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Abstract

Evaluation of cerebral blood flow changes associated with cerebral 

hypoxia-ischemia in neonatal rats using arterial spin labeling perfusion 

MRI

Choi Young Hun

Radiology

The Graduate School 

Seoul National University

Purpose

The purpose of this study was to evaluate cerebral blood flow (CBF) 

changes over time in the animal model of neonatal hypoxic-ischemic 

brain injury using arterial spin labeling (ASL) and correlate CBF changes 

with development of diffusion restriction on diffusion-weighted imaging 

(DWI).

Materials and methods

Six 7-day-old neonatal rats with unilateral carotid artery ligation 

underwent multiple ASL and DWI MRI scans at 9.4 T before and during 

hypoxia (8% O2). One 7-day-old rat underwent ASL MRI without surgical 

ligation or hypoxia as a normal CBF control. Delayed T2-weighted MR 

imaging and histological examination were performed on day 3 post-

hypoxia. CBF values on ASL were measured in four brain areas (i.e., 

ipsilateral and contralateral cortical and deep areas). The development of 

diffusion restriction was also evaluated in each of the four areas (i.e., 

DWI-positive[+] vs. DWI-negative[-] areas). Regional CBF changes over 
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time were evaluated. Regional CBF values and their changes over time 

were compared between the DWI(+) and DWI(-) areas. 

Results

Regional CBF values before hypoxia were significantly lower than those 

of the normal control (CBF in normal control vs. CBF before hypoxia:

147.8 vs. 39.2 ± 19.7 in ipsilateral cortex, p < 0.01; 151.5 vs. 49.2 ± 21.2 

in ipsilateral deep area, p < 0.01; 150.0 vs. 108.2 ± 22.2 in contralateral 

cortex, p = 0.014; and 165.0 vs. 104.22 ± 26.0 in contralateral deep area, 

p < 0.01). After exposure to hypoxia, CBF values decreased in all areas 

(mean CBF difference: -25.5 in ipsilateral cortex, p = 0.057; -21.5 in 

ipsilateral deep area, p = 0.012; -52.2 in contralateral cortex, p<0.01; -

36.4 in contralateral deep area, p<0.01). Eleven areas with diffusion 

restriction were included in the DWI(+) area group, whereas 13 areas 

showing no diffusion restriction were included in the DWI(-) area group. 

The regional CBF values in the DWI(+) area were estimated to be 34.6 

ml/100 g/min lower than those in the DWI(-) area. On delayed T2-

weighted MRI, the diffusion-restricted areas presented as areas of bright 

signal intensity or heterogeneous mixed signal intensity with volume loss, 

which correlated to areas of infarction or ischemia on histology. 

Conclusion

The ASL perfusion MRI technique made it possible to evaluate regional 

CBF changes over time during exposure to hypoxia in neonatal rats with 

unilateral carotid artery ligation. Damaged brain areas that matched well 

with the diffusion restricted areas had significantly lower CBF values at 

all time points, compared to preserved areas without diffusion restriction. 

CBFs measured with ASL may be utilized as a useful imaging indicator of 

subsequent hypoxic ischemic brain damage.
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Introduction

Brain damage resulting from perinatal cerebral hypoxia-ischemia is a 

major cause of acute mortality and chronic disability in infants and 

children. Between 20 to 50% of newborn infants with hypoxic-ischemic 

encephalopathy expire during the newborn period, and of the survivors, 

up to 25% exhibit permanent neuropsychological handicaps in the form 

of cerebral palsy with or without associated mental retardation, learning 

disability, or epilepsy (1). Given the magnitude of neonatal hypoxic-

ischemic brain injury, it is appropriate that researchers have established 

relevant animal models and evaluated the pathophysiology underlying 

neonatal hypoxic-ischemic brain damage in those models.

The Rice-Vannucci model, an animal model of neonatal hypoxic-ischemic 

brain injury, was established in 1981 (2). The original Rice-Vannucci 

model was produced by ligating one carotid artery in a 7-day-old rat 

followed by exposing the animal to 8% oxygen at 37 °C for 3.5 h to 

induce ischemic neuronal changes. However, the procedure for the

original model does not always lead to hypoxic-ischemic brain injury in 

neonatal rats and has a reported success rate between 56–79%, which 

indicates that there is significant inter- and intra-subject variability in the 

extent of the brain injury in the hypoxic-ischemic injury model: a subset 

of pups suffers no perceivable brain injury, while other pups suffer 

massive infarct (3, 4). The variability in animal models, however, makes 

results of preclinical studies difficult to analysis. Therefore, efforts have 

been made to offset this hindrance and, in particular, to exclude subjects 

with no lesion, but there is no widely used method to optimize the 

degree of brain injury. A few parameters such as apparent diffusion 

coefficient (ADC) obtained by magnetic resonance imaging (MRI) (5, 6)

or blood flow assessed by color-coded pulsed Doppler ultrasound 



10

imaging (3) have been used to exclude pups without a lesion at an early 

stage of brain injury. 

