusters by using the ice film nanocapacitor method. It has 

been shown in Chapter 3 that electrostatic fields can manipulate the inversion 

dynamics of ammonia molecule. The field-induced frequency shifts have been 

investigated for small hydrogen-bonded clusters of water and ammonia, and the 

clustering effect on Stark response has been discussed in Chapter 4. It is 

demonstrated that electric fields on 108 V/m scale enable the dislocation of proton in 

the hydrated acid clusters and proton-transfer complexes in Chapter 5 and Chapter 

6, respectively.  

 As mentioned in Chapter 1, the manipulation of molecules, and therefore 

their dynamics and reactivity, with controllable external forces is a dream of chemists. 

Nature utilizes the electrostatics in an extremely sophisticated way to control 

dynamics and reactions in chemical and biological systems. Nature knows in what 

strength and in which direction electric fields are generated by charges, and how they 

affect the molecular properties in the complicated systems. Chemists try to mimic 

what nature does. Organic chemists change the solvent and therefore local electric 

field to control reactions. Biochemists design artificial protein structures to 
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manipulate the reactivity at enzymatic site. Electrochemists apply a bias voltage to 

induce reactions within the electric double layer. Inherent in all these methods can 

be regarded as fundamental electrostatics: control of electric fields in the solvent 

environment, inside the protein structure, and at the electrode/liquid interface. Yet, 

we are far from complete understanding of the molecular electrostatics in the real 

system. 

 Presented in this dissertation partly illustrate how the electric fields interact 

with molecules and molecular clusters and how the fields can be utilized for 

manipulating molecular structures and reactions. Eventually, this type of studies is 

expected to shed light on the detailed mechanism of intermolecular interactions and 

chemical processes. Besides, the well-understood and perfect control of molecules 

with external fields will potentially lead us to realize our imagination in nano- and 

quantum technologies. Of course, there are still numbers of questions to be answered 

on the way to these goals. How would strong external forces influence the motional 

(rotational, vibrational, translational) behaviors of molecules and intra-/inter-

molecular chemical properties in the complicated molecular systems? How can we 

push the boundary beyond the current limitation on the applicable strength of 

controlled external forces to molecular systems? 

 In brief, the studies carried out in this dissertation show that the vibrational 

spectroscopy with the aid of unprecedentedly strong dc electric field can provide rich 

information on the electrostatic behaviors of molecules and molecular clusters, 

which underlie the understanding of intermolecular processes and molecular 

manipulation.  
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Abstract in Korean (국문 초록) 

전기장을 이용한 분자 및 분자 클러스터  

조작에 관한 연구 

서울대학교 대학원 

화학부 물리화학전공 

박 영 욱 

 

본 학위 논문은 108 V/m 수준의 강한 외부 정전기장이 저온의 비활성 

매트릭스 내에 고립된 분자 및 분자 클러스터의 방향, 구조, 동력학 

등의 성질을 어떻게 조작하는지에 대해 다룬다. ‘얼음 박막 축전법’과 

‘매트릭스 고립법’을 동시에 이용하여 이전 연구에서는 가할 수 

없었던 강한 외부 직류 전기장을 고립된 분자와 분자 클러스터에 가할 

수 있었다. 외부 전기장에 의한 분자 특성의 변화는 진동 분광학을 

이용해 관측하였다. 

1장에서는 외부 힘을 통해 분자를 조작하는 기존 연구들을 

소개한다. 정전기장, 자기장, 광학 전기장 등의 외부 힘을 이용한 분자 

조작에 관한 간단한 역사를 소개하고, 그 후에는 정전기장을 이용한 

연구들에 대해 보다 자세히 다룬다. 본 학위 논문 연구에서 이용된 

방법론에 대해서도 간단히 소개한다.  

2장에서는 연구에 사용된 실험 방법을 설명한다. 강한 외부 
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전기장을 걸어주기 위해 ‘얼음 박막 축전법’을 사용하였고, 고립된 

분자 및 분자 클러스터를 만들기 위해서는 ‘매트릭스 고립법’을 

사용하였다. 전기장에 의한 분자 및 분자 클러스터의 변화는 ‘반사-

흡수 적외선 분광법’이 사용되었다. 이 방법들에 대한 원리적, 실용적 

측면들을 요약한다. 실험에 사용된 장치에 대해서도 묘사한다. 

