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Abstract 

Urban traffic flows are characterized by complexity. Due to this complexity, 

limitations arise when using models that have commonly been using to estimate the 

speed of arterial road networks. This study analyzes the characteristics of the speed 

data collected by the probe vehicle method in links on the urban traffic flow, presents 

the limitations of existing models, and develops a modified recurrent neural network 

model as a solution to these limitations. In order to complement the limitations of 

existing models, this study focused on the interrupted flow characteristics of urban 

traffic. Through data analysis, we verified the separation of platoons and high-

frequency transitions as phenomena in interrupted flow. Using these phenomena, this 

study presents a two-step model using the characteristics of each platoon and the 

selected dropout method that applies traffic conditions separately. In addition, we 

have developed an active imputation method to deal with frequent missing data in 

data collection effectively. The developed model not only showed high accuracy on 

average, but it also improved the accuracy of certain states, which is the limitation 

of the existing models, increased the correlation between the estimated value and the 

estimated target value, and properly learned the periodicity of the data. 

Keyword : Data Estimation, Deep learning, Recurrent Neural Network,  

Probe Vehicle, Traffic Speed 

Student Number : 2016-30289 
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Chapter 1. Introduction 

 

 

1.1. Study Background and Purpose 

 

1.1.1. Importance of traffic speed estimation 

 

Traffic systems are often expressed in networks, and the average characteristics 

of road segments are expressed in the properties of links, the most basic unit of the 

network. The flow properties specific to the link represent the state of the current 

system, which serves as a basis for understanding the current situation, providing it 

to the user, and further developing and improving short-term operation and long-

term planning of the transportation system. Many studies have been conducted to 

estimate traffic conditions and traffic information on links and provide them to 

drivers or to establish traffic policies and strategies.  

The average speed data of a link is the most basic data of traffic. Average speed, 

along with average travel time, is one of the most intuitive data available and is the 

most easy-to-access to drivers and operators. It is also the most objective indicator 

of the performance that a link currently shows. This study aims to estimate these 

speed data accurately.  
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In particular, the estimation accuracy of these speed data is more critical for 

urban traffic flow. Many countries with advanced transport infrastructures are in 

intensive urban development. In South Korea, the proportion of the urban population 

is 91.84% in 2018, and the proportion is steadily increasing. According to the 

mileage statistics of the Ministry of Land, Infrastructure and Transport, the driving 

distance of urbanized areas is 88.16%. In addition to a large amount of traffic in the 

urban area itself, the traffic to the arterial road that handles inter-regional traffic also 

passes through the urban traffic network, so urban traffic flow plays a fundamental 

role in all motor traffic in highly urbanized countries. However, these urban traffic 

flows have very complicated characteristics compared to the arterial road network. 

As a result, estimating specific data on urban traffic flows is a challenging task. 

Nevertheless, estimation of the properties of urban traffic flows requires higher 

accuracy than arterial roads. There are several reasons for this. The most important 

reason is that the data estimation of urban traffic flows causes a small change in user 

route selection. This property is due to the complexity of the urban traffic network, 

which is different from the arterial road network. Also, in the case of urban traffic 

flows, frequent changes of state may occur, and the state estimation of traffic flows 

may change even with a small difference. In addition, since urban networks have a 

shorter segment length, and many segments are included in one path than the arterial 

road network, a small difference of one segment can be overlapped and amplified 

several times. For these reasons, the estimation of urban traffic flow requires a high 

level of accuracy. 

In addition, investment to the existing loop type detector system is gradually 
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being reduced in policy, and efforts are being made to link it with private data and 

supplement it with new detection systems such as DSRC (Dedicated Short-Range 

Communications). However, for these newly applicated systems, much missing 

information is generated due to the properties of the system. This missing 

information reduces the accuracy of the estimation models, and at the same time, 

becomes the research objective of the estimation models themselves.  

Existing studies often use traffic speed or travel time estimation models that 

were previously developed in other areas without any model modification. This 

approach has the disadvantage of providing no clue to the dynamics of traffic data, 

even if it guarantees high accuracy. Therefore, it is necessary to explore how the 

dynamics of traffic data affect this approach, with the introduction of the latest 

method of ensuring high accuracy. 
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1.1.2. Property of Urban Network Speed Data 

 

Most of the traffic data are generally collected in units of points or segments on 

the road, usually represented as a link. In the case of such traffic data, there are two 

main characteristics. 

The first is the time-series feature. Traffic data itself has characteristics as time-

series, and the characteristics of the previous time affect the next time. It can also 

show regular patterns depending on the time of day. In particular, home-based traffic 

such as commuting is characterized by regular patterns over time. 

The second is that it is affected by the traffic flow conditions from the nearby 

links. (Daganzo 1994) The traffic conditions of specific links depend on the shock 

waves propagated from the nearby links. Especially for arterial roads, such 

propagation characteristics are well represented, and many studies have been 

conducted for these kinds of roads.  

In the case of urban networks, one more attribute is added here. Unfortunately, 

for urban networks consisting of a set of interrupted flows, the complexity limits the 

exact estimates (Vlahogianni et al. 2014). This complex correlation of traffic data is 

influenced not only by the spatiotemporal relationship between links, but also by 

many factors such as hierarchy, traffic volume, location characteristics, and traffic 

flow propagation. Naturally, speed data on urban networks also exhibit this 

complexity. 
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1.1.3. Problems of Speed Data Estimation on Urban Traffic 

 

There are two problems in estimating the properties of urban traffic flows. The 

first problem is the estimation accuracy. Data estimation on urban traffic networks 

requires higher accuracy than that of regional arterial networks, but due to the 

characteristics of urban traffic flows, estimation often shows low accuracy. This low 

accuracy occurs for the following reasons. First, urban traffic flows have a low 

correlation between the data of links due to complexity.  This low correlation 

results in lower forecastability between link information (Park et al. 2019). Second, 

propagation between links can be blocked due to traffic signals or intersections. In 

the case of traffic signals, the conditions between the links may vary due to signal 

operation and offset. Changes in signal operation can also cause different conditions 

overtime on the same link. Finally, urban traffic flows show more frequent state 

transitions than arterial flows, which can cause bias of data. Due to the frequent 

change of traffic states, it is more likely that the effects of false estimations will 

continue to be more effective than continuous flow. 

The second problem is the high frequency of missing data. Urban traffic 

systems typically collect speed or travel time data by means of probe vehicles, which 

often cause missing data. A typical reason is the failure of data 

transmission/reception devices such as beacons receiving information of probe 

vehicles and terminals mounted on vehicles. In addition, the sample may not be 

sufficient due to the small traffic volume, and an error may occur in the received 

information. 
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Missing data and resulting information leaks are affected not only by the 

equipment itself but also by the current traffic conditions on the road. Probe vehicle 

data generated by commercial GPS information has also generated a large amount 

of missing data. Missing data generated through the above problems not only lowers 

the reliability of the data but also reduces the accuracy of the data estimation itself. 

In particular, in machine learning that requires a large amount of data, a problem 

may occur in that the number of data samples decreases. 

 

1.1.4. Property and Limitation of Deep Learning 

 

Deep learning is one of the most actively studied techniques in terms of data 

estimation. Deep learning models are widely studied in many areas as well as data 

estimation through their high accuracy. 

Ever since the discovery of algorithms for learning through a Deep Belief 

Network studied by Hinton, deep learning has emerged as the most central algorithm 

in data estimation and machine learning. (Hinton et al. 2006) Many improvements 

have been made since then and are now being introduced to the transportation sector, 

but the number of studies is still limited(Nguyen et al. 2018). 

Deep learning has the advantage of high accuracy, but it has the disadvantage 

that it is challenging to grasp the causality of input and outcome data. In particular, 

the characteristics of deep learning techniques that continuously abstract data face 

the problem of not being able to grasp the context as well known as the “Black Box 
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Problem”. The disadvantage is that the analysis of relationships is almost impossible. 

In addition, if there are missing values dependent on the data, the result may 

vary depending on the processing method. As a similar problem, the same feature as 

other machine learning techniques requires a great deal of data, as called “Big Data,” 

which is a disadvantage of the deep learning model. 

 

1.1.5. Purpose of the Study 

 

This study aims to develop an accurate traffic speed estimation model for links 

on urban networks, which consists of interrupted flows that are difficult to estimate 

due to complexity. To do this, we analyze the characteristics of the interrupted flow 

speed data that makes it hard to apply general linear combination models. 

Furthermore, we develop a deep learning model that is expected to be the most 

accurate. In particular, we develop a model that can apply the properties of the 

interrupted flow, not merely apply some deep learning models. In addition, this study 

aims to produce a model that can be estimated for frequent missing data. 
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1.2. Research Scope and Procedure 

 

1.2.1. Research Scope 

 

The primary purpose of this study is to estimate the average speed data on links 

of urban roads as described above. Generally, urban road networks consist of 

interrupted flows. Because of this, this study precedes the analysis of interrupted 

flow to develop the model that can reflect characteristics of the interrupted flow. At 

the same time, it was found that the existing model could not adequately reflect the 

characteristics of interrupted flow. The main methodology for the estimation is the 

modified model of the recurrent neural network (RNN). Continuously, this study 

designs novel RNN cells to reflect the characteristics of interrupted flow. 

The data used in this study are some part of the data collected from the DSRC 

system in Daegu between January and June 2018. 

 

1.2.2. Research Composition and Procedure 

 

As shown in Figure 1.1, this paper proceeds through five steps. This paper 

consists of six chapters, including the introduction. 

 

In Chapter 2, the direction of the study was explored by analyzing the existing 

research. First, the existing studies related to data estimation was searched. These 
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studies include both traditional and machine learning techniques. Next, studies on 

traffic flow analysis were reviewed. Through the review, the existing research 

comprehensively analyzed, and the original contribution of the study was explained. 

 

In Chapter 3, this study describes the DSRC data of Daegu, which is the data 

used in this study. Then, this study analyzed probe vehicle data collected through the 

DSRC system. Through this analysis, the characteristics of the data were identified. 

Simultaneously, this study was able to find out the result of applying the existing 

model and the phenomenon caused by the separation of platoons. 

 

In Chapter 4, we describe a novel recurrent neural network method that 

modified the existing GRU to suit the characteristics of interrupted flow and data 

collected from the DSRC probe vehicle system. 

 

In chapter 5, this study shows the improved performance of the model 

developed in several aspects. In addition to accuracy, it describes in detail how the 

existing model overcomes the limitations for each state. 

 

Chapter 6 summarizes the analysis so far, presents the limitations of this study, 

and suggests future research directions. 
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Figure 1. 1 Research Procedure 
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Chapter 2. Literature Review 

 

 

2.1. Data Estimation 

 

2.1.1. Traditional Estimation Methods 

 

Traditional estimation models have been developed based on mathematical 

models, not data-driven. There is a representative model based on the kinematic 

wave proposed by Newell (Newell 1993). Also, a model using cellular automata on 

the highway (Nagel and Schreckenberg 1992), and the CTM(Cell Transmission 

Model) studied by Daganzo has been used (Daganzo 1994). Pan is an advanced form 

of CTM that studies mathematical models by selecting multivariate normal 

distribution-based predictors as a sub-system of the Stochastic Cell Transmission 

Model (SCTM). Also, there is a model that predicts real-time traffic volume using 

spatio-temporal correlation(Min and Wynter 2011).   

In the case of data-driven research, since traffic data has traditionally been 

treated as a part of time-series data, studies on time-series waveform analysis such 

as Kalman filter and ARIMA (AutoRegressive Integrated Moving Average) have 

been conducted. The Kalman filter is a filter that estimates linear dynamics based on 

measurements that contain noise. Often used for time series prediction, a number of 
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studies have been conducted(Chen and Grant-Muller 2001; Chien et al. 2003; Van 

Lint 2008; Wang et al. 2006). ARIMA is also a time-series analysis tool that analyzes 

abnormal time series data using the differential form of the ARMA model. Many 

studies have also been conducted on this. 

