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Thyroid cancer is the most common endocrine cancer and thyroid nodule is 

most common endocrine problem in Korea. Both phenotypes show a high 

degree of heritability. Several genome-wide association studies (GWAS) for 

thyroid cancer were conducted in European descendants and identified 

susceptibility loci of differentiated thyroid cancer (DTC). However, there is 
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no GWAS for thyroid cancer in Asian population, and inherited genetic risk 

factors for thyroid nodules and their associations with thyroid cancer remain 

unknown. 

Here, GWAS and replication study was performed using a total of 1,085 DTC 

cases and 8,884 controls of Koreans and these results were validated with an 

expression quantitative trait loci (eQTL) analysis and clinical phenotypes. The 

most robust associations were observed in the NRG1 gene (rs6996585, 

P=1.08×10-10), and this SNP was also associated with NRG1 expression in 

thyroid tissues. In addition, three previously reported loci (FOXE1, NKX2-1, 

and DIRC3) were confirmed and seven susceptibility loci (VAV3, PCNXL2, 

INSR, MRSB3, FHIT, SEPT11, and SLC24A6) associated with DTC were 

newly identified. Furthermore, I identified specific variants of DTC that have 

different effects according to the cancer type or ethnicity.  

Furthermore, a three-stage GWAS for thyroid nodules was performed. The 

discovery stage involved a genome-wide scan of 811 subjects with thyroid 

nodules and 691 subjects with a normal thyroid from a population-based cohort. 

Replication studies were conducted in an additional 1981 cases and 3100 

controls from the participants of a health check-up. Expression quantitative trait 

loci (eQTL) analysis was also performed using public data. The most robust 
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association was observed in TRPM3 (rs4745021) in the joint analysis (OR=1.26, 

P = 6.12 × 10-8) and meta-analysis (OR = 1.28, P = 2.11×10-8). Signals at 

MBIP/NKX2-1 were replicated but did not reach genome-wide significance in 

the joint analysis (rs2415317; P = 4.62 × 10-5, rs944289; P = 8.68 × 10-5). The 

eQTL analysis showed that TRPM3 expression was associated with the 

rs4745021 genotype in thyroid tissues.  

The results of GWAS for DTC provide deeper insight into the genetic 

contribution to thyroid cancer in different populations. And GWAS for thyroid 

nodule suggest that thyroid nodules have a genetic predisposition distinct 

from that of thyroid cancer.  

· This doctoral dissertation is based on the following published research papers. 

· Genome-wide association and expression quantitative trait loci studies identify multiple 

susceptibility loci for thyroid cancer. Nat Commun. 2017 Jul 13;8:15966. 

· Genome-Wide Association Study Reveals Distinct Genetic Susceptibility of Thyroid Nodules 

From Thyroid Cancer. J Clin Endocrinol Metab. 2018 Dec 1;103(12):4384-4394. 

· Genome-Wide Association Studies of Autoimmune Thyroid Diseases, Thyroid Function, and 

Thyroid Cancer. Endocrinol Metab (Seoul). 2018 Jun; 33(2): 175–184. 

Keywords: Thyroid cancer, Thyroid nodule, Genome-Wide Association 

study, Expression quantitative trait loci, Genetic susceptibility 

Student Number: 2015-30903 
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Introduction 

1. Epidemiology of thyroid cancer  

Thyroid cancer is the most common endocrine malignancy worldwide(1).  

According to the statistics of the Korea Central Cancer Registry (KCCR), 

26,051 Koreans were newly diagnosed from thyroid cancer in 2016 (2). The 

estimated age-standardized incidence rate of thyroid cancer in Korea was 60.7 

per 100,000 people, which was the highest in the world according to the The 

Global Cancer Observatory 2018 database of the International Agency for 

Research on Cancer/World Health Organization (http://gco.iarc.fr/). Major 

types of thyroid cancer include papillary thyroid cancer (PTC), follicular 

thyroid cancer (FTC), medullary thyroid cancer (MTC), poorly differentiated 

thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC). PTC and FTC are 

the most predominant types of thyroid cancer, representing 96.5 % and 1.9 %, 

respectively, in Korea. PTC and FTC are often referred to as differentiated 

thyroid cancer (DTC). 

 

2. Risk factors of differentiated thyroid cancer 

The most important risk factor for thyroid cancer is female. DTC occurs three 

to four times more often in women than in men, and the reason is unclear (3). 

http://gco.iarc.fr/
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Thyroid cancer can occur in all age groups, but it is relatively rare in childhood, 

and the incidence increases gradually with age. The risk of DTC peaks at ages 

50 to 60 years (2).  

Radiation exposure is the best-established risk factor for DTC (1). Sources of 

exposure include radiation fallout from nuclear accident and, therapeutic or 

diagnostic radiations to the head and neck. Exposure to high levels of radiation 

from nuclear accident at a young age is risk factor for DTC lasting for several 

decades (4). Head or neck irradiation for therapeutic purposes in childhood is a 

risk factor for thyroid cancer and the risk depends on dose of radiation and the 

age of the child. The low levels of radiation from medical imaging procedures 

such as x-rays and CT scans also could be associated with development of 

thyroid cancer (1). However, there is a lack of research on whether radiation 

exposure from imaging tests increases thyroid cancer. 

Overweight and obesity are recently considered as risk factors for thyroid 

cancer (5). Several lines of evidence showed that high level of body mass index 

(BMI) is positively associated with risk for thyroid cancer and an increase in 

obese population may have contributed to the rise in thyroid cancer incidence 

(6, 7). 
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3. Heritability of differentiated thyroid cancer 

Thyroid cancers show a high degree of heritability, with genetic factors 

accounting for more than 50 % of the causes of thyroid cancer. Except for MTC, 

which is well known to be caused by germline or somatic mutations, prevalence 

of familial DTC are reported in the range of 2.5%-11.3% (8-12). In western 

countries, the prevalence of familial DTC accounts for approximately 4-5% in 

patients with thyroid cancers of follicular cell origin (13, 14). In Korea, the 

prevalence of Familial DTC was also high and accounts for 9.6% (15), 

suggesting that the genetic susceptibility of DTC could differ from the western 

countries. 

 

4. Familial syndromes associated with thyroid cancer and germline 

mutation of differentiated thyroid cancer 

Only 5% of cases of familial DTC were reported to be of the syndromic form, 

which is accompanied by well-known germline mutations, including Cowden 

syndrome, familial adenomatous polyposis, Gardner syndrome, Carney 

complex type 1, Werner syndrome, and DICER1 syndrome (16). Recent next-

generation sequencing study showed a germline variant in HABP2 is associated 

with risk of familial DTC (17). Except for familial syndromes associated with 
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DTC and rare germline mutations of DTC, the majority of cases of familial 

DTC were found not to be caused by germline mutations, despite its pattern of 

genetic inheritance.  

 

5. Epidemiology of thyroid nodule 

Thyroid nodules are a common endocrine problem and their prevalence in the 

adult population is 19–68% as evaluated by high resolution ultrasonography 

(18). The prevalence of thyroid nodules especially increases with age, and the 

process of thyroid nodule development has been explained by an increased 

exposure to environmental factors or as an aging phenomenon (19, 20). 

However, the cause of benign thyroid nodules is unclear. 

 

6. Clinical significance and heritability of thyroid nodule 

The clinical importance of thyroid nodules rests with the possibility of thyroid 

cancer, which accounts for 7–15% of thyroid nodules (18). Similar to thyroid 

cancer, old age, female gender, obesity, smoking, iodine deficiency, and 

radiation exposure are known risk factors for thyroid nodules (21-23), and 

heritability also contributes to their genesis (24). Several evidences suggest that 

a family history of thyroid nodules is associated with an increased risk of 
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thyroid cancer (25, 26). Thus, the genetic risks of thyroid cancer and thyroid 

nodules could be closely related, and identification of the shared susceptible 

genetic loci might be useful to establish a management strategy for thyroid 

nodules, especially for patients with a family history. 

 

7. Genome-wide association study for differentiated thyroid cancer 

Previous researches into the genes responsible for thyroid disease has identified 

several candidates (27). However, candidate gene studies have been 

controversial and have shown very few reproducible findings. In the last decade, 

genome-wide association studies (GWAS) have been extensively used to 

identify genes involved in complex diseases (28). GWAS have facilitated the 

screening of a large proportion of the genome and discovered a variety of 

susceptibility genes. GWAS have been widely applied in autoimmune thyroid 

diseases, thyroid function, and thyroid cancer, and have identified susceptibility 

genes for thyroid-related phenotypes. The first GWAS of thyroid cancer was 

reported in 2009 and showed that common variants located on 9q22.33 (FOXE1) 

and 14q13.3 (NKX2-1) were associated with DTC (29). Associations at FOXE1, 

MBIP/NKX2-1, DIRC3, and NRG1 have been identified and repeatedly 

confirmed in individuals of European ancestry (29-32). Several markers 



6 

 

associated with DTC, including IMMP2L, RARRES1, SNAPC4, BATF, DHX35, 

GALNTL4, HTR1B, FOXA2, and WDR11-AS1, were identified but not 

replicated in other studies (31-34). A recent meta-analysis of GWAS including 

a total of 3,001 DTC patients and 287,550 controls from 5 study groups of 

European populations found 5 novel loci (PCNXL2, TERC, NREP- EPB41L4A, 

OBFC1, and SMAD3) (35).  

Table 1 provides the susceptibility loci identified in GWAS of thyroid cancer. 

The most robust signals were detected on 9q22.33 (FOXE1) in Caucasians (29, 

35). The FOXE1 locus was also reported to be a susceptibility gene for 

radiation-related thyroid cancer (36). A functional study showed that common 

variants on FOXE1 regulated FOXE1 transcription through the recruitment of 

the USF1/USF2 transcription factors (37). Several reports demonstrated that 

variants of FOXE1 were related to aspects of the clinical aggressiveness of 

papillary thyroid cancer, such as tumor stage, size, lymphocytic infiltration, and 

extrathyroidal extension (38, 39). 

 

8. Genetic studies for thyroid nodule 

Regarding genetics of thyroid nodule, two studies of single nucleotide 
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polymorphism (SNP) analysis have reported an association between benign 

thyroid nodules and a SNP on MBIP/NKX2-1, which is a known DTC 

susceptibility locus (40, 41). These data suggest a common genetic etiology 

between benign thyroid nodules and DTC; 
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Table 1. DTC or PTC associated SNPs of previous European GWAS and 

replicated SNPs in Asia 

 
OR, odd ratio; SNP, single nucleotide polymorphism. 

 

 

 

Locus Gene SNP OR P-value Population Method Ref. 

9q22.33 FOXE1 rs965513 1.75 1.7 × 10−27 Iceland etc. GWAS (29) 

   1.65 4.8 × 10−12 Belarus GWAS (36) 

   1.69 1.3 × 10−4 Japanese SNP (42) 

   1.53 1.4 × 10−4 Chinese SNP (40) 

   1.59 4.2 × 10−4 Japanese SNP (41) 

  rs7028661 1.64 1.0 × 10−22 Spain GWAS (34) 

  rs10122541 1.54 1.1 × 10−17 Spain GWAS (34) 

  rs7037324 1.54 1.2 × 10−17 Spain GWAS (34) 

14q13.3 NKX2-1 rs944289 1.37 2.0 × 10−9 Iceland etc. GWAS (29) 

   1.24 1.5 × 10−5 Spain GWAS (34) 

   1.21 0.0121 Japanese SNP (42) 

   1.53 2.2 × 10−10 Chinese SNP (40) 

   1.23 0.003 Japanese SNP (41) 

  rs116909374 2.09 4.6 × 10−11 Iceland etc. GWAS (30) 

2q35 DIRC3 rs966423 1.34 1.3 × 10−9 Iceland etc. GWAS (30) 
   1.31 0.0010 Chinese SNP (40) 

  rs6759952 1.21 6.4 × 10−10 Italy etc. GWAS (31) 

8p12 NRG1 rs2439302 1.36 2.0 × 10−9 Iceland etc. GWAS (30) 
   1.41 2.78 × 10−5 Chinese SNP (40) 
   1.27 0.003 Japanese SNP (41) 

7q31.1 IMMP2L rs10238549 1.27 4.1 × 10−6 Italy etc. GWAS (31) 

  rs7800391 1.25 5.7 × 10−6 Italy etc. GWAS (31) 

3q25.32 RARRES1 rs7617304 1.25 4.6 × 10−5 Italy etc. GWAS (31) 

9q34 SNAPC4 rs10781500 1.23 3.5 × 10−5 Italy etc. GWAS (31) 

14q24.3 BATF rs10136427 1.40 4.4 × 10−7 Italy etc. GWAS (32) 

20q11.23 DHX35 rs7267944 1.39 2.1 × 10−8 Italy etc. GWAS (32) 

5q14 ARSB rs13184587 1.28 8.5 × 10−6 Italy etc. GWAS (32) 

13q12 SPATA13 rs1220597 1.26 3.3 × 10−6 Italy etc. GWAS (32) 

11p15.3 GALNTL4 rs7935113 1.36 7.4 × 10−7 Italy etc. GWAS (33) 

20p11 FOXA2 rs1203952 1.29 4.4 × 10−6 Italy etc. GWAS (33) 

10q26.12 
WDR11-

AS1 
rs2997312 1.35 1.2 × 10−4 Spain GWAS (34) 

  rs10788123 1.26 5.2 × 10−4 Spain GWAS (34) 

  rs1254167 1.38 5.9 × 10−5 Spain GWAS (34) 

6q14.1 HTR1B rs4075570 0.82 2.0 × 10−4 Spain GWAS (34) 

1q42.2 PCNXL2 rs12129938 1.32 4.0 × 10−11 Iceland etc GWAS (35) 

3q26.2 
TERC-

LRRC34 
rs6793295 1.23 2.7 × 10−8 Iceland etc GWAS (35) 

5p15.33 TERT rs10069690 1.2 3.2 × 10−7 Iceland etc GWAS (35) 

5q22.1 
NREP-

EPB41L4A 
rs73227498 1.37  3.0 × 10−10 Iceland etc GWAS (35) 

10q24.33 OBFC1 rs7902587 1.41  5.4 × 10−11 Iceland etc GWAS (35) 

15q22.33 SMAD3 rs2289261 1.23  3.1 × 10−9 Iceland etc GWAS (35) 
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9. Hypothesis 

I hypothesized that there would be genetic factors that affect the development 

of thyroid cancer in Korean and genetic susceptibility loci in Korea would be 

different from western countries. Because the epidemiological characteristics 

of thyroid cancer in Korean are quite different from those in the European 

descent. Moreover, it is presumed that there is a genetic factor involved in 

thyroid nodules because of high degree of heritability of thyroid nodule. And 

thyroid cancer and thyroid nodules may also be genetically related. 

 

10. Aims of study 

In Chapter I, I aimed to identify potential susceptibility loci for thyroid cancer, 

specially PTC and FTC, using GWAS in Korea, and conducted expression 

quantitative trait loci analysis to validate candidate SNPs using RNA-

sequencing data from thyroid cancer and normal tissues.  Moreover, I 

evaluated whether identified signals could have associations with clinical 

phenotype such as tumour aggressiveness and poor prognosis.  

 In Chapter II, I conduct GWAS and expression quantitative trait loci analysis 

to identify susceptibility loci for thyroid nodules. And I also compare them with 

those for thyroid cancer in a Korean population. 
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Materials and methods  

Study participants for the Stage 1 genome scan 

DNA samples of thyroid cancer cases for the Stage 1 genome scan were 

collected in Seoul National University Hospital. These cases comprised of 470 

DTC patients (410 PTC and 60 FTC), who underwent thyroidectomy. The 

baseline characteristics of the study subjects are shown in Table 2. The controls 

were comprised of 8,279 subjects and recruited from KoGES (Korean Genome 

and Epidemiology Study), Ansung or Ansan cohort, of which initial 

investigation began in 2001 with 8,842 participants aged 40–69 (43). The 

controls were not evaluated on thyroid disease. All participants in this study 

were of Korean ancestry (Figure. 1).  

 

Study participants for the Stage 2 follow-up 

For validation of the candidate associations, we used independent case-control 

groups. The cases comprised 615 subjects; 524 of the samples (515 PTC and 9 

FTC) were from the National Cancer Center, and 91 of the samples (72 PTC 

and 19 FTC) were from Seoul National University Hospital. Six hundred and 

five controls were taken from the National Cancer Center and Seoul National 

University Hospital, respectively (Figure. 1). The DNA samples from the cases 

were collected at the time of thyroidectomy, and those from the controls were 

collected when they underwent a health check-up. All of the controls showed a 

normal thyroid in the ultrasonography examination or had pathologically 

proven benign nodules. For the eQTL study, 78 thyroid cancer cases (60 
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PTC and 18 FTC) that had RNA-sequencing results of their tumour or 

normal tissues were enrolled from Seoul National University Hospital. 

