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Abstract 

 

In this dissertation, a data-driven multiscale framework has been established 

based on molecular dynamics (MD) simulations, finite element (FE) analysis, and a 

machine learning (ML) technique; this framework was aimed at elucidating the multi-axial 

elasto-plastic deformations of polymer materials. The proposed data-driven multiscale 

approach enables the construction of a macroscopic continuum model that has been 

customized for achieving unique deformation characteristics of the considered material, 

which are attributed to distinct microscopic structural features. In particular, the 

macroscopic continuum model is established based on the data-driven yield function, 

which is formulated by numerous multi-axial stress-strain behaviors that are systematically 

derived from MD simulations. Furthermore, to conduct multiscale analysis without any 

experimental support, certain methods have been developed to derive quasi-static stress-

strains that overcome the timescale limitations of classical MD simulations. The main focus 

of this thesis is divided into three parts: qualitative analysis of microscopic deformation 

mechanisms of polymer materials, development of methods to overcome timescale 

limitations of MD simulations, and ML-based constitutive modeling through symbolic data 

mining.  

With regard to the characterizations of microscopic deformation mechanisms, the 

nature of the inelastic-deformation characteristics of highly crosslinked epoxy polymers is 

examined at the microscopic level with respect to the differences in the structural network 
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topologies. It is examined by microscopic deformation simulations that the structural 

differences that arise from different types of curing agents (aliphatic and aromatic) cause 

the different irreversible folding behaviors of a local epoxy network.  

Following the qualitative analysis on the deformation mechanisms, a calibration 

of the timescale difference between MD simulations and experiments is necessitated for 

achieving the quantitative analysis on plastic deformations; this is because the stress 

evaluated by MD simulations is not comparable to that of the experiments due to its 

extremely high strain rate. Two kinds of methods are developed to derive the quasi-static 

stress-strain profiles. The first approach is to use a 0 K solution of Argon theory to estimate 

internal stress and adopt the cooperative model to represent the nonlinear nature of yield 

stress on strain rate and temperature. The second approach is to predict the quasi-static 

yields by temperature accelerations by using time and temperature equivalence. A method 

to derive a hardening law under different strain rates is also established and demonstrated 

based on the yield stress-strain rate relation. 

Based on deformation mechanisms and strain rate calibration methods, a 

multiscale framework is completed by developing a 3–dimensional constitutive model of 

the epoxy polymer from the data-driven yield function, which is formulated by a number 

of multi-axial yield data adopting a machine learning technique. The primary focus here is 

to confirm that the customized yield functions of various materials can be derived only 

from the yield data set without any prior knowledge on the primary stress invariants and 

functional structures; herein, the yield data set represents the unique multi-axial hardening 
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behavior. To validate the proposed method for yield function mining, the development 

history of the classical yield functions, such as von-Mises, Drucker-Prager, Tresca, Mohr-

Coulomb, and paraboloidal yield functions are reproduced from the proposed approach 

simultaneously; this successfully characterizes the influence of the dispersion of the yield 

data set. 

The proposed framework facilitates the understanding of intrinsic deformation 

features of polymer materials; further, it enables the construction of the data-driven 

plasticity model that is distinct from the conventional yield models. The proposed 

methodologies can be extended to a broad class of polymer materials by considering a 

variety of factors associated with nanoscale physics; in particular, the methods can address 

the problems that cannot be solved with the existing models or governing equations. 

 

Keywords: Data–driven mechanics, Machine learning, Plastic deformations, Multiscale 

simulations, Nonlinear finite element analysis, Amorphous polymers. 

Student Number: 2014-21563 
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1. Introduction 

 

1.1. Necessity of a data–driven multiscale framework for the 

plasticity of polymers 

 

For a thorough description of plastic behaviors of polymer-based materials, an 

understanding of the microscopic mechanisms involved in elasto-plastic deformation 

regimes is of primary importance. This is because various nanophenomena and 

microscopic conditions, which determine the deformation characteristics of a material, 

significantly influence those mechanisms. In particular, post–yielding behaviors such as 

strain softening and hardening within the constitutive responses of the polymers need to be 

understood, with the consideration of chain dynamics that are associated with the topology 

of the microstructure.  

In this context, MD simulations play a critical role in evaluating the effects of such 

diverse microscopic conditions and physical environments with direct observations of the 

molecular deformation behaviors. However, derivations of the plastic responses by full–

atomic MD simulations are exceptionally challenging, which are quantitatively matched to 

an experimental scale. This is because the timescale discrepancy between the full–atomic 

MD simulations and experiments is enormous, which inevitably leads to a considerable 

stress gap between the stress-strain profiles of MD and experiments; this hinders the direct 

transfer of the constitutive equations of a material to macroscopic continuum models. 
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Accordingly, a reliable methodology to evaluate the quasi-static constitutive equations is a 

key issue in the multiscale modeling for the polymer plasticity, which can simultaneously 

overcome the timescale limitations of MD simulations. Further, the methodology aimed at 

calibrating the influence of the timescale limitations of MD enables the generation of a 

sufficient data set for multi-axial plastic deformations by characterizing the evolution of 

the yield surface in a 3–dimensional stress space. This implies a possibility for the 

development of the plasticity model using a machine learning (ML) technique. 