Cerebral blood flow (CBF), which is measured as the volume of arterial 

blood (mL) delivered to 100 g of brain tissue per minute, reflects the 

process of nutritive delivery of arterial blood to the capillary beds within 

brain tissue. Accurate measurement and monitoring of CBF can provide 

important hemodynamic information on perinatal hypoxic-ischemic brain 

injuries. As a MRI technique for in vivo CBF quantification, arterial spin 

labeling (ASL) MRI indirectly measures CBF by magnetically tagging 

mobile protons within the cerebral arterial blood before they enter the 

tissue of interest (7). In a typical ASL experiment, the arterial blood is 

tagged by inverting the magnetization, and, after a delay, the tagged 

blood arrives at the image plane and an image is acquired. A control 

measurement is then made without tagging the arterial blood. If the 

tagged and control images are carefully adjusted so that the signal from

the static spins is the same in both cases, then the difference in signal 

will be proportional to the amount of arterial blood delivered, and, thus,

proportional to CBF. ASL has proven its feasibility in quantitative CBF 

measurements across species, from clinical functional MRI studies in 

humans to perfusion mapping in rat brains (8, 9).

The pathophysiology of perinatal hypoxic-ischemic brain injury is 

undoubtedly complex and remains incompletely understood. The 

majority of the underlying pathologic events are triggered by impaired 

cerebral blood flow and oxygen delivery to the brain (10). The principle 

pathogenetic mechanism resulting from hypoperfusion/hypoxia or both 

is deprivation of glucose and oxygen supply which initiates a cascade of 

biochemical events leading to cell dysfunction and ultimately to cell 

death (11). Therefore, evaluation of cerebral blood flow changes at the 
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initial stage of the injury would be very important to estimate the 

evolution of hypoxic-ischemic brain injury. However, until now, there 

have been a few studies regrading CBF changes in the perinatal hypoxic-

ischemic brain injury animal model. Earlier studies regarding CBF 

changes in the Rice-Vannucci model used radioactive tracers and had to 

sacrifice rats in order to measure CBF (12, 13). Therefore, these studies 

could not evaluate CBF changes over time in one subject and did not 

reflect the diversity of inter-individual responses to hypoxia exposure. 

Consequently, studies crudely concluded that CBF decreased to 7 to 40% 

of control values at 1 to 3 hour of hypoxia. Several recent studies used 

optical imaging techniques such as laser Doppler flowmetry, laser 

speckle contrast imaging or diffuse correlation spectroscopy in order to 

measure cerebral hemodynamics in a noninvasive manner (14, 15). 

However, these techniques have a limited depth of penetration. 

Therefore, CBF monitoring of deep brain structures other than the 

superficial cortex is practically impossible in animals larger than rodents

(16). In contrast, in vivo ASL MRI can repeatedly measure regional CBFs 

of the whole brain, including both superficial and deep brain areas at 

multiple time points (17, 18). 

In this study, we tried to use the ASL perfusion MRI technique to 

evaluate regional CBF changes over time during exposure to hypoxia in 

neonatal rats with unilateral carotid artery ligation. Furthermore, in order 

to explain variable susceptibility to a hypoxic-ischemic insult in animal 

models, we correlated CBF changes with development of diffusion 

restriction on diffusion-weighted imaging (DWI) and later morphological 

brain injury evaluated on T2-weighted imaging and histology.
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Materials and methods

The experiments were approved by the Seoul National University Animal 

Ethics Committee. 

Animal preparation

Pregnant Sprague-Dawley rats were obtained approximately 1 week 

before parturition. Neonatal rats were kept under a regular light/dark 

cycle (lights on 8 am–8 pm) with free access to food and water for 7 d 

after birth. Seven-day-old rats, averaging between 12–14 g in weight, 

underwent unilateral ligation of the right common carotid artery (double 

ligation) via a midline neck incision after anesthesia with intraperitoneal 

injections of 80 mg/kg ketamine and 10 mg/kg xylazine. The surgery 

typically lasted for 5 min per rat, after which the rats were kept in an 

incubator for observation at 34 °C for approximately 15 min. After the 

rats stabilized, they were subsequently placed in a 9.4 T MRI bore and 

imaged. In the MRI bore, rats were anesthetized using 1.2% isoflurane 

with premixed gas consisting of 20% O2 and 80% N2. After obtaining the 

initial ASL and DWI scans, we lowered the oxygen content by changing 

the mixing ratio of the gas from 20% O2 and 80% N2 to 8% O2 and 92% 

N2 to create a hypoxic condition. For each rat, multiple ASL and DWI 

scans were obtained during hypoxia. We maintained the rats at a 

temperature of approximately 34 °C before, during, and after MR 

scanning. To avoid potential changes in cerebral blood perfusion during 

perfusion data collection, respiration was carefully monitored in the 

animals throughout the MR experiments.
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MRI technique

ASL and DWI scans were performed before hypoxia and every 30 mins 

during hypoxia using a 9.4 T MR system (Agilent 9.4T/160AS; Agilent 

Technologies, Santa Clara, CA, USA) with a volume coil for 

radiofrequency (RF) transmission and phased-array 4-channel surface coil 

for signal reception (Agilent Technologies). 

