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Abstract 

Applications of Designed Nucleases in  

Various Organisms 

 

 CHOONGIL LEE 

Department of Chemistry 

The Graduate School 

Seoul National University 

 

According to a development of life technology for industry and medical science, 

it became clear that genome editing tools will be arisen in the future. Moreover, it is 

necessary for understanding and finding a way of application in designed nucleases. 

In agreement with its need, we can improve living resources and healthy life by 

utilizing designed nucleases.  

I have been studying genome editing for an application of various organisms 

using designed nucleases such as ZFN, TALEN and CRISPR. At the first study, I had 

modified CMAH gene in pig genome and using its knockout(KO) cells for SCNT. 

The CMAH gene is related to immune rejection in xenotransplantation. We had 

aimed to produce null CMAH organ donor pigs using by ZFN and SCNT. We 

improved efficiency of CMAH gene KO cells by aid of MACS and FACS surrogate 

reporter systems. Finally we could generate CMAH KO pig blastocysts. In the second 
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study, we utilized TALEN for pig genome editing. In this study we had generated 

CMAH and GGTA1 gene KO cell lines in immortalized pig fibroblast. We could 

confirm a development of blastocyst using immortalized CMAH KO cell by SCNT. 

In the third study, we observed NR gene mutation by delivering Cas9 RNP into the 

protoplast of petunia. This results could suggest a possibility for gene editing in 

petunia by Cas9 RNP. At the last study, we showed overcoming premature 

termination codons (PTCs) which causes genetic defeat in a human genetic diseases. 

We named this method as for CRISPR-pass and proved its possibility in XPC gene 

patient-derived fibroblast.  

In a summary we tried to do gene editing in a various organisms with ZFN, 

TALEN and CRISPR. At the same time we also tried to help for understanding of 

designed nuclease and suggested a way of its applications.  

Keywords: Zinc Finger Nuclease, TAL-Effector Nuclease, Xenotransplantation, 

CRISPR-Cas9, Adenine Base Editor, Pre-mature termination codon, CRISPR-

pass.  

Student Number: 2012-20286  
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PART 1. Applications of designed nucleases: Zinc Finger 
Nuclease (ZFN), TAL Effector Nuclease (TALEN) and 
Clustered Regularly Interspaced Short Palindromic 
Repeats (CRISPR)-Cas9 
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Ⅰ. Introduction 

In a development of life technology, genome editing tools, such as designed nucleases have 

been also improved. The first designed nuclease was Zinc Finger Nuclease (ZFN) (Bibikova et 

al., 2003; Maeder et al., 2008; Urnov et al., 2005). The second designed nuclease was 

Transcription Activator-Like Effector Nuclease (TALEN) (Boch et al., 2009; Cermak et al., 2011; 

Gaj et al., 2013; Kim et al., 2013b; Miller et al., 2011; Moscou and Bogdanove, 2009). The third 

designed nuclease was Clutstered Regularly Interspaced Short Palindromic Repeats (CRISPR) 

(Cho et al., 2013; Cong et al., 2013; Hwang et al., 2013b; Jiang et al., 2013a; Jinek et al., 2012; 

Mali et al., 2013). At last, there were modified-form of CRISPRs for nucleotides base editing, 

such as Adenine base editor (ABE) (Gaudelli et al., 2017) and Cytidine Base editor (CBE) (Komor 

et al., 2016). Moreover recently developed “prime editing” system allows all kind of nucleotides 

changes in a genome (Anzalone et al., 2019). By using designed nucleases, I have been studying 

about genome editing in various organisms, for example genome of porcine, petunia and patient 

derived-fibroblast.  

In the first study, I had tried to genome editing in porcine. Pigs are a useful experimental 

animal for biomedical research because of their anatomical and physiological similarities with 

humans (Smith and Swindle, 2006) and relatively high production efficiency (Koo et al., 2012). 

For these reasons, various transgenic pigs have been generated since the middle of the 1980s 

(Whyte and Prather, 2011). However, production of knockout or gene targeted pigs was extremely 

rare until very recently because of very low efficiency of homologous recombination in somatic 

cells and a lack of appropriate technologies, such as embryonic stem cells, in this species. A 

pioneering work using zinc finger nucleases (ZFNs) to produce knockout rats (Geurts et al., 2009) 

enabled us to perform a new approach for producing knockout mammals without homologous 

recombination or embryonic stem cells. ZFNs are engineered proteins composed of the FokI 

endonuclease domain linked to a DNA-binding zinc finger protein domain. Pairs of the ZFNs 

efficiently generate sequence-specific DNA double-strand breaks on a chromosome; 

consequently, targeted mutations can be introduced into cells of interest (Kim et al., 2009; Kim 

et al., 2011b; Watanabe et al., 2010). Since  first showed that the ZFN system can be used in 
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porcine cells, several knockout pigs have been generated using ZFNs and somatic cell nuclear 

transfer (SCNT) techniques. 

However, the protocols developed in the former studies cannot be used as a general 

application for producing knockout pigs with ZFNs. Most of the previous reports screened for the 

presence of ZFN-mediated mutations in donor cells by detecting loss of a specific surface 

molecule (Hauschild et al., 2011; Li et al., 2013b; Lutz et al., 2013) or ectopic marker gene 

expression (Whyte et al., 2011) affected by the mutation. For example, a specific surface molecule, 

alpha 1,3-galactose, is only available to detect mutations of alpha 1,3 galactosyltransferase and 

related genes. Also, ectopic marker gene expression, such as eGFP or luciferase, is necessary to 

generate the cell lines which have the gene sequences prior to gene targeting. Unfortunately, most 

of the other mutant cells generated by ZFN or other engineered nucleases, especially endogenous 

gene-modified cells, are somewhat phenotypically indistinguishable. Therefore, alternative 

protocols for screening or enriching mutated cells are needed. 

To overcome the hurdle, we developed a new protocol for generating mutated porcine 

embryos using a transiently transfected episomal reporter-based enrichment system for cells with 

ZFN-induced mutations (Kim et al., 2013a; Kim et al., 2011a). With the enrichment system, 

mutation frequencies of 8.7% to 47% (11- to 17-fold higher than frequencies in non-enriched cell 

populations) can be achieved. Moreover, gene-modified cells enriched with this system are alive 

and suitable for subsequent experiments. Hence, we assumed that this enrichment system, in 

combination with the SCNT technique, could provide a new generalized platform for producing 

mutated embryos. In the first study, we assessed the enrichment system in porcine cells and 

analyzed mutations in cloned pig embryos derived from the enriched ZFN-treated cells. 

In a second study. Like as first study, pigs are considered to be good biomedical models 

for researches such as xenotransplantation because of their many physiological similarities with 

humans (Aigner et al., 2010; Kwon et al., 2013; Lai et al., 2002; Matsunari and Nagashima, 

2009). Somatic cell nuclear transfer (SCNT) with genetically modified somatic cells has been 

used to generate pig models via transgenesis (Wolf et al., 2001). Typical gene modifications are 

ectopic expression or knockout of target genes (Liu et al., 2013; Lutz et al., 2013). While many 
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cloned piglets have been produced using ectopic expression, only three kinds of knockout piglets 

(α-galactosidase, cystic fibrosis, and interleukin-2 receptor) using homologous recombination 

have been born (Lai et al., 2002; Rogers et al., 2008a; Rogers et al., 2008b). Developing knockout 

pig models has been hampered to date because fibroblasts generally have a limited life span 

during in vitro culture and because of the low efficiency of the homologous recombination 

process (Kwon et al., 2013). To overcome these two issues, immortalization of fibroblasts and 

more efficient knockout protocols are needed. For immortalization, several genes such 

as BMI, SV40LT, and human telomerase reverse transcriptase (hTERT) can be transfected into 

cells. In previous studies, SV40LT and hTERT were used to immortalize porcine cells (Meng et 

al., 2010; Oh et al., 2007; Sagong et al., 2012; Saito et al., 2005). TALEN is an emerging high-

end technology used to create targeted double-stranded breaks in DNA (Hwang et al., 2013a). 

TALEN has employed for genome editing, resulting in target gene deletion or insertion in human, 

mouse, and rat cells (Ding et al., 2013; Kim et al., 2011a; Panda et al., 2013; Tong et al., 2012; 

Zhu et al., 2013). Application of TALEN to cells of large animals like pigs could more efficiently 

generate knockout cell lines and thus help to elucidate the underlying molecular processes 

(Carlson et al., 2012). After establishing knockout cell lines, the cell nuclei could potentially be 

reprogrammed in enucleated oocytes and produce knockout cloned offspring. 

In this study, to prove TALEN-mediated knockout, we elected to delete the CMAH gene, 

which is another important cell surface glycoprotein with α-galactosidase, for xenotransplantation 

pig models, and then, gene knockout cells were used for feasibility of embryonic development 

via SCNT. Here, we hypothesized that using immortalization and TALEN approaches together in 

porcine cells could serve as practical in vitro models of genome editing. 

In a third study, targeted gene modification using artificial nuclease enzyme such as 

CRISPR-CRISPR associated nuclease 9 (Cas9) system has announced as an emerging genome 

editing tool for plant breeding to improve plant varieties with novel traits (Feng et al., 2013; 

Svitashev et al., 2015; Wang et al., 2014a). Besides the CRISPR/Cas9 system, other nucleases 

such as ZFNs (Beerli and Barbas, 2002) and TALENs (Chen and Gao, 2013; Li et al., 2012),  

have also been used to modify target gene loci. All these nuclease enzymes usually create double 
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strand breaks (DSBs) in the target DNA sequences in a sequence-specific manner through 

sequence-specific DNA-binding domain (Gaj et al., 2013). Common cellular DNA repair 

mechanisms such as homology-directed repair (HDR) and error-prone non-homologous end 

joining (NHEJ) are processed to repair these DSBs (Wyman and Kanaar, 2006). They will cause 

insertion, deletion, or exchange of nucleotides, leading to gene modification at the target sites. 

DSB by typical ZFNs and TALENs requires dimerization of FokI monomer to increase site-

specific cleavage of DNA, indicating an active form of nuclease (Bitinaite et al., 1998). However, 

in some instances, formation of FokI homodimers can decrease site-specific cleavage and cause 

unwanted off-target effects (Gaj et al., 2013; Miller et al., 2007). CRISPR/Cas9 system, unlike 

other nuclease systems, requires only a common protein Cas9 with each single guide RNA 

(sgRNA) to help create DSBs precisely in target gene loci. Compared to other nucleases such as 

ZFNs or TALENS, CRISPR/Cas9 could be more efficient and simpler for genome editing (Kim 

et al., 2014). 

Type-II CRISPR/Cas9 system is originally derived from bacteria and archaea. It mainly 

acts as a defense system against invading foreign DNAs using RNA-guided endonuclease (RGEN) 

activity (Jinek et al., 2012). The general structure of CRISPR locus usually consists of a Cas9 

nuclease, a precursor CRISPR RNA (pre-crRNA) containing an array of 20 nucleotide nuclease 

guide sequences partially from pathogen invaders, and a trans-activating crRNA (tracrRNA). Pre-

crRNAs are transcribed and processed into mature crRNA that can eventually form complex with 

pre-crRNA and Cas9 nuclease to produce crRNA–tracrRNA–Cas9. Nuclease guide sequences in 

crRNA will guide this crRNA–tracrRNA–Cas9 complex to cleave complementary foreign DNA 

sequences accompanied by protospacer adjacent motifs (PAM) such as 5′NGG3′ (Jinek et al., 

2012) Cas9 system from Streptococcus pyogenes (SpCas9). The CRISPR/Cas9 system has been 

successfully employed to create mutations in both animal (Cho et al., 2013; DiCarlo et al., 2013; 

Hsu et al., 2014; Hwang et al., 2013b) and plant genomes (Feng et al., 2013; Hyun et al., 2015; 

Jiang et al., 2014; Li et al., 2013a; Miao et al., 2013; Nekrasov et al., 2013; Shan et al., 2013; Xie 

and Yang, 2013). 
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In 2014, cloning free CRISPR/Cas system has been established in human (Kim and Kim, 

2014) and animal systems (Aida et al., 2015) using direct delivery of RGEN ribonucleoproteins 

(RNPs), purified Cas9 protein, and target-specific in vitro transcribed sgRNA. Using this same 

approach, purified TALEN proteins have been reported to be able to induce mutations in plant 

system (Luo et al., 2015). These DNA-free genome editing tools have gained more attention than 

the older plasmid mediated delivery method that requires tissue-specific delivery tools. In 

addition, the older plasmid mediated delivery method has to be optimized for promoter for each 

organism, which sometimes can induce unwanted DNA fragment insertion at target sites of host 

cells (Kim et al., 2014). In addition, genome editing via DNA-free proteins delivery (Luo et al., 

2015; Woo et al., 2015) might be excluded from genetically modified organism (GMO) 

regulations in plants because no foreign DNA is introduced (Kanchiswamy et al., 2015). 

The efficiency of genome editing is mainly based on transfection of nuclease proteins 

with appropriate delivery methods. In most animal experiments, the usual delivery method of 

Cas9 protein is by using lipofection transfection reagent or through electroporation (Sander and 

Joung, 2014). In plants, tissue culture dependent transient expression such as callus culture, 

protoplast transfection, and agro bacterium mediated agro infiltration are used (Jiang et al., 2013b; 

Li et al., 2013a; Nekrasov et al., 2013; Shan et al., 2013; Xie and Yang, 2013). Some studies have 

reported that engineered CRISPR/Cas is active in creating mutations during protoplasts 

transfection. In addition, mutated genes are stably expressed in regenerated plants such as 

Arabidopsis and rice (Feng et al., 2013; Woo et al., 2015). These attributes make the protoplast 

strategy versatile for delivering Cas9 proteins to achieve target gene editing in 

plants. Petunia × hybrid, also known as garden Petunia, belongs to Solanaceae family. It is 

cultivated around the world as a flower with agronomic and ornamental value. 

Petunia has been utilized to study and understand floral development (Vandenbussche 

et al., 2004), transposable element systems (van Houwelingen et al., 1999), and insertion 

mutagenesis (Meyer, 2001). Moreover, due to its ease for genetic transfection (Conner AJ et al., 

2009) along with a wide range of aforementioned research backgrounds, Petunia has been 

suggested as a good system for studying genetics of phenotypic traits (Gerats and Vandenbussche, 
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2005; Gübitz et al., 2009). Based on these facts, the present study was carried out with Cas9 

mediated mutagenesis for nitrate reductase gene in Petunia × hybrida protoplast system. 

Since NR genes can facilitate nitrogen uptake and nitrate metabolism, any changes in their 

expression by transgenic approach will cause deficiency in nitrate assimilation, which eventually 

triggers phenotypic changes (Zhao et al., 2013). Therefore, NR genes are excellent targets to study 

changes in gene sequence or gene expression by Cas9-based system. 

In this study, we described RGEN RNPs technology in Petunia × hybrida to establish a 

site-directed mutagenesis system. We successfully delivered purified Cas9 protein preassembled 

with in vitro transcribed sgRNA into Petunia protoplasts in the presence of polyethylene glycol 

(PEG). Our results revealed that targeted gene mutation such as insertion and deletion could be 

created in four out of six specific sites of a NR gene in the genome of Petunia. The mutation 

efficiency of RGEN RNPs at target sites was assessed by targeted deep sequencing. Our results 

further suggests that direct delivery of Cas9-sgRNA system could be used for site-directed 

mutagenesis in Petunia. This site-directed mutagenesis system can be exploited for gene targeting 

in other related species. 
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Ⅱ. Materials and Methods 

1. Production of Mutated Porcine Embryos Using Zinc Finger 

Nucleases and a Reporter-based Cell Enrichment System 

 

a. ZFNs and surrogate reporters 

Plasmids encoding ZFNs that target exon 6 of the pig CMP-N-acetylneuraminic acid 

hydroxylase (CMAH) gene were previously described (Kim et al., 2009). Enrichment system with 

reporters, eGFP or H-2Kk as selection markers for fluorescence activated cell sorting (FACS) and 

magnetic activated cell sorting (MACS), respectively were constructed as previously described  

(Kim et al., 2013a; Kim et al., 2011a). 

 

b. Preparation of cells and culture conditions 

A primary culture of pig fetal fibroblast cells that has been established as described 

by Cho et al. (2011) was used. Briefly, fetal tissues were minced and dissociated in TrypLE 

Express (Gibco, CA, USA) for 10 min at 37°C. Cells were cultured in Dulbecco’s modified 

Eagle’s/Nutrient Mixture F-12 medium (DMEM/F12, Gibco) supplemented with 10% (v/v) fetal 

bovine serum, 1 mM Glutamax I (Gibco), 25 mM NaHCO3, 1% (v/v) minimal essential medium, 

nonessential amino acid solution (Gibco) and 1% (v/v) Anti-Anti (Gibco) at 39°C in a humidified 

atmosphere of 5% CO2 and 95% air. 