From the perspective of mechanics, the development of a data-driven constitutive 

model is paramount; this can be achieved using the yield data derived from the discussed 

timescale calibration method. However, it cannot be guaranteed that a few classical yield 

functions perfectly describe the actual multi-axial yield behavior of the considered 

materials; these functions are based on one-dimensional yield stress functions derived by 

uniaxial deformation tests. Multi-axial yield behaviors are inevitably influenced by 

complicated circumstances such as types of materials, the deformation-testing 

environments, and microstructures determined by preprocesses.  

Furthermore, additional estimations of the subsequent yield surfaces are also 

critical for the exact characterization of the yield surface evolution; this is because it is not 

guaranteed that the classical yield function in consideration will adequately describe the 

entire post-yielding behavior, even if the initial yield surface is matched well. Accordingly, 

the general yield functions could be inappropriate for the subject materials; this depends on 

their unique hardening behaviors or physical conditions, even if the yield function has 
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already been verified under other conditions within the same class of materials. Therefore, 

the ideal method of constitutive modeling constitutes two functions, namely: 1) to examine 

the overall evolution of multi-axial stress states of the subject material under the given 

physical conditions, and 2) to formulate a customized yield function from the derived data 

set by the one-to-one correlation between the yield function and the deformation properties 

of the material. 

Accordingly, in this dissertation, the focus is placed on three subjects, namely: the 

characterization of the microscopic deformation mechanisms of epoxy, the development of 

a timescale calibration method, and data–driven constitutive modeling through data 

learning by symbolic regressions. This multiscale framework aims to encompass the 

qualitative characterizations of microscopic mechanisms and quantitative estimations of 

multi-axial plastic deformations of polymers through timescale calibration and an ML 

technique, without the need of any experimental characterizations of the deformation 

properties.  

    

 

1.2. Microscopic deformation mechanisms of amorphous 

polymers 

 

Amorphous polymer materials have been widely used for engineering purposes 

owing to their excellent multifunctional properties. Physical properties of amorphous 
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polymers are mainly determined by the types of constituents and their microstructure, 

which can be artificially controlled depending on the purpose. Generally, the critical factors 

of polymer architecture that primarily govern the physical properties are the monomer 

arrangement, chain length, and the corresponding morphology of polymer chains. 

Accordingly, numerous efforts to understand the structure-property relationship have been 

conducted by identifying the characteristics of the microscopic chain structure and 

evaluating the corresponding performances1–12. 

 In particular, epoxy polymers, a class of thermoset polymers, have been used in 

various industrial fields such as aerospace, aircraft, automotive, energy, and electronics 

owing to their excellent thermomechanical properties and tunability of performance. Their 

excellent physical properties are attributed to the three-dimensional (3D) crosslinked 

internal networks that are constructed by the chemical reactions between the epoxy resin 

and the curing agent. The highly-crosslinked epoxy polymers exhibit more rigid molecular 

responses compared with the thermoplastic polymers, as the crosslinked sites in the epoxy 

polymers hinder any slippage occurrences between the internal polymer chains1. This 

inherent stiffness of the internal networks contributes to the high thermomechanical 

properties of epoxy polymers. The performances of epoxy polymers can be tailored using 

several degrees of freedom that influence the network morphology, such as the chemical 

compositions of the epoxy resin and the curing agent, the curing kinetics, and the branching. 

Understanding on the elasto–plastic behaviors of the amorphous polymer materials 

demands thorough characterization on the structure–property relationships under various 
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physical circumstances featured by temperature, strain rate, and hydrostatic pressure. The 

influence of these physical variables on the constitutive responses of polymers has been an 

important issues in the experiments13–19 and simulations20–23, since the yield and post–yield 

stresses are nonlinearly changed in general due to the relaxation nature of the polymer 

segments. It means that the dissipation of the applied stress during the deformation is 

determined by the intrinsic chain relaxations which are largely dependent on the time, 

temperature, and pressure. Focusing on the relaxation nature of the glassy polymers, the 

quantification of the structure–property relations ranging from the elastic to plastic regime 

has been conducted considering the influence of crosslinking ratio2,6, molecular structure 

of the resins and curing agents24,25, molecular weight26, extent of chain interactions27, and 

reinforcements12,28,29. 

Recently, systematic estimations of the yielding have been conducted by directly 

observing the atomic behaviors during the deformation with the aid of the atomistic 

simulations20,21,23. The direct observations of the polymer molecules also help better 

understanding on the deformation mechanisms especially for characterizing the origins of 

plastic deformations. Generally, the atomistic studies on the deformation mechanisms of 

amorphous polymer reveal that the interchain non–bonded interaction mainly 

accommodates the applied deformation by occupying the most of the deformation 

energy24,26,27, leading to vigorous local molecular movements as the plastic deformation 

proceeds. As far as thermoplastic polymers are concerned, the deformations in elastic 

regime are accommodated by the non–bonded interactions are dominant increasing the 



 

 6 

portion of free volume. Afterward, the torsional angle transitions are dominant factor for 

plastic deformations; the transition population of the dihedral angle from trans to gauche 

state is maximized in the vicinity of the yield point based on the increased space between 

the polymer segments26,27. Concerning thermosetting polymers, the MD simulations 

regarding the epoxy polymers21 reproduced the molecular kinks under compression, 

characterizing the correlation between the sharp stress drop and irreversible folding of the 

epoxy network. 

