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This thesis presents a design strategy for industrial-scale chemical reactors 

which consists of multi-scale modeling, post-modeling calibration, and 

optimization. Although the reactor design problem is a primary step in the 

development of most chemical processes, it has been relied on simple models, 

experiments and rules of thumbs rather than taking advantage of recent 

numerical techniques. It is because industrial-size reactors show high 

complexity and scale differences both physically and chemically, which 
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makes it difficult to be mathematically modeled. Even after the model is 

constructed, it suffers from inaccuracies and heavy simulation time to be 

applied in optimization algorithms.  

The complexity and scale difference problem in modeling can be solved 

by introducing multi-scale modeling approaches. Computational fluid 

dynamics (CFD)-based compartmental model makes it possible to simulate 

hours of dynamics in large size reactors which show inhomogeneous mixing 

patterns. It regards the big reactor as a network of small zones in which perfect 

mixing can be assumed and solves mass and energy balance equations with 

kinetics and flow information adopted from CFD hydrodynamics model at 

each zone. An aqueous mineral carbonation reactor with complex gas–liquid–

solid interacting flow patterns was modeled using this method. The model 

considers the gas-liquid mass transfer, solid dissolution, ionic reactions, 

precipitations, hydrodynamics, heat generation and thermodynamic changes 

by the reaction and discrete operational events in the form of differential 

algebraic equations (DAEs). The total CO2 removal efficiency, pH, and 

temperature changes were predicted and compared to real operation data. The 

errors were within 7 % without any post-adjustment.  

The inaccuracy problem of model can be overcome by post-modeling 

approach, such as the calibration with experiments. The model for aqueous 
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mineral carbonation reactor was intensified via Bayesian calibration. Eight 

parameters were intrduced in the uncertain parts of the rigorous reactor model. 

Then the calibration was performed by estimating the parameter posterior 

distribution using Bayesian parameter estimation framework and lab-scale 

experiments. The developed Bayesian parameter estimation framework 

involves surrogate models, Markov chain Monte Carlo (MCMC) with 

tempering, global optimization, and various analysis tools. The obtained 

parameter distributions reflected the uncertain or multimodal natures of the 

parameters due to the incompleteness of the model and the experiments. They 

were used to earn stochastic model responses which show good fits with the 

experimental results. The fitting errors of all the 16 datasets and the unseen 

test set were measured to be comparable or lower than when deterministic 

optimization methods are used.  

 The heavy simulation time problem for mathematical optimization can be 

resolved by applying Bayesian optimizaion algorithm. CFD based optimal 

design tool for chemical reactors, in which multi-objective Bayesian 

optimization (MBO) is utilized to reduce the number of required CFD runs, is 

proposed. The developed optimizer was applied to minimize the power 

consumption and maximize the gas holdup in a gas-sparged stirred tank 

reactor, which has six design variables. The saturated Pareto front was 
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obtained after only 100 iterations. The resulting Pareto front consists of many 

near-optimal designs with significantly enhanced performances compared to 

conventional reactors reported in the literature.  

It is anticipated that the suggested CFD-based compartmental modeling, post-

modeling Bayesian calibration, and Bayesian optimization methods can be 

applied in general industrial-scale chemical reactors with complex physical 

and chemical features. 

 

 

 Keywords: Reactor; Reactor modeling; CFD reactor model; CFD-based 

compartmental model; Bayesian parameter estimation; Bayesian optimization, 

Optimal reactor design; Aqueous mineral carbonation; Carbon Capture Utilization & 

Storage (CCUS) 

 Student Number: 2015-21062 

 

 

 

  



v 

 

Contents 
 

 

Abstract ....................................................................................................................... i 

Contents ..................................................................................................................... v 

List of Figures ......................................................................................................... viii 

List of Tables ............................................................................................................ xii 

1.  Introduction ......................................................................................................... 1 

1.1. Industrial-scale chemical reactor design .................................................. 1 

1.2. Role of mathematical models in reactor design ....................................... 2 

1.3. Intensification of reactor models through calibration .............................. 5 

1.3.1. Bayesian parameter estimation ............................................................. 6 

1.4. Optimization of the reactor models.......................................................... 7 

1.4.1. Bayesian optimization .......................................................................... 9 

1.5. Aqueous mineral carbonation process : case study subject ................... 10 

1.6. Outline of the thesis ............................................................................... 12 

2.  Multi-scale modeling of industrial-scale aqueous mineral carbonation reactor for 

long-time dynamic simulation .......................................................................... 14 

2.1. Objective ................................................................................................ 14 

2.2. Experimental setup ................................................................................ 15 

2.3. Mathematical models ............................................................................. 19 

2.3.1. Reactor model .................................................................................... 19 

2.3.2. CFD model ......................................................................................... 28 

2.3.3. Numerical setting ............................................................................... 30 

2.4. Results and discussions .......................................................................... 32 

2.4.1. CFD-based compartmental model for industrial-scale reactor. .......... 32 

2.4.2. Design and simulation of higher-scale reactors.................................. 42 



vi 

 

2.5. Conclusions ............................................................................................ 47 

3.  Model intensification of aqueous mineral carbonation kinetics via Bayesian 

calibration ......................................................................................................... 50 

3.1. Objective ................................................................................................ 50 

3.2. Experimental methods ........................................................................... 51 

3.2.1. Solution and gas preparation .............................................................. 51 

3.2.2. Laboratory-scale mineral carbonation process ................................... 53 

3.3. Mathematical models ............................................................................. 56 

3.3.1. Kinetics of aqueous mineral carbonation process .............................. 56 

3.3.2. Differential algebraic equation (DAE) model for the reactor............. 65 

3.3.3. Discrete events for simulation procedure ........................................... 71 

3.3.4. Numerical setting ............................................................................... 72 

3.4. Bayesian parameter estimation .............................................................. 72 

3.4.1. Problem formulation .......................................................................... 73 

3.4.2. Bayesian posterior inference .............................................................. 76 

3.4.3. Sampling ............................................................................................ 81 

3.5. Results and discussions .......................................................................... 82 

3.5.1. Stochastic output response ................................................................. 82 

3.5.2. Quality of parameter estimtates.......................................................... 86 

3.5.3. Assessment of parameter uncertainties .............................................. 91 

3.5.4. Kinetics study with the proposed model parameters .......................... 99 

3.6. Conclusions .......................................................................................... 103 

4.  Multi-objective optimization of chemical reactor design using computational 

fluid dynamics ................................................................................................ 106 

4.1. Objective .............................................................................................. 106 

4.2. Problem Formulation ........................................................................... 107 

4.3. Optimization scheme ........................................................................... 113 



vii 

 

4.3.1. Multi-objective optimization algorithm ........................................... 113 

4.3.2. CFD-MBO optimizer ....................................................................... 120 

4.4. CFD modeling ..................................................................................... 125 

4.4.1. Tank specifications ........................................................................... 125 

4.4.2. Governing equations ........................................................................ 125 

4.4.3. Simulation methods .......................................................................... 127 

4.5. Results and discussion ......................................................................... 128 

4.5.1. CFD model validation ...................................................................... 128 

4.5.2. Optimization results ......................................................................... 130 

4.5.3. Analysis of optimal designs ............................................................. 139 

4.6. Conclusions .......................................................................................... 144 

5.  Concluding Remarks ....................................................................................... 146 

Bibliography .......................................................................................................... 149 

Abstract in Korean (국문초록).............................................................................. 163 

  

 

  



viii 

 

List of Figures 
 

 

Figure 2‑1. Side and top views of industrial-scale reactor and configuration of nozzle.

 ............................................................................................................. 17 

Figure 2‑2. Systematic diagram for CFD-based compartmental model................... 22 

Figure 2‑3. CO2 holdup profiles of the CFD-based compartmental model in 119-zone 

(left), 179-zone (middle), and 291-zone (right) models in Experiment I-

1 2nd reactor. ........................................................................................ 33 

Figure 2‑4. Side and top view of the 179-zone model in the industrial-scale reactor.

.............................................................................................................. 34 

Figure 2‑5. Model results compared with operation data from (a) Experiment I-1 and 

(b) Experiment I-2. ............................................................................... 35 

Figure 2‑6. Concentration changes of involved species during Experiment I-1. ..... 39 

Figure 2‑7. CO2 volume fraction changes at each zone during the operation. ......... 41 

Figure 2‑8. Side and top views of Type A (gas inlet 17,500 Nm3/hr) and Type B (gas 

inlet 70,000 Nm3/hr) reactors. .............................................................. 43 

Figure 2‑9. Top) Side and top view of the 181 compartments for Type A reactor, 

Bottom) Side and top view of the 164 compartments for Type B reactor.

.............................................................................................................. 45 

Figure 2‑10. Predicted dynamic behaviors of Type A and Type B reactors. ............ 46 

Figure 3‑1. Schematic process flow diagram of aqueous mineral carbonation process 

for CO2 absorption and utilization. ...................................................... 55 

Figure 3‑2. Schematic diagram of the compartment reactor model. ........................ 66 

Figure 3‑3. Schematic diagram of the problem setting. ........................................... 74 



ix 

 

Figure 3‑4. (a) A graphical representation of model generation. The observed 

response is considered as a noisy version of the modeled (ideal) response. 

(b) Schematic for the Bayesian inference. ........................................... 78 

Figure 3‑5. : a) Estimated output response ((𝝓𝑪𝑶𝟐
𝒐𝒖𝒕𝒍𝒆𝒕  fitting and b) joint marginal 

posterior distribution of 𝐥𝐨𝐠𝟏𝟎(𝜽𝒌𝒍
) and 𝐥𝐨𝐠𝟏𝟎(𝜽𝑨𝒔

) for Exp. 6 using 

mode, mean, and optimization method. ............................................... 83 

Figure 3‑6.  Tempering control (tempering factor as 1, 4, 8, and 10 respectively) for 

checking multimodal posterior distribution between 𝜽𝑨𝒔
 and 𝜽𝒌𝒍

; also 

compare the 𝜽𝒎𝒆𝒂𝒏  and 𝜽𝒎𝒐𝒅𝒆  movements. ×  denotes mean and + 

denotes mode. ...................................................................................... 85 

Figure 3‑7. Estimated output response (𝝓𝑪𝑶𝟐
𝒐𝒖𝒕𝒍𝒆𝒕) fitting with experimental data, 

𝐟𝐦𝒆𝒂𝒏 , 𝐟(𝜽𝐦𝒐𝒅𝒆) , 𝐟(𝜽𝐦𝒆𝒂𝒏) , and 𝐟(𝜽𝐨𝒑𝒕) . nncertainty quantification 

using standard deviation and confidence interval is also conducted. ... 87 

Figure 3‑8. Estimated output response (pH) fitting with experimental data, 𝐟𝐦𝒆𝒂𝒏, 

𝐟(𝜽𝐦𝒐𝒅𝒆) , 𝐟(𝜽𝐦𝒆𝒂𝒏) , nd  𝐟(𝜽𝐨𝒑𝒕) . nncertainty quantification using 

standard deviation and confidence interval is also conducted. ............ 88 

Figure 3‑9. Error comparison through different parameter estimation methods. 

Visualize the error with a) CO2 volumetric concentration of outlet flue 

gas (𝝓𝑪𝑶𝟐
𝒐𝒖𝒕𝒍𝒆𝒕) and b) pH ........................................................................ 89 

Figure 3‑10. Two dimentional joint marginal posterior distribution with 20,000 final 

samples of MCMC. The center of dotted crosslines is 𝜽𝒎𝒆𝒂𝒏. ........... 92 

Figure 3‑11. Marginal posterior distributions of each parameter from different kinds 

of datasets. Each gray line corresponds to the posterior which is inferred 

from two responses data from same experiment. ................................. 93 

Figure 3‑12. Two dimentional joint marginal posterior distribution with tempering 

factor (tmp=10). The center of dotted crosslines is 𝜽𝒎𝒆𝒂𝒏. ................ 94 



x 

 

Figure 3‑13. Tempering control (tempering factor as 1, 4, 8, and 10 respectively) for 

checking multimodal posterior distribution between 𝜽𝑨𝒔
 and 𝜽𝒅

𝒔𝟎
; also 

compare the 𝜽𝒎𝒆𝒂𝒏  and 𝜽𝒎𝒐𝒅𝒆  movements. ×  denotes mean and + 

denotes mode. ...................................................................................... 98 

Figure 3‑14. The sensitivity analysis of design variables. While one design variable 

is perturbed at a time within a range of the specified low and high values, 

the other variables are fixed to the median value of the operating range, 

i.e. 𝑻 to 46.5 ∘C, 𝝓𝑪𝑶𝟐
𝒊𝒏𝒍𝒆𝒕  to 16 %, 𝒘𝑪𝒂(𝑶𝑯)𝟐 to 2 wt%, 𝒘𝑵𝒂𝑶𝑯 to 1.5 

wt%, and 𝑽 to 1.25 L/min. The perturbation is conducted to have same 

interval between the values. ............................................................... 100 

Figure 3‑15. The case study results using the estimated parameter values. ........... 102 

Figure 4‑1. (a) Base design of a gas-sparged stirred tank reactor and (b) design 

parameters of the reactor. ................................................................... 108 

Figure 4‑2. Graphical illustration of the role of CFD as black-box performance 

functions. ............................................................................................ 112 

Figure 4‑3. Graphical illustration of EI. ................................................................. 119 

Figure 4‑4. Algorithm of CFD-MBO optimizer. .................................................... 121 

Figure 4‑5. Implementation of CFD-MBO optimizer using STK toolbox, MATLAB, 

and Ansys software. ........................................................................... 124 

Figure 4‑6. Comparison between the modeling and experimental local gas holdup 

data. .................................................................................................... 129 

Figure 4‑7. (a) Advance of the Pareto front as the number of iteration increases, (b) 

the trend of the first objective function (𝒑𝒐𝒘𝒆𝒓(𝒙)𝟎.𝟒) values along the 

iterations, and (c) the trend of the second objective function (𝟐𝟎 −

𝒆𝒈𝒉(𝐱)) values along the iterations. ................................................. 131 



xi 

 

Figure 4‑8. Saturation of Pareto front with respect to the concept of dominated 

hypervolume. ..................................................................................... 132 

Figure 4‑9. Optimization results (a) in the objective function space and (b) with 

respect to the original performance functions. ................................... 135 

Figure 4‑10. Relationship between the impeller diameter and power consumption 

based on the data obtained during the optimization. .......................... 138 

Figure 4‑11. (a) The location of each group in the objective function space, (b) the 

structures and 2D contours of a gas holdup in good initial designs, (c) 

the structures and 2D contours of the gas holdup in the reference designs, 

and (d) the structures and 2D contours of the gas holdup in overwhelming 

optimal designs. ................................................................................. 140 

Figure 4‑12. Liquid velocity vector space in reactors shown in Figure 4-11. ........ 142 

Figure 5-1. Optimal design process of industrial-scale chemical reactor. ............. 148 

 

  



xii 

 

List of Tables 
 

 

Table 2‑1. Experimental conditions for industrial-scale process. ............................ 18 

Table 3‑1. 2-(4,5,1) orthogonal array experiment design ......................................... 52 

Table 3‑2. Kinetic parameters for solid dissolutions ................................................ 60 

Table 3‑3. Kinetic parameters of the ionic reactions ................................................ 62 

Table 3‑4. Kinetic parameters for precipitations. ..................................................... 64 

Table 3‑5. The prior range for the parameter 𝜽 ....................................................... 80 

Table 4‑1. Pseudo code for general Bayesian optimization concept [111]. ........... 115 

Table 4‑2. Detailed specifications and the performances of the initial, reference, and 

optimal reactors. ................................................................................... 141 



1 

 

Chapter 1.  

 Introduction 

 

1.1. Industrial-scale chemical reactor design 

The design of a chemical reactor is the most essential task in the development of a 

chemical process. In the conventional hierarchical process design process, the 

analysis of chemical reactors comes first followed by the investigation of separation 

and recycle, heat exchanger network and utilities, in turn. The other periphery units 

are designed after the performance of the reactors such as yield or selectivity as well 

as the mass and energy balances at the reactors are derived. However, the complexity 

of the phenomena taken place in the reactors make it hard to model and design them 

properly.     

Engineers have achieved a rough insight of reactor designs from reaction 

engineering principles. Calculating the necessary residence time of the reactants and 

deciding the size of reactors can be done based on those principles. Engineers have 

then relied on experiments and empirical knowledge to develop the final design from 

the initial specifications. In case of conventional reactor types such as stirred tank 

reactors, bubble column reactors and fixed bed reactors, a lot of correlations between 

the design parameters and transport phenomena have been provided. Also, there are 

rules of thumbs for deciding design parameters such as the location and size of 

impellers in stirred tank reactors.  
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For the industrial-scale reactors, the design process starts from smaller units; it is 

rather referred to ‘scale-up’ because laboratory-, pilot-scale tests are indispensable 

before realizing the full-scale unit. In laboratory-scale experiments, basic information 

about the system that does not depend on the size such as thermodynamics and 

kinetics are to be obtained. In pilot-scale experiments, operational aspects such as 

equipment reliability or impurities in the materials as well as the physical aspects 

such as inhomogeneous flow and heat patterns and their interactions with chemical 

mechanisms must be revealed. Maintaining the similarity of important process 

variables and dimensionless groups between different scales is a primarily accepted 

scale-up method, which is also referred as dimensional and model analysis in general 

design problems.   

 

1.2. Role of mathematical models in reactor design 

In scale-up problems, the dimensional similitude approach shows a limitation on 

providing direct quantitative prediction on the performance of scaled-up reactors. It 

is rather expecting the scaled-up designs to show the similar performance proved 

from the experiments of smaller scales by maintaining indirect parameters in similar 

magnitude. It is also not always possible to derive the design which satisfies all the 

similarity criteria; sometimes engineers intuitively choose with experiences which 

criteria to apply or ignore.  

Mathematical modeling of reactors can help overcoming these problems by 

providing full view of the system. It is possible to predict the most important features 

and even unmeasurable variables of the system. Furthermore, it enables engineers to 
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explore various alternative designs which are timely and costly prohibitive in physical 

experiments. Such exploration sometimes can reveal an innovative design idea that 

cannot be derived from heuristics. In addition, if the developed model is combined 

with mathematical optimization algorithms or integrated with process models, further 

improvement of the performance is possible.  

Mathematical chemical reactor modeling starts from setting up mass and energy 

balance equations of the system in interest. Identifying the reactions kinetics and 

integrating them with the mass and energy balance equations are the next step. Then 

the transport phenomena of fluid, heat and mass must be considered. The resulting 

model is composed of a set of differential algebraic equations, or partial differential 

equations in case of describing full transport phenomena, which requires numerical 

methods to get a solution. Obtaining the numerical solutions of governing equations 

of transport phenomena, i.e. Navier-Stokes equation, is a challenging task that has 

been established as an academic field called computational fluid dynamics (CFD).  

CFD model 

Over the last decades, CFD has become a popular tool for reactor modeling owing 

to its ability to analyze the transport phenomena and evaluate the physical features of 

a certain design without real experiments. An abundance of studies have shown the 

results of CFD modeling with experimental validations in various types of reactors, 

such as in stirred tank reactors [1] bubble column reactors [2], and fixed bed tubular 

reactors [3]. Several research papers have shown the capacity of CFD in modeling 

the mass-transfer process [4, 5] and the reaction kinetics [6]. Beyond reproducing the 

transport phenomena, a number of studies have reported improvements in the reactor 
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designs with the aid of CFD through case studies, a sensitivity analysis, or a simple 

statistical analysis [7-10].  

However, CFD simulations in current status have limitations on considering more 

than a couple of reactions owing to numerical instability and exorbitant simulation 

time, which poses a serious incapability in representing overall perspective of 

chemical reactors. In addition, CFD simulations of industrial-scale unit is too 

expensive due to huge number of calculation elements (meshes) and presence of 

strong turbulence to simulate more than a few tens of seconds. Therefore, full CFD 

simulation is an impossible option for batch reactors which haves operational cycle 

of more than hours.   

CFD-based compartmental model 

In such cases, traditional methods, such as a compartmental model or network-of-

zones model, which are to account for the fluid dynamics in simplified ways have 

been employed [11]. Compartmental model regards a reactor as a network of 

hundreds of zones in which homogeneous conditions are satisfied as in a concept of 

continuous stirred-tank reactor [12] and between which the flow rates are estimated 

based on impeller conditions. Vrabel et al. [13, 14] and Zahradnik et al. [15] used this 

method to model large scale gas-liquid fermentation and bioreactors.  

However, the compartmental model necessarily has a limitation in accuracies. 

Particularly in multiphase reactors [16], the flow rates of secondary phase is 

complicated to estimate. Unlike the liquid flow rates in single liquid phase reactors, 

which can be relatively well predicted from the impeller speed, the gas flow rates in 

gas-liquid reactors are complicated to estimate because they are affected by numerous 
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factors; not only by impeller rotational force but also buoyance force as well as a 

complex gas sparger configuration. 

Combining CFD and the zonal method makes it possible to overcome the inaccuracy 

problem of the zonal method as well as to extend the limit of possible simulation time 

in CFD. This combined model is referred to as the CFD-based compartmental model 

[17, 18], which can also be regarded as a branch of multi-scale model. In the CFD-

based compartmental model, mass flow rates between the zones are brought from the 

CFD model, instead of estimating them from empirical correlations. It is assumed 

that the steady-state hydrodynamics resulting from CFD simulations is not affected 

by the progress of reactions. Bezzo et al. [19] first reported the implementation of this 

method in a bioreactor. Other reports include the applications in the ozone process 

and CO2 and Ca(OH)2 precipitation reactor [20, 21].   

 

1.3. Intensification of reactor models through calibration 

Mathematical models or computer models always show deviated predictions from 

the actual plant operations, which is also called as model errors. Furthermore, the 

models are usually constructed to cover a wide range of conditions. Thus, to intensify 

the model in its accuracy or for the application in specific conditions, post-modeling 

calibration is recommended. The calibration can also be called as the parameter 

estimation because the model contains a few unknown parameters to adjust the model 

output, or to narrow down the applicable range to particular conditions; and the 

calibration can be done by estimating those unknown parameters. To learn the 
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unknown parameters, observations, or experiments in most of chemical engineering 

problems, are to be obtained and parameters are found to best-fit these observations.  