After the acquisition of routine, low-resolution scout images, automatic 

shimming was performed for the brain. Based on the scout images, one 

coronal slice intersecting the central region of the brain (bregma: 2.0 

mm) was defined for the following DWI and ASL MRI scans.

For DWI, a fat-saturated DW four-shot spin-echo echo planar imaging 

(SE-EPI) sequence was used. The sequence parameters were as follows: b 

= 0/500/1000 s/mm2, TR/TE = 3700/40 ms, field of view (FOV) = 22 × 22 

mm, matrix size = 128 × 128, 5 slices, slice thickness = 1 mm, 

bandwidth = 250 kHz, and number of acquisitions = 2. The acquisition 

time for DWI was 1 min 30 s.

For ASL MRI, a flow-sensitive alternating inversion-recovery (FAIR) 

sequence (8, 19) was used with a single-shot SE-EPI readout. Selective 

and non-selective inversion were performed using a hyperbolic-secant 

adiabatic pulse (pulse duration = 6 ms and thickness = 3 mm). The post-

labeling delay was 1400 ms. The other sequence parameters were as 

follows: TR/TE = 4000/29 ms, FOV = 18 × 17 mm2, matrix size = 64 × 64, 

1 slice, slice thickness = 1 mm, bandwidth = 250 kHz, and 60 repetitions 

of a pair of control and labeled scans. For quantitative analysis of 

cerebral blood perfusion, T1 and M0 mapping was also performed using 

a fat-suppressed single-shot inversion-recovery (IR) SE-EPI sequence with 

TR/TE = 8000/29 ms and inversion times (TIs) = 25, 70, 150, 300, 600, 
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1000, 1800, and 2800 ms or 13, 31, 75, 181, 434, 1040, 2500, and 6000 

ms. The acquisition time for ASL as well as T1 and M0 mapping was 

approximately 10 min in total.

One 7-day-old rat underwent ASL MRI without surgical ligation or

hypoxia and served as a normal CBF control.

Delayed MRI was performed on day 3 post-hypoxia using a 3.0 T MR 

system (TrioTim, Siemens). Coronal T2-weighted images were obtained 

with a fast SE sequence as follows: TR = 3000 ms, TE = 100 ms, FOV =

3.5 × 3.5 cm, slice thickness = 8 mm, slice spacing = 1.2 mm, acquisition 

matrix = 192 × 144, echo train length = 15, and number of acquisitions

= 3. The acquisition time for T2-weighted imaging was approximately 3 

min 8 s. 

Histology

After the final MRI scan on day 3 post-hypoxia, all rats were euthanized. 

Rat brains were removed and cut into two parts at approximately 2 mm 

posterior to the bregma (i.e., the point where the frontal and parietal 

bones meet at the midline). The specimens were fixed in 10% neutral 

buffered formalin (pH 6.8–7.2) at room temperature. Coronal sections 

were cut along the same plane as the MRI slices and subsequently 

embedded in paraffin. One pathologist (H.M.J.) reviewed the 4-µm-thick 

sectioned hematoxylin-eosin stained slides and analyzed the 

histologyical findings.

Image analysis

From the ASL images, CBF maps were generated in ml/100 g/min
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according to equation [1] in (20), assuming a tissue-blood partition 

coefficient of 0.9 ml/g (21), an inversion efficiency of 0.96, and arterial 

blood T1 of 2200 ms (22). A three-parameter fit was used to estimate T1 

and M0 maps. For DWI, apparent diffusion coefficient (ADC) maps were 

estimated by nonlinear least-squares fitting assuming a single 

exponential decay. 

Using ASL CBF maps, one radiologist (Y.H.C. with 15 years of experience) 

measured regional CBF values in each of the four brain areas by drawing 

regions of interest (ROIs) as shown in Figure 1b. Two ROIs were placed 

on each side of the cerebral cortex. Two additional ROIs contained deep 

structures, including the thalamus, basal ganglia, and hippocampus. All 

image analyses were performed using Matlab (v. 9.5; Math Works, Inc., 

Natick, MA, USA).

Figure 1. (a) Arterial spin labeling (ASL) cerebral blood flow (CBF)

map obtained from a normal 7-day-old rat. (b) Representative image 

of regions of interest (ROIs) used for CBF quantification. ROIs with 

solid lines indicate the right and left cortices. ROIs with dotted lines

indicate deep areas, including the thalamus, basal ganglia, and 

hippocampus. 
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At 1-week intervals, the radiologist (Y.H.C.) reviewed multiple DW images 

at multiple time points and determined the presence of diffusion 

restriction for each of the four brain areas. On ADC maps, diffusion 

restriction was considered to be present if an area showed a signal 

intensity < 80% of that of the normal area (23). The radiologist 

subjectively evaluated each of four areas on delayed T2-weighted images.