 

Table 2. 1 Traditional Estimation Methods 

Author(s) Year Method 
Target of 

Estimation 

Newell 1993 Kinematic Wave Highway Traffic 

Nagel and 

Schreckenberg 
1992 Cellular Automata Freeway Traffic 

Daganzo 1994 Cell Transmission Model Highway Traffic 

Pan 2013 
Modified Stochastic Cell 

Transmission Model 

Short-term Traffic 

State 

Min and Wynter 2011 
Spatio-temporal 

correlation analysis 
Road Traffic 

Chen and Grant-

Muller 
2001 Kalman Filter 

Short-term Traffic 

Flow 

Chien et al. 2003 Kalman Filter Travel Time 

Van Lint 2008 Kalman Filter Travel Time 

Wang et al. 2006 Kalman Filter Traffic Flow 

Chandra and Al-

Deek 
2009 ARIMA 

Freeway Traffic 

Speeds 

Smith et al. 2002 ARIMA Traffic Flow 

Williams and 

Hoel 
2003 ARIMA Traffic Flow 

Ni et al. 2005 Markov Chain Highway Traffic 
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2.1.2. Machine Learning Models 

 

Machine learning can be classified into three categories: statistical, geometric, 

and regressive. Regression machine learning involves Deep learning, and most of 

the recent work involved deep learning. 

 

2.1.2.1. Statistics Based Machine Learning Models 

 

The most representative example of statistical machine learning is the Bayesian 

network model. It is a model based on Bayes' theorem and has been spotlighted as a 

model that enables probabilistic explanations along with decision trees in machine 

learning models. 

Sun used the Bayesian network to predict traffic flows (Sun et al. 2006). In the 

2018 study, Park conducted a study to predict the breakdown of traffic flows based 

on the Bayesian network (Park 2017). 

 

2.1.2.2. Geometric Based Machine Learning Models 

 

The geometric machine learning model is the simplest and has the highest 

reliability with high accuracy. Models in this category typically include k-nearest 

neighbors and support vector regression (SVR). The models estimate the data 

through the data that is geometrically closest to the situation to be estimated (k-
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nearest neighbors) or find the hyperplane between the data to estimate (SVR). The 

K-Nearest Neighbor technique uses the average of k data that is geometrically closest 

to the current data to be predicted, and because it has no special analytical meaning, 

it does not have academic content and is typically not used for estimation nowadays. 

But it often used for comparison with models(Yu et al. 2011). 

SVR is a regression analysis using the support vector machine (SVM). The 

support vector machine was developed by Cortes(Cortes and Vapnik 1995).  This 

model is a well-defined machine learning model that was used mainly before the 

neural network was in the spotlight. As described above, the hyperplane through data 

is obtained and the model is used to grasp the characteristics of the data, and it is 

used for the prediction of short-term travel time through the regression analysis 

technique(Wu et al. 2004; Zhang and Xie 2007). 

 

2.1.2.3. Deep Learning Models 

 

As same as mentioned, it has been since 2006 that the deep learning model 

represented by the Artificial Neural Network has been in the spotlight, but it is not 

recent that the Neural Network has been applied to prediction or estimation of traffic 

data. Dongjoo Park used the Modular Neural Network for link travel time prediction 

and applied the Spectral Basis Neural Network(Park et al. 1999; Park and Rilett 

1998). Byungkyu Park also used the Neural Network with backpropagation for 

traffic prediction and took good results(Park et al. 1998). 

Since then, various neural networks have been introduced in traffic research. 
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The main models used are deformation models of recurrent neural networks that 

feedback outcome results. Models in this category are the Elman Neural Network 

(Elman NN), also known as the Simple Recurrent Network, and its variant, the State 

Space Neural Network (SSNN)(Ishak et al. 2003; Van Lint 2008). 

Besides, Time Delay Neural Network (TDNN) and Nonlinear AutoRegressive 

with eXogenous inputs Neural Network (NARX NN) also have been used. In the 

case of TDNN, it is not a recurrent model but a neural network that takes current and 

previous time series values as inputs together(Lingras and Mountford 2001). NARX 

NN is a nonlinear autoregressive method that takes inputs from other exogenous time 

series values(Fusco et al. 2015). 

The commonly used RNN model, like other deep neural networks, has shown 

poor performance for long-term data due to the gradient vanishing problem 

(Hochreiter 1998). To solve this problem, recurrent neural networks that customize 

RNN's memory term appear. It was. Representative models of this type are Long 

Short-term Memory (LSTM) and Gated Recurrent Unit (GRU). LSTM is a model 

developed by Hochreiter, and it is used in many fields by innovatively progressing 

the problem of RNN(Hochreiter and Schmidhuber 1997). GRU is a simplified 

version of LSTM's processing gate and is one of the most widely used RNN models 

with LSTM(Cho et al. 2014). 

Research into applying this to traffic data is also actively underway. In Ma's 

study, LSTM was used for the traffic speed prediction study, and Fu's study 

introduced LSTM and GRU in the traffic flow prediction, showing better 

performance than ARIMA. Many studies have also used GRU and LSTM to predict 
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traffic flow and show better performance than previous models(Fu et al. 2016; Zhang 

and Kabuka 2018). 

 

2.1.3. Other Estimation Models 

 

Further studies have been conducted to estimate traffic data through signals 

collected from mobile data and others(de Fabritiis et al. 2008; Iqbal et al. 2014). 

Table 2. 2 Machine Learning and other estimation methods 

Author(s) Year Method Target of Estimation 

Sun et al. 2006 Bayesian Network Traffic flow 

Park 2017 Bayesian Network Traffic State 

Lee 2018 k-NN, SVM Road Condition 

Yu et al 2011 SVM, ANN, k-NN Bus Arrival time 

Wu et al. 2004 SVR Travel time 

Zhang and Xie 2007 SVR Freeway Volume 

Park et al. 1999 MNN Travel time 

Park and Rilett  1998 SNN Travel time 

Park et al. 1998 RBFNN Traffic volume 

Ishak et al. 2003 Elman NN Travel Speed 

Van Lint 2008 SSNN Travel Time 

Lingras and 

Mountford 
2001 TDNN Traffic volume 

Fusco et al. 2015 NARX NN Travel Speed 

Ma et al. 2015 LSTM Travel Speed 

Fu et al. 2016 GRU, LSTM Traffic Flow 

Zhang and 

Kabaka 
2018 GRU Traffic Flow 

De Fabritiis et al. 2008 Mobile data OD Matrix 

Iqbal et al. 2015 Mobile data Traffic Volume 
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2.2. Traffic State Handling 

 

Traffic flow state is difficult to estimate with only one type of data. Therefore, 

the traffic flow state is determined by considering various data in time or space. The 

classification of traffic flow conditions varies from two states to five states. There is 

also a methodology for determining breakdowns issued by unstable flows known to 

exhibit different dynamics from normal flows. 

Traffic flow is converted to Unstable flow when “Break down” occurs in normal 

flow, which is thought to occur when demand exceeds capacity. (Kondyli et al., 2013) 

For flow modeling, there are mainly a single regime model and a two-regime 

model. In the two-regime model, stable flows and unstable flows are modeled 

separately (Yao et al., 2009). 

Treiber's study smoothed the traffic speed data using an adaptive kernel that 

reflects the mutual spatio-temporal effects of traffic flow. (Treiber et al., 2003) The 

model allows an indirect understanding of the impact of the neighbor links. 

Traffic flow state determination uses more machine learning methods such as 

Markov chain and Clustering than traditional methodologies. In Xia et al. (2012), 

traffic flow state was determined by the clustering method, and in Dong and 

Mahmassani, Noroozi and Hellinga et al., Traffic state was determined by 

spatiotemporal Markov modeling. In some studies, the traffic state is clustered using 

only single data such as demand and speed, and the Jenks natural break method is 

used for one-dimensional clustering data. (Wen et al. 2017; Wu and Hung 2010)  
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The influence of data exchange between links can be determined by 

predictability. Forecastability strongly influenced by the variability of the data to be 

predicted. As a study of this inherent volatility, Georg developed the Forecastable 

Component Analysis technique. In this study, we defined the spectral density 

according to the time series and defined the Omega Value using Shannon entropy 

(Goerg 2013).  

Yue's work was on the mutual Forecastability of each data. In this study, the 

time lag cross-correlation function (CCF) was used. CCF is an indicator of linear 

dependence between data and can have high predictive power between strongly 

related data. (Yue and Yeh 2008) Park indexed inherent volatility and mutual 

predictability. (Park et al. 2019) 

Many studies have cited platoon separation as a hallmark of interrupted flow. 

(Akcelik 1996; Gartner et al. 1992; Yang et al. 2014) In these studies, traffic signals 

were identified as being divided into queued and unqueued vehicles by traffic signals, 

and traffic flow analysis was performed using them. 
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Table 2. 3 Traffic State Handling 

Author(s) Years Method Contents 

Treiber and 

Kesting 
2003 Adaptive smoothing 

Spatio-temporal 

smoothing for speed 

Dong and 

Mahmassani 
2009 Markov Model Breakdown identification 

Wu and Liu 2011 
Simulating Traffic 

Behavior 
Traffic state 

Xia et al. 2012 Clustering Traffic state 

Wu and Hung 2010 Jenks Natural Break Traffic state 

Wen et al. 2017 Jenks Natural Break Traffic state 

Gartner et al. 

(TRB) 
1992 Platoon Separation Traffic state 

Akcelik 1996 Traffic Dynamics 
Travel Time, Density, 

Speed 

Yang et al. 2014 
Travel Time 

Distribution 
Travel Time 

Noroozi and 

Hellinga 
2014 Markov Model Breakdown identification 

Goerg 2013 
Forecastability 

Component Analysis 
Internal variability 

Yue and Yeh 2008 
Time-lag Cross-

correlation Function 

Forecastability by  

time-lag CCF 

Park 2018 Bayesian Network Breakdown forecast 
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2.3. Originality of This Study 

 

This paper analyzes why the existing estimation models do not fit the urban 

network speed estimation.  Subsequently, this paper develops and proposes a new 

estimation model. The originality of this study distinguished from previous studies 

is below. 

 

1. Development of speed estimation model that can internally handle missing data 

 

This study developed a model that can internally handle the missing data 

frequently in the probe vehicle system. To solve the frequent missing data problem, 

we developed the active imputation method that combines neural networks and 

random forest. By using the method, speed estimation is possible with data which is 

including missing or empty cells. 

 

2. Improved estimation by applying the platoon separation 

In complementing the limitations of the existing model, this study divides the 

data into periodic and aperiodic data by using the platoon separation, which is a 

common phenomenon in interrupted flow. This method solves the period reverse 

problem in the learning construction of LSTM and secures robustness against sudden 

change in speed. 
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3. Development of a model robust for traffic states 

Interrupted flows have a high transition probability, unlike uninterrupted flows. 

For this reason, if the time lag occurs in the estimation, the expected error is larger 

than the interrupted flow. In this study, we proposed a methodology for solving the 

transition probability of each situation to secure the robustness of the transition state. 

The methodology consists of combining neural networks with the developed RNN 

model to perform traffic state adjustment. 

  



 

22 

 

Chapter 3. Data Collection and Analysis 

 

 

3.1. Terminology 

Below are some of the less common terms used in this paper. 

 Low-Performance Platoon (LPP): A group of vehicles that exhibit a lower speed 

than the specified threshold during the same time. 