1.3.1. Bayesian parameter estimation 

Bayesian parameter estimation can find the posterior probabilistic distributions of 

the parameters by taking account of their distributed natures as well as the 

measurement errors of the experiments. The model can then be updated to a stochastic 

model using uncertainty quantification methods [22, 23] and used for stochastic 

model predictive control (SMPC) [24, 25]. Although there is no general Bayesian 

parameter estimation framework available, it is able to find a lot of applications in 

many different fields including chemical engineering [26, 27], carbon mitigation [28, 

29], bioengineering [30], cognitive science [31], cosmology [32], electrical/ 

electronic engineering [33], and artificial intelligence [34]. One challenge of 

Bayesian estimation is that a huge amount of samples are required. Thus, when the 

computational load of the model is too expensive, function approximation methods 

such as second order polynomial [27, 35] and polynomial chaos expansion (PCE)[26, 

36] are adopted together. Another big challenge is dealing with the multiple datasets 

with different levels of uncertainties. Experiments are usually performed under 

varying conditions (or design variables), so the amount of data and uncertainty 

inevitably varies as well. Therefore, a proper Bayesian parameter estimation 

framework which can handle these problems is demanded to resolve the issues in 

chemical engineering, particularly in mineral carbonation technology. 
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1.4. Optimization of the reactor models 

The increasing capacity of computational tools have made engineers to apply 

computer modeling approach in actual applications. The mathematical chemical 

reactor models can be used to derive the optimal design, while the heuristic design 

process leads to safe, traditional, but suboptimal designs.  

The increasing capacity of CFD as a modeling and design tool for reactors naturally 

leads to the desire for the systematic optimization of the CFD results. This task is 

referred to as CFD-based optimization, whose applications are more commonly found 

in other areas than chemical engineering, such as in aircraft designs. A large branch 

of CFD-based optimization is gradient-based optimization using an adjoint method 

[37]. Representative works applying this method include the design of wings to 

minimize the drag and maximize the lift [38], and the design of full aircraft 

configurations [39]. As with other gradient-based algorithms, intrinsic disadvantages 

of a local solver are incurred, although the local optima are quickly found. More 

critically, the identification of a consistent adjoint system is required prior to 

optimization, which is currently unattainable for complex systems such as a turbulent 

multiphase flow in a chemical reactor.  

Another branch is simulation-based optimization (SBO), which does not require 

gradient information. This treats a CFD model as a black-box function between 

design variables and output results. Evolutionary algorithms (EAs) are a widely 

adopted SBO in CFD-based problems, particularly in multi-objective problems. 

Algorithms such as NSGA-II [40] or MOGA-II [41] are known to provide a set of 

trade-off solutions and are easily implemented with any independent simulation. A 
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few examples applying CFD-based reactor optimization have also employed these 

methods. A previous research [42] used MOGA-II to maximize the H2/CO ratio and 

minimize the outlet temperature in a quench conversion reactor. Another one [43] 

optimized the topology of two impellers installed in a gas–liquid stirred tank using 

CFD and the NSGA-II method. Na et al. [44] integrated the genetic algorithm (GA) 

and ε-constraint method to simultaneously optimize the productivity and maximum 

temperature at the microchannel reactor using a 2D axisymmetric CFD model, which 

is represented using mixed integer non-linear programming (MINLP). However, the 

critical drawback of using EAs is that they require a significantly large number of 

expensive CFD runs.  

Approaches used to minimize the number of CFD runs are developed to avoid this 

drawback. Adaptive hybrid methods [45], which couple population-based algorithms 

with gradient-based local searching methods, have been adopted in many aerospace 

and automotive engineering studies [46, 47]. Replacing expensive CFD simulations 

with cheap surrogate models, such as polynomial functions, radial basis functions, a 

neural network, or a Gaussian process, is another good approach. For an example, 

Jung et al. [48] optimized the geometry of a guiding fin at the Fischer-Tropsche 

microchannel reactor using a neural network surrogate model trained based on the 

CFD results. However, because this method starts the optimization after creating the 

complete surrogate model, it is necessary to evaluate the points that far from the 

optimum. This necessarily increases the number of CFD evaluations. An improved 

method is to use population-based EAs with a surrogate model [49]. In each 

population, the surrogate model evaluates the elements, picking out only the best-
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fitted ones to undergo CFD evaluations. One group [50] successfully optimized a 

quench conversion reactor using CFD and a FAST optimizer [51], which is a 

surrogate-based EA, within a small number of iterations. However, the algorithms 

based on EAs rely on randomness in both exploration and exploitation when 

searching for new elements to evaluate. Thus, there is still further room to reduce the 

number of iterations using mathematically rigorous searching methods based on the 

probability.  

1.4.1. Bayesian optimization 

Bayesian optimization (BO) can be an effective tool for CFD-based optimization in 

that it purses the maximum efficiency through a solid theoretical background [52]. 

BO refers to a class of gradient-free global optimization algorithms, which use a 

Gaussian process (GP) as a surrogate model, and find a next candidate of the 

evaluation using the probabilistic information of the model. It also offers multi-

objective [53, 54], constrained [54, 55], and even transfer-learning multi-task 

optimizations [56]. Although successful applications other than CFD exist, which 

also require expensive evaluations [57-60], only a limited number of studies have 

been conducted on CFD-based optimizations [61]. In particular, no studies have been 

reported for a reactor design optimization. 
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1.5. Aqueous mineral carbonation process : case study subject 

 Throughout this thesis, many computer-aided design approaches such as modeling, 

model intensification and optimization are proposed and applied in aqueous mineral 

carbonation process. This section provides the introduction as well as the precedent 

process systematic studies about mineral carbonation process.  

Carbon capture and utilization or carbon conversion and utilization (CCU) 

technology have recently drawn attentions in both industry and academia because of 

their economic and environmental potentials [62, 63]. Current development progress 

of CO2 utilization is at the technology readiness level 6 (TRL6), which is the stage of 

pilot plant demonstration [62].  

There are several categories of technology under CCU that can convert CO2 to useful 

chemicals and fuels. Some of them use electro-catalytic, photo-electrochemical, 

photo-catalytic, and thermochemical reduction [64], and others use CO2 as a 

feedstock to produce various chemical products such as urea, methanol, and salicylic 

acid [63]. Mineral carbonation, one of promising CCU technologies, captures CO2 in 

the form of mineral carbonates that can be fabricated as building compartments after 

post-processing [65, 66]. It is proved to be at least carbon-neutral, and carbon-

negative when atmospheric CO2 is used as feedstock. The advantages of this 

technology are manifold. First, it can directly use the flue gas from power plants or 

incineration plants without any preprocessing steps. Second, it can use the industrial 

wastes such as steel slags, fly ash, wastewater and brine as mineral sources [65, 67]. 

In addition, the solid carbonate products are thermodynamically stable and have a 

mature market as construction materials to anticipate the economic potentials [67].  
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Several companies have been actively engaged in the development of mineral 

carbonation process and made visible progress. Regarding industrial applications, an 

Australian based start-up, Mineral Carbonation International (MCi), invested by 

Orica since 2013, has operated CO2 mineral carbonation pilot plant since 2016 [68]. 

They announced a plan to construct a full-scale production plant (20,000-50,000 

tons/year of carbonate and silica by-products) by 2020 [69]. The pilot plants of Calera 

Corporation capture up to 2 tons/day of CO2 into calcium carbonate product directly 

from the raw flue gas from power plants. They also constructed a commercial fiber 

cement board line integrated with the mineral carbonation pilot plant to produce full-

size fiber cement board sheets [70]. The Carbon Capture Machine developed by the 

University of Aberdeen has reached TRL4, currently producing 200 kg/day of 

precipitated calcium carbonates. COSIA Carbon XPRIZE Challenge, which was 

launched in 2015, is now supporting its further development to TRL6 demonstration 

plant [71]. Daewoo E\&C in South Korea developed and operated a pilot plant which 

can capture 10 tons/day of CO2 in 2012. They built the scaled-up plant which can 

process 40 tons/day of CO2 in 2017 [72, 73], in which the authors have participated. 

U.K. start-up Carbon8 has a facility which treats 2,000 tons/year of CO2 and produces 

building aggregates using wastes such as ashes from municipal incinerators and 

energy plants [74]. 

Although a lot of effort is being made to commercialize mineral carbonation 

processes as the main technology of CCU, there still remain challenges. First, the 

reaction rates are slow due to the mass transfer resistance between different phases - 

the system involves the dissolutions of mineral and hydroxide ions from the solid 
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reactants, e.g. Ca(OH)2, and carbonate ions from the flue gas. In order to overcome 

the slow reaction rates, it is essential to optimize the reactants and the design of the 

reactor by modeling the entire reaction kinetics including the interphase mass transfer. 

The good reactor design can help accelerate the mass transfer rates by homogeneously 

distributing the gas bubbles and solid particles. Many studies on mineral carbonation 

kinetics and the reaction parameters have been reported and verified with 

experimental results [75]. All of them used deterministic methods for the parameter 

estimation and suggested deterministic values which best fit their experimental 

results. However, some of the parameters, especially the ones related to 

hydrodynamics and mass transfer, are likely to have different values under different 

operating conditions and disturbances, such as the fluctuation of the CO2 

concentration in the flue gas, the inhomogeneous size distributions of solid particles. 

Therefore, the use of the deterministic parameters in the model may hinder the 

accurate predictions of output responses. 

 

1.6. Outline of the thesis 

This thesis suggests computer modeling-oriented strategies to design industrial-

scale chemical reactors; optimal reactor designs can be derived through modeling, 

model intensification (calibration) and optimization. Chapter 1 discusses the 

necessity of this approach and discussed the previous researches and their issues.  

Chapter 2 outlines the ability of CFD-based compartmental model in simulating the 

long-term dynamic behaviors of the industrial-scale aqueous mineral carbonation 

reactor. Chapter 3 provides a successful example of application of Bayesian 
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calibration in aqueous mineral carbonation process. It discusses practical tips and 

procedures to apply this method in general chemical kinetics model intensification 

problems. Chapter 4 proposes a strategy to optimize expensive reactor models, 

particularly CFD models, and apply it to gas-liquid stirred reactor. Finally, Chapter 5 

illustrates the implication of this thesis as well as briefly summarize the previous 

chapters. 
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Chapter 2. 

 Multi-scale modeling of industrial-scale aqueous 

mineral carbonation reactor for long-time dynamic 

simulation# 

 

2.1. Objective 

This chapter introduces the CFD-based compartmental model to simulate industrial-

scale mineral carbonation reactors with complex gas sparger configurations and high 

gas throughputs. In the CFD-based compartmental model, the CFD model calculates 

the mass flow rates of the gas between the zones, and then mass balance equations 

with the kinetics are formulated as a set of differential algebraic equations (DAEs) 

for each zone. The energy balance equation for the entire reactor is also developed to 

consider the temperature dependency of the system. Although there have been several 

attempts to model the kinetics of this system [76-78], this is the first study to integrate 

the CFD information and the heat balance model.  

 

 

 

 

 

 

 

# This chapter cites the author’s submitted journal article under review: Kim, M., Park, S., 

Lee, D., Lim, S., Park, M., & Lee, J. (2020). Modeling long-time behaviors of industrial 

multiphase reactors for CO2 capture using CFD-based compartmental model. Chemical 

Engineering Journal, under review. 
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As a result, the long dynamics of aqueous mineral carbonation reactors, in which 

the time scales of reactions and hydrodynamics vary widely, are obtained; 

hydrodynamics stabilizes in a few seconds, whereas the reaction reaches steady state 

after a few hours. The proposed method can replace the process of simulating several 

hours of reactions in CFD with millions of meshes with simulating just 10–15 sec in 

CFD until the hydrodynamics stabilizes, and then solve the fast kinetic DAEs for the 

rest. The model results were compared with the experimental results at industrial-

scale plants to validate the model. Furthermore, the model was used to analyze the 

scaled-up reactors 2.5 and 10 times larger than an industrial-scale reactor. 

 

2.2. Experimental setup 

Experiments were performed at the industrial-scale plants whose configuration of 

the industrial-scale plant reactor is shown in Figure 2-1. The industrial-scale reactor 

is 4 m in diameter and 4 m in height. The spargers are complex with many 8-mm-

diameter nozzles. Three 2-m-diameter pitched blade impellers were installed in the 

middle of the reactor. The impeller rotational speed was fixed at 30 rpm in all 

experiments.  

The flue gas with flow rate of 5000–7000 Nm3/h containing approximately 15 vol% 

of CO2 flows into the first reactor containing a Ca(OH)2 solution. The effluent gas 

from the first reactor enters the second reactor to capture the remaining CO2 after 

pressurization. The Ca(OH)2 solution is filled in both the reactors until the reactions 

are complete and product mixtures are drawn out. Two test operations were 
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performed under different conditions (see Table 2-1 for details). Experiment I-1 was 

performed for 1 day using only one reactor, whereas Experiment I-2 was performed 

using two reactors in series for 2 days. In Experiment I-2, the reactors were left 

undisturbed after the first day’s operation was over. The second day’s operation 

started with the same solutions and decreased temperatures in the reactors. 
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Figure 2‑1. Side and top views of industrial-scale reactor and configuration of nozzle.
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Table 2‑1. Experimental conditions for industrial-scale process. 

 Experiment I-1 Experiment I-2 

 Day 1 Day 1 Day 2 

Reactor Single 1st 2nd 1st 2nd 

Inlet flowrate (Nm3/h) 6027 6748  6748  

CO2 (vol%) 15.33 15.56  15.56  

Inlet gas temperature (°C) 47.44 54  52  

Initial solution height (m) 2.38 1.34 1.88 1.34 1.88 

Ca(OH)2 (initial wt%) 15 20 20   

Initial temperature (°C) 42 35 35 20 20 
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2.3. Mathematical models 

2.3.1. Reactor model 

Involved reactions  

 

  CO2(g)  →  CO2(nq)  Eq.  2-1 

  Cn(OH)2(𝑠)

𝑘𝑓

  ⇌  
𝑘𝑏

Cn2+(nq) + 2OH−(nq)  Eq.  2-2 

  CO2(nq) + OH−(nq)
𝑘11

  ⇌  
𝑘12

HCO3
−(nq)  Eq.  2-3 

  HCO3
−(nq) + OH−(nq)

𝑘21

  ⇌  
𝑘22

CO3
2−(nq) + H2O  Eq.  2-4 

  H+(nq) + OH−(nq)
𝑘31

  ⇌  
𝑘32

H2O  Eq.  2-5 

  CO2(nq) + H2O(l)
𝑘41

  ⇌  
𝑘42

HCO3
−(nq) + H+(nq)  Eq.  2-6 

  Cn2+(nq) + CO3
2−(nq)

𝑘51

  ⇌  
𝑘52

CnCO3(s)  Eq.  2-7 

  Cn2+(nq) + HCO3
−(nq)

𝑘61

  ⇌  
𝑘62

CnCO3(s) + H+(nq)  Eq.  2-8 
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Mass balance equations 

The reactors in this problem are significantly large to assume homogeneous 

distributions of reactants, particularly of the CO2 gas. Therefore, the reactor volume 

is divided into several zones and set a mass balance equation for each zone with 

respect to CO2(g). It is presumed that the concentrations of the solid and ions are the 

same in all zones because the solid and ion particles are small enough to make Stokes 

flow with circulating liquid streams.  

 The connections between zones are depicted in Figure 2-2. The exact mass balance 

equation at zone 𝑖 can be written as  

  
𝑑𝑚CO2(𝑔)

𝑖

𝑑𝑡
= ∑𝐹𝑗,𝑖

𝑚CO2(𝑔)
𝑗

𝑚
CO2(𝑔)
𝑗

(0)

𝑁

𝑗≠𝑖

  − 𝐹𝑖,𝑖

𝑚CO2(𝑔)
𝑖

𝑚CO2(𝑔)
𝑖 (0)

− 𝑚̇𝑔→𝑙
𝑖   Eq.  2-9 

where 𝑚CO2(𝑔)
𝑖  is the mass of CO2 gas in zone 𝑖, 𝑚CO2(𝑔)

𝑖 (0) is the initial value of 

𝑚CO2(𝑔)
𝑖 , 𝑁 is the total number of zones, 𝑚̇𝑔→𝑙

𝑖  is the CO2 mass transfer rate from 

the gas phase to the liquid phase, and 𝐹𝑖,𝑗 and 𝐹𝑖,𝑖 are from the transition rate matrix 

defined as 

  

[
 
 
 
 
 

𝐹1,1      𝐹1,2 ⋯ 𝐹1,𝑁

⋮       ⋮ ⋱ ⋮

𝐹𝑁,1   𝐹𝑁,2

𝐹𝑖𝑛𝑙𝑒𝑡,1    𝐹𝑖𝑛𝑙𝑒𝑡,2

⋯
⋯

𝐹𝑁,𝑁

𝐹𝑖𝑛𝑙𝑒𝑡,𝑁]
 
 
 
 
 

.  Eq.  2-10 

The transition rate matrix consists of 𝐹𝑖,𝑗, which is the CO2 mass flowrate from zone 

𝑖 to zone 𝑗. 𝐹𝑖,𝑖 is the CO2 mass outflow from zone 𝑖, and 𝐹𝑖𝑛𝑙𝑒𝑡,𝑖 is the inlet mass 

flow rate from the sparger to zone 𝑖. All the components in the transition matrix 

besides 𝐹𝑖,𝑖  (diagonal components) are imported from the CFD simulation. The 
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outflow, 𝐹𝑖,𝑖, is not directly adopted from the CFD result; it is rather fixed as 𝐹𝑖,𝑖 =

 −∑ 𝐹𝑖,𝑗
𝑁
𝑗≠𝑖  to ensure mass conservation at each zone because even a slight violation 

of the mass conservation can cause a convergence problem in subsequent steps.
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Figure 2‑2. Systematic diagram for CFD-based compartmental model.
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In  Eq. 2-9, 𝐹𝑗,𝑖 and 𝐹𝑖,𝑖 are multiplied by 
𝑚CO2

𝑗

𝑚CO2,𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑗  and 

𝑚CO2
𝑖

𝑚CO2,𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑖 , respectively. 

Because 𝐹𝑗,𝑖obtained from CFD-hydrodynamics model does not include the reactions, 

it just provides the initial flow rates. Therefore, the CO2 mass flow rate from 𝑗 to 𝑖 

at time t, 𝐹𝑗,𝑖(𝑡), was constrained to satisfy 𝐹𝑗,𝑖(𝑡): 𝐹𝑗,𝑖(0) = 𝑚CO2

𝑗 (𝑡):𝑚CO2,𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑗

 

to update the flowrates at every time step considering the proceeded reactions.  

The CO2 mass transfer rate, 𝑚̇𝑔→𝑙
𝑖 , in Eq. 2- 9 is calculated as 

  

𝑚̇𝑔→𝑙
𝑖

= 𝑘𝐿𝑎𝐸 (𝐻CO2
𝑚CO2(𝑔)

𝑖

𝑀𝑊CO2
⋅ 𝑉𝑔𝑎𝑠

𝑖
 − [CO2(𝑎𝑞)]) ⋅ 𝑀𝑊𝐶𝑂2

, 

 Eq.  2-11 

where 𝑘𝐿  is the overall CO2 mass transfer coefficient, 𝑎 is the interfacial area per 

unit volume, 𝐸 is the enhancement factor to consider chemical mass transfer, 𝐻CO2 

is Henry’s constant for the electrolyte solution, 𝑀𝑊CO2
 is the molecular weight of 

CO2, 𝑉𝑔𝑎𝑠
𝑖  is the volume of gas at zone 𝑖 obtained from CFD result, and [CO2(nq)] 

is the molar concentration of CO2(nq). The experimental or physical correlations are 

used for 𝑘𝐿, 𝑎, 𝐸, and 𝐻CO2 found from the literature. Please refer to Section 3.3.1 

for detailed equations. Some of these correlations include the Reynolds number. For 

its calculation, CFD results such as the average solution velocity u, w, v, and CO2 

velocity u, w, v in each zone are employed.  

 For the rest of the chemical species involved in the system, one mass balance 

equation per each one of them to represent the entire homogeneous reactor space is 

developed respectively. Because there are no inlet and outlet streams for the liquid 
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and solid, these equations do not include any flow rate terms.  