Statistical analysis

Brain areas showing positive diffusion restriction at any time point were 

grouped into the diffusion-positive (DWI(+)) area group, whereas brain 

areas with no diffusion restriction at all time points were grouped into 

the diffusion negative (DWI(-)) area group. CBF values before hypoxia at 

each brain area were compared with those of each brain area in the 

normal control rat using one-sample t-tests. CBF values before and 

immediately after (0 min post-hypoxia) hypoxia were compared using 

paired t-tests for each brain area. CBF values in diffusion-restricted areas

were compared to those of areas without diffusion restriction using an 

independent t-test. CBF values were compared between DWI(+) and 

DWI(-) areas using a linear mixed model to account for repeated 

observations within subjects (i.e., subject-location-time) (24). A 

compound symmetry covariance matrix was used. The group (DWI(+) vs. 

DWI(-)), location (right cortex vs. right deep area vs. left cortex vs. left 

deep area), time, and group × time interaction were modeled as fixed 

effects, and the subject and location were treated as random effects. The 

model parameters were considered significant if the corresponding F-

tests had P values < 0.05. 
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All data were analyzed with SPSS (SPSS for Windows, version 25.0; SPSS, 

Chicago, IL, USA) and SAS (version 9.2; SAS Institute Inc., Cary, NC, USA) 

statistical software packages. P values < 0.05 indicated statistical 

significance for all statistical tests.
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Results

Seven 7-day-old rats successfully underwent surgery and MRI. Of these 

rats, one died (no abdominal respiration) during MRI and was excluded 

from the study. Therefore, six rats were included in the study. Of these 

rats, two rats (rats 1 and 4) showed diffusion restriction in the right 

cerebral cortex before hypoxia exposure. During hypoxia, three rats (rats

1, 2, and 3) developed new diffusion-restricted areas. In rat 1, the right 

cortical area showed diffusion restriction before hypoxia and continued 

to show diffusion restriction until the end of MRI at 180 min. Moreover, 

the right deep area showed diffusion restriction from 30 min post-

hypoxia, whereas the left cortex showed diffusion restriction from 90 min 

post-hypoxia. The left deep area of rat 1 showed no diffusion restriction 

until the end of MRI at 180 min post-hypoxia. Rat 2 showed diffusion 

restriction in the right cortical and deep areas from 0 min post-hypoxia 

and the left cortical area from 60 min post-hypoxia until the end of MRI. 

Rat 3 showed diffusion restriction in the right cortical, right deep, and 

left cortical areas from 0 min post-hypoxia, and the left deep area 

showed diffusion restriction from 120 min post-hypoxia. The other three 

rats (rats 4, 5, and 6) showed no additional diffusion-restricted areas. 

Therefore, 11 areas with diffusion restriction were included in the DWI(+) 

area, whereas 13 areas without diffusion restriction were included in the 

DWI(-) area. 
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Rat 2 died immediately after MRI. Consequently, five rats underwent 

delayed MRI on day 3 post-hypoxia. The MRI timetable for each rat is 

presented in Table 1.

Table 1. Magnetic resonance imaging (MRI) acquisition time points 

and diffusion-restricted areas before and during hypoxia for each of 

the six rats.

The CBF values obtained from the normal 7-day-old rat were 147.8 and 

150.0 ml/100g/min for the right and left cerebral cortices, respectively,

and 151.5 and 165.0 ml/100g/min for the right and left deep areas, 

respectively.
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The graphs in Figure 2 present the CBF values obtained from six rats for 

each of the four areas before and during hypoxia.

Figure 2. Cerebral blood flow (CBF) values over time for each of the 

four brain areas in six neonatal rats (○: right cortex, △: right deep 

area, ◇: left cortex, □: left deep area). Solid lines and symbols 

indicate the presence of diffusion restriction on diffusion-weighted 

images. Y axis, CBF in ml/100g/min and X axis, MRI acquisition time 

points.
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CBF values were significantly lower than those of the normal control in 

all 22 brain areas (CBF in normal control vs. CBF before hypoxia: 147.8 vs. 

39.2 ± 19.7 in the right cortex, p < 0.01; 151.5 vs. 49.2 ± 21.2 in the 

right deep area, p < 0.01; 150.0 vs. 108.2 ± 22.2 in the left cortex, p =

0.014; and 165.0 vs. 104.22 ± 26.0 in the left deep area, p < 0.01). CBF

values decreased after exposure to hypoxia in all areas (mean CBF 

difference: -25.5 in the right cortex, p = 0.057; -21.5 in the right deep 

area, p = 0.012; -52.2 in the left cortex, p < 0.01; -36.4 in the left deep 

area, p < 0.01). 