 High-Performance Platoon (HPP): A group of vehicles that have a higher speed 

than a specified threshold during the same time 

 Low-performance Platoon ratio (LPR): Counts of LPP / Counts of all OBE 

 Naive Model: A model that uses only speed values as I / O values 

 One Step Model: Model using LPP speed, HPP speed, LPR as input values and 

average speed as the output value 

 Two-Step Model: A model that predicts LPP speed, HPP speed, and LPR with I / 

O values first and then calculates average speed using them. 

 Internal missing imputation: Implement imputation on missing data to make 

missing data available as the input value 

 Decaying Method: The method calculated by converging to the global average 

value over time when proceeding with internal missing imputation. 

 Active Imputation: The method calculated by learning the ratios between the last 

observed values and the values calculated from other models when performing 

internal missing imputation. 
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3.2. Data Collection 

 

3.2.1. Collected Data 

 

This study used DSRC-based data collected from Daegu Metropolitan City 

from January to June 2018. The data records the recording time, vehicle speed, 

vehicle ID, and link passing time for each link. The data was converted into a one-

minute data frame, and about 250,000 lines of data were used. 

There are 642 links in total, and each link has a high data shadowing rate of 

about 50% on average. A total of 13 eastbound links in Dalgubeol, the main arterial 

road, were analyzed. In the case of Dalgubeol-daero, the average data shading rate 

is 34%. 

In this study, we analyzed the data from 06:00 to 22:00 and removed the late-

night data when the dynamics of traffic flow had no significant meaning for 

analyzing. In this case, the average missing rate is 15.4%. 

 

Figure 3. 1 Locations of the Data Collecting Area 
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Table 3. 1 Link Properties of the Data Collecting Area 

Link 

Number 

Traffic 

Signals* 

Average 

Length 

(m) 

Average 

Speed 

(km/h) 

Signal Cycle 

(Sec.) 
Lanes Remarks 

Normal 
Late-

night 

112 1 779.8 25.447 180 200 5 - 

114 0 583.2 28.708 180 200 5 
Highway Ramp 

 at end 

116 1 1410.0 43.640 180 200 6 
Highway Ramp 

 at start 

392 7 2017.4 29.388 180 200 
4+1 

(Bus lane) 

Bus lane 

(At Peak) 

123 4 1412.0 30.719 180 200 5 - 

125 2 984.4 30.109 180 200 5 - 

442 1 512.7 65.368 180 200 5 - 

546 1 530.3 41.728 180 200 5 - 

458 1 583.6 48.655 180 200 5 - 

422 3 805.9 30.941 180 200 5 - 

540 2 1071.6 30.587 180 200 
4+1 

(Bus lane) 

Bus lane 

(At Peak) 

130 2 775.8 42.660 180 200 
4+1 

(Bus lane) 

Bus lane 

(At Peak) 

350 4 1387.3 55.714 180 200 
4+1 

(Bus lane) 

Bus lane 

(At Peak) 
*: Both sides exclude 
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3.2.2. Data Collection Properties 

 

The DSRC data used in this study is collected by vehicles equipped with On-

Board Equipment (OBE). The passing time is recorded as the vehicle equipped with 

the OBE passes near the roadside equipment (RSE). In the DSRC system, this record 

time is used to calculate the link pass rate. 

OBE is mounted on the electronic toll collection system (ETCS) terminal unit. 

The penetration rate of ETCS terminals is 80.6% as of 2018. Therefore, data 

collection rates for passenger cars and chartered buses are sufficient. 

The system records a time record based on the first RSE range access time. The 

estimated speed is recorded based on the difference in time record between the length 

of the intersection and the RSE recorded in advance. The data includes the ID of the 

OBE, the link, and the average speed of the link traversal. The interval of data 

provision and update cycle is 5 minutes. 

 

Figure 3. 2 Concept of the DSRC System 
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3.3. Data Analysis 

 

3.3.1. Characteristics of Collected Data 

 

3.3.1.1. Data Missing Characteristic 

 

Data collected from the DSRC system causes various forms of data missing. 

This missing can be due to a variety of problems, from instrument problems to probe 

vehicle data (PVD) itself. 

 

    

Figure 3. 3 Cases of the Data Missing (Left: Short term, Right: Long Term) 
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Short-term data missing means no data is collected within some aggregation 

times. The most common cause is when an OBE-equipped vehicle does not cross the 

section. It also includes short-term device failures and short-term software failures. 

In the case of short-term data missing, since the temporal correlation in a link is high, 

imputation can be easily performed based on the before and after data. 

However, in the case of long-term data missing, there are many differences. 

Long-term data missing means no data is collected for more than one hour. There are 

also some cases where some months and years of data are not collected. Common 

causes of the problem are long-term problems with the device. Other causes include 

system checks and errors in essential parts of the software. In the case of long-term 

loss, data is absent for a very long time, so the data of the upstream and downstream 

links are averaged and provided. However, these data have very low correlations, 

which causes problems in terms of accuracy. 

In general, when such data missing occurs, a simple averaging method or a 

simple moving average method is used. For the simple temporal moving average 

method, MAE 4.89 is adequate for short term data missing. However, in the case of 

long-term data missing, the temporal average cannot be used because there is no 

close temporal data. Therefore, the average is calculated using spatially close data. 

In this case, the correlation between the data is not stable, which significantly reduces 

accuracy. 
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Table 3. 2 Performances of Simple Average Methods 

Missing Term Temporal Moving Average Spatial Average 

Long Term 8.08 km/h 11.71 km/h 

Short Term 4.89 km/h 8.60 km/h 

 

Table 3.2 shows the accuracy of the commonly used Simple Moving Average 

(SMA) method and the spatial average method. In the short term, the temporal SMA 

method shows an appropriate degree of performance, but in other cases, it shows a 

substantial error. The simple average of the surrounding data also shows a significant 

error, making it difficult to use. 

If there is missing data in the input in machine learning, proceed with learning 

by performing data imputation. Imputation refers to a method in which other data is 

replaced so that learning can be performed when there is a blank or non-available 

data in the “input data.” 

However, when the general imputation (linear combination imputation with 

nearby link material) is performed, the action of the signal is reversed to act as a case 

that disturbs learning. Therefore, this study explored another method. 

Imputation for input data missing is not a process of finding an "estimated 

value," but rather a "value that fit learning." As a technical application method, the 

existing study finds a method that facilitates learning through the convergence of the 

global mean, learns the speed of convergence, obtains an imputation value, uses 

missing data, and improves accuracy. (Che et al. 2018) The method called ‘Decayed 

Method,’ to insert the decayed term at the transmission of the hidden term. 
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However, there are problems in applying the decayed term directly to the speed 

data. First, it is impossible to apply periodicity because it is a convergence value for 

the global mean. The speed of travel changes over time and does not converge to the 

global mean, as shown in Figure 3.4, which is not suitable for estimating the speed 

of travel. The second is that it cannot reflect the influence of the back and forth links. 

Therefore, in this study, we used the values derived from the random forest, which 

can be applied simply through the pre-training without a monotonic problem. In 

conclusion, this study developed the 'Active Imputation Method,' which learns the 

ratio between the value obtained with pre-trained random forest and the last 

observation. The method is a technical application to improve accuracy while 

dealing with Missing Data. 
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Horizontal: Time of days (by hour) Vertical: Mean speed of each hour(km/h) 

 

Figure 3. 4 Mean Speed of Each Time 
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3.3.1.2. Correlation Analysis 

 

Table 3.3 shows the Spearman correlation coefficient between the mean speed 

value of the 13 links and the mean speed of the upstream and downstream links. 

Overall, it shows a positive correlation, but it shows a low correlation on many links. 

 

Table 3.3 Correlation with Nearby Links  

Link 
Data Correlation 

Upstream Downstream 

112 0.491 0.397 

114 0.416 0.126 

116 0.140 0.456 

392 0.449 0.383 

123 0.401 0.274 

125 0.275 0.470 

442 0.459 0.583 

546 0.583 0.709 

458 0.713 0.817 

422 0.813 0.716 

540 0.721 0.702 

130 0.697 0.206 

350 0.228 0.120 
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Table 3.4 analyzes the directional consistency and correlation of the speed data 

changes between upstream, downstream, and target links. Regardless of the upstream 

and downstream, the correlation of change amount was less than 0.5. In the case of 

change direction consistency, a random value (50%) was obtained in many links. 

This means that there is a low correlation between the speed value change of the 

nearby link data and the speed value change of the target link data. 

 

Table 3. 4 Speed Change Analysis 

Link 

ΔSpeed Direction  

Coincidence Probability(%) 
ΔSpeed Correlation 

Upstream Downstream Upstream Downstream 

112 56.3 59.6 0.111 0.242 

114 58.5 50.2 0.233 0.018 

116 49.7 50.4 0.015 0.063 

392 50.3 52.9 0.059 0.097 

123 52.6 54.6 0.079 0.100 

125 54.6 68.1 0.100 0.323 

442 68.0 73.2 0.319 0.475 

546 73.2 66.8 0.475 0.376 

458 66.3 62.7 0.366 0.276 

422 62.7 64.5 0.271 0.402 

540 64.4 67.2 0.402 0.362 

130 66.7 65.0 0.357 0.170 

350 66.1 48.9 0.184 -0.016 
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3.3.1.3. Periodicity Analysis 

 

Due to the difference between the signal cycle and the aggregation time unit, a 

periodicity occurs in the average speed data. As a result of time-lag autocorrelation 

analysis, which is generally used for periodicity analysis, periodicity was observed 

in speed data on 11 of 13 links. Figure 3.5 shows the autocorrelation analysis graphs 

for periodicity analysis. (figures for all links are included in the appendix) The 

exceptions are as follows: Weak periodicity was observed on one link (Link No. 114), 

and the start node is the highway entry ramp. Periodicity was not observed in one 

link (Link No. 116), and the start node is a highway exit ramp. 

If periodicity appears in the data, structural problems arise in the learning of the 

LSTM. An LSTM learns the autocorrelation of data itself as the structure. As a result, 

a problem arises in that data having a higher autocorrelation period is more important 

than the latest data. 

Horizontal: Time Lagging(Min.), Vertical: Pearson Correlation Coefficient. 

 

Figure 3. 5 Periodicity of Mean Speed Value 
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3.3.1.4. State Transition Analysis 

In this study, the congestion state was designated as the case where the average 

speed was lower than the threshold obtained, according to Jenks Natural Break. In 

the case of interrupted flow, the state transition probability is higher than that of 

uninterrupted flow. In particular, the probability of transition from a non-congested 

state to a congested state is relatively high. The ratio of transition state samples is 

also very high, at 23.2%. 

 

Table 3. 5 State Transition Probability Between Traffic State 

Transition Interrupted Uninterrupted 

Non-congested→Non-congested 63.16% 92.45% 

Non-congested→Congested 36.84% 7.55% 

Congested→Non-congested 20.50% 13.45% 

Congested→Congested 79.50% 86.56% 

 

In the case of uninterrupted flow, there is a high probability of maintaining the 

previous state. Thus there is little expectation of accuracy reduction in case of time 

lagging in estimation without catching the transition. However, in the case of 

interrupted flow, the continuous transition can occur when time lagging occurs. 

Therefore, interrupted flow needs correction. In addition, the transition probabilities 

between states are also different, so a way to compensate for this is required. 
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3.3.2. Results of Existing Models 

 

3.3.2.1. Accuracy of Existing Models 

 

The results of estimating the average speed using the existing estimation models 

are shown in Table 3.6. Simple Average is the most commonly used method and 

averaged the current average speed of the upstream and downstream links. It can be 

seen that due to the low correlation described above, an appropriate value cannot be 

derived. In the case of linear regression analysis using the least square method, it 

was higher than the simple mean but did not yield high accuracy. Other likelihood-

based regression methods (Ridge, Lasso, etc.) did not yield different results than 

OLS. In particular, in the case of the linear combination model, the accuracy used is 

low even though the values used for fitting the estimated model are the same as those 

used for the estimation. 