 

c. Plasmid DNAs transfection 

Fibroblasts were cultured to 80% to 90% confluence, then washed twice with D-PBS(−) 

(Gibco) and treated with 0.05% trypsin-EDTA (Gibco) to isolate and collect. Fibroblasts 

(2×106 cells) were electroporated using a 100μL Nucleocuvette, CA137 program code, in an 

Amaxa 4D-Nucleofector (Lonza, P3 Primary Cell 4D-Nucleofector X Kit L) with a total of 45 μg 

plasmid DNA at a 2:2:1 weight ratio (plasmid encoding a left ZFN: plasmid encoding a right ZFN: 

eGFP reporter or H-2Kkreporter). Mutant cells were enriched using a flow cytometer (FACSAria 
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III, BD Biosciences, USA) or MACSelect Kk System (Miltenyi Biotec, Bergisch Gladbach, 

Germany) as described (Kim et al., 2013a; Kim et al., 2011a). The sorted cells were cultured for 

2 additional days after sorting prior to SCNT or mutation analysis for proliferation and removing 

the dead cells. 

 

d. Analysis of mutations 

For detection of ZFN-induced mutations at the pig CMAH locus, the ZFN target locus 

was amplified from genomic DNA isolated from fibroblasts or cloned blastocysts (DNeasy kit, 

Qiagen) by nested PCR and subjected to the T7E1 assay (Kim et al., 2009). Primers used for the 

amplifications of the CMAH locus were as follows: 1st PCR/5′-tgtggacgtgccagactat-3′ and 5′-

aaggcaatcaggctccttag-3′, 2nd PCR/5′-tctacggaaatgctcctgct-3′ and 5′-tctacggaaatgctcctgct-3′. 

For sequence analysis, PCR amplicons that included ZFN-target sites were purified 

using the Gel Extraction Kit (MACHERRY-ALGEN) and cloned into the T-Blunt vector using 

the T-Blunt PCR Cloning Kit (SolGent). Cloned plasmids were sequenced using the primers used 

for PCR amplification. 

 

e. Production and culture of cloned porcine embryos 

In vitro maturation of porcine oocytes, SCNT, and in vitro culture of the cloned embryos 

were performed as described elsewhere (Park et al., 2012) with slight modification. Briefly, 

ovaries were collected at a local abattoir and transported to the laboratory in sterile physical saline 

at 30°C to 35°C. Cumulus-oocyte complexes (COCs) were aspirated from antral follicles (3 to 6 

mm) with 18-gauge needle attached to a 10 mL disposable syringe. COCs with several layers of 

cumulus cells and uniform cytoplasm were chosen and cultured in tissue culture medium 199 

(Gibco) supplemented with 10 ng/mL EGF, 0.57 mM cysteine, 0.91 mM sodium pyruvate, 5 

μg/mL insulin, 1% (v/v) Pen-Strep (Gibco) and 10% porcine follicular fluid at 39°C in a 

humidified atmosphere of 5% CO2. For first 22 h of culture, 0.5 μg/mL follicle stimulating 

hormone and 0.5 μg/mL luteinizing hormone were added to the culture medium and then removed 

for a further 22 h. After a total of 44 h maturation culture, oocytes were denuded by pipetting with 
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0.1% hyaluronidase in TALP medium supplemented with 0.1% polyvinyl alcohol. Denuded 

oocytes with evenly-granulated and homogeneous cytoplasm were selected and then utilized for 

SCNT. A cumulus-free oocyte was held with a holding micropipette and the zona pellucida was 

partially dissected with a fine glass needle to make a slit near the adjacent cytoplasm, presumably 

containing the metaphase-II chromosomes, were extruded by aspiration with the same needle. 

Enucleation was confirmed by staining the cytoplasm with 0.5 μg/mL bisbenzimide during 

manipulation. ZFN-treated and sorted cells were trypsinized and observed under a microscope 

(Nikon). Cells with impaired membrane were excluded as morphological changes in cell 

membrane like irregular cell surface indicate cell death (Buja et al., 1993; Van Cruchten and Van 

Den Broeck, 2002). The cells expressed both RFP and eGFP (Figure 2a, circled) were manually 

selected using a micromanipulator (Nikon-Narishige, Japan) and fused with enucleated porcine 

oocytes (Figure 2b) with an electro cell fusion generator (LF101, Nepagene, Ichikawa, Japan) by 

applying a single direct current pulse (200 V/mm, 20 μs) and a pre- and post-pulse alterating 

current field of 5 V, 1 MHz, for 5 s, respectively. After 0.5 to 1.5 h oocytes were activated with a 

single DC pulse of 1.5 kV/cm for 60 μs utilizing BTX electro-cell Manipulator 2001 (BTX, Inc., 

San Diego, USA). Reconstructed embryos were cultured in porcine zygote medium-5 (Funakoshi, 

IFP0410P, Tokyo, Japan) was maintained under a humidified atmosphere of 5% CO2, 5% O2, 

and 90% N2 at 38.5°C for 7 days; cleavage and blastocyst rates were recorded at day 2 and 7, 

respectively. 

 

f. Statistical analysis 

One way ANOVA analysis was performed to compare cleavages and blastocysts rates 

between each group after SCNT using Prism software (Version 6, GraphPad). 
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2. Production of CMAH Knockout Preimplantation Embryos Derived 

From Immortalized Porcine Cells Via TALE Nucleases 

 

a. Chemicals 

All chemicals were obtained from Sigma-Aldrich (St. Louis, MO) unless otherwise 

stated. 

 

b. Primary cell culture and maintenance 

Male fetal fibroblasts from one miniature pig fetus, which were used as control cells, 

were isolated and cultured. Euthanized fetus was dissected into three parts: head, body, and tail. 

Just the body parts of fetuses were washed three times in phosphate-buffered saline and then 

chopped into small pieces in a 60 mm dish with trypsin. Trypsinized tissues were then incubated 

for 30 minutes at 37 °C. Well-dissociated tissues were centrifuged at 1,500 rpm for 2 minutes. 

The supernatant was discarded, and the pellet was resuspended with phosphate-buffered saline 

and then centrifuged at 1,500 rpm for 2 minutes. These procedures were repeated two times. 

Finally, the supernatant was discarded, and the pellet was resuspended in Dulbecco's Modified 

Eagle's Medium (DMEM; Gibco, Carlsbad, CA) supplemented with 15% fetal bovine serum 

(Gibco), 1% Penicillin/Streptomycin (P/S; Gibco), 1% nonessential amino acid (NEAA; Gibco), 

and 100 mmol/l β-mercaptoethanol (β-ME) by inverting the tube several times. The cells 

resuspended in this medium were held at room temperature (~25 °C) for 5 minutes, and then, the 

suspension was transferred into a cell culture dish for ~10 days with culture medium changed 

every 2–3 days. These primary cells were cultured, expanded, and frozen at −196 °C for further 

use. The cell cultures were maintained in DMEM with 15% fetal bovine serum, 1% P/S, 1% 

NEAA, and 100 mmol/l β-ME. 

 

c. Immortalization 

For immortalization, hTERT (from Addgene, http://www.addgene.org/, Plasmid #12245) 
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were amplified by PCR. Purified hTERT fragments were inserted in pCMV-IRES-DsRed vectors, 

which were purchased from Clontech (Seoul, Korea.). pCMV-hTERT-IRES-DsRed plasmids were 

transfected into male fetal fibroblasts which was same cells as control cells using FugeneHD 

(Figure 1a). Two days after transfection, 1,000 μg/ml neomycin (G418; Gibco) were treated for 7 

days to isolate the transfected cells and then growing cells to neomycin resistance were 

subcultured (Figure 1). 

 

d. Doubling time 

Controls and immortalized cells were plated in 12-well plates at 4 × 104 cells/well. Every 

24 hours, cells in four of the wells were trypsinized, and cell numbers were calculated manually 

under a hemocytometer. Then, the doubling time was calculated using the doubling time online 

calculator (http://www.doubling-time.com/compute.php) 33 every 3 passages up to passage 21, 

and passage 33 was evaluated as well. 

 

e. Cell size 

Images from trypsinized cells on the hemocytometer were taken under a microscope 

(×200). Sizes of 100 cells were measured by ImageJ (http://rsbweb.nih.gov/ij/) 34 every 3 

passages up to passage 21, and passage 33 was evaluated as well. 

 

f. PCR 

Genomic DNA was extracted with the G-spin Genomic DNA Extraction Kit (iNtRON 

Biotechnology, Gyeonggi-do, Korea) according to the manufacturer's protocol. Amplification of 

target genes was achieved using Maxime PCR PreMix (i-StarTaq, iNtRON). Primer sets, 

conditions, and expected sizes are annotated in Table 2. 

 

g. Sequencing 

Target DNA samples were delivered to a sequencing company (Macrogen, Seoul, Korea). 

Briefly, sequencing reactions were performed in the DNA Engine Tetrad 2 Peltier Thermal Cycler 
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(BIO-RAD, Seoul, Korea) using the ABI BigDye (R) Terminator v3.1 Cycle Sequencing Kit 

(Applied Biosystems, Seoul, Korea), following the protocols supplied by the manufacturer. 

Single-pass sequencing was performed on each template using a selected primer (primer 

sequences: AACGTTCCGCAGAGAAAAGA). The fluorescent-labeled fragments were purified 

by the method recommended by Applied Biosystems because it removes unincorporated 

terminators and dNTPs (dNTP indicates the mixture of dATP, dCTP, dGTP and dTTP). The 

samples were subjected to electrophoresis in an ABI 3730xl DNA Analyzer (Applied Biosystems). 

 

h. Karyotyping 

To perform karyotyping, cultured cells were treated as follows. First, 200 μl of colcemid 

(Gibco) stock solution was added to the culture. Then, the culture was returned to the incubator 

(37 °C, 5% CO2) for 4 hours. After incubation, cells were collected in 15 ml tubes and then 

centrifuged at 1,000 rpm for 10 minutes. The medium was carefully aspirated, and then, 5 ml of 

hypotonic solution (0.075 mol/l KCl) was added and allowed to stand at 37 °C for 10 minutes. 

Then, 500 μl of Carnoy's fixative (methanol:acetic acid 3:1) was added and mixed by inverting 

the tube, followed by centrifugation at 1,000 rpm for 10 minutes. The hypotonic solution was 

aspirated carefully, and 3 ml of Carnoy's fixative was added and mixed well. After more than 20 

minutes, the mixture was centrifuged at 1,000 rpm for 10 minutes. The supernatant fixative 

solution was carefully aspirated till leaving about two times of volume to pellets. The pellet was 

spread on a prepared glass slide which was then baked at 60 °C for 30 minutes. The slide was 

treated with 50% H2O2 for 3 minutes, then baked again at 60 °C for 30 minutes. Finally, the slide 

was stained with the Giemsa stain-GTG banding method. Chromosome imaging were 

accomplished with the ChIPS-Karyo (Chromosome Image Processing System; GenDix, Seoul, 

Korea). 

 

i. Single cell colony formation 

Trypsinized cells were placed on the lid of Falcon dish (Catalog number #351006; 

Falcon, Franklin Lakes, NJ) in drops of 20 μl of DMEM containing 15% fetal bovine serum, 1% 
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P/S, 1% NEAA, and 100 mmol/l β-ME. To evaluate single cell colony-forming competence, one 

cell was picked up in a micropipette attached to a micromanipulator. The cell was transferred into 

a 4 μl drop of DMEM containing 15% fetal bovine serum, 1% P/S, 1% NEAA, and 100 mmol/l 

β-ME that was covered with mineral oil. After 7 days, growing cell colonies were collected and 

sequentially subcultured into 96-, 24- and 6-well plates. Then, cells from the 6-well plates were 

moved sequentially to 60 and 100 mm dishes. 

 

j. Gene expression 

Total RNAs were extracted to analyze gene expression in the immortalized cells by using 

the easy-spin Total RNA Extraction Kit (iNtRON). Then, complementary DNAs (cDNAs) were 

synthesized using Maxime RT Premix (iNtRON) according to the manufacturer's protocol. 

Information on primers is listed in Table 3. Gene expression for p53, p16, Bax, Bcl-xl, DNMT1, 

DNMT3a, DNMT3b, GLUT1, and LDHA was measured with a RT-PCR machine (7300 Real-

Time PCR System; Applied Biosystems). 

 

k. Telomerase activity test 

Quantification and characterization of telomerase activity was done by the telomeric 

repeat amplification protocol. For this test, TeloTAGGG Telomerase PCR ELISAPLUS (Roche, 

Basel, Switzerland) kit was used with manufacturer's indications.35 RTA within different samples 

in an experiment were obtained using the following formula: RTA = [(AS-AS0)/AS,IS]/[(ATS8-

ATS8,0)/ATS3,IS] × 100 (AS; absorbance of sample, AS,0; absorbance of heat-treated sample, 

AS,IS; absorbance of internal standard (IS) of the sample, ATS8; absorbance of control template, 

ATS8,0; absorbance of lysis buffer, ATS8,IS; absorbance of IS of the control template). 

 

l. Nuclear transfer 

Donor cells were subjected to nuclear transfer, which was done following the protocol 

previously established in our studies (Koo et al., 2009). Briefly, immature oocytes were obtained 

from pig ovaries and cultured for 40 hours to support maturation. The in vitro matured oocytes 



 15 

were enucleated using an aspiration pipette, then microinjected with a control or transfected donor 

cell, fused by electrical stimulation, and activated using an electrical protocol. The resulting 

activated embryos were cultured for 7 days. Cleavage and blastocyst stages were observed on 

days 2 and 7 of culture, respectively. 

 

m. CMAH knockout using TALEN and magnetic separation 

All TALEN plasmids were obtained from ToolGen (ToolGen, Seoul, Korea). 37 1 x 

106 immortalized cells were transfected using 30 μl of Turbofect (Fermentas, Glen Burnie, MD) 

and 10 μg of plasmid DNA at a weight ratio of 45:45:10 (plasmid encoding a TALEN:plasmid 

encoding the other TALEN:magnetic reporter) according to the manufacturer's protocol (Kim et 

al., 2013a; Kim et al., 2011a). The transfected cells were cultured for 2 days at 37 °C and subjected 

to magnetic separation. Trypsinized cell suspensions were mixed with magnetic bead-conjugated 

antibody against H-2Kk (MACSelect Kk microbeads; Miltenyi Biotech, Cologne, Germany) and 

incubated for 15 minutes at 4 °C. Labeled cells were separated using a column (MACS LS column; 

Miltenyi Biotech, Germany) according to the manufacturer's protocol. 

 

n. T7E1 assay 

Genomic DNA was extracted using the G-DEX IIc Genomic DNA Extraction Kit 

(iNtRON) after 3 days of transfection. TALEN target sites were PCR amplified using primer pairs 

listed in Table 2. The T7E1 analysis was done as described previously (Kim et al., 2013a; Kim et 

al., 2009). The amplicons were denatured by heating and annealed to form heteroduplex DNA, 

which was treated with 5 units of T7 endonuclease 1 (New England Biolabs, Ipswich, MA) for 

20 minutes at 37 °C and then analyzed by 2.5% agarose gel electrophoresis. 

 

o. Fluorescent PCR 

Carboxyfluorescein was labeled on 5′ end of the forward primer by an oligo synthesis 

company (Bioneer, Daejon, South Korea). PCR products were processed for fragment separation 

by capillary electrophoresis on an ABI 3730xl using POP-7 polymer. The GeneScan Rox500 size 
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standard (Life Technologies, Grand Island, NY) was run as an internal size marker. Samples were 

denatured at 95 °C for 5 minutes and run on the genetic analyzer. Data were analyzed for allele 

sizes and peak heights using the pick scanner software v1.0 (Life Technologies). 

 

p. Fluorescence-activated cell sorting 

CMAH biallelic knockout cells were trypsinized and resuspended in staining buffer (0.1% 

bovine serum albumin in phosphate-buffered saline) to reach a final concentration of 5 × 105 to 

1 × 106 cells/ml. The cells were incubated for 20 minutes on ice with the antibody anti-Neu5Gc 

(Sialix, Waban, MA). After incubation, the cells were washed twice with staining buffer and 

resuspended, then the stained cells were analyzed by fluorescence-activated cell sorting. 

 

q. Statistical analysis 

All data were analyzed by one-way ANOVA followed by Tukey's multiple comparison 

test or paired t-test using GraphPad Prism version 5.01 (http://www.graphpad.com/scientific-

software/prism/) to determine differences among experimental groups. Statistical significance 

was determined when the P value was less than 0.05. 

 

3. Site-directed mutagenesis in Petunia × hybrida protoplast system 

using direct delivery of purified recombinant Cas9 

ribonucleoproteins 

 

a. Petunia protoplast preparation 

Protoplasts were isolated from 20-day-old in vitro grown seedlings 

of Petunia × hybrida cv. ‘Madness’ (PanAmerican Seed, IL) after germination in Murashige and 

Skoog (MS) medium. Young leaves (about 10–15) were pre-plasmolysed with 13 M cell 

protoplast washing (CPW) solution [KH2PO4 (27.2 mg L−1), KNO3 (101 mg L−1), MgSO4. 7H2O 

(243 mg L−1), KI (0.16 mg L−1), CuSO4.5H20 (0.025 mg L−1), CaCl2 (1480 mg L−1), Mannitol 
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(13 %)] (Cocking EC, 1974) solution followed by enzyme digestion with 20 mL of solution 

containing different concentrations of Cellulase R-10 + Macerozyme R-10 (1 + 0.05, 1.50 + 0.10, 

and 2 + 0.25 %, enzymes were dissolved in 8 mM CaCl2, 1 M Manitol, 0.1 M MES, and 0.1 % 

BSA, Yakult, Japan). The digestion was performed at 25 °C in a rotary shaker at 40 rpm for 4 h. 