Although the nature of the plasticity of amorphous glassy polymers has been 

identified, a detailed understanding of thermoset systems and the contributions of their 

specific structures is limited. Therefore, one of the objective of this thesis is the attainment 

of a qualitative understanding of the elastoplastic-deformation mechanisms of thermoset 

epoxy polymers in consideration of the effects of different curing agents (aliphatic and 

aromatic) and with the aid of MD simulations. In particular, the irreversible deformation 

behaviors that are attributed to the different chemical structures of curing agents are 

thoroughly investigated, and the variations in the energy, stress, and geometric 

characteristics are provided.  

 

1.3. Full–atomic molecular dynamics (MD) and timescale 

limitations 

 

It is generally agreed that it is difficult to investigate the effects of individual design 
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variables related to nanoscale physics and the segmental motion of thermosetting polymers 

solely by using experiments that demand a tremendous amount of trials and errors. 

Moreover, limitations in the precise control of the conversion ratio, visualization of the 

network structure, measurement of free volume related to the aging and degradation, and 

inevitable measurement noise make it difficult to fully understand the designed epoxy. 

Therefore, computer simulation techniques have also aimed at designing high-performance 

epoxies. In particular, MD simulations are considered to be the most effective and efficient 

way of probing the internal molecular structure and predicting the physical properties of 

thermoset polymers. Several groups have proposed specific modeling procedures to 

describe the real structural characteristics of bulk thermosetting polymers and have 

estimated their thermo-mechanical properties6,10,30,31. For instance, Kim et al. observed the 

effect of the crosslink density on thermo-mechanical properties such as the density, elastic 

modulus, and coefficient of thermal expansion with respect to different crosslinking 

methods from the point of view of modeling6. Li et al. observed the evolution of the 

molecular structures of two thermosetting epoxy systems with different degrees of cure; 

they then derived various thermo-mechanical properties, including the yield and glass 

transition temperature31. Moreover, MD simulation studies on epoxy have been a part of 

the constitutive modeling of composites, especially for the modeling of nanocomposites, 

which requires the elucidation of important nanoscale characteristics related to their 

interface or interphase features11,32–38. In this regard, various thermo-mechanical properties 

of epoxy have been predicted and used to establish constitutive models that are essential in 
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composite micromechanics theories. 

Although MD simulations have been effectively used in establishing the 

fundamental background of the elasto-plastic deformation behavior of amorphous polymer 

materials, the temporal scale problem arising from extremely short time step, which stems 

from the computational limitations in the time integration of the equations of motions to 

obtain quasi-static mechanical response of polymers, remains a challenging issue. It has 

been generally agreed that in both experimental13–15,17–19,39 and simulation studies21,22,40,41, 

the yielding of an amorphous polymer is a rate-dependent phenomenon because of its 

viscoelastic nature; thus yield stress increases with the increasing strain rate. Therefore, 

owing to the huge time scale gap between the experimental and computational contexts, it 

is inevitable that notable differences will be observed in the evolution of deformation, 

which results in quantitative discrepancies of the stress-strain response.  

In an efforts to overcome this timescale limitations, there is previous research to 

derive the quasi–static yield stress of the amorphous polymers using the atomistic 

simulations. The approach is to use the 0 K solution of the Argon theory considering that 

the Argon’s solution is composed of the elastic properties of the materials21,23. Although the 

method has been successfully applied to the several polymer materials, it needs to be noted 

that the assumptions to derive the yield solution with respect to temperature deviates from 

the experimental observations. The previous studies used linear dependence to represent 

the yield stress–temperature relation, which remains unchanged with considered strain rate, 

while the experimental observations and classical yield models13–19 reveal that the yield 
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stress nonlinearly varies with a changing temperature especially under low temperature. 

To overcome the timescale limitations without violating the strain rate and 

temperature dependent physics of polymer yielding, two kinds of schemes have been 

developed in this thesis. The first approach is to use 0 K Argon solution as the previous 

study21,23 proposed considering proper nonlinear dependence of yield stress on strain rate 

and temperature without any physically incorrect assumption; the second approach is 

temperature–accelerated scheme that uses time and temperature equivalence in predicting 

quasi–static yield stress as the experimental master curve is made. Based on the 

characterized quasi–static yields, the systematic predictions of quasi–static constitutive 

laws have been conducted considering strain rate dependence of hardening laws for the 

development of macroscopic constitutive model. 

 

 

1.4. Classical yielding theories for polymer plasticity 

 

In order to describe the nature of the polymer plasticity, the classical theories for 

the yielding of amorphous polymers have been developed with experimental validations13–

19,42–45. As a first attempt, Eyring H. developed theory for the yielding of the glassy 

polymers by modeling an amount of energy required for the initiation of plastic flow based 

on the transition state theory42. The Eyring’s theory describes the yielding of polymer as a 

single activation process, expressing linear dependence of the yield stress on the logarithm 
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of the strain rate. Afterward, Robertson43 also established the correlation among the yield 

stress, strain rate, and temperature by assuming cis–trans molecular conformation transition 

mechanisms. Robertson’s theory describe the yield stress with the glass transition 

temperature of the material by employing the Williams–Landel–Ferry (WLF) equation46. 