In order to solve the problem of low correlation, which may be the cause of low 

accuracy of the linear combination models, the LSTM model was used to estimate 

relatively higher accuracy than the existing model. In the LSTM model, train data 

and test data were separated. 
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Table 3. 6 Speed Estimation Accuracy of Existing Models 

Model 
MAE 

(km/h) 

RMSE 

(km/h) 

Simple Average 12.879 15.102 

OLS Regression (Single Time) 5.987 8.163 

OLS Regression (Time Series) 5.743 7.855 

Naive LSTM (Random Forest Imputed) 4.307 5.852 

 

3.3.2.2. Correlation Analysis 

 

Figure 3.6 compares the correlation coefficient between the mean speed values 

estimated by the model using single-time data and the mean speed values of up / 

downstream. As can be seen from the graph, the single-time model was unable to 

estimate the correlation with the target data higher than the correlation of the input 

data. This is true even when the correlation between the input data and the target data 

is high. (Graphs for all links are listed in the appendix) In detail, the linear 

combination model using single-time data cannot increase the correlation between 

the target data and the result more than the correlation with the input data and the 

result. 
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Vertical: Spearman Corr. Coefficient(0~1.0) 

 

 

Figure 3. 6 Correlation between Up / Downstream Link Data and  

Single-Time Model Results 

 

 

Even in the case of a model using time series data (30 minutes), the occurrence 

of correlation problems is not very different. For models using time series data, 

model fit/accuracy is slightly higher than for single-time models. (5.98 → 5.74) 

However, the correlation between the result and the target data is the same as using 
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single-time data. This phenomenon occurs in the case of close to monotone due to a 

high correlation between up / downstream and target data. 

As a solution to this problem, we can suggest multi-layered models. In the case 

of multi-layered models, Random Forest and LSTM, the correlation of target data 

can be increased beyond the limit of surrounding data. 

 

Vertical: Spearman Corr. Coefficient(0~1.0) 

 

Figure 3. 7 Correlation between Up / Downstream Link Data and  

Time-series Model Results 
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Table 3. 7 ΔSpeed Correlation Analysis 

Link 

ΔSpeed Sign Coincidence  

Probability(%) 
ΔSpeed Correlation 

Upstream Downstream OLS Upstream Downstream OLS 

112 56.3 59.6 61.5 0.111 0.242 0.248 

114 58.5 50.2 58.9 0.233 0.018 0.241 

116 49.7 50.4 51.2 0.015 0.063 0.067 

392 50.3 52.9 53.9 0.059 0.097 0.126 

123 52.6 54.6 54.3 0.079 0.100 0.105 

125 54.6 68.1 69.7 0.100 0.323 0.361 

442 68.0 73.2 80.9 0.319 0.475 0.613 

546 73.2 66.8 77.3 0.475 0.376 0.582 

458 66.3 62.7 77.3 0.366 0.276 0.425 

422 62.7 64.5 69.1 0.271 0.402 0.510 

540 64.4 67.2 70.2 0.402 0.362 0.518 

130 66.7 65.0 72.5 0.357 0.170 0.454 

350 66.1 48.9 68.4 0.184 -0.016 0.199 

 

Table 3.7 shows the direction correspondence between the speed data of the 

target link and the upstream, downstream, and OLS results. It shows the correlation 

between the proportions of the signs and the amount of change. Regardless of the 

upstream and downstream, the correlation of change amount was less than 0.5 in all 

cases. In the case of change direction agreement, a random value (50%) was derived 

from many links. This feature again proves that there is a low correlation between 

the change in the speed of peripheral link data and the difference in the speed of 

target link data. Also, linear regression, calculated by Ordinary Least Square (OLS), 

did not significantly improve the correlation problem. 
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3.3.2.3. Adequacy of Periodicity Estimation 

 

Figure 3.8 shows the relative value of importance over time-analyzed by a local 

interpretable model-agnostic explanations (LIME) algorithm that evaluates the 

importance of input value. (Ribeiro et al. 2016) This algorithm can be used to 

confirm that the dependence is reversed. If the link traffic speed is static, this is not 

the problem. However, link traffic speed is dynamic due to its complexity. Therefore, 

if a situation that causes a sudden change in speed occurs, the LSTM will make an 

incorrect estimation. 

 

Horizontal: Time Lagging (Min.) 

 

Figure 3. 8 Result of LIME Analysis of LSTM by Time 

 

Besides, this "source" learning method sometimes causes the LSTM not to learn 

the actual periodicity present. Indeed, the LSTM on two links failed to learn 

periodicity. Figure 3.9 shows an example of periodic learning failures (Link 123). 
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Horizontal: Time Lagging(Min.), Vertical: Pearson Correlation Coefficient,  

Top: Autocorrelation of Speed Data, Bottom: Autocorrelation of LSTM Result 

 

 

Figure 3. 9 Case of Periodicity Leaning Failure 

 

MAE, Unit: km/h 

 

Figure 3. 10 MAE of LSTM for Sudden Change in Speed 
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Due to the correlation inversion problem of periodic learning, LSTM is 

vulnerable to state that sudden change in speed occurs. Figure 3.10 shows that the 

LSTM is vulnerable to drastic changes of more than 5 km/h and more than 10 km/h, 

respectively. 

 

3.3.2.4. State Transition Analysis 

 

MAE, Unit: km/h 

 

Figure 3. 11 MAE of LSTM for Transition State 

 

Since the LSTM model performs hidden term transmission without adjusting 

the transition state, it is difficult to learn the transition state that changes in dynamics 

properly. Also, there is a problem of learning the congested state and non-congested 

state, showing different dynamics with the same structure. This is associated with 

periodic learning, leading to low accuracy due to sudden change. In this study, we 

tried to solve this problem by providing adjust, which performs separate learning 

according to state in Transmission of Hidden Term. 

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

Mean Transition Non-transition



 

43 

 

3.3.2.5. Summary of Existing Models Application 

 

The results of applying the existing estimation model to the collected data can 

be summarized as follows. In the case of estimation using the existing estimation 

model, the linear combination model yielded very low accuracy and correlation. In 

order to solve the problem, the estimation was performed by applying the Deep 

Learning model. In this case, the low accuracy problem could be solved to a certain 

level. In the case of LSTM, one of the deep learning models, on average, high 

accuracy and correlation were obtained. 

However, in the case of LSTM, the limitations of periodic learning and traffic 

conditions were found. In the case of the LSTM model, it is vulnerable to sudden 

changes due to the influence of periodic learning, and it is also vulnerable to the 

transition state. 

Based on previous research, cell-transmission based RNN models such as 

LSTM and GRU are known to be able to cope with various conditions through tuning 

the transmission cell(Ravanelli et al. 2017; Wöllmer et al. 2011). Therefore, in this 

study, we propose to develop a modified RNN model that is properly tuned. 
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3.3.3. Analysis Using Separated Platoons  

 

3.3.3.1. Separation of Platoons in Interrupted Flow 

 

Basically, interrupted flow is restricted by the behavior of the vehicle due to 

traffic signals or intersections. Many previous studies have studied that the 

distribution of speed and travel time of a vehicle is divided into two or more 

distributions due to the queuing caused by signals, and it is found that it is primarily 

divided into queued vehicles and unqueued vehicles. (Akcelik 1996; Gartner et al. 

1992; Yang et al. 2014) 

Due to the separation of platoons (Gartner et al., 1992), the waiting vehicles at 

the previous intersection enter the next intersection with the formed platoon. Due to 

the offset operation between intersections, in the free-flow state with low traffic, 

platooned vehicles at the previous intersection and vehicles arriving immediately 

after the green signal can pass through the progression with high probability without 

queueing at the next intersection. In the car-following state, where the traffic volume 

is higher than the free-flow state, the proportion of vehicles that are not platooned 

increases, or the proportion of vehicles that have undergone queueing at the target 

segment increases because queueing is not resolved at the target segment. When 

congestion or traffic jams occur, most cars experience queueing due to the high 

volume of traffic. As such, the separation of the queued platoon and unqueued 

platoon occurs, and this phenomenon is called “the platoon separation” in this study. 
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Figure 3. 12 Concept of the Platoon Separation 

 

In this study, it was confirmed that the platoon separation occurs at each time 

through the speed data of each vehicle collected by DSRC, and it is divided into two 

types of traffic flows for the entire link. In general, platoon formation of flow occurs 

due to simultaneous start after queueing. (Akcelik 1996; Gartner et al. 1992) 

 The link will vary the average distribution of each platoon class, which is 

related to the link's performance. Figure 3.13 is a histogram showing the platoon 

separation at a specific time. Extending this to the entire data of one link also 

indicates the platoon separation (Figure 3.14). 
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Horizontal: Speed of a Vehicle(km/h), Vertical: Counts of Vehicles 

 

Figure 3. 13 Platoon Separation for Aggregation Time 

 

Horizontal: Speed of a Vehicle(km/h), Vertical: Counts of Vehicles 

 

Figure 3. 14 Platoon Separation for a Link (Link 442) 
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3.3.3.2. Analysis for Separated Platoons 

 

For the application of the platoon separation, this study classifies platoons into 

two types, the high-speed platoon, and the low-speed platoon. In order to reflect the 

performance of the link, each link was classified to obtain a threshold. In this study, 

Jenks Natural Break was used as a technique for the clustering of traffic features and 

searching for state identifying thresholds for a single property of urban traffic flows. 

(Wen et al. 2017; Wu and Hung 2010) 

The Jenks Natural Break method searches for thresholds that minimize the 

variance in the classification group and increase the variance among the 

classification groups. The technique is appropriate when the classification of each 

platoon is clear. In the case of intermittent flow, if the length of the link is short 

enough, the separation of platoons occurs clearly, which is a suitable method. 

Table 3. 8 Result of the Jenks Natural Break by Link 

Link No. Category Threshold (km/h) 

112 Interrupted 39.07 

114 Interrupted 40.90 

116 Interrupted 51.17 

392 Interrupted 36.74 

123 Interrupted 40.01 

125 Interrupted 38.00 

442 Interrupted 43.00 

546 Interrupted 39.00 

458 Interrupted 50.12 

422 Interrupted 36.05 

540 Interrupted 42.08 

130 Interrupted 59.95 

350 Interrupted 47.82 
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Figure 3. 15 Result of Platoon Classification 

  

Horizontal: Mean speed at a Time Range(5min), Vertical: Counts 

Left: Interrupted Flow, Right: Uninterrupted Flow 

 

The classification result of platoons into high-performance/low-performance 

platoons is shown in Figure 3.15 (data for all links are included in the appendix). In 

the case of interrupted flows, the distinction between high-speed and low-speed 

vehicles was obvious. This separation can be said to be a phenomenon different from 

that of continuous flow. In the case of uninterrupted flow, the distinction was not 

clear because, in the case of continuous flow, the platoon effect did not occur, and 
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the speed of the entire traffic flow was similar. 

In the case of interrupted flows, two Platoons are often distinguished within the 

same aggregation unit, because unqueued vehicles and queued vehicles are mixed in 

one aggregation unit. 

The statistical characteristics of the platoon speed distribution are apparent. LPP 

Speed shows low skewness and high kurtosis on average. 

HPP Speed has a relatively low kurtosis compared to LPP Speed. In all cases, 

the D’Agostino-Pearson normality test was rejected. Table 3.9 shows the statistical 

characteristics of the platoon distribution. 