After digestion, protoplasts were filtered through a Nylon mesh (75 μm) and harvested by 

centrifugation at 600 rpm for 5 min. Collected protoplasts were incubated at 4 °C in CPW salts 

with Mannitol 9 % solution for 1 h. After centrifugation at 600 rpm for 5 min, the CPW solution 

was discarded. Petunia protoplast pellets were resuspended in 300 μL of MaMg solution 

(100 mM MES, 1 M Mannitol, 1 MgCl2) and mixed with 300 μL of 40 % Poly ethylene glycol-

6000 (PEG). A 50 μg of plasmid construct carrying green fluorescence protein (GFP) marker gene 

was further added to determine the efficiency of Petunia protoplast transfection. 

 

b. Recombinant Cas9 Protein and Guide RNA design 

Ready-to-use recombinant Cas9 protein (160 KD) was purchased from ToolGen, Inc. 

(Seoul, Korea). gRNAs were designed for six target-specific sites with high out-of-frame scores 

(Bae et al., 2014) for high complete knock out efficiency in the coding regions of NR gene locus 

(Figure 4, Table 5) using CRISPR RGEN Tools website (http://rgenome.net/) (Bae et al., 2014) 

(Park et al., 2015). A complete coding sequences of NR gene locus was amplified and sequenced 

from Petunia × hybrida cv. Madness’ according to available sequence information of nitrate 

reductase in GenBank (L13691.1). Amplified NR gene locus was then used to guide RNA design. 

sgRNAs were in vitro transcribed and synthesized according to published method  (Kim et al., 

2014) using specific pairs of DNA oligonucleotides for the target site (Table 6). Purified 

recombinant Cas9 protein and sgRNA were used in a molar ratio of 1:3 during Petunia protoplast 

transfection. 

 

c. Transfection 

To create double standard breaks in Petunia Nitrate reductase (NR) gene loci, 

resuspended protoplasts were transfected with Cas9 protein (90 μg) and sgRNA (50 μg). A 25 μL 
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of transfection reaction mixture containing 2.5 μL Cas9 protein buffer (50 mM Tris–HCl, 10 mM 

MgCl2, 100 mM NaCl, 1 mM DTT and pH 7.5), Cas9 protein, sgRNA, resuspended protoplasts 

along with PEG, and adequate volume of nuclease free water were incubated at room temperature 

for 30 min. To remove PEG, transfected protoplasts were washed twice with 5 mL of CPW and 

centrifuged at 600 rpm for 5 min. Pelletized protoplasts were resuspended in 2 mL of MS salt 

medium (2 % Sucrose and 4 % myo-inositol) to reach a final concentration of 1.0 × 105 mL−1. 

Protoplasts were resuspended in MS medium and transferred to 6 mL petri dishes followed by 

incubation in the dark at 25 °C for 24 h. 

 

d. Genomic DNA extraction and T7 endonuclease 1 (T7E1) assay 

Genomic DNA was extracted from transfected protoplasts using i-genomic plant DNA 

extraction kit (Intronbio, Seoul, Korea) according to the manufacturer’s instructions. To identify 

mutations at targeted genomic loci, T7 endonuclease 1 (T7E1) assay was carried out using 

published method (Kim et al. 2009, 2014). The genomic region of NR target site was amplified 

using nested PCR primers (Table 7). Amplified PCR products were hybridized with mutant and 

wild-type DNA fragments to form heteroduplex after denaturation and re-annealing using the 

following program: 95 °C for 120 s, 85 °C for 20 s, 75 °C for 20 s, 65 °C for 20 s, 55 °C for 20 s, 

45 °C for 20 s, 35 °C for 20 s, and 25 °C for 20 s, with a 0.1 °Cs−1 decrease rate between steps. 

Re-annealed PCR products were digested with T7E1 endonuclease (New England Biolabs) at 

37 °C for 20 min. Digested PCR products were subjected to agarose gel electrophoresis and gel 

purification. Purified PCR bands were cloned into pGEM-T vector and sequenced using M13 

universal primer. 

 

e. Targeted deep sequencing 

Target sites in the NR gene loci were amplified by PCR and sequenced according to 

published methods (Cho et al., 2014). Corresponding target sites were PCR amplified using 

primers listed in Table 7. Amplifications were performed using Phusion polymerase (New 

England Biolabs, Ipswich, MA). Amplified PCR products were sequenced using Illumina MiSeq 
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platform. Mutations induced by RGENs were calculated based on the presence of insertions or 

deletions around the RGEN cleavage site (3 bp upstream of PAM). 
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Ⅲ. Results  

1. Production of Mutated Porcine Embryos Using Zinc Finger Nucleases 

and a Reporter-based Cell Enrichment System 

 

a. Enrichment system for cells containing ZFN-mediated mutations 

Unlike in rodents, it is technically and economically difficult to obtain in vivo fertilized 

porcine embryos for genetic manipulation. Moreover, the high incidence of polyspermy (Gil et 

al., 2010) and low cryo-survival of boar sperm (Rodriguez-Martinez and Wallgren, 2010) also 

create problems for the production of in vitro fertilized embryos in this species. Therefore, 

microinjection of ZFNs into fertilized embryos, a technique used for producing knockout rodents, 

cannot easily be translated to pigs in most laboratories. On that account, we modified our SCNT 

protocols to produce mutated pig embryos. In first, mutated cells were prepared by transfection 

of ZFNs into porcine fibroblasts, coupled with reporter-based enrichment systems utilizing two 

different cell sorting methods, FACS and MACS, described previously (Kim et al., 2013a; Kim 

et al., 2011a). The enriched mutated cells were used as donor cells for SCNT. During the SCNT 

procedure, we re-confirmed the expression of reporter genes under microscope and only the cells 

with double positive for RFP and eGFP expressions (Figure 2a, circled) were used to produce 

cloned embryos. 

To test the feasibility of using these knockout cell enrichment approaches for pig 

fibroblast cells, we used ZFNs targeting CMAH exon 6 (Figure 1a) and surrogate reporters 

containing either the eGFP gene alone (eGFP reporter) or eGFP and a truncated H-2Kk surface 

marker (MACS reporter), whose expression in cells can be recovered by a ZFN-induced 

frameshift mutation in CMAH. Indeed, the use of both surrogate reporter systems together with 

appropriate sorting methods (FACS or MACS) successfully supported enrichment of fibroblasts 

containing ZFN-induced mutations in CMAH (Figure 1c and d). When these mutant-enriched cell 

populations were subjected to SCNT, the competence of reconstructed embryos derived from the 

MACS-separated and FACS-separated cell populations was comparable. Importantly, whereas 

the cloned embryos from the MACS-separated cell population showed a similar rate of blastocyst 
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development as compared to the control, the blastocyst development of the cloned embryos from 

the FACS-separated cell population was significantly impaired (Table 1; 13.1±2.5% vs 24.3± 

0.8%). This difference might be caused by various stresses — including hydraulic pressure, shear 

force, vibrations, and high voltages — that cells experience during flow cytometry (Wolff et al., 

2003). Consistent with this idea, large numbers of membrane-damaged cells were observed after 

FACS-mediated cell separation. 
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Figure 1. Enrichment system for cells containing ZFN-mediated mutations. (a) Sequences of 

the ZFN binding sites in the CMAH gene. The binding site of the right (red letters) and left (blue 

letters) ZFNs and the spacer sequence (underlined) are indicated. (b) The zinc finger module 

composition of CMAH ZFNs. (c and d) ZFN-driven CMAH mutations detected by the T7E1 assay 

in cell populations isolated by FACS (c) and MACS (d) using a ZFN surrogate reporter. H-2Kk, 

a truncated mouse MHC class I, is used a selection marker for MACS. Arrows indicate the 

expected positions of DNA bands from specific cleavage of a mutated site by the mismatch-

sensitive T7E1 enzyme. The numbers at the bottom of the gel indicate mutation percentages 

calculated by band intensities. 

  



 23 

 

(by Sol Ji Park in College of Veterinary medicine, Seoul National University) 

 

Figure 2. Somatic cell nuclear transfer with ZFN-treated donor cells. (a) Cells with intact 

membrane (circled in red) expressing both eGFP and RFP simultaneously (circled in white) were 

selected as donor cells (scale bar = 200 μm). (b) A manually-selected donor cell (arrow) was fused 

with a porcine oocyte matured in vitro(scale bar = 100 μm). 
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b. Mutations in cloned blastocysts derived from ZFN-treated cells 

We also analyzed the ZFN target sites in the cloned blastocysts. The T7E1 assay results 

revealed that ZFN-induced mutations at the target site in embryos from both the FACS and MACS 

groups (Figure 3a). Mutated sequences, including insertions, deletions, and substitutions at the 

target site, as well as the wild-type sequence, were found in the assessed blastocysts (Figure 3b). 

Therefore, the mutations established in the study might not be biallelic. Interestingly, three 

different types of sequences were detected in the FACS group. This result revealed that the ZFN-

initiated double-strand breaks and repair by the non-homologous end joining pathways might be 

still ongoing after the one-cell embryo stage. This phenomenon has been commonly observed in 

various species of animals derived from ZFN-treated embryos, such as zebrafish (Doyon et al., 

2008), mouse (Carbery et al., 2010), rabbit (Flisikowska et al., 2011), and rat (Geurts et al., 2009). 

Recently, mutant mice with biallelic deletions of the target site were obtained by injection of 

TALENs, another type of artificial restriction enzyme, into 1-cell embryos (Sung et al., 2013). 

Thus, the use of TALENs instead of ZFNs might facilitate the establishment of homozygous 

mutations in pig embryos. Our reporter based enrichment system also can be used with TALENs, 

therefore, it can be recommended to modify the current method for using TALENs instead of 

ZFNs to produce biallelic mutated pigs. 

Recent reports showed that knockout pigs could be produced by co-transfection of 

nucleases (ZFNs or TALENs) with an antibiotic-selection marker followed by clonal selection 

(Carlson et al., 2012; Yang et al., 2011). These previous reports suggested a novel approach for 

generating knockout pigs. However, clonal selection from a single primary cell requires a lengthy 

period of time and sophisticated techniques. Use of the reporter-based enrichment system 

represents an alternative to the antibiotic-based selection method for reducing the time and effort 

needed to produce knockout pigs. 
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Figure 3. Mutations in cloned blastocysts derived from ZFN-treated cells. (a) The T7e1 assay 

showed ZFN-mediated mutations in cloned blastocysts. (b) Genomic DNA sequences from the 

cloned blastocyst. 
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Table1. In vitro culture of cloned embryos derived from ZFN-treated donor cells. 

      

  n Cleavage (%) Blastocyst (%)   

Control 105 82 (77.7±4.5) 20 (24.3±0.8)a   

FACS 157 116 (61.11±6.5) 16 (13.1±2.5)b   

MACS 119 83 (65.0±1.9) 14 (16.7±1.6)ab   

 
(by Sol Ji Park in College of Veterinary medicine, Seoul National University) 

 
a,bValues with different superscript letters in the same column indicate significant 

differences. 
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2. Production of CMAH Knockout Preimplantation Embryos Derived 

From Immortalized Porcine Cells Via TALE Nucleases 

 

a. Generation of porcine immortalized cell and analysis of immortalized 

cell’s properties 

Differences between controls and immortalized cells in morphology, doubling times, 

and cell size. After transfection, outgrowing colonized fibroblasts were cultured. Along with 

immortalization of the cells, their size was reduced (Figure 1d). Mean doubling time of control 

and immortalized cells were 46.4 ± 1.1 and 26.9 ± 0.6 hours, respectively, and these values were 

significantly different (P < 0.05; Figure 4b). Mean cell size of the immortalized cells was 

17.9 ± 0.2 µm and always less than 20 µm, while mean cell size of control cells was progressively 

increasing until these cells enter into replicative senescence. Significant differences in cell size 

between control and immortalized cells were observed from passage 12 (Figure 4c). PCR, RT-

PCR, and sequencing. Integration and expression of the hTERT gene was observed by genomic 

DNA PCR and RT-PCR in 3 and 18 passages of control and immortalized cells, respectively. 

PCR and RT-PCR data indicated that the hTERT gene was integrated into immortalized cells 

(Figure 5a,b). Also, sequencing results from both PCR amplificons were exactly the same as those 

inserted sequences from the vector (see Supplementary Figure 6). Karyotyping. A total of 20 cells 

in each analysis were subjected on karyotyping. Karyotyping of immortalized cells, prior to 

passage number 15, revealed normal chromosomes, while subsequently abnormal chromosomes 

were detected in one cell (Figure 4e). Similar observations were made in control cells, indicating 

that eight cells showed abnormalities (trisomy in chromosome #17) (Figure 4e).   

Single cell colony formation Immortalized cells could be populated from a single cell in 

a 100 mm dish. This ability was replicated three times more using single cells. However, control 

cells did not have the ability to be expanded from a single cell in a 100 mm dish. 
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(by JoonHo Moon in College of Veterinary medicine, Seoul National University) 

 

Figure 4. Cellular analysis of porcine immortalized cells. (a) Illustration of pCMV-hTERT-

IRES-DsRed, (b) Population doubling time, significant differences in doubling time between 

control and immortalized cell were investigated, and those were 46.4 ± 1.1 and 26.9 ± 0.6, 

respectively. (c) Size differences between control cells and immortalized cells, mean cell size of 

the immortalized cells were 17.9 ± 0.2 which was constantly under the 20 µm while that of control 

cells were sequentially increasing in mean cell size until these cells enter into senescence or crisis. 

Significant differences in cell size between control and immortalized cells were observed from 

passage number 12. (d) Morphologies of control cells and immortalized cells, numbers represent 

passages. (e) Results of karyotyping, both control and immortalized cells, showed abnormalities 

from passage number 15. Arrows indicate the abnormal site in chromosomes. 

 
 
  



 29 

 Gene expression Gene expression in immortalized cells and control cells are 

summarized in Figure 5d. In this analysis, tumor suppressor gene (p53) expression level was not 

significantly changed during increasing passage number in immortalized or control cells except 

passage numbers 6 and 15. Cyclin-dependent kinase inhibitor 2A (p16) expression was 

significantly downregulated during increasing passages (from passage 6) in immortalized cells. 

Also, Bax, which is a well-known proapoptotic gene, was significantly downregulated during 

increasing passage numbers (from passage 6) in immortalized cells. However, Bcl-xl, an 

antiapoptotic gene, was significantly changed in passage numbers 6 and 18. In the analysis of 

metabolic genes, expression of glucose transporter 1 (GLUT1) and lactate dehydrogenase A 

(LDHA) were significantly upregulated in late passage of immortalized and control cells, 

respectively. Expression of methylation relation genes (DNA methyltransferase 

(DNMT)1, DNMT3a, and DNMT3b) was not changed. 

Telomerase activity test: Relative telomerase activity (RTA) of control and immortalized 

cells were 0.41 ± 0.16 and 5.37 ± 0.09, respectively. Telomerase activity was significantly 

increased in immortalized cells compared with control cells (Figure 11). 
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(by JoonHo Moon in College of Veterinary medicine, Seoul National University) 

 

Figure 5. Gene expression in immortalized cells and embryonic development. (a) Detection 

of hTERT (M, marker; +, positive control vector; −, negative control vector; c, control cells; i, 

immortalized cells; and numbers referred to passages). (b) Expression of hTERT (M, marker; +, 

positive control vector; −, negative control vector; c, control cells; i, immortalized cells; and 

numbers referred to passages). (c) Early embryonic development: changes among early 

embryonic development when cell properties were changed into immortal states. PA referred 

parthenogenetic activation. Those control and immortal indicated SCNT results when the donor 

cell were control and immortalized cells, respectively. Cleavage rates (CRs) were not changed 

among groups, but blastocyst formation (BR) rates were serially significantly decreased among 

three groups. (d) Gene expression: tumor suppressor gene (p53) expression level was not 

significantly changed during the increasing of passage number in immortalized cells/control cells. 

Cyclin-dependent kinase inhibitor 2A (p16) expression were significantly downregulated during 
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the increasing of passage numbers in immortalized cells/control cells. Also Bax, which is well 

known for proapoptotic gene, were significantly downregulated during the increasing of passage 

numbers in immortalized cells/control cells. However, Bcl-xl, antiapoptotic gene, was 

significantly upregulated during the increasing of passage numbers in immortalized cells/control 

cells. hTERT, human telomerase reverse transcriptase; SCNT, somatic cell nuclear transfer. 
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b. Preimplantation development of cloned embryos derived from 

immortalized cells 

Development rates were evaluated in three groups: parthenogenetically activated 

embryos (total numbers of oocytes: 211), SCNT-derived embryos using control somatic cells as 

nuclear donors (total numbers of oocytes: 112), and SCNT-derived embryos using immortalized 

cells as nuclear donors (total numbers of oocytes: 107). Three replicates were done in all three 

groups. Two days after activation, cleavage rates evaluated under a microscope were 81.6 ± 2.2, 

68.1 ± 0.8, and 71.8 ± 3.6%, respectively. No significant differences were observed in cleavage 

rate among the three groups. However, significant differences were observed in blastocyst 

formation rates, which were 32.3 ± 1.2, 11.5 ± 0.7, and 2.9 ± 0.2%, respectively (Figure 5c). 

 

 c. CMAH knockout and SCNT 

After transfecting TALEN DNAs, 500 reporter gene–positive cells were cultured in a 

100 mm dish and grown into colonies; 116 single cell–derived colonies were selected. In a T7E1 

mutation assay, we found 45 colonies to be mutated (see Figure 13). These 45 colonies were 

subjected to fluorescent PCR for determination of biallelic mutated colonies (see Figure 14). 