The baseline characteristics of the cases with thyroid cancer are shown 

in Table 2. All of the subjects in the replication study were residents of 

Korea and of Korean ancestry. 
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Table 2. Descriptive characteristics of the participants in GWAS of DTC 

 

Characteristics Total (joint) Stage 1 (discovery) Stage 2 (replication) 

Cases 

Number 1085 470 615 

Age, years ± SD 46.5 ± 12.1 43.9 ± 12.8 48.4 ± 11.1 

Male % 14.4 % 13.0 % 15.4 % 

Pathology    

PTC: FTC, n (%) 997:88 (91.9:8.1) 410:60 (87.2:12.8) 587:28 (95.4:4.6) 

BRAFV600E in PTC (%) 186/215 (86.5) 186/215 (86.5) - 

LN metastasis in PTC (%) 419/827 (50.7) 186/337 (55.2) 233/490 (47.6) 

ETE in PTC (%) 519/886 (58.6) 221/377(58.6) 298/509 (58.5) 

Distant metastasis in PTC (%) 5/769 (0.7) 2/338 (0.6) 3/431 (0.7) 

Recurrence in PTC (%) 94/851 (11.0) 54/389 (13.9) 40/462 (8.7) 

 

Controls 

Number 8884 8279 605 

Age, years ± SD 52.6 ± 8.8 52.1 ± 8.9 58.9 ± 4.3 

Male % 47.5 % 45.2 % 79.2 % 

ETE, extrathyroidal extension; LN, lymph node; SD, standard deviation. 
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Figure 1. Overview of study flow. The number of individuals with DTC (PTC + FTC) or unaffected individual, imputed or replicated 

genotypes are shown for each study flow. 
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Discovery SNP genotyping and imputation 

The DNA was extracted from leukocytes of peripheral blood samples obtained 

from study individuals. For the stage 1 genome scan, the thyroid cancer case 

samples were genotyped using the Illumina HumanCore-24 BeadChip kit 

(Illumina, San Diego, USA) and control samples were genotyped using the 

Affymetrix Genome-Wide Human SNP Array 5.0 (Affymetrix Inc., Santa Clara, 

USA) (44). To minimize the possible genotyping errors, The SNPs were 

excluded by the criteria defined by Hardy-Weinberg equilibrium (P < 1 × 10-6), 

call rate (< 95%), and minor allele frequency (< 1%). After strand alignment 

with PLINK v1.9 and phasing with SHAPEIT2, imputation was carried out 

using IMPUTE2 software in both cases and controls. The 1000 genome ASN 

Phase I reference panel (integrated variant set release in NCBI build 37, hg19) 

was used as a reference. For imputation quality control, only variants with Info 

Score < 0.9 were excluded. After merging datasets from cases and controls, we 

excluded SNPs with a missing genotype rate ≥ 5% (1,590,137 SNPs excluded), 

and SNPs whose genotype frequencies were out of range from Hardy-Weinberg 

equilibrium at P < 1 × 10-6 (290 SNPs excluded). Because we used two different 

platforms for genotyping (Illumina for cases and Affymetrix for controls), there 

would be spurious associations due to batch effect (45). To detect false 

associations, we used SNPs data from another healthy cohort comprised of 
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2,000 subjects, which was genotyped using Illumina HumanCore-24 BeadChip. 

We tested for batch effects by analyzing association between SNPs from 

controls and healthy cohorts. We selected for P-values using a conservative 

threshold of 1 × 10-3, and a total of 31,279 SNPs were excluded. Finally, 

3,593,389 markers were used for selecting candidate SNPs.  

 

Replication SNP selection and genotyping 

Total forty-one independent variants were selected for the replication test. 

Among the candidate SNPs with P < 2.0 × 10-5 from the genome-wide scan, we 

selected representing 27 SNPs in 25 candidate regions base on the clustering 

pattern and LD. In addition, we included 14 SNPs, which located in previously 

reported risk loci of thyroid cancer or thyroid disease (Table 2). 

For the stage 2 follow-up genotyping, the selected SNPs were genotyped using 

the Fluidigm SNP Type Assay platform (Fluidigm, San Francisco, USA). To 

maintain the genotyping quality, a genotyping call rate of > 95% and a Hardy-

Weinberg equilibrium with a P > 0.001 were considered. 
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Table 3. Forty-one candidate SNPs for stage2 follow-up study. 

 

Chr. SNP Position Genes 
Risk 
alelle 

Allele  
frequency 
in cases 

Allele  
frequency 
in controls 

OR P-value 

1 rs57075645 99862185 87kb 3' of LPPR4 A 0.101 0.060 1.76 3.81E-07 

1 rs4915076 108359505 Intronic VAV3 C 0.233 0.301 0.71 9.37E-06 

1 rs4649295 233416538 Intronic PCNXL2 T 0.124 0.180 0.64 1.04E-05 

2 rs2121260 38268763 intronic FAM82A1 G 0.169 0.125 1.43 8.34E-05 

2 rs1979142 39032703 intronic DHX57 G 0.187 0.132 1.51 1.76E-06 

2 rs1549738 218118722 30kb 3' of DIRC3 G 0.388 0.448 0.78 2.96E-04 

2 rs12990503 218294217 intronic DIRC3 G 0.315 0.375 0.76 1.82E-04 

3 rs9858271 59545330 190kb 3' of FHIT G 0.503 0.426 1.37 3.57E-06 

4 rs1874564 77858105 13kb 5' of SEPT11 A 0.233 0.305 0.69 3.43E-06 

4 rs6841841 182790626 
270kb 3' of 

MGC45800 
G 0.166 0.232 0.66 3.68E-06 

5 rs10447240 119328679 
357kb 3' of 

FAM170A 
A 0.082 0.047 1.36 2.26E-05 

6 rs16889600 78723162 550kb 5' of HTR1B T 0.556 0.484 1.83 9.34E-07 

6 rs9361385 78926958 
650kb 5' of 

IRAK1BP1 
C 0.043 0.022 1.34 1.57E-05 

6 rs11754852 92261591 30kb 3' of MIR4643 C 0.013 0.049 1.99 3.83E-05 

7 rs2952745 52196144 812kb 5' of COBL T 0.372 0.302 0.25 4.74E-07 

7 rs2715152 82457666 intronic PCLO G 0.069 0.116 1.37 6.24E-06 

8 rs36041430 24199218 missense ADAM28 A 0.324 0.253 0.57 1.72E-05 

8 rs12542743 32318355 intronic NRG1 C 0.300 0.225 1.42 1.12E-06 

8 rs6996585 32400803 intronic NRG1 G 0.261 0.190 1.48 1.20E-07 

8 rs2439302 32432369 intronic NRG1 G 0.269 0.213 1.36 8.38E-05 

8 rs11778356 55387405 14kb 3' of SOX17 A 0.284 0.228 1.51 1.20E-07 

9 rs4628781 18795997 intronic ADAMTSL1 C 0.070 0.038 1.35 6.81E-05 

9 rs10867527 83023162 682kb 3' of TLE4 G 0.115 0.067 1.93 6.62E-07 

9 rs1588635 100537802 78kb 5' of FOXE1 A 0.168  0.123  1.81  1.74E-08 

9 rs7028661 100538470 77kb 5' of FOXE1 A 0.115 0.067 1.8 2.52E-08 

9 rs965513 100556109 59kb 5' of FOXE1 A 0.109 0.061 1.91 2.35E-09 

9 rs1867277 100615914 5'-UTR FOXE1 A 0.116  0.075  1.44  4.38E-05 

9 rs10122541 100628268 9kb 3' of FOXE1 G 0.121 0.080 1.57 1.43E-05 

9 rs7037324 100658318 9kb 3' of C9orf156 A 0.121 0.080 1.56 1.70E-05 

9 rs72753537 100660746 6kb 3' of C9orf156 C 0.030  0.012  1.63  3.56E-06 

11 rs67790686 103885141 Intronic PDGFD C 0.207 0.153 2.50 3.46E-06 

12 rs11175834 65992636 132kb 3' of MSRB3 T 0.052 0.022 1.45 1.16E-05 

12 rs16934253 113737225 3'-UTR SLC24A6 A 0.203 0.146 2.46 2.49E-09 

12 rs11061290 131518747 intronic GPR133 T 0.134 0.100 1.50 1.41E-06 

13 rs75150143 52428825 7.3kb 5' of CCDC70 C 0.474 0.414 1.40 8.18E-04 

14 rs34081947 36559531 208kb 3' of MBIP T 0.511 0.457 1.28 2.40E-04 

14 rs944289 36649246 119kb 3' of MBIP T 0.464 0.406 1.24 1.41E-03 

14 rs72693081 81453862 Intronic TSHR G 0.429 0.364 1.27 4.37E-04 

19 rs7248104 7224431 Intronic INSR A 0.114 0.072 1.31 6.77E-05 

22 rs7288885 26408660 Intornic MYO18B G 0.112 0.075 1.65 2.42E-06 

The SNP positions are indexed to the National Center for Biotechnology Information (NCBI) 

build 37. SNPs with P-values > 1×10-5 were previous reported SNPs or candidate SNPs of 

previous reported regions. 

Chr, chromosome number; OR, odd ratio; SNP, single nucleotide polymorphism. 
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RNA sequencing and eQTL analysis 

Details of the RNA sequencing methods used have been previously reported 

(46). In brief, 78 tumor tissues and 23 normal tissues from case samples of 

replication stage were sequenced using a HiSeq 2000 platform (Illumina, San 

Diego, USA). Then we profiled gene expression according to Ensembl gene set 

with the count number of reads aligned to each gene using HTSeq-count and 

normalized them via fragments per kilobase of exon per million fragments 

mapped (FPKM). To investigate the cis-eQTL of chosen SNPs to neighboring 

genes (±500 kb), RNA sequencing profiled data was assessed according to the 

additive model of linear regression analysis. In addition, we evaluated effect of 

associated genotypes on expression in various tissues using public eQTL 

database (GTEx (47) and Whole blood eQTL (48)). In patients with PTC from 

discovery stage, several aggressive features including presence of BRAFV600E 

mutation, lymph node metastasis, extrathyroid extension and recurrence were 

analyzed according to genotypes of GWAS-identified variants. 

 

Statistical analysis 

We conducted the case-control association analysis with the genome-wide 

SNPs via an additive model using PLINK software, version 1.9 

(https://www.cog-genomics.org/plink/1.9) (49). Logistic regression analysis 
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was used to test the association for the series of GWAS, replication and joint 

analysis with unadjusted models, as well as with the adjustment for age and sex. 

To eliminate relatedness between each pair of subjects in the Stage 1 genome 

scan, kinship identical-by-descent (IBD) coefficient (Z0 > 0.8) was considered.  

Q-Q plots were used to assess the adequacy of the case-control matching. We 

also calculated the genomic inflation factor (λ) from a GWA analysis to 

compare the genome-wide distribution of the test statistic with the expected 

null distribution. The regional plots were created using LocusZoom 

(http://locuszoom.sph.umich.edu/locuszoom). The gene set enrichment 

analysis was conducted using GSEA software, version 2.2.1 (Broad Institute, 

www.broad.mit.edu/gsea/msigdb/index.jsp) with the BioCarta, KEGG and 

Reactome (1077 gene sets) of Molecular Signatures Database (MSigDB 

version 5.1, http://www.broadinstitute.org/gsea/msigdb/) (50). The IBM SPSS 

Statistics for Windows, version 23 (IBM Corp., Armonk, USA) was used for 

the statistical analyses. 
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Ethics statement 
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consents were obtained from all participants. All clinical investigations were 

conducted according to the principles expressed in the Declaration of 
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Results  

Stage 1 genome scan 

After genotype imputation, quality control, and the removal of the batch effect 

and relatedness, we conducted an association analysis using 3,593,389 markers 

for DTC, papillary thyroid cancer (PTC) and follicular thyroid cancer (FTC) 

versus the control (Figure 1, Table 2). A quantile-quantile (Q-Q) plot and 

genomic inflation factors showed little evidence for statistic inflation (Figure. 

2). The genome-wide association results of each of the DTC and PTC cases are 

shown in the Manhattan plots (Figure 3). We identified two genome-wide 

significant (P = 5 × 10-8) loci in DTC and two loci in PTC. In the test using the 

DTC cases, the most significantly associated SNP was observed near the 

FOXE1 gene (rs965513, P = 2.35 × 10-9) at 9q22.33. The second significant 

SNP was located in the 3'-untranslated region (UTR) of the SLC24A6 gene 

(rs16934253, P = 2.49 × 10-9) at 12q24.13 (Figure. 1a). In the test using the 

PTC cases, we found two significantly associated signals in the intronic region 

of the NRG1 gene (rs6996585, P = 5.17 × 10-10) at 8p12 and near the FOXE1 

gene (rs965513, P = 8.20 × 10-9), which was the most significant SNP in DTC 

(Figure 1b). Forty-one candidate SNPs were selected for the replication (Table 

2). Among these, only six SNPs of DIRC3, NKX2-1 or NRG1 were identical to 

the previous reports (Table 1). 
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Figure 2. Quantile-quantile plot for stage 1 genome scan.  

A quantile-quantile plot for (a) DTC and (b) PTC showing the distribution of the observed P-values from the association testing in the stage 1 

genome scan against the expected distribution under the null hypothesis. The grey zone indicates the 95% confidence interval. 
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Figure 3. Manhattan plots of the Genome-wide association signal with 

DTC and PTC for stage 1. The x-axis represents the SNP markers on each 

chromosome. y-axis shows the −log10 scale. The red horizontal line represents 

the genome-wide significant threshold P = 5.0 × 10−8 and the blue horizontal 

line represents the genome-wide suggestive threshold P = 1.0 × 10−6. Eleven 

candidate loci of DTC, PTC or FTC are shown in green. 
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Stage 2 follow-up and joint Stages 1 and 2 analyses 

Among the 41 candidate SNPs, 13 SNPs in 10 loci were replicated in DTC or 

PTC, and 2 SNPs in 2 loci were replicated in FTC (green coloured loci in Figure 

1). The minor allele frequency (MAF) of all of the 15 SNPs in our control 

samples were similar with those of the East Asian population in 1000 genomes 

(Table 4), with the exception of rs1549738. Table 5 describes the replicated 

SNPs in DTC, PTC and FTC through the GWAS and the replication and joint 

association analysis. Most of the SNPs showed a similar association between 

DTC and PTC, with the exception of 2 SNPs; rs4915076 of VAV3 and 

rs9858271 of FHIT were replicated only in PTC. After the joint analysis, the 

most significantly associated region was the NRG1 loci, and the second one was 

DIRC3. 

Regarding the candidate SNPs that were associated with FTC, despite the 

limited number of FTC samples (discovery N = 60, replication N = 28), we 

identified two SNPs that were highly associated with FTC but were not 

positively replicated in the DTC or PTC samples. The SNP (rs16934253) in the 

3' UTR of SLC24A6 at 12q24.13 is the second most significantly associated 

signal of DTC in the discovery stage, but it was not well replicated in DTC or 

PTC. However, we identified that rs16934253 showed a high-risk effect (Joint 
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P = 2.71 × 10-5, OR = 3.32) in the FTC samples. Another candidate SNP 

(rs1549738) near DIRC3 showed a similar risk effect in the FTC samples (Joint 

P = 0.0017, OR = 1.65) but not in the DTC or PTC samples. 

Among the SNPs, 2 SNPs in 2 loci were identical (rs2439302 in the NRG1 locus 

and rs944289 in the NKX2-1 locus), and 6 SNPs in 4 loci (rs6996585 and 

rs12542743 in the NRG1 locus, rs12990503 and rs1549738 in the DIRC3 locus, 

rs34081947 in the NKX2-1 locus and rs72753537 in the FOXE1 locus) were 

located at the same loci that were identified in previous reports (Table 1). The 

other 7 SNPs in 7 loci (VAV3, PCNXL2, INSR, MRSB3, FHIT, SEPT11 and 

SLC24A6 loci) were newly identified. 
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Table 4. The comparison of risk allele frequency between population of 1000Genome and this study 
 

 
 

 

 

 

 

 

 

 

 

 

 

Chr, chromosome number; OR, odd ratio; SNP, single nucleotide polymorphism. 

Chr SNP Gene 

Risk / 

Reference 

allele 

Risk allele frequency in 1000Genome 
 

Risk allele frequency in this study 

African American European East Asian 

 

Cases Controls Allelic OR 

1 rs4915076 VAV3 T/C 0.96 0.81 0.93 0.71  0.76 0.70 1.33 

1 rs4649295 PCNXL2 C/T 0.43 0.75 0.64 0.84  0.87 0.82 1.43 

2 rs12990503 DIRC3 G/C 0.54 0.35 0.28 0.60  0.69 0.63 1.34 

2 rs1549738 DIRC3 A/G 0.54 0.84 0.87 0.61  0.58 0.55 1.14 

3 rs9858271 FHIT G/A 0.07 0.29 0.24 0.47  0.48 0.43 1.26 

4 rs1874564 SEPT11 G/A 0.33 0.52 0.45 0.66  0.75 0.69 1.31 

8 rs6996585 NRG1 G/A 0.24 0.45 0.42 0.23  0.29 0.23 1.39 

8 rs12542743 NRG1 C/T 0.51 0.56 0.56 0.26  0.32 0.25 1.36 

8 rs2439302 NRG1 G/C 0.47 0.49 0.48 0.19  0.27 0.21 1.37 

9 rs72753537 FOXE1 C/T 0.04 0.12 0.14 0.08  0.10 0.07 1.41 

12 rs11175834 MSRB3 T/C 0.40 0.10 0.05 0.14  0.20 0.15 1.37 

12 rs16934253 SLC24A6 A/G 0.32 0.08 0.11 0.01  0.03 0.02 1.51 

14 rs34081947 NKX2-1 T/C 0.20 0.43 0.54 0.39  0.47 0.41 1.27 

14 rs944289 NKX2-1 T/C 0.15 0.44 0.59 0.45  0.51 0.46 1.25 

19 rs7248104 INSR A/G 0.28 0.40 0.42 0.32  0.41 0.36 1.22 
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Table 5. DTC, PTC and FTC associated SNPs in Korean Population 

SNP 

Chr 
Risk 

Allele 
Stage 

DTC  PTC  FTC 

Position Allele Frequency 
OR P 

 Allele Frequency 
OR P 

 Allele Frequency 
OR P 

Gene (case/control)  (case/control)  (case/control) 

rs6996585 8 G Discovery 0.30/0.23 1.48 1.20E-07  0.32/0.23 1.61 5.17E-10  0.17/0.23 0.70 0.1499 
 32400803  Replication 0.28/0.23 1.29 0.0061  0.28/0.23 1.28 0.0094  0.32/0.23 1.59 0.1130 
 NRG1  Joint 0.29/0.23 1.39 1.08E-10  0.29/0.23 1.43 9.01E-12  0.22/0.23 0.96 0.8273 

rs12542743 8 C Discovery 0.32/0.25 1.42 1.12E-06  0.34/0.25 1.53 1.63E-08  0.21/0.25 0.78 0.2674 
 32318355  Replication 0.31/0.27 1.22 0.0267  0.31/0.27 1.20 0.0427  0.38/0.27 1.63 0.0821 
 NRG1  Joint 0.32/0.25 1.36 4.61E-10  0.32/0.25 1.39 1.01E-10  0.26/0.25 1.04 0.8137 

rs2439302 8 G Discovery 0.27/0.21 1.36 8.38E-05  0.29/0.21 1.48 1.50E-06  0.15/0.21 0.66 0.1129 