 

Table 3. 9 Statistical Characteristics of the Platoon Speed Distribution 

Location 
Unit 

(min) 

Low-performance Platoon High-performance Platoon 

Skewness Kurtosis Skewness Kurtosis 

112 Dalgubeol 5 -0.45 1.83 0.05 0.76 

114 Dalgubeol 5 -0.53 1.31 0.49 2.92 

116 Dalgubeol 5 -0.62 0.05 0.25 -0.56 

392 Dalgubeol 5 -1.27 3.24 0.62 1.17 

123 Dalgubeol 5 -0.63 2.08 0.95 1.85 

125 Dalgubeol 5 -0.24 3.75 1.36 3.03 

442 Dalgubeol 5 -1.13 8.34 0.17 0.50 

546 Dalgubeol 5 -0.31 4.71 0.47 0.36 

458 Dalgubeol 5 -0.54 2.07 0.02 -0.32 

422 Dalgubeol 5 -0.50 2.15 0.54 0.15 

540 Dalgubeol 5 -1.03 1.16 0.63 0.38 

130 Dalgubeol 5 -0.34 4.14 -0.03 0.41 

350 Dalgubeol 5 -2.01 8.23 1.28 3.45 
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Figure 3. 16 Relationship between LPR and Mean Speed 

  

Horizontal: Low Performance Platoon Ratio at a Time Range(5min)(0~1.0) 

Vertical: Mean Speed at a Time Range(5min) 

 

As the average speed of platoons shows a high kurtosis distribution, a constant 

linear relationship is observed between the average speed of the LPR and the link. 

In the case of continuous flow, a shallow linear relationship is observed, but it is not 

well-fitted due to the lack of simultaneous samples. Figure 3.16 shows the 

relationship between LPR and average speed for interrupted and uninterrupted flows. 

As described above, in the interrupted flow, a clear linear relationship can be 
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observed. This linear relationship can be a powerful hint for estimating average 

speed. In this study, a periodical analysis was performed on LPP Speed, HPP Speed, 

LPR, and Mean Speed to confirm whether LPR is strongly involved in the periodicity 

of average speed. 

 

Figure 3. 17 Periodical Analysis for Separated Platoons 
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The result of periodic analysis through time-lagged autocorrelation for each 

feature of separated platoons is shown in Figure 3.17. The analysis showed a 

periodicity of 10 minutes for LPR and average speed except for one link. One 

exception link is the presence of highway ramps in the ramp, which is not strongly 

affected by the periodicity of the signal. HPP Speed showed no periodicity on 11 of 

13 links. LPP Speed showed weak periodicity on six links and strong periodicity on 

one link. In particular, LPR shows strong periodicity in all cases where the 

characteristic of interrupted flow is strong, and periodicity is observed. This 

phenomenon indicates that the most critical feature in generating periodicity of 

average speed is the periodicity of LPR for each signal cycle. 

As described above, the occurrence of periodicity causes a correlation reverse 

problem in learning the multi-layer model RNN (such as GRU, LSTM). In order to 

solve this problem, this study developed a method of separating and learning data 

that causes periodicity by using the platoon separation phenomenon. In more detail, 

three data that can be estimated through the platoon separation phenomenon were 

preliminarily estimated, and then the average speed was estimated. Through this 

method, it is possible to reduce the dependence on the last input data and to apply 

the learning that has the dependence that decreases with time by separating the data 

with periodicity. In terms of technique, more accurate training can be done by 

limiting the train of the model. 
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3.3.4. Summary 

 

Table 3.10 summarizes the problems raised by data analysis and the suggested 

methodologies in this study. 

Table 3. 10 Summary of Data Analysis 

Data Characteristics 

Limitations of Existing 

Models and 

Methodologies 

Application 

methodology 

Low Correlation of Data 
Low Accuracy of  

Estimation Models 

Applying of RNN 

Models 

Problems with Periodic 

Generation of Data 

Correlation Application 

Problem According to 

Structural Learning of 

Periodicity, 

Challenging to Apply Sudden 

Change in Speed 

Development and 

Application of Two-

step Model Using 

Plating Effect 

Higher transition probability 

compared to continuous 

flow 

Estimation cannot follow 

changes when an event 

occurs, 

Low Accuracy for Transition 

Selected Dropout 

Development and 

Application 

Frequently Occurred 

Missing Data 
Data Imputation Needed 

Active Imputation 

Development and 

Application 

 

 



 

54 

 

Chapter 4. Model Development 

 

 

4.1. Basic Concept of the Model 

 

In this chapter, a data estimation model was developed based on the 

characteristics of data collection and interrupted flow analyzed in the previous 

chapter. This chapter describes the conditions of the development model, the 

development of a recurrent neural network suitable for the data, and the development 

of modules to apply transition probabilities. 

 

4.1.1. Conditions of the Development 

 

This development model estimates the average speed of traffic flow, which is 

representative information about link traffic. The average speed estimate aims to 

provide robust and compensating data for the short-term and long-term data missing 

of the probe vehicle system provided for interrupted flow. 

In order to estimate the average traffic flow speed using the platoon separation 

which is the characteristic of interrupted flow, this development model predicts the 

LPP speed, HPP speed, LPR, and finally uses the average speed of whole traffic flow. 

Estimate 
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Since it is difficult to accurately estimate intermediate outputs (speed of LPP, 

speed of HPP, LPR) with low temporal correlation with other variables, we use a 

deep learning model with high accuracy. In addition, this development model aims 

to apply the difference in the transition probabilities of traffic states inherently in the 

model. 
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4.1.2. Structure of the Model 

 

 

Figure 4. 1 Structure of the Developed Model 

 

The model presented in this model can be divided into three parts: input layer, 

recurrent layer, and output layer. The role of the input layer is to divide the collected 

probe vehicle data into three data based on separated platoons analysis. The recurrent 

layer estimates three data through the developed modified recurrent neural network. 

This layer is the most important layer to compensate for missing data and to learn 

and estimate periodicity and state transitions. The output layer has the role of 

calculating the mean speed through the estimated three data. 

The recurrent layer consists of three layers internally. The first layer is an active 

imputation layer, which produces a dataset that can learn by imputing missing data 

through a combination of random forest and a neural network. Secondly, the GRU 

layer learns and estimates through the GRU cell based on the input value. The last 

layer, the selected dropout layer, performs separate learning and estimation 

according to the traffic state. The above three machine learning layers are combined 

to fit the appropriate model. 
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4.1.3. Formations of Data 

 

The final output data of this development model is the estimated average speed 

of the target time of Target Link. The situation assumed in this study is that there are 

various types of missing data in the input data, and the target time of the target link 

is Missing. Primary output data are LPP Mean Speed and HPP Mean Speed of Target 

Time of Target Link. The final output data is calculated using the primary output data. 

However, as the label data for the learning process, the final output data is also used 

to facilitate the learning. Figure 4.2 shows the formation of I/O data. 

 

 

Figure 4. 2 I / O data type  
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4.2. Model Development 

 

 

4.2.1. Notations 

 

The symbols of the mathematical formulas used in this chapter are as follows. 

The model developed in this study is defined for time-series data denoted as X =

 (𝑥1, 𝑥2, … , 𝑥𝑇)T ∈ ℝ𝑇×𝐷 with time length T with D variables. 

𝑑: variable number 

t: time number 

𝑥𝑡
𝑑: The observed value of the t-th time of the 𝑑-th variable 

𝑥𝑡: vector of observations at the t-th time 

𝑟𝑡: Reset Gate value of t-th time 

𝑧𝑡: Update Gate value of t-th time 

ℎ𝑡: Hidden Term at t-th time 

𝑥
^

𝑡
𝑑: Adjusted Input value of t-th time of 𝑑-th variable 

𝑥𝑡′
𝑑 : Last observation at time t with 𝑡 > 𝑡′ 

𝑥
~𝑑: average value of the 𝑑-th variable 

𝐼𝑡
𝑑: Imputation target value of t-th time of 𝑑-th variable 

𝑊, 𝑈, 𝑏: Parameters of each linear combination 
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4.2.2. Gated Recurrent Unit(GRU) 

 

The basic model of the recurrent cell used in this study is GRU. GRU was 

developed through the research of Cho. The GRU is expressed as formulas below 

(Cho et al. 2014). 

𝒓𝒕 = 𝝈(𝑾𝒓𝒙𝒕 + 𝑼𝒓𝒉𝒕−𝟏 + 𝒃𝒓) ··································· Equation 4. 1 

𝒛𝒕 = 𝝈(𝑾𝒛𝒙𝒕 + 𝑼𝒛𝒉𝒕−𝟏 + 𝒃𝒛)  ·································· Equation 4. 2 

𝒉
~

𝒕 = 𝒕𝒂𝒏𝒉(𝑾𝒙𝒕 + 𝑼(𝒓𝒕 ⊙ 𝒉𝒕−𝟏) + 𝒃) ························ Equation 4. 3 

𝒉𝒕 = (𝟏 − 𝒛𝒕) ⊙ 𝒉𝒕−𝟏 + 𝒛𝒕 ⊙ 𝒉
~

𝒕 ································ Equation 4. 4 

 

4.2.3. Concept of GRU-D 

 

In this study, we used the idea of GRU-D, a GRU studied by Che et al. GRU-D 

can handle missing data internally by adding a decayed term in GRU. The formula 

of GRU-D is as follows. (Che et al. 2018) 

𝜸𝒕 = 𝐞𝐱 𝐩(−𝒎𝒂𝒙(𝟎, 𝑾𝜸𝜹𝒕 + 𝒃𝜸))  ···························· Equation 4. 5 

𝒙
^

𝒕
𝒅 = 𝒎𝒕

𝒅𝒙𝒕
𝒅 + (𝟏 − 𝒎𝒕

𝒅)(𝜸𝒙𝒕
𝒅 𝒙𝒕′

𝒅 + (𝟏 − 𝜸𝒙𝒕
𝒅 )𝒙

~𝒅) ············· Equation 4. 6 

𝐡̂𝐭−𝟏 = 𝛄𝐡𝐭
⊙ 𝐡𝐭−𝟏 ················································· Equation 4. 7 

𝒓𝒕 = 𝝈(𝑾𝒓𝒙
^

𝒕 + 𝑼𝒓𝒉
^

𝒕−𝟏 + 𝑽𝒓𝒎𝒕 + 𝒃𝒓) ························ Equation 4. 8 

𝒛𝒕 = 𝝈(𝑾𝒛𝒙
^

𝒕 + 𝑼𝒛𝒉
^

𝒕−𝟏 + 𝑽𝒛𝒎𝒕 + 𝒃𝒛) ························· Equation 4. 9 

𝒉
~

𝒕 = 𝐭𝐚𝐧 𝐡( 𝑾𝒙
^

𝒕 + 𝑼(𝒓𝒕 ⊙ 𝒉
^

𝒕−𝟏) + 𝑽𝒎𝒕 + 𝒃) ············ Equation 4. 10 

𝒉𝒕 = (𝟏 − 𝒛𝒕) ⊙ 𝒉
^

𝒕−𝟏 + 𝒛𝒕 ⊙ 𝒉
~

𝒕 ·······························Equation 4. 11 
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Where Mask 𝑚𝑡
𝑑  and delta time vector 𝛿𝑡

𝑑  are defined as vectors in the 

following equation. 

𝒎𝒕
𝒅 = {

𝟏, 𝐢𝐟𝒙𝒕
𝒅 𝐢𝐬 𝐨𝐛𝐬𝐞𝐫𝐯𝐞𝐝

𝟎, 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞
 ································· Equation 4. 12 

𝜹𝒕
𝒅 = {

𝒔𝒕 − 𝒔𝒕−𝟏 + 𝜹𝒕−𝟏
𝒅 , 𝒕 > 𝟏, 𝒎𝒕−𝟏

𝒅 = 𝟎

𝒔𝒕 − 𝒔𝒕−𝟏, 𝒕 > 𝟏, 𝒎𝒕−𝟏
𝒅 = 𝟏

𝟎, 𝒕 = 𝟏

  ··············· Equation 4. 13 

The input data is shown in the Figure 4.3 below.(Che et al. 2018) 

 

 

Figure 4. 3 An example of measurement vectors 𝒙𝒕,  

time stamps 𝒔𝒕, masking 𝒎𝒕, and time interval 𝜹𝒕 

 

 

4.2.4. Development of Modified GRU 

 

4.2.4.1. Concept of the Model 

 

In this study, we devised a method to apply the correlation characteristics of 

traffic speed data to GRU-D. There are four methods applied in this study, which are 

as follows. Each method can be said to be the most passive to the most active in 

order. Also, each case adopts a new approach in addition to the previous one. 