Areas with diffusion restriction (16.8 ± 10.7) showed significantly lower 

CBF values than areas without diffusion restriction (65.2 ± 30.9, p < 0.01). 

The maximum CBF in a diffusion-restricted area was 37.7 ml/100g/min.

After adjusting for subjects and locations (i.e., random effects), there 

were significant differences in CBF values according to group (p < 0.001), 

time (p < 0.001), and location (p < 0.001). The group × time interaction 

did not show statistical significance (p = 0.455). Specifically, the trend of 

CBF over time was not significantly different between the two groups. 

The regional CBF values in the DWI(+) area group were 34.6 

ml/100g/min lower than those in the DWI(-) area group.
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Covariate Regression 

Coefficient

Standard Error of 

Estimate

p-value

Intercept 111.88 6.35 <.001

DWI (ref=negative)

Positive -34.66 5.77 <.001

TIME (ref=pre-hypoxia)

0min post-hypoxia -28.75 3.79 <.001

30min post-hypoxia -26.24 3.92 <.001

60min post-hypoxia -27.10 3.79 <.001

90min post-hypoxia -30.53 4.01 <.001

120min post-hypoxia -34.24 5.60 <.001

150min post-hypoxia -34.04 5.60 <.001

180min post-hypoxia -25.24 7.15 <.001

Location (ref=left deep area)

Right cortex -40.92 8.07 <.001

Right deep area -37.70 7.89 <.001

Left cortex -12.27 7.89 0.137

Table 2. Regression coefficients of fixed effects and intercept with 

standard errors (SEs) using a linear mixed effect model.
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Table 3 and Figure 3 present the mean CBF values and their 95% 

confidence intervals for all time points in the DWI(+) and DWI(-) groups.

Estimated CBF (mean±SE)

p-value†

DWI(+) area DWI(-) area

Pre-hypoxia 54.49 ± 4.84 89.16 ± 4.68 <.001

0min post-hypoxia 25.74 ± 4.6 60.41 ± 4.6

30min post-hypoxia 28.25 ± 4.84 62.91 ± 4.68

60min post-hypoxia 27.39 ± 4.6 62.05 ± 4.6

90min post-hypoxia 23.96 ± 4.69 58.62 ± 4.84

120min post-hypoxia 20.25 ± 5.84 54.91 ± 6.28

150min post-hypoxia 20.45 ± 5.84 55.11 ± 6.28

180min post-hypoxia 29.25 ± 7.5 63.92 ± 7.71

Table 3. Estimated mean cerebral blood flow (CBF) values with 

standard errors(SEs) over time for DWI-positive and DWI-negative 

area groups. †p-value using a linear mixed effect model
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Figure 3. Mean cerebral blood flow (CBF) values with 95% confidence 

intervals over time for the DWI-positive and DWI-negative area 

groups. There are significant differences in the CBF values between 

the two groups at all time points (p < 0.001).
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Two representative cases (rats 1 and 5) from the DWI(+) and DWI(-) area 

groups are presented in Figures 4 and 5.

Figure 4. Representative case from the DWI-positive group (rat 1). 

The right cortex shows diffusion restriction before hypoxia. CBF 

generally decreases after exposure to hypoxia with areas of diffusion 

restriction extending through the right deep area and left cortex. 

The left deep area (a DWI-negative area) shows slow CBF recovery 

over time. The T2-weighted image (T2WI) on day 3 post-hypoxia 

reveals areas of bright high signal intensity and heterogeneous signal 

change with volume loss in the corresponding diffusion-restricted 

areas.
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Figure 5. Representative case from the DWI-negative group (rat 5). 

CBF values before hypoxia were reduced compared to those of the 

normal control (see Fig. 1a). After exposure to hypoxia, CBF values in 

all brain areas were further diminished. However, the degree of CBF 

reduction does not appear to be as great as that shown in Figure 4. 

CBF values slowly and progressively increased over time. There were 

no areas of diffusion restriction or abnormalities detected on the 

follow-up T2-weighted image (T2WI) acquired on day 3.
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On T2-weighted images obtained on day 3 post-hypoxia, diffusion-

restricted areas appear as areas of cerebromalacia characterized by high 

signal intensity similar to water or areas of heterogeneous mixed signal 

intensity with volume loss. No abnormalities were observed in areas 

without diffusion restriction.

Hematoxylin and eosin–stained sections from the DWI(+) group revealed 

various degrees of ischemic change in diffusion-restricted areas. Frank 

infarction was noted in the areas corresponding to very high signal 

intensity areas on T2-weighted images acquired on day 3. The border 

zone areas between the infarction and normal tissue showed neuronal 

vacuolar changes and some pyknotic cells, which corresponded to areas 

with heterogeneous mixed signal intensity with mild volume loss (Fig. 6). 