Three biallelic mutation colonies with morphologically good cells were finally selected (Figure 

7d) and sequenced for confirmation of biallelic mutation. In #13, a 1 bp insertion and 1 bp deletion 

were found; in # 24, a 282 bp insertion (sequence of 282 bp was noted in Figure 15) and in #26, 

2 and 8 bp deletions were observed (Figure 7c). In addition, as shown by fluorescence-activated 

cell sorting, CMAH expression was removed in all three cell lines (Figure 6e). Furthermore, 36 

cloned embryos derived from CMAH knockout cells were reprogrammed after insertion into 

enucleated oocytes, cleaved (91.7%), and developed into a blastocyst (2.8%) (see Figure 17). 

 

It is well established in humans and in mice that cell lines are necessary to understand 

or evaluate the molecular process (Graham et al., 1977; Scherer et al., 1953; Todaro and Green, 

1963). However, in pigs, such research has been limited to date. In this study, we developed 

immortalized cells, and furthermore, those cells were used for TALEN to knockout the interesting 
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genes. For inducing immortalization, genes such as SV40LT, BMI, and hTERT were used in 

previous studies (Garcia-Escudero et al., 2010). Among these genes, hTERT has especially been 

used to immortalize cells because of reduced chromosome damage (Gaudelli et al., 2017; Ray et 

al., 1990). In this study, hTERT successfully induced pig fetal fibroblasts into immortalization. In 

addition, our immortalized cells can be cultured for single cell colony formation at least three 

times. Therefore, single immortalized cell was cultured and propagated to unlimited numbers, 

indicating that single mutated cells can be isolated and used for many assays requiring cells, 

DNAs, RNAs, and proteins. For investigating properties of the immortalized cells, expression of 

proliferative, apoptotic, metabolic, and methylation-related genes were analyzed. Even though 

significant change of p53 expression at specific passage was observed during long-term 

culture, p16 was dramatically downregulated (Figure 5) from passage 6. The fact that loss of p16 

function after transfection with hTERT is much related to immortalization is in line with our 

results (Kim et al., 2002). As expected, antiapoptotic gene (Bax) was increased but proapoptotic 

gene (Bcl-xl) was decreased. In metabolic gene expression, GLUT1 was significantly increased 

because immortalized cell utilize more glucose for unlimited cell proliferative competence like 

cancer cells (Macheda et al., 2005). Moreover, expression of LDHA, which is soluble cytosolic 

enzyme resulting from apoptosis or necrosis, was increased in late-passage control cells (Chan et 

al., 2013). One point is about methylation gene expression. In contrast to our results, a previous 

study reported increase of DNMT1 expression in human fibroblast after hTERT transfection 

(Young et al., 2003). However, in our case, the DNMTs expression levels were not changed after 

immortalization. In this study, we found that downregulation (p16 and Bax) and upregulation 

(GLUT1 and telomerase activity) plays an important role in maintaining the unlimited cell 

propagation (Figures 5d and 4).  

Additionally, it has raised a scientific interest on SCNT embryo production using 

immortalized cells with long-term culture properties. With respect to early embryonic 

development, no significant differences were observed in cleavage rates among PA embryos, 

SCNT embryos derived with control cells, and SCNT embryos derived with immortalized cells. 

However, significant differences were observed in blastocyst formation rates among these three 

groups. In particular, blastocyst formation rates were significantly decreased in the immortalized 
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cell SCNT group. The very low embryonic development using immortalized cells is similar to 

that reported in a previous study, in which immortalized bovine epithelial cells used in SCNT 

could not support embryo development into blastocysts (Zakhartchenko et al., 1999). However, 

with ovine immortalized fibroblasts using hTERT as in this study, there was no significant 

difference between control and immortalized groups in their ability to support SCNT early 

embryo development (Cui et al., 2003). In two previous studies (Cui et al., 2003; Zakhartchenko 

et al., 1999), it was concluded that transformed cells with abnormal cellular responses (like serum 

starvation) failed to support embryonic development into blastocysts. Therefore, we assume that 

morphological and proliferative changes in our cells immortalized using hTERT affected normal 

cellular gene expression profiles including p16 and resulted in very low embryonic development. 

Because of short cell doubling time, it is hard to get exact G0/G1 cells from immortalized cells. 

This is another possible reason why SCNT embryos using immortalized cells could not well 

developed to blastocysts. TALEN, an emerging genome editing tool, can be applied to generate 

mutant pigs. To knockout a gene using TALEN, several pairs on a specific coding domain region 

should be designed and evaluated for choosing the most effective pairs. Thus, effective TALEN 

DNA pairs deleted the DNA with an efficiency of 3.9–43% to date (Hwang et al., 2013a). 

However, validation systems to determine effective pairs in different species could provide 

different genome editing efficiencies (Yang et al., 2011). In fibroblasts, before homogeneous 

knockout cell lines were achieved, single isolated mutated cells became senescent and thus could 

not be subjected to further analysis and application. Therefore, we strongly suggest that in porcine 

genome editing, these immortalized cells could be used as appropriate in vitro test cell lines to 

select effective pairs of TALEN. 
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(by JoonHo Moon in College of Veterinary medicine, Seoul National University) 

 

Figure 6. Sequencing results from genomic DNA from immortalized cell lines. 

  



 36 

 

 

Figure 7. Generating CMAH knockout cells and its analysis. (a) DNA-binding sequences and 

the spacer region for CMAH-TALEN. (b) T7 endonuclease I (T7E1) assays: T7E1 assays were 

conducted using genomic DNA from three CMAH knockout clones. The arrow indicates the size 

(~170 bp) of T7E1-digested DNA fragments. (c) DNA sequences of the CMAH locus from 

each CMAH knockout clone. “−” denotes deleted nucleotides. Red colored upper case letter and 

lower case letter sequences represent nucleotide substitutions and insertion, respectively. (d) 

Fluorescent PCR (fPCR) assay of the CMAH knockout clones. (e) FACS analysis 

of CMAH knockout clones. The expression level of N-glycolylneuraminic acid (Neu5Gc) is 

detected by anti-Neu5Gc antibody on the CMAH knockout cell membrane. The expression levels 

of Neu5Gc on each CMAH knockout clone are comparable with control (+). Control (+), human 

embryonic kidney cell line; control (−), nontransfected porcine fibroblasts; FACS, fluorescence-

activated cell sorting; TALEN, transcription activator-like effector nuclease. 
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Figure 8. T7E1 assay results from CMAH KO single cell colonies. CMAH KO single cell 

colonies were subjected on T7E1 assay for confirming knocked out colonies. Among 116 colonies, 

45 colonies were knocked out, which efficiency rate was 38.8% . 
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Figure 9. Fluorescent PCR results from CMAH KO single cell colonies. Among them 3 

colonies were confirmed that biallelic knock-out colonies those were #13, #24 and #26. 
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AGTTCTAGCCACTAGACCACCAGGGAACTCCCTATTCTAAATTCTTGAG

CACATTATTTAGGAACCTCAGGAACTTGGCAAGGATTACAAGGAAATAT

ATCTAGATTTAAAAAAAAATCTTTTAACAGAGGTCCCAAAGGAGAGTCA

TGCACAGCTATGGGAGGAAGTTCAGAAACTGCCCTTGCTACCAGATCA

CTGTCAGATAAAATGGCCAGCTACATGTTTCTGCACATTGCCCTAAGAT

CTTTACAAACTTTTCTGTGCATTTTTCCACTTTTAAAA 

 

Figure 10. Inserted 282bp sequences in #24 colony. 
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(by JoonHo Moon in College of Veterinary medicine, Seoul National University) 

 

Figure 11. Relative telomerase activity (RTA). RTA of control and immortalized cells were 

0.41 ± 0.16 and 5.37 ± 0.09, respectively. Telomerase activity was significantly increased in 

immortalized cells compared with control cells. 
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Because immortalized cell line can be grown up from a single cell to billions of cells, 

we randomly chose 100 single cells and cultured them into colonies of homogeneous s cells. 

Using single cell colony formation competence as a selection criterion, we can more easily 

generate knockout cell lines. Indeed, in this study, single cell colonies grew well, and these were 

used to analyze each colony to evaluate mutation characteristics. As a result, TALEN activity 

showed 38.8% efficiency, and many cell lines were isolated (see Figure 13). From the finally 

chosen cells, three biallelic mutated cell lines developed that did not express the cell surface 

carbohydrate chain, N-glycolylneuraminic acid (Neu5Gc). From one of these three mutated cell 

lines, colony number 24, cells were used as nuclear donor cells for SCNT. Although the blastocyst 

formation rate was low, we observed that immortalized cells with CMAH knockout can be 

reprogrammed in porcine enucleated oocytes and develop to the blastocyst stage.  
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(by JoonHo Moon in College of Veterinary medicine, Seoul National University) 

 

Figure 12. SCNT with CMAH KO donor cells. (A) One blastocyst derived from SCNT with 

CMAH KO donor cell. (B) Development rates were evaluated in two groups: parthenogenetically-

activated embryos (total numbers of oocytes: 69) and SCNT-derived embryos using CMAH KO 

cells as nuclear donors (total numbers of oocytes: 36). CR: Cleavage Rate, BR: Blastocyst Rate 
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 d. GGTA1 knockout 

Additionally, the other gene, GGTA1, which is responsible for hyperacute rejection in 

xenotransplantation, was also knocked out in this cell line using exactly the same methods with 

high efficiency (see Figures 13–17) (Kwon et al., 2013).  
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Figure 13. Illustration of TALEN binding sites and results of GGTA1-TALEN KO. (A) 

DNA-binding sequences and the spacer region for GGTA1-TALEN. (B) T7 endonuclease I (T7E1) 

assays. (C) DNA sequences of the GGTA1 locus from each GGTA KO clones. (D) Fluorescent 

PCR (fPCR) assay of the GGTA1 KO clones. (E) FACS analysis of GGTA1 KO clones. 

  



 45 

 

 

Figure 14. T7E1 assay results from 1st GGTA1 KO single cell colonies. GGTA1 KO single 

cell colonies were subjected on T7E1 assay for confirming knocked out colonies. Among 57 

colonies, 27 colonies were knocked out, which efficiency rate was 47%. 
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Figure 15. Fluorescent PCR results from 1st GGTA1 KO single cell colonies. 
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Figure 16. T7E1 assay results from 2nd GGTA1 KO single cell colonies. GGTA1 KO single 

cell colonies were subjected on T7E1 assay for confirming knocked out colonies. Among 66 

colonies, 26 colonies were knocked out, which efficiency rate was 39% . 
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Figure 17. Fluorescent PCR results from 2nd GGTA1 KO single cell colonies. 
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Table 2. List of primers. 

 

(with JoonHo Moon in College of Veterinary medicine, Seoul National University) 

 

  

Gene 

Primer sequences (5’-3’) Size of 

PCR 

product 

(bp) 

GenBank 

accession 

no. 
Forward Reverse 

hTERT 
GTGGTGAACTTCCCTGTAGAAGA

C 

GAAACAGGCTGTGACACTTCA

G 
250 NC_000005.9 

GAPDH ACCTGCCGTCTGGAGAAACC GACCATGAGGTCCACCACCCTG 252 AF017079 

1st 

CMAH 
TTGGTCTTCAGCCCTCATCT CTGGTAGCAAGGGCAGTTTC 743 

NM_001113015

.1 

2nd 

CMAH 
TTGGTCTTCAGCCCTCATCT 

ATTTAACATTTCCTTACCTGCA

C 
307 

NM_001113015

.1 

fPCR 

CMAH 
TTGAGCCATGCATTTCTGTC 

ATTTAACATTTCCTTACCTGCA

C 
213 

NM_001113015

.1 
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Table 3. List of real-time PCR primers. 

Gene 

Primer sequences (5’-3’) Size of 

PCR 

product 

(bp) 

GenBank 

accession 

no. 
Forward Reverse 

Bcl-xl TGGTGGTTGACTTTCTCTCC ATTGATGGCACTAGGGGTTT 134 AF216205 

BAX GCCGAAATGTTTGCTGACGG CGAAGGAAGTCCAGCGTCCA 146 AJ606301 

p53 

p16 

DNMT

1 

DNMT

3a 

DNMT

3b 

GLUT1 

LDHA 

CCTCACCATCATCACACTGG 

CTGGACACTTTGGTGGTCCT 

TCGAACCAAAACGGCAGTAG 

CTGAGAAGCCCAAGGTCAAG 

AGTGTGTGAGGAGTCCATTGCT

GT 

GCTTCCAGTATGTGGAGCAACT 

ATCTTGACCTATGTGGCTTGGA 

GGCTTCTTCTTTTGCACTGG 

GCGGGATCTTCTCCAGAGTT 

CGGTCAGTTTGTGTTGGAGA 

CAGCAGATGGTGCAGTAGGA 

GCTTCCGCCAATCACCAAGTC

AAA 

AAGCAATCTCATCGAAGGTCC 

TCTTCAGGGAGACACCAGCAA 

213 

185 

215 

238 

133 

132 

214 

NM_213824 

AJ316067 

DQ060156.1 

NM_00109743

7.1 

NM_00116240

4.1 

X17058.1 

NM_00117236

3.1 

GAPD

H 
TCTCTGCTCCCTCCCCGTTC TGGCAATGCACGGAACACAC 51 AF017079 

 

(by JoonHo Moon in College of Veterinary medicine, Seoul National University) 
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3. Site-directed mutagenesis in Petunia × hybrida protoplast system 

using direct delivery of purified recombinant Cas9 ribonucleoproteins 

 

a. Efficient protoplast system enhances Cas9 transfection in P. hybrida 

The protoplast transient expression system has been proved to be a versatile method for 

CRISPR/Cas9 mediated genome editing in plants. One of the greatest advantage of using 

protoplast system is that it could provide high level of transgene expression (Shan et al., 2013; 

Xie and Yang, 2013). CRISPR-Cas9 mediated genome editing using transient transfection system 

has been successfully applied to many plants, resulting in functional characterization of some 

potential genes as well as genetic improvement of several agricultural crops. Protoplast 

transfection has been used as a transfection platform to target genes such as Flagellin Sensitive2 

and Receptor for activated C kinase 1 (Arabidopsis) (Li et al., 2013a), Betaine aldehyde 

dehydrogenase 2 (rice) (Shan et al., 2013), Mildew resistance locus (Wheat) (Wang et al., 2014b), 

Inositol phosphate kinase (Maize) (Liang et al., 2014), and Phytoene desaturase (Nicotiana 

Tabaccum) (Gao et al., 2015). In the present study, we isolated protoplasts from leaf mesophyll 

tissues and standardized a protocol for Petunia protoplast transient expression system to test 

RGEN RNPs (Figure 20). A successful isolation of protoplasts depends on various factors, 

including different combinations of enzyme concentrations and incubation period (Oh. MH, 

1994). They often vary from one plant to another plant. In this study, we used various 

concentrations for enzymatic digestion to isolate protoplasts from Petunia leaves. The yield of 

protoplasts ranged from 0.3 × 106 to 1.6 × 106 protoplasts for 4–7 h of incubation with 1–2 % 

cellulase and 0.05–0.25 % macerozyme, depending on the incubation time and enzyme 

concentrations. A maximum yield of 1.8 × 106 protoplasts was obtained when 0.25 % of 

macerozyme and 1.5 % of cellulase were used with an incubation time of 4 h. However, during 

the transfection, the concentration of protoplasts was decreased to 1.0 × 105 mL−1. The yields of 

protoplasts in this study were similar to those previously reported in Petunia genotypes (Meyer. 

L et al., 2009), indicating that Petunia × hybrida could be used as a well-established protoplast 

system for transient gene expression. 
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The efficiency of Petunia protoplast transfection was validated with GFP marker gene. 

To isolated protoplasts, 50 μg of plasmid vector (PBI221::GFP) containing GFP was used for 

transfection using the PEG mediated delivery method. Since PEG is considered as an important 

factor in chemical mediated transfection in plants (Negrutiu et al., 1987), we used three different 

concentrations of PEG (30, 40, and 50 %). After 24 h of transfection, fluorescence microscopic 

analyses revealed that approximately 50 and 90 % of transfected protoplasts had GFP expression 

after 24 and 72 h of incubation, respectively (Figure 21), when 40 % of PEG-6000 was used. 

These observations were similar to the results of a previous report in rice protoplast system (Xie 

and Yang, 2013), in which 90 % of GFP expression was noted after 72 h of incubation when 40 % 

PEG was used. Taken together, these results suggested that the established protoplast system 

in Petunia is well suited for pursuing transfection of recombinant Cas9 protein. 

 

b. Targeted mutagenesis of NR gene in Petunia protoplast system using 

direct delivery of RGEN RNPs 

To demonstrate RGEN RNPs mediated genome editing in Petunia, PhNR gene encoding 

enzyme Petunia nitrate reductase (Salanoubat and Bui Dang Ha, 1993) was selected as a target 

gene for site-directed mutagenesis using the CRISPR/Cas9 system. Nitrate reductase (NR) 

catalyzes the first enzymatic step of nitrogen metabolism in higher plants. Many previous studies 

have reported that changes in expression of NR gene via transgenic approach can give a lot of 

beneficial effects to plants, such as generating interesting phenotypic variations including reduced 

nitrate levels in leaves, abundant seed protein content, and conferred chlorate herbicide resistance 

(Zhao et al., 2013) (Dubois et al., 2005) (Vaucheret. H et al., 1997; Wilkinson and Crawford, 

1993). Therefore, targeted site mutation of NR gene will allow us to test their functional effect 

on P. hybrida. 