3장은 암모니아 분자의 반전 터널링 동력학의 전기장에 의한 

변화에 대한 분광학적 연구이다. 아르곤 매트릭스 내의 암모니아 분자는 

외부 방해가 없을 때 대칭적인 이중-최소점 퍼텐셜 에너지 표면 내에서 

매우 빠른 우산-반전 터널링을 일으키는 것으로 알려져 있다. 강한 

외부 전기장이 가해지면 반전 상태들의 Stark 섞임이 일어나고, 그로 

인해 분자가 전기장 방향으로 정렬하게 된다. 정렬된 암모니아 분자는 

비대칭적인 이중-최소점 퍼텐셜 에너지 표면을 가지게 되고, 따라서 

반전 터널링이 일어나지 않게 된다. 외부 전기장에 의한 이러한 

변화들은 전기장 세기를 변화시켜가며 얻은 적외선 스펙트럼에 

암호화되어 있으며, 본 연구에서는 퍼텐셜 에너지 표면, 파동함수의 

편재화, 전이 선택 규칙 등을 이용하여 이를 해석하였다.  

4장에서는 물과 암모니아 분자를 포함하는 수소 결합 

클러스터의 진동 Stark 민감도의 실험적 측정에 관해 다룬다. 외부 

전기장은 분자 진동의 퍼텐셜 에너지 표면을 조작하여 진동수 이동을 

일으키는데, 이를 진동 Stark 효과라고 한다. 분자 클러스터의 진동 

Stark 민감도는 클러스터를 이루지 않은 단독 분자의 민감도와 크게 

다른 것으로 관찰되었다. 이러한 클러스터 효과를 진동의 비조화성, 

구조적 효과, 분자간 진동 짝지음 등의 측면에서 논의한다. 수소 결합을 



133 

 

통한 클러스터링의 극단적 예시로 결정형 얼음의 진동 스펙트럼이 

전기장에 의해 어떻게 변하는지를 조사하였으며, 이를 단독 물분자와 

비교하였다.  

5장과 6장은 강한 외부 전기장이 산성 양성자를 이동시킬 수 

있다는 것을 실험적으로 보여주었다. 5장은 염화수소-물(H2O, D2O) 

클러스터에 대한 진동 Stark 분광학적 연구이다. 이 클러스터의 양성자 

신축 진동수가 외부 전기장에 의해 매우 크게 변화한 것을 관찰하였다. 

염화수소-D2O 클러스터의 경우에는 양성자 신축 진동과 D2O의 대칭 

신축 진동의 짝지음이 외부 전기장에 의해 변하는 것을 관찰하였다. 

양자 계산을 이용해 스펙트럼을 해석한 결과, 외부 전기장이 염화수소-

물 클러스터의 양성자 전달 좌표 상에서 양성자가 가역적, 비대칭적으로 

이동하도록 유도한다는 사실을 알 수 있었다. 6장은 염화수소와 

암모니아, 메틸화된 아민 분자의 클러스터에 대한 연구이다. 이 

클러스터들은 양성자 전달 시스템의 대표적인 예이다. 평행한 방향의 

양성자 신축 진동 뿐만 아니라 수직 방향의 양성자 굽힘 진동 역시 외부 

전기장에 의해 큰 진동수 변화를 나타냈다. 각 양성자 전달 분자 

클러스터는 전기장에 의해 고유한 스펙트럼 변화를 보였다. 수화된 산성 

분자와 양성자 전달계에 대한 이러한 연구는 양성자의 거동에 있어서 

핵심적인 개념인 큰 양성자 편극도에 대한 실험적 증거를 제공한다.  

7장은 본 학위 논문의 요약이다. 본 연구의 중요성과 전망을 

분자간 화학적 과정과 양자 기술에서의 분자 조작의 측면에서 서술한다.  
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