  

𝑑[CO2(nq)]

𝑑𝑡

= −𝑘11[CO2(nq)][OH−] + 𝑘12[HCO3
−]

− 𝑘41[CO2(nq)] + 𝑘42[HCO3
−][H+]

+  
1

𝑀𝑊CO2
⋅ 𝑉𝑙𝑖𝑞

∑𝑚̇𝑔→𝑙
𝑖

𝑁

𝑖=1

 

 Eq.  2-12 

  

 [HCO3
−]

𝑑𝑡

= 𝑘11[CO2(nq)][OH−] − 𝑘12[HCO3
−]

− 𝑘21[HCO3
−][OH−] + 𝑘22[CO3

2−] + 𝑘41[CO2(nq)]

− 𝑘42[HCO3
−][H+] − 𝑘61[Cn2+][HCO3

−] + 𝑘62[H
+] 

 Eq.  2-13 

  

d [CO
3

2−
]

𝑑𝑡

= 𝑘21 [HCO
3
−] [OH−] − 𝑘22 [CO

3

2−
]

− 𝑘51 [Ca2+] [CO
3

2−
] + 𝑘52 

 Eq.  2-14 
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𝑑[OH−]

𝑑𝑡

= −𝑘11 [CO2(aq)] [OH−] + 𝑘12 [HCO
3
−]

− 𝑘21 [HCO
3
−] [OH−] + 𝑘22 [CO

3

2−
]

− 𝑘31[OH−][H+]

+ 2𝐴𝑠 (𝑘𝑓 − 𝑘𝑏 [Ca2+] 𝑓2[OH−]
2
𝑓4) 

 Eq.  2-15 

  

d[H+]

𝑑𝑡

= −𝑘31[OH−][H+] + 𝑘32 − 𝑘42 [HCO
3
−] [H+]

+ 𝑘41 [CO2(aq)] + 𝑘61 [Ca2+] [HCO
3
−] − 𝑘62[H

+] 

 Eq.  2-16 

  

d [Ca2+]

𝑑𝑡

= −𝑘51 [Ca2+] [CO
3

2−
] + 𝑘52 − 𝑘61 [Ca2+] [HCO

3
−]

+ 𝑘62[H
+] + 𝐴𝑠 (𝑘𝑓 − 𝑘𝑏 [Ca2+] 𝑓2[OH−]

2
𝑓4) 

 Eq.  2-17 

  

d [CaCO3]

𝑑𝑡

= 𝑘51 [Ca2+] [CO
3

2−
] − 𝑘52 + 𝑘61 [Ca2+] [HCO

3
−]

− 𝑘62[H
+] 

 Eq.  2-18 

In Eq. 2-12, 𝑉liq is the liquid volume of the reactor. In Eq. 2-15 and Eq. 2-17, 𝐴𝑠 

and 𝑓 are the total surface area of Ca(OH)2 and activity coefficient of the solution, 
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respectively. The term 𝐴𝑠 is devised to decrease with the consumption of Ca(OH)2. 

The correlations or values for all the rate constants are adopted from the literature 

(see Section 3.3.1).  

 

Energy balance equation 

It is very important to predict temperature accurately because several rate constants 

and terms in the mass transfer rate are functions of the temperature. Thus, a heat 

balance equation for the reactor was formulated as 

  

 𝑇𝑟𝑒𝑎𝑐𝑡𝑜𝑟

𝑑𝑡

=
𝐻𝑖𝑛 − 𝐻𝑜𝑢𝑡 − 𝐻𝑤𝑎𝑡𝑒𝑟 𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 + 𝐻𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛

𝐶𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠
 

 Eq.  2-19 

  𝐻𝑖𝑛 = ∑ 𝑛𝑋,𝑖𝑛𝑙𝑒𝑡 ⋅ 𝐻𝑚,𝑋(𝑇𝑖𝑛𝑙𝑒𝑡 𝑔𝑎𝑠),

𝑋=N2,CO2,H2O

  Eq.  2-20 

where 𝑛𝑋,𝑖𝑛𝑙𝑒𝑡  and 𝐻𝑚,𝑋(𝑇) denote the moles of 𝑋 in the inlet stream and the 

molar enthalpy of 𝑋 at temperature 𝑇, respectively.  

  𝐻𝑜𝑢𝑡 =  ∑ 𝑛𝑋,𝑜𝑢𝑡𝑙𝑒𝑡 ⋅ 𝐻𝑚,𝑋(𝑇𝑟𝑒𝑎𝑐𝑡𝑜𝑟),

𝑋=N2,CO2,H2O

  Eq.  2-21 

  

𝐻𝑤𝑎𝑡𝑒𝑟 𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛

= (𝑛H2O,𝑜𝑢𝑡𝑙𝑒𝑡 − 𝑛H2O,𝑖𝑛𝑙𝑒𝑡)

⋅ Δ𝐻𝑚,𝑤𝑎𝑡𝑒𝑟 𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 

 Eq.  2-22 

where Δ𝐻𝑚,𝑤𝑎𝑡𝑒𝑟 𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 , the molar latent heat of water is 40660 J/mol. 
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  𝐻𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 = Δ𝐻𝑚,𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 ⋅
𝑑[CnCO3]

𝑑𝑡
⋅ 𝑉𝑙𝑖𝑞 ,  Eq.  2-23 

where Δ𝐻𝑚,𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛, the heat of the net reaction, CO2 + Cn(OH)2 → CnCO3 + H2O, 

is 113.1 kJ/mol. 

  

𝐶reactants

= 𝑚H2O ⋅ 𝑐H2O + 𝑚Ca(OH)2 ⋅ 𝑐Ca(OH)2 + 𝑚CaCO3

⋅ 𝑐CaCO3
, 

 Eq.  2-24 

is the heat capacity of all the reactants. To calculate 𝐶reactants, 

  𝑚H2O =
𝑉liq

𝜌H2O
,  Eq.  2-25 

  

𝑚Ca(OH)2

= 𝑚Ca(OH)2,initial − ([Cn2+] + [CnCO3]) ⋅ 𝑉𝑙𝑖𝑞

⋅ 𝑀𝑊Ca(OH)2 , 

 Eq.  2-26 

  𝑚CaCO3
= 𝑉𝑙𝑖𝑞[CnCO3]  Eq.  2-27 

are applied. For heat capacities, 𝑐H2O  is 4.18 J/g·K, 𝑐CaCO3
 is 0.8343 J/g·K, a 

correlation (see Supporting Material of Na et al. [77]) is adopted for 𝑐Ca(OH)2. When 

calculating 𝐻𝑖𝑛  and 𝐻𝑜𝑢𝑡 , 𝑛𝑁2,𝑖𝑛𝑙𝑒𝑡  and 𝑛CO2,𝑖𝑛𝑙𝑒𝑡  are determined from the 

experimental setup. On the other hand, 𝑛N2,𝑜𝑢𝑡𝑙𝑒𝑡 = 𝑛N2,𝑖𝑛𝑙𝑒𝑡  and 𝑛CO2,𝑜𝑢𝑡𝑙𝑒𝑡 =

𝑛CO2,𝑖𝑛𝑙𝑒𝑡 −
1

𝑀𝑊CO2
⋅𝑉𝑙𝑖𝑞

∑ 𝑚̇𝑔→𝑙
𝑖𝑁

𝑖=1 , which means that CO2 not transferred to the 

solution goes to the outlet stream. The quantities of water in the inlet and outlet 

streams are determined according to the maximum moisture content allowed for air 

at a given temperature, 𝜃𝑤,𝑚𝑎𝑥(𝑇): 
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  𝑛H2O = (𝑛N2
+ 𝑛CO2

) ⋅ 𝜃𝑤,𝑚𝑎𝑥(𝑇)  Eq.  2-28 

For 𝐻𝑚,𝑋(𝑇) and 𝜃𝑤,𝑚𝑎𝑥(𝑇), regressed equations from the data table of the ideal 

gas properties are used (see Supporting Material [77]) for details). 

2.3.2. CFD model 

The flowrates between the zones are brought from CFD simulation results. Here, the 

CFD modeling methods for the mineral carbonation reactors are described. 

Among the three phases involved in the system, only gas and liquid flows are 

modeled using Eulerian-Eulerian approach. The solid particles in the system is too 

small to affect the flow of other phases, so only the change of viscosity and density 

of the primary liquid phase are reflected. (see Kim et. al [5] for details.)  

Mass and momentum conservation equations are given as  

  
∂(αk𝜌𝑘)

𝜕𝑡
+ ∇ ∙ (𝛼𝑘𝜌𝑘𝒖𝑘) = 0  Eq.  2-29 

  

∂(αk𝜌𝑘𝒖𝑘)

𝜕𝑡
+ ∇ ∙ (𝛼𝑘𝜌𝑘𝒖𝑘𝒖𝑘)

= ∇ ∙ (𝛼𝑘𝜇𝑒𝑓𝑓(∇𝒖𝑘 + (∇𝒖𝑘)𝑇)) − 𝛼𝑘∇𝑝𝑘 + 𝑴𝑘 

 Eq.  2-30 

where 𝜌, 𝒖, 𝜇eff, and p are volume fraction, density, velocity, effective viscosity, 

and pressure, respectively, and the subscript k denotes the phase type (solution phase: 

m, gas phase: g). Interphase momentum exchange term between the k-phase and all 

other phases is given as Mk.  

  𝑴𝑚 = −𝑴𝑔 = 𝑴𝑚,𝐷 + 𝑴𝑚,𝐿 + 𝑴𝑚,𝑉𝑀,  Eq.  2-31 
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  𝑴𝑚,𝐷 =
3

4
𝛼𝑔𝜌𝑚

𝐶𝐷

𝑑𝐵
|𝒖𝑔 − 𝒖𝑚|(𝐮g − 𝒖𝑚),  Eq.  2-32 

  𝑴𝑚,𝐿 = 𝛼𝑔𝜌𝑚𝐶𝐿(𝒖𝑔 − 𝒖𝑚) × ∇ × 𝒖𝑚,  Eq.  2-33 

  𝑴𝑚,𝑉𝑀 = 𝛼𝑔𝜌𝑚𝐶𝑉𝑀(
𝐷𝑔𝒖𝑔

𝐷𝑡
−

𝐷𝑚𝒖𝑚

𝐷𝑡
)  Eq.  2-34 

where 𝑴𝑚,𝐷 , 𝑴𝑚,𝐿 , and 𝑴𝑚,𝑉𝑀  denote drag, lift, and virtual mass force, 

respectively. The drag coefficient (CD), lift coefficient (CL), and virtual mass force 

coefficient (CVM) were set as 0.44, 0.5, and 0.25 when 𝛼𝑔 is less than 0.45; and 0.05, 

0, and 0, otherwise. This is to prevent a high value of 𝛼𝑔 causing numerical problems 

[79, 80]. 

For the turbulence flow modeling, a standard k-ε modeling approach as well as the 

effective viscosity term in Eq. 2-30 are introduced.  

  

𝜕

𝜕𝑡
(𝜌𝑚𝛼𝑚𝑘𝑚) + 𝛻

∙ (𝛼𝑚(𝜌𝑚𝒖𝑚𝑘𝑚 − (𝜇𝑚 +
𝜇𝑡,𝑚

𝜎𝑘
)𝛻𝑘𝑚)

= 𝛼𝑚(𝑃𝑚 − 𝜌𝑚𝜖𝑚), 

 Eq.  2-35 

  

𝜕

𝜕𝑡
(𝜌𝑚𝛼𝑚𝜖𝑚) + 𝛻

∙ (𝛼𝑚𝜌𝑚𝒖𝑚𝜖𝑚 − (𝜇𝑚 +
𝜇𝑡,𝑚

𝜎𝜖
)𝛻𝜖𝑚)

= 𝛼𝑚

𝜖𝑚

𝑘𝑚

(𝐶1𝜖𝑃𝑚 − 𝐶2𝜖𝜌𝑚𝜖𝑚), 

 Eq.  2-36 

where the parameters 𝐶𝜇, 𝐶1𝜖, 𝐶2𝜖, 𝜎𝑘, and 𝜎𝜖 have values of 0.09, 1.44, 1.92, 1.0, 

and 1.3, respectively, and Pm represents the turbulence production owing to buoyancy 

and viscous forces which is calculated as 
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𝑃𝑚

= 𝜇𝑡,𝑚∇𝒖𝑚 ∙ (∇𝒖𝑚 + ∇𝒖𝑚
𝑇 ) −

2

3
∙ ∇𝒖𝑚(3𝜇𝑡,𝑚∇

∙ 𝒖𝑚 + 𝜌𝑚𝑘𝑚) 

 Eq.  2-37 

The effective viscosity is expressed as 

  𝜇𝑒𝑓𝑓 = 𝜇𝑚 + 𝜇𝑡,𝑚  Eq.  2-38 

where 𝜇𝑚 is the original solution viscosity and 𝜇𝑡,𝑚 is turbulence viscosity defined 

as  

  𝜇𝑡,𝑚 = 𝜌𝑚𝐶𝜇

𝑘𝑚
2

𝜖𝑚
.  Eq.  2-39 

 

2.3.3. Numerical setting 

A commercial software ANSYS CFD 18.2 (Ansys., USA) is used on Intel Xeon E5-

2690 (24 cores) machine with 128 GB RAM for all CFD simulations.  

For the walls in the reactor, free-slip and no-slip conditions were adopted for the gas 

and solution phases, respectively. For the gas outlet, the de-gassing condition, which 

only allows the discharge of gas, was used. To prevent the computational time 

increase caused by excessively fine meshes around the gas sparger, the detailed 

configuration of nozzle holes are omitted. The rotation of the impellers are simulated 

using a multiple reference frame (MRF) method. For the advection and transient 

schemes, a high resolution and second-order backward Euler were used, respectively. 

The convergence is achieved when the residual drops to 1.0e-4. A time step of 0.01s 

is applied.  
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While obtaining the CO2 mass transfer rates from the CFD-based compartmental 

model, the regions above the aqueous solution were not considered. In other words, 

it was assumed that the CO2 mass transfer only takes place in the region where the 

gas is distributed in the form of particles throughout the liquid phase. In the CFD-

based compartmental model, the zones near the liquid surface contain both the 

regions which does and does not satisfy the above statement. This necessarily 

happens because the angled shape compartments cannot accurately separate the 

curved surface of the liquid. The solution for this problem is to divide the reactor into 

a number of angled zones first, and then reset the zones located near the surface in 

the CFD simulation to only include the meshes with gas holdup less than 0.8.   

For the kinetic model, MATLAB with Sundials IDAS solver was used. Particularly, 

dense linear solver with the relative tolerance 10-7
 and zero-crossing root algorithm 

were employed.  
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2.4. Results and discussions 

2.4.1. CFD-based compartmental model for industrial-scale 

reactor. 

The CFD-based compartmental model with the full kinetics was implemented to 

simulate the industrial-scale reactor. The number of zones in the model was set to 179 

because 119-zone model showed significantly different results while the 291-zone 

model showed little difference as shown in Figure 2-3. The detailed configuration of 

the 179 compartments is shown in Figure 2-4.  

Two sets of data from the test operations performed at the Incheon plant were 

obtained. The data include time series measurements of the overall CO2 removal 

efficiency and pH and temperature values of each reactor. Figure 2-5 shows the model 

prediction performance from the initial states until all Ca(OH)2 is consumed. 
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Figure 2‑3. CO2 holdup profiles of the CFD-based compartmental model in 119-zone (left), 179-zone (middle), and 291-zone 

(right) models in Experiment I-1 2nd reactor.
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Figure 2‑4. Side and top view of the 179-zone model in the industrial-scale reactor. 
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Figure 2‑5. Model results compared with operation data from (a) Experiment I-1 and (b) Experiment I-2.
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One cycle of batch process starts with reactors fully charged with Ca(OH)2 to keep 

a high level of pH until the majority of Ca(OH)2 is reacted. Because the net reaction 

is exothermic and the inlet gas temperature (usually around 50 °C) is higher than the 

initial reactor temperature, the temperatures increases as reactions proceed. When 

most of Ca(OH)2 disappears, the pH and removal efficiency start to decrease. In 

Experiment I-2, the solution volume in the 1st reactor is only two third that of the 2nd 

reactor, which explains the faster termination of the 1st reactor operation. However, 

even if the reactors had the same volume of reactants, the reactions would end earlier 

in the 1st reactor because the concentration of CO2 in the inlet stream is significantly 

higher and so is the driving force and rate of the interphase mass transfer. The 

temperatures do not increase linearly but saturate at some point because the higher 

the temperature, the more the water evaporated; consequently, more heat is lost as 

latent heat. Before the reactions end, the thermodynamic equilibrium is reached when 

the enthalpy of the inlet stream becomes equivalent to the sum of enthalpies of the 

outlet stream, heat of reaction, and latent heat from water evaporation. The 

temperatures start to decrease when the reactions are complete but saturate after a 

while again. In the model, it happens when the reactor temperature reach the inlet gas 

temperature.  

Some mismatches between the model and the real process behaviors exist; however, 

most of these mismatches can be explained. First, there is difference in the times 

when the CO2 removal efficiency and pH sharply decline, particularly in Experiment 

I-1. Because the decline starts when the base source, Ca(OH)2, is completely 

consumed, initial amounts of Ca(OH)2 in each reactor determine the starting time 
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point of the decrease. In the model, the initial amount of Ca(OH)2 is calculated based 

on the measured height and concentration of the solution. Therefore, the errors in 

their measurement would easily result in a discrepancy in the disappearing moment 

of Ca(OH)2. Second, the model does not behave as smooth around inflection points 

as the real plant. For example, the removal efficiency of the plant data (top graph of 

Figure 2-5 (a)) shows a gradually decreasing behavior whereas the model result has 

a sharp breaking point. In Figure 2-5 (b), the plant data also look like an averaged 

curve of the model results where the steps are observed. In the model, the dissolution 

of Ca(OH)2 follows the same kinetics described in Eq 2-15 and Eq. 2-17 till the end. 

However, the real process may involve different reaction mechanisms when not much 

Ca(OH)2 is left and the dissolution rate drops. One possible explanation is the 

precipitation of CaCO3 on the Ca(OH)2 surface [81]. CaCO3 forms the shell of the 

particles and hinders the dissolution of Ca(OH)2. However, CO2 can diffuse through 

the shell and react with Ca(OH)2 in the core part. This also explains the phenomenon 

in which a low level of the removal efficiency is still maintained after a significant 

drop in pH. Furthermore, the temperature changes are slightly different. It is because 

the model simplifies the complex thermodynamic behaviors of the involved materials; 

it is assumed that all the gas species follow the ideal gas law and binary interactions 

are ignored in enthalpy and density calculations. The water content of the gas stream 

was also forced to reach the 100% humidity of the temperature provided that the inlet 

gas from the flue gas is containing enough amount of water vapor after combustion 

and the outlet gas is from the reactor full of aqueous solution. However, as real gas 

behaves differently from the ideal gas, the total enthalpy of the inlet and outlet streams 
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in the model could be different from the real values. Nonetheless, the overall tendency 

and maximum temperature, which is important because it significantly influences the 

removal efficiency, matches the plant data. In Experiments I-1 and I-2, the removal 

efficiency shows around 7 % and 5% errors based on the steady state, respectively. 

At the same time, the maximum temperature in Experiment I-1 shows a discrepancy 

of 2.7% and Experiment I-2 has 2.1% and 1.2 % errors for the 1st and 2nd reactors, 

respectively.  

The model is limited in predicting the termination of the batch cycle, but it predicts 

the beginning and the steady-state stages with significant accuracy. It shows that it is 

able to estimate the maximum removal efficiency and temperature of the reactor from 

only its design and the initial operating conditions. It is also able to monitor the 

changes in the concentration of each species as well as the accumulation of the 

product during the operation using the model. Figure 2-6 shows that the amount of 

remaining Ca(OH)2 decreases, whereas the concentration of Ca2+ ions is still 

maintained at a certain level. It shows that the rate determining step of this process is 

not the dissolution of Ca(OH)2 but the dissolution of the CO2 gas. It is also supported 

by the negligible concentration of CO2(aq), HCO3
-, CO3

2-
 ions at the same time.
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Figure 2‑6. Concentration changes of involved species during Experiment I-1.
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The concentration of CO2 gas is different at each zone. Figure 2-7 shows that CO2 

volume fractions are generally low during the active period, in which the removal of 

CO2 occurs. In addition, the CO2 gas occupies less fraction of volume as it rises to 

the top, which means that CO2 in the flue gas is gradually absorbed during the 

residence time. However, the simulation shows that the zones close to impellers do 

not have the CO2 gas. This is because the MRF region that used to simulate rotating 

impellers in CFD cannot be divided into multiple zones in the compartmental model. 

The MRF zones have negligible inflow from the adjacent zones owing to the 

propelling power of impellers. However, reactions occur actively during the initial 

period. Therefore, the CO2 holdup converges to 0 in a short time until the reactions 

are completed. If it was possible to divide the MRF zones in the angular direction, 

the inflow from the side zone would exist at a significant level and the CO2 holdup 

would not drop to 0. 



41 

 

 

Figure 2‑7. CO2 volume fraction changes at each zone during the operation.
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2.4.2. Design and simulation of higher-scale reactors  

The CFD-based compartmental model can help in designing reactors of different 

sizes and for different purposes. The developed model was used to predict the CO2 

removal efficiency of larger reactor designs to scale up the mineral carbonation 

process. Here, two reactor designs of different sizes to handle 2.5 (Type A) and 10 

times (Type B) more flue gas than the industrial-scale one are proposed. Proposed 

designs are not merely the scaled up versions of the current design; the internal 

structures are modified to improve the performance of the proposed reactors. The 

configurations of the two reactors are given in Figure 2-8. 
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Figure 2‑8. Side and top views of Type A (gas inlet 17,500 Nm3/hr) and Type B 

(gas inlet 70,000 Nm3/hr) reactors.
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Because the pH and temperature of the reactor are not controlled under the current 

mode of operation, dynamic simulations should be conducted from the possible initial 

conditions to predict the CO2 removal efficiency at the steady state. Note that it is 

already shown that the CFD-based compartmental model can predict the steady-state 

performances with good accuracies. The number of zones applied to Type A and Type 

B reactors are 181 and 164, respectively. The configurations are given in Figure 2-9. 

The inlet volumetric flow rates are 17,500 Nm3/hr and 70,000 Nm3/hr and the initial 

liquid heights are 4 m and 6 m for Type A and Type B, respectively. In both reactors, 

the volume fraction of CO2 in the inlet flue gas, the weight fraction of Ca(OH)2 in 

the liquid reactant, and the initial temperature of the reactant are set to 15%, 20% and 

20 °C, respectively. The predicted dynamic behaviors are shown in Figure 2-10.
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Figure 2‑9. Top) Side and top view of the 181 compartments for Type A reactor, 

Bottom) Side and top view of the 164 compartments for Type B reactor.
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Figure 2‑10. Predicted dynamic behaviors of Type A and Type B reactors.
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The CO2 removal efficiencies were derived only from one reactor for each type 

unlike the pilot- and industrial-scale plants in which two connected reactors were 

present and the CO2 removal efficiencies were calculated from the sum of mass-

transferred CO2 in two reactors in series. The CO2 removal efficiencies were 85.3% 

for Type A and 93.9 % for Type B with single reactor. The reason for the higher CO2 

removal efficiencies is the initial solution height. Owing to the greater solution height, 

the CO2 residence time increased, and this led the high removal efficiencies.  