To induce site-directed mutations in NR gene locus, we designed six different sgRNAs 

based on their corresponding target sites in the Petunia NR gene locus, namely NR1, NR2, NR3 

NR4, NR5 and NR6 (Figure 18). All these sgRNAs were designed to pair with their corresponding 

20 nucleotides at target sites (Table 5) in NR gene locus and to help Cas9 system to create site-
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specific DSBs at 3 bp upstream of the PAM motifs. To disturb endogenous NR genes in Petunia 

protoplasts, we used a RNP complex consisting of purified recombinant Cas9 protein and in vitro 

synthesized target site-specific sgRNA that contained both crRNA and tracrRNA as described in 

a previous study (Kim et al., 2014). In cultured human cells, direct delivery of Cas9 proteins has 

been found to be effective in creating mutations and reducing off-target mutations (Kim et al., 

2014). Without any plasmid mediated expression of RGENs usually used in animal and plant 

systems, the present study demonstrated a direct delivery of RNP complex (Cas9 

protein + sgRNA) to Petunia protoplasts. Following transfection and 24 h of incubation, RGEN 

mediated insertion or deletion (“indel”) frequency in NR gene locus was detected and measured. 
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(by Saminathan Subburaj in Chungnam National University) 

 

Figure 18. Design of gRNAs to target six specific sites of P. Hybrida Nitrate reductase (NR) 

gene locus and schematic description of Petunia NR locus. The green and red rectangles 

represent exons and introns, respectively. The targeted sites by engineered gRNA are shown as 

NR1, NR2, NR3, NR4, NR5, and, NR6. The nucleotide sequences of corresponding gRNAs are 

shown with PAM. The protospacer adjacent motif is shown in red. F1 + R1 to F3 + R3, and 

2F1 + 2R1 to 2F6 + 2R6 indicate the position of different kinds of nested PCR primers used to 

amplify genomic fragment encompassing Cas9 target sites. 
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(by Sung Jin Chung in Chungnam National University) 

 

Figure 19. The nucleotide sequences of Petunia NR gene locus and regions of RNA-guided 

Cas9 at NR (1-6)-RGEN target sites. Nucleotides in red and green indicates introns and exons, 

respectively. Red arrows indicates the positions of NR (1-6)-RGENs. The nuclease target 

sequences are underlined and shown in bold. Three bp PAM motifs are shown in red. 
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(by Saminathan Subburaj in Chungnam National University) 

 

Figure 20. Scheme for Cas9/sgRNA-mediated mutagenesis of Nitrate reductase gene 

in Petunia protoplast system. Protoplast isolation, production of RNP complex, transfection, 

identification of target site DNA mutagenesis, and evaluation of mutations were performed for 

transfected protoplasts. 
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Figure 21.  Expression of GFP in Petunia protoplasts. Petunia protoplasts were 

transformed with a plasmid carrying PBI221::GFP and observed with a fluorescence 

microscope at 24 and 72 hours after transformation. The transformed protoplasts were green, 

and un-transformed protoplasts were red. 

  



 58 

We employed a common mutation detection assay called T7E1 enzyme digestion to 

detect whether there were polymorphisms in NR genes induced by the endonuclease activity of 

designed RGENs. T7E1 has the ability to cleave at mismatched sites due to DNA repair 

mechanisms of NHEJ (Kim et al., 2009; Morton et al., 2006) during the endonuclease action of 

ZFNs, TALENs, and Cas9 endonucleases on targeted gene sites. Total genomic DNA were 

extracted from transfected protoplasts. RGEN target sites in the NR gene locus were amplified 

using site-specific primers (Figure 18; Table 7). PCR amplified products were denatured and 

reannealed to form heteroduplexes by hybridization with mutated and wild-type (WT) sequences. 

The resulting DNA sequences might have indel mutations near the DSB site that could be 

specifically recognized by T7E1 enzyme during digestion. As shown in Figure 22a–d, T7E1 

digested DNA products were successfully detected from four (NR1, NR2, NR4 and NR6) of six 

RGEN transfected protoplasts samples. No product was detected in WT or Cas9 protein only as 

negative controls. In addition, we detected the expected uncleaved and cleaved band sizes for NR-

1, 2, 4, and 6 (Figure 22a–d; Table 7), confirming that the presence of RGEN-induced mutant 

sectors at target sites within the NR genomic locus. 
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(by Seok-Min Ryu in Seoul National University) 

Figure 22. Cas9/sgRNA-mediated mutagenesis of Nitrate reductase (NR) gene 

in Petunia using direct delivery of RGEN RNPs. a–d Mutations at NR target sites detected 

and measured by T7E1 assay. Upper panel gel images showing PCR band before T7E1 assay as 

negative control. T7E1-mediated cleaved products are marked with red arrows in the lower panel. Two 

replicates (NR, NR′) of independent experiments are shown here. A CCR5 gene PCR was used as a 

positive control in the T7E1 assay. On the right panel, representative mutant DNA sequences at the 

NR locus obtained from targeted deep sequencing are shown. Nuclease target sequences 

are underlined and shown in bold. Three bp PAM motifs are shown in red. Insertion mutation is shown 

in blue. 
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c. Detection and estimation of Cas9/sgRNA mediated Petunia NR gene 

mutations 

We calculated mutation frequencies (%) in NR samples by measuring the band size 

according to standard procedures (Perez et al. 2008; Kim et al. 2014). In order to determine the 

ratio of T7E1-undigested (uncleaved) to T7E1-digested (cleaved) DNA products, a standard 

569 bp fragment of the CCR5 gene encompassing a mismatch mutation (at position 390th nt) was 

also run as positive control along with NR samples and their corresponding replicates (NR′) 

(Figure 22a–d). The delivered RGENs as RNPs induced mutations in PhNR at frequencies 

ranging from 2.4 to 21 % (Figure 22a–d). The mutation frequency in each NR sample was almost 

equal to their replicates NR′ except for NR1 and NR4 which showed variations in mutation 

frequency compared to their replicates NR1′ and NR4′. The mutation frequencies of indels were 

14, 19, 2.4, and 20 % in NR1, NR2, NR4, and NR6, respectively. The mutation frequencies of 

indels in replicates were 21, 17, 7.7 and 18 % for NR1′, NR2′, NR4′, and NR6′, respectively 

(Figure 22a–d). The average mutation frequency at four different sites (NR1, NR2, NR4, and 

NR6) in phNR gene locus was 14.9 ± 2.2 %. 

In rice and maize protoplast systems, Cas9 and gRNA complex-mediated genome 

editing via plasmid vector induced targeted mutation frequencies of 21 and 13 % with 72 and 48 h 

of transfection time, respectively (Shan et al. 2013; Liang et al. 2014). Almost similar mutation 

frequencies (21 and 20 % in NR1′ and NR6, respectively) were induced in Petunia protoplast 

system within 24 h of transfection time in this study, indicating that RGEN RNPs direct delivery 

is more efficient than the vector based system. Using direct delivery of recombinant Cas9 proteins, 

mutation frequencies of 16–72 % have been reported in animal cell lines (Kim et al., 2014). 

Discrepancies in mutation frequencies might be due to variations in experimental assays and 

methods between plant system and animal system. Recently, Woo et al. (2015) have reported that 

the direct delivery approach of recombinant Cas9 proteins can induce targeted mutations in 

tobacco, Arabidopsis, and rice protoplasts with efficiencies ranging from 17 to 23 %, similar to 

the results of this study in Petunia Protoplasts (21 % in NR1′). 
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To further confirm targeted mutations and investigate mutated patterns at different sites 

in the NR gene (Figure 18; Table 7), we carried out targeted deep sequencing for bulk genomic 

DNAs obtained from individual targeted cells except for NR3 because it gave non-specific 

products during PCR amplification. Sequencing data were deposited at National Center for 

Biotechnology Information (NCBI) Sequence Read Archive (SRA) 

(http://www.ncbi.nlm.nih.gov/sra/) under the accession number of PRJNA305984. Targeted deep 

sequencing results showed that there were various numbers of mutated sequences in PCR 

amplicon sequencing of each target site. Based on the number of total sequences and the number 

of mutated indel sequences published by Cho et al. 2014, we calculated the indel (mutation) rate 

frequency (%) of each NR-RGEN samples (Table 4). Our results showed that the four different 

targeted distinct sites had mutagenic rates of 5.30–17.83 %. The average mutation rate obtained 

at the five different sites in the NR gene locus was 11.5 ± 2 % (Table 4). 
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Table 4. Estimation of mutation rate in NR gene sequences in wild type non-transfected and 

NR-RGEN transfected protoplasts by targeted deep sequencing using direct delivery of 

RGEN RNP’s. 

Proto
plast 
samp

les 

Wild type 
-transfectants 

Cas9 protein 
-transfectants 

NR-RGEN 
-transfectants 

Tot
al 

In
de
l 

Indel 
frequ
ency 
(%) 

Tot
al 

In
de
l 

Indel 
freque

ncy 
(%) 

Tot
al 

In
de
l 

Indel 
frequ
ency 
(%) 

Insa Delb 

NR1 45,
168 3 0.01 35,

735 9 0.03 53,
898 

28
54 5.30 1506 1348 

NR2 52,
699 20 0.04 52,

773 24 0.05 71,1
03 

86
88 12.22 4128 4560 

NR3c – – – – – – – – – – – 

NR4 29,
653 4 0.01 36,

003 9 0.03 40,
670 

43
92 10.80 1537 2855 

NR5d 34,
842 

45
72 13.12 22,

547 
61
18 27.13 23,

754 
82
41 34.69 2025 6216 

NR6 34,
024 

13
1 0.39 28,

372 39 0.14 35,
095 

62
56 17.83 1107 5149 

Averag
ee 

 0.11 
± 0.1 

 0.06 ±
 0.02 

 11.5 
± 2 

2069.5 
± 536.9 

3478 ±
 666.6 

 (by Seok-Min Ryu in Seoul National University) 

 

aNumbers of insertions were analyzed in the case of NR-RGEN transfectants. 

bNumbers of deletions were analyzed for NR-RGEN transfectants. 

cProtoplast sample ‘NR3’ was excluded from targeted deep sequencing analysis due to 

non-specific products during PCR amplification. 

dValues for protoplast sample ‘NR5’ was ignored during estimation because of high Indel 

rate (>10 %) in both WT and Cas9 transfectants resulting from the presence of 

heterogeneous sequences adjacent to target locus. 

eValues of average and standard deviation error were calculated for NR1, NR2, NR4, and 

NR6 only. 
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As shown in Figure 22, various mutation patterns including insertions and deletions were 

found at cleavage sites of NR1, NR2, NR4, and NR6 due to obvious DSBs and NHEJ repair 

systems based on targeted deep sequencing results. For each target site, representative 

polymorphic sequences were chosen (Figure 22) and the numbers of insertions and deletions were 

analyzed for NR-RGEN transfectants (Table 4). The estimated average ratio of deletion to 

insertion produced in the five NR-RGEN target sites of NR gene locus was about 63:37 (Table 4). 

The observed sizes of representative mutagenic deletion and insertion were 1–12 and 0–1 bp, 

respectively (Figure 22a–d). These observed mutagenic patterns were found to be similar to those 

of earlier mutagenic studies using different endonuclease enzymes such as ZFNs, TALENs, and 

RGENs (Kim and Kim, 2014; Kim et al., 2013c; Shan et al., 2013; Woo et al., 2015; Xie and 

Yang, 2013)   . Taken together, these results showed that the direct delivery of RGEN RNPs 

successfully entered Petunia protoplast cells and cleaved the targeted distinct sites of 

endogenous NR genes, leading to gene mutations such as indels via DSBs. 

Using Petunia as an example, we demonstrated that direct delivery of recombinant Cas9 

protein could be guided by sgRNA for precise genome editing. Editing genomes with 

CRISPR/Cas system has been considered as a simpler and more cost effective system than ZFNs 

or TALENs (Hsu et al., 2014; Kim et al., 2014). However, when plasmid vectors are used, all 

endonucleases have been reported to cause off-target effects (Shan et al., 2013; Xie and Yang, 

2013) and unwanted genome integration due to the persistence of plasmids (Gaj et al., 2013). To 

overcome these problems, recent studies have been demonstrated that direct delivery of purified 

recombinant nuclease proteins such as Cas9 (Kim et al., 2014; Woo et al., 2015) and TALENs 

(Luo et al., 2015) combined with guide RNA can be used in plant and animal systems to cleave 

target DNA sequences. One of the greatest advantage of using direct delivery of Cas9 protein is 

that it can create mutations quickly in a precise manner (Kim et al., 2014; Woo et al., 2015). In 

addition, it is capable of reducing off-target effects since it is degraded soon after its introduction. 

Furthermore, RGEN RNPs mediated organisms might be excluded from GMO regulations 

because no foreign DNA is introduced (Kanchiswamy et al., 2015). In the present study, we did 

not investigate the occurrence of off-target sites due to limited genome information available 

for Petunia. Recent studies have reported that off-target mutations induced by RGEN RNPs are 
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rarely found or limited when Cas9 is used at 2–10 fold molar excess of gRNA (Kim et al., 2014; 

Woo et al., 2015) . The present study used only a low ratio of sgRNA to Cas9 protein (3:1) which 

was within the ratios used in previous studies, suggesting that its off-target effects might be low. 

Comprehensive Petunia genome-wide approaches are needed to completely identify off-target 

effects of the delivery system using Cas9 proteins with sgRNA. 
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Table 5. List of sgRNA's determined to target Petunia NR gene locus in this study. 

Nucleotides in bold indicates the PAM motif in sgRNA sequences. 

 

(by Seok-Min Ryu in Seoul National University) 

 

  

Target sgRNA Sequence (5'-3') Strand 
Direction 

Position 
(bp) 

NR1 NR1-RGEN TGACGAGCAATCAAGGTAAATGG - 158–180 
NR2 NR2- RGEN GACCGGTTCCCAAGGGCATGTGG + 428–450 
NR3 NR3- RGEN AACATGGTGAAACAAACCATTGG + 586–608 
NR4 NR4- RGEN ATATGGTACCAGCATTAAGAAGG + 765–787 
NR5 NR5- RGEN TGAGTCGTCCACGAGTTGATTGG - 1431–1453 
NR6 NR6- RGEN CCATGGATGGAGGAGAGACATGG + 2666–2688 
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Table 6. List of templates used for in vitro transcription of sg-RNAs. 

 

(by Seok-Min Ryu in Seoul National University) 

 

  

Target Primer Sequence (5'-3') 

NR1 sg-RNA Forward GAAATTAATACGACTCACTATAGGTGACGAGCAATCAAGGTAA 
AGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCG 

NR2 sg-RNA Forward GAAATTAATACGACTCACTATAGGGACCGGTTCCCAAGGGCAT 
GGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCG 

NR3 sg-RNA Forward 
GAAATTAATACGACTCACTATAGGAACATGGTGAAACAAACCA 
TGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCG 

NR4 sg-RNA Forward GAAATTAATACGACTCACTATAGGATATGGTACCAGCATTAAG 
AGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCG 

NR5 sg-RNA Forward GAAATTAATACGACTCACTATAGGTGAGTCGTCCACGAGTTGA 
TGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCG 

NR6 sg-RNA Forward GAAATTAATACGACTCACTATAGGCCATGGATGGAGGAGAGAC 
AGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCG 
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Table 7. List of primers used in nested PCR for T7E1 and Deep target sequencing assay. 

Tar
get 
site 

1st PCR 2nd PCR Approxi
mate 

Product 
size (bp) 

Primer Sequence (5'-3') 

Anneal
ing 

Region
s (bp) 

Primer Sequence (5'-3') 

Anneal
ing 

Region
s (bp) 

NR
1 

F1: 
GTGTGGTCCGGTCTTT
CAAG 

56-75 
2F1:  
ACACTCTTTCCCTACACGACGCTCTTCCGATCTcg
tggctgcaattttcctct 

97-117 

262 R1: 
ATCTCGTGACGGATC
CATGG 

795-
813 

2R1:  
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
cagcagttccttcgtcccta 

273-
292 

NR
2 

F1: 
GTGTGGTCCGGTCTTT
CAAG 

56-75 
2F2:  
ACACTCTTTCCCTACACGACGCTCTTCCGATCTttg
gctagactcatgcacca 

364-
383 

264 R1: 
ATCTCGTGACGGATC
CATGG 

795-
813 

2R2: 
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
cggcacatacaagagtcacg 

546-
608 

NR
3 

F2: 
CGTGACTCTTGTATGT
GCCG 

546-
565 

2F3: 
ACACTCTTTCCCTACACGACGCTCTTCCGATCTgt
ctagtgaagcgcccaatg 

476-
495 

212 R2: 
TGTCGTATTTGCTACT
TCACAGG 

1746-
1769 

2R3:GTGACTGGAGTTCAGACGTGTGCTCTTCCGA
TCTtaccgcagcgtttcaagatg 

669-
688 

NR
4 

F2: 
CGTGACTCTTGTATGT
GCCG 

546-
565 

2F4:  
ACACTCTTTCCCTACACGACGCTCTTCCGATCTca
tcttgaaacgctgcggta 

669-
688 

261 R2: 
TGTCGTATTTGCTACT
TCACAGG 

1746-
1769 

2R4: 
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
aatccatggtccggtgtcaa 

847-
866 

NR
5 

F2: 
CGTGACTCTTGTATGT
GCCG 

546-
565 

2F5:  
ACACTCTTTCCCTACACGACGCTCTTCCGATCTttt
gtgcagcatggtggtac 

1339-
1358 

274 R2: 
TGTCGTATTTGCTACT
TCACAGG 

1746-
1769 

2R5: 
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
cgaagtgtgaacgtcagagt 

1594-
1613 

NR
6 

F3: 
AGTTCCTGCATCTTGG
GTTG 

2261-
2280 

2F6:  
ACACTCTTTCCCTACACGACGCTCTTCCGATCTat
ggaaaaagttacctattgt 

2484-
2503 

350 R3: 
TTCGTTTGTGGCTGGA
CTTG 

3036-
3055 

2R6: 
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
ggtgcttttggtcactggag 

2750-
2767 

 
 

(by Seok-Min Ryu in Seoul National University) 
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Ⅳ. Discussion 

In the first study, our results show that porcine transgenesis can be accomplished using 

ZFNs together with an enrichment reporter system. We described two types of transient reporter 

enrichment systems that can enrich cells with nuclease-induced mutation using FACS or MACS. 