Another widely known model that represents the polymer plasticity is Argon’s theory, 

which focuses on derivation of an activation free enthalpy of the thermally–activated 

production of molecular kinks44,45. The Argon’s theory postulated the irreversible 

conformational change of the polymer chain with the doubly–kinked elastic cylinder by the 

introduction of the wedge disclination loop, which is adopted from the plastic deformation 

mechanism of the crystalline materials. The Argon theory describe the kinking activation 

energy for the yielding with the mechanical properties of the materials such as elastic 

modulus and Poisson’s ratio. The subsequent yielding models such as Ree–Eyring model47 

and cooperative model13–16,48,49 for the polymer plasticity have been developed by focusing 

on the accurate prediction of the yield stress under broad range of the strain rate and 

temperature. These models were developed based on the Eyring’s equation assuming the 

involvement of the multiple relaxations in the plastic deformation of the glassy polymers 

to describe the nonlinear nature of the yielding under extremely high strain rate or low 

temperature where the local molecular movement is severely frozen. The additional 

activation processes contribute to the accurate estimation of the abrupt change of the yield 

stress under high strain rate range in the vicinity of the strain rate of about 103/s or 

temperature of about -50℃13–19. 



 

 11 

1.5. Development of yield criterion for multi–axial deformations 

 

Yield functions of materials have been developed usually based on the 

experimental observations to represent the stress states in 3–dimensional principal stress 

space at which the materials start to plastically deform. The various yield functions have 

been developed to consider own complicated yielding behaviors for broad class of materials 

including ductile metal, concrete, soil, ceramic, polymers, and etc50–55. The basic plasticity 

theory generally assumes several aspects; only the deviatoric component of the stress is 

involved in the plastic deformations of materials while the hydrostatic component of the 

stress is ignored; the compressive and tensile yield stresses are considered equal each other; 

the volume of the materials is preserved during the plastic deformations. The von–Mises 

yield criterion that represents these aspects well was defined follows: 

23 ,yJ                     (1.1) 

where 
y  is yield stress of material, and 

2

1
:

2
J  S S  is the second invariant of 

deviatoric stress tensor, S . The plastic deformation of the material start after the distortion 

strain energy reaches critical value that is described by the square root of the second 

invariant of deviatoric stress tensor. 

  The von–Mises yield criterion fails to predict the yielding of pressure–dependent 

materials and consider the discrepancy between the compressive and tensile yield stresses. 

In order to consider these aspects, the pressure–modified von–Mises criterion51, which is 
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also called as Drucker–Prager yield function, characterized by a conically shaped surface 

was developed by introducing the first stress invariant as: 

1 2 0,I J k              (1.2) 

where   is a material parameter, k  is a constant related to the yield stress, and 1I  is 

first stress invariant which is the sum of the diagonal components of the stress tensor. Eq. 

(1.2) can be rewritten by the compressive and tensile yield stresses that characterized by 1–

dimensional deformation tests as follows: 

2 13 ( ) ( ) 2 0,c t c t c tJ I                  (1.3) 

where c  and t  are 1–dimensional compressive and tensile yield stresses of materials. 

Similarly, the pressure–modification is also carried out by introducing 1I  based on the 

maximum shear stress, which is called Mohr–Coulomb yield function, as follows: 

| | c tan ,n               (4) 

where ,c   are material constants that can be expressed by the compressive and tensile 

yield stresses and   and n  are shear and normal stresses. Another yield criterion that 

can consider the pressure dependency of yielding is paraboloidal yield function developed 

by Tschoegl52 using the linear combination of the hydrostatic stress and square of von–

Mises stress as follows: 

2 16 2( ) 2 0.c t c tJ I                                    (5) 

Since the yield function is composed of the stress invariants 2J  and 1I , the magnitude 

of the deviatoric stress vector nonlinearly changes according to the variation of 1I . Thus, 

the paraboloidal yield function not only represents the pressure–dependency of the yielding 
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but also exhibits a smooth apex of the surface in stress space unlike to the Drucker–Prager 

yield function. 

Although the constitutive modeling using these classical yield functions have been 

widely performed for the analysis on the macroscopic inelastic deformation of various 

engineering materials56–60, it cannot be guaranteed that the multi–axial yielding of the 

considered material is perfectly described by a few yield functions that generally defined 

by uniaxial deformation tests. In fact, it is difficult to make a definite judgement on the 

suitability of the typical yield functions on universal use even within the identical material 

class. Considering the comparison of yield surfaces previously performed by Ghorbel58, it 

seems that the classical yield functions may fail or succeed to predict the initial yield 

surface depending on the type of materials or considered physical conditions. It means that 

the general yield functions could be inappropriate for the considered materials depending 

on their unique hardening behaviors or physical conditions even if the yield function has 

already been verified within the same class of materials. This fundamental problem of 

distrust in the performance of the yield function could be resolved if the functional structure 

of yield function could be reformed or optimized case by case under the given condition. 