 32432369  Replication 0.27/0.21 1.37 8.55E-04  0.27/0.21 1.36 0.0013  0.30/0.21 1.59 0.1143 

 NRG1  Joint 0.27/0.21 1.37 1.42E-09  0.28/0.21 1.41 1.26E-10  0.20/0.21 0.94 0.7289 

rs12990503 2 G Discovery 0.68/0.62 1.32 1.82E-04  0.70/0.62 1.38 3.17E-05  0.61/0.62 0.93 0.7107 
 218294217  Replication 0.70/0.65 1.21 0.0268  0.70/0.65 1.24 0.0164  0.61/0.65 0.83 0.5119 
 DIRC3  Joint 0.69/0.63 1.34 3.55E-09  0.70/0.63 1.38 2.58E-10  0.61/0.63 0.93 0.6324 

rs11175834 12 T Discovery 0.21/0.15 1.45 1.16E-05  0.21/0.15 1.44 4.52E-05  0.21/0.15 1.48 0.0879 
 65992636  Replication 0.19/0.14 1.41 0.0018  0.19/0.14 1.38 0.0035  0.25/0.14 1.99 0.0289 
 MSRB3  Joint 0.20/0.15 1.37 4.26E-08  0.20/0.15 1.36 4.86E-07  0.22/0.15 1.60 0.0100 

rs4915076 1 T Discovery 0.77/0.70 1.42 9.37E-06  0.77/0.70 1.41 4.51E-05  0.77/0.70 1.48 0.0707 
 108359505  Replication 0.75/0.71 1.20 0.0507  0.75/0.71 1.23 0.0240  0.63/0.71 0.68 0.1637 
 VAV3  Joint 0.76/0.70 1.33 8.47E-08  0.76/0.70 1.34 7.09E-08  0.73/0.70 1.14 0.4311 

rs4649295 1 T Discovery 0.88/0.82 1.56 1.04E-05  0.88/0.82 1.56 3.48E-05  0.87/0.82 1.54 0.1155 
 233416538  Replication 0.86/0.82 1.33 0.0106  0.86/0.82 1.36 0.0068  0.80/0.82 0.89 0.7326 
 PCNXL2  Joint 0.87/0.82 1.43 6.00E-08  0.87/0.82 1.45 8.53E-08  0.85/0.82 1.27 0.2634 

rs34081947 14 T Discovery 0.47/0.41 1.28 2.40E-04  0.47/0.41 1.24 0.003163  0.53/0.41 1.62 0.0079 
 36559531  Replication 0.47/0.39 1.38 8.07E-05  0.47/0.39 1.37 1.31E-04  0.50/0.39 1.56 0.0999 
 NKX2-1  Joint 0.47/0.41 1.27 1.19E-07  0.47/0.41 1.25 2.47E-06  0.52/0.41 1.56 0.0030 
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The SNP positions are indexed to the National Center for Biotechnology Information (NCBI) build 37. 

Chr, chromosome number; OR, odd ratio; SNP, single nucleotide polymorphism. 

  

SNP 

Chr 
Risk 

Allele 
Stage 

DTC  PTC  FTC 

Position Allele Frequency 

(case/control) 
OR P 

 Allele Frequency 

(case/control) 
OR P 

 Allele Frequency 

(case/control) 
OR P 

Gene   

rs1874564 4 G Discovery 0.77/0.69 1.44 3.43E-06  0.77/0.69 1.43 1.93E-05  0.77/0.69 1.51 0.0576 
 77858105  Replication 0.74/0.69 1.24 0.0169  0.74/0.69 1.25 0.0135  0.69/0.69 1.00 0.9930 
 SEPT11  Joint 0.75/0.69 1.31 2.04E-07  0.75/0.69 1.31 5.87E-07  0.75/0.69 1.32 0.1171 

rs9858271 3 G Discovery 0.50/0.43 1.37 3.57E-06  0.52/0.43 1.45 2.78E-07  0.41/0.43 0.92 0.6570 

 59545330  Replication 0.47/0.43 1.15 0.0952  0.47/0.43 1.18 0.0468  0.32/0.43 0.62 0.0989 

 FHIT  Joint 0.48/0.43 1.26 6.82E-07  0.49/0.43 1.30 2.76E-08  0.38/0.43 0.82 0.2029 

rs944289 14 T Discovery 0.51/0.46 1.24 0.0014  0.51/0.46 1.22 0.0062  0.54/0.46 1.40 0.0646 
 36649246  Replication 0.51/0.43 1.38 7.53E-05  0.51/0.43 1.36 1.93E-04  0.59/0.43 1.90 0.0186 
 NKX2-1  Joint 0.51/0.46 1.25 1.39E-06  0.51/0.46 1.23 1.72E-05  0.56/0.46 1.50 0.0072 

rs72753537 9 C Discovery 0.12/0.07 1.63 3.56E-06  0.12/0.07 1.76 1.70E-07  0.06/0.07 0.77 0.4958 
 100660746  Replication 0.09/0.07 1.38 0.0352  0.09/0.07 1.43 0.0209  0.04/0.07 0.52 0.3560 
 FOXE1  Joint 0.10/0.07 1.41 7.67E-06  0.11/0.07 1.48 5.37E-07  0.05/0.07 0.67 0.2448 

rs7248104 19 A Discovery 0.43/0.36 1.31 6.77E-05  0.43/0.36 1.35 4.57E-05  0.39/0.36 1.11 0.5877 
 7224431  Replication 0.40/0.35 1.20 0.0313  0.40/0.35 1.20 0.0293  0.38/0.35 1.10 0.7449 
 INSR  Joint 0.41/0.36 1.22 2.00E-05  0.41/0.36 1.23 1.64E-05  0.38/0.36 1.09 0.5731 

FTC associated SNPs DTC  PTC  FTC 

rs16934253 12 A Discovery 0.05/0.02 2.46 2.49E-09  0.05/0.02 2.36 1.71E-07  0.07/0.02 3.20 8.95E-04 
 113737225  Replication 0.02/0.02 0.98 0.9573  0.02/0.02 0.83 0.5752  0.07/0.02 4.35 0.0045 
 SLC24A6  Joint 0.03/0.02 1.51 0.0016  0.03/0.02 1.36 0.0216  0.07/0.02 3.32 2.71E-05 

rs1549738 2 A Discovery 0.61/0.55 1.28 2.96E-04  0.61/0.55 1.25 0.0026  0.66/0.55 1.56 0.0193 
 218118722  Replication 0.56/0.56 1.04 0.6595  0.56/0.56 1.01 0.9003  0.70/0.56 1.84 0.0376 
 DIRC3  Joint 0.58/0.55 1.14 0.0036  0.58/0.55 1.11 0.0307  0.67/0.55 1.65 0.0017 
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Validation of the candidate SNPs with cis-eQTL and GSEA analyses.  

We conducted a cis-eQTL analysis with the 15 positively replicated SNPs and 

their nearby genes using 78 tumour and 23 normal thyroid tissues from samples 

of the replication stage (Table 6). We found significant cis-eQTL of genes near 

NRG1, NKX2-1, DIRC3, PCNXL2 and VAV3 in the normal and tumour thyroid 

tissue. Additionally, we evaluated the cis-eQTL of the normal thyroid tissues 

(Table 7) and other various tissues (Table 8) in the public eQTL database and 

imputed expression (Table 6) of 470 DTC case samples using PrediXcan, found 

similar results with our RNAseq eQTL data. To reveal the transcriptional 

change and biological function during the cancer prognosis, we conducted a 

gene set enrichment analysis (GSEA) according to the candidate SNPs in the 

tumour and normal thyroid tissue. We found several cellular growths or cancer-

related pathways that were associated with SNPs of NRG1, VAV3, DIRC3, 

SEPT11 and INSR (Tables 9). Specifically, rs6996585 of NRG1 was observed 

in association with a number of those pathways in the normal thyroid tissue 

(Tables 10). 
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Table 6. Cis-eQTL result of candidate SNPs and nearby genes. 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

The SNP positions are indexed to the National Center for Biotechnology Information (NCBI) build 37. The cis-eQTL gene is defined as the genes nearest to the candidate SNP 

within ±500 kb. The cis-eQTL of candidate SNPs are from the association result of 78 tumour thyroid tissues and 23 normal thyroid tissues. Bold indicates significance of P < 

0.05.  

Chr, chromosome number; NA, not available; SNP, single nucleotide polymorphism. 

Chr SNP Position 
Representative 

Gene 

RNA-sequencing data in this study 
 Predicted expression of 

470 DTC cases using 

normal thyroid reference 

Cis-eQTL 

Gene 

P-value of 

tumour tissue 

P-value of 

normal tissue 

 Cis-eQTL 

Gene 
P-value 

1 rs4915076 108359505 VAV3 VAV3 0.0174 0.0995  VAV3 < 1.00E-300 

1 rs4649295 233416538 PCNXL2 PCNXL2 0.0030 0.8594  PCNXL2 3.81E-05 

    NTPCR 0.9006 0.0472  NTPCR 0.0262 

2 rs1549738 218118722 DIRC3 TNS1 0.0023 0.1170  TNS1 NA 

2 rs12990503 218294217 DIRC3 -    -  

3 rs9858271 59545330 FHIT -    -  

4 rs1874564 77858105 SEPT11 -    -  

8 rs6996585 32400803 NRG1 NRG1 0.0053 0.0526  NRG1 2.99E-244 

8 rs12542743 32318355 NRG1 NRG1 0.0073 0.1021  NRG1 3.04E-97 

8 rs2439302 32432369 NRG1 NRG1 0.0025 0.0125  NRG1 < 1.00E-300 

9 rs72753537 100660746 FOXE1 C9orf156 0.6914 0.3035  C9orf156 1.09E-43 

    CORO2A 0.0551 0.4374  CORO2A 1.03E-19 

    XPA 0.4269 0.9955  XPA 8.43E-58 

    TSTD2 0.3061 0.2419  TSTD2 0.0013 

12 rs11175834 65992636 MSRB3 -    -  

12 rs16934253 113737225 SLC24A6 -    -  

14 rs34081947 36559531 NKX2-1 NKX2-1 0.0323 0.5458  NKX2-1 NA 
    SFTA3 0.0883 0.4173  SFTA3 4.05E-15 

14 rs944289 36649246 NKX2-1 NKX2-1 0.0069 0.0302  NKX2-1 NA 
    SFTA3 0.0107 0.0476  SFTA3 3.90E-13 
    RALGAPA1 0.2493 0.2766  RALGAPA1 0.0172 

19 rs7248104 7224431 INSR INSR 0.7187 0.8680  INSR 4.91E-41 
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Table 7. Association between candidate SNPs and cis-eQTL result of thyroid tissues in GTEx public data 

Chr SNP Position 
Representative 

Gene 

RNA-sequencing data in this study 
 Public data in normal thyroid 

(source: GTEx2015 v6) 

Cis-eQTL 

Gene 

P-value of  

tumor tissue 

P-value of  

normal tissue 

 Cis-eQTL 

Gene 
P-value 

1 rs4915076 108359505 VAV3 VAV3 0.0174 0.0995  VAV3 3.33E-27 
        VAV3-AS1 2.02E-06 

1 rs4649295 233416538 PCNXL2 PCNXL2 0.0030 0.8594  PCNXL2 > 0.05 

    NTPCR 0.9006 0.0472  NTPCR > 0.05 

2 rs1549738 218118722 DIRC3 TNS1 0.0023 0.1170  TNS1 > 0.05 

2 rs12990503 218294217 DIRC3 -      

3 rs9858271 59545330 FHIT -      

4 rs1874564 77858105 SEPT11 -      

8 rs6996585 32400803 NRG1 NRG1 0.0053 0.0526  NRG1 5.79E-21 
    -    RP11-1002K11.1 6.46E-19 

8 rs12542743 32318355 NRG1 NRG1 0.0073 0.1021  NRG1 2.50E-07 

    -    RP11-1002K11.1 1.00E-06 

8 rs2439302 32432369 NRG1 NRG1 0.0025 0.0125  NRG1 6.47E-25 

    -    RP11-1002K11.1 1.76E-23 

9 rs72753537 100660746 FOXE1 C9orf156 0.6914 0.3035  C9orf156 1.33E-05 

12 rs11175834 65992636 MSRB3 -      

12 rs16934253 113737225 SLC24A6 -      

14 rs34081947 36559531 NKX2-1 NKX2-1 0.0323 0.5458  NKX2-1 > 0.05 
    -    RP11-116N8.4 2.90E-12 
    -    PTCSC3 1.50E-05 

14 rs944289 36649246 NKX2-1 NKX2-1 0.0069 0.0302  NKX2-1 > 0.05 
    -    RP11-116N8.4 1.28E-09 
    SFTA3 0.0107 0.0476  SFTA3 > 0.05 

19 rs7248104 7224431 INSR -      

The SNP positions are indexed to the National Center for Biotechnology Information (NCBI) build 37. The cis-eQTL gene is defined as the genes nearest to the candidate SNP 

within ±500 kb. The cis-eQTL of candidate SNPs are from the association result of 78 tumor thyroid tissues and 23 normal thyroid tissues. The public cis-eQTL result of 

candidate SNPs are from the GTEx (http://www.gtexportal.org). Bold indicates significance of P < 0.05. 

Chr, chromosome number; SNP, single nucleotide polymorphism.  
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Table 8. Association between candidate SNPs and Cis-eQTL result of other various tissues except thyroid in public data 

Chr SNP Position Representative 

Gene 
Source eQTL-Gene Tissue P-value 

1 rs4915076 108359505 VAV3 Westra2013 VAV3 Whole blood 1.56E-08 
       GTEx2015_v6 VAV3 Lung 3.23E-08 

        GTEx2015_v6 VAV3 Whole blood 1.91E-06 

1 rs4649295 233416538 PCNXL2 - - - - 

2 rs12990503 218294217 DIRC3 GTEx2015_v6 DIRC3 Skin 7.19E-06 

2 rs1549738 218118722 DIRC3 - - - - 

3 rs9858271 59545330 FHIT - - - - 

4 rs1874564 77858105 SEPT11 Westra2013 CCNI Whole blood 0.0013 

    Westra2013 SEPT11 Whole blood 0.0018 

8 rs12542743 32318355 NRG1 -    

8 rs6996585 32400803 NRG1 Westra2013 NRG1 Whole blood 3.95E-190 

    GTEx2015_v6 NRG1 Whole blood 2.49E-11 

    GTEx2015_v6 RP11-1002K11.1 Whole blood 7.74E-08 

8 rs2439302 32432369 NRG1 Westra2013 NRG1 Whole blood 9.81E-198 

    GTEx2015_v6 NRG1 Whole blood 1.68E-13 

    GTEx2015_v6 RP11-1002K11.1 Whole blood 1.68E-09 

9 rs72753537 100660746 FOXE1 GTEx2015_v6 C9orf156 Adipose 1.15E-05 

    GTEx2015_v6 C9orf156 Skeletal muscle  3.79E-06 

    GTEx2015_v6 C9orf156 Nerve, Tibia 5.04E-06 

    GTEx2015_v6 C9orf156 Testis 1.67E-05 

12 rs11175834 65992636 MSRB3 - - - - 

12 rs16934253 113737225 SLC24A6 Westra2013 AC010178.40-2 Whole blood 3.50E-04 

    Westra2013 C12orf52 Whole blood 0.0029 

    Westra2013 SLC24A6 Whole blood 3.67E-26 

14 rs34081947 36559531 NKX2-1 GTEx2015_v6 RP11-116N8.4 Adipose 2.90E-07 

14 rs944289 36649246 NKX2-1 GTEx2015_v6 RP11-116N8.4 Adipose 5.79E-06 

19 rs7248104 7224431 INSR GTEx2015_v6 INSR Nerve, Tibia 2.70E-06 

The SNP positions are indexed to the National Center for Biotechnology Information (NCBI) build 37. The cis-eQTL result of candidate SNPs are from the GTEx 

(http://www.gtexportal.org) and Whole blood eQTL (Westra 2013). Chr, chromosome number; SNP, single nucleotide polymorphism.  
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Table 9. Gene set enrichment analysis result in total candidate SNPs 

 

Chr SNP Gene 

Normal thyroid tissue  Tumor thyroid tissue 

Significant gene set list N of gene set 
 (FDR q<0.05) 

Lowest 
FDR q 

 
N of gene set 

 (FDR q<0.05) 
Lowest 
FDR q 

1 rs4649295 PCNXL2 0 0.662  0 0.160 - 

1 rs4915076 VAV3 0 0.108  2 0.026 (KEGG) Steroid Hormone Biosynthesis, (Reactome) Steroid Hormones 

2 rs12990503 DIRC3 0 0.685  1 0.038 (Reactome) TGF beta receptor signaling activates SMADS 

2 rs1549738 DIRC3 0 0.267  0 0.200 - 

3 rs9858271 FHIT 0 0.192  0 0.569 - 
4 rs1874564 SEPT11 0 0.499  1 0.042 (Biocarta) ATM Pathway 

8 rs12542743 NRG1 0 0.234  0 0.860 - 

8 rs6996585 NRG1 31 < 0.001  0 0.936 

(Biocarta) AT1R Pathway, CXCR4 Pathway, EIF4 Pathway, FCER1 Pathway, FMLP 
Pathway, GH Pathway, GLEEVEC Pathway, GPCR Pathway, GSK3 Pathway, 

HCMV Pathway, IGF1 Pathway, IL6 Pathway, Insulin Pathway, MEF2D Pathway, 

MET Pathway, NFAT Pathway, NFkB Pathway, NGF Pathway, PDGF Pathway, 
PYK2 Pathway, Stress Pathway, TCR Pathway, VEGF Pathway 

(KEGG) Axon guidance, Colorectal Cancer 

(Reactome) Downstream signal trransduction, NGF signalling via TRKA from the 
plasma membrane, Regulation of KIT signaling, Signaling by FGFR, Signaling by 

NGF, Transcriptional regulaiton of white adipocyte differntiation 

8 rs2439302 NRG1 0 0.074  0 0.761 - 
9 rs72753537 FOXE1 0 0.152  0 0.400 - 

12 rs11175834 MSRB3 0 0.686  0 0.810 - 

12 rs16934253 SLC24A6 NA NA  0 0.997 - 
14 rs34081947 NKX2-1 0 0.110  0 0.529 - 

14 rs944289 NKX2-1 0 0.803  0 0.059 - 

19 rs7248104  INSR 1 0.028  0 0.650 (Biocarta) ERK Pathway 

1077 gene sets (BioCarta, KEGG and Reactome) of Molecular Signatures Database (MSigDB version 5.1) were used. Bold indicates significance of FDR q < 0.05. 