The cloned embryos derived from cells enriched using MACS showed better developmental 

competence than did those derived from cells enriched by FACS. The desired mutated sequence 

was found in both systems. Therefore, the current procedure could provide a new generalized 

platform for producing mutated porcine embryos. 

In second the study, the hTERT gene prolonged the usual life span of porcine fibroblasts 

into immortalized status. Immortalized cells with single cell survival properties were treated with 

TALEN to delete CMAH. Then, knocked out cells were employed to generate preimplantation 

embryos. These immortalized cells must become useful tools as an in vitro model to select the 

most effective TALEN pairs and knockout-specific genes to support development of biomedically 

useful pig models. 

In the third study, we demonstrated an efficient targeted mutagenesis in NR gene 

of Petunia using direct delivery of engineered RGEN RNPs. Results of mutation frequencies and 

mutation patterns analyses in this study suggested that engineered RGEN RNPs were powerful in 

creating site-directed mutagenesis in endogenous NR genes in Petunia protoplasts. However, 

further studies are required to examine their potential off-target effects and the response of these 

regenerated plantlets induced by the CRISPR/Cas system in Petunia. Nonetheless, our results 

suggest that direct delivery of engineered RGEN RNPs is an effective breeding tool 

for Petunia and possibly many other crops if not all. 
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PART 2. Application of designed nuclease: Adenine base 

editor (ABE) 
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Ⅰ. Introduction 

Nonsense mutations, in which premature termination codons (PTCs) are formed by base-

pair substitution, truncate protein synthesis during translation. Such gene dysfunction is a source 

of severe pathological phenotypes in genetic diseases. Hence, compelling ribosomal read through 

of the full coding sequence is a reasonable strategy for treating such genetic disorders. To address 

this issue, previous studies showed to induce the skipping of exons containing PTCs by using 

antisense oligonucleotides (AONs) (Alter et al., 2006), (Aartsma-Rus and van Ommen, 2007). In 

other ways, a few small-molecule drugs such as ataluren (Roy et al., 2016; Siddiqui and 

Sonenberg, 2016),  and aminoglycosides (Kuschal et al., 2013) (e.g., gentamicin) have been 

utilized to bypass nonsense mutations by introducing near-cognate tRNAs at the site of the PTC 

(Pichavant et al., 2011; Singh et al., 1979). However, those approaches act transiently and have 

nonspecific effects for the drugs. Alternatively, CRISPR-mediated homology-directed repair 

(HDR) can be used for gene correction but is limited by low correction efficiency, especially in 

differentiated nonreplicating cells from higher eukaryotes including humans (Kim, 2018; Komor 

et al., 2018; Nami et al., 2018). 

It was reported that CRISPR-mediated base editing technologies enable highly efficient 

direct conversion of DNA bases without producing double-strand breaks (DSBs). Cytidine 

deaminase-based base editors (CBEs) produce C-to-T or G-to-A substitutions between the fourth 

and eighth bases in the nonbinding strand of single-guide RNA (sgRNA) at protospacer DNA 

(Komor et al., 2016; Nishida et al., 2016) . On the other hand, A-to-G or T-to-C transitions in the 

same DNA positions can be achieved by adenine base editors (ABEs) (Gaudelli et al., 2017). In 

addition to the initial versions of CBEs and ABEs, including ABE7.10, Koblan et al. (Koblan et 

al., 2018) improved the base-editing activities by expression optimization and ancestral 

reconstruction, which were named BEmax and ABEmax, respectively. Moreover, Hu et al. (Hu 

et al., 2018) and Nishimasu et al. (Nishimasu et al., 2018) independently developed new Cas9 

variants, named xCas9 and SpCas9-NG, that recognize 5′-NG-3′ and 5′-NAR-3′ sequences, 

expanding the targetable sites. By combining xCas9 3.7 with ABE7.10 (called xABE here), 
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Hu et al. (Hu et al., 2018) further demonstrated how to expand the targetable sites for adenine 

base editing. To date, a few groups have reported to successfully correct target genes by restoring 

the open reading frame in PTCs by using the ABEs, such as a TAG-PTC of EGFP gene in rice 

(Li et al., 2018) and both TAA-PTC of the Tyr gene and TAG-PTC of the DMD gene in mice. 

(Ryu et al., 2018) However, although a few meaningful examples were shown, the systematic 

gene rescue for all possible cases is not demonstrated yet. It is expected that by targeting the 

coding strand with ABEs, the three possible PTCs, 5′-TAA-3′, 5′-TAG-3′, and 5′-TGA-3′, can be 

converted to 5′-TGG-3′, which will be translated to tryptophan (Trp). Alternatively, by targeting 

the noncoding strand, the three PTCs can be converted to 5′-CAA-3′ (translated to glutamine; 

Gln), 5′-CAG-3′ (Gln), or 5′-CGA-3′ (arginine; Arg), respectively (Figure 23A). In this study, we 

established an ABE-mediated read-through method, named CRISPR-pass, to bypass PTCs by 

converting adenine to guanine or thymine to cytosine. We constructed all type of PTCs knockin 

(KI) cell lines and then showed the read through for all cases. Ultimately, we showed gene rescue 

at a patient-derived fibroblast containing PTC. 
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Ⅱ. Materials and Methods 

1. General Methods and Cloning 

All ABEs were purchased from Addgene (pCMV-ABE7.10, #102919; xCas9(3.7)-

ABE(7.10), #108382; pCMV-ABEmax, #112095). The pXY-ECFP-AAVS1-NHEJ-KI donor 

vector plasmid (Backliwal et al., 2008) (Nguyen et al., 2015)  provided by professor J.S. Woo at 

Korea University, South Korea, and modified by J.Y.) was digested with SacI and BsrGI, and 

Gibson assembly was then used to generate plasmids containing mutated versions of EGFP. The 

linearized vector was incubated with amplified EGFP DNA sequences, respectively containing 

each PTC at the appropriate location, with 20 nucleotides of overhanging homologous sequence 

at either end (5′-GGTCTATATAAGCAGAGCTC-3′ and 5′-TGTGCGGCTCACTTGTACAG-3′), 

in a solution containing 2× Gibson master mixture at 50°C for 1 h. 38 After then, pXY-EGFP-

AAVS1-NHEJ-KI vector was digested again with SacI. The linearized vector was incubated with 

additional amplified DNA sequences (5′-

ggtctatataagcagagctctcgtcgacgagctcgtttagtgaaccgtcagatcgtttaaacaagttggtcgtgaggcactgggcaggtaag

tatcaaggttacaagacaggtttaaggagaccaatagaaactgggcttgtcgagacagagaagactcttgcgtttctgataggcacctattg

gtcttactgacatccactttgcctttctctccacaggtgtccagggtaccgagctcgccgccatggtgag-3′) and 2× Gibson 

master mixture in 50°C. Each sequence of oligos encoding sgRNA was purchased from Macrogen 

(South Korea). Oligos were heated and cooled down by a thermocycler for complementary 

annealing. Double-strand oligos were ligated into linearized pRG2 plasmid linearized by BsaI 

restriction enzyme (Addgene, #104274). List of oligomers for sgRNAs and primer sequences for 

cloning are in Tables 11 and 12. 

 

2. ClinVar Database Analysis 

Bioinformatic analysis of the ClinVar database of human disease-associated mutations 

was conducted using Python. The ClinVar database (Common_and_clinical_20170905) was used 

for this analysis. The Python script used to analyze mutation patterns in human diseases and to 

identify mutations that could be CRISPR-pass targets can be accessed at https://github.com/Gue-

ho/CRISPR-pass. In brief, the steps of the analysis were as follows. 
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1. Among entries in the ClinVar database, we identified mutation patterns in the 

following categories: indels (insertions or deletions), silent mutations, nonsense mutations, and 

missense mutations. 

a. For precise analysis, entries in each mutation pattern category were subdivided 

depending on their nucleotide sequence using information about the surrounding genomic 

sequence and coding sequence (CDS). CDSs were extracted from the SNP database at NCBI. If 

no CDS was found in NCBI, than data were taken from GRCh38 and hg19. 

2. Among the sorted entries from the ClinVar database, the number of nonsense 

mutations that were potential CRISPR-pass targets were counted. The targetable Cas9 sites were 

grouped by their associated PAM sequences, such as GG, AG, GA, GC, GT, GAN, and AA. 

a. Each Cas9-targetable site was filtered depending on the ABE target range (positions 

4 to 8 in the protospacer from the end distal to the PAM) it contained. 

b. To prevent counting sequences more than once, in the case of SpCas9, a sequence was 

counted when at least either GG or AG was possible; the number was counted as a targetable 

PAM for xABE when at least one of the PAM was possible. 

 

3. Cell Culture and Transfection 

HeLa (ATCC, CCL-2) cells were grown in DMEM with 10% fetal bovine serum (FBS) 

and a penicillin/streptomycin mix (100 units/mL and 100 mg/mL, respectively). 2.5 × 105 HeLa 

cells were transfected with each ABE (ABE, xABE, or ABEmax)-encoding plasmid (0.7 μg) and 

each sgRNA expression plasmid (0.3 μg) using Lipofectamine 2000 (Invitrogen) according to the 

manufacturer’s protocol. Cells were collected 5 days after transfection, and the cell’s genomic 

DNA was prepared using NucleoSpin Tissue (MACHEREY-NAGEL & Co.). 

GM14867 (XPC mutant fibroblasts) were purchased from Coriell Institute and 

maintained in Eagle’s minimum essential medium (EMEM) with 15% FBS and a 

penicillin/streptomycin mix. BJ-5ta cells (cat. no. CRL-4001, ATCC) were maintained in a 4:1 

mixture of DMEM and medium 199 with 10 μg/mL hygromycin B and 10% FBS. ARPE-19 cells 

(cat. no. CRL-2302, ATCC) were maintained in DMEM:F12 with 10% FBS and a 

penicillin/streptomycin mix. For plasmid-mediated expression of ABEs and sgRNAs, 6 × 
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105 fibroblasts were co-transfected with 14 μg of ABE-encoding plasmid and 6 μg of sgRNA-

expressing plasmid. Fibroblasts were transfected with the Amaxa P3 primary cell 4D-nucleofector 

kit using program DS-137, according to the manufacturer’s protocol. A-to-G substitutions were 

analyzed 5 days after transfection. 

 

4. EGFP-PTC-KI Cell Lines 

2.5 × 105 HeLa cells were transfected with Cas9-encoding plasmid (0.35 μg), AAVS1-

sgRNA-encoding plasmid (0.15 μg), and EGFP-PTC encoding plasmid (0.5 μg) using the Neon 

transfection system (Invitrogen) with the following parameters: pulse voltage, 1,005; pulse width, 

35 ms; pulse number, 2. Seven days after transfection, the culture medium was changed to 

150 μg/mL hygromycin B (Thermo Fisher Scientific, cat. no. 10687010)-containing HeLa cell 

culture medium. Seven days after hygromycin B treatment, single cells were selected and cultured. 

Single cell-derived clones were analyzed and used for further experiments. 

 

5. Flow Cytometry 

Five days after transfection, ABE-treated cells were trypsinized and resuspended in PBS. 

Single-cell suspensions were analyzed using a FACSCanto II (BD Biosciences) installed at 

Hanyang LINC+ Equipment Center (Seoul, South Korea). 

 

6. Targeted Deep Sequencing 

Genomic DNA segments that encompass the nuclease target sites were amplified using 

Phusion polymerase (New England Biolabs). Equal amounts of the PCR amplicons were 

subjected to paired-end read sequencing using Illumina MiSeq at Bio-Medical Science (South 

Korea). Rare sequence reads that constituted less than 0.005% of the total reads were excluded. 

Off-targets were selected by Cas-OFFinder (http://www.rgenome.net/cas-offinder/) (Bae et al., 

2014), and base substitutions were analyzed by BE-Analyzer (http://www.rgenome.net/be-

analyzer/) (Hwang et al., 2018). Primer sequences and list of off-targets are in Tables 12 and 13. 
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7. Treatment with Ataluren and Gentamicin 

GM-14867 cells and the cells treated with xABE and ABEmax were maintained in 

EMEM with 15% FBS. When the confluency was 60%–70%, the cells were treated with ataluren 

(10 μM; cat. no. S6003, Selleck) or gentamicin (1 mg/mL; cat. no. G1397, Sigma) for 48 h. 

 

8. Western Blotting 

Cell lysates were homogenized in 1× cell lysis buffer (cat. no. #9803, Cell Signaling 

Technology), and the supernatants were collected after centrifugation for 10 min at 14,000 × g. 

An equal amount (35 μg) of the protein was separated by SDS-PAGE in 4%–15% mini-

PROTEAN TGX precast protein gels (cat. no. 4561084, Bio-Rad) and transferred to 

nitrocellulose membranes. The membranes were incubated with primary antibodies overnight at 

4°C. The primary antibodies utilized in this study were as follows: anti-XPC antibody (cat. no. 

MA1-23328, Thermo) and anti-β-actin antibody (catalog no. A2668, Sigma). Then, the 

membranes were treated with the appropriate species-specific secondary antibodies (cat. no. sc-

2357 and sc-516102, Santa Cruz) for 1 h at room temperature. After treatment of the membranes 

with reagents from the EZ-Western Lumi pico kit (cat. no. DG-WP100, DoGEN), the protein 

bands were visualized using the ImageQuant LAS4000 system with the accompanying software 

program (GE). 

 

9. Functional Assessment 

To assess the functional recovery of GM14867 cells, which carry a homozygous 

mutation in the XPC gene, after treatment with xABE, ABEmax, ataluren, or gentamicin, these 

cells, together with BJ-5ta WT cells, were exposed to ultraviolet irradiation at 254 nm at 1 J/m2/s 

(cat. no. CL-1000, Analytik Jena) and left to grow for 72 h. Cells treated with ataluren or 

gentamicin underwent treatment for 48 h before ultraviolet exposure. Cell survival was evaluated 

with a water-soluble tetrazolium salt assay using an EZ-Cytox kit (cat. no. EZ-1000, DoGEN). 
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10.  Statistics 

All statistical analyses were performed using the GraphPad Prism 5 program (GraphPad), 

and results are indicated in the figure legends. The values of each mean and SEM were visualized 

as horizontal lines and error bars, respectively, in graphs. 

 

11.  Data Availability 

Sequencing data has been uploaded to the Sequence Read Archive under Bioproject: 

PRJNA518883. All data are available from the authors upon reasonable request. 
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Ⅲ. Results  

 1. In Silico Investigation of Applicable Targets for CRISPR-Pass in the 

ClinVar Database 

In Silico Investigation of Applicable Targets for CRISPR-Pass in the ClinVar Database 

We first inspected all targetable variations registered in the ClinVar database in silico to 

investigate how many genetic diseases with nonsense mutations could potentially be treated with 

CRISPR-pass. Of the 50,376 mutations causing pathological phenotypes in the database, 

nonsense mutations account for 16.2% (Figure 23B); among these, 41.1% are targetable by 

conventional ABEs that recognize a canonical protospacer adjacent motif (PAM), 5′-NGG-3′, and 

95.5% are covered by xABEs, which recognizes a noncanonical set of PAMs, 5′-NG-3′, and 5′-

NAR-3′ (Figure 23C). Only 31.5% of the nonsense mutations in the database can be exactly 

corrected to amino acids found in the nonmutant protein by xABEs, implying that the set of 

mutations that can be modified for read through by CRISPR-pass is much larger than the set for 

which exact gene correction in DNA is possible (Figure 23C). 
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(with Gue-Ho Hwang in Hanyang University) 

 

Figure 23. CRISPR-Pass for Restoring Abbreviated Gene Expression. (A) Schematic of 

ABE-mediated CRISPR-pass. Targetable adenines are located in the coding or noncoding strand 

depending on the PAM’s orientation. All possible PTCs are shown in the upper boxes (coding 

strand targeting-TAA, TAG, TGA; noncoding strand targeting-TAA, TAG, TGA). The orange-

colored shapes represent adenosine deaminase. (B) The percentages of different types of 

mutations causing pathological phenotypes in the ClinVar database. (C) The percentages of PTCs 

that are targetable by CRISPR-pass with various PAMs of variant ABEs and the recoverable rate 

of intact amino acids and bypassing alternative amino acids are depicted. 
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2. Construction of Six KI HeLa Cell Lines Carrying Various Types of PTCs 

in EGFP Gene 

To demonstrate the efficiency of CRISPR-pass in human cells, as a proof of concept, we 

tried to construct six KI HeLa cell lines, each carrying a different mutated version of the EGFP 

gene. We first prepared six DNA plasmids having different types of PTCs in the EGFP gene. The 

mutant EGFP genes as a set contain each type of PTC at two locations: the three PTCs in a 

position that can be converted by targeting the coding strand and the three PTCs in a position that 

can be converted by targeting the noncoding strand. The first position corresponds to a codon for 

lysine (Lys53) and the second to a codon for aspartate (Asp217); the encoded residues are located 

in connecting loop domains of EGFP (Figures 27A and 24). After preparing plasmids containing 

the six mutated EGFP genes, each plasmid was inserted into the genome in an endogenous safe-

harbor region, the AAVS1 site, 19 using CRISPR-Cas9 via a nonhomologous end-joining (NHEJ) 

pathway (Maresca et al., 2013) (Figure 27). The cell lines were named c-TAA, c-TAG, c-TGA, 

nc-TAA, nc-TAG, and nc-TGA, respectively. 
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Figure 24. Coding or noncoding targeting depends on the EGFP sequence and the PTC 

position. The sequence of the EGFP gene is shown. ABE target sequences are underlined. 