 

2.5. Conclusions 

CFD-based compartmental model is a great tool to implement the long-time 

dynamic simulations of industrial multiphase reactors. This chapter describes the 

modeling method as well as the validation results with pilot plant data.  

Industrial-scale reactor built in Incheon, South Korea are modeled using CFD-based 

compartmental modeling method. The entire reactor space is divided into 179 zones, 

in which homogeneous distributions of gas are assumed. 179 mass balance equations 

for CO2 gas including the reactions are set for each zone. In- and out- flow rates for 

each zone are brought from the CFD simulation results. For the mass balance 

equations of other aqueous species and heat balance equation, zoning method is not 

used; one equation is set for entire reactor. The formulated equations are in 

differential algebraic equations form and solved using Sundials IDAS solver.  

The dynamic simulation was performed from the initial conditions based on the 

experiments at the industrial-scale plant. The model could predicted the CO2 removal 
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efficiency, pH, and temperature changes over the batch operations of 5–10 h with 

good accuracy. Although the model failed at catching the termination moments, it 

was able to predict the maximum efficiency and the temperature of the given 

conditions very well. Furthermore, the model is capable of observing the hidden 

dynamics such as concentration changes in every chemical species, which was not 

possible to measure in real plants. 

The CFD-based compartmental model was also used to predict the dynamic 

behavior of reactors larger scale reactors. Any type of multiphase industrial-scale 

reactors can be simulated using CFD-based compartment model as long as CFD and 

kinetic models of the system are available. It allows to simulate long-time dynamic 

behavior of the transient system as well as the effect of non-homogeneous mixing in 

industrial processes. 

Suggestions on zone dividing method 

The most critical parameter which influences the reactor performance must be 

identified when dividing the reactor into many zones. The identified parameter is 

recommended to be homogenous in each zone. In momentum transport dominant 

reactors, parameters related to mixing are critical. Mixing scales can subsequently 

categorized into micro-, meso- and macro- levels. Micromixing refers to the 

Kolmogorov scales of motion and it becomes critical in reactors with very fast 

reactions. Kolmogorov time scale is calculated as (
ν

ϵ
)
0.5

, where ν is the kinematic 

viscosity of the fluid and ϵ is the average dissipation rate of turbulence kinetic energy. 

Mesomixing indicates the turbulent dispersion of a feed inlet stream and it largely 
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influences the performance of semi-batch reactors. Mesomixing time for dispersion 

of feed is expressed as 
Q

U(0.1k2ϵ)
 [82], where Q is the volumetric inlet flowrate, U is 

the surrounding fluid velocity near inlet, and k is the turbulence kinetic energy.   

Macromixing is related to bulk motion of fluid and, for example, affects blend time 

in batch systems. Average energy dissipation could be a good indicator in such cases.   

In mass transport dominant reactors, for example, in multiphase reactors where 

interphase reactions or heterogeneous catalytic reactions take place, different factors 

are recommended to use as a zone dividing criterion. For example, in the mineral 

carbonation reactor, the mass transport of CO2 from gas to aqueous phase is the 

dominant phenomenon. Thus, the maintaining the homogenous gas holdup and 

interfacial area in each zone was the primary consideration in this thesis. In some 

reactors, the solid holdup could be the key parameter, and in other reactors where the 

mass transport is mostly affected by the temperature, the temperature gradient must 

be the main concern. However, the zone dividing with only one criterion (gas holdup 

in the current case) could ignore the effect of other factors; a potential pH gradient in 

the reactor was ignored in the proposed CFD-based compartment model which could 

bring partial contribution on model-plant mismatch.  

 

  



50 

 

Chapter 3. 

 Model intensification of aqueous mineral 

carbonation kinetics via Bayesian calibration* 

 

3.1. Objective 

Here, fundamental aqueous mineral carbonation kinetics model for three-phase 

(solid: Ca(OH)2, NaOH, and CaCO3}; liquid: absorbent solution with ions; gas: flue 

gas) reactor. The model takes a form of differential algebraic equations (DAEs). 

Using an existing DAE solver [83], it was able to solve the stiff and hybrid systems 

with significant magnitude differences among the parameters and discrete events such 

as the disappearance of solids after complete dissolutions. The parameters in the 

model are estimated through a Bayesian parameter estimation framework, which can 

quantify uncertainties in the experimental outputs. In order to show the efficacy of 

the developed framework and obtain the posterior distributions of mineral 

carbonation kinetic parameters, a lab-scale process is constructed and experiments 

according to an orthogonal array design of experiments (DoE) are conducted.  

 

 

 

 

 

 

* This chapter cites the author’s published journal article: Na, J., Park, S., Bak, J., Kim, M., 

Lee, D., Yoo, Y., Kim, I., Park, J., Lee, U., & Lee, J. (2019). Bayesian inference of aqueous 

mineral carbonation kinetics for carbon capture and utilization. Industrial & Engineering 

Chemistry Research, 58(19), 8246-8259. 
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This chapter is organized as follows. First, the experimental methods of lab-scale 

mineral carbonation process are presented. Then, the mathematical model of reaction 

kinetics for 3-phase mineral carbonation reactor is described. A Bayesian parameter 

estimation scheme is explained in the next section. In 3.5. physical interpretation of 

the experimental results and the parameter estimation. Finally, concluding remarks 

are provided. 

 

3.2. Experimental methods 

3.2.1. Solution and gas preparation 

The absorbent solution was a mixture of Ca(OH)2 (purity > 95.0% Ca(OH)2 ACS 

reaction, Sigma Aldrich) and NaOH (purity > 97.0% NaOH ACS reaction, Sigma 

Aldrich) in distilled water. CO2 and N2 gas mixture was used as an artificial flue gas. 

The CO2 volume concentration of inlet flue gas, 𝜙𝐶𝑂2
i𝑛𝑙𝑒𝑡, and the flue gas flow rate, 𝑉̇ 

were controlled by mass flow controller (MFC) at 101.325 kPa. The reactor 

temperature, 𝑇, the weight fractions of Ca(OH)2 (𝑤𝐶𝑎(𝑂𝐻)2) and NaOH (𝑤𝑁𝑎𝑂𝐻), 

𝜙𝐶𝑂2
i𝑛𝑙𝑒𝑡, and 𝑉̇ were decided by an orthogonal array experiment design method (a 

strength 2, 4 levels, 5 factors and index 1; 2-(4,5,1)). 16 experiments were conducted 

according to the experiment design and one additional experiment for validation, as 

described in Table 1.  
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Table 3‑1. 2-(4,5,1) orthogonal array experiment design 

Exp. 

# 

𝑇 

( ∘C) 

𝜙
𝐶𝑂2

i𝑛𝑙𝑒𝑡
 

(vol%) 

𝑤𝐶𝑎(𝑂𝐻)2 

(wt%) 

𝑤𝑁𝑎𝑂𝐻 

(wt%) 

𝑉̇ 

(L/min) 

1 25 2 1 0 0.5 

2 25 10 1.5 1 1 

3 25 20 2 2 1.5 

4 25 30 3 3 2 

5 40 2 1.5 2 2 

6 40 10 1 3 1.5 

7 40 20 3 0 1 

8 40 30 2 1 0.5 

9 50 2 2 3 1 

10 50 10 3 2 0.5 

11 50 20 1 1 2 

12 50 30 1.5 0 1.5 

13 68 2 3 1 1.5 

14 68 10 2 0 2 

15 68 20 1.5 3 0.5 

16 68 30 1 2 1 

Test 70 10 3 1 2 
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3.2.2. Laboratory-scale mineral carbonation process 

The overall schematic process flow diagram is shown in Figure 1. 500 ml PYREX 

double-jacketed reactor was used as a gas mixer and a carbonation reactor. To filtrate 

the solid particles including calcium carbonate, calcium hydroxide, and sodium 

hydroxide, glass fiber filter with 1.6 pore was applied at the inlet blower of CO2 gas. 

The temperature of the gas mixer and the carbonation reactor, 𝑇, were controlled by 

a thermostat water bath. To prevent concentration changes caused by evaporation of 

the absorbent solution, a condenser was installed with a water chiller. Experiment 

outputs were CO2 volume concentration of the outlet flue gas, 𝜙𝐶𝑂2
o𝑢𝑡𝑙𝑒𝑡, and pH of the 

absorbent solution in the reactor. They were recorded from the gas analyzer (multi-

gas analyzer, Sensoronic) and the pH meter (HM-41X, DKK-TOA) in time-series 

(sampling time was 30 seconds), respectively. 

To start-up the process, temperatures of water baths of the gas mixer and the reactor 

were first set following the experiment design. In order to get perfectly mixed flue 

gas as well as to prevent fluctuations of the concentration and the temperature, the 

CO2 gas was sent to a vent line for a while until the temperature reached a steady-

state. Meanwhile, highly pure N2 gas was purged to the reactor to remove the latent 

dissolved air and impurities. Afterwards, the N2 purging was stopped and the reactor 

was filled with 500 of the absorbent solution. Lastly, the valve prior to the reactor 

was opended so the flue gas could be blown into the reactor. The reacting mixture 

was stirred in 300 rpm using a magnetic bar to distribute bubbles and solid particles. 

The experimental outputs were recorded every half a minute. When the CO2 volume 
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concentration of the outlet flue gas showed no difference to the inlet gas, which means 

that the absorbent solution cannot absorb CO2 gas any longer, it was assumed that the 

absorbents in the solution were entirely consumed. So the data logging was stopped 

and the process was shut down. Similar experimental settings and procedure were 

applied in the previous papers as well [84, 85]. 
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Figure 3‑1. Schematic process flow diagram of aqueous mineral carbonation process for CO2 absorption and utilization.
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3.3. Mathematical models 

The reactions involved in the aqueous mineral carbonation process can be 

categorized into four groups: First, mass transfer of carbon dioxide gas into the water 

solution, which is the most important reaction that decides the overall CO2 removal 

efficiency. Second, dissolutions of two solid species, NaOH and Ca(OH)2. Third, 

ionic reactions between the dissolved ions derived from the gas and solid reactants. 

Last, the precipitation of CaCO3, a final product. Generally, the ionic and 

precipitation reactions are fast, whereas the gas-liquid mass transfer and solid 

dissolutions are slow and regarded as rate-limiting steps because of the resistance 

between two different phases.  

3.3.1. Kinetics of aqueous mineral carbonation process 

Mass transfer between gas and liquid phase 

  CO2(g) → 𝐶𝑂2(nq).  Eq.  3-1 

This is a physical absorption of CO2 gas to the liquid phase, whose transfer rate per 

unit gas volume is expressed as  

  

𝑟m𝑎𝑠𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

= (𝜃𝑘𝑙
𝑘𝑙)𝐴𝑔(𝜃𝐸𝐸)(𝐻𝐶𝑂2[CO2(g)] − [𝐶O2(nq)]), 

 Eq.  3-2 

where 𝑘𝑙  and 𝐸  are the overall mass transfer coefficient and the enhancement 

factor by chemical reactions, to which the adjustment factors 𝜃𝑘𝑙
 and 𝜃𝐸  are 

multiplied respectively, in order to compensate the uncertainties in the nominal 

parameters. 𝐴𝑔 is the surface area per unit gas volume, 𝐻𝐶𝑂2 is the Henry constant 

of CO2 in electrolyte solutions, and [⋅]  denotes the molar concentrations of 
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corresponding species. 

The overall mass transfer coefficient, 𝑘𝑙, is derived from Sherwood (𝑆ℎ) relation 

[86],  

  𝑆ℎ =
𝑘𝑙𝜃𝑑𝑏

𝐷𝐶𝑂2
= 2 + 0.015𝑅𝑒0.89𝑆𝑐0.7,  Eq.  3-3 

where 𝜃𝑑𝑏
 is the bubble diameter, which was assumed to have a constant value that 

must be found out by the parameter estimation. 𝐷𝐶𝑂2 is the diffusivity of CO2 under 

alkaline environment, and 𝑅𝑒  and 𝑆𝑐  are Reynolds and Schmidt numbers, 

respectively. The correlation of 𝐷𝐶𝑂2 is given by  

  
𝐷𝐶𝑂2

𝐷𝑤
𝐶𝑂2 = 1 − 1.29 × 10−4[OH−],  Eq.  3-4 

  𝐷𝑤
𝐶𝑂2 = 2.35 × 10−6exp (

−2119

𝑇
),  Eq.  3-5 

where 𝐷𝑤
𝐶𝑂2 is the diffusivity of CO2 in pure water [87]. 

Although the mass transfer coefficient can be calculated at each time step using the 

above correlations, uncertainties still exist in the hydrodynamics related terms like 

𝑅𝑒 and 𝑆𝑐. Thus, an adjustment factor, 𝜃𝑘𝑙
, was introduced to compensate these 

uncertainties, and estimated from the experimental results. 

The surface area per unit gas volume, 𝐴𝑔 , is determined from the given bubble 

diameter, 𝜃𝑑𝑏
, and the gas holdup, 𝛼𝑔, as 

  𝐴𝑔 =
𝛼𝑔

𝜃𝑑𝑏

.  Eq.  3-6 

𝜃𝑑𝑏
 and 𝛼𝑔 are uncertain but have significant influences on the mass transfer rate. 

Thus, it is advantageous to estimate them as parameters, rather than giving arbitrary 
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values. To reflect the change of gas holdup according to the gas inlet, a correlation 

with three parameters, 𝜃𝑎, 𝜃𝑏, and 𝜃𝑐 was introduced:  

  𝛼𝑔 = 𝜃𝑎 + 𝜃𝑏𝑈𝑔
𝜃𝑐 ,  Eq.  3-7 

where 𝑈𝑔 is the superficial gas velocity. To sum up, four parameters, 𝜃𝑑𝑏
, 𝜃𝑎, 𝜃𝑏, 

and 𝜃𝑐, are to be estimated. 

The enhancement factor, 𝐸, is calculated from the correlation [88] of  

 𝐸 = (−
𝐻𝑎2

2(𝐸∞ − 1)
+ √

𝐻𝑎4

4(𝐸∞ − 1)2
+

𝐸∞𝐻𝑎2

𝐸∞ − 1
+ 1, 𝐸∞ > 1,

1, 𝐸∞ ≤ 1,

 Eq.  3-8 

where  

  𝐸∞ = (1 +
[𝑂𝐻−]𝐷𝐶𝑂2

2𝐷𝐶𝑂2𝐻𝐶𝑂2[CO2(g)]
)√

𝐷𝐶𝑂2

𝐷𝑂𝐻−
,  Eq.  3-9 

  𝐻𝑎 =
√𝑘11𝐷

𝐶𝑂2[OH−]

𝑘𝑙
.  Eq.  3-10 

𝐷𝑂𝐻− is the diffusivity of OH − ion, which takes the value of 5.3 × 10−9 [89], and 

𝑘11  is the rate constant of a reaction between CO2(aq) and OH-(aq), which is 

discussed in the next part. The adjustment factor, 𝜃𝐸, is multiplied to the Equation 

Eq. 3-8 when calculating the mass transfer rate. It is to represent all uncertain 

parameters involved in the Eq. 3-8 – Eq. 3-10. 

The Henry constant for electrolyte solution, 𝐻𝐶𝑂2, is obtained from  

  log (
𝐻𝑤

𝐶𝑂2

𝐻𝐶𝑂2) = ∑

𝑖

(ℎ𝑖 + ℎ𝑔)𝑐𝑖,  Eq.  3-11 



59 

 

  𝐻𝑤
𝐶𝑂2 = 3.54 × 10−7𝑅𝑇 exp (

2044

𝑇
),  Eq.  3-12 

where 𝐻𝑤
𝐶𝑂2, ℎ𝑖, ℎ𝑔 and 𝑐𝑖 are the Henry constant of CO2 for pure water, the ion-

specific parameter, the gas-specific parameter, and the concentration of each ion 𝑖, 

respectively. Eq. 3-11, Eq 3-12 and all the parameter values are adopted from 

literature [90, 91]. 

Solid dissolutions 

  Cn(OH)2(s)

𝑘𝑓

  ⇌  
𝑘𝑏

Cn2+(nq) + 2OH−(nq),  Eq.  3-13 

  CnOH+(nq)
𝑘𝑓2

  ⇌  
𝑘𝑏2

Cn2+(nq) + OH−(nq),  Eq.  3-14 

  NnOH(s)
𝑘𝑓3

  ⇌  
𝑘𝑏3

Nn+(nq) + OH−(nq).  Eq.  3-15 

The dissolutions of alkaline solids provide mineral and hydroxide ions. All the 

forward and backward reaction rates of these reactions can be expressed as products 

of each reactant’s concentration and the corresponding rate constants. The 

equilibrium and rate constants are given in Table 3-2. 𝑘𝑓 and 𝑘𝑏 in Eq. 3-13 are 

dependent on total surface area of the solid to reflect the decrease of dissolution rate 

owing to the shrinkage of the solid particles as the reaction proceeds. The value of 

𝑘𝑓2 was randomly set to 1,000 because relevant source could not be found. However, 

parameter estimation was not performed on it because the results were not affected 

by its value at all. 𝑘𝑓3 and 𝑘𝑏3 were also randomly set because they have negligible 

impacts on the results as long as NaOH completely dissolves in a short time.
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Table 3‑2. Kinetic parameters for solid dissolutions 

 
Definition Unit Reference 

𝑘𝑓 2.2 × 10−8 ∙ exp (
0.0297(𝑇 − 298.15)

298.15𝑅𝑇
) 

mol

𝐿 ∙ 𝑠 ∙ cm2
 [92] 

𝑘𝑏 1.9 × 10−3 ∙ exp (
0.0528(𝑇 − 298.15)

298.15𝑅𝑇
) 

L2

mol2 ∙ 𝑠 ∙ cm2
 [92] 

𝐾𝐶𝑎𝑂𝐻+ 
10

−1.299+260.388(
1

298
−

1
𝑇
)
 

𝑚𝑜𝑙

𝐿
 [93] 

𝑘𝑓2 1,000 
1

s
 

 

𝑘𝑏2 
𝑘𝑓2

𝐾𝐶𝑎𝑂𝐻+
 

L

mol ⋅ s
 

𝑘𝑓3 109 
mol

L ∙ s
 

𝑘𝑏3 0 
L

mol ∙ 𝑠
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Ionic reactions 

  CO2(nq) + OH−(𝑎𝑞)
𝑘11

  ⇌  
𝑘12

HCO3
−(nq),  Eq.  3-16 

  HCO3
−(nq) + OH−(𝑎𝑞)

𝑘21

  ⇌  
𝑘22

CO3
2−(nq) + H2O,  Eq.  3-17 

  H+(nq) + OH−(𝑎𝑞)
𝑘31

  ⇌  
𝑘32

H2O,  Eq.  3-18 

  CO2(nq) + H2O
𝑘41

  ⇌  
𝑘42

HCO3
−(nq) + H+(𝑎𝑞).  Eq.  3-19 

The above reactions represent the conversion of CO2(nq) into bicarbonate and 

carbonate ions in an acid-base equilibrium. The forward and backward reaction rates 

follow the elementary reaction rate equations, like in the solid dissolutions. The 

equilibrium constants and rate constants are given in Table 3-3.  
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Table 3‑3. Kinetic parameters of the ionic reactions 

 Definition nnit Reference 

𝐾1 
𝐾4

𝐾𝑤
    

𝑘11
a   log (

𝑘11

𝑘
11

∞
 
) = 0.221𝐼 − 0.016𝐼2 

L

mol ∙ 𝑠
  [94] 

𝑘
11

∞ b 1011.916−
2382

𝑇  
L

mol ∙ 𝑠
 [94] 

𝑘12 
𝑘11

𝐾1
    

𝐾2 10
1568.94

𝑇
+0.4134−0.00673𝑇

 
𝑚3

𝑚𝑜𝑙
 [95] 

𝑘21 5 × 107 
𝑚3

mol ∙ s
 [96] 

𝑘22 
𝑘21

𝐾2
   

𝐾𝑤 10−
5839.51

𝑇
−22.4773 log(𝑇)+61.2062

 
𝑚𝑜𝑙2

𝐿2
 [97] 

𝑘31 1.4 × 108 
𝑚3

𝑚𝑜𝑙 ∙ s
 [97] 

𝑘32 𝐾𝑤 ∙ 𝑘31  [97] 

𝐾4 e−
12092.1

𝑇
−36.786 ln(𝑇)+235.482

 

𝑘𝑚𝑜𝑙

𝑚3
 [98] 

𝑘41 0.024 𝑠−1 [99] 

𝑘42 𝑘41/𝐾4   [99] 

a I is the ionic strength, I = 0.5∑ (ci ∙ zi
2)i , where zi is the absolute charge of a 

corresponding ion,  

b k11 value at pure water.  
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Precipitations 

  Cn2+(nq) + CO3
2−(nq)

𝑘51

  ⇌  
𝑘52

CnCO3(s),  Eq.  3-20 

  Cn2+(nq) + HCO3
−(nq)

𝑘61

  ⇌  
𝑘62

CnCO3(s) + H+(nq).  Eq.  3-21 

Two reactions here explain production of the main product, calcium carbonate. 

Neither of these becomes a rate-limiting step because they are fast ionic reactions 

producing the thermodynamically stable product. The equilibrium and rate constants 

are given in Table 3-4. 
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Table 3‑4. Kinetic parameters for precipitations. 

 
Definition Unit Reference 

𝐾𝑠𝑝,𝐶𝑎𝐶𝑂3
 

a 10
−171.9773+0.077993T+

2903.293

T
+71.595log(𝑇)

 

𝑚𝑜𝑙2

𝐿2
 [100] 

𝑘51 
𝑘52

𝐾𝑠𝑝,𝐶𝑎𝐶𝑂3

 
L

mol ⋅ s
  

𝑘52 9 × 10−3 
mol

L ⋅ s
 [78] 

𝑘61 4 × 10−2 
L

mol ⋅ s
 [78] 

𝑘62 106 s−1 [78] 

a This solubility product equation is for aragonite calcium carbonate. 
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3.3.2. Differential algebraic equation (DAE) model for the 

reactor 

A set of differential algebraic equations (DAEs) was constructed based on the 

kinetics described in the previous parts. The exact formulations as well as the 

assumptions used in the model are explained in this section.  