1. In GRU-D, the target value of the trained decaying was defined as the 
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global mean value of the observed value. On the other hand, this study 

used the estimated imputation value obtained through the relational 

model with other links. 

2.  In the case of GRU-D, the linear transform matrix of the input term is 

limited to be diagonal. However, in this study, the limitation is re-

examined to reflect the association between links. 

3. Instead of decaying between the imputing value and the last observed 

value, we attempted to determine the trained ratio through the sigmoid 

function. 

4. Attempts were made to determine the ratio of the substitute value to 

the present value, regardless of being missing. In this case, if the input 

value is not actually missing data, the last observed value and the input 

value are the same, so the trained imputation of the input data is not 

done internally, but it affects the learning by affecting the gradient of 

𝛾𝑥𝑡
. 

The best model was found by testing the models using the four methods one by 

one. The first model (Decayed Imputation Model) uses a method in which GRU-D 

changes the global mean value only to estimated imputation values. The second 

model did not further restrict the linear transformation matrix to diagonal matrices. 

The third model (Adjusted Input Model) replaces the decay function to the sigmoid 

function as a ratio function. The fourth model (Active Model) learn the proportions 

of imputation and last observed values regardless of missing. Additionally, the fifth 

model (Decayed-active model) uses decaying for all cases and does not use the 
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diagonal constraint for comparison with the above model. 

 

4.2.4.2. Step-by-step Model Definition 

 

The above-described model is expressed by the following equation. 

𝜸𝒕 = 𝒆𝒙 𝐩{ − 𝒎𝒂𝒙(𝟎, 𝑾𝜸𝜹𝒕 + 𝒃𝜸)}  ························· Equation 4. 14 

or  

𝜸𝒕 = 𝑺𝒊𝒈𝒎𝒐𝒊𝒅{ 𝑾𝜸 + 𝒃𝜸} ····································· Equation 4. 15 

𝒙
^

𝒕
𝒅 = 𝒎𝒕

𝒅𝒙𝒕
𝒅 + (𝟏 − 𝒎𝒕

𝒅)(𝜸𝒙𝒕
𝒅 𝒙𝒕′

𝒅 + (𝟏 − 𝜸𝒙𝒕
𝒅 )𝑰𝒕

𝒅) ··········· Equation 4. 16 

or 

𝒙
^

𝒕
𝒅 = 𝜸𝒙𝒕

𝒅 𝒙𝒕′
𝒅 + (𝟏 − 𝜸𝒙𝒕

𝒅 )𝑰𝒕
𝒅 ····································· Equation 4. 17 

𝐡̂𝐭−𝟏 = 𝛄𝐡𝐭
⊙ 𝐡𝐭−𝟏 ··············································· Equation 4. 18 

𝒓𝒕 = 𝝈(𝑾𝒓𝒙
^

𝒕 + 𝑼𝒓𝒉
^

𝒕−𝟏 + 𝑽𝒓𝒎𝒕 + 𝒃𝒓)  ····················· Equation 4. 19 

𝒛𝒕 = 𝝈(𝑾𝒛𝒙
^

𝒕 + 𝑼𝒛𝒉
^

𝒕−𝟏 + 𝑽𝒛𝒎𝒕 + 𝒃𝒛)  ····················· Equation 4. 20 

𝒉
~

𝒕 = 𝐭𝐚𝐧𝐡(𝑾𝒙
^

𝒕 + 𝑼(𝒓𝒕 ⊙ 𝒉
^

𝒕−𝟏) + 𝑽𝒎𝒕 + 𝒃) ············· Equation 4. 21 

𝒉𝒕 = (𝟏 − 𝒛𝒕) ⊙ 𝒉
^

𝒕−𝟏 + 𝒛𝒕 ⊙ 𝒉
~

𝒕 ······························ Equation 4. 22 

 

 

The formula conditions applied to each model are as follows. 

5. Decayed Imputation Model 

 Change last observed data to imputation model estimated data in 

the existing model (GRU-D) 

 Using Equation 4.14 for 𝜸𝒕𝒙
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 Diagonal constraint of 𝑾𝜸𝒙
 

 Using Equation 4.16 for 𝒙
^

𝒕
𝒅 

6. Passive Model 

 Change last observed data to imputation model estimated data in 

the existing model (GRU-D) 

 Using Equation 4.14 for 𝜸𝒕𝒙
 

 Remove diagonal constraint of 𝑾𝜸𝒙
 

 Using Equation 4.16 for 𝒙
^

𝒕
𝒅 

7. Adjusted Input Model 

 Change last observed data to imputation model estimated data in 

the existing model (GRU-D) 

 Using Equation 4.15 for 𝜸𝒕𝒙
 

 Remove diagonal constraint of 𝑾𝜸𝒙
 

 Using Equation 4.16 for 𝒙
^

𝒕
𝒅 

8. Active Model 

 Change last observed data to imputation model estimated data in 

the existing model (GRU-D) 

 Using Equation 4.15 for 𝜸𝒕𝒙
 

 Remove diagonal constraint of 𝑾𝜸𝒙
 

 Using Equation 4.17 for 𝒙
^

𝒕
𝒅 

9. Decayed-active Model 
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 Change last observed data to imputation model estimated data in 

the existing model (GRU-D) 

 Using Equation 4.14 for 𝜸𝒕𝒙
 

 Remove diagonal constraint of 𝑾𝜸𝒙
 

 Using Equation 4.17 for 𝒙
^

𝒕
𝒅 

This is summarized in the table below. 

Table 4. 1 Properties of Each Developing Models 

Model Type Input Adjustment 

Diagonal Constraint of 

Input Linear 

Transform 

Existing GRU-D 
Decayed to  

Global Mean 
𝑊𝛾𝑥

 

Developed 

Decayed 

Model 

Decayed to  

Imputation Value 
𝑊𝛾𝑥

 

Passive 

Model 

Decayed to  

Imputation Value 
None 

Adjusted 

Input Model 

Weighted summation 

(for missing cases) 
None 

Active 

Model 

Weighted summation 

(for every cases) 
None 

Decayed-

Active 

Model 

Decayed to Imputation 

Value 

(for every cases) 

None 

 

The structure of the models is represented as below. However, the mean value 

and last observed value are actually manipulated inside of the model, unlike those 

illustrated from the outside.  
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Figure 4. 4 Structure of GRU-D 
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Figure 4. 5 Structure of Decayed, Passive Models 

 

Figure 4. 6 Structure of Adjusted Input Model 
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Figure 4. 7 Structure of Active Model 

 

Each model can be used separately for individual data columns. Finally, in this 

study, we made the final concatenate model to learn and use the appropriate ratio 

between Decayed Model and Active Model for each data. This method is done by 

learning both the Decayed Model and the Active Model and then inserting a linear 

filter between the two models. 

As will be described later, the active model showed the best performance in 

general naive estimation. However, as found in this study, we can assume that the 
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average speed of the low-performance platoon converges to a certain average value. 

Therefore, the decayed method may be more useful. In this study, we developed a 

model that uses both methods, considering the complexity of the calculation. 

 

4.2.4.3. Performance of Internal Imputation Methods 

 

As a result of examining the accuracy of the internal imputation candidates to 

select the internal imputation method, the models that performed the Imputation by 

Simple Moving Average (SMA), which is a linear combination method, showed 

lower performance than the trained imputation model. This is a natural result as the 

occurrence of low correlation problems cannot be controlled. 

The accuracy of Active Imputation is higher than that of GRU-D because the 

direction of increase/decrease of the imputation value provided by GRU-D always 

goes to the average. In this study, we used the Active Imputation Method, which has 

the highest accuracy, as the Internal Imputation Method. However, as there is data 

with high kurtosis among platoon features, the missing term was adjusted by learning 

the value and ratio calculated through the decayed term at the same time. 
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Table 3. 11 Accuracy of Imputation Methods 

Type Model 
MAE 

(km/h) 

RMSE 

(km/h) 

SMA 

Imputation 

MLP 5.202 8.884 

LSTM 4.932 7.365 

GRU 5.053 7.892 

Trained 

Imputation 

GRU-D 4.580 5.931 

Decayed Imputation (GRU) 4.266 5.780 

Passive Imputation (GRU) 4.627 6.131 

Adjusted Input Imputation 

(GRU) 
4.723 7.133 

Active Imputation (GRU) 3.839 5.096 
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4.2.5. Selected Dropout Filtering Method 

 

In this study, we used the selected dropout layer to reflect the different transition 

probability of traffic states. This layer adjusts the hidden term assuming that each 

state has different propagation dynamics. Application to each filter is made in the 

following way. 

 

 

Figure 4. 8 Concept of Selected Dropout Method 

 

In this way, the model can train the different transition probability according to 

the state of each link. Theoretically, if there are enough data, the model can use this 
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method to achieve at least the accuracy of not using the selected dropout. In this 

study, identifications through Jenks natural break were applied, as made in Chapter 

3. Therefore, each state is reflected in the model by applying the selected dropout 

filter. 

Figure 4. 9 Overall Description of the Model 

 

 

Figure 4.9 show the overall description of the developed model. 
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Chapter 5. Result and Findings 

 

 

5.1. Estimation Accuracy of Developed Models 

 

5.1.1. Average Accuracy of Developed Models 

 

5.1.1.1. Average Accuracy for Mean Speed 

 

Table 5.1 and Figure 5.1 shows the accuracy of the existing and developed 

models. All models based on deep learning were trained through 1000 epochs and 

prevented overfitting through validation data. Besides, to compare the same 

conditions, the naive model imputation of missing data into a random forest used for 

active imputation.  

As a result, the filtered two-step model with the selected dropout filter showed 

the best performance. Linear regression models did not differ significantly, but in 

general, the support vector machine with the best results was unexpectedly low. As 

a result of applying LSTM to the two-step model, the selected dropout filter was not 

easily changed due to the characteristic that the hidden term and the cell term were 

transmitted separately. In addition, accuracy showed a slight drop. 
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Table 5. 1 Average Estimation Accuracy of Models 

Type Model 
MAE 

(km/h) 

RMSE 

(km/h) 

Existing 

Simple Average 12.879 15.102 

Linear Regression (Single Time) 5.987 8.163 

Linear Regression (Time Series) 5.743 7.855 

Linear Support Vector Regression 7.494 9.713 

Naive Random Forest 4.466 6.390 

Naive LSTM 4.307 5.852 

Naive GRU 4.415 6.005 

Developed 

Two-step Model (LSTM) 3.001 4.158 

Filtered Two-step(LSTM) 3.035 4.221 

Two-step Model (GRU) 3.207 4.638 

Filtered Two-step(GRU) 2.725 3.752 

 

 

Figure 5. 1 Average Estimation Accuracy of Models 
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5.1.1.2. Average Accuracy for Platooning Feature 

 

The results of estimating the three features (HPP Speed, LPP Speed, LPP Ratio) 

separated by the Plating Effect are shown in Table 5.2 and Figure 5.2. The average 

estimation accuracy for each feature did not show any significant difference 

depending on the filtering. This result means that the filtered model does not rely on 

the improvement of the accuracy of one feature but improves the accuracy based on 

the estimation of several variables. However, the difference in estimation accuracy 

between the filtered model and the non-filtered model varies greatly depending on 

the situation. 