It is significantly difficult, however, to formulate the customized yield function 

corresponding to the specific kinds of materials, which is owing to the absence of the 

sufficient yield data set. The sufficient yield data set under broad range of loading paths, 

hydrostatic pressure, or other physical variables is necessary for the development of 

suitable yield function, but it is extremely challenging by experiments, which stems from 
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the inefficient time consumptions and the failure of accurate measures of the multi–axial 

stress states during the plastic deformations. Furthermore, the additional estimations on the 

subsequent yield surfaces are also of primary importance for the exact characterization of 

yield surface since it is not guaranteed that the considered classical yield function properly 

describe the entire post–yielding behavior even if the initial yield surface is matched with 

the yield function well. In this situations, the simulational approaches20,23,24,29,33,61–67 can 

play an important role making use of improved computing power not only for the derivation 

of sufficient constitutive responses of broad class of materials but also for the accurate 

characterizations of yielding features such as pressure–dependency. In particular, their 

ability to generate a number of intrinsic constitutive laws leads to the data–driven 

constitutive modeling only by using the unique features of the accumulated data68–70. 

In this thesis, the data–driven multiscale framework is proposed to model the 

constitutive law from the data–driven yield function by using MD simulations and 

symbolic regression, which is one of the ML technique. The main objective is to confirm 

that the constitutive model can be developed by the data–driven yield function that is 

formulated just from the intrinsic yield data set considering the unique yielding 

characteristics of target material. To identify the intrinsic yielding behaviors, a number of 

quasi–static yielding responses of multi–axial deformations are derived from MD 

simulations with the suggested strain rate calibration method. Then, a new yield function 

is automatically formulated from the calibrated yield data set by extracting primary 

elements with the aid of constrained symbolic regressions and implemented in finite 
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element analysis. 

 

1.6. Outline of the thesis 

 

The overall objective of this thesis is three-fold: the elucidation of elasto-plastic 

deformation mechanisms at the microscopic scale, development of a method to derive 

quasi-static constitutive responses under the MD environment, and construction of a 

multiscale framework for multi-axial plastic deformations of epoxy polymers with the aid 

of MD simulations, finite element (FE) analysis, and an ML technique. The proposed 

multiscale framework enables macroscopic FE simulations by considering unique plastic 

behaviors of polymer materials without conducting any experiments; this is particularly 

true for beyond a uniform yield criterion that might be inappropriate to describe the multi-

axial deformation behaviors depending on considered material. From the viewpoint of data-

driven mechanics, the macroscopic continuum model customized for the given polymer 

materials is established by generating numerous multi-axial constitutive responses from the 

timescale calibration method and by implementing an ML technique to formulate data-

driven yield functions. The suggested framework demonstrates that the macroscopic 

simulations on multi-axial plastic deformations can be conducted by focusing on unique 

deformation characteristics of materials that thoroughly reveal the related diverse physics, 

solely by simulation approaches.  

  In Chapter 2, all the modeling techniques, schemes for deformation simulations, 
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and preliminaries are presented along with the considered physical environments. In 

Chapter 3, qualitative analysis of the microscopic deformation of polymer materials is 

carried out to completely understand the deformation characteristics of epoxies. The 

deformation mechanisms of highly crosslinked epoxy polymers are investigated using MD 

simulations with regard to curing agents with different structures. In particular, the 

correlation between characterized irreversible folding mechanisms occurring in proximity 

to the benzene ring and accumulations of the plastic strain is identified by cyclic loading-

unloading simulations. Although the direct observations of plastic deformation 

mechanisms of epoxy polymers are performed in Chapter 3, these studies are just limited 

to qualitative analyses due to the timescale limitations of classical MD simulations. 

Accordingly, to avoid quantitative stress deviation arising from ultrahigh timestep of 

classical MD simulations, Chapter 4 presents methodologies to provide reliable yield of 

the stress-strain master curve that ranges from MD strain rate to quasi-static rate. Further, 

the methodologies also allow the consideration of various thermos–mechanical state 

variables and chemical variables such as temperature, hydrostatic pressure, and 

crosslinking ratio. Subsequently after complete characterizations of their influences have 

been achieved, the mapping method for the constitutive law toward a low strain rate is 

established for achieving a suitable multiscale analysis quantitatively. Based on the quasi-

static stress-strain profiles derived from Chapter 4, the constitutive model using the 

paraboloidal yield surface is implemented in order to evaluate multi-axial deformation 

behaviors of the epoxy polymer in Chapter 5. One–element mesh tests under various 

temperature, hydrostatic pressure, and crosslinking ratio are performed and compared with 



 

 17 

the original quasi-static constitutive laws. Focusing on the influence of the epoxy network, 

the plastic deformation behaviors of the open-hole structure are estimated by examining 

the effect of crosslinking densities. Importantly, combined loading behaviors represented 

by the constitutive model implemented in Chapter 4 are featured using the failure envelope, 

which is described by the classical yield function. The classical yield functions are 

generally determined by the one–dimensional hardening laws obtained from experiments 

or simulations; this implies that critical stress states in a principal stress space entirely 

depend on only the one–dimensional constitutive responses. However, this might be 

inappropriate for the deformation characteristics of the intrinsic material due to the unique 

description of the multi-axial hardening of the material by classical yield functions. 

Therefore, in Chapter 6, the data-driven constitutive model that can properly consider the 

intrinsic multi–axial deformation behaviors is developed; this is achieved with the aid of 

the timescale extension in Chapter 4, the constrained symbolic data mining, and an ML 

technique. In this chapter, the possibility of the use of symbolic data mining for the 

characterization of the yield function is examined by reproducing the history of the 

development of classical yield functions, even under severe noise of the stress state. 