Chr, chromosome number; FDR q, false discovery rate q-value; OR, odd ratio; SNP, single nucleotide polymorphism. 
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Table 10. The significantly enriched gene sets (FDR q < 0.05) according to 

the rs6996585 genotype. 

Gene set Description NES Nor P FDR q 

(Biocarta) AT1R Pathway 
Angiotensin II mediated activation of 

JNK Pathway via 

Pyk2 dependent signaling 
2.316 < 0.001 0.001 

(Biocarta) PYK2 Pathway Links between Pyk2 and Map Kinases 2.273 < 0.001 0.004 

(Biocarta) IGF1 Pathway IGF-1 Signaling Pathway 2.108 < 0.001 0.018 

(Biocarta) Insulin Pathway  Insulin Signaling Pathway 2.044 < 0.001 0.02 

(Biocarta) MET Pathway 
Signaling of Hepatocyte Growth Factor 

Receptor 
2.054 < 0.001 0.02 

(Reactome) Transcriptional regulation  

of white adipocyte differentiation 

Genes involved in Transcriptional 

Regulation of  

White Adipocyte Differentiation 
2.124 < 0.001 0.021 

(Biocarta) NGF Pathway  Nerve growth factor pathway 2.06 < 0.001 0.022 

(Biocarta) GLEEVEC Pathway  
Inhibition of Cellular Proliferation by 

Gleevec 
2.084 < 0.001 0.022 

(Biocarta) GSK3 Pathway 
Inactivation of Gsk3 by AKT causes 

accumulation of 

 b-catenin in Alveolar Macrophages 
2.022 0.002 0.024 

(Biocarta) PDGF Pathway PDGF Signaling Pathway 2.026 < 0.001 0.024 

(Biocarta) FCER1 Pathway  
Fc Epsilon Receptor I Signaling in Mast 

Cells 
2.002 < 0.001 0.029 

(Reactome) NGF signaling via TRKA 
Genes involved in NGF signaling via 

TRKA from the  

plasma membrane 
1.968 < 0.001 0.041 

(Biocarta) IL6 Pathway IL 6 signaling pathway 1.93 < 0.001 0.043 

(Biocarta) GPCR Pathway 
Signaling Pathway from G-Protein 

Families 
1.931 < 0.001 0.044 

(Reactome) Downstream  
signal transduction 

Genes involved in Downstream signal 

transduction 
1.936 < 0.001 0.044 

(Biocarta) CXCR4 Pathway CXCR4 Signaling Pathway 1.95 < 0.001 0.045 

(Biocarta) MEF2D Pathway Role of MEF2D in T-cell Apoptosis 1.938 < 0.001 0.045 

(Biocarta) NFkB Pathway NF-kB Signaling Pathway 1.941 < 0.001 0.046 

(KEGG) Colorectal Cancer Colorectal cancer 1.826 0.002 0.048 

(Biocarta) EIF4 Pathway Regulation of eIF4e and p70 S6 Kinase 1.837 < 0.001 0.048 

(Biocarta) HCMV Pathway 
Human Cytomegalovirus and Map 

Kinase Pathways 
1.813 0.002 0.048 

(KEGG) Axon guidance Axon guidance 1.839 0.008 0.048 

(Biocarta) Stress Pathway TNF/Stress Related Signaling 1.822 0.008 0.048 

(Biocarta) GH Pathway Growth Hormone Signaling Pathway 1.951 0.008 0.048 

(Biocarta) NFAT Pathway 
 NFAT and Hypertrophy of the heart  

(Transcription in the broken heart) 
1.912 < 0.001 0.049 

(Biocarta) TCR Pathway  T Cell Receptor Signaling Pathway 1.837 < 0.001 0.049 

(Reactome) Signaling by FGFR  FGFR Signaling pathway 1.816 0.004 0.049 

(Reactome) Signaling by NGF Genes involved in Signaling by NGF 1.839 0.002 0.049 

(Biocarta) FMLP Pathway 
fMLP induced chemokine gene 

expression in HMC-1 cells 
1.828 0.004 0.049 

(Biocarta) VEGF Pathway VEGF, Hypoxia, and Angiogenesis 1.833 < 0.001 0.049 

(Reactome) Regulation of 

KIT signaling 
Genes involved in Regulation of KIT 

signaling 
1.817 0.004 0.049 

1077 gene sets (BioCarta, KEGG and Reactome) of Molecular Signatures Database (MSigDB 

version 5.1) were used.  

FDR q, false discovery rate q-value; NES, normalized enrichment score; Nor P, nominal P-value. 
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Association between candidate SNPs and clinical phenotypes. 

We further investigated whether there was an association between candidate 

SNPs and clinical phenotypes, such as the BRAFV600E mutation, lymph node 

metastasis, or extrathyroidal extension (Table 11). Interestingly, three SNPs of 

NRG1 were associated with lymph node metastasis in the BRAFV600E positive 

samples. The SNPs of SEPT11 and INSR were associated with extrathyroidal 

extension. 
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Table 11. Association between candidate SNPs and clinical phenotypes. 

 

Chr SNP Gene 
Clinical 

phenotype 
Genotypes Total P-value 

BRAF 

positive 

BRAF 

negative 

1 rs4915076 VAV3  CC CT TT     
   BRAFV600E 10/11(90.9%) 73/83(88.0%) 103/121(85.1%) 186/215(86.5%) 0.477   
   LN metastasis 11/17(64.7%) 71/124(57.3%) 104/196(53.1%) 186/337(55.2%) 0.289  0.855  0.653  

   ETE 10/20(50.0%) 78/134(58.2%) 133/223(59.6%) 221/377(58.6%) 0.483  0.634  0.573  

1 rs4649295 PCNXL2  CC CT TT     
   BRAFV600E 141/162(87.0%) 40/46(87.0%) 4/6(66.7%) 185/214(86.4%) 0.377   
   LN metastasis 145/256(56.6%) 34/72(47.2%) 3/4(75.0%) 182/332(54.8%) 0.356  0.930  0.765  

   ETE 169/285(59.3%) 46/80(57.5%) 3/7(42.9%) 218/372(58.6%) 0.489  0.302  0.107  

2 rs12990503 DIRC3  CC CG GG     
   BRAFV600E 94/105(89.5%) 71/87(81.6%) 20/22(90.9%) 185/214(86.4%) 0.491   
   LN metastasis 94/162(58.0%) 69/137(50.4%) 23/37(62.2%) 186/336(55.4%) 0.763  0.928  0.041  

   ETE 108/183(59.0%) 85/153(55.6%) 27/40(67.5%) 220/376(58.5%) 0.669  0.584  0.290  

2 rs1549738 DIRC3  AA AG GG     

   BRAFV600E 65/74(87.8%) 98/113(86.7%) 21/26(80.8%) 184/213(86.4%) 0.462   

   LN metastasis 65/122(53.3%) 89/161(55.3%) 31/52(59.6%) 185/335(55.2%) 0.459  0.441  0.879  
   ETE 82/136(60.3%) 111/184(60.3%) 26/55(47.3%) 219/375(58.4%) 0.187  0.618  0.877  

3 rs9858271 FHIT  AA AG GG     

   BRAFV600E 35/45(77.8%) 101/111(91.1%) 47/56(83.9%) 183/212(86.3%) 0.478   

   LN metastasis 42/74(56.8%) 98/175(56.0%) 42/82(51.2%) 182/331(55.0%) 0.492  0.328  0.424  
   ETE 49/81(60.5%) 114/191(59.7%) 55/99(55.6%) 218/371(58.8%) 0.494  0.934  0.105  

4 rs1874564 SEPT11  AA AG GG     
   BRAFV600E 11/12(91.7%) 68/76(89.5%) 106/126(84.1%) 185/214(86.4%) 0.236   
   LN metastasis 13/20(65.0%) 67/118(56.8%) 106/196(54.1%) 186/334(55.7%) 0.358  0.229  0.381  

   ETE 11/22(50.0%) 75/130(57.7%) 134/223(60.1%) 220/375(58.7%) 0.372  0.688  0.009  

8 rs12542743 NRG1  CC CT TT     
   BRAFV600E 23/27(85.2%) 89/103(86.4%) 72/83(86.7%) 184/213(86.4%) 0.855   
   LN metastasis 27/38(71.1%) 83/155(53.5%) 75/140(53.6%) 185/333(55.6%) 0.156  0.025  0.545  

   ETE 26/43(60.5%) 110/173(63.6%) 82/157(52.2%) 218/373(58.4%) 0.097  0.152  0.752  

8 rs6996585 NRG1  AA AG GG     
   BRAFV600E 80/92(87.0%) 81/92(88.0%) 24/29(82.8%) 185/213(86.9%) 0.700   
   LN metastasis 85/153(55.6%) 72/146(49.3%) 26/35(74.3%) 183/334(54.8%) 0.348  0.015  0.585  

   ETE 96/170(56.5%) 97/166(58.4%) 24/37(64.9%) 217/373(58.2%) 0.393  0.067  0.377  



37 

 

Chr SNP Gene 
Clinical 

phenotype 
Genotypes Total P-value 

BRAF 

positive 

BRAF 

negative 

8 rs2439302 NRG1  CC CG GG     

   BRAFV600E 84/96(87.5%) 71/85(83.5%) 18/21(85.7%) 173/202(85.6%) 0.589   
   LN metastasis 87/159(54.7%) 65/134(48.5%) 19/23(82.6%) 171/316(54.1%) 0.322  0.022  0.908  

   ETE 99/175(56.6%) 88/153(57.5%) 17/25(68.0%) 204/353(57.8%) 0.430  0.107  0.376  

9 rs72753537 FOXE1  CC CT TT     
   BRAFV600E 5/6(83.3%) 44/48(91.7%) 136/160(85.0%) 185/214(86.4%) 0.386   
   LN metastasis 6/8(75.0%) 35/68(51.5%) 145/260(55.8%) 186/336(55.4%) 0.907  0.460  0.636  

   ETE 4/9(44.4%) 44/77(57.1%) 173/290(59.7%) 221/376(58.8%) 0.392  0.566  0.212  

12 rs11175834 MSRB3  CC CT TT     
   BRAFV600E 116/132(87.9%) 56/67(83.6%) 10/12(83.3%) 182/211(86.3%) 0.392   
   LN metastasis 123/218(56.4%) 48/95(50.5%) 11/18(61.1%) 182/331(55.0%) 0.691  0.403  0.746  

   ETE 145/242(59.9%) 61/108(56.5%) 10/18(55.6%) 216/368(58.7%) 0.506  0.600  0.533  

12 rs16934253 SLC24A6  AA AG GG     
   BRAFV600E 0/0 (0%) 22/25(88.0%) 164/190(86.3%) 186/215(86.5%) 0.822   
   LN metastasis 0/0 (0%) 17/37(45.9%) 169/300(56.3%) 186/337(55.2%) 0.245  0.064  0.127  
   ETE 0/0 (0%) 23/39(59.0%) 198/338(58.6%) 221/377(58.6%) 0.963  0.592  0.392  

14 rs34081947 NKX2-1  CC CT TT     
   BRAFV600E 59/63(93.7%) 91/107(85.0%) 35/43(81.4%) 185/213(86.9%) 0.056   
   LN metastasis 50/92(54.3%) 94/172(54.7%) 42/72(58.3%) 186/336(55.4%) 0.633  0.509  0.726  
   ETE 58/102(56.9%) 119/193(61.7%) 43/80(53.8%) 220/375(58.7%) 0.756  0.945  0.836  

14 rs944289 NKX2-1  CC CT TT     
   BRAFV600E 52/58(89.7%) 89/104(85.6%) 45/53(84.9%) 186/215(86.5%) 0.450   
   LN metastasis 43/84(51.2%) 91/167(54.5%) 52/86(60.5%) 186/337(55.2%) 0.221  0.206  0.634  

   ETE 53/92(57.6%) 112/192(58.3%) 56/93(60.2%) 221/377(58.6%) 0.721  0.338  0.758  

19 rs7248104 INSR  AA AG GG     
   BRAFV600E 34/39(87.2%) 86/98(87.8%) 60/71(84.5%) 180/208(86.5%) 0.623   
   LN metastasis 30/57(52.6%) 87/164(53.0%) 63/108(58.3%) 180/329(54.7%) 0.419  0.355  0.156  

   ETE 49/70(70.0%) 107/181(59.1%) 59/116(50.9%) 215/367(58.6%) 0.010  0.571  0.001  

 

All analyses were conducted with papillary thyroid cancer. Bold genotype indicates risk allele. Bold P-value indicates significance of < 0.05. Chr, chromosome number; ETE, 

extrathyroidal extension; LN, lymph node; OR, odd ratio; SNP, single nucleotide polymorphism
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The most significantly associated variant in the NRG1 locus 

The most significant association was identified in the intronic region of NRG1 

at 8p12. In this locus, SNPs on the NRG1 gene were shown to have a more 

significant association with PTC than with DTC (Figure 3 and 4, Table 5). In a 

joint analysis, rs6996585 of NRG1 was the most significant signal (P = 9.01 × 

10-12 in PTC, 1.08 × 10-10 in DTC). We found a significant cis-eQTL of 

rs6996585 for NRG1 expression in the thyroid tumour tissue (P = 0.0053, 

Figure 5a, Table 6). A similar expression pattern was shown in the normal 

thyroid tissue, although it was not statistically significant (P-value = 0.0526). 

However, the predicted expression result of discovery case samples that used 

normal thyroid reference data, showed a highly significant association (P = 2.99 

× 10-244, Figure 5a, Table 6). The public expression data also showed a 

significant association (P = 5.79 × 10-21) in the normal thyroid tissue (Figure. 

6a, and Table 7). Furthermore, the GSEA result indicated that rs6996585 was 

significantly associated with 31 gene set pathways related to cellular growth 

signals or cancer in the normal thyroid tissue (FDR q < 0.05, Tables 9 and 10). 

We confirmed that the common genes from 31 significant gene sets were 

enriched in the ERBB-MAPK signalling pathway (Figure. 7a). A clinical 

phenotype analysis showed that rs6996585 was associated with lymph node 

metastasis in patients with BRAFV600E mutated tumours (P = 0.015, Figure 7b 
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and Table 11). 

In this region, another candidate SNP (rs12542743) had a similar association 

(Joint P = 1.01 × 10-10 in PTC, 4.61 × 10-10 in DTC, Figure. 4a and 4b) and cis-

eQTL results (Figure 5b, Table 6). Although the previously reported SNP 

(rs2439302) showed a marginal association (P = 1.50 × 10-6 in PTC, 8.38 × 10-

5 in DTC) in the discovery stage, the cis-eQTL of this SNP was more 

significantly associated than that of rs6996585 (Figure 5c and 6c). These two 

SNPs also showed a similar association with lymph node metastasis in the 

BRAFV600E mutation-positive group (Table 11). 
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Figure 4. Regional association plots of the most associated variant in NRG1 locus. A regional association plot for (a) DTC and (b) PTC. 

The purple large diamonds indicate the joint analyses of associated SNP and nearby SNPs are color coded according to the level of LD with 

the top SNP. The left y-axis shows the significance of the association with −log10 scale, and the right y-axis shows a recombination rate across 

the region. Estimated recombination rates from the 1000 Genome ASN, hg19 database are plotted with the blue line to reflect the local LD 

structure.  
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Figure 5. Expression of the most associated variant in NRG1 locus. 

The cis-eQTL result of NRG1 in tumour and normal thyroid tissues and predicted expression of 470 DTC cases according to the (a) rs6996585, 

(b) rs12542743 and (c) rs2439302 genotypes.  
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Figure 6. Cis-eQTL result from GTEx public data. The cis-eQTL result of NRG1 in normal thyroid tissue according to the (a) rs6996585, 

(b) rs12542743 and (c) rs2439302 genotypes. The cis-eQTL result of (d) VAV3 in normal thyroid tissue according to the rs4915076 genotype 

and (e) INSR in normal nerve tissue according to the rs7248104 genotype from GTEx2015 v6 data (http://www.gtexportal.org). 



43 

 

 
Figure 7. Gene Set enrichment analysis of the most associated variant in NRG1 locus. 

 (a) The characteristic gene expression of normal thyroid tissues. The genes in ERBB-MAPK signaling pathway were represented by fold change 

according to rs6996585 genotype (AA vs AG + GG). Asterisk indicates significant fold change with P-value < 0.05. (b) Lymph node metastasis 

according to the rs6996585 genotypes and BRAF mutation. 
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Other known associated variants in the NKX2-1, DIRC3, or FOXE1 loci 

At 14q13.3 in a region near NKX2-1, two SNPs (rs34081947 and rs944289) 

were significantly associated with DTC (Joint P = 1.19 × 10-7 and 1.39 × 10-6, 

respectively, Figure 8a). The top-ranked variant (rs34081947) in this region 

showed a significant association (P = 0.0323) with the NKX2-1 expression level 

in the tumour tissue (Figure. 8d). The rs944289 showed a greater significant 

association with NKX2-1 and SFTA3 expression levels compared to rs34081947 

in both the tumour and normal tissues (Figure. 8e and f, Table 6).  