Assumptions 

⚫ The reactor consists of 10 vertical compartments with a same volume where 

the gas passes through each of them from the bottom. The concentration of 

CO2(g) declines as it moves to the upper compartment (See Figure 3-2). 

⚫ The gas distribution is homogeneous everywhere, i.e. gas holdup has a 

constant value in all the compartments. 

⚫ Gas bubbles have a constant diameter and do not shrink during the reactions. 

It is reasonable because the portion of CO2 is small compared to N2. 

⚫ Ca(OH)2 particles shrink as the reaction proceeds. The number of particles 

is fixed, while the total volume, surface area, and diameter vary. When 

Ca(OH)2 is completely consumed, the surface area becomes zero and the 

dissolution no longer takes place. 

⚫ Solids and ions are uniformly distributed throughout the reactor, i.e. their 

concentrations have the same value in every compartment.  
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Figure 3‑2. Schematic diagram of the compartment reactor model. 
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Model formulations 

  

𝑑[CO2(g)
𝑖]

𝑑𝑡

= 𝑄𝑖−1
[CO2(g)

𝑖−1]

𝑉g𝑎𝑠
− 𝑄𝑖

[CO2(g)
𝑖]

𝑉g𝑎𝑠

− 𝜃𝑘𝑙
𝑘𝑙

6 (𝜃𝑎 + 𝜃𝑏𝑈𝑔
𝜃𝑐)

𝜃𝑑𝑏

𝜃𝐸𝐸(𝐻𝐶𝑂2[CO2(g)
𝑖] − [CO2(nq)]),

𝑖 = 1, . . . , 𝑁, 

 Eq. 3-22 

  

𝑑[CO2(nq)]

𝑑𝑡

= −𝑘11[CO2(nq)][OH−] + 𝑘12[HCO3−] − 𝑘41[CO2(nq)]

+ 𝑘42[HCO3−][H+]

+
𝑉g𝑎𝑠

𝑉𝑅
∑ (𝜃𝑘𝑙

𝑘𝑙

6 (𝜃𝑎 + 𝜃𝑏𝑈𝑔
𝜃𝑐)

𝜃𝑑𝑏

𝜃𝐸𝐸(𝐻𝐶𝑂2[CO2(g)
𝑖]

𝑁

𝑖=1

− [CO2(nq)])), 

 Eq. 3-23 

  

 [HCO3
−]

𝑑𝑡

= 𝑘11[CO2(nq)][OH−] − 𝑘12[HCO3
−] − 𝑘21[HCO3

−][OH−]

+ 𝑘22[CO3
2−] + 𝑘41[CO2(nq)] − 𝑘42[HCO3

−][H+]

− 𝑘61[Cn2+][HCO3
−] + 𝑘62[H

+], 

 Eq. 3-24 
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d [CO
3

2−
]

𝑑𝑡

= 𝑘21 [HCO
3
−] [OH−] − 𝑘22 [CO

3

2−
]

− 𝑘51 [Ca2+] [CO
3

2−
] + 𝑘52, 

 Eq. 3-25 

  

 [H+]

𝑑𝑡

= −𝑘31[OH−][H+] + 𝑘32 − 𝑘42[HCO3
−][H+]

+ 𝑘41[CO2(nq)] + 𝑘61[Cn2+][HCO3
−] − 𝑘62[H

+], 

 Eq. 3-26 

  

𝑑[OH−]

𝑑𝑡

= −𝑘11[𝐶O2(nq)][𝑂𝐻−] + 𝑘12[HCO3
−]

− 𝑘21[HCO3
−][OH−] + 𝑘22[CO3

2−]

− 𝑘31[OH−][H+]

+ 2(𝜃𝐴𝑠
∙ 𝐴𝑠)(𝑘𝑓 − 𝑘𝑏[Cn2+]𝑓4[OH−]2𝑓2)

+ 𝑘𝑓2[CnOH+] − 𝑘𝑏2[Cn2+][OH−] + 𝑘𝑓3

− 𝑘𝑏3[Nn+][OH−], 

 Eq. 3-27 

  

𝑑[𝐶𝑎2+]

𝑑𝑡

= −𝑘51[Cn2+][CO3
2−] + 𝑘52 − 𝑘61[Cn2+][HCO3−]

+ 𝑘62[H
+] + 𝜃𝐴𝑠

𝐴𝑠(𝑘𝑓[Cn(OH)2]

− 𝑘𝑏[Cn2+]𝑓2[OH−]2𝑓4) + 𝑘𝑓2[CnOH+]

− 𝑘𝑏2[Cn2+][OH−] + 𝑘𝑓3, 

 Eq. 3-28 
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𝑑[CnOH+]

𝑑𝑡

= −𝑘𝑓2[CnOH+] + 𝑘𝑏2[Cn2+][OH−] + 𝑘𝑓3, 

 Eq. 3-29 

  
𝑑[Nn+]

𝑑𝑡
= 𝑘𝑓3 − 𝑘𝑏3[Nn+][OH−],  Eq. 3-30 

  

𝑑[CnCO3]

𝑑𝑡

= 𝑘51[Cn2+][CO3
2−] − 𝑘52 + 𝑘61[Cn2+][HCO3

−]

− 𝑘62[H
+], 

 Eq. 3-31 

  

𝑄𝑖

= 𝑄𝑖−1

−
𝑅𝑇

𝑃
𝜃𝑘𝑙

𝑘𝑙

6 (𝜃𝑎 + 𝜃𝑏𝑈𝑔
𝜃𝑐)

𝜃𝑑𝑏

𝜃𝐸𝐸(𝐻𝐶𝑂2[CO2(g)
𝑖]

− [𝐶𝑂2(𝑎𝑞)])𝑉g𝑎𝑠, 

 Eq. 3-32 

  

𝑉𝐶𝑎𝑂𝐻2

=
1

𝜌𝐶𝑎(𝑂𝐻)2

(𝑍𝐶𝑎(𝑂𝐻)2
0 − ([Cn2+] + [CnOH+]

+ [CnCO3])𝑀𝑊𝐶𝑎𝑂𝐻2
𝑉𝑅), 

 Eq. 3-33 

  𝐴𝑠 = (
𝜋

𝑛𝑠
)
1
3(6𝑉𝐶𝑎(𝑂𝐻)2)

2
3,  Eq. 3-34 

  
𝑛𝑠 =

𝑍0

4
3𝜌𝐶𝑎(𝑂𝐻)2𝜋 (

𝜃𝑑𝑠
0

2 )

3, 
 Eq. 3-35 

  log(𝑓) =
−0.5√𝐼

1 + 1.4√𝐼
,  Eq. 3-36 
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𝐼

= 0.5(4[Cn2+] + [H+] + [OH−] + [HCO3
−]

+ 4[CO3
2−] + [CnOH+] + [Nn+]). 

 Eq. 3-37 

 In Eq. 3-22, [CO2(g)
i], 𝑉g𝑎𝑠, and 𝑄𝑖 are the concentrations of CO2(g)

𝑖 in the 𝑖𝑡ℎ 

compartment, the volume of mixed gas in one compartment, and the volumetric gas 

flow rate from the compartment 𝑖 − 1  to 𝑖 , respectively. [CO2(g)
0]  is the inlet 

CO2(g) concentration, which can be calculated from the design variable, 𝜙𝐶𝑂2
i𝑛𝑙𝑒𝑡, using 

the ideal gas law. 𝑄0 is the volumetric gas flow rate, which is equivalent to the design 

variable, 𝑉 . 𝑉g𝑎𝑠  can be calculated as the product of the gas holdup and the 

compartment volume, i.e., 𝑉g𝑎𝑠 = (𝜃𝑎 + 𝜃𝑏𝑈𝑔
𝜃𝑐) ×

𝑉𝑅

𝑁
. 𝑉𝑅 in Eq. 3-23 is the volume 

of the reactor. 𝐴𝑠 in Eq. 3-27, is the total surface area of  Ca(OH)2 particles, 𝜃𝐴𝑠
 is 

an adjustment factor to compensate the uncertainty in 𝐴𝑠 , and 𝑓  is the activity 

coefficient. In Eq. 3-33, 𝜌𝐶𝑎(𝑂𝐻)2 , 𝑍𝐶𝑎(𝑂𝐻)2
0 , and 𝑀𝑊𝐶𝑎(𝑂𝐻)2  are the density, 

molecular weight and initial weight of Ca(OH)2, respectively. In Eq. 3-34 and Eq. 3-

35, 𝑛𝑠  is the number of the particles and 𝜃𝑑𝑠
0  is the initial diameter of Ca(OH)2 

particles, which is one of the important but uncertain parameters in this work. The 

other algebraic equations such as 𝑘11, 𝐻𝐶𝑂2 , 𝑘𝑙 , and 𝐸 are already explained in 

previous sections. 

Parameters (𝜽) to estimate 

To sum up, there are eight parameters (𝜽) to estimate in total: 𝜃𝑎, 𝜃𝑏, and 𝜃𝑐 are 

the parameters which are related to the gas holdup, 𝜃𝑑𝑏
 and 𝜃𝑑𝑠

0  are the initial 
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diameters of gas bubbles and solid particles, and 𝜃𝑘𝑙
, 𝜃𝐸, and 𝜃𝐴𝑠

 are the adjustment 

factors for uncertain parameters in the reactor model. 

Output responses (𝒚) 

Two output responses, 𝐲1(CO2 volume concentration of outlet flue gas) and 𝐲2 

(pH), were monitored during the experiments. From the proposed model, they are 

defined as  

  𝐲1 = 𝜙𝐶𝑂2
o𝑢𝑡𝑙𝑒𝑡 ,  Eq. 3-38 

  𝐲2 = −log(𝐾𝑤) + log([OH−]).  Eq. 3-39 

3.3.3. Discrete events for simulation procedure 

Three discrete events, which need the reinitialization of the DAE model, can happen. 

The first is the entrance of the gas to the reactor. In the experiments, the gas is allowed 

to enter the reactor after given a time for NaOH and Ca(OH)2 to sufficiently dissolve 

in water. The model reproduced the same procedure by first running the DAE model 

without CO2-related variables. The second and third are the complete dissolution of 

NaOH and Ca(OH)2, respectively. After the complete dissolution of solid particles, 

the dissolution kinetics of each solid species were deactivated. If not, Na+, Ca2+, and 

OH- ions can be generated infinitely even after the sources are gone. Furthermore, if 

the kinetic parameters were forced to be zero rather than finding an exact event time 

using a root finding algorithm, convergence problems could happen. To prevent this, 

external functions, 𝑔([𝐶𝑎(𝑂𝐻)2]) and 𝑔([𝑁𝑎𝑂𝐻]), are introduced to calculate the 

remaining weights of Ca(OH)2 and NaOH:  
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𝑔([Cn(OH)2])

= 𝑍𝐶𝑎𝑂𝐻
0 − ([Cn2+] + [CnCO3]

+ [CnOH+])𝑀𝑊Ca(OH)2 , 

 Eq. 3-40 

  𝑔([NnOH]) = 𝑍𝑁𝑎𝑂𝐻
0 − [Nn+]𝑀𝑊𝑁𝑎𝑂𝐻,  Eq. 3-41 

where 𝑍0 and 𝑀𝑊 are the initial weight and molecular weight of each species, 

respectively. When these functions give zero values, 𝑘𝑓, 𝑘𝑏, 𝑘𝑓3, and 𝑘𝑏3 are set to 

zero and the model is reinitialized. 

3.3.4. Numerical setting 

The proposed mathematical model was written in Matlab script. Sundials IDAS 

solver with the dense linear solver and zero-crossing root-finding algorithm [83] was 

used to handle the stiff and hybrid DAEs system. Furthermore, since the kinetics 

show stiff behaviors like 108 − 109  order-of-magnitude difference among 

parameters, the model occasionally fails to converge within a feasible time. Thus, the 

divergence of the solver was monitored and solver parameters such as relative 

tolerance (10−7) and absolute tolerance (10−7) are tuned to make as many samples 

converged as possible. The simulations were done on Intel Xeon E5-2667 v4 (3.2 

GHz) machine on which the average simulation time for one scenario was less than 

one second. 

 

3.4. Bayesian parameter estimation 

One objective of this study is to infer posterior distributions 𝒫(𝜽) of the unknown 

parameters, 𝜽, from experimental data. This problem has characteristics that data 
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acquisition is expensive, a non-adpative black-box (a factorial method) [101-104] is 

used as an experiment design method, and the mathematical model is complex to 

perform Markov chain Monte Carlo (MCMC) sampling. Taken together, this problem 

is tackling the Bayesian parameter estimation problem with a small number of data 

sets and complex model. 

3.4.1. Problem formulation 

Here, the response is a time series: 𝐲 = {𝑦1, 𝑦2, ⋯ , 𝑦𝑡 ,⋯ , 𝑦𝑇}, written in the form 

of a 𝑇 -dimensional vector. Each experiment reports multiple response types, 

{𝐲1,⋯ , 𝐲𝐷}, where each response 𝐲𝑑 is a 𝑇-dimensional vector. The number of total 

responses are two ( 𝐷 = 2 ) in this problem: 𝐲1  measures the CO2 volume 

concentration of outlet flue gas, and 𝐲2 the pH of the solution. In the experiments, 

the response length 𝑇 is fixed for 𝐲1 and 𝐲2 from the same experiment, because 

they are measured simultaneously (See Figure 3-3). A finite sets of design variables 

{𝐱(1),⋯ , 𝐱(𝑀)}  that correspond to multiple experiments, where 𝐱 =

(𝑇, 𝜙𝐶𝑂2
i𝑛𝑙𝑒𝑡 , 𝑤𝐶𝑎(𝑂𝐻)2, 𝑤𝑁𝑎𝑂𝐻 , 𝑉̇) are considered. The number of total experiments, 

𝑀 = 16; 𝑀 cannot be very large in most cases, because experiments are costly. The 

length of response 𝑇  may be different for different experiments. With 𝑀 = 16 

experiments and 𝐷 = 2 response types, the total datases are 𝑀 × 𝐷 = 32; a single 

“dataset” indicates {𝐱(𝑚), 𝐲𝑑
(𝑚)

} of a particular (𝑚, 𝑑) , where 𝑚 = 1,⋯ ,𝑀  and 

𝑑 = 1,⋯ ,𝐷.
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Figure 3‑3. Schematic diagram of the problem setting.



75 

 

Let me denote the first-principle model in previous section by 𝐟. Given a set of 

design variables 𝐱 and a fixed set of parameters 𝜽, the model predicts a response 

time series as 𝐲m𝑜𝑑𝑒𝑙 = 𝐟(𝐱, 𝜽).  Here 𝜽  is a 𝐾 -dimensional parameter vectors, 

where 𝐾 = 8  in the current problem. Specifically, 𝜽 =

(𝜃𝐸 , 𝜃𝐴𝑠
, 𝜃𝑎, 𝜃𝑏 , 𝜃𝑐 , 𝜃𝑑𝑏

, 𝜃𝑑𝑠
0 , 𝜃𝑘𝑙

). In general, there is always some discrepancy (or 

model-plant mismatch) between the actually observed response 𝐲 and the modeled 

response 𝐲m𝑜𝑑𝑒𝑙. It is mathematically expressed as 𝐲 = 𝐟(𝐱, 𝜽) + 𝝐, where 𝝐 is the 

error vector. An assumption that the error 𝝐 is distributed according to a multivariate 

normal distribution, with a 𝑇 × 𝑇 covariance matrix Σ [27, 35] is introduced:  

  𝝐 = 𝐲 − 𝐟(𝐱, 𝜽) ∼ 𝒩(𝟎, Σ).  Eq. 3-42 

For a complicated kinetic model, calculation of the model response 𝐟(𝐱, 𝜽) while 

varying the value of 𝜽 can be computationally demanding. To make computations 

affordable, various surrogate models can be applied such as neural networks, 

Gaussian process, and PCE. This study approximates the modeled response using a 

quadratic hyper-surface to avoid additional training step:  

  𝐟(𝐱, 𝜽) ≈ 𝐟(𝜽) = 𝑐 + 𝐛⊤𝜽 + 𝜽⊤𝐴𝜽,  Eq. 3-43 

where 𝐟(𝜽) is the surrogate model response, 𝐴 is a symmetric 𝐾 × 𝐾 matrix, 𝐛 is 

a vector of length 𝐾 , and 𝑐  is a scalar, and 𝐾  is the dimensionality of 𝜽. The 

parameters were sampled on a Central Composite Design (CCD) and a Latin 

hypercube sampling (LHS)[105] (1,000 samples in total) within the prior hypercube. 

The quadratic surface fit was performed separately for each dataset (𝑚, 𝑑), to obtain 

an approximate response function 𝐟(𝑚,𝑑) such that 𝐲𝑑
(𝑚)

≈ 𝐟(𝑚,𝑑)(𝐱(𝑚), 𝜽). 
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3.4.2. Bayesian posterior inference 

According to the Bayes rule, the posterior distribution 𝒫(𝜽) is formulated like  

  𝒫(𝜽) ≡ 𝑝(𝜽| 𝑎𝑡𝑎) ∝ 𝑝( 𝑎𝑡𝑎|𝜽) ⋅ 𝑝(𝜽),  Eq. 3-44 

where 𝑝( 𝑎𝑡𝑎|𝜽)  is the likelihood of observing the data from a model 

parameterized by 𝜽, and 𝑝(𝜽) is the prior distribution on 𝜽. In the rest of this section 

outlines how to construct the posterior distribution by calculating the likelihood and 

specifying a prior distribution, and how the posterior can be sampled by the MCMC 

method. Please refer to the Supplementary Material of my paper [77] for the details.  

Likelihood 

 According to the Gaussian error assumption, the likelihood of a given set of data 

depends not only on 𝜽, but also on the covariance matrix Σ. In this sense, Σ is 

another parameter in the inference problem, although it is not of my primary interest;  

only interested is the distribution of 𝜽. A full-fledged Bayesian approach for this 

problem is to consider the joint parameter space of (𝜽, Σ) and then to marginalize 

over Σ at the end, as in some of the previous works [27, 35]. This work takes a 

different approach, in which the error covariance Σ̂ is directly estimated from the 

data and an inferred distribution over 𝜽 , and the distribution over Σ  is simply 

assumed to be highly localized around its “true” value, Σ̂. In other words, it is aimed 

to calculate  
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𝑝( 𝑎𝑡𝑎|𝜽) = ∫ 𝑑Σ 𝑝( 𝑎𝑡𝑎|𝜽, Σ) 𝑝(Σ)

≈ 𝑝( 𝑎𝑡𝑎|𝜽, Σ̂). 

 Eq. 3-45 

The error covariance Σ̂ is estimated separately for each dataset, reflecting the fact 

that each observation may come with a different amount of uncertainty. Specifically, 

the covariance matrix is parameterized in an exponential form, so that the covariance 

element between the two time-points 𝑡𝑖 and 𝑡𝑗 is modeled as Σ𝑖𝑗 = 𝜎2exp(−|𝑡𝑖 −

𝑡𝑗|/𝜏) , and estimate the fluctuation scale 𝜎  and the de-correlation timescale 𝜏 . 

Estimation of the fluctuation scale 𝜎 is performed by taking an average over the 

posterior distribution, which requires an iterative algorithm. See Figure 3-4 for a 

schematic illustration.
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Figure 3‑4. (a) A graphical representation of model generation. The observed response is considered as a noisy version of the 

modeled (ideal) response. (b) Schematic for the Bayesian inference.
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For multiple datasets, in general, the likelihood 𝑝( 𝑎𝑡𝑎|𝜽) involves a multiple 

integral over the Σ’s; if all 𝑀 experiments and 𝐷 responses are considered, the total 

likelihood will be written as 

𝑝( 𝑎𝑡𝑎|𝜽)

= ∫ 𝑑Σ1,1 ⋯∫ 𝑑Σ𝑀,𝐷 𝑝( 𝑎𝑡𝑎|𝜽, Σ1,1,⋯ , Σ𝑀,𝐷) 𝑝(Σ1,1)⋯𝑝(Σ𝑀,𝐷). 
 Eq. 3-46 

With the localization assumption of Eq. 3-45, the total likelihood can be simply 

separated as  

  𝑝( 𝑎𝑡𝑎|𝜽) ≈ ∏

𝑀

𝑚=1

∏

𝐷

𝑑=1

𝑝((𝐱(𝑚), 𝐲𝑑
(𝑚)

)|𝜽, Σ𝑚,𝑑).  Eq. 3-47 

Therefore, the joint likelihood of multiple datasets can be expressed as the product 

of the individual-dataset likelihoods. 