In contrast, histological sections of the DWI(-) areas showed no gross 

abnormalities.
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Figure 6. Radiological and histological correlation. (a) A coronal T2-

weighted image at day 3 post-hypoxia shows areas of bright high 

signal intensity in the right cerebral cortex and part of the right 

deep area as well as heterogeneous signal change with volume loss 

in the right deep area. (b) Hematoxylin and eosin-stained brain 

section of the same rat (x1.25 magnification) reveals various degrees 

of ischemic change in areas of diffusion restriction. (c) Magnified 

view of the ipsilateral cortex (x20, black rectangular area in b) shows 

the frank infarction. (d) Magnified view of the border zone (x20, 

white rectangular area in b) shows neuronal vacuolar changes 

(arrows) and pyknotic cells (arrowheads).
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Discussion

Over the past 20 years, the Rice-Vannucci model has been successfully 

used as an animal model of hypoxic-ischemic brain damage in the 

immature brain (25). At postnatal day 7, the rat brain is histologically 

similar to that of a 32- to 34-week gestation fetus or preterm infant. At 

this stage, cerebral cortical neuronal layering is complete, the germinal 

matrix is involuting, and white matter myelination is minimal. In this 

model, injury to both gray and white matters is usually induced (25). 

However, rats do not experience the same degree of hypoxic-ischemic 

brain damage with the Rice-Vannucci model. Although microscopic 

ischemic neuronal changes have been shown to occur in at least 90% of 

animals, infarction only occurred in 56% of brains according to a study 

by Rice et al (2). In another study using DWI to confirm brain injury 

induced by hypoxia-ischemia, 79% (23/27) of rats had evidence of brain 

injury at 1–2 h post-hypoxia-ischemia (23). Therefore, it is clear that 

there is individual variation in vulnerability to hypoxia-ischemia. Until 

now, CBF changes during hypoxia and individual variation in CBF 

changes in response to hypoxia-ischemia have not been evaluated in the 

rat model.

In this study, we used a FAIR sequence in neonatal rats for CBF 

quantification. The FAIR technique is a popular version of the pulsed ASL 

technique for rodent CBF measurements (22). FAIR is robust against 

magnetization transfer and eddy current effects (26). Using this ASL 

technique, we were able to evaluate CBF changes during hypoxia in 

neonatal rats and correlate these changes with those on DW images.

After unilateral carotid artery ligation without exposure to hypoxia, CBF

values in the ipsilateral cortex and deep gray matter were 73 and 68% 

less than those of the normal control, respectively. Moreover, the CBF 
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values of the side contralateral to the ligation site were also decreased,

with CBF decreasing by 28 and 37% in the contralateral cortex and deep 

gray matter, respectively. Similar trend of CBF reduction, i.e. CBF 

reduction in both hemispheres, but more marked in the ipsilateral 

hemisphere, has been noted in other prior studies (14, 15, 18). This may 

reflect the flow steal phenomenon caused by collateral blood supply to 

the ipsilateral side. After unilateral carotid artery ligation without 

exposure to hypoxia, diffusion restriction did not appear in 4/6 neonatal 

rats. Before exposure to hypoxia, two rats showed diffusion restriction in

the ipsilateral cortex, which, of the four brain areas, was the region with 

the greatest decrease in CBF. 

With exposure to hypoxia (8% O2) after unilateral carotid artery ligation, 

a further decrease in the CBF values of all four brain areas occurred. This 

must have led to hypoperfusion in addition to hypoxia. With 

simultaneous development of hypoxia and hypoperfusion, diffusion 

restriction progressively evolved in 3/6 rats. 

Contrary to many previous studies, in which chronic or subacute hypoxia 

led to an increase in CBF to maintain oxygen delivery to the brain (27), 

our study showed reduced CBF values with hypoxia exposure. A study by 

Qiao et al. showed a similar result of further CBF reduction in the 

ipsilateral hemisphere during hypoxia-ischemia (18). Even though these 

results are difficult to explain given the available data from this study, 

this may be CBF response to the acute hypoxia and is possibly related to 

a reduction in cardiac output due to cardiac ischemia and resultant 

systemic hypoperfusion. In one Rice-Vannucci model study, 

measurements of systemic physiological variables over the course of 

hypoxia showed a decrease in mean systemic blood pressure to a low of 

23 mmHg (-23% from baseline) at 2 h (28). To confirm such a finding, 
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further studies would be necessary to monitor blood pressure in Rice-

Vannucci models or review heart pathology.