At 2q35, rs12990503 in the intron of DIRC3 gene was significantly associated 

(Joint P = 3.55 × 10−9) with DTC (Figure 8b). In the tumour tissue, this SNP 

showed a cis-eQTL for TNS1 (Figure 8g). We could not find a cis-eQTL of 

DIRC3 in our data, but the public expression data showed its cis-eQTL (P = 

7.19 × 10-6) in skin tissue (Figure. 8h, Table 8). The GSEA result demonstrated 

that this SNP was associated with TGF-beta receptor signalling in the thyroid 

tumour tissue (Table 9). 

At 9q22.33 near the FOXE1 region, rs965513 showed the most significant 

association in the discovery stage of DTC, but it was not replicated. Among the 

seven candidate SNPs proposed previously (Table 12), rs72753537 was 

positively replicated and showed a suggestive association (Joint P = 7.67 × 10-

6, Figure 8c). This SNP did not have any cis-eQTL for nearby genes. However, 



45 

 

the predicted expression result showed a cis-eQTL with C9orf156, CORO2A, 

XPA and TSTD2 genes (Table 6) and the public expression data showed a cis-

eQTL with C9orf156 in various tissues (Figure 8i, Table 8). The association of 

the seven SNPs in our DTC or PTC subjects are summarized in Table 12. 
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Figure 8. Regional association plots and expression for previously 

documented loci. A regional association plot for (a) NKX2-1, (b) DIRC3 and 

(c) FOXE1. The purple large diamonds indicate the joint analyses of most or 

second associated SNP and nearby SNPs are color coded according to the 

level of LD with the top SNP. The left y axis shows the significance of the 

association with −log10 scale, and the right y-axis shows a recombination rate 

across the region. Estimated recombination rates from the 1000 Genome 

ASN, hg19 database are plotted with the blue line to reflect the local LD 

structure. The cis-eQTL result of NKX2-1 according to the (d) rs34081947 

and (e) rs944289 genotypes, (f) SFTA3 according to the rs944289 genotypes 

and (g) TNS1 according to the rs1549738 genotypes in tumor and normal 

thyroid tissues. The cis-eQTL result of (h) DIRC3 in skin tissue and (i) 

C9orf156 in thyroid tissue from GTEx2015 v6 data 

(http://www.gtexportal.org) according to the rs12990503 and rs72753537 

genotypes, respectively. 
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Table 12. SNPs of FOXE1 region and DTC and PTC association in Korean Population 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

The SNP positions are indexed to the National Center for Biotechnology Information (NCBI) build 37. Bold indicates significance of P < 0.05 in replication stage.  

Chr, chromosome number; OR, odd ratio; SNP, single nucleotide polymorphism.

Chr 

 
SNP Position Gene 

Risk 
Allele 

Stage 

DTC  PTC 

Allele Frequency 
OR P 

 Allele Frequency 
OR P 

(case/control)  (case/control) 

9 rs965513 100556109 FOXE1 A Discovery 0.11/0.06 1.91 2.35E-09  0.11/0.06 1.94 8.20E-09 

     Replication 0.09/0.07 1.25 0.1372  0.09/0.07 1.23 0.1653 

     Joint 0.10/0.06 1.67 6.20E-11  0.10/0.06 1.66 4.48E-10 

9 rs1588635 100537802 FOXE1 A Discovery 0.11/0.07 1.81 1.74E-08  0.12/0.07 1.83 6.76E-08 

     Replication 0.09/0.08 1.18 0.2425  0.09/0.08 1.17 0.2706 

     Joint 0.10/0.07 1.58 2.36E-09  0.10/0.07 1.57 1.30E-08 

9 rs7028661 100538470 FOXE1 A Discovery 0.11/0.07 1.80 2.52E-08  0.12/0.07 1.82 9.47E-08 

     Replication 0.09/0.08 1.20 0.2090  0.09/0.08 1.19 0.2343 

     Joint 0.10/0.07 1.57 3.08E-09  0.10/0.07 1.56 1.64E-08 

9 rs10122541 100628268 FOXE1 G Discovery 0.12/0.08 1.57 1.43E-05  0.10/0.06 1.81 4.07E-07 

     Replication 0.10/0.08 1.22 0.1690  0.08/0.07 1.03 0.8341 

     Joint 0.11/0.08 1.36 4.25E-06  0.09/0.06 1.48 4.77E-06 

9 rs72753537 100660746 FOXE1 C Discovery 0.12/0.07 1.63 3.56E-06  0.12/0.07 1.76 1.70E-07 

     Replication 0.09/0.07 1.38 0.0352  0.09/0.07 1.43 0.0209 

     Joint 0.10/0.07 1.41 7.67E-06  0.11/0.07 1.48 5.37E-07 

9 rs7037324 100658318 FOXE1 A Discovery 0.12/0.08 1.56 1.70E-05  0.19/0.13 1.56 1.43E-06 

     Replication 0.10/0.08 1.28 0.0865  0.15/0.14 1.11 0.3758 

     Joint 0.11/0.08 1.38 1.28E-05  0.17/0.13 1.32 1.62E-05 

9 rs1867277 100615914 FOXE1 A Discovery 0.17/0.12 1.44 4.38E-05  0.18/0.12 1.54 4.96E-06 

     Replication 0.12/0.13 0.89 0.3109  0.11/0.13 0.86 0.1982 

     Joint 0.14/0.12 1.18 0.0176  0.15/0.12 1.19 0.0146 
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Novel candidate variants in the VAV3, PCNXL2, INSR, MRSB3, FHIT or 

SEPT11 loci   

Using the expression data, we evaluated the six newly discovered regions. At 

1p13.3, an intronic region of VAV3, rs4915076 was significantly associated with 

PTC (Joint P = 7.09 × 10-8, Figure 9a) and is a cis-eQTL for VAV3 expression 

in the tumour tissue (P = 0.017, Figure 9g). The predicted expression result 

showed a highly significant association (P < 1.00 × 10-300, Table 6) and the 

public expression data also showed a significant association (P = 3.33 × 10-27) 

in thyroid tissue (Figure. 6d, Table 7). The GSEA result showed that rs4915076 

was associated with the steroid hormone pathways in the tumour thyroid tissue 

(Table 9). In the intron of PCNXL2 at 1q42.2, rs4649295 showed a significant 

association with DTC (Joint P = 6.00 × 10-8, Figure 9b) and is a cis-eQTL for 

PCNXL2 expression in the tumour tissue (P = 0.003, Figure 9h). Rs9858271, 

near FHIT at 3p14.2, showed a significant association with PTC (Joint P = 2.76 

× 10-8, Figure 9c). Rs1874564, near SEPT11 at 4q21.1, showed a significant 

association with DTC (Joint P = 2.04 × 10-7, Figure 9d). On chromosome 

12q14.3, a SNP (rs11175834, Joint P = 4.26 × 10−8) significantly associated 

with DTC was located near MSRB3 (Figure 9e). In the intronic region of the 

INSR gene at 19p13.2, rs7248104 was positively replicated and showed a 
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suggestive association with DTC (Joint P = 2.00 × 10-5, Figure 9f). However, 

we could not find any cis-regulation of nearby gene expression in the FHIT, 

SEPT11, MSRB3 and INSR regions with our expression data, but the predicted 

expression result showed a cis-eQTL for INSR (P = 4.91 × 10-41, Table 6) and 

the public expression data showed a cis-eQTL for INSR in nerve tissue and for 

SEPT11 in whole blood (Table 8). The GSEA result showed that a SNP of INSR 

was associated with the ERK pathway, and a SNP of SEPT11 was associated 

with the ATM pathway (Table 9). The association analysis of the clinical 

phenotypes showed that the SNPs of SEPT11 and INSR were associated with 

extrathyroidal extension in the BRAFV600E mutation-negative group (Table 11). 
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Figure 9. Regional association plots and expression of the novel DTC associated variant in VAV3, PCNXL2, FHIT, SEPT11, MSRB3, and 

INSR locus. A regional association plot for (a) VAV3, (b) PCNXL2, (c) FHIT, (d) SEPT11, (e) MSRB3 and (f) INSR regions. The purple large 

diamonds indicate the joint analyses of most associated SNP and nearby SNPs are color coded according to the level of LD with the top SNP. 

The left y-axis shows the significance of the association with −log10 scale, and the right y-axis shows a recombination rate across the region. 

Estimated recombination rates from the 1000 Genome ASN, hg19 database are plotted with the blue line to reflect the local LD structure. The 

cis-eQTL result of (g) VAV3 and (h) PCNXL2 in tumour and normal thyroid tissues and predicted expression of 470 DTC cases according to the 

rs4915076 and rs4649295 genotypes, respectively. 
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A comparison with the European GWAS results 

The effect sizes (OR) and P-values reported in the previous GWAS in 

Europeans (Table 1) were compared with those from our Stage 1 genome scan 

result (Figure 10, Table 13). Fourteen SNPs previously reported in Europeans 

were available for analyses in our study. Four SNPs of FOXE1 and one SNP of 

NRG1 showed a similar effect size and a similar significant association of P < 

0.0001. The SNPs of NKX2-1 and DIRC3 showed a similar or lesser effect size 

and a nominal association of P < 0.05. The other six SNPs of IMMP2L, DHX35, 

ARSB and WDR11-AS1 showed no association in a Korean population. 

In addition, the novel associated SNPs of this study were compared with 

previously reported SNPs. As for DTC, the SNPs of NRG1 showed a lower 

association than those of FOXE1. However, as for PTC, rs6996585 of NRG1 

showed the most significant P-value of the previous reported SNPs. 

Furthermore, the novel associated regions (VAV3, PCNXL2, INSR, MRSB3, 

FHIT or SEPT11) were located in the middle of previously reported SNPs. 
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Figure 10. A comparison of association result for (a) DTC or (b) PTC between Europeans and Koreans. The P-values for Koreans (x-axis) 

and Europeans (y-axis) are plotted with the corresponding Korean effect sizes (OR; Odd Ratio). The P-value shows the −log10 scale and the P-

value of novel SNPs from this study are compared as unknown. The novel gene of this study are shown in blue. The SNPs of same gene were 

distinguished by FOXE1 for rs965513, FOXE1* for rs7028661, FOXE1*** for rs10122541, FOXE1**** for rs72753537, DIRC3 for rs966423, 

DIRC3* for rs6759952, NRG1 for rs2439302, NRG1* for rs6996585, NRG1** for rs12542743, NKX2-1 for rs944289, NKX2-1* for rs34081947, 

NKX2-1** for rs944289, DIRC3 for rs6759952, DIRC3* for rs966423, DIRC3** for rs12990503, IMMP2L for rs10238549, IMMP2L* for 

s7800391, WDR11-AS1 for rs2997312 and WDR11-AS1* for rs10788123.
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Table 13. A comparison of previous reported SNPs for associated with DTC or PTC between Europeans and Koreans. 

 

Gene SNP 
Europeans 

 
DTC in Koreans 

 
PTC in Koreans 

OR P-value population OR P-value OR P-value 

FOXE1 rs965513 1.75 1.7 × 10−27 Iceland etc.  1.91 2.4 × 10−9  1.94 8.2 × 10−9 

FOXE1 rs7028661 1.64 1.0 × 10−22 Spain  1.80 2.5 × 10−8  1.82 9.5 × 10−8 

FOXE1 rs10122541 1.54 1.1 × 10−17 Spain  1.57 1.4 × 10−5  1.69 1.2 × 10−6 

FOXE1 rs7037324 1.54 1.2 × 10−17 Spain  1.56 1.7 × 10−5  1.68 1.4 × 10−6 

NRG1 rs2439302 1.36 2.0 × 10−9 Iceland etc.  1.34 8.4 × 10−5  1.48 1.5 × 10−6 

NKX2-1 rs944289 1.37 2.0 × 10−9 Iceland etc.  1.24 0.0014  1.22 0.0062 

DIRC3 rs966423 1.34 1.3 × 10−9 Iceland etc.  1.24 0.0081  1.27 0.0067 

DIRC3 rs6759952 1.21 6.4 × 10−10 Italy etc.  1.21 0.0164  1.25 0.0107 

IMMP2L rs10238549 1.27 4.1 × 10−6 Italy etc.  1.10 0.3542  1.17 0.1343 

IMMP2L rs7800391 1.25 5.7 × 10−6 Italy etc.  1.03 0.7271  1.00 0.9850 

DHX35 rs7267944 1.39 2.1 × 10−8 Italy etc.  0.98 0.8209  0.98 0.7752 

ARSB rs13184587 1.28 8.5 × 10−6 Italy etc.  1.03 0.7453  1.02 0.8216 

WDR11-AS1 rs2997312 1.35 1.2 × 10−4 Spain  0.94 0.6299  0.97 0.8039 

WDR11-AS1 rs10788123 1.26 5.2 × 10−4 Spain  0.92 0.2401  0.94 0.4540 

 
OR, odd ratio; SNP, single nucleotide polymorphism. 
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Table 14. Variants of recently reported six novel and replicating loci for thyroid cancer in Korean Population. 

 

Locus SNP Position 
Annotation /  

Nearby gene(s) 

P-value of 

Gudmundsson 

et al. 

Discovery result in this study 

P-value   

Nearby top 

SNP with 

P < 0.001 

P-value 

(Joint P) of 

nearby top 
SNP 

1q42.2 rs12129938 233,276,815 
Intron variant 

PCNXL2 
4.0E-11 0.002 rs4649295 1.04E-05 

3q26.2 rs6793295 169,800,667 
Missense variant 

TERC, LRRC34 
2.7E-8 0.0474 -  

5p15.33 rs10069690 1,279,675 
Intron variant 

TERT 
3.2E-7 NA -  

5q22.1 rs73227498 112,150,207 
Intergenic variant 

NREP, 

EPB41L4A 

3.0E-10 NA -  

10q24.33 rs7902587 103,934,543 
Intergenic variant 

OBFC1 
5.4E-11 NA rs4244255 8.72E-06 

15q22.33 rs2289261 67,165,147 
Intron variant 

SMAD3 
3.1E-9 0.2844 -  
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Chapter II. Genome-wide association 

and expression quantitative trait loci 

studies for thyroid nodule 
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Methods 

Discovery series and thyroid ultrasonography 

A discovery genome-wide association scan was conducted in the Ansung cohort, 

a community-based cohort living in rural Korea. The Ansung cohort is one of 

the two community-based cohorts of the Korean Association Resource (KARE) 

project, and the detailed information regarding the KARE project has been 

described elsewhere (43). In 5,018 cohort participants, 3,161 individuals were 

evaluated by thyroid ultrasonography between 2011 and 2012. Subsequent 

thyroid ultrasonography was performed in 2,561 of the 3,161 participants 

between 2013 and 2014. From 2,561 subjects who underwent two consecutive 

ultrasonographies, 952 showed solid nodules and 824 showed normal thyroid 

glands, persistently in repeated sonographic images (Figure 11). The remaining 

785 individuals had pure cystic nodules, disappeared nodules, newly appeared 

nodules, sonographic evidence of thyroidectomy or history of thyroid cancer. 

The disappeared or newly developed nodules were not true solid nodules but 

were presumed as parts of focal or diffuse thyroiditis. Individuals with pure 

cystic nodules were also not included. The characteristics of the participants are 

described in Table 15.
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Figure 11. Subjects of the discovery stage GWAS and the replication studies for thyroid nodules 
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Table 15. Descriptive characteristics of the participants. 

 
Characteristics Total (joint) Discovery First replication Second replication 

Thyroid nodule  

Number 2792 811 496 1485 

Age, years ± SD  54 ± 1 56 ± 8  52 ± 8 53 ± 1 

Male (%)  1210 (43.3%) 237 (29.2%) 224 (45.2%) 749 (50.4%) 

Normal thyroid  

Number 3791 691 600 2500 

Age, years ± SD 51 ± 1 53 ± 8  59 ± 4 49 ± 1 

Male (%) 2557 (67.5%) 382 (55.3%) 479 (79.8%) 1696 (67.8%) 

Thyroid cancer     

Number  470   

Age, years ± SD  44 ± 13   

Male (%)  61(13.0%)   
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First replication series and ultrasonography 

For a replication study, we used 496 cases that had benign solid nodules without 

features of diffuse or focal thyroiditis, and 600 controls showing normal thyroid 

glands in ultrasonography and normal thyroid function in a thyroid hormone 

study. All cases and controls were selected from the participants of the Cancer 

Screening Program at the National Cancer Center, Republic of Korea. All 

subjects with nodules were not previously diagnosed with thyroid cancer. The 

characteristics of the subjects are shown in Table 15. 

 

Second replication 

For the second replication study, we requested data from the Gene-

environmental interaction and phenotype (GENIE) cohort, a sub-cohort of The 

Health and Prevention Enhancement (H-PEACE), which is a retrospective, 

population-based cohort study conducted at the Seoul National University 

Hospital Gangnam Center in Korea. Detailed information about GENIE cohort 

has been described in a previous report (51-53). Among 6,579 subjects who 

were analyzed genome-wide SNP arrays, 5,737 had reports of thyroid 

ultrasonography in electronic health record. Results of thyroid ultrasonography 

showed that 1,485 had solid thyroid nodules and 2,500 had normal thyroid 
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glands. The remaining 1,752 subjects had pure cysts, nodules with 

ultrasonographic features of highly suspicious of malignancy, diffuse or focal 

thyroiditis, operated thyroid gland or history of thyroid cancer. The 

characteristics of cases and controls included in second replication study are 

shown in Table 15. 

 

Discovery GWAS and Imputation 

Genotyping for KARE projects has been described previously (43). Briefly, 

peripheral blood samples were obtained from the participants and genomic 

DNA was extracted from the lymphocytes. Genotyping for discovery series was 

performed using the Affymetrix Genome-Wide Human SNP array 5.0 

(Affymetrix, Santa Clara, CA, USA). For quality control, individuals with low 

call rates (< 96%), high heterozygosity (> 30%), or gender inconsistencies were 

removed, and subjects with genetic relatedness were excluded using the kinship 

identical-by-descent (IBD) coefficient (Z0 > 0.8). In total, 141 cases and 133 

controls were excluded by individual quality control procedures. SNPs with a 

minor allele frequency of < 1%, SNPs with a missing genotype rate ≥ 5%, and 

SNPs whose genotype frequencies departed from the Hardy-Weinberg 

equilibrium at P < 1 × 10−6 were excluded. Imputation was performed using the 
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IMPUTE2 software(http://mathgen.stats.ox.ac.uk/impute/impute_v2.html) and 

the 1000 genome ASN Phase I panel (NCBI build37, hg19) was used as a 

reference. For imputation quality control, SNPs with minor allele frequency 

(MAF) < 0.01 or SNP missing rate > 0.05 were removed, and the remaining 

imputed SNPs were combined with the original KARE SNPs. Finally, 811 cases 

and 691 controls were analyzed for a total of 3,996,558 markers. 