Prior 

 A uniform prior distribution with a range constraint, such that 𝑝(𝜃) ∝ 1 if 𝜽 ∈ 𝒞 

and 𝑝(𝜃) = 0 otherwise, defined by a hypercube 𝒞 ⊂ ℝ8 , is used. The detailed 

boundary values of the hypercube 𝒞 , which are basically ranges of each parameter, 

are described in Table 3-5. In order to ensure that the entire parameter space is 

efficiently explored by the MCMC sampling, the log of a parameter elements are 

implemented when the prior range spans multiple orders of magnitude. 
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Table 3‑5. The prior range for the parameter 𝜽 

Parameter Min. Max. Description 

log(𝜃𝐸) -3 3 Adjustment factor for enhancement factor 

log(𝜃𝐴𝑠
) -3 3 Adjustment factor for surface area of CaCO3 

𝜃𝑎 0 0.3 Related to gas holdup 

𝜃𝑏 0 0.3 Related to gas holdup 

log(𝜃𝑐) -2 2 Related to gas holdup 

log(𝜃𝑑𝑏
) 0 1.48 Initial diameter of bubbles 

log(𝜃
𝑑𝑠

0) -7 -1 Initial diameter of CaCO3 particles 

log(𝜃𝑘𝑙
) -3 3 Adjustment factor for mass transfer coefficient 
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3.4.3. Sampling 

MCMC sampling with the Metropolis-Hastings algorithm [106] was performed to 

approximate the posterior distribution. This work uses an iterative sampling 

algorithm to adaptively adjust the proposal distribution of the Metropolis-Hastings 

sampler, as well as to estimate the error covariance at the same time. Once a chain of 

parameters, {𝜽1,⋯ , 𝜽𝑁} has been sampled, the response to a given design variable 

𝐱 that is predicted by the posterior is:  

  𝐟m𝑒𝑎𝑛(𝐱) =
1

𝑁
∑

𝑁

𝑛=1

𝐟(𝐱, 𝜽𝑛),  Eq. 3-48 

where 𝑁 is the number of parameter samples in the chain. Similarly, the mean of 

all obtained samples can be obtained as the representative value of the posterior 

distribution:  

  𝜽m𝑒𝑎𝑛 =
1

𝑁
∑

𝑁

𝑛=1

𝜽𝑛.  Eq. 3-49 

It is also possible to extract mode (𝜽m𝑜𝑑𝑒) among a chain of parameters in two-

dimensional parameter space. However, it is difficult to extract mode from the multi-

dimensional parameter space because of the difficulty of defining the unit volume for 

calculating the number samples. Thus, the mode is sequentially extracted from two-

dimensional parameter space and the final one is used. 
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3.5. Results and discussions 

3.5.1. Stochastic output response 

When the entire process of Bayesian parameter estimation is completed, the 

probability distributions of the output responses as well as 𝜽 can be obtained as in  

Figure 3-5. It shows that the deterministic model can be non-intrusively extended to 

the stochastic model through Bayesian parameter estimation. The uncertainties from 

the model-plant mismatch or the plant disturbance are reflected in the parameters and 

propagated to the output responses through them. The propagated uncertainties in the 

output responses are visualized in Figure 3-5 (a) with the standard deviation or the 

confidence interval (CI).
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Figure 3‑5. : a) Estimated output response (𝝓𝑪𝑶𝟐
𝐨𝒖𝒕𝒍𝒆𝒕) fitting and b) joint marginal posterior distribution of 𝐥𝐨𝐠𝟏𝟎(𝜽𝒌𝒍

) and 

𝐥𝐨𝐠𝟏𝟎(𝜽𝑨𝒔
) for Exp. 6 using mode, mean, and optimization method.
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However, there are occasions where it is needed to pick a single response curve 

rather than handling a stochastic model. A straightforward way is to choose a single 

representative value of 𝜽 like 𝜽m𝑜𝑑𝑒 or 𝜽m𝑒𝑎𝑛 from the posterior distribution and 

solve the model with it to earn a single response, i.e. 𝐟(𝜽m𝑜𝑑𝑒)  or 𝐟(𝜽m𝑒𝑎𝑛) . 

Another way is to sample many 𝜽 from the posterior, solve the model using each of 

them and take the average to get the representative response, i.e. 𝐟m𝑒𝑎𝑛 . If the 

posterior had the normal distribution, all three of them, namely 𝐟(𝜽m𝑜𝑑𝑒), 𝐟(𝜽m𝑒𝑎𝑛) 

and 𝐟m𝑒𝑎𝑛, would follow an exactly same trajectory. However, when the posterior 

has multiple peaks like in Figure 3-6, it is beneficial to adopt 𝐟m𝑒𝑎𝑛 among them 

because 𝐟(𝜽m𝑜𝑑𝑒) has a risk that 𝜽m𝑜𝑑𝑒 is not picked from the highest peak and 

𝐟(𝜽m𝑒𝑎𝑛) could be inferior to 𝐟(𝜽m𝑜𝑑𝑒) when 𝐟 is not monotonic with respect to 𝜽. 

 Figure 3-5 a) shows 𝐟(𝜽m𝑜𝑑𝑒) , 𝐟(𝜽m𝑒𝑎𝑛)  and 𝐟m𝑒𝑎𝑛 . It is noticeable that 

𝐟(𝜽m𝑒𝑎𝑛)  and 𝐟m𝑒𝑎𝑛  are almost overlapped, suggesting that the response is 

changing monotonically with respect to 𝜽 . Based on these observations, it is 

concluded to use 𝐟(𝜽𝑚𝑒𝑎𝑛) and 𝐟𝑚𝑒𝑎𝑛 throughout the further discussions where a 

deterministic single response curve is required. 
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Figure 3‑6.  Tempering control (tempering factor as 1, 4, 8, and 10 respectively) for checking multimodal posterior distribution 

between 𝜽𝑨𝒔
 and 𝜽𝒌𝒍

; also compare the 𝜽𝐦𝒆𝒂𝒏 and 𝜽𝐦𝒐𝒅𝒆 movements. × denotes mean and + denotes mode.
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3.5.2. Quality of parameter estimtates 

It was able to fit most of the observed responses with good accuracies. (See Figures 

3-7, 8.) This means that the DAE model captures the important features of a 

complicated CCU system in which multiple phases and reactions are involved in a 

discrete manner and that the proposed parameter estimation method works. The 

goodness of fit of the model responses is quantitatively measured and compared with 

the results from several optimization methods using the following fitting error 

equation,  

e𝑟𝑟𝑜𝑟

= √∑

𝑀

𝑚=1

∑

𝐷

𝑑=1

(𝐲𝑑
(𝑚)

− 𝐟(𝑚,𝑑)(𝐱(𝑚), 𝜽))(𝐲𝑑
(𝑚)

− 𝐟(𝑚,𝑑)(𝐱(𝑚), 𝜽))⊤

(𝜎(𝑚,𝑑))2𝑇(𝑚)
. 

 Eq. 3-50 

Three different solvers, a genetic algorithm (GA), a dividing hyper-rectangle 

(DIRECT) [107-109], and a sequential quadratic programming (SQP), were used to 

find the 𝜽o𝑝𝑡 which minimizes Eq. 3-50. The maximum number of iterations was 

same as in the Bayesian method for a fair comparison.
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Figure 3‑7. Estimated output response (𝝓𝑪𝑶𝟐
𝐨𝒖𝒕𝒍𝒆𝒕) fitting with experimental 

data, 𝐟𝐦𝒆𝒂𝒏, 𝐟(𝜽𝐦𝒐𝒅𝒆), 𝐟(𝜽𝐦𝒆𝒂𝒏), and 𝐟(𝜽𝐨𝒑𝒕 ). Uncertainty quantification 

using standard deviation and confidence interval is also conducted.
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Figure 3‑8. Estimated output response (pH) fitting with experimental data, 

𝐟𝐦𝒆𝒂𝒏, 𝐟(𝜽𝐦𝒐𝒅𝒆), 𝐟(𝜽𝐦𝒆𝒂𝒏), and 𝐟(𝜽𝐨𝒑𝒕 ). Uncertainty quantification using 

standard deviation and confidence interval is also conducted.
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Figure 3‑9. Error comparison through different parameter estimation methods. Visualize the error with a) 𝐂𝐎𝟐 volumetric 

concentration of outlet flue gas (𝝓𝑪𝑶𝟐
𝐨𝒖𝒕𝒍𝒆𝒕) and b) pH
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In  Figure 3-9 , the fitting errors of 𝐟(𝜽m𝑒𝑎𝑛), 𝐟(𝜽m𝑜𝑑𝑒), 𝐟m𝑒𝑎𝑛 and 𝐟(𝜽o𝑝𝑡) for 

all 17 experiments and 2 responses are shown. Overall, none of them shows dominant 

performance to others. Although the variance of errors is higher in the Bayesian 

estimation than in the optimization, the average of them have similar magnitudes in 

both methods. It means that the estimation method can provide deterministic 

parameter values which are as feasible as optimizations can give while suggesting the 

probability distributions as well. In addition, one dataset was left unseen during the 

parameter estimation to measure the fitting errors of obtained parameters on the test 

dataset. The resulting test set errors are acceptable compared to the other experiments. 

Particularly, the errors from Bayesian estimation are distinctively lower than the 

errors from the optimizations in both responses. It supposes that my method is better 

in covering the unseen operating ranges than deterministic approaches are. 

However, Exp. 1 and 14 seem to show particularly higher errors than the others.  

It is suspected to have two reasons. First, since the MCMC sampling cannot perform 

sampling outside the parameter boundaries, the optimal parameter cannot be 

estimated correctly near the boundary. Second, the absence of NaOH makes 𝜙𝐶𝑂2
o𝑢𝑡𝑙𝑒𝑡 

reach 𝜙𝐶𝑂2
i𝑛𝑙𝑒𝑡  very quickly and the experiment terminate early. Thus, T(𝑚)  is 

shortened and the error is increased. The error in Eq. 3-50 is divided by T(𝑚). In 

addition, short experiments cannot reflect the slow dynamics of Ca(OH)2. However, 

Exp. 7 and 12 show lower errors than Exp. 14 although they are lack of NaOH as 

well. In Exp. 14, the removal efficiency converges to 0 and the experiment is over 

before pH drops enough. It seems like the proposed algorithm, which focuses on stiff 

response dynamics through de-correlation timescale 𝜏, recognized little contribution 
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on this dataset compared to the others. 

 

3.5.3. Assessment of parameter uncertainties 

Final MCMC sampling was conducted with 5,000 samples, 10 maximum iterations, 

tight chain criterion, and 0.5 step scale factor at each iteration step. At the final 

sampling, the number of samples and burn set to 20,000 and 2,000, respectively.  

Figure 3-10 gives the visulaizations of two-dimensional joint marginal posterior 

distributions as well as marginal posterior distributions of the parameters which were 

sampled using the entire datasets (all 16 experiments and 2 responses). Figure 3-11 

provides each parameter’s marginal posterior distributions inferred from each 

experiment. It is clearly seen that every experiment results in a different posterior 

distribution. This is due to the errors derived from both model and experiments. If the 

model were perfect and the parameters perfectly independent of the design 

parameters, all the experiments would bring a same posterior distribution. However, 

there are some dependencies between the parameters and the design variables, that 

could not be included in the model like the effect of suspending solids on the gas 

holdup and the reaction rates. It means that even the true values of the parameters can 

be varied under different conditions. In addition, the potential amount of error of each 

experiment would be all different. Some experiments were more sensitive to external 

disturbances than the others. For example, an experiment with higher solid loading 

has more chance to have the gas sparger clogged, or the one with lower gas volumetric 

flow is more susceptible to measurement errors.
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Figure 3‑10. Two-dimensional joint marginal posterior distribution with20 000 

final samples of MCMC. The center of dotted crosslines is 𝛉𝐦𝐞𝐚𝐧. 
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Figure 3‑11. Marginal posterior distributions of each parameter from different 

kinds of datasets. Each gray line corresponds to the posterior which is inferred 

from two responses data from same experiment. 
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Figure 3‑12. Two-dimensional joint marginal posterior distribution with 

tempering factor (tmp=10). The center of dotted crosslines is 𝜽𝐦𝒆𝒂𝒏. 
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When investigating characteristics of the posterior distributions in Figure 8 and  

Figure 9 , it is possible to categorize the parameters into three groups. The first group 

consists of 𝜃𝐸 and 𝜃𝑘𝑙
, whose posteriors show unimodal behavior. In this group, the 

posteriors inferred from all experiments are narrowed to the area where the posterior 

distributions from each experiment are mostly concentrated. These parameters are 

likely to have deterministic true values derived from physical and chemical natures 

of the system. For example, 𝜃𝐸 has a value greater than 1 because the pH could have 

a greater impact on the response in reality than in the model, and 𝜃𝑘𝑙
 has a value less 

than 1 probably because of the existence of the suspensions which hinder the mass 

transfer between gas and liquid. The second group are 𝜃𝑎, 𝜃𝑏, 𝜃𝑐 and 𝜃𝑑𝑏
 , which 

have broad distributions not only in the single-experiment posteriors but also in all 

experiments posterior. It is interesting that the bubble diameter, 𝜃𝑑𝑏
, turns out to 

show a distribution although it was regarded as a constant when the model was first 

designed. The third group includes 𝜃𝐴𝑠
 and 𝜃𝑑𝑠

, which show multimodal behavior 

in their posteriors. These two parameters might have inherent multimodal natures 

because their posteriors from single experiments are pointing at very different values. 

However, the posterior from all experiments shows only one sharp peak. This is 

because more local peaks are observed when more data are used, but MCMC 

algorithm cannot easily escape from a local peak once it is trapped. 

It is possible to partly explain the multimodal or broad natures of the second and 

third parameter groups with their many-to-one properties; multiple sets of (𝜃𝐴𝑠
, 𝜃𝑑𝑠

) 

and (𝜃𝑎, 𝜃𝑏, 𝜃𝑐) that produce very similar results can be found. Also, the core-shell 
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structure of the solid particle, which is formed by the precipitation of CaCO3 on the 

surface of Ca(OH)2 [81], can be the reason as well because it must show completely 

different dissolution kinetics than original Ca(OH)2 . 

However, multimodal distributions are hardly observed when multiple datasets are 

used for the inference. In this case, the potential existence of other local peaks can be 

checked by increasing the tempering factor. Sampling with a larger tempering factor 

means accepting worse solutions with a higher probability; graphically, it is 

equivalent to sampling from a flatter (or tempered) distribution than the original one 

which has a tempering factor of 1. Although the tempered distribution is not as same 

as the original distribution, it is useful when learning the overall shape of the 

distribution, especially when detecting small local peaks. However, the tempering 

factor does not affect the position of the biggest peak which has a dominant effect on 

the mean and mode values of the parameters. Figure 3-11 (see dashed lines) and 

Figure 3-12 clearly show that the increase of the tempering factor can reveal broad or 

multimodal natures of the posterior distributions. 

For more investigations, the changes of 𝜽m𝑜𝑑𝑒, 𝜽m𝑒𝑎𝑛 and the joint posterior along 

the tempering factor increases are tracked (Figure 3-6 and  Figure 3-13). 𝜽m𝑜𝑑𝑒 

shows a significant movement as no distinctive global peak exists. 𝜽m𝑒𝑎𝑛 is close to 

𝜽m𝑜𝑑𝑒 at low tempering factors where only one peak is detected, but moves far from 

𝜽m𝑜𝑑𝑒  to middle of newly observed peaks when the tempering factor increases. 

𝜽m𝑜𝑑𝑒 would give a better fit for a specific response although it could be too sensitive 

sometimes, whereas 𝜽m𝑒𝑎𝑛 would give more reasonable response when there are 

multiple datasets and the best parameters found out from each dataset is different. 
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A strong correlation is found between 𝜃𝐴𝑠
 and 𝜃𝑑𝑠

 from  Figure 3-13. It seems like 

the model underestimates the solid dissolution rate when the particles are large and 

the other way around when the particles are small. In the case of 𝜃𝐴𝑠
 and 𝜃𝑘𝑙

, there 

is no correlation because generally the mass transfer rate and the solid dissolution rate 

are not correlated. 

To conclude, the proposed Bayesian estimation approach provides quantified 

information about uncertainties in all the parameters as well as the relations between 

them. This is a big advantage of this method over the optimization which can only 

give a deterministic value for a parameter, even when it has a multimodal or 

distributed characteristic.
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Figure 3‑13. Tempering control (tempering factor as 1, 4, 8, and 10 respectively) for checking multimodal posterior distribution 

between 𝜽𝑨𝒔
 and 𝜽𝒅𝒔

𝟎; also compare the 𝜽𝐦𝒆𝒂𝒏 and 𝜽𝐦𝒐𝒅𝒆 movements. × denotes mean and + denotes mode.
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3.5.4. Kinetics study with the proposed model parameters 

Sensitivity analysis is conducted using the inferred parameters (𝜽m𝑒𝑎𝑛); each design 

variable is perturbed at a time and the according CO2 removal efficiency (%) = 100 ⋅

(𝑛̇𝐶𝑂2
i𝑛𝑙𝑒𝑡 − 𝑛̇𝐶𝑂2

o𝑢𝑡𝑙𝑒𝑡)/𝑛̇𝐶𝑂2
i𝑛𝑙𝑒𝑡 changes are observed. 

As shown in  Figure 3-14 , all the design variables have significant impacts on the 

removal efficiency. First, when the reactor temperature increases, the CO2 removal 

efficiency is maintained high for longer period and the basic reactants, NaOH or 

Ca(OH)2, are consumed earlier. It is because a high temperature can speed up the 

dissolution rate of Ca(OH)2 as well as the enhancement factor 𝐸  and the mass 

transfer rate through the rate constant 𝑘11. Although the gas solubility, 𝐻𝐶𝑂2, drops 

when the temperature becomes high, the increase in 𝐸 would offset the decrease. 

However, it seems like that the removal efficiency no longer increases above a certain 

temperature as shown in the saturating profile in Figure 3-14.
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Figure 3‑14. The sensitivity analysis of design variables. While one design variable is perturbed at a time within a range of the 

specified low and high values, the other variables are fixed to the median value of the operating range, i.e. 𝑻 to 46.5 ∘C, 𝝓𝑪𝑶𝟐
𝐢𝒏𝒍𝒆𝒕 to 

16 %, 𝒘𝑪𝒂(𝑶𝑯)𝟐 to 2 wt%, 𝒘𝑵𝒂𝑶𝑯 to 1.5 wt%, and 𝑽̇ to 1.25 L/min. The perturbation is conducted to have same interval between 

the values.
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Second, 𝜙𝐶𝑂2
i𝑛𝑙𝑒𝑡 and 𝑉̇, both of which are related to the inlet flow rate of 𝐶𝑂2, have 

significant effects on the removal efficiency. When the inlet flow rate is low, the basic 

reactants, 𝑁𝑎𝑂𝐻  or 𝐶𝑎(𝑂𝐻)2 , are consumed slowly and the CO2 removal 

efficiency stays high for longer period. However, the duration of high efficiency is 

not solely dependent on the inlet flow rate; CO2 capture rate, which is closely related 

to the removal efficiency, decreases when 𝜙𝐶𝑂2
i𝑛𝑙𝑒𝑡 or 𝑉̇ is reduced. It is because the 

reduction of 𝜙𝐶𝑂2
i𝑛𝑙𝑒𝑡  and 𝑉̇  lead to the decrease of the driving force of the mass 

transfer (the concentration gradient between gas and liquid phase) as well as the 

overall gas holdup. However, although a high percentage of CO2 removal is attained 

by maintaining low CO2 inlet flowrate, the absolute amount of captured CO2 capture 

would be low as well. 

Third, the increase of 𝑤𝐶𝑎(𝑂𝐻)2 shows an obvious effect on the removal efficiency 

profile. It helps to prolong the active CO2 capture period. However, in reality, it must 

be considered that a large loading of Ca(OH)2 could harm the mechanical operation 

such as impeller rotation or gas distribution. The increase of 𝑤𝑁𝑎𝑂𝐻 also has similar 

effects unless NaOH does not exist at all. (See the dark line in the fourth plot of  

Figure 3-14). In the absence of NaOH, the solution cannot completely remove the 

CO2 coming into the reactor. It is because the dissolution rate of Ca(OH)2 is much 

slower than NaOH to catch the CO2’s consumption of OH- ion. 
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Figure 3‑15. The case study results using the estimated parameter values. 
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Another analysis is provided here using the obtained kinetics. In real applications, 

the successful operation of the process would be evaluated by how long the high 

removal efficiency is maintained in a single batch when fixed amount of basic 

materials are given and how much CO2 is captured during that time. The latter can be 

evaluated by how much CaCO3 is produced as well. Here two case studies, in which 

how they are affected by (𝜙𝐶𝑂2
i𝑛𝑙𝑒𝑡, 𝑉̇) and (𝑇, 𝜙𝐶𝑂2

i𝑛𝑙𝑒𝑡), are done (Figure 3-15). In the 

former case, it is shown that the duration of active period increases as both design 

variables decrease, whereas the CaCO3 production is high at the middle of the ranges. 

It seems like that the southwest end region in the right upper plot of Figure 3-15 

represents the best operating conditions. In case of (𝑇, 𝜙𝐶𝑂2
i𝑛𝑙𝑒𝑡), the region with dark 

red color in both left lower and right lower graphs, could be regarded as the best. It 

is expected that further uncertainty analysis using uncertainty propagation techniques 

such as PCE, which could be one of the future studies, can help deriving more robust 

operating conditions. 

 

3.6. Conclusions 

This chapter presented a mathematical model for aqueous mineral carbonation 

process for CCU. The model describes gas-liquid mass transfer, solid dissolutions, 

ionic reactions and precipitation kinetics in differential algebraic equations. Eight 

parameters are inserted in the parts where the model seems to have uncertainties. 17 

sets of experiments were carried out under different conditions including one for the 

result validation and monitored two responses, outlet CO2 fraction and pH of the 
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solution, in each experiment. The data from the experiments were used to estimate 

the posterior distributions of the parameters using Bayesian parameter estimation 

framework. 

The purpose of the Bayesian parameter estimation is to find the posterior distribution 

of each parameter. The posterior is defined by the product of the prior distribution of 

the parameter and the likelihood of data, but MCMC sampling method is necessary 

because the algebraic formulation of the posterior with respect to 𝜃 is unattainable. 

For the prior, uniform distribution was adopted and for the likelihood, Gaussian error 

assumption in which iterative samplings were used to estimate the covariance vector 

of Gaussian error is used. 

As a result, the stochastic model responses which fit the experimental measurements 

very well are obtained. It shows that the proposed model and the parameter estimation 

method were capable of capturing the important features of the mineral carbonation 

reactor. Some of the parameters were revealed to have multimodal or distributed 

natures, although they were not designed to have deterministic values in the model 

development stage. It shows that a deterministic model can be extended to a stochastic 

model through Bayesian inference. 

Based on the obtained parameter estimates, a rigorous analysis on the effect of each 

design variable on the reactor’s performance such as CO2 removal efficiency and the 

production of CaCO3 was done. This can be useful information for operating the 

mineral carbonation process. 