Table 5. 2 Average Accuracy of Model by Platooning Features 

MAE Filtered Non-filtered 

High-perf Speed(km/h) 2.866 2.901 

Low-perf Ratio (%) 4.940 5.767 

Low-perf Speed(km/h) 2.093 2.289 

Mean Speed(km/h) 2.741 3.210 

 

Vertical: MAE (km/h)     Vertical: MAE (%) 

 

Figure 5. 2 Average Accuracy of Model by Platooning Features 
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5.1.2. Accuracy of Developed Models for Each Link 

 

According to the estimation accuracy of each link, the two-step GRU model 

showed better accuracy than Naive LSTM on all links. Based on the MAE, the 

filtered model showed the best results in 11 links except for 458 and 422 links. In 

the case of link 458, the filtered two-step model showed better results in terms of 

RMSE. The non-filtered two-step model showed better results with one exception 

(392) compared to the Naive LSTM. 

The non-filtered two-step model showed robust results for up to four traffic 

signals in the link but showed less accuracy than the naive LSTM model in seven 

cases. However, even in this case, the filtered two-step model showed better 

performance than the naive LSTM model. The segment length per signal of each link 

is almost constant, about 280m. Table 5.3 shows the result of each link. 
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Table 5. 3 Accuracy of Models for Each Link 

Link 

No. 

Traffic 

Signal  

on Link 

Length  

of 

Link 

Mean 

Speed 

Naive LSTM 
Two-step GRU 

(Non-filtered) 

Two-step GRU 

(Filtered) 

MAE RMSE MAE RMSE MAE RMSE 

112 1 779.8 25.447 3.823 5.125 2.753 3.997 2.480 3.428 

114 0 583.2 28.708 2.919 3.784 2.542 3.272 1.874 2.423 

116 1 1410.0 43.640 8.955 13.836 6.300 10.929 5.624 8.101 

392 7 2017.4 29.388 2.191 3.045 3.001 3.656 1.468 2.085 

123 4 1412.0 30.719 5.740 7.839 3.925 6.063 3.374 4.871 

125 2 984.4 30.109 2.822 3.903 2.013 2.973 1.833 2.635 

442 1 512.7 65.368 4.159 5.542 2.770 3.989 2.373 3.357 

546 1 530.3 41.728 4.057 5.271 2.688 3.853 2.344 3.237 

458 1 583.6 48.655 4.751 6.164 3.133 4.487 3.325 4.313 

422 3 805.9 30.941 2.864 3.710 2.468 3.202 2.566 3.213 

540 2 1071.6 30.587 3.805 4.966 3.487 4.461 2.401 3.234 

130 2 775.8 42.660 6.182 8.017 4.153 5.860 3.604 4.984 

350 4 1387.3 55.714 3.720 4.870 2.461 3.556 2.157 2.889 

Unit: km/h 
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5.2. Correlation Analysis of Developed Model 

 

5.2.1. Correlation Coefficient Analysis 

 

As a result of examining the Spearman correlation coefficient with each model's 

upstream and downstream link data, the filtered two-step model showed the highest 

result in all cases. This was constant, regardless of accuracy. 

Naive LSTM is similar to the random forest but shows a slightly higher level of 

correlation. This suggests that the relationship between the data can be estimated 

more clearly by reflecting the platooning and adjusting the transition. 

 

Vertical: Spearman Corr. Coefficient(0~1.0) 

 

Figure 5. 3 Spearman Correlation Analysis for Models 
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The Spearman correlation was higher in the filtered model, even when the 

average accuracy of the filtered model was relatively low (links 458 and 422). In all 

cases, the correlation coefficient was higher for the non-filtered model than for the 

naive model, and the coefficient for the filtered model was improved compared to 

the non-filtered model. This means that even when the average accuracy of the 

Filtered Model is relatively low (links 458 and 422), the relationship between the 

data is clearly estimated. 

 

Vertical: Spearman Corr. Coefficient(0~1.0) 

 

 

Figure 5. 4 Spearman Correlation Analysis for Low Accuracy Case 
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5.2.2. Speed Change Analysis 

 

In this paper, as in the data analysis, two analyzes of variation were performed. 

One is to analyze whether the direction of change is consistent, and the other is to 

analyze the correlation coefficient of change. 

As a result of the analysis of speed direction change, the naive LSTM has a 

lower direction consistency than the OLS. In contrast, the two-step model has 

increased consistency in all cases, regardless of whether it is filtered or not. 

In the case of the correlation coefficient analysis of the speed value, the 

correlation of Naive LSTM was lower than that of the OLS or rather negative 

correlation. In contrast, the two-step model increased in all cases. 

 

Table 5. 4 ΔSpeed Direction Coincidence Probability 

Link 

ΔSpeed Direction Coincidence Probability Probability(%) 

Upstream Downstream OLS 
Naive 

LSTM 

Non-

filtered 
Filtered 

112 56.3 59.6 61.5 63.1 76.5 77.4 

114 58.5 50.2 58.9 34.5 68.3 72.7 

116 49.7 50.4 51.2 37.7 66.1 68.6 

392 50.3 52.9 53.9 37.7 60.8 64.8 

123 52.6 54.6 54.3 41.7 70.3 74.5 

125 54.6 68.1 69.7 71.6 79.8 80.7 

442 68.0 73.2 80.9 82.8 87.1 89.4 

546 73.2 66.8 77.3 78.1 83.6 85.0 

458 66.3 62.7 77.3 68.3 78.0 77.7 

422 62.7 64.5 69.1 65.0 74.5 75.6 

540 64.4 67.2 70.2 62.7 70.8 75.0 

130 66.7 65.0 72.5 78.8 85.3 87.0 

350 66.1 48.9 68.4 62.5 77.6 82.0 
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Table 5. 5 ΔSpeed Correlation Analysis 

Link 

ΔSpeed Correlation Coefficient 

Upstream Downstream OLS 
Naive 

LSTM 

Non-

filtered 
Filtered 

112 0.111 0.242 0.248 0.265 0.651 0.726 

114 0.233 0.018 0.241 -0.432 0.502 0.675 

116 0.015 0.063 0.067 -0.298 0.520 0.631 

392 0.059 0.097 0.126 -0.376 0.312 0.450 

123 0.079 0.100 0.105 -0.226 0.593 0.721 

125 0.100 0.323 0.361 0.390 0.692 0.744 

442 0.319 0.475 0.613 0.683 0.851 0.904 

546 0.475 0.376 0.582 0.596 0.799 0.859 

458 0.366 0.276 0.425 0.374 0.690 0.726 

422 0.271 0.402 0.510 0.417 0.686 0.734 

540 0.402 0.362 0.518 0.362 0.624 0.757 

130 0.357 0.170 0.454 0.581 0.794 0.856 

350 0.184 -0.016 0.199 0.258 0.696 0.824 
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5.3. Periodicity Analysis for Developed Models 

 

5.3.1. Periodicity reflection analysis 

 

The analysis results of the development model and the periodicity learning of 

the naive LSTM are as follows. First, the two-step model succeeded in learning 

periodicity in all cases where periodicity appeared. However, the filtered model 

reproduced the autocorrelation value closer to the target data when analyzing 

periodicity than the non-filtered model. In the case of the Naive LSTM model, it is 

generally known that the periodicity can be learned, and most of the cases with 

periodicity have been learned. 

However, the naive LSTM model did not learn periodicity for the case that has 

a low autocorrelation coefficient with periodicity (Link 123, Figure 5.5) And naive 

LSTM also fails to learn periodicity where small autocorrelation amplitude (Link 

114). 

As described above, two-step models learn the periodicity even if the naive 

model does not learn the periodicity. In the case of link 392, which showed deficient 

periodic characteristics, the Naive model was more accurate than the non-filtered 

model, but the correlation was weak. Table 5.6 below shows the case that the naive 

LSTM model does not learn periodicity. 
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Horizontal: Time Lagging(minutes)(5~95) 

Vertical: Pearson autocorrelation coefficient(0~1.0) 

 

Figure 5. 5 Cases That the Naïve LSTM Fails to Learn Periodicity (Link 123) 

 

Table 5. 6 Cases That the Naïve LSTM Fails to Learn Periodicity 

Link Periodicity Property 

MAE 

Naive 
Non-

filtered 
Filtered 

123 Low Autocorrelation Value 5.740 3.925 3.374 

114 
Small Amplitude of 

Autocorrelation 
2.919 2.542 1.874 

392 Vague Periodicity 2.191 3.001 1.468 
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Figure 5. 6 Correlation Analysis for Periodicity Failure Cases of LSTM 
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27.2%, above the average (19.7%). Change analysis also showed a significant 

decrease in correlation with Naive LSTM. 

Second, the case that the naive LSTM model cannot learn the periodicity due 

to the low value of autocorrelation (Link 123), the correlation coefficient of naive 

LSTM is low. And the accuracy improvement is 40.7%, relatively high to the average 

(36.8%). 

In cases where the periodicity was barely revealed (Link 392), the accuracy of 

the naive LSTM was higher than that of the non-filtered model, but the correlation 

was low. In the analysis of speed change, the two-step model showed a significant 

improvement. 

 

5.3.2. Variable Dependency Analysis with LIME 

 

Figure 5.7 shows the results of evaluating the model's time dependence using 

the LIME algorithm. As revealed in chapter 3, the Naive LSTM model reflects the 

correlation of data as the structure of the model itself. 

This training feature can be seen as the superiority of the LSTM model in most 

cases. Still, if the periodicity cannot appears to be inherent in the model, the naive 

LSTM model cannot learn the periodicity. It also shows a correlation reverse 

vulnerability for periodicity. 

In the case of the two-step model, both the filtered and non-filtered models 

show that the learning progresses in the direction of the periodicity that appears in 

the given data itself. Therefore, the correlation reverse does not occur, so it can be 
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seen that there is no vulnerability to periodicity. 

Horizontal: Time lagging(min.) 

 

Figure 5. 7 Variable Dependency Analysis 
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5.4. Accuracy Analysis by Traffic State 

 

5.4.1. Sudden Change in Speed 

 

Table 5. 7 Accuracy of Models for Sudden Change in Speed 

Criteria State 

MAE of Models(km/h) 

Naive LSTM 
Non-filtered  

Model 

Filtered  

Model 

5km/h 

Change under 

5km/h(A) 
3.177 2.601 2.312 

Change over 

5km/h(B) 
5.777 3.886 3.263 

Difference 

(B-A) 
2.600 1.285 0.951 

10km/h 

Change under 

10km/h(A) 
3.455 2.717 2.413 

Change over 

10km/h(B) 
8.103 5.154 4.113 

Difference 

(B-A) 
4.649 2.437 1.700 

 

 

Model accuracy analysis for sudden-change states is shown in Table 5.7 and 

Figure 5.8. All models showed a decrease in accuracy for the sudden-change state. 

However, the smallest is for the filtered model, and the largest is for the Naive LSTM. 

The larger the width of the change criteria, the greater the weakness of the LSTM 
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model. Since no definite correlation was found between the sample number and the 

accuracy of the sudden-change state, this does not mean a difference in dominance 

due to the sample number. 

 

Vertical: MAE of Models(km/h) 

 

Figure 5. 8 Accuracy of Models for Sudden Change in Speed 
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robust compared to other models for the sudden change. 

 

Vertical: MAE of Models(km/h) 

 

Figure 5. 9 Accuracy of Models for Sudden Change in Speed  

(LPP Speed, HPP Speed) 

 

Vertical: MAE of Models (%) 

Figure 5. 10 Accuracy of Models for Sudden Change in Speed (LPR) 
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5.4.2. Transition State 

 

Table 5.8 shows the accuracy of each model for the transition state in which the 

traffic state transitions to or resolves the congestion. The naive LSTM model shows 

an adequate level of accuracy for non-transition conditions but very low accuracy 

for transition conditions. 