 

Candidate SNP and genotyping of first replication 

From the genome-wide association analysis, the best 1,000 SNPs (P < 3 × 10-

4) were screened and 27 representative SNPs in 26 distinct genomic regions 

were selected as candidate markers. We also included 2 SNPs (rs944289 on 

MBIP/NKX2-1 and rs11175834 on MSRB3) previously reported as signals for 

thyroid cancer (Table 16). For the replication study, genotyping was performed 

using the Fluidigm SNP Type Assay platform (Fluidigm, South San Francisco, 

USA) for candidate SNPs. All SNPs were successfully genotyped with call rates 

> 95% and Hardy-Weinberg equilibrium P > 0.001. 
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Table 16. Two-stage of GWAS for thyroid nodule 

 

Chr Nearest Genes 

Series 

Minor allele 

frequency OR (95% CI) P-value SNP 
Minor/major allele 

Position Case/Control 

1q43 Intron RYR2 Discovery 0.40/0.47 0.73(0.62-0.85) 3.74×10-5 

rs10925394 G/A Replication 0.45/0.44 1.09(0.89-1.35) 0.371 

237545098  Joint 0.42/0.46 0.84(0.75-0.95) 3.68×10-3 

2q23.3 3.3kb 3' of NMI Discovery 0.04/0.08 0.52(0.38-0.72) 7.51×10-5 

rs16829835 C/A Replication 0.07/0.07 1.18(0.79-1.77) 0.404 

152123703  Joint 0.06/0.07 0.71(0.56-0.90) 5.00×10-3 

2q33.3 Intron PARD3B Discovery 0.45/0.53 0.72(0.62-0.85) 4.70×10-5 

rs6721320 C/T Replication 0.47/0.48 1.04(0.84-1.28) 0.743 

206412487  Joint 0.46/0.51 0.82(0.73-0.92) 7.76×10-4 

3p25.3 Intron SLC6A11 Discovery 0.19/0.25 0.69(0.58-0.83) 6.09×10-5 

rs9826851 C/G Replication 0.29/0.33 0.97(0.81-1.15) 0.696 

10896848  Joint 0.23/0.29 0.81(0.73-0.91) 4.83×10-4 

3q25.32 Intron SCHIP1 Discovery 0.47/0.41 1.39(1.19-1.63) 2.70×10-5 

rs4680504 C/G Replication 0.46/0.46 1.04(0.84-1.27) 0.748 

159140563  Joint 0.47/0.43 1.18(1.05-1.33) 4.40×10-3 

5p15.32 
518kb 5' of 

LOC340094 
Discovery 0.12/0.18 0.65(0.53-0.81) 7.83×10-5 

rs11134055 T/C Replication 0.16/0.17 0.92(0.69-1.21) 0.529 

4516670  Joint 0.14/0.17 0.76(0.65-0.89) 6.52×10-4 

5p13.3 
425kb 3' of 

LOC729862 
Discovery 0.18/0.13 1.55(1.25-1.93) 8.00×10-5 

rs1864034 C/G Replication 0.16/0.14 1.22(0.93-1.62) 0.156 

29352194  Joint 0.17/0.14 1.37(1.17-1.61) 1.03×10-4 

5q35.1 17kb 5' of DUSP1 Discovery 0.35/0.40 0.71(0.61-0.84) 4.09×10-5 

rs17075176 C/T Replication 0.37/0.39 0.87(0.70-1.09) 0.231 

172215412  Joint 0.36/0.40 0.80(0.71-0.90) 3.56×10-4 

6p22.1 Intron ZNF193 Discovery 0.06/0.11 0.54(0.41-0.71) 1.02×10-5 

rs16893827 C/T Replication 0.08/0.06 1.29(0.86-1.93) 0.219 

28197469  Joint 0.07/0.09 0.72(0.58-0.89) 2.80×10-3 

6q16.3 967kb 3' of GRIK2 Discovery 0.18/0.24 0.67(0.55-0.81) 3.64×10-5 

rs4543404 T/A Replication 0.23/0.22 1.14(0.89-1.46) 0.318 

103485033  Joint 0.20/0.23 0.83(0.72-0.96) 1.08×10-2 

6q22.31 
164kb 5' of 

LOC643623 
Discovery 0.04/0.08 0.52(0.38-0.72) 7.80×10-5 

rs6939104 A/T Replication 0.06/0.06 1.03(0.67-1.57) 0.903 

125831838  Joint 0.05/0.07 0.71(0.55-0.90) 4.78×10-3 

7p15.3 Intron DFNA5 Discovery 0.14/0.19 0.65(0.53-0.8) 5.06×10-5 

rs2521769 G/A Replication 0.16/0.16 1.00(0.76-1.32) 0.997 

24784485  Joint 0.15/0.18 0.77(0.66-0.91) 1.51×10-3 

7q11.22 816kb 5' of AUTS2 Discovery 0.10/0.06 1.79(1.34-2.4) 8.02×10-5 

rs2711481 A/G Replication 0.09/0.09 1.23(0.86-1.75) 0.258 

68247814  Joint 0.09/0.07 1.33(1.08-1.64) 7.17×10-3 

7q31.31 Intron KCND2 Discovery 0.43/0.36 1.37(1.17-1.6) 1.12×10-4 

rs1860705 T/C Replication 0.38/0.38 0.97(0.78-1.21) 0.772 



63 

 

120056669  Joint 0.41/0.37 1.22(1.09-1.38) 9.84×10-4 

8p23.2 342kb 5' of CSMD1 Discovery 0.28/0.35 0.68(0.58-0.81) 6.42×10-6 

rs10282750 G/C Replication 0.33/0.34 1.03(0.83-1.28) 0.800 

5194473  Joint 0.30/0.34 0.80(0.71-0.90) 3.83×10-4 

8p23.1 
55kb 5' of 

LOC157273 
Discovery 0.03/0.06 0.45(0.31-0.66) 4.62×10-5 

rs330010 T/G Replication 0.06/0.07 0.98(0.64-1.48) 0.913 

9127516  Joint 0.04/0.07 0.66(0.50-0.85) 1.58×10-3 

9q21.13 Intron TRPM3 Discovery 0.27/0.21 1.42(1.19-1.7) 7.90×10-5 

rs4745021 T/A Replication 0.26/0.22 1.26(0.99-1.60) 0.065 

73267607  Joint 0.27/0.22 1.35(1.18-1.55) 1.03×10-5 

9q22.33 Intron CORO2A Discovery 0.34/0.41 0.73(0.62-0.86) 1.07×10-4 

rs4743176 A/C Replication 0.36/0.37 0.95(0.76-1.18) 0.615 

100930659  Joint 0.35/0.39 0.80(0.71-0.90) 2.79×10-4 

10p11.22 Intron CCDC7 Discovery 0.12/0.18 0.63(0.51-0.78) 2.32×10-5 

rs10508774 G/A Replication 0.13/0.15 1.05(0.79-1.41) 0.730 

32807861  Joint 0.12/0.16 0.75(0.64-0.88) 5.24×10-4 

10p11.22 Intron ITGB1 Discovery 0.12/0.18 0.61(0.49-0.75) 5.54×10-6 

rs3780873 A/G Replication 0.14/0.16 1.01(0.76-1.35) 0.927 

33213680  Joint 0.13/0.17 0.73(0.62-0.86) 1.33×10-4 

10q23.1 63kb 3' of SH2D4B Discovery 0.38/0.46 0.75(0.64-0.87) 1.70×10-4 

rs7086866 G/T Replication 0.38/0.40 0.95(0.77-1.18) 0.655 

82469730  Joint 0.38/0.43 0.81(0.72-0.91) 4.86×10-4 

10q26.3 98kb 3' of FLJ46300 Discovery 0.33/0.39 0.74(0.63-0.86) 1.49×10-4 

rs10872824 A/G Replication 0.38/0.36 0.99(0.80-1.22) 0.909 

133506848  Joint 0.35/0.38 0.86(0.77-0.97) 1.48×10-2 

12q14.3 132kb 3' of MSRB3 Discovery 0.18/0.12 1.58(1.27-1.96) 4.69×10-5 

rs11175834 T/C Replication 0.16/0.14 1.11(0.83-1.49) 0.479 

65992636  Joint 0.17/0.13 1.35(1.14-1.59) 3.80×10-4 

14q13.3 158kb 3' of MBIP Discovery 0.49/0.42 1.4(1.2-1.64) 1.45×10-5 

rs2415317 A/G Replication 0.45/0.42 1.21(0.97-1.50) 0.087 

36609678  Joint 0.47/0.42 1.30(1.15-1.46) 1.58×10-5 

14q13.3 119kb 3' of MBIP Discovery 0.49/0.43 1.37(1.18-1.6) 5.72×10-5 

rs944289 T/C Replication 0.46/0.43 1.20(0.97-1.48) 0.095 

36649246  Joint 0.48/0.43 1.27(1.13-1.43) 7.53×10-5 

14q23.3 5kb 3' of AKAP5 Discovery 0.51/0.44 1.35(1.16-1.57) 1.35×10-4 

rs1742159 G/C Replication 0.49/0.49 0.94(0.77-1.15) 0.540 

64946191  Joint 0.51/0.48 1.18(1.06-1.33) 4.10×10-3 

15q12 Intron GABRB3 Discovery 0.14/0.20 0.66(0.54-0.82) 9.59×10-5 

rs1426223 T/C Replication 0.19/0.18 1.10(0.84-1.43) 0.498 

26952294  Joint 0.16/0.19 0.81(0.69-0.94) 5.52×10-3 

18p11.31 Intron EPB41L3 Discovery 0.19/0.27 0.61(0.5-0.73) 1.83×10-7 

rs9952940 C/T Replication 0.21/0.24 0.77(0.60-0.99) 0.045 

5472021  Joint 0.20/0.26 0.69(0.60-0.80) 4.69×10-7 

19p13.2 Intron FBN3 Discovery 0.18/0.12 1.61(1.3-2) 1.67×10-5 

rs17261689 C/T Replication 0.15/0.14 1.23(0.91-1.66) 0.171 

8136027  Joint 0.17/0.13 1.43(1.22-1.69) 1.79×10-5 

Chr, Chromosome; CI, confidence interval; OR, odds ratio; SNP. Single-nucleotide polymorphism 
The SNP positions are indexed to the National Center for Biotechnology Information (NCBI) build 37. 
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Genotyping of second replication 

Subjects of GENIE cohort were genotyped by DNAIink, Inc. using Affymetrix 

Axiom™ KORV1.1-96 Genotyping Arrays (Affymetrix, Santa Clara, CA, 

USA). More information on genotyping, quality control procedures and 

imputation can be found in previous papers(52, 53). We obtained genotypes in 

cases and controls for four SNPs that were selected from discovery GWAS and 

first replication study. 

 

Comparison of allele frequencies between DTC, thyroid nodules, and normal 

thyroid 

We compared the allele frequencies for SNPs identified from the GWAS for 

DTC (Table 5) and the present GWAS for thyroid nodules, across DTC, thyroid 

nodules, and normal thyroid in a genome wide scan. 

 

Expression quantitative trait loci analysis 

We assessed the effect of associated genotypes on mRNA expression using the 

public expression quantitative trait loci (eQTL) database (47). Imputation of 

gene expression from the discovery series was performed using the PrediXcan 

package (https://github.com/hakyimlab/PrediXcan/tree/master/Software)(54). 
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The thyroid eQTL database (GTEx V6p, 278 thyroid samples) was used as a 

reference for imputation.  

 

Statistical analysis 

Genome wide associations were performed using PLINK version 1.90 beta 

(https://www.cog-genomics.org/plink/1.9), R statistics 3.2.3, and STATA 

software version 13.0 (StataCorp, College Station, Texas, USA). The genomic 

inflation factor (λ) for the series of GWAS was calculated to check the 

presence of population sub-structures. Quantile–quantile (Q–Q) plots by the 

qqman R package (https://cran.r-project.org/web/packages/qqman) were used 

to determine whether population stratification was adequately controlled. 

Manhattan plots were generated using Integrative Genomics Viewer (IGV) 

(http://software.broadinstitute.org/software/igv). In the series of GWAS, 

replications, and joint analysis, associations of each SNP were assessed by a 

logistic regression model adjusted with age and sex to estimate the per-allele 

odds ratios (ORs) with 95% confidence intervals (CIs) and P-values. We further 

performed a meta-analysis through the results of regression analysis from each 

of the three case-control groups using PLINK. Fixed-effects model was used to 

generate ORs with 95% CIs and the Cochran's Q and Higgins's I2 tests were 
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applied to assess heterogeneity in meta-analysis (55). 

 

Ethics statement 

Informed consent was obtained from the Ansung cohort subjects for the 

discovery GWAS. Written informed consent was also obtained from 

participants of the replication study. This research protocol was approved by 

the Institutional Review Board of the National Cancer Center (IRB No. 

NCC2015-0238) and the Institutional Review Board of the Seoul National 

University Hospital (IRB No. H-1102-012-349 and H-1108-041-372). 

 

 

 

 

 

 



67 

 

Results 

Discovery GWAS  

In the discovery series, the genomic inflation factor (λ) was 1.0, indicating that 

there was no inflation of P-values as a result of population stratification. Q–Q 

plots showed no deviations of the observed distribution from the expected null 

distribution (Figure 12). The genome-wide association result for thyroid 

nodules was demonstrated with Manhattan plots (Figure 13). In the discovery 

genome-wide scan, the most robust signal (rs9952940) located an intron of 

EPB41L3 on chromosome 18 (P = 1.83 × 10-7) (Figure 13 and 14a). The second 

significant signal (rs3780873) was observed in an intron of ITGB1 (P = 5.54 × 

10-6). In total, 29 candidate SNPs in 27 independent loci were selected for the 

validation study (Table 16). 
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Figure 12. Q-Q plot of thyroid nodule GWAS result 
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Figure 13. Manhattan plot for thyroid nodule GWAS 
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(a)                                      (b)                                  (c) 

 
 

 

Figure 14. Regional association plots and expression of rs9952940 in EPB41L3 

(a) Regional association plot in EPB41L3 

(b) Imputed expression of EPB41L3 (ENSG00000082397.11) according to rs9952940 genotype 

(c) EPB41L3 expression of colon tissue according to rs9952940 genotypes in GTEx data 
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Replication studies, joint analysis and meta-analysis 

 Among the 29 candidate SNPs, one signal, rs9952940 at EPB41L3, which 

showed the most robust association in the stage 1 genome scan, reached 

statistical significance in the first replication study (P = 0.045). The OR for 

rs4745021 at TRPM3, and rs2415317 and rs944289 at MBIP/NKX2-1 in the 

replication study showed similar trends with the discovery GWAS, showing 

marginal significance (P-values 0.065, 0.087, and 0.095 respectively). We 

selected these SNPs for the second replication. In second replication study, 

variants at TRPM3 and MBIP/NKX2-1 were significantly associated with 

thyroid nodule (rs4745021; P = 1.67 × 10-4, rs2415317; P = 0.043, rs944289; P 

= 0.028). However, rs9952940 at EPB41L3 was not replicated (P = 0.114). In 

joint analysis, rs4745021 at TRPM3 (P = 6.12 × 10-8) did not reach the genome-

wide significance threshold of P < 5 × 10-8 (Table 17 and Figure 15a). However, 

meta-analysis showed statistical significance (OR = 1.28, (95% CI; 1.18-1.40), 

P = 2.11 × 10-8, Q = 0.41, I 2 = 0%). Three other SNPs did not reach genome-

wide significance (P < 5 × 10-8) in the joint analysis (rs2415317; P = 4.62 × 10-

5, rs944289; P = 8.68 × 10-5, rs9952940; P = 1.42 × 10-5) or meta-analysis 

(rs2415317; P = 1.09 × 10-5, rs944289; P = 1.52 × 10-5, rs9952940; P = 5.24 × 

10-6) (Table 17). Considering the relatively small sample size, associations at 

MBIP/NKX2-1, which showed a marginal and a nominal significance in the first 
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and second replication, respectively, might be suggestive loci for thyroid 

nodules. The MAF of the four SNPs (rs4745021, rs2415317, rs944289 and 

rs9952940) were similar to those of the Asian population in the 1,000 genomes 

database (Table 18). The signal on MSRB3, which is a newly identified 

susceptibility locus for DTC from our previous GWAS, was not replicated in 

the first validation (P = 0.479) (Table 16). 
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Table 17. Suggestive associations from the GWAS for thyroid nodules 

Chr Nearest Genes 

Series 
Minor allele frequency 

OR (95% CI) 

  

P-value  SNP 
Minor/major allele 

Q I2 (%) 

Position Case/Control   

9q21.13 Intron TRPM3 Discovery 0.27/0.21 1.42(1.19-1.70)   7.90×10-5 

rs4745021 T/A First replication 0.26/0.22 1.26(0.99-1.60)   0.065 

73267607  Second replication 0.28/0.24 1.24(1.11-1.38)   1.67×10-4 

  Joint 0.27/0.23 1.26(1.16-1.37)   6.12×10-8 

  Meta-analysis  1.28(1.18-1.40) 0.41 0 *2.11×10-8 

14q13.3 158kb 3' of MBIP Discovery 0.49/0.42 1.40(1.20-1.64)   1.45×10-5 

rs2415317 A/G First replication 0.45/0.42 1.21(0.97-1.50)   0.087 

36609678  Second replication 0.45/0.43 1.11(1.00-1.22)   0.043 

  Joint 0.46/0.43 1.17(1.08-1.26)   4.62×10-5 

  Meta-analysis  1.19(1.10-1.29) 0.04 69 *1.09×10-5 

14q13.3 119kb 3' of MBIP Discovery 0.49/0.43 1.37(1.18-1.60)   5.72×10-5 

rs944289 T/C First replication 0.46/0.43 1.20(0.97-1.48)   0.095 

36649246  Second replication 0.46/0.44 1.11(1.01-1.23)   0.028 

  Joint 0.47/0.44 1.16(1.08-1.24)   8.68×10-5 

  Meta-analysis  1.18(1.10-1.27) 0.08 61 *1.52×10-5 

18p11.31 Intron EPB41L3 Discovery 0.19/0.27 0.61(0.50-0.73)   1.83×10-7 

rs9952940 C/T First replication 0.21/0.24 0.77(0.60-0.99)   0.045 

5472021  Second replication 0.20/0.23 0.91(0.81-1.02)   0.114 

  Joint 0.20/0.24 0.82(0.75-0.90)   1.42×10-5 

  Meta-analysis  0.81(0.73-0.88) <0.01 85 *5.24×10-6 

Chr, Chromosome; CI, confidence interval; OR, odds ratio; SNP. Single-nucleotide polymorphism 

The SNP positions are indexed to the National Center for Biotechnology Information (NCBI) build 37. 