Subsequently, the established constrained symbolic data mining is applied to the 

description of plastic deformation of epoxy polymer to formulate the optimized or even 

undisclosed phenomenological yield functions; this is achieved by using the yield data 

derived from the MD simulations. Further, the mined data-driven yield function is validated 

with one–element tests and compared with the classical yield functions. 
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2. Atomistic model constructions and deformation 

simulations 

  

In this chapter, all of atomistic modeling process, methods for deformation 

simulations as well as relevant physical environments considered in this dissertation are 

presented in detail. Considering different modeling conditions according to the chapters, 

all of simulational details are provided sequentially corresponding to the individual chapter. 

   

2.1. All-atom MD modeling and derivation of physical properties 

 

To describe the molecular behaviors in an MD environment, a polymer-consistent 

force field (PCFF) was used in all of the modeling processes and simulations of this 

research. The PCFF has been successfully used in polymer-based material simulations71,72, 

and the PCFF is composed of valence and nonbonded terms as can be seen in Eq. (2.1):  
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The valence term consists of the bond stretch, angle, dihedral angle, and improper changes 

with their coupled effects, while the nonbonded term is composed of van der Waals and 

coulomb interactions. In all chapters, the cutoff distance of the van der Waals interaction is 

9.5 Å , while the electrostatic interaction was calculated using the Ewald summation. 

Concerning the software packages used in this thesis, the commercial software package 

Materials Studio vers. 5.5 and the parallel molecular-dynamics code the Large Atomic 

Molecular Massively Parallel Simulation (LAMMPS) were used in all modeling and 

simulations. 

Concerning the atomistic modeling in Chapter 3, the considered epoxy systems 

are composed of the diglycidyl ether of bisphenol A (DGEBA) that served as an epoxy resin 

and the two different curing agents triethylenetetramine (TETA) and diethyltoluenediamine 

(DETDA). The chemical structures of the epoxy resin and the curing agents are represented 
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in Figs. 2.1 (a) and 2.1 (b), respectively. 

As the first step in the preparation of an epoxy unit cell, the monomers of the 

epoxy resin and the curing agents were randomly dispersed in a periodic boundary 

condition using an amorphous cell module that satisfies the stoichiometric ratio of 1:1 

between the reactive atoms in the resin and the curing agents; that is, the monomer-number 

ratios of the epoxy resin and the curing agents are 3:1 and 2:1 for the DGEBA/TETA and 

the DGEBA/DETDA, respectively. The monomer-unit number in the epoxy resin is set to 

be equal for the two systems. The energy of each unit cell was minimized through the 

conjugate-gradient method. Then, prior to the crosslinking simulations, the unit cells were 

fully equilibrated using the canonical (NVT) isothermal-ensemble simulation at 500 K for 

200 ps.  

Then, crosslinking simulations were performed using the dynamic-crosslinking 

method10. In this method, the distance between the uncrosslinked reactant pairs is 

constantly monitored, and new covalent bonds are formed when the distances between the 

reactive-atom pairs are smaller than the predefined cutoff distance. Then, the unit cells were 

equilibrated using the NVT isothermal-ensemble simulations to minimize the excessive 

stresses that are owing to the formation of new covalent bonds. This procedure was 

iteratively performed up to the target crosslinking ratio. In this chapter, the crosslinking 

ratio of the epoxy unit cells was set to approximately 80 % for both systems. After the 

crosslinked structures were obtained, a high kinetic energy was applied on the crosslinked 
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epoxy unit cell to obtain more-optimized structures with the NVT-ensemble dynamics 

simulation that was performed at 500 K for 2.5 ns. Then, the crosslinked epoxy unit cells 

were fully relaxed using the NVT ensemble at 300 K, followed by the application of the 

isothermal isobaric (NPT)-ensemble dynamics simulation at 300 K and 1 atm for 3 ns. 

Following the previously described modeling procedure, the preparation of three 

different initial configurations of each epoxy composition was completed. Further, the 

deformation simulations were respectively performed on the different initial configurations 

for the reproducibility of the results. Significantly, the effects of the initial structures on the 

deformation behaviors were examined to guarantee the generosity of the characterized 

inelastic-deformation nature. Herein, the monomer number and the crosslinking ratio are 

set to similar levels to eliminate any other effects. The final constructed DGEBA/TETA 

and DGEBA/DETDA models comprise the totals of 8750 and 9675 atoms, respectively. 

The detailed information of the epoxy unit cells is shown in Table 2.1. 

In Chapter 4.1, an amorphous unit cell consisting of triglycidyl-amino-phenol 

(TGAP) as an epoxy resin and diamino-diphenylsulfone (DDS) as a curing agent was 

prepared using the Amorphous Cell module with a target density of 1.2 g/cm3; periodic 

boundary conditions were imposed on the prepared unit cell in all three directions. The size 

of the unit cell was 44.68 Å , the epoxy model consisted of a total of 8,505 atoms. The 

details of the molecular structures and the constructed unit cell are presented in Fig. 2.2. 

Prior to the crosslinking procedure, epoxy resin and curing agent were dispersed 
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amorphously in a unit cell with a ratio of 4:3 in order to match the stoichiometric conditions 

determined by having an equal number of reactive sites in epoxy resin and curing agent. 