Depending on the target strand, codons for Lys53 or Asn213 were mutated such that they became 

STOP codons. The codons that are mutated are shown in blue and the PAM sequences are shown 

in red. 

 

  



 81 

3. CRISPR-Pass Rescues the Function of the EGFP Gene in Six KI HeLa 

Cell Lines 

To test whether ABE treatment would allow bypass of these nonsense mutations, we 

transfected plasmids expressing sgRNAs designed to target both locations harboring PTCs, 

together with ABE-encoding plasmids, into the prepared HeLa cell lines. After ABE treatment by 

lipofection, we found that functional EGFP was expressed, as seen by green fluorescence, in all 

cell lines. For example, in the case of c-TAA cells, the function of EGFP would be rescued when 

two adenines are changed to guanines simultaneously for bypassing the PTC. As shown 

in Figure 27C, the functional EGFPs were observed after various ABEs (ABE7.10, xABE, and 

ABEmax) were treated. We quantified the ratios of rescued to mutated EGFPs by flow cytometry 

(Figure 27D). We also confirmed the A-to-G conversion at target DNA regions by targeted deep 

sequencing in bulk cell populations; the conversion rate of two adenines (A7A8) to two guanines 

(G7G8) at once was 11.2% here (Figure 27E). 

Similar to the c-TAA cells, we repeatedly carried out CRISPR-pass for all other types 

of KI cell lines (Figure 25). The quantitative ratios of the functional EGFP expression were also 

measured by flow cytometry and targeted deep sequencing. As a result, the flow cytometry 

analysis demonstrated that nonsense mutations were bypassed in 0.7%–17.8% of cells (Figures 

27F and 26; Table 8). And targeted deep sequencing analysis confirmed that 0.2%–15.2% of the 

cells showed A-to-G conversions at target regions with a comparable tendency 

(Figure 27G; Table 9). It is noteworthy to mention that ABEmax was the most effective one in 

all cases, resulting in up to 59.6% rescue of the mutant EGFP gene, compared to the ABE7.10 

and xABE. And there seems to be some mismatches between EGFP expression levels and 

substitution rates especially in the case of c-TAG cells, which might be caused by the different 

expression capacity of each KI cell line due to cell-to-cell variations. 
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Figure 25. Rescued EGFP expression after treatment with ABEs. Rescued EGFP expression 

in EGFP-PTC-KI cell lines in which the coding strand (a) or noncoding strand (b) is targeted for 

PTC bypass.   
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Figure 26. FACS results. 
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Figure 27. Restoring the Function of EGFP Gene Expression in Six KI HeLa Cell Lines 

Carrying Various Types of PTCs. (A) Scheme for restoration of EGFP expression by CRISPR-

pass. The first set of PTCs, which can be converted by targeting the coding strand, affect a residue 

that is located on a loop between the third and fourth beta strands; the second set of PTCs, which 

can be converted by targeting the noncoding strand, affect a residue that is located on a loop 

between the 10th and 11th beta strands. c-PTC, coding strand PTC; nc-PTC, noncoding strand 

PTC. GFP structures were originated from Wikimedia Commons created by Zephyris. (B) 

Schematic of NHEJ-mediated KI of the EGFP-PTC constructs into the AAVS1site. Mutated 

EGFP KI cell lines were established for the three types of PTCs (TAA, TAG, and TGA). EGFP-

PTC constructs were inserted into the AAVS1 site by NHEJ-mediated KI methods. The 

hygromysin B-resistant gene was also inserted for cell selection. (C) Fluorescence image of 

rescued EGFP expression in the c-TAA cell line after CRISPR-pass treatment. Three different 
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versions of ABEs (ABE7.10, xABE, and ABEmax) were used for bypassing the PTCs in 

the EGFP gene. All scale bars are 100 μm. (D) Flow cytometry data after the different versions 

of ABEs (ABE7.10, xABE, and ABEmax) were treated in the c-TAA cell line. (E) Targeted deep-

sequencing data showing the percentages of each of the four nucleotides at each position in the 

target DNA sequences as a substitution table, which was obtained from the c-TAA cell line after 

the ABEmax treatment. Bar graphs showing recovered EGFP expression levels as determined by 

flow cytometry (F) and showing A-to-G substitution rates at PTC sites as determined by targeted 

deep sequencing (G) for each EGFP-PTC KI cell line, after treatment with ABEs (ABE7.10, 

xABE, or ABEmax). Each dot represents the three independent experiments. Error bars represent 

SEM. 
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Table 8. FACS results. The percentages of EGFP (+) cells in populations of ABE-treated EGFP-

PTC-KI cells. Each experiment was repeated 3 times.  

 

 (-) ABE xABE ABEmax 
1st trial 2nd trial 3rd trial 1st trial 2nd trial 3rd trial 1st trial 2nd trial 3rd trial 1st trial 2nd trial 3rd trial 

c-TAA 0.3% 0.2% 0.2% 1.3% 1.2% 1.7% 1.5% 1.3% 1.4% 12.5% 10.9% 25.1% 

c-TAG 0.5% 1.1% 0.9% 0.7% 1.1% 1.1% 0.9% 1.7% 1.4% 11.1% 7.7% 7.2% 

c-TGA 0.4% 0.8% 0.8% 17.8% 16.2% 14.2% 13.1% 20.3% 18.2% 59.6% 57.7% 55.0% 

nc-TAA 0.2% 0.1% 0.2% 2.7% 3.2% 2.3% 4.2% 5.3% 4.2% 52.2% 59.0% 50.6% 

nc-TAG 0.2% 0.9% 1.3% 17.1% 13.7% 2.8% 30.4% 19.8% 22.9% 44.6% 41.6% 31.4% 

nc-TGA 0.4% 2.1% 1.6% 11.0% 6.9% 1.8% 12.0% 9.5% 10.2% 15.7% 17.3% 11.3% 
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Table 9. NGS results. The percentages of A to G substitutions in populations of ABE-treated 

EGFP-PTC-KI cells. Each experiment was repeated 3 times. 

 

 
(-) ABE xABE ABEmax 

1st trial 2nd trial 3rd trial 1st trial 2nd trial 3rd trial 1st trial 2nd trial 3rd trial 1st trial 2nd trial 3rd trial 

c-TAA 0.0% 0.1% 0.0% 0.2% 0.2% 0.0% 0.0% 0.0% 0.9% 11.2% 9.7% 43.5% 

c-TAG 0.5% 0.6% 0.4% 5.3% 6.5% 2.7% 9.1% 9.5% 4.0% 51.2% 52.2% 54.1% 

c-TGA 0.3% 0.3% 0.0% 6.2% 5.9% 5.4% 5.1% 4.4% 2.4% 37.5% 34.0% 41.3% 

nc-TAA 0.0% 0.0% 0.0% 6.7% 8.6% 7.2% 11.2% 14.0% 11.8% 80.9% 84.2% 81.6% 

nc-TAG 0.3% 0.1% 0.2% 12.7% 1.8% 14.3% 16.3% 22.2% 28.7% 41.9% 33.1% 44.8% 

nc-TGA 0.2% 0.3% 0.4% 9.1% 2.3% 15.2% 15.0% 12.1% 16.0% 37.4% 19.2% 26.9% 
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 4. CRISPR-Pass Rescues the Function of the XPC Gene in Patient-Derived 

Fibroblasts 

We next applied CRISPR-pass to the rescue of a nonsense mutation in fibroblasts 

(GM14867) derived from a patient with xeroderma pigmentosum, complementation group C 

(XPC). XPC, which affects the skin, is a genetic disorder caused by nonsense mutations in 

the XPC gene. The XPC protein is an initiator of global nucleotide excision repair (Sugasawa et 

al., 1998). Thus, XPC-deficient cells accumulate DNA damage when they are exposed to 

chemical or physical stimuli including ultraviolet irradiation(Dupuy et al., 2013). GM14867 cells 

have a homozygous C > T nonsense mutation at nucleotide 1840 in the XPC gene, which creates 

a 5′-TGA-3′ stop codon that replaces a codon for Arg (Arg579) (1840C > T, Arg-579-UGA stop 

codon) (Figure 29A). After treating GM14867 cells with ABE7.10-encoding plasmid and 

sgRNA-encoding plasmid by electroporation, the adenine base in the 5′-TGA-3′ stop codon was 

converted to guanine to create 5′-TGG-3′ at a rate of 3.4%, as measured by targeted deep 

sequencing (Figure 28), indicating partial rescue of the XPC gene. Similar to the previous 

experiments, xABE and ABEmax resulted in higher base-editing rates more than 10% (Figures 

29B and S4), respectively. Western blot analyses demonstrated that both xABE and ABEmax 

treatment led to recovery of expression of the full-length XPC protein, with a molecular weight 

similar to that in wild-type (WT) cells (ARPE-19), at considerably higher levels than induced by 

ataluren or gentamicin (Figure 29C). 
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(with Dong Hyun Jo in Seoul National University College of Medicine) 

 

Figure 28. CRISPR-pass for XPC patient-derived fibroblasts. Next generation sequencing 

(NGS) results from (a) untreated GM14867 fibroblasts, (b) ABE-treated GM143867 fibroblasts, 

and (c) xABE-treated GM143867 fibroblasts. (d) Image of complete SDS-PAGE gel that is shown 

in part in Figure 29c. 
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Next, to determine the functional activity of the recovered XPC protein, we evaluated 

the viability of GM14867 cells at 72 h after exposure to 254 nm ultraviolet light. To our surprise, 

both xABE- and ABEmax-treated GM14867 cells had significantly regained resistance to 

ultraviolet irradiation-induced DNA damage, causing an increase in cellular viability (Student’s t 

test, p < 0.001; Figure 29D). More importantly, ABEmax-treated GM14867 cells sustained such 

XPC protein expression for at least 4 weeks, whereas the cells treated with ataluren or gentamicin 

gradually lost XPC protein expression (Figures 29E and 30), implying that CRISPR-pass induces 

persistent expression for the nonsense-mediated disease therapies. 
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(with Dong Hyun Jo in Seoul National University College of Medicine) 

 

Figure 29. Restoring Abbreviated XPC Gene Expression in Patient-Derived Fibroblasts. (A) 

Scheme for ABE-induced read through of an XPC-associated PTC. (B) Targeted deep-sequencing 

data showing the A-to-G substitution rate induced by ABEmax treatment at the PTC site in 

the XPC gene. (C) Expression level of the XPC protein in XPC mutant cells rescued by treatment 

with ABEs (ABEmax or xABE), compared with the expression level in untreated cells and cells 

treated with ataluren or gentamicin for 48 h. (D) Cell viability of WT skin fibroblasts (BJ-

5ta), XPC mutant cells (GM14867), and XPC mutant cells treated with ABEs (ABEmax or 

xABE), ataluren, or gentamicin at 3 days after exposure to 254 nm ultraviolet radiation at a dose 

of 25 J/m2. p values were calculated by one-way ANOVA with post-hoc Bonferroni’s multiple 

comparison tests (n = 6). p value indicators from a comparison with GM14867 cell viability are 

shown above each treatment group. NS, not significant (p > 0.05); *p < 0.05; ***p < 0.001. (E) 

Prolonged expression of the XPC protein after CRISPR-pass treatment. Significant and stable 

XPC protein expression was observed until at least 4 weeks after ABEmax treatment. However, 

XPC protein expression declined after removal of ataluren and gentamycin. Proteins were also 

prepared from ABEmax-treated XPC mutant cells at 2 and 4 weeks (subculturing twice per week) 

for comparison. Blue and red arrowheads indicate the positions of XPC protein. 
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(by Dong Hyun Jo in Seoul National University College of Medicine) 

 

Figure 30. Prolonged expression of the XPC protein after ABE treatment. Image of complete 

SDS-PAGE gel that is shown in part in Figure 29e. 
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Finally, to examine the off-target effects of CRISPR-pass in GM14867 fibroblasts, we 

searched for potential off-target sites using Cas-OFFinder (Bae et al., 2014) and carried out 

targeted deep sequencing for 12 candidate target sites (Figure 31; Table 10). As a result, we found 

no noticeable off-target sites likewise to the previous ABE-based gene-editing studies, (Lee et al., 

2018; Liang et al., 2019; Liu et al., 2018) suggesting potential clinical utility. 
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Figure 31. Off-target analysis for CRISPR-pass targeting XPC. A to G substitution rates at 

off-target sites are displayed. The percentages of substitutions at each site are summarized in 

Table 10. The red bars depict A to G substitution rates in untreated samples, whereas the blue 

bars depict A to G substitution rates in ABE-treated samples. Blue arrowhead indicates a target 

“A” which shows the A to G substitution rates (%). 
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Table 10. A-to-G substitution rates (%) in potential ABE off-target sites. N.A., not available; 

these sites are a Cas9 or xCas9 off-target site but do not contain an A targetable by ABEs. Blue 

colored letter means a target “A” which shows the A to G substitution rates (%).  

Name Target sequences ABE treated wt 

XPC_ABEmax_on GGGTCTGAGATGTCACACAGNGG 10.40% 0.20% 

XPC__ABEmax 
off_1 

GGGcCTtAaATGTCACACAGAGG 0.20% 0.20% 

XPC__ABEmax 
off_2 

GGccCTGtGATGTCACACAGGGG 0.10% 0.20% 

XPC_ xABE_on GGGTCTGAGATGTCACACAGNG 13.70% 0.20% 

XPC_ xABE_off_1 aGGTCTcAGATGTCACACAGCG 0.20% 0.20% 

XPC_ xABE_off_2 GGGTCaGAGcTGTCACACAGAG 0.90% 0.60% 

XPC_ 
xABE_off_3_1 

GGGcCTtAaATGTCACACAGAG 0.10% 0.10% 

XPC_ 
xABE_off_3_2 

GGGcCTtAaATGTCACACAGAG 0.10% 0.10% 

XPC_ 
xABE_off_3_3 

GGGcCTtAaATGTCACACAGAG 0.10% 0.20% 

XPC_ xABE_off_4 GGGTtgGAGcTGTCACACAGAG 0.40% 0.40% 

XPC_ xABE_off_5 GaGTgTGAcATGTCACACAGAG 0.40% 0.40% 

XPC_ xABE_off_6 GGGTtgGAaATGTCACACAGAG 0.30% 0.30% 

XPC_ xABE_off_7 tGGTCTGgGcTGTCACACAGTG N.A N.A 

XPC_ xABE_off_8 GGccCTGtGATGTCACACAGGG N.A N.A 

XPC_ xABE_off_9 GGGTCTtgGtTGTCACACAGTG N.A N.A 

XPC_ xABE_off_10 GGcTCTGgcATGTCACACAGGG N.A N.A 
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Table 11. List of oligomers encoding sgRNAs. 

Name sequences 

psg-nc-TAA-up CACCGTCTCTTAGGGGTCTTTGCTC 

psg-nc-TAG-up CACCGTCTCCTAGGGGTCTTTGCTC 

psg-nc-TGA-up CACCGTCTCTCAGGGGTCTTTGCTC 

psg-nc-TAA-bo AAACGAGCAAAGACCCCTAAGAGAC 

psg-nc-TAG-bo AAACGAGCAAAGACCCCTAGGAGAC 

psg-nc-TGA-bo AAACGAGCAAAGACCCCTGAGAGAC 

psg-c-TAG_1up CACCGCCGGCTAGCTGCCCGTGCCC 

psg-c-TAA_2up CACCGCCGGCTAACTGCCCGTGCCC 

psg-c-TGA_3up CACCGCCGGCTGACTGCCCGTGCCC 

psg-c-TAG_1bo AAACGGGCACGGGCAGCTAGCCGGC 

psg-c-TAA_2bo AAACGGGCACGGGCAGTTAGCCGGC 

psg-c-TGA_3bo AAACGGGCACGGGCAGTCAGCCGGC 

psg-XPC-up CACCGGGGTCTGAGATGTCACACAG 

psg-XPC-bo AAACGACACACTGTAGAGACTGGGC 

psg-AAVS1-up CACCGTAAGCAAACCTTAGAGGTTC 

psg-AAVS1-bo AAACCTTGGAGATTCCAAACGAATC 
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Table 12. PCR primers used in this study. 