This methodology would be useful for the parameter estimation problems which 

have non-ideal or hard-to-predict behaviors in systems. If model errors are not fully 
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unavoidable, it is good to keep the uncertainties with the model for follwing 

applications. There is a  distributed toolbox based on this chapter’s contents  

(https://github.com/jihyunbak/BayesChemEng) with an end-to-end pipeline from 

creating surrogate models for dynamic responses through inferencing posterior 

distributions using MCMC to analyzing results with plotting tools. It can be applied 

in other fields which requires a stochastic model to quantify uncertainties in the 

output response, such as robust design, stochastic optimal control, and model-based 

design of experiments. 
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Chapter 4. 

 Multi-objective optimization of chemical reactor 

design using computational fluid dynamics† 

 

4.1. Objective 

In this chapter, a CFD-based design optimizer for chemical reactors based on the 

multi-objective Bayesian optimization framework is proposed. This optimizer is 

applied to the design of a gas-sparged stirred tank reactor with dual Rushton turbines, 

which are widely used in many applications such as bio-hydration processes. Two 

objective functions are the effective gas holdup and the power consumption and six 

optimization variables are the design parameters related to the shape of the tank, the 

position and size of impellers and gas sparger, and the topological constraints. As a 

result, a saturated Pareto front is obtained within 100 iterations, which include ten 

initial cases drawn from a Latin hypercube, and ten constraint violation cases. The 

designs included in the saturated Pareto front outperform the heuristic designs 

reported in the literature. A platform to automate the optimal design process by 

connecting the multi-objective BO (MBO) with commercial CFD software.  

 

† This chapter cites the author’s published journal article: Park, S., Na, J., Kim, M., & Lee, 

J. (2018). Multi-objective Bayesian optimization of chemical reactor design using 

computational fluid dynamics. Computers & Chemical Engineering, 119, 25-37. 
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4.2. Problem Formulation 

In this chapter, the multi-objective optimal design problem to maximize the effective 

gas holdup (egh) and minimize the power consumption (power) of a gas-sparged 

stirred tank reactor with two Rushton turbines and four baffles is solved. Figure 4-1 

(a) shows an illustration of the general design of this reactor type. 
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Figure 4‑1. (a) Base design of a gas-sparged stirred tank reactor and (b) design 

parameters of the reactor.
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The concept of an effective gas holdup is slightly different from a typical gas holdup 

in that it only calculates the gas fraction where the volume fraction of gas is below 

0.3 [110]. It is introduced to penalize the excessive accumulation of gas [43] and 

prevent a reactor with an extreme gas flow in only one region to become optimal. A 

higher value of the effective gas holdup means the impellers distribute more gas 

throughout the reactor. The power consumption is the amount of energy consumed 

by the impellers per unit of time. A lower power consumption is desirable to lower 

the operating costs of the reactor.  

The structure of the reactor can be determined through the following parameters, as 

illustrated in Figure 4-1 (b): the tank diameter (T), tank height (H), clearance of the 

lower and upper impellers (C1, C2), diameter of the impeller (D), and diameter (d) 

and height (h) of the sparger. When the volume of the reactor is fixed, which is a 

reasonable assumption in this type of reactor in which the required amount of reagent 

is calculated at a higher decision level, the number of parameters is reduced to six: 

the tank aspect ratio (
𝐻

𝑇
), the lower impeller clearance to the tank height ratio (

𝐶1

𝐻
), the 

upper impeller clearance to the tank height ratio (
𝐶2

𝐻
), the sparger diameter to the 

impeller diameter ratio (
d

D
), the impeller diameter to the tank diameter ratio (

𝐷

𝑇
), and 

the sparger height to the lower impeller clearance ratio (
ℎ

𝐶1
). The type of the impeller 

is fixed to a Rushton turbine because this is the most accepted type for a gas 

distribution, and assumed that the tank is fully baffled.  
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The optimization problem is mathematically formulated as 

  

mid(f1(𝒙), f2(𝒙)) 

where   f1(𝒙) = 𝑝𝑜𝑤𝑒𝑟(𝒙)[W]0.4 

f2(𝒙) = (20 − 𝑒𝑔ℎ(𝒙))[%], 

𝒙 = [
𝐻

𝑇
,
𝐶1

𝐻
,
𝐶2

𝐻
,
𝑑

𝐷
,
𝐷

𝑇
,
ℎ

𝐶1
] ∈ X, 

X = { 𝒙 = [
𝐻

𝑇
,
𝐶1

𝐻
,
𝐶2

𝐻
,
𝑑

𝐷
,
𝐷

𝑇
,
ℎ

𝐶1
]| 𝒙 ∈ 𝔻6, 

𝐻

𝑇
∈ {1, 1.5, 2, 2.5, 3}, 

𝐶1

𝐻
∈ {0.1, 0.2, 0.3, 0.4, 0.5}, 

𝐶2

𝐻
∈ {0.5, 0.6, 0.7, 0.8, 0.9}, 

𝑑

𝐷
∈ {0.25, 0.5, 0.75, 1, 1.25}, 

𝐷

𝑇
∈ {0.25, 0.333,0.417,0.5,0.583}, 

ℎ

𝐶1
∈ {0.5, 0.6, 0.7, 0.8, 0.9} }, 

𝐬. 𝐭.  𝒙 comprises the topologically available reactor. 

 Eq. 4-1 

In Eq. 4-1, the optimization variable x is a vector of six discrete design parameters. 

Functions f1  and f2  are objective functions whose forms are variations in the 

performance functions, 𝑝𝑜𝑤𝑒𝑟(𝒙) and 𝑒𝑔ℎ(𝒙). The performance function maps the 

specific design defined through a set of design parameters to a performance indicator. 

Here, X  is the search domain or design space of a reactor in which each point 

corresponds to a different design.  

Here, the design space is a discrete space of six dimensions, 𝔻6 . Each design 

parameter constitutes one axis in the design space, and can have five values with a 
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constant grid spacing. Thus, 56 = 15,625 grid points exist in the design space of a 

hyper-rectangle shape. However, not every combination of design parameter values 

comprises a topologically feasible reactor structure. For example, if both 
𝐶1

𝐻
 and 

𝐶2

𝐻
 

have the same value of 0.5, two impellers overlap. The designs that do not violate the 

topological constraints are 8,655 in number.  

Regarding the objective functions, the performance functions, 𝑝𝑜𝑤𝑒𝑟(𝐱)  and 

𝑒𝑔ℎ(𝐱) , are reformulated to 𝑝𝑜𝑤𝑒𝑟(𝐱)0.4  and 20 − 𝑒𝑔ℎ(𝐱) , respectively. The 

former is to scale the power consumption, which has a much broader range compared 

to the effective gas holdup, and the latter is to convert a maximization problem into a 

minimization problem. The important fact of these performance functions is that they 

are black-box functions, which cannot be described in algebraic form; their values 

can be determined only through a CFD simulation, as illustrated in Figure 4-2. 
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Figure 4‑2. Graphical illustration of the role of CFD as black-box performance functions. 
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The final purpose of a general multi-objective optimization problem is to find the 

Pareto set that satisfies the following: 

  S = { 𝒔 ∈ Y: ∄𝒔′ ∈ Y 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 f(𝒔′) ≺ f(𝒔)},  Eq. 4-2 

where f = [f1, f2], Y is the image of f, and ≺ indicates the Pareto domination rule, 

which is defined as 

  

𝒂 = [𝑎1, … , 𝑎𝑝] ≺ 𝒃 = [𝑏1, … , 𝑏𝑝]  

⇔  
∀𝑖 ≤ 𝑝,   𝑎𝑖 ≤ 𝑏𝑖 ,
∃𝑗 ≤ 𝑝,   𝑎𝑖 < 𝑏𝑖 .

 

 Eq. 4-3 

However, in this study, the final Pareto front is likely to be sub-optimal because of 

sampling inputs in a continuous space. The resulting optimization variables have only 

five discrete values because saving computational time is preferable to finding a 

global optimum in practical applications. 

 

4.3. Optimization scheme 

4.3.1. Multi-objective optimization algorithm 

BO is a branch of nonlinear optimization in which a sampling for the unknown 

objective function occurs at every iteration based on the analysis of a stochastic 

process surrogate model [111]. There are many variations depending on which type 

of stochastic process and sampling criterion are used. The Gaussian process (GP) is 

the most widely accepted surrogate model, whereas different sampling criteria are 

applied for different problems.  

Table 4-1 describes a general algorithm of single-objective BO, adopted from 
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Brochu et al. [112]. The process of determining a new sampling point 𝒙𝑛, evaluating 

an objective function at 𝒙𝑛, and updating the surrogate model with the newly added 

sample (𝒙𝑛, yn) is repeated every iteration until the stopping criterion is met. The 

acquisition function plays a role as a sampling criterion. It instructs us how much 

each point in the search domain is worth sampling by calculating the probability of 

the objective function to reach the maximum (or minimum) at the point of interest.
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Table 4‑1. Pseudo code for general Bayesian optimization concept [112].   

Algorithm  Bayesian Optimization 

1: for n = 1,2,… do 

2:     Find 𝒙𝑛 that maximizes the acquisition function over the GP:  

𝒙𝑛 = 𝑎𝑟𝑔𝑚𝑎𝑥𝒙 u(𝒙|𝒟1:𝑡−1) 

3:     Evaluate the objective function:  

yt = f(𝒙𝒏) 

4:     Augment the sample as 𝒟1:𝑛 = {𝒟1:𝑛−1, (𝒙𝑛, yn)} and update the GP. 

5: end for 

 Here, u(𝒙) is the acquisition function, f(𝒙) is the function to be optimized, and 

𝒟1:n is the observed dataset from iteration 1 ton. 
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The use of the GP as a surrogate model makes the probability calculations easy to 

conduct. The key principle of the GP is that any finite linear combination of the 

function values has a joint Gaussian distribution. Thus, with the GP, when there are 

N sample points at 𝒙𝟏, … , 𝒙𝑵 , their function values, f(𝒙𝟏)… f(𝒙𝑵) , are in a 

multivariate Gaussian distribution whose mean and covariance matrix are expressed 

as functions of the input 𝒙𝟏, … , 𝒙𝑵: 

  f1:N~𝒩 (m1:N, 𝐊),  Eq. 4-4 

where f1:N ≡ (f(𝒙𝟏)… f(𝒙𝑵))T, m1:N ≡ (m(𝒙𝟏)…m(𝒙𝑵))T, and 𝐊𝑖𝑗 = k(𝒙𝒊, 𝒙𝒋). 

The mean function, m(𝒙), is usually set to a zero function, whereas the covariance 

kernel function, k(𝒙𝒊, 𝒙𝒋), has many different forms. The covariance kernel functions 

provide a prior belief on the attributes of an objective function, such as the 

smoothness, periodicity, or oscillatory behaviors. As an example, Isotropic Matérn 

5/2 kernel applied in CFD-MBO optimizer is given:  

  

k(𝒙𝒊, 𝒙𝒋)

= 𝜎𝑓
2

(

 1 +
√10𝑟

𝜌
+

10𝑟2

3𝜌2

)

 exp

(

 −
√10𝑟

𝜌

)

 , 

 Eq. 4-5 

where 𝜎𝑓  and 𝜌  are the hyper-parameters, and  𝑟 = √(𝒙𝒊 − 𝒙𝒋)
T
(𝒙𝒊 − 𝒙𝒋) . The 

formulation in (5) implicates that the closer the distance is between two points in the 

input space, the stronger the correlation between their function values. Two 

hyperparameters, 𝜎𝑓 and 𝜌, are used to fine-tune the model shape.  

 The prediction of the unknown function value at point 𝒙∗ is conducted using a 
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property in which f1:N and f(𝒙∗) also have a joint Gaussian distribution: 

  (
f1:N

f∗
)~𝒩 ((

m1:N

m∗

) , (
𝐊 𝐊∗

𝐊∗
T 𝐊∗∗

))  Eq. 4-6 

where f∗ = f(𝒙∗) , m∗ = m(𝒙∗ ), 𝐊∗ ≡ (k(𝒙𝟏, 𝒙∗)…k(𝐱𝐍, 𝐱∗))
T , and 𝐊∗∗ = 

k(𝒙∗, 𝒙∗). The probability distribution of f∗ conditioned upon f1:N data is given in a 

closed form using the Bayes rule: 

  p(f∗|𝒙∗, 𝒙1:𝑁, f1:N) =  𝒩(μ∗, σ∗
2)  Eq. 4-7 

where μ∗ =  m(𝒙∗) + 𝐊∗
T𝐊−1(f1:N − m1:N), nd  σ∗

2 = 𝐊∗∗ − 𝐊∗
T𝐊−1𝐊∗. 

Given the exact probability distribution, the acquisition function can compute the 

likeliness of 𝒙∗ as the optimum. One of the widely used acquisition functions is the 

expected improvement (EI), uEI [113], which evaluates the expected improvement 

over the incumbent minimum (assuming the minimization problem), where 

improvement I is defined as follows: 

  I(f(𝒙∗)) ≡ (mid (f1:N) − f(𝒙∗)) ∙ 𝟏[min(f1:N)>f(𝒙∗)],  Eq. 4-8 

where 𝟏[𝐸] is the indicator function, which has a value of 1 if 𝐸 is true and 0 if it 

is false. Because f(𝒙∗) follows a Gaussian distribution, uEI is expressed in a closed 

form as 

  

uEI(𝒙∗) ≡ 𝔼[I(f(𝒙∗))]

= (mid(f1:N) − μ∗)Φ(
mid(f1:N) − μ∗

σ∗

)

+ σ∗𝜙 (
mid(f1:N) − μ∗

σ∗

), 

 Eq. 4-9 
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where 𝔼[∙]  is the expected value, and Φ(∙)  and 𝜙(∙)  are the cumulative 

distribution function and probability density function of a standard normal 

distribution, respectively. Figure 4-3 shows the concept of the EI as a graph.
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Figure 4‑3. Graphical illustration of EI.
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The extension to the multi-objective optimization is achieved by introducing 

different acquisition functions. One of the acquisition functions developed for 

multiple objectives is the expected maximin improvement (EMmi) function, uEMmi 

[114], which was applied in this work. The EMmi function is used to compute the 

expected value of the maximin improvement IM, which is defined as  

  

IM(f(𝒙∗))

≡ −
mnx

𝒙𝒊 ∈ 𝒫𝑥
 

mid
𝑗 = 1,2,…

(fj(𝒙∗) − fj(𝒙𝒊))

× 𝟏
[−

max
𝐱𝐢∈𝒫𝑥

 
min

𝑗=1,2,…
(fj(𝒙∗)−fj(𝒙𝒊))>0]

, 

 Eq. 4-10 

where 𝒫𝑥 is the incumbent Pareto set configured until that point, and the maximum 

value of 𝑗 represents the number of objective functions. Here, IM measures how 

much a new point will be distant from the incumbent Pareto front in an objective 

space. However, unlike a single-objective case, uEMmi does not exist in an analytic 

formulation, and thus numerical methods such as Monte Carlo sampling are needed 

to calculate its values.  

4.3.2. CFD-MBO optimizer 

CFD-MBO optimizer is developed to optimize the reactor performances, which can 

only be evaluated through expensive CFD simulations. The multi-objective BO 

algorithm and a CFD platform are connected and thus, the entire process is 

completely automated. In this section, the detailed algorithms and implementation 

methods of the optimizer are described.
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Figure 4‑4. Algorithm of CFD-MBO optimizer.
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The flow chart in Figure 4-4 shows the algorithm of the CFD-MBO optimizer. The 

first task of the optimizer is to sample an initial training set using the Latin Hypercube 

sampling method. Herein, the number of initial samples is ten, although this number 

is adjustable depending on the available computational resources. Then, surrogate 

models, two GPs with zero mean function and Isotropic Matérn 5/2 covariance kernel, 

are created for both objective functions based on the initial data. The hyperparameters 

of the kernel, 𝜎𝑓  and 𝜌 , are optimized every fifth iteration using the restricted 

maximum likelihood method to best fit the sampled data.  

At every iteration, the mean and variance of the objective function values are 

estimated at all points in the input domain. The acquisition function, uEMmi, is then 

computed using the Monte Carlo method. The optimizer samples 20,000 random 

pairs of objective function values from the posterior Gaussian distributions, calculates 

the maximin improvement of each sample, and then approximates the expected values 

by taking their averages. Although finding the argmax value of an acquisition 

function is generally another optimization problem, this work adopted an exhaustive 

searching method owing to the relatively small number of grid points in the search 

domain.   

Once the next sampling point is determined, the optimizer first judges whether the 

topological constraints are satisfied in this new design. When all constraints are 

satisfied, it automatically generates the geometry and mesh files for a CFD simulation 

by launching the Workbench program of Ansysⓒ, and executes the CFXⓒ solver. 

However, when there is a constraint violation, which means that the design 
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parameters of the new sampling point do not form a feasible structure, the optimizer 

allocates the maximum values for both objective functions without a CFD simulation. 

After the simulation, the performance indicators, namely, the effective gas holdup 

and power consumption, are extracted from the CFD result file, and then the Pareto 

front is updated with the new result.  

The stopping criterion is the exhaustion of the time budgets or the saturation of the 

Pareto front. Whether the Pareto front is saturated is determined based on two criteria: 

the hypervolume of the dominated area in the output space, and the average uEMmi 

value of all points in the input space. These can give both quantitative and qualitative 

information to stop the iterations. More discussions on these are provided in the 

following section.  

The CFD-MBO optimizer is built using Ansys CFX and the MATLAB-based open 

toolbox STK, version 2.5.0 [115]. Ansys Workbench provides tools for drawing a 

geometry, generating a mesh from the geometry, running CFD simulations using the 

CFX solver, and post-processing the CFD results. STK provides various source codes 

required to implement the MBO algorithms, such as GP regression codes, acquisition 

function codes, and a Pareto front finding code. Ansys software can be executed 

without a graphical user interface by running pre-built command files, called journal 

or session files, which are written in Python, Perl, or Ansys's own language depending 

on the tools. The CFD-MBO optimizer creates command files that contain the 

geometry information of new reactor design and then runs the CFD simulation using 

these files. Figure 4-5 illustrates the detailed work flow of the optimizer. The overall 

framework including MBO is implemented in MATLAB. 
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Figure 4‑5. Implementation of CFD-MBO optimizer using STK toolbox, MATLAB, and Ansys software.
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4.4. CFD modeling 

This section provides the modeling method of a gas-sparged stirred tank reactor 

using CFD. The reactor of Alves et al. [75], which includes measurement data of a 

local and global gas holdup and the design variables falling within the range of this 

problem, was chosen as a reference. Because it is impossible to validate all results 

during the optimization, the CFD setting that best fits the experimental results [75] 

was found first, and then maintained for the remaining iterations. For many aspects, 

the work of Kerdouss et al. [116], who conducted the CFD simulation of the same 

reactor was referred. 

4.4.1. Tank specifications 

Figure 4-1 depicts the exact reactor used in validation. It is a flat-bottomed and fully 

baffled tank, which has a diameter of 0.292 m and a height of 0.584 m. Two standard 

Rushton turbines are installed and rotated at a speed of 450 rpm. Water at 25°C is 

filled into the reactor, and the air under ambient conditions is sparged from the ring 

sparger at a rate of 1.67 × 10−4 m3/s. 

4.4.2. Governing equations 

To model the two-phase flow, Eulerian–Eulerian approach, which describes the gas 

and liquid as interpenetrating continua and solves the Reynolds averaged mass and 

momentum conservation equations for each phase, is used. To describe the rotation 

of impellers, multiple reference frame (MRF) method is applied. The governing 

equations are described as 
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𝜕

𝜕𝑡
(𝜖𝑖𝜌𝑖) + ∇ ∙ (𝜖𝑖𝜌𝑖𝑢⃗ 𝑖) = 0, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 𝑔, 𝑙  Eq. 4-11 

  𝜖𝑔 + 𝜖𝑙 = 1,  Eq. 4-12 

  

𝜕

𝜕𝑡
(𝜖𝑖𝜌𝑖𝑢⃗ 𝑖) + ∇ ∙ (𝜖𝑖𝜌𝑖𝑢⃗ 𝑖𝑢⃗ 𝑖)

= −𝜖𝑖∇𝑃 + ∇ ∙ (𝜖𝑖𝜇𝑒𝑓𝑓,𝑖(∇𝑢⃗ 𝑖 + (∇𝑢⃗ 𝑖)
𝑇)) + 𝜖𝑖𝜌𝑖𝑔 

+ 𝐹 𝑖 + 𝐵⃗ 𝑖 + 𝑆𝑖𝑢⃗ 𝑖, 

 Eq. 4-13 

  𝐵⃗ 𝑖 = −2𝜖𝑖𝜌𝑖𝑁⃗⃗ × 𝑢⃗ 𝑖 − 𝜖𝑖𝜌𝑖𝑁⃗⃗ × (𝑁⃗⃗ × 𝑟 ).  Eq. 4-14 

The term 𝑆𝑖 is applied at the gas sparger (gas inlet) and liquid surface (gas outlet) 

as the mass sink and source, respectively. In addition, 𝐹 𝑖 is a generalized term for the 

interphase forces, and 𝐵⃗ 𝑖 corresponds to Coriolis and centrifugal forces applied to 

the rotating reference frame.  

Interaction forces such as the drag force, lift force, and virtual mass force are exerted 

between the gas and liquid phases. However, it was reported that only the drag force 

has a critical impact on the flow pattern in a stirred tank [117, 118]. Therefore, in this 

work, 𝐹 𝑖 is reduced to account for only the drag force: 

  𝐹 𝑙 = −𝐹 𝑔 =
3

4
𝐶𝐷

𝜖𝑙𝜖𝑔𝜌𝑙

𝑑𝑏
|𝑢⃗ 𝑔 − 𝑢⃗ 𝑙|(𝑢⃗ 𝑔 − 𝑢⃗ 𝑙).  Eq. 4-15 

  𝐶𝐷 = {
 
24(1 + 0.15𝑅𝑒𝑝

0.687)

𝑅𝑒𝑝
  𝑅𝑒𝑝 ≤ 1000

 0.44            𝑅𝑒𝑝 > 1000

 .  Eq. 4-16 

   𝑅𝑒𝑝 =
𝜌𝑙|𝑢⃗ 𝑔 − 𝑢⃗ 𝑙|𝑑𝑏

𝜇𝑙 + 𝐶𝜇𝑡,𝑙
.  Eq. 4-17 

The bubble diameter, 𝑑𝑏, was assumed to have a constant value of 3 mm based on 
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the research by [75], in which the bubble diameter was within the range of 1–5 mm. 