Overall, the CBF responses to carotid artery ligation and hypoxia 

observed in our study seem to differ from those observed in previous 

studies (12, 13). In the first study to measure regional CBF using carbon-

14 autoradiography with iodo-[14C]-antipyrine as a radioactive tracer (13), 

hypoxia-ischemia was associated with decreases in regional CBF in the 

ipsilateral cerebral hemisphere such that, by 2 h, CBF values in the

subcortical white matter, neocortex, striatum, and thalamus were 15, 17, 

34, and 41% of control values, respectively. However, this study revealed 

that there was no significant decrease in CBF to the ipsilateral cerebral 

hemisphere by unilateral arterial occlusion alone. Another study 

evaluated regional CBF values using isopropyl-[14C]-iodoamphetamine 

and showed that CBF to all regions of the ipsilateral cerebral hemisphere 

was not different from that of controls (no carotid artery ligation or 

hypoxia) at 10 and 20 min (12). Moreover, CBF values were decreased in 

all cerebral hemisphere structures ipsilateral to the carotid artery 

occlusion, ranging from 7 to 40% of control values after 1 h of hypoxia-

ischemia. In contrast, our study found that CBF decreased with unilateral 

arterial occlusion alone and further decreased immediately after 

exposure to hypoxia. These findings may be due to technical limitations 

in measuring CBF using in vivo ASL MRI. In humans, CBF values have 

been underestimated in regions with delayed arterial transit times, 

especially in cerebrovascular occlusive diseases, such as Moyamoya 

disease (29). However, in rat experiments, the short transit times of rat 

cerebral vasculature and long T1 of blood at high field strength (9.4 

Tesla) reduce the importance of transit time measurement (30). 

Furthermore, we used a post-labeling delay of 1400 ms, which is longer 
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than the reported arterial transit times of between 367–740 ms in rats 

with bilateral carotid artery occlusion (31). Therefore, the effect of 

arterial transit time delay on CBF measurement in neonatal rats with 

unilateral carotid artery occlusion might not be significant. Thus, we 

believe our results may reflect CBF changes more accurately than those 

of prior studies using radioisotopes. Prior studies needed to sacrifice rats 

to measure CBF values, which meant that each CBF data point was 

obtained from different subjects. Therefore, this data was likely to be 

affected by between-subject variation in CBF values. To confirm the CBF 

changes observed in our study, further studies that use a larger number 

of animals as well as more robust ASL techniques, such as multidelay 

ASL, will be required.

An important finding of our study was that diffusion restriction only 

developed in brain areas with persistently reduced CBF values that were 

below 37.7 ml/100 g/min. Our results agree with those of Shen et al. (32). 

In that study, the CBF viability threshold that best approximated 

pathological infarct volumes was 30 ± 9 mL/100 g/min (57 ± 11% 

reduction from baseline) in the permanent middle cerebral artery stroke 

rat model. These authors developed algorithms to predict ischemic 

tissue fate on a pixel-by-pixel basis using acute-phase CBF and ADC 

data. Based on the results of our study, a similar approach may be used. 

We think that we could use ASL CBF for predicting permanently 

damaged brain tissue in neonatal hypoxic-ischemic rat models. In that 

way, we could discriminate pups with and without a brain damage and 

diminish the variability in animal models.

An interesting finding of our study was that diffusion restriction did not 

occur in all rats, even though they were exposed to the same degree of 

hypoxia after unilateral carotid artery ligation. For rats with ischemia-
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infarction, CBF values persistently decreased to < 37.7 ml/100 g/min. 

Non-affected rats also showed a decrease in CBF after hypoxia; however, 

their CBF values remained > 37.7 ml/100 g/min or temporarily (i.e., only 

at one time point) decreased below 37.7 ml/100 g/min. This finding may 

reflect individual variances in CBF responses to hypoxia. The mechanisms 

underlying the disturbance of CBF values in response to hypoxia are 

undoubtedly complex and likely multifactorial. In part, differences in 

hypoxia vulnerability may be related to individual variation in body 

temperature and sex effects (33). An examination of the factors leading

to individual differences in CBF responses is beyond the scope of this 

study. However, future studies of factors affecting the degree of hypoxia-

induced CBF reduction may reveal protective or aggravating effects on 

hypoxia vulnerability. 

Another noteworthy finding of this study is that diffusion restriction

progressed in a specific order and the CBF reduction hierarchy closely 

correlated with the distribution and progression of hypoxic-ischemic 

brain damage. When exposed to prolonged hypoxia, diffuse restriction

progressed from the ipsilateral cortex to the ipsilateral deep area and 

then from the contralateral cortex to the contralateral deep area, similar 

to the order of decreased regional CBF values. Similarly, in human 

neonates, brain areas with lower baseline CBF values (i.e., the 

periventricular white matter in preterm infants and parasagittal 

intervascular boundary zones in term infants) are more vulnerable to 

mild to moderate hypoperfusion. Therefore, we believe that the ASL 

technique could be used to optimize and modulate the extent of brain 

injury and enable the analysis of the effect of an intervention on 

temporal and spatial changes in CBF so that mechanisms of 

neuroprotection can be assessed.
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Finally, in our study, areas of diffusion restriction on DW images and 

areas of cystic change and heterogeneous signal alteration on T2-

weighted images correlated well with histological areas of ischemia-

infarction. Several prior studies have shown similar results. Wang et al. 