After the amorphous cell construction, the model was minimized through the conjugate 

gradient method and equilibrated through an NVT isothermal ensemble simulation at 500 

K for 1 ns to guarantee sufficient chain relaxation and dispersion before the crosslinking 

procedure. Herein, the crosslinking procedure between the reactive atoms of the resin and 

the hardener was also conducted using a dynamic crosslinking method, which was 

originally introduced and applied by Heine et al.73 and Varshney et al.10 (see Fig. 2.3).  

  After the crosslinking simulation is complete, the unit cell is equilibrated for a 

prolonged time through the NVT and NPT ensemble dynamics routines of LAMMPS. In 

order to achieve a more locally relaxed structure via supplying high thermal energy, an NVT 

ensemble simulation is performed for 1 ns at 500 K prior to the relaxation at the target 

temperatures. Afterwards, the same simulation was conducted at each target temperature 

(300 K, 350 K, 400 K, and 450 K) for 7.5 ns followed by the NPT dynamics simulations at 

1atm for 7.5 ns each. The detailed properties of chosen atomistic model is shown in Table. 

2.2. 

In Chapter 4.2, 5, and 6, the atomistic models for the epoxy polymer consisting 

of diglycidyl ether of bisphenol A (DGEBA) as an epoxy resin and Jeffamine D230 as a 

curing agent were constructed. The model construction of epoxy polymers was conducted 

in an efforts to describe the actual chemical reactions between the crosslinking sites of the 

resin and curing agent. The considered molecular structures of the monomers and the 
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constructed unit cell is shown in Fig. 2.4. For the construction of realistic epoxy network, 

two lengths of the monomers of the curing agent are considered to properly describe the 

given length condition of monomers as in the experiments74,75. The considered molecular 

structure is shown in Fig. 2.4(b).  

The crosslinked epoxy network is gradually built from the randomly dispersed 

monomers of resin and curing agent in such a way that the close contacts between reactive 

atoms are connected by priority following the dynamical crosslinking concept10. Before the 

crosslinking, the energy of the dispersed monomers of the resin and curing agent were 

minimized by the conjugate gradient method and fully relaxed by the 500 K canonical (NVT) 

isothermal ensemble simulations during 300 ps. Then, the crosslinking simulations were 

performed until the model is fully crosslinked up to target ratio. The crosslinked unit cells 

were fully relaxed again under target temperature and pressure condition by the isothermal 

isobaric (NPT) ensemble simulations during 5 ns respectively. The physical conditions of 

the constructed models are shown in Table 2.3. The models, M1, M2, M3, M4 are used for 

the characterization of the influence of the temperature on the constitutive responses, the 

models, M4, M5, M6 are for the characterization of the influence of the crosslinking ratio, 

and the models, M4, M7, M8, M9 are for the characterization of the influence of applied 

hydrostatic pressure.  
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2.2  Deformation simulations 

 

In this chapter, the detailed schemes for the deformation simulations are presented. 

Since the types of the deformations adopted in each chapter are slightly different each other, 

the specific deformation conditions are sequentially explained in following sections. 

    

2.2.1 Uniaxial deformation simulations 

 

In Chapter 4.1, to derive the mechanical responses of the amorphous epoxy 

polymer, uniaxial tensile simulations under different strain rates and temperatures were 

performed. The basic scheme of the uniaxial tensile simulation is presented in Fig. 2.5. 

Under the external pressure on the planes normal to the tensile direction, strain is imposed 

gradually on the unit cell structure. Then, polymer chains in the unit cell deform along the 

tensile direction under certain strain rate conditions. To equilibrate the internal structure 

during the deformation, an NPT ensemble simulation is performed at every strain increment 

to describe Poisson’s ratio by allowing the polymer chains to naturally shrink along the 

transverse direction. In this chapter, a strain of up to 0.15 is imposed in order to observe 

the elasto-plastic response sufficiently over different temperatures and strain rates. The 

temperature was chosen below the glass transition temperature, from 300 K to 450 K with 

50 K of interval; furthermore, various strain rates were examined for each temperature 
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range. To obtain the distinct stress-strain responses, the simulation results were averaged 

from 6 to 36 times of independent production runs along all directions under an isotropic 

assumption.  

In Chapter 4.2, 5 and 6, the deformation tests were conducted to derive the stress–

strain profiles of the considered models that are represented in Table 2.3. The stress–strain 

responses are estimated with iterative strain increment and relaxation on the unit cell until 

the user–specified maximum strain is reached. The deformed unit cell is relaxed at given 

the pressure condition to consider the Poisson’s effect by allowing natural shrinkage or 

stretching. The strain is applied up to 0.15 in each deformation test to sufficiently observe 

the elasto–plastic deformation response of the epoxy polymers under high strain rate. Since 

the deformation tests in MD environment involve severe fluctuations of the stress by the 

considered thermostat, the stress–strain profile from each simulation condition was derived 

by averaging the 30 profiles for 109.5/s, 109/s and 15 profiles for 108.5/s, 108/s. The scheme 

for the deformation test is shown in Fig. 2.6(a). In order to determine a yield point from the 

obtained stress–strain, the 2.5 % offset rule76,77 was adopted to properly consider the 

nonlinearly changing stress trend of epoxy polymer by setting a highly relaxed stress state 

as yield point. The illustration for yield criterion is shown in Fig. 2.6(b). The stress slope 

to determine a yield point is set by the linear fitting of strain up to about 5 % to guarantee 

reasonable stiffness under high variability of stress which stems from the extremely high 

strain rate condition78,79. Accordingly, it needs to be noted that the identified yield point 

belongs to the relatively much more plastically deformed area, showing larger stress than 
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the initial flow stress where the material starts to plastically deform.  