*P-value of meta-analysis with fixed-effects model 
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Figure 15. (a) Regional association plot for TRPM3 (b) Predicted expression of TRPM3 according to the rs4745021 genotype 
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Table 18. Comparison of the minor allele frequency between population of 1000 Genome and this study. 

 

Chr  SNP  Gene 

Alternative/ 

Reference 

allele 

Risk allele frequency in 1000 Genome 
Risk allele frequency in this study 

African  American  European  Asian  Cases  Controls  
Allelic 
OR 

9 rs4745021  TRPM3 T/A  0.13 0.13 0.10 0.24 0.27 0.22  1.35 

14 rs2415317 MBIP/NKX2-1 A/G  0.17  0.44  0.59  0.45  0.47  0.42  1.30 

14 rs944289 MBIP/NKX2-1 T/C 0.15  0.44  0.59 0.45  0.48 0.43  1.27 

18 rs9952940  EPB41L3 C/T 0.35  0.25  0.34  0.21 0.20 0.26  0.69 

 

Chr, Chromosome; OR, odds ratio; SNP. Single-nucleotide polymorphism 
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Comparison of allele frequencies between DTC, thyroid nodules, and normal 

thyroid 

We performed an additional analysis comparing the allele frequencies of 15 

DTC susceptibility SNPs discovered in GWAS for DTC, and two candidate 

SNPs (rs4745021 at TRPM3, and rs2415317 at MBIP/NKX2-1) of thyroid 

nodules from this study among subjects with DTC, thyroid nodules, or normal 

thyroid (Table 19). Among them, two thyroid nodule-associated SNPs 

(rs4745021 at TRPM3, and rs2415317 at MBIP/NKX2-1), two thyroid cancer-

associated SNPs (rs11175834 in MSRB3, and rs34081847 at MBIP/NKX2-1), 

and a SNP associated with both cancer and nodule (rs944289 at MBIP/NKX2-

1) showed similar allele frequencies between the DTC and thyroid nodules. 

These results suggest that these signals might be shared susceptible loci 

between DTC and thyroid nodules, suggesting their common genetic etiology. 

Among these, signals in MBIP/NKX2-1 (Figure 16 a-c) are considered to be 

common susceptibility loci for thyroid cancer and thyroid nodules because their 

associations with DTC risk have been repeatedly validated in GWAS for DTC, 

and the association with risk of thyroid nodules was replicated in this 3-stage 

GWAS. A signal in MSRB3 (rs11175834) showed significant association with 

both thyroid cancer and thyroid nodules in the genome wide scan. However, the 

SNP failed to show any association in the replication series of thyroid nodules. 
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Signal in TRPM3 were not candidate SNP in study on DTC. The other 

susceptible loci for thyroid cancers such as NRG1 (re 6996585, Figure 16 d-f) 

and FOXE1 showed no association with thyroid nodules and normal thyroid 

(Table 19), suggesting genetic susceptibilities for thyroid nodules to be distinct 

from thyroid cancer. 
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Table 19. Subgroup analysis comparing allele frequencies of DTC or thyroid nodule susceptibility SNPs between DTC, thyroid nodules, and normal 

thyroid in a genome wide scan 

     Minor allele frequency DTC vs. Normal 
thyroid 

DTC vs. Thyroid 
nodule 

Thyroid nodule vs. 
Normal thyroid 

Chr SNP Gene Position Minor/Major 
allele 

DTC  
 
(n=470) 

Thyroid 
nodule  
(n=811) 

Normal 
Thyroid  
(n=691) 

OR P OR P OR P 

DTC susceptibility SNPs           

1 rs4915076 VAV3 108359505 C/T 0.23  0.31  0.32  0.57  2.29×10-6 0.60  9.00×10-6 0.95  0.58  

1 rs4649295 PCNXL2 233416538 T/C 0.12  0.19  0.17  0.64  1.91×10-3 0.54  1.47×10-5 1.12  0.28  

2 rs1549738 DIRC3 218118722 G/A 0.39  0.45  0.47  0.70  4.62×10-4 0.75  3.67×10-3 0.91  0.23  

2 rs12990503 DIRC3 218294217 G/C 0.31  0.36  0.38  0.80  3.70×10-2 0.86  0.14  0.92  0.30  

3 rs9858271 FHIT 59545330 G/A 0.50  0.43  0.43  1.31  7.20×10-3 1.46  1.56×10-4 1.01  0.92  

4 rs1874564 SEPT11 77858105 A/G 0.23  0.31  0.32  0.61  1.35×10-5 0.63  2.57×10-5 0.94  0.48  

8 rs12542743 NRG1 32318355 C/T 0.32  0.26  0.25  1.50  3.22×10-4 1.42  1.17×10-3 1.08  0.38  

8 rs6996585 NRG1 32400803 G/A 0.30  0.23  0.21  1.59  6.38×10-5 1.45  6.87×10-4 1.15  0.15  

8 rs2439302 NRG1 32432369 G/C 0.27  0.22  0.20  1.41  4.33×10-3 1.27  3.59×10-2 1.14  0.17  

9 rs72753537 FOXE1 100660746 C/T 0.12  0.08  0.07  1.61  4.25×10-3 1.57  3.13×10-3 1.05  0.75  

12 rs11175834 MSRB3 65992636 T/C 0.21  0.18  0.12  1.80  1.82×10-5 1.11  0.39  1.58  4.69×10-5 

12 rs16934253 SLC24A6 113737225 A/G 0.05  0.02  0.02  2.37  2.14×10-3 2.69  2.41×10-4 0.84  0.52  

14 rs34081947 MBIP/NKX2-1 36559531 T/C 0.47  0.46  0.40  1.51  6.69×10-5 1.01  0.96  1.34  2.19×10-4 

14 rs944289 MBIP/NKX2-1 36649246 T/C 0.51  0.49  0.43  1.48  1.20×10-4 0.96  0.69  1.37  5.72×10-5 

19 rs7248104 INSR 7224431 A/G 0.43  0.37  0.32  1.66  1.55×10-6 1.22  0.04  1.30  1.14×10-3 

Thyroid nodule susceptibility SNPs           

9 rs4745021 TRPM3 73267607 T/A 0.26 0.27 0.21 1.35 0.01 0.95 0.62 1.42 7.90×10-5 

14 rs2415317 MIBP/NKX2-1 36609678 A/G 0.51 0.49 0.42 1.56 1.63×10-5 0.98 0.81 1.40 1.45×10-5 

Chr, Chromosome; DTC, differentiated thyroid cancer; OR, odds ratio; SNP. Single-nucleotide polymorphism 

The SNP positions are indexed to the National Center for Biotechnology Information (NCBI) build 37. 
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Figure 16. Regional association plots for MBIP/NKX2-1 (DTC and thyroid nodule-risk locus) and NRG1 (known DTC risk locus). Association 

plots for the MBIP/NKX2-1 region comparing between (a) DTC and normal thyroid, (b) DTC and thyroid nodules, and (c) thyroid nodules and 

normal thyroid, respectively. Association plots for the NRG1 region comparing between (d) DTC and normal thyroid, (e) DTC and thyroid 

nodules, and (f) thyroid nodules and normal thyroid, respectively. 
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Expression quantitative trait loci analysis 

Imputed expression of the discovery series using PrediXcan revealed that the 

polymorphism rs4745021 have an eQTL for TRPM3 (ENSG00000083067.18) 

in thyroid tissue (Figure 15b, and Table 20). Expression data for EPB41L3 

(ENSG00000082397.11) did not show a significant difference among the 

rs9952940 genotypes at EPB41L3 (Figure 14b, and Table 20). Although 

EPB41L3 expression was significantly different according to the rs9952940 

genotype in colon tissues (Figure 14c). The expression data for MBIP, NKX2-

1, BRMS1L, PTCSC3, RP11-116N8.4, or LINC00609 that are located near 

MIBP/NKX2-1, by rs2415317 and rs944289 genotypes were not available from 

GTEx. 
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Table 20. eQTL results of candidate SNPs and nearby genes 

Chr  SNP  Gene/Ensembl Gene Record Genotype P-value 

9 rs4745021  TRPM3 AA(n=874) AT(n=524) TT(n=104)  

  ENSG00000083067.18 0.400±0.204 0.371±0.191 0.299±0.188 <0.001 

18 rs9952940  EPB41L3 CC(n=65) CT(n=548) TT(n=889)  

  ENSG00000082397.11 0.030±0.065 0.033±0.059 0.037±0.061 0.358 

 

Chr, Chromosome; SNP. Single-nucleotide polymorphism 

 



82 

 

Discussion 

GWAS for DTC 

In this two stage GWAS for DTC, we confirmed the associations of signals at 

NRG1, NKX2-1, FOXE1 and DIRC3. Moreover, novel DTC susceptibility loci 

on VAV3, PCNXL2, FHIT, SEPT11, MSRB3 and INSR were identified.  

A variant (rs2439302) on NRG1 was reported to be associated with thyroid 

stimulating hormone (TSH) level and DTC in previous GWASs (30, 56). 

Subsequently, several replication studies validated the association between 

rs2439302 and thyroid cancer (Table 1) (40, 41, 57). Neuregulin 1, which is 

encoded by the NRG1 gene and acts on the ERBB family of tyrosine kinase 

receptors, could behave as a tumor suppressor in breast cancer cells (58). One 

study showed that neuregulin 1 promotes the proliferation and self-renewal of 

HER2-low breast cancers (59). The intrinsic resistance of PTC to a BRAF 

inhibitor is accompanied by increased ERBB3 (HER3) signaling, which is 

dependent on NRG1 autocrine signaling (60). This NRG1 dysregulation is 

closely linked to PI3K-AKT and MAPK signaling pathway via ERBB in lung 

cancer (61). Thus, the upregulated NRG1 expression could be associated with 

thyroid cancer development, especially in BRAFV600E mutation positive PTC.  

In our GWAS, the most robust association was located near NRG1. Therefore, 
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we could suppose the NRG1 loci might be the susceptible loci for PTC in this 

population. For instance, Gudmundsson et al. reported that a significant 

correlation was observed between genotypes on NRG1 and relative expression 

of NRG1 in blood (30), and we hypothesized that the expression level of NRG1 

in thyroid tissue might be determined by the identified variants. As expected, 

we also found that cis-eQTL data showed that those variants in the NRG1 region 

were associated with expression of NRG1 in both normal and cancer thyroid 

tissues from our RNA sequencing results. It was the same when we analyzed 

using the predicted expression results or public database, and those variants 

were associated with an increased NRG1 expression in normal thyroid and 

whole blood. Furthermore, the GSEA identified that one of the variants 

rs6996585 was associated with many pathways related to cellular growth or 

cancer, and the ERBB-MAPK signalling pathway was the most significantly 

enriched with its related signals (Figure 7a and Table 10). Our clinical results 

also showed that the variants of NRG1 are associated with lymph node 

metastasis of thyroid cancer, especially in BRAFV600E mutated PTC. A recent 

report supported this association showing an association between a variant of 

NRG1 (rs2439302) and lymph node metastasis in PTC (38). Although we did 

not demonstrate the direct effects of the increased expression of NRG1 on 

tumour aggressiveness, we could postulate a possibility that the increased 
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expression of NRG1 in the thyroid tissue, which is associated with identified 

variants, might influence the development or progression of thyroid cancer. 

That is, the NRG1 region could be an important risk gene for the susceptibility 

or prognosis of thyroid cancer. While it is uncertain why the NRG1 region 

demonstrated the most significant association in our study, one plausible 

explanation could be that it was caused by the difference in MAF of the NRG1 

variant between the Asian population and other populations (Table 4). 

A Mutation in NKX2-1, known as thyroid transcription factor (TTF) 1, is a 

causative mutation for brain-lung-thyroid syndrome characterized by 

congenital hypothyroidism, respiratory distress syndrome, and benign 

hereditary chorea (62). In previous GWAS for DTC, one common variant 

(rs944289), located near MBIP/NKX2-1, was associated with the mentioned 

diseases (29, 30) and several studies validated the association (40, 42). 

Jendrzejewski et al. reported that expression of noncoding RNA gene named 

papillary thyroid carcinoma susceptibility candidate 3 (PTCSC3) located near 

MBIP/NKX2-1 was down-regulated in thyroid tumour tissue, and the risk allele 

(T) was associated with the profound suppression, which implies that PTCSC3 

could have some role as a tumor suppressor in DTC (63). We confirmed that 

the variant in rs944289 and another variant in rs34081947 were related with 

PTC, and the expression of NKX2-1 was increased in thyroid tissues containing 
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those variants (Table 6). 

FOXE1 (Forkhead Box E1), also known as TTF2, plays a role in the 

development or differentiation of thyroid (64, 65). Landa et al. demonstrated 

that variants near FOXE1 affected FOXE1 transcription through recruitment of 

USF1/USF2 transcription factors (37). The FOXE1 locus was reported as a 

major genetic determinant of risk in DTC and radiation-related PTC in several 

GWASs of European descents. Specifically, the relationship between common 

variations of FOXE1 and DTC was validated in several studies (29, 36, 66), and 

rs965513 of FOXE1 is the most well-replicated susceptibility locus in East-

Asian population (Table 1). In recent research, some variants on FOXE1 locus 

were associated with clinical phenotypes of PTC, such as tumour stage, size, 

lymphocytic infiltration and extrathyroidal extension (38, 39). Our results 

showed that only one variant (rs72753537) of FOXE1 was significantly 

associated with PTC after replication, but there exist possibilities of 6 other 

variants as risk loci of DTC development (Table 12). We also could not find 

any association between the variants and the FOXE1 expression levels or 

clinical phenotypes despite the fact that the variants’ association with FOXE1 

expression level was observed in the public database. FOXE1 is known as the 

most susceptible gene of DTC. However, the effect of FOXE1 variants on 

thyroid cancer risk seemed to be less significant than that of NRG1 in this Asian 
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population. Compared with 1000genome database, there are significant ethnic 

differences in allele frequencies for variants of FOXE1 between the European 

and Asian populations (MAF; 0.14-0.34 vs. 0.08-0.13). This suggests that Asian 

populations with this polymorphism are relatively small and are thus less 

susceptible to thyroid cancer than European populations. 

Given that the association between rs966423 on the DIRC3 region and thyroid 

cancer was first reported in a European GWAS (30) and were replicated in 

limited ethnic groups, it is impossible to ignore the possibility of the presence 

of population heterogeneity (32). Wang et al. showed that the variant rs966423 

on DIRC3 was associated with increased PTC risk (40), which was confirmed 

by our present study (P = 0.0067, Supplementary Table 13). In a recent report, 

rs966423 was associated with increased mortality in DTC (67). In this study, 

two SNPs were associated with DTC that were different SNPs from the 

previous report. Notably, rs1549438 was associated with both the FTC and the 

expression of TNS1. 

As described above, the previous reported region of NKX2-1, FOXE1 and 

DIRC3 showed either a relatively less association than a European study, or the 

association was observed in different SNPs. However, these regions were still 

found to be risk loci in Korean or other Asian populations as in European 

populations. As for the regions in IMMP2L, DHX35, ARSB and WDR11-AS1, 
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no association was observed (Figure 10 and Table 13). 

Here, we identified six novel susceptible loci near VAV3, PCNXL2, INSR, 

MRSB3, FHIT and SEPT11 that were no found in previous European studies. 

VAV3 gene encodes a guanine nucleotide exchange factor 3 for Rho family 

GTPases, which activates pathways involving in actin cytoskeletal 

rearrangements and transcriptional alterations (68). Casual variants on VAV3 

were associated with hypothyroidism in both a European and our previous 

Korean GWAS (69, 70). VAV3 expression in thyroid cancer cell is also known 

to be RET/PTC and RAS mutation-specific because VAV3 is involved in PI3K 

signaling and subsequent AKT activation (71). In this study, we first 

demonstrated that the association between the variation at VAV3 and DTC risk 

or VAV3 expression. 

MSRB3 encodes a zinc-containing methionine sulfoxide reductase B3 and its 

mutations are associated with human deafness (72). Methionine sulfoxide 

reductase is suggested to utilize catalytic selenocysteine (73). Selenocysteine is 

an essential component of deiodinases enzymes, which convert thyroxine(T4) 

into triiodothyronine(T3), and is also associated with thyroid autoimmunity 

(74). Thus, variants on MSRB3 could be related with pathogenesis of thyroid 

cancer. The fusion of MSRB3 was found in the primary and metastasis tumour 

of spindle cell (75). Although we could not find any association between the 



88 

 

variant of MSRB3 and MSRB3 expression or clinical phenotypes, there was an 

association with FTC as well as with PTC. 