For the drag coefficient, the correlation of Schiller and Naumann [119], which 

describes particles in a stagnant liquid, was implemented as a basic form, and 

modified viscosity term in Eq. 4-17 to consider the turbulence effect in the stirred 

tank [120] was added. The parameter C in Eq. 4-17 is introduced into the turbulence 

effect, and is set to 0.9.  

 Standard k-epsilon model and the dispersed phase zero equation were used to 

describe the turbulence behavior of the liquid and the gas phase, respectively. 

However, this model has a weakness in reproducing the hydrodynamics of the near-

wall regions. Therefore, to compensate this weakness as well as to avoid a violation 

of the recommended Y+ range, a scalable wall function, which virtually displaces the 

near-wall mesh to have a Y+ value of 11.225, is applied before applying the wall 

function. The scalable wall function is useful in industrial applications, in which Y+ 

values vary considerably in a single unit, and makes the results independent of the 

range of their values.  

4.4.3. Simulation methods 

The commercial software ANSYS CFX, Release 17.0, is used for the transient 

simulation. The time step is set to 0.02 s at the initialization stage, and increased to 

0.04 s after the calculation is stabilized. Although these time step sizes seem to be 

large, it is ascertained that the results were not different to a test case in which the 

time step was set to 0.001 s. To boost the speed of the simulations, only one half of 

the reactor was simulated, and the rotational symmetry was applied on the other half. 
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The number of mesh elements is 306,943, which is maintained at a similar level 

during the rest of the optimization. No-slip and free-slip boundary conditions are 

applied in all walls for the liquid and gas phases, respectively. For the advection 

scheme, a high-resolution method, in which the first- and second-order advection 

schemes are blended with different blending factors for different locations, is used, 

and for the transient scheme, the second-order backward Euler method is used. For 

the turbulence numeric, a first-order upwind advection scheme is used.  

The effective gas holdup and power consumption values are obtained after reaching 

the steady-state by taking the average values of the transient data. It takes about 3 h 

with 16 CPU cores to earn a sufficient amount of steady-state data. The computational 

times required for other designs are also similar. 

 

4.5. Results and discussion 

4.5.1. CFD model validation 

The simulation results were compared with the previously reported experimental 

data on the gas holdup by Alves et al. [75]. Figure 4-6 shows the local gas holdup 

trends along the radial and axial positions of the CFD simulations and experiments. 

The simulation data are not constant, but change over time. Thus, they are represented 

with the mean and ±1σ  range of the time-series data. There are no significant 

discrepancies in the values or tendencies except for the region near the outer liquid 

surface. The global gas holdup also agrees well with the actual value. The CFD model 

and the experiment provide values of 2.4% and 2.5%, respectively.    
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Figure 4‑6. Comparison between the modeling and experimental local gas holdup data.
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4.5.2. Optimization results 

The saturated Pareto front was earned after 100 iterations including the ten initial 

samples and ten constraint violations. Figure 4-7 (a) shows a graph of the Pareto 

fronts at every tenth iteration, in which an older Pareto front is drawn on top of the 

newer ones. If a line with a new color appears to the southwest of the existing lines, 

it means that the Pareto front progresses during the last ten iterations from that time. 

In addition, the number in the parentheses indicates the iteration number of that point. 
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Figure 4‑7. (a) Advance of the Pareto front as the number of iteration increases, (b) the trend of the first objective function 

(𝒑𝒐𝒘𝒆𝒓(𝐱)𝟎.𝟒) values along the iterations, and (c) the trend of the second objective function (𝟐𝟎 − 𝒆𝒈𝒉(𝐱)) values along the 

iterations.
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Figure 4‑8. Saturation of Pareto front with respect to the concept of dominated 

hypervolume.
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A couple of factors which show the saturation of Pareto front are observed. First, as 

shown in Figure 4-7 (a), the significant improvement of the Pareto front is not 

observed after the 72th iteration. Although the last member of the final Pareto front is 

added at the 98th iteration, it has the exactly the same values as the previous element, 

added at the 33th iteration. Second, the dominated hypervolume, which is defined as 

the area between the Pareto front and the maximum values of the objective functions, 

is negligibly increased after the 50th iteration. Figure 4-8 illustrates well the increase 

in the dominated hypervolume.  

The saturation of the Pareto front does not qualify its global optimality, which means 

that a further improvement of the Pareto front can still occur after many iterations. 

However, a few aspects support my decision to stop the optimization after 100 

iterations. First, there have been sufficient attempts to explore new areas. In Figure 

4-7 (b) and (c), it can be seen how the two objective function values change as the 

iterations proceed. During the first ten iterations, the plots go up and down without 

any apparent trends because they are the samples randomly drawn from a Latin 

hypercube. After the initial evaluations, the CFD-MBO optimizer searches for 

designs with similar power and gas holdup levels for a certain period of time, and 

occasionally jumps to designs with different levels. This shows that the optimizer 

performs both global and local searches during the optimization process. After the 

50th iteration, there is a negligible increase in the dominated hypervolume, even 

though several attempts at exploration have taken place and three more elements are 

added to the Pareto set. Second, the average uEMmi changes during the optimization 

can be an indicator. The value of uEMmi not only has a role as a sampling criterion, 
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it also provides a measure of the expected improvement of the Pareto front because 

its value is the expected distance advancing from the incumbent Pareto front. The 

value decreases gradually as the iterations proceed, and reaches below 0.35 at the 

100th iteration, which implies that the expected decrease of any objective function 

reaches below 0.35. It is deduced that an improvement of 0.35 for both objective 

functions is not critical to this problem, and the designs that are within the Pareto 

front are close to an optimum. However, it is the user’s choice to proceed the 

iterations until the average uEMmi  value becomes much lower and more precise 

solutions are obtained.
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Figure 4‑9. Optimization results (a) in the objective function space and (b) with respect to the original performance functions.



136 

 

Figure 4-9 shows the results of all designs the optimizer has evaluated. The left 

graph is based on the actual objective functions, which are the transformed versions 

of the original performance functions, and the graph on the right side shows the 

results with respect to the original performance indicators. Three notable points are 

observed from these graphs. First, although most of the evaluated points are not 

sharply located at the Pareto front, most are close to it. It is the strength of Bayesian 

optimization that does not waste the computational resource to evaluate unlikely 

points. The superior results of general BO samples to random initial samples also 

reveal the efficiency of the BO sampling strategy. Second, the designs in the saturated 

Pareto set outperform the reference designs reported in the literature. To compare the 

resulting optimal designs, three designs from Alves et al. [75], Hudcova et al. [121], 

and M. Chen et al. [43] were chosen, as references, all of which are gas-liquid stirred 

tank reactors with dual Rushton impellers and their design parameters fallen into this 

problem’s range. For fair comparisons, only the ratios between the design parameters 

were extracted and simulations were carried out in the same volume reactor with 

those ratios. This is a reasonable treatment because the design heuristics also provide 

instructions in terms of the ratios. In Figure 4-9, it can be seen that the performances 

of the Pareto front designs are superior to the reference designs. Third, the Pareto 

front seems to be discontinuous, particularly in the x-axis direction. One reason is that 

the two objective functions are not always in a trade-off relationship. If they were in 

a strict trade-off relationship, the Pareto front would take a continuous shape. It is 

true that a high level of power is required to obtain a high level of gas holdup because 

the strong liquid flow from the large impellers, which consume a large amount of 
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power, can distribute a large amount of gas. However, saving power and increasing 

the gas holdup do not conflict at small scales, at which the positions of the sparger 

and the impellers can make a difference. Another reason is the discontinuous input 

domain in the problem formulation. The discrete input values result in discrete output 

values. In particular, the power consumption has a strong positive correlation with a 

single parameter, the impeller diameter (see Figure 4-10), whereas the gas holdup is 

affected by more parameters. This explains why the Pareto front is more 

discontinuous with respect to the abscissa.
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Figure 4‑10. Relationship between the impeller diameter and power 

consumption based on the data obtained during the optimization.
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4.5.3. Analysis of optimal designs 

This section discusses the optimal designs found from the optimization process, as 

well as their performances. The final designs were selected based on the plot shown 

in Figure 4-9 (b). Even within the final Pareto front, there are three designs that 

outperformed the others from a practical point of view, which are referred to as 

overwhelming optimal designs, representing the low-power-low-gas holdup, the 

medium-power-medium gas-holdup, and the high-power-high-gas holdup reactor 

groups, respectively. For comparison, three outperforming designs were chosen 

among the initial designs, representing the low, medium, and high groups, 

respectively. The reference designs, two of which are included in the low group and 

one of which, in the medium group, are also compared. Unfortunately, it was not 

possible to find a reference design that can be categorized into the high-power-high-

gas holdup group. 

 Figure 11. (b), (c) and (d) provide two-dimensional side views and contour plots of 

a gas holdup at the same ratio as the real reactors. The specific values of the design 

variables and performances of all reactors used in the comparison are given in Table 

4-2.
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Figure 4‑11. (a) The location of each group in the objective function space, (b) the structures and 2D contours of a gas holdup 

in good initial designs, (c) the structures and 2D contours of the gas holdup in the reference designs, and (d) the structures and 

2D contours of the gas holdup in overwhelming optimal designs. 
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Table 4‑2. Detailed specifications and the performances of the initial, reference, and optimal reactors. 

 # Category Power (W) Effective gas holdup H/T C1/H C2/H d/D D/T h/ C1 

Initial 

designs 

3 Low 2.3 4.0% 2 0.2 0.6 0.5 0.25 0.6 

2 Medium 142.5 5.5% 2 0.3 0.6 0.75 0.5 0.7 

5 High 222.6 8.9% 2.5 0.1 0.8 1 0.583 0.5 

           

Reference 

designs 

Alves Low 15.5 2.2% 2 0.25 0.5 0.247 0.333 0.75 

Hudcova Low 13.6 2.2% 2 0.167 0.667 0.54 0.333 0.714 

Chen Medium 136.1 5.3% 1.447 0.228 0.504 0.5 0.45 0.394 

           

Optimal 

designs 

72 Low 2.2 4.3% 2 0.1 0.7 0.5 0.25 0.6 

41 Medium 90.5 7.4% 2.5 0.1 0.6 1 0.5 0.6 

50 High 199.1 13.1% 2.5 0.1 0.6 1 0.583 0.5 
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Figure 4‑12. Liquid velocity vector space in reactors shown in Figure 4-11.
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First, to discuss the designs in the low-power-low-gas holdup group, the optimal 

design #72 and initial design #3 have an impeller diameter to tank diameter ratio of 

0.25, whereas the two reference designs have a ratio of 0.33. The liquid velocity fields 

of designs #72 and #3, illustrated in Figure 4-12, are weaker than those of Alves and 

Hudcova. In addition, the gas volume fraction contours of designs #72 and #3 in 

Figure 4-11 indicates that these reactors are under flooding operations. However, both 

designs show a superior gas distribution compared to the reference designs. Gas is 

particularly well distributed in the region above the upper impeller. From this 

phenomenon, it is suspected that the strong flow field near the surface in Alves and 

Hudcova may hinder the accumulation of gas in this region.    

In the medium group, the distance between impellers seems important. If two 

impellers are too close, as in design #5 and Chen’s design, the flow developed by one 

impeller is disturbed by the other. In addition, it is advantageous to locate the sparger 

as low as possible to minimize the volume of the no-gas zone below the sparger.  

In the high-power-high gas holdup group, it is observed that the upper impeller close 

to the surface deteriorates the global gas holdup. The only difference between designs 

#5 and #50 is the location of the upper impeller. In design #5, the strong liquid flow 

developed by the high upper impeller location may cause the surface air to become 

entrapped. In addition, the weak flow field between the impellers owing to the large 

spacing results in a loss of gas holdup in that region. On the other hand, the high 

group has the largest impellers among the three groups, which means that such 

impellers are a critical factor bringing about a high level flow and gas distribution. 
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4.6. Conclusions 

A CFD-MBO optimizer which implements a multi-objective Bayesian optimization 

to CFD-based optimal design problems was successfully developed. Bayesian 

optimization is a proper algorithm for functions that are expensive to evaluate, such 

as CFD-based black-box functions, because it can reduce the number of function 

evaluations by avoiding a search in regions that are unlikely to be the optimum. The 

efficiency of the CFD-MBO optimizer was proved in the design problem of a gas-

sparged stirred tank reactor with two objectives, six design variables, and topology 

constraints.  

The saturated Pareto front is obtained only after 100 iterations. It consists of eight 

near-optimal designs that show greatly enhanced performances compared to the 

initial designs. In addition, the other designs that are sampled by the optimizer tell 

that the optimizer not only successfully balances the exploitation and exploration, but 

also finds the suboptimal designs that lie close to the final Pareto front.  

The optimal designs on the final Pareto curve are compared with the reference 

designs from the literature that are designed based upon heuristic rules. As a result, 

the optimal designs turned out to show better performances in terms of power and gas 

holdup than these reference designs.  

There are three overwhelming designs from the optimal Pareto group that are 

superior to the other elements in a practical sense. They can represent low-power-

low-gas holdup, medium-power-medium-gas holdup, and high-power-high-gas 

holdup, and the engineers can choose one of them depending on their needs. However, 
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when there is a specific performance target, one can attempt to achieve the target 

optimization by setting the objective functions as 𝑡𝑎𝑟𝑔𝑒𝑡 𝑔𝑎𝑠 ℎ𝑜𝑙𝑑𝑢𝑝 −

𝑔𝑎𝑠 ℎ𝑜𝑙𝑑𝑢𝑝 and 𝑡𝑎𝑟𝑔𝑒𝑡 𝑝𝑜𝑤𝑒𝑟 − 𝑝𝑜𝑤𝑒𝑟 and using the transfer learning strategy 

suggested by [56]. Because the new objective functions are correlated with the current 

functions, all CFD results obtained in the optimal design process could be good initial 

points for the new optimization problem, which can be an area of further study. 

Finally, the CFD-MBO optimizer can be applied to other CFD-based design 

problems as well as the reactor design problems. Adjustments of the details such as 

the number of initial samples, the penalty values for constraint violations, and the 

number of samples used in the Monte Carlo method may be needed. Although 

analyzing the effects of these factors is outside the scope of this work, the settings of 

this study can be applied to other problems as well. 
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Chapter 5. 

 Concluding Remarks 

 

The problem of industrial-scale chemical reactor designs can be resolved by taking 

advantage of cutting-edge techniques developed in the process systems engineering 

community.  Firstly, multi-scale modeling techniques can take account of hugely 

varying length and time scales in important variables of industrial-scale reactors. In 

the example of the industrial-scale aqueous mineral carbonation reactor, the sizes of 

an entire reactor and the portion of the reactor (compartment), in which homogeneous 

mixing status is ensured, are in big difference. In addition, the time consumptions to 

numerically solve the governing equations of chemical system (reaction kinetics) and 

the physical system (hydrodynamics) are so different that it is impossible to solve 

them simultaneously. The CFD-based compartmental model, which regards a big 

reactor as a network of homogenous zones and uses CFD simulation results for 

macro-flows between the zones, can be a great solution for such systems.  

 Secondly, first-principle reactor models can be intensified by the model calibration. 

It can be done by introducing parameters at uncertain parts of the model and 

estimating them to explain the experimental observations most accurately. Bayesian 

parameter estimation not only derives constant values for the parameters, but also 

obtains probabilistic distributions of the parameters. Therefore, it helps understanding 

the lying uncertainties of the predicted results from the model and making safe 

decisions for the reactor design. The ability of this method is shown in the 
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intensification of aqueous mineral carbonation reactor model; it was shown that 

Bayesian parameter estimation generates more accurate model outputs as well as their 

confidence bound than conventional parameter estimation methods.  

Lastly, precisely developed reactor models can be plugged into optimization 

algorithms to obtain the optimal design; objective function be the reactor performance 

and optimization variables be the design parameters. Black-box optimization 

algorithms are simple-to-use and powerful tools to combine with the reactor models 

which have high non-linearity or are built on commercial software. Bayesian 

optimization is recommended for expensive models like CFD models in that it 

reduces the number of iterations by introducing selection criteria for point-to-be-

evaluated. Multi-objective Bayesian optimization to maximize the gas holdup and 

minimize the power consumption in a gas-liquid stirred reactor was successfully 

executed and produced several optimal design candidates (on Pareto curve) which 

outperform the heuristic designs.  

The process of modeling, calibration and optimization that this thesis suggests for 

the successful design of industrial chemical reactors can be illustrated as in Figure 5-

1.
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Figure 5-1. Optimal design process of industrial-scale chemical reactor.
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Abstract in Korean (국문초록) 
 

본 박사학위논문에서는 멀티 스케일 모델링, 실험 결과를 이용한 모델 

보정법, 최적화 순으로 진행되는 산업용 화학 반응기의 설계 전략을 제시

한다. 반응기는 화학 공정에서 제일 중요한 단위이지만, 그 설계에 있어

서는 최신 수치적 기법들보다는 여전히 간단한 모델이나 실험 및 경험 

규칙에 의존하고 있는 현실이다. 산업 규모의 반응기는 물리, 화학적으로 

몹시 복잡하고, 관련 변수 간의 스케일이 크게 차이나는 경우가 많아 수

학적 모델링 및 수치적 해법을 구하기가 어렵다. 모델을 만들더라도 부정

확하거나 시뮬레이션 시간이 너무 긴 문제가 있어 최적화 알고리즘에 적

용하기가 힘들다.  

반응기 내 현상의 복잡성과 스케일 차이 문제는 멀티 스케일 모델링을 

통해 접근할 수 있다. 전산유체역학 기반 구획 모델(CFD-based 

compartmental model)을 이용하면, 불균일한 혼합 패턴을 보이는 대형 

반응기에서도 긴 시간 동안의 동적 모사가 가능하다. 이 모델은 큰 반응

기를 완벽하게 균일한 작은 구획들의 네트워크로 간주하고, 각 구획을 반

응 속도식들과 CFD 결과로부터 가져온 유동 정보가 포함된 질량 및 에

너지 균형 방정식으로 표현한다. 기체, 액체, 고체 3상이 상호작용하며 

복잡한 유동을 보이는 수성 광물 탄산화 반응기를 이 방법을 사용해 모

델링하였다. 이 때 모델은 미분 대수 방정식(DAE)의 형태를 띠며, 메커
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니즘 상 모든 반응들(기-액 간 물질 전달 반응, 고체 용해 반응, 이온 간 

반응, 앙금 침전 반응)과 유체 역학, 반응열, 열역학적 변화 및 운전 상의 

이벤트 발생을 모두 고려할 수 있다. 모델을 이용해 이산화탄소 제거 효

율, pH 및 온도 변화를 예측하여 실제 운전 데이터와 비교한 결과, 파라

미터를 통한 보정이 전혀 없이도 7 % 이내의 오차를 보여주었다. 

모델의 부정확성 문제는 모델링 후 실험 결과를 이용한 모델 보정으로 

극복 할 수 있다. 본 논문에서는 광물 탄산화 반응기 모델을 베이지안 보

정(Bayesian calibration)을 통해 강화하는 방법을 제시한다. 먼저 모델 

중 불확실한 부분에 8개의 파라미터를 도입한 후, 베이지안 파라미터 추

정법(Bayesian parameter estimation) 및 실험실 규모에서의 실험 결과

들을 이용하여 파라미터들의 사후 확률 분포를 추정하였다. 얻어진 파라

미터의 확률 분포들은 모델 및 실험의 불완전성으로 인해 나타나는 파라

미터의 불확실성 및 다중 봉우리 특성을 반영하고 있다. 이를 이용하여 

실험 결과를 잘 따라가는 확률론적 모델 예측치(stochastic model 

response)를 얻을 수 있었다. 16개의 실험 데이터셋 및 테스트셋의 피팅 

에러(fitting error)는 결정론적인 최적화 알고리즘(deterministic 

optimization)을 사용할 때보다 비슷하거나 낮은 것으로 측정되었다. 

 수학적 최적화에 쓰이기에 너무 긴 시뮬레이션 시간 문제는 베이지안 

최적화 알고리즘을 적용하여 해결할 수 있다. 화학 반응기 설계 최적화를 

위해 본 논문에서는 다중 목적 베이지안 최적화(Multi-objective 
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Bayesian Optimization, MBO)를 사용해 시뮬레이션 횟수를 최소화 하는 

CFD 기반 최적 설계 방법을 제안하였다. 여섯 가지 설계 변수를 가지는 

기-액 교반 탱크 반응기에서 전력 소비를 최소화하고 가스 분율(gas 

holdup)를 극대화하기 위해 이 방법을 이용한 결과, 단 100 회의 시뮬레

이션 만으로 최적 파레토 커브(Pareto curve)를 얻을 수 있었다. 제안된 

최적 설계안들은 문헌에 보고된 기존 반응기들과 비교해 뛰어난 성능을 

보여주었다. . 

본 논문을 통해 제안된 CFD 기반 구획 모델링법, 베이지안 모델 보정

법 및 베이지안 최적화 방법은 복잡한 물리적 및 화학적 특징을 갖는 산

업 규모의 화학 반응기에 적용될 수 있을 것으로 기대된다. 

 

주요어: 반응기; 반응기 모델링; CFD 반응기 모델; CFD 기반 구획 모델; 

베이지안 파라미터 추정; 베이지안 최적화; 반응기 최적 설계; 수성 광물 

탄산화; 이산화탄소 포집 이용 저장 (CCUS) 
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