On the other hand, the filtered two-step model showed robust results in all cases. 

There was no correlation between the accuracy of each state and the number of state 

samples. The effect of learning can estimate the increase in accuracy by dividing 

different transition probabilities. 

 

Table 5. 8 Accuracy of Models for Transition State 

Condition State 

MAE of Models(km/h) 

Naive 
Non-

Filtered 
Filtered 

Mean 4.341 3.210 2.741 

Transition 

Transition(A) 6.695 4.434 2.882 

Non-transition(B) 3.920 3.015 2.761 

Difference 

(A-B) 
2.775 1.419 0.121 
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Vertical: MAE of Models(km/h) 

 

Figure 5. 11 Accuracy of Models for State Transition State 

 

Figure 5.12 and Figure 5.13 are graphs showing the difference in the accuracy 

of the platooning features of the filtered and non-filtered models. Unlike the sudden-
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Vertical: MAE of Models(km/h) 

 

Figure 5. 12 Accuracy of Models for State Transition State 

(HPP Speed, LPP Speed) 

 

Vertical: MAE of Models (%) 

 

Figure 5. 13 Accuracy of Models for State Transition State(LPR) 
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5.5. Summary of the Result 

 

In Chapter 5, this paper estimates the average travel speed on the link through 

the development model and overcomes the limitations of the existing model. Main 

model development conditions and introduction methods are as follows. 

First, due to the low correlation with the surrounding links and the occurrence 

of periodicity, the existing model cannot guarantee high accuracy. In this paper, a 

modified recurrent neural network was developed to solve this problem. 

Second, as a result of analyzing the platoon separation to solve the problem, 

according to periodicity, the link speed data is composed of a mixture of data 

showing non-periodic characteristics and data showing periodic characteristics. In 

this paper, we developed a two-step model to estimate the separation clearly. 

Third, this paper proposed congestion filtering through the selected dropout 

layer to reflect different transition probabilities for each state in the data. 

Fourth, the active imputation to appropriately respond to the imputation of 

missing data with high frequency was proposed. 

 

As a result of estimating the model reflecting the above points, the following 

points are improved. 

First, the development model enables high accuracy estimation. 

Second, active imputation showed good performance in response to missing 

data. 
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Third, in contrast to the naive model, the two-step model learned the periodicity 

based on data rather than correlation. 

Fourth, the filtered model showed robustness against accuracy for several traffic 

states, and the two-step model and the congestion filter method showed mutual 

synergy. 

 

In conclusion, this paper demonstrates that the model developed through the 

above-described conditions shows excellent performance in general and for specific 

situations. 
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Chapter 6. Conclusion 

 

 

6.1. Summary 

 

This paper aims to develop a model for estimating the mean speed of a link that 

shows the characteristics of interrupted flow on an urban network. To this end, we 

analyzed the characteristics of the interrupted flow using DSRC system data 

collected from Daegu city from January to June 2018 and identified the problems 

when using the existing model. The problems of applying the existing model defined 

by the empirical foundation and data are as follows. 

First, the speed data of the urban traffic network link shows a low correlation 

with the neighboring links. These characteristics reduce the goodness of fit of the 

linear combination model. To solve this problem, this paper proposes a neural 

network model using time series data. Also, it was found that the dependence reversal 

phenomenon occurs in machine learning due to the periodic characteristics, and the 

development of a recurrent neural network model using the platoon separation 

phenomenon solved the problem. 

For the development, we designed a recurrent neural network model suitable 

for interrupted flow. It consists of several features. First, we developed a two-step 

model using the platoon separation. Second, a selected dropout filter to control the 

transition state probability is developed and applied. Third, an active imputation 
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method was developed and applied to deal with frequent missing data. Finally, this 

paper combines three neural network layers to develop an estimation model suitable 

for urban network traffic speed. This paper examined whether the limitations of the 

existing models could be overcome by analyzing the estimation values acquired 

through the development model. 

In conclusion, the methods proposed in this paper overcome the limitations of 

the existing models, and in particular, yield good results in certain traffic states. We 

also found that there is a synergy effect between development models. Through this, 

it was possible to estimate the sections that were difficult to estimate with the existing 

model and to increase the accuracy of the overall estimation. 

 

6.2. Limitation of the Study 

 

As the most critical limitation, this study used the bimodal speed distribution of 

the vehicle, but the result is that only the average value of each feature, which is one 

of the parameters.  This point is a limitation in that it cannot present the distribution 

of the speed of each vehicle and cannot present parameters except average values. 

This is because this study has limited bimodal distribution to separate parameters. 

As another limitation, this study assumed that the bimodal distribution was the 

difference in the queueing due to the signal based on the previous research results, 

but did not analyze it clearly. This is because the data related to the signal could not 

be collected. In terms of the bimodal distribution described above, periodicity can 
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be expected to appear due to the difference in effective green for each aggregation 

cycle. This difference is assumed to be due to the difference in the signal cycle and 

the aggregation time. However, no clear test on this has been done due to data 

limitations. Also, there is a need to verify that there is transposability to something 

other than Daegu's local system. 

Another problem with data limitations is the lack of traffic or density data, 

which may be positive in terms of limited data use but serves as a limitation for state 

identification. In addition, this study assumes platoon separation, which is a limited 

phenomenon in interrupted flow and is not suitable for uninterrupted flow. 

It should be noted that the results of this study are the models used for the 

estimation and not the models used for forecasting. Even though it can be using the 

findings from this model for forecasting, it requires a more appropriate research. 

 

6.3. Applications and Future Research 

 

The suggestions for overcoming the limitations of this study and for further 

research are as follows. First, it is necessary to study whether the bimodal 

distribution and periodicity, which are the characteristics of the interrupted flow used 

in this study, are caused by queueing due to signal operation, as assumed in this study. 

The progress of this study requires data related to the signal phase. 

Regarding the separation of platoons, the deep learning model used in this study 

aims at fitting numerical values, so it is necessary to analyze the distribution of actual 
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speed data through other models. For example, a Gaussian mixture model may be 

used to confirm the separation of the actual distribution. 

As for periodicity, studies on the aggregation unit should be conducted to clarify 

whether periodicity in speed data is caused by a difference between aggregation units 

and signal cycles. It is expected that this result can be obtained by changing the 

aggregation unit. However, since the problem of dependence reversal is the same in 

a continuous flow, it is necessary to make a model applicable to continuous flow. 

The result of this study can be used as a framework, and if the underlying data 

is provided, it can be expected to be able to be expanded to estimate other traffic data 

with propagation such as volume and density. Similarly, further research is needed 

to develop this model and use it for forecasting rather than estimation. 

Lastly, estimating the attributes of a link has practical limitations, and it is 

necessary to apply machine learning to the estimation of path data. The results of 

this study are expected to be useful for estimating the cost function of such path data 

estimation. 
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Appendix 

 

 

Appendix A. Correlation Analysis for Links 

 

Figure A. 1 Correlation Analysis for Link No. 112 

 

Figure A. 2 Correlation Analysis for Link No. 114 
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Figure A. 3 Correlation Analysis for Link No. 116 

 

Figure A. 4 Correlation Analysis for Link No. 392 

 

Figure A. 5 Correlation Analysis for Link No. 123 
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Figure A. 6 Correlation Analysis for Link No. 125 

 

Figure A. 7 Correlation Analysis for Link No. 442 

 

Figure A. 8 Correlation Analysis for Link No. 546 
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Figure A. 9 Correlation Analysis for Link No.458 

 

Figure A. 10 Correlation Analysis for Link No.422 

 

Figure A. 11 Correlation Analysis for Link No.540 
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Figure A. 12 Correlation Analysis for Link No.130 

 

Figure A. 13 Correlation Analysis for Link No.350 
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Appendix B. Periodicity Analysis 

 

B-1. Periodicity Analysis for Target Link Data 

 

Figure B. 1 Periodicity Analysis for Target Link Data 

(Link 112, 114, 116, 392) 
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Figure B. 2 Periodicity Analysis for Target Link Data 

(Link 123, 125, 442, 546, 458) 
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Figure B. 3 Periodicity Analysis for Target Link Data 

(Link 422, 540, 130, 350) 
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B-2. Periodicity Analysis for Naive LSTM Result 

 

Figure B. 4 Periodicity Analysis for Naive LSTM Result 

(Link 112, 114, 116, 392) 
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Figure B. 5 Periodicity Analysis for Naive LSTM Result 

(Link 123, 125, 442, 546, 458) 
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Figure B. 6 Periodicity Analysis for Naive LSTM Result 

(Link 422, 540, 130, 350) 
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B-3. Periodicity Analysis for Non-filtered Model 

 

 

Figure B. 7 Periodicity Analysis for Non-filtered Model 

(Link 112, 114, 116, 392) 
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Figure B. 8 Periodicity Analysis for Non-filtered Model 

(Link 123, 125, 442, 546, 458) 
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Figure B. 9 Periodicity Analysis for Non-filtered Model 

(Link 422, 540, 130, 350) 
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B-4. Periodicity Analysis for Filtered Model 

 

Figure B. 10 Periodicity Analysis for Filtered Model 

(Link 112, 114, 116, 392) 
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Figure B. 11 Periodicity Analysis for Filtered Model 

(Link 123, 125, 442, 546, 458) 
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Figure B. 12 Periodicity Analysis for Filtered Model 

(Link 422, 540, 130, 350) 
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Appendix C. Platooning Features Diagram 

 

Figure C. 1 Histogram for LPP Speed, HPP Speed, LPR 

(Link 112, 114, 116)  
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Figure C. 2 Histogram for LPP Speed, HPP Speed, LPR 

(Link 392, 123, 125, 442) 
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Figure C. 3 Histogram for LPP Speed, HPP Speed, LPR 

(Link 546, 458, 422, 540) 
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Figure C. 4 Histogram for LPP Speed, HPP Speed, LPR 

(Link 130, 350) 
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Abstract 

  

도시교통류는 복잡성을 내재하고 있다. 이 복잡성으로 인해, 

일반적으로 지역간 간선 도로 네트워크의 속도를 추정하던 모형들을 

사용할 경우 여러가지 한계점이 발생하게 된다. 본 연구는 도시교통류 

상의 링크에서 프로브 차량 방식으로 수집된 속도자료의 특성을 분석하고, 

기존 모형의 한계점을 제시하고, 이러한 한계점에 대한 해법으로서 

변형된 순환형 신경망 모형을 개발하였다. 모형 개발에 있어, 기존 모형의 

한계점을 보완하기 위해, 본 연구에서는 도시교통류의 단속류적 특징에 

주목하였다. 자료 분석을 통해, 본 연구에서는 단속류에서 나타나는 

현상으로서 차량군의 분리와 높은 빈도의 전이상태 발생을 확인하였다. 

해당 현상들을 이용하여, 본 연구에서는 각 차량군의 특징을 이용한 

이용한 2단계 모형과, 교통 상태를 분리하여 적용하는 선택적 드롭아웃 

방식을 제시하였다. 추가적으로, 자료의 수집에 있어 빈발하는 결측 

데이터를 효과적으로 다루기 위한 능동적 대체 방식을 개발하였다. 개발 

모형은 평균적으로 높은 정확도를 보일 뿐 아니라, 기존 모형들의 

한계점인 특정 상황에 대한 정확도를 제고하고 추정값과 추정 대상값의 

상관관계를 높이며, 자료의 주기성을 적절하게 학습할 수 있었다. 

 

주요어 : Data Estimation, Deep learning, Recurrent Neural Network,  

Probe Vehicle, Data Correlation 
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