Name Sequences 

EGFP-1stF gacatatccacgccctccta 

EGFP-1stR ctgacaattccgtggtgttg 

EGFP_c_PTC_Deep_F ACACTCTTTCCCTACACGAC GCTCTTCCGATCT acgtaaacggccacaagttc 

EGFP_c_PTC_Deep_R GTGACTGGAGTTCAGACGTGT GCTCTTCCGATCT tcgtccttgaagaagatggtg 

EGFP_nc_PTC_Deep_F ACACTCTTTCCCTACACGAC GCTCTTCCGATCT gaacggcatcaaggtgaact 

EGFP_nc_PTC_Deep_R GTGACTGGAGTTCAGACGTGT GCTCTTCCGATCT cttgtacagctcgtccatgc 

inf_sacI_Cgo_add_F GGTCTATATAAGCAGAGCTC TCGTCGACGAGCTCGTTTAGTG 

inf_sacI_Cgo_add_R CTCACCATGGCGGCGAGCTC GGTACCCTGGACACCTGTGG 

inf_ccn_n2_TAA_2F CTGAGCAAAGACCCCtgagagaagcgcgatcacatgg 

inf_ccn_n2_TAA_1R tcaGGGGTCTTTGCTCAGGGCG 

inf_ccn_n2_TAG_2F CTGAGCAAAGACCCCcaagagaagcgcgatcacatgg 

inf_ccn_n2_TAG_1R ttgGGGGTCTTTGCTCAGGGCG 

inf_ccn_n2_TGA_2F CTGAGCAAAGACCCCcgagagaagcgcgatcacatgg 

inf_ccn_n2_TGA_1R tcgGGGGTCTTTGCTCAGGGCG 

inf_go_F1-1 TGGGAGGTCTATATAAGCAGAGCTCATGGTGAGCAAGGGCGAGG 

inf_go_R1-TAG CCATGTGCTAGCGCTTCTCGTTGGGGTC 

inf_go_R1-TAA CCATGTGTTAGCGCTTCTCGTTGGGGTC 

inf_go_R1-TGA CCATGTGTCAGCGCTTCTCGTTGGGGTC 

inf_go_F1-2TAG CGAGAAGCGCTAGcacatggtcctgctggagtt 

inf_go_F1-2TAA CGAGAAGCGCTAAcacatggtcctgctggagtt 

inf_go_F1-2TGA CGAGAAGCGCTGAcacatggtcctgctggagtt 

inf_go_R1-2 TGAGATGTCTCTGTGCGGCTCACTTGTACAGCTCGTCCATGC 

inf_go_R2-1TAG CGGGCAGCTAGCCGGTGGTGCAGATGAAC 

inf_go_R2-1TAA CGGGCAGTTAGCCGGTGGTGCAGATGAAC 

inf_go_R2-1TGA CGGGCAGTCAGCCGGTGGTGCAGATGAAC 

inf_go_F2-2TAG CACCACCGGCTAGCTGCCCGTGCCCTGGCCC 

inf_go_F2-2TAA CACCACCGGCTAACTGCCCGTGCCCTGGCCC 

inf_go_F2-2TGA CACCACCGGCTGACTGCCCGTGCCCTGGCCC 

(Continued) 
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Name Sequences 

XPC_1stF ccaggagacaagcaggagaa 

XPC_1stR cgcggcagttcatctttcaa 

XPC_deepF ACACTCTTTCCCTACACGAC GCTCTTCCGATCT gtgagcaggaggaaaagtgg 

XPC_deepR GTGACTGGAGTTCAGACGTGT GCTCTTCCGATCT gtatggtctcaaggtctcggc 

XPC_off_2nd_F1 ACACTCTTTCCCTACACGAC GCTCTTCCGATCT CACATGCTCCTGGAAGGGAA 

XPC_off_2nd_R1 GTGACTGGAGTTCAGACGTGT GCTCTTCCGATCT AGGAGTGCCTACAGATGGGT 

XPC_off_2nd_F2 ACACTCTTTCCCTACACGAC GCTCTTCCGATCT TTCACAGGCTGGCATTGAGT 

XPC_off_2nd_R2 GTGACTGGAGTTCAGACGTGT GCTCTTCCGATCT TGCCCAGACAGAAGTTTGCT 

XPC_off_2nd_F3_NGG_F1 ACACTCTTTCCCTACACGAC GCTCTTCCGATCT TGGAAGTGTAAAGGGGTTGTCT 

XPC_off_2nd_R3_NGG_R1 GTGACTGGAGTTCAGACGTGT GCTCTTCCGATCT TCCATCTTTCACAGAGCTTCCA 

XPC_off_2nd_F4 ACACTCTTTCCCTACACGAC GCTCTTCCGATCT GCATTTCCAGGCACACAGTG 

XPC_off_2nd_R4 GTGACTGGAGTTCAGACGTGT GCTCTTCCGATCT CAGAGGATGCAAGGAAACACC 

XPC_off_2nd_F5 ACACTCTTTCCCTACACGAC GCTCTTCCGATCT TCCATTTAGCTCGGGATGGC 

XPC_off_2nd_R5 GTGACTGGAGTTCAGACGTGT GCTCTTCCGATCT TGCCTCATTGTTCATTAGTGTCT 

XPC_off_2nd_F6 ACACTCTTTCCCTACACGAC GCTCTTCCGATCT AGTCATAATATTTCAAGGCAGAAAAGA 

XPC_off_2nd_R6 GTGACTGGAGTTCAGACGTGT GCTCTTCCGATCT ACGCTCTTTTCAGACATTCTTGT 

XPC_off_2nd_F7 ACACTCTTTCCCTACACGAC GCTCTTCCGATCT TGGCAGCAAGAGAAAGGAGG 

XPC_off_2nd_R7 GTGACTGGAGTTCAGACGTGT GCTCTTCCGATCT GTGACCTTCCTCCTTCCGTG 

XPC_off_2nd_F8_NGG_F1 ACACTCTTTCCCTACACGAC GCTCTTCCGATCT GACCTGTACTATGGGCTGCC 

XPC_off_2nd_R8_NGG R1 GTGACTGGAGTTCAGACGTGT GCTCTTCCGATCT TCATCATCCCCTCCCTGTGT 

XPC_off_2nd_F9 ACACTCTTTCCCTACACGAC GCTCTTCCGATCT ACCTCCCTCCTGAAGAAGTGA 

XPC_off_2nd_R9 GTGACTGGAGTTCAGACGTGT GCTCTTCCGATCT TGGGCAGGACTGATATCCCT 

XPC_off_2nd_F10 ACACTCTTTCCCTACACGAC GCTCTTCCGATCT CCTCCTAAGGAACAACATGGTGT 

XPC_off_2nd_R10 GTGACTGGAGTTCAGACGTGT GCTCTTCCGATCT TGCAATTTCTTCTTTGTCCTGAGT 

XPC_off_1st_F1 TGCAAACCCCTTCTGTCTGT 

XPC_off_1st_R1 TGCAGTGAGCTGAGATTGGG 

XPC_off_1st_F2 AATGGGGGTACAGGCATTGG 

XPC_off_1st_R2 AGCTGGCTGCAGAAATTTGC 

XPC_off_1st_F3_NGG_F1 GAGGTTGCAGTGAGCCAAGA 

XPC_off_1st_R3_NGG_R1 GGAGGGAGAGAGGAGTGGAG 

XPC_off_1st_F4 GCCTTCTCAACAATCCCCCA 

XPC_off_1st_R4 CCACTGTTTTGTGCAGCCTC 

XPC_off_1st_F5 TGAGGCGTGGAAGTGTGTAC 

XPC_off_1st_R5 TCAGCTCACTGCAACCTCTG 

XPC_off_1st_F6 CTTACCAGCGGCTCTTGGAA 

XPC_off_1st_R6 CATCTGCTAAAGGGCTGGCT 

XPC_off_1st_F7 CCTCACAGCCAATCCCATGT 

XPC_off_1st_R7 AGGAGTGGCTCATCAAAGGC 

XPC_off_1st_F8_NGG_F1 ATGTGGACCCAGGCATTCTG 

XPC_off_1st_R8_NGG_R1 CAGAGGGAGCACCAAGGAAG 

(Continued) 
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XPC_off_1st_F9 GCAAGGGAGAAAGGAGGGTC 

XPC_off_1st_R9 CTCCTTCTTGTCGTGGGGAC 

XPC_off_1st_F10 TTCCAAACCCCCAGGAACTT 

XPC_off_1st_R10 TCAGCCATACCACACCAAGA 
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Table 13. List of off-target sites. 

 
Name On-target sequences Off-target sequences chr no. position direction 

no. of 
mismatches 

sequence ID features 

XPC_ABEmax_off_1 GGGTCTGAGATGTCACACAGNGG GGccCTGtGATGTCACACAGGGG chr1 55008670 - 3 NC_000001.11 intergenic region 

XPC_ABEmax_off_2 GGGTCTGAGATGTCACACAGNGG GGGcCTtAaATGTCACACAGAGG chr1 199005822 + 3 NC_000001.11 intergenic region 

XPC_xABE_off_1 GGGTCTGAGATGTCACACAGNG aGGTCTcAGATGTCACACAGCG chr7 24217661 - 2 NC_000007.14 intragenic region; intron 

XPC_xABE_off_2 GGGTCTGAGATGTCACACAGNG GGGTCaGAGcTGTCACACAGAG chr13 47873206 - 2 NC_000013.11 intergenic region 

XPC_xABE_off_3 GGGTCTGAGATGTCACACAGNG GGGcCTtAaATGTCACACAGAG chr1 199005822 + 3 NC_000001.11 intergenic region 

XPC_xABE_off_4 GGGTCTGAGATGTCACACAGNG GGGTtgGAGcTGTCACACAGAG chr2 102917030 - 3 NC_000002.12 intergenic region 

XPC_xABE_off_5 GGGTCTGAGATGTCACACAGNG GaGTgTGAcATGTCACACAGAG chr17 48043863 + 3 NC_000017.11 intergenic region 

XPC_xABE_off_6 GGGTCTGAGATGTCACACAGNG GGGTtgGAaATGTCACACAGAG chr6 148983560 + 3 NC_000006.12 intragenic region; intron 

XPC_xABE_off_7 GGGTCTGAGATGTCACACAGNG tGGTCTGgGcTGTCACACAGTG chr16 66513305 - 3 NC_000016.10 intragenic region; intron 

XPC_xABE_off_8 GGGTCTGAGATGTCACACAGNG GGccCTGtGATGTCACACAGGG chr1 55008671 - 3 NC_000001.11 intergenic region 

XPC_xABE_off_9 GGGTCTGAGATGTCACACAGNG GGGTCTtgGtTGTCACACAGTG chr21 35580798 + 3 NC_000021.9 intergenic region 

XPC_xABE_off_10 GGGTCTGAGATGTCACACAGNG GGcTCTGgcATGTCACACAGGG chr10 9927098 + 3 NC_000010.11 intergenic region 
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Ⅳ. Discussion 

Previously, Kuscu et al. (Kuscu et al., 2017) and Billon et al. (Billon et al., 2017) 

demonstrated gene-silencing methods, named CRISPR-STOP and iSTOP, respectively, through 

CBE-induced nonsense mutations. In this study, we analogously demonstrated that CRISPR-pass 

is a straightforward method for inducing read through of PTCs by ABEs, covering most (95%) 

nonsense mutations in the ClinVar database that cause pathological phenotypes. We first 

demonstrated the CRISPR-pass activities in six types of EGPF-PTCs-KI human cells, as a proof 

of concept. In these experiments, CRISPR-pass efficiently rescued functional EGFP expression 

by bypassing all PTCs. Then we successfully confirmed the activity of CRISPR-pass in a patient-

derived fibroblast, GM14867, which contains a nonsense mutation at the XPC gene. 

Until now, researchers have tried to correct the PTC in the XPC coding gene by various 

approaches. One suggested a viral delivery method of intact XPC-coding plasmids, (Warrick et 

al., 2012) but it has potential problems such as a random integration of the transgene in viral 

delivery (Hacein-Bey-Abina et al., 2003) and overexpression effects of the exogenous XPC gene. 

Alternatively, another approach to correct the endogenous XPC gene was demonstrated by using 

meganucleases and TALENs (Dupuy et al., 2013). In this study, the authors tried to correct 

the XPC gene via a HDR pathway after producing double-strand breaks (DSBs) of DNA, which 

might induce DSB-mediated cell apoptosis (Roos and Kaina, 2006), whereas the CRISPR-pass 

does not generate DSBs of DNA. Furthermore, we showed that the A-to-G conversions at a rate 

of about 10% can rescue the expression of functional XPC protein (Figures 29B–D) without 

detectable off-target effects, strongly indicating that the CRISPR-pass is a relevant approach for 

rescuing the nonsense-associated diseases with higher editing efficiencies than using HDR (Hess 

et al., 2017) and without the loss of large portion of protein via the exon removal (Nelson et al., 

2016) or skipping strategies(Benchaouir et al., 2007). More importantly, CRISPR-pass induced 

prolonged XPC protein expression, unlike ataluren and gentamycin that are known as current 

nonsense mutation disease therapies (Roy et al., 2016), (Kuschal et al., 2013). Recently, it is 

reported that DNA cleavages at on-target sites frequently cause undesired large deletions or 
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complex genomic rearrangements (Kosicki et al., 2018). In this aspect, CRISPR-pass has 

important safety advantages relative to approaches that do rely on DNA cleavage. Furthermore, 

recent off-target profiling experiments on ABEs supported the high specificity of ABEs (Liu et 

al., 2018), (Liang et al., 2019), (Lee et al., 2018) increasing the potential clinical utility of it. These 

characteristics suggest that CRISPR-pass might be useful for gene rescue in a clinical setting, as 

an alternative to existing drugs. 
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국문초록 

 
생명과학의 발달이 새로운 산업 동력과 미래의 대체의학으로 떠오름에 

따라서 유전자 가위를 통한 생명과학 발달 가능성이 더더욱 명확해 지고 있으며, 

또한 유전체에 대한 이해를 바탕으로, 이를 활용하기 위한 방법으로써 유전자 

가위의 올바른 활용과 이해가 절실해지고 있다. 이에 따라 다양한 유전자 가위를 

다양한 생물체의 유전체 교정에 활용함으로써, 동×식물자원의 유전형질개량을 통한 

식량 및 생물자원의 증진과 나아가서는 인간 및 생물자원의 질병치료를 통한 

건강한 삶을 만들어 갈 수 있을 것이다.  

이러한 목표를 추구하기 위하여 ZFN, TALEN, CRISPR 과 같은 유전자 

가위를 다양한 생물체에서 활용해보고자 하였다. 첫번째 연구로써는 ZFN 과 돼지 

귀의 피부세포를 이용하여 유전자 교정을 통해 CMAH 유전자가 녹아웃 

(Knockout)된 세포를 얻어 돼지의 난자에 체세포 핵 치환 (SCNT)을 통해 CMAH 

유전자가 녹아웃 된 돼지를 생산하고자 시도하였다. CMAH 유전자는 

이종장기이식에 있어서 면역거부반응을 일으키는 유전자로써 녹아웃을 통해 

이종장기이식 시에 면역거부반응을 제거하고자 목표하였다. 녹아웃 세포의 확보 

효율을 높이기 위해 FACS 리포터와 MACS 리포터 시스템을 활용하였으며, 이를 

통해 CMAH 유전자가 녹아웃된 배아를 확인할 수 있었다. 두번째 연구에서는 

TALEN을 이용하여 돼지의 CMAH와 GGTA1유전자를 녹아웃하고자 시도하였으며, 

이때에는 돼지의 유전자 교정을 용이하게 하기 위해 돼지 귀의 피부세포를 불멸화 

(immortalization)하여 다양한 녹아웃 세포주를 확보하고, 이를 통해 SCNT 후 

배아로의 발달 과정을 확인해 볼 수 있었다. 세번째 연구에서는 CRISPR-Cas9 

단백질을  페투니아의 원형질체에 전달함으로써 NR gene 이 녹아웃되는 효율을 

확인하고자 목표하였으며, Cas9 RNP 전달을 통해 효율적으로 NR gene 이 

녹아웃되는 것을 확인하고, 이를 통해 페투니아의 다른 유전자를 녹아웃할 수 있는 

가능성을 확인하였다. 마지막으로는 CRISPR-Cas9 에 아데닌 탈아미노효소 
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(adenine deaminase)를 연결한 ABE 를 이용하여 미성숙 종결코돈(premature 

termination codon)으로 인한 질병을 치료할 수 있는 방법을 제시하고자 하였다. 

ClinVar 전산망에 있는 유전질활 중 미성숙 종결코돈으로 인한 비율을 확인 후, 

이를 극복하기 위해서 CRISPR-pass 방법을 제시하였고, 그 치료 가능성을 XPC 

gene 에 돌연변이가 생긴 환자의 세포에서 확인할 수 있었다.  

이와 같이 ZFN, TALEN, CRISPR 뿐만 아니라 ABE 와 같은 다양한 유전자 

가위를 활용하여 동물과 식물 그리고 인간의 유전자 교정을 시도하여, 유전자 

가위의 활용과 그 활용방안에 대한 이해를 돕고자 하였다.   
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