Another newly identified susceptibility locus was located near INSR. In a 

previous meta-analysis of GWASs for thyroid-related traits, common variants 

in INSR were reported to be associated with the levels of TSH (76). Insulin is  

reported to be upregulated in various cancers (77, 78), and in in vitro studies, 

the expression of INSR was also elevated in malignant thyrocytes (79). In this 

study, we found a risk variant of PTC in INSR gene, although it was not so 

strong. However, the presence of a risk allele was significantly associated with 

lymph node metastasis, suggesting a possible pathogenic role in thyroid cancer. 

The other 3 new genes are FHIT (Fragile Histidine Triad), PCNXL2, and 

SEPT11. FHIT encodes a diadenosine 5',5'''-P1,P3-triphosphate hydrolase, and 

is known as a tumour suppressor gene in a variety of common human cancers 

(80, 81). In thyroid cancer, the inactivation of FHIT was suggested to be 

associated with the pathogenesis of thyroid neoplasm (82), and the homozygous 

deletion and promoter methylation of FHIT was reported to be associated with 

DTC (83, 84). This is concordant with our result, although the association 

between a variant in FHIT and PTC risk was not so strong, and no association 

with the gene expression or clinical phenotypes was observed. 

SEPT11 encodes septin-11, which is involved in filament-forming cytoskeletal 
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GTPase, and may play a potential role in cytokinesis (85). SEPT11 is also 

known as a gene of the fusion partners of MLL in chronic neutrophilic leukemia 

(86). Regarding PCNXL2, there was one report suggesting that it might have a 

role in tumorigenesis of colorectal carcinomas with a high microsatellite 

instability (87). Biological functions of both PCNXL2 and SEPT11 on thyroid 

tissue were not defined. However, the expression of PCNXL2 was increased in 

thyroid tissues with a candidate variant, and there was an association between 

a candidate variant of SEPT11 and extrathyroidal extension, suggesting their 

possible role in the development of thyroid cancer. 

Recently, Gudmundsson et al. reported that a meta-analysis of GWAS yields 

five novel risk loci for thyroid cancer(35). Among the five loci, one locus 

(1q42.2, PCNXL2) was included in the significant loci in our result (Table 5). 

However, the intron variant (rs12129938) of PCNXL2, which was reported as 

most significant by Gudmundsson et al., showed only marginal association (P 

= 0.002) in our result. Instead, the other intronic variant (rs4649295) showed 

most significant association (Joint P = 6.0 × 10−8). In addition, 10q24.33 locus 

(near OBFC1) showed suggestive association (P = 8.72 × 10-6) in our discovery 

result. The other novel risk loci (3q26.2, 5q22.1 and 15q22.33) and one 

replicating locus (5p15.33) showed no associated signal (P < 0.001) in our result. 

The comparison of reported SNPs with our result are summarized in Table 14. 
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The limitation of this study is that we used two different genotyping platforms 

in the discovery stage because the genotyping of the control sample was 

performed in the past. As a consequence, potential SNPs were excluded from 

the study to remove batch effect, and information might have been lost in the 

process. Another limitation was the imbalance of gender between the case and 

control groups caused by a higher prevalence of thyroid cancer in the female 

population. To adjust for this imbalance, we repeated the test with stratification 

for sex, and although the statistical significance was lowered, there was no 

difference in candidate genes. Lastly, the control samples of replication stage 

were from participants of a relatively higher age. However, it was an inevitable 

consequence of ensuring that there is no misclassification of participants (to 

confirm that the control participants truly did not have cancer). Furthermore, 

these participants went through ultrasonography examination to ensure they are 

“super normal” controls, and thus the result of comparison between cancer and 

normal should thus be more reliable and be a unique value of this study. 

The strength of this study is that this is the first study to be performed in Asian 

population using GWAS in thyroid cancer, and we identified some ethnic 

differences. When we compared the DTC SNPs reported in Europeans with our 

Stage 1 result, we found a similar effect size in SNPs of FOXE1 and NRG1 

between the two populations, but the effect of NKX2-1 and DIRC3 were lower 
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in Koreans compared to Europeans, and we suspect this may be due to a 

difference of genetic susceptibility between different ethnic populations. 

In addition, we discovered specific variants of DTC that have different effects 

on PTC from their effects on FTC. Firstly, the variants of NRG1 were more 

associated with PTC than DTC, showing the most robust effect. Secondly, 

variant of SLC24A6 showing a high-risk effect (OR = 3.32) While both PTC 

and FTC are cancers of follicular cell origin, the mutational profiles are quite 

different between PTC and FTC, our results suggest that the risk assessment of 

thyroid cancer development should be tailored according to cancer type and 

personal genotypes. Furthermore, we were the first to identify that the candidate 

SNPs influence the molecular and biological changes on the development of 

thyroid cancer by performing eQTL analysis. 
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GWAS for Thyroid nodule 

In this 3-stage GWAS, the signal in TRPM3 showed the most robust association 

with thyroid nodules and those in MIBP/NKX2-1 also demonstrated a possible 

association. A variant at TRPM3 reached the genome-wide significance 

threshold in meta-analysis. However other associations did not show genome 

wide significance in the joint analysis or meta-analysis because of the small 

number of subjects. Our findings provide evidence that thyroid nodules may 

arise from genetic predispositions.  Candidate SNPs of thyroid nodule showed 

a similar trend of association with thyroid cancer; however, SNPs with the most 

risk of thyroid cancer including NRG1 and FOXE1 did not show any association 

with thyroid nodules, suggesting a distinct genetic susceptibility of thyroid 

nodules from thyroid cancer. 

In epidemiologic studies, most thyroid diseases including thyroid cancer, 

Graves’ disease, and hypothyroidism have been reported to have a large degree 

of genetic heritability. Approximately 50–70% of the predisposition to 

autoimmune thyroid disease was reported to arise from genetic factors (88), and 

inherited genetic factors for thyroid cancer development accounted for 53% 

(89). GWAS have been widely applied in the field of thyroid diseases for a 

decade to identify these genetic factors. Despite the accumulated data of genetic 

studies on thyroid disease, a GWAS for thyroid nodules has not been conducted 



93 

 

till date. I hypothesized that genetic factors could contribute to the development 

of thyroid nodules, which could share a common genetic predisposition with 

thyroid cancer. In this study, TRPM3 was identified as susceptibility locus, and 

MBIP/NKX2-1 as suggestive risk locus for thyroid nodules. 

A variant on TRPM3 (9q21.13) showed the most robust association in the 

joint analysis. TRPM3 encodes Transient Receptor Potential Cation Channel 

Subfamily M member 3, which is a cation-selective channel related to cellular 

calcium signaling and homeostasis (90). TRPM3 was also documented as 

component of an ionotropic steroid receptor in insulin-producing beta cells (91). 

The biological function of TRPM3 in the thyroid gland is not well defined. 

Recently, TRPM3 was reported to promote the growth of renal cell carcinoma 

(92). Thus, TRPM3 expression could also affect tumorigenesis in thyroid cells. 

Interestingly, in this discovery genome-wide scan, rs2415317 and rs944289 

signals were detected near MBIP/NKX2-1, which is reported to be associated 

with DTC (29, 35, 93). Association of a following replication studies using an 

independent population showed a similar trend of OR with marginal or nominal 

significance. Wang et al. have also reported an association between benign 

thyroid nodules and rs944289 in a Chinese population (40). Therefore, although 

associations in MBIP/NKX2-1 did not reach genome-wide significance, we 

could not completely exclude the possibility that variants on MBIP/NKX2-1 
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have associations with thyroid nodules. Thus, it could be suggested that variants 

on MBIP/NKX2-1 might not be cancer-specific but play various roles in the 

neoplastic changes of follicular cells. In this analysis, rs2415317 and rs944289 

also showed a similar association with thyroid cancer (Table 19). In addition to 

MBIP/NKX2-1, SNPs on TRPM3, EPB41L3, and MSRB3 demonstrated similar 

allele frequencies in thyroid nodules and thyroid cancer. Further studies are 

needed to confirm whether these variants affect both thyroid cancer and thyroid 

nodule development.  

A signal in EPB41L3 showed the most robust association in discovery 

GWAS and showed statistical significance only in the first replication study. In 

joint analysis, the association with EPB41L3 did not reach genome-wide 

statistical significance. EPB41L3 (18p11.31), Erythrocyte Membrane Protein 

Band 4.1 Like 3, encodes protein 4.1B, which is related with actin binding and 

structural constituents of the cytoskeleton (94). Protein 4.1B is expressed in 

most mammalian tissues and is prominently localized at the plasma membrane 

in regions of cell-cell contact (95). Down-regulation of protein 4.1B is 

frequently observed in tumors and it is considered as a potential tumor 

suppressor (96). Polymorphisms in EPB41L3 were documented to be 

associated with kidney function and sleep duration in other GWAS (97, 98). 

Although, a cis-eQTL of EPB41L3 was not identified, we could not completely 
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exclude the possibility that variants of EPB41L3 could influence molecular and 

biological changes in the thyroid gland via trans-eQTL. 

In GWAS for thyroid cancer, several susceptibility loci of DTC, including 

FOXE1 (9q22.33), MBIP/NKX2-1 (14q13.3), DIRC3 (2q35), and NRG1 (8p12) 

were validated in diverse populations, and other candidate loci (IMMP2L, 

RARRES1, SNAPC4/CARD9, BAT, and DHX35) were identified and replicated 

in specific ethnicities (29-32, 36). I previously described seven novel 

susceptibility loci (VAV3, PCNXL2, INSR, MRSB3, FHIT, SEPT11, and 

SLC24A6) associated with DTC in Chapter I. GWAS for goiters was also 

conducted and revealed that genetic loci near CAPZB, FGF7, and LOC440389 

were associated with thyroid volume (99). Regarding the GWAS for thyroid 

function, many susceptibility loci for thyrotropin levels (PDE10A, PDE8B, 

VEGFA, CAPZB, NRG1, MBIP, SYN2, IGFBP2, NR3C3, FGF7, etc.) and free 

thyroxine levels (FOXE1, B4GALT6 LHX3, DIO1, AADAT, etc.) have been 

identified (56, 76, 100, 101). In these series of GWAS for various thyroid-

related traits, the common variants in several genetic loci including 

MBIP/NXK2-1, FOXE1, VAV3, INSR, and NRG1 showed associations with 

multiple thyroid-related phenotypes, suggesting that thyroid disorders could be 

closely linked with each other via genetic predispositions (Figure 17). However, 

more studies are required to clarify the shared genetic traits of TRPM3 and 
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MBIP/NXK2-1 between thyroid nodules and thyroid cancer. 

Importantly, no susceptible locus other than TRPM3, and MBIP/NXK2-1, was 

identified in thyroid nodules in this GWAS, and the statistical significance of 

associations was not so evident in this study. Moreover, no association with 

previously known susceptible loci for thyroid cancer like NRG1 or FOXE1 was 

observed (Figure 17). These data suggest that the heritability of thyroid nodules 

may not be so strong, and that their genetic susceptibility is distinct from 

thyroid cancer.  

Clinically, it is important to properly diagnose a malignancy among thyroid 

nodules. The probability of malignancy varies according to the sonographic 

characteristics (102), and so, fine needle aspiration cytology is used for 

diagnosis according to the recommendations (18, 103, 104) However, it is still 

inconclusive whether thyroid nodules should be followed-up to prevent missing 

an occurrence of thyroid cancer from nodules with benign cytologic results. If 

patients with benign thyroid nodules share a common genetic etiology with 

patients with thyroid cancer, thyroid nodules should be followed-up closely. In 

a long term follow-up study on thyroid nodules, the chance for thyroid cancer 

development from cytologically benign thyroid nodules was reported to be 

extremely low (105) and was considered to be similar to that of the general 

population (106). Thus, repeated evaluation for detecting thyroid cancer is not 
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recommended for benign thyroid nodules (107). Consistent with the clinical 

observations, the genetic traits of thyroid nodules found in this study seemed to 

differ from those of thyroid cancer. However, variants on MBIP/NKX2-1 or a 

few other SNPs are possibly associated with both thyroid nodules and thyroid 

cancer. Further study is therefore needed to identify the common genetic factors 

of thyroid cancer and nodules, which could elucidate the association between 

thyroid cancer and nodule from a genetic perspective. 

While the present study is the first GWAS for thyroid nodules, our study had 

limitations in that the number of subjects was small and a detailed pathology of 

thyroid nodules was not indicated. Thyroid nodules are not a single disease 

entity. Most benign thyroid nodules are pathologically diagnosed as 

hyperplastic nodules and follicular adenomas. Genetic predispositions between 

hyperplastic nodules and follicular adenomas could be different. Genetic 

factors could not be detected in this GWAS possibly because hyperplastic 

nodules and follicular adenomas might not share common genetic factors. 

However, it is not clinically feasible to distinguish thyroid pathology from 

features of ultrasonography or cytologic results of fine needle aspiration. In 

addition, the possibility of thyroid cancer being included among thyroid 

nodules cannot be totally excluded in these cases. Another limitation was that 

stratification analysis for age and sex could not performed due to the limitation 
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of the number of subjects. 
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Figure 17. Genetic loci from the GWAS of thyroid-related traits  
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Summary and conclusions 

Genome-wide association study for DTC was conducted in Koreans. 

Significant associations at previously reported loci of NRG1, FOXE1, NKX2-1, 

and DIRC3 were confirmed, and NRG1 was the most significantly associated 

in this Asian population. Novel susceptibility loci at VAV3, PCNXL2, FHIT, 

SEPT11, MSRB3 and INSR were identified. These results were validated with 

cis-eQTL analysis using RNA sequencing data from the tumour and normal 

thyroid tissues.  

And the first GWAS for thyroid nodules was also conducted and signals in 

TRPM3 was identified as susceptibility locus. MBIP/NXK2-1 could be possible 

risk locus associated with thyroid nodules. The genetic susceptibility for thyroid 

nodules was distinct from that for thyroid cancer, although these risk loci, 

especially on MBIP/NKX2-1, seemed to be shared between them. 

I propose that these results can be implied for diagnosis and treatment of thyroid 

cancer and nodule and provide more insight into genetic factors in the era of 

personalized medicine in cancer. 
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국문초록 

 

갑상선암과 결절에 대한 전장 

유전체 연관 및 발현 양적 형질 

유전자좌 연구 

서울대학교 대학원 의학과 중개의학 전공 

황 보 율 

 

갑상선암은 한국에서 가장 흔한 내분비암이며 갑상선 결절은 

가장 흔한 내분비 질환이다. 두가지 질환 모두 높은 유전성을 

보인다. 몇몇의 갑상선암에 대한 전장 유전체 연관 연구가 

서양인들에게서 이루어졌고, 분화갑상선암에 대한 감수성 

유전자좌를 발굴하였다. 그러나 아시아인에 대한 전장 유전체 
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연관 연구는 수행된 바 없으며, 갑상선 결절에 대한 유전적 

연구는 없었으며 이와 관련된 유전자와 갑상선암과의 

관련성도 여전히 알 수 없는 상태이다. 

따라서, 본 연구에서는 1,085 명의 분화 갑상선암과 

8,884 명의 대조군으로 전장 유전체 연관 분석 및 재현 

연구를 수행하였고, 그 결과를 발현 양적 형질 유전자좌 연구 

및 임상 발현형질을 통해서 검증하였다. 가장 뚜렷한 관련성은 

보이는 유전자좌는 NRG1 유전자였으며 (rs6996585, 

P=1.08×10-10), 이 SNP 은 NRG1 의 발현과도 관련성이 있었다. 

부가적으로 이전에 보고되었던 유전자좌 (FOXE1, NKX2-1, 

DIRC3)를 확인하였으며 7 개의 유전자좌 (VAV3, PCNXL2, INSR, 

MRSB3, FHIT, SEPT11, SLC24A6)를 새롭게 발견하였다. 또한, 

분화갑상선암과 관련된 유전변이가 암의 종류 및 인종에 따라서 

다른 영향을 가지는 것을 확인하였다. 

또한 갑상선결절에 대한 3 단계의 전장 유전체 연관 분석을 

시행하였다. 발견 단계의 전장 유전체 스캔을 인구 기반 코호트의 

811 명의 갑상선 결절군과 691 명의 정상 갑상선군에서 
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수행되었다. 재현 연구는 건강검진 대상자에서 총 1981 명의 

결절군과 3100 명의 정상군에서 수행되었으며 발현 양적 형질 

유전자좌 분석도 공공데이터를 통해서 수행되었다. 가장 유의한 

관련성은 결합분석 

(OR=1.26, P = 6.12 × 10-8) 및 메타분석 (OR = 1.28, P = 

2.11×10-8) 결과  

TRPM3 (rs4745021) 유전자에서 관찰되었다. MBIP/NKX2-1 

변이는 재현이 되었으나 전장 유전체 유의성을 보이지 못했다. 발현 

양적 형질 유전자좌 분석에서 TRPM3 의 발현은 갑상선조직에서 

rs4745021 유전자형과 관련성이 있었다.  

분화갑상선암에 대한 전장 유전체 연관 분석 결과는 갑상선암의 

발생에서 유전적 기여에 대한 이해할 수 있게 해주었으며, 갑상선 

결절에 대한 전장 유전체 연구를 통해 갑상선 결절은 갑상선암과 

차별되는 유전적 특징을 가지고 있음을 확인하였다.  

· 본 박사학위논문은 출판된 다음의 연구 논문을 기반으로 작성되었습니다. 

· Genome-Wide Association and Expression Quantitative Trait Loci Studies Identify Multiple 

Susceptibility Loci for Thyroid Cancer. Nat Commun. 2017 Jul 13;8:15966. 

· Genome-Wide Association Study Reveals Distinct Genetic Susceptibility of Thyroid Nodules 
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From Thyroid Cancer. J Clin Endocrinol Metab. 2018 Dec 1;103(12):4384-4394. 

· Genome-Wide Association Studies of Autoimmune Thyroid Diseases, Thyroid Function, and 

Thyroid Cancer. Endocrinol Metab (Seoul). 2018 Jun; 33(2): 175–184. 

주요어: 갑상선암, 갑상선결절, 전장 유전체 연관 분석, 발현 양적 

형질 유전자좌, 유전적 감수성 

학번: 2015-30903 
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