 

2.2.2 Uniaxial loading–unloading simulations 

 

In Chapter 3.1, to derive the mechanical responses of the epoxy polymers, uniaxial 

loading (compression)–unloading tests were conducted in the LAMMPS environment. Fig. 

2.7(a) shows the considered deformation trajectory with a snapshot of the epoxy model. 

The epoxy models were compressed up to a strain of 0.15, followed by an unloading to the 

initial zero strain under the considered temperature (300 K, 1 K), strain-rate (109/s and 

108/s), and pressure (1 atm) conditions.  

The deformation simulations were composed of iterative imposition and relaxation 

processes regarding the strain that are based on the NPT-ensemble simulations. In the MD 

simulations, the strain was artificially imposed on the unit cell along one direction, and this 

was followed by the deformation of the internal polymer networks toward the loading 

direction. The deformed networks denoted higher internal stresses upon the imposition of 

the strains. Thus, the NPT-ensemble simulations at 300 K and the atmospheric-pressure 

conditions along the transverse direction were performed for certain durations that 

correspond to the considered strain rate for the chain relaxation. From this iterative 

relaxation procedure, the natural relaxation of the deformed networks allowed for a 

consideration of the Poisson effect.  
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During the deformation simulations, the totals of the internal energy and virial 

stresses were obtained using the applied strain that could be divided into the contributions 

of the internal potential components, as follows: 

1
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pe bond angle dihedral improper non bondedE E E E E E      ,        (2.3) 

where nd, kb, T, and V are the number of the degrees of freedom, the Boltzmann constant, 

the temperature, and the occupied volume, respectively. In Eqs. (2.2) and (2.3), non bonded   

and non bondedE  indicate the contributions of the summation of the van der Waals and 

coulomb interactions on the totals of the virial stress and the potential energy, respectively. 

The primary internal-potential components can be identified by deriving the contribution 

of each internal component on the stress and energy behaviors. The focus of Chapter 3.1 

is the plastic-deformation mechanisms for which the evolutions of the energy and the stress 

during the loading and unloading simulations were observed. In particular, compared with 

the deformation mechanisms of thermoplastic polymers26, the plastic dihedral-angle 

behaviors of epoxy polymers were rigorously investigated according to the previously 

described manner. 

  Simultaneously, the monomers of the epoxy resin and the curing agent were 

considered to understand the influences of the different curing-agent structures on the 
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deformation mechanisms. The monomer sets of the epoxy resin and the curing agents (the 

groups of the epoxy resin and the curing agents in the crosslinked epoxy system) were 

divided based on crosslinked nitrogen (N) atoms, as can be seen in Fig. 2.7 (b). The internal 

energy and stress evolutions of the monomer sets of the epoxy resin and the curing agents 

were derived. From the division scheme, the different deformation behaviors in the two 

curing-agent molecules and their effects on the epoxy-resin molecules could be 

independently investigated. 

To validate the prepared MD models, a comparison of the density and mechanical 

moduli of the present study with those of the other literature references is given in Table 

2.4. The obtained density showed a sound agreement with the values of the other 

experimental and theoretical studies. Young’s modulus was obtained from the stress–strain 

profiles (linear fitting up to the strain of 0.05) of the MD simulations that are similar to 

those of the MD studies9,25, but they are quite different from those of the experiments80,81. 

This has been attributed to the idealized MD-model structures that are without any 

microscopic defects or the inherent high-strain-rate conditions of MD simulations. 

 

2.2.3 Cyclic deformation simulations 

 

To understand the ratcheting behaviors in Chapter 3.2, compressive cyclic 

loading–unloading simulations were conducted by the stress controlled deformations. 
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Scheme for the deformations is presented in Fig. 2.8. For the determination of the applied 

stress, the uniaxial compressive deformations were performed up to the strain 0. 15 at the 

strain rate 109 /s (see Fig. 2.8(a)), and the yield stress of each epoxy was determined by 

fitting on linear elastic and Ludwik’s hardening model which is represented by: 

( ) ,p n

y h               (2.4) 

where , , ,y ph   and n  are yield stress, strength coefficient, plastic strain, and 

hardening exponent, respectively. Yield point was chosen as a point denoting that the 

deviation between the raw MD data and elasto–plastic model is minimized. Resultant yield 

points of DGEBA/DETDA and DGEBA/TETA are (0.068, 253.98 MPa) and (0.07, 264.26 

MPa) respectively. Concerning the cyclic deformation simulations, as an initial loading, 

compressive loading is applied on the atomistic unit cell by maintaining 1 atm on surfaces 

of the unit cell, which the loading is not imposed on, to provide the Poisson’s effect (see 

state A in Figs. 2.8(b) and 2.8(c)). Then, the model is compressed till the predefined stress 

condition is satisfied (see state B in Figs. 2.8(b) and 2.8(c)). After that, the atomistic unit 

cell is reversely loaded to eliminate the stress which corresponds to the state C in Fig. 2.8. 

The effect of the ratchet is involved by the strain deviation between the state A and C in 

Figs. 2.8(b) and 2.8(c). Note that the level of