(23) compared infarction volumes measured on ADC maps at 1–2 h 

post-hypoxia-ischemia to those determined from histopathology. This 

study demonstrated that the size of the irreversible infarction on DWI at 

1–2 h post-hypoxia-ischemia correlated moderately well with that on

histopathology (r = 0.738). T2-weighted images obtained 24 h or more 

after a hypoxia-ischemia episode have been shown to represent tissue 

damage well when compared with histopathology (23, 34). On day 4 

post-hypoxia-ischemia, lesion volumes on T2-weighted images

significantly correlated with irreversible infarct volumes on histology (23).
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Conclusion

In conclusion, with the ASL perfusion MRI technique, we were able to 

evaluate regional CBF changes over time during exposure to hypoxia in 

neonatal rats with unilateral carotid artery ligation. CBF values decreased

on the contralateral side as well as on the ipsilateral side after unilateral 

carotid artery ligation without exposure to hypoxia and further 

decreased in all brain areas following hypoxia exposure. Damaged brain 

areas that matched well with the diffusion restricted areas had

significantly lower CBF values at all time points, compared to preserved 

areas without diffusion restriction. CBFs measured with ASL may be 

utilized as a useful imaging indicator of subsequent hypoxic ischemic 

brain damage.
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요약(국문초록)

신생 백서를 이용한 저산소성 허혈성 뇌손상 모델에서 동맥스핀표지 관류

자기공명영상법을 통한 뇌혈류 변화 평가

목적

신생 백서를 이용한 저산소성 허혈성 뇌손상 모델에서 동맥스핀표지

(ASL) 관류자기공명영상을 이용하여 시간 경과에 따른 대뇌혈류(CBF)의

변화를 평가하고, 뇌혈류 변화와 확산강조영상(DWI) 및 조직학적 소견을

비교 평가하고자 한다.

방법

생후 7일된 신생아 쥐 6마리에서 일측 경동맥을 결찰한 뒤 저산소(8% 

O2)를 가하면서 9.4T MRI에서 ASL 및 DWI MRI 검사를 시행하였다. 생

후 7일된 쥐 한 마리를 외과적 결찰이나 저산소증없이 ASL MRI를 시행

하여 정상 뇌혈류 대조군으로 사용하였다. 3일 뒤 T2강조영상과 조직검

사를 시행하였다. ASL CBF 값을 4개의 뇌영역(즉, 동측과 반대측 피질

및 심부 영역)에서 측정하였다. 각 영역에서 DWI상 제한확산의 발생 여

부를 평가하였다 (즉, DWI-양성 대 DWI-음성군). 시간 경과에 따른 CBF 

변화를 평가하였다. 시간 경과에 따른 CBF 변화 양상을 DWI양성군과 음

성군간에 비교하였다.

결과

일측 경동맥 결찰 후 CBF 값은 정상 대조군에 비해 유의하게 낮아졌다

(정상 대조군 CBF vs.대 저산소증 전 CBF: 동측 대뇌피질, 147.8 vs. 39.2 

± 19.7, p <0.01; 동측 심부영역, 151.5 vs. 49.2 ± 21.2, p <0.01; 반대측

피질, 150.0 vs. 108.2 ± 22.2, p = 0.014; 반대측 심부영역, 165.0 vs 

104.22 ± 26.0, p <0.01). 저산소에 노출 된 후 CBF 값은 모든 영역에서

감소했다 (평균 CBF 차이, 동측 피질에서 -25.5, p = 0.057; 동측 심부영

역에서 -21.5, p = 0.012, 반대쪽 피질에서 -52.2, p <0.01, 반대측 심부영

역에서 -36.4, p <0.01). DWI양성군에는 확산제한이 있는 11개의 영역이

포함되었고 DWI음성군에는 확산제한이 없었던 13개의 영역이 포함되었

다. DWI-양성군의 CBF 값은 DWI-음성군보다 평균 34.6 ml/100g/min 낮
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았다. 지연 T2강조 MRI에서 확산 제한을 보였던 영역은 밝은 신호 강도

또는 부피 감소를 동반한 혼합 신호 강도 영역으로 보였으며 조직학상의

경색이나 허혈 영역과 일치하였다.

결론

ASL 관류자기공명영상법을 이용하여 신생백서에서 일측 경동맥 동맥 결

찰 후 저산소증에 노출되는 동안, 시간에 따른 CBF 변화를 평가할 수

있었다. 확산 제한 영역과 잘 일치하는 손상 뇌영역은 확산 제한이 없었

던 보존 뇌영역에 비해 모든 시점에서 CBF 값이 현저히 낮았다. ASL 기

법으로 측정된 CBF값은 향후 저산소성 허혈성 뇌 손상 발생을 예측하는

데 유용한 영상지표로서 이용될 수 있다.

………………………………………………..

주요어 : Rice-Vannucci, 주산기 저산소증, 저산소성 허혈성 뇌손상, 뇌

혈류, 동맥스핀표지, 관류자기공명영상, 신생백서

학 번 : 2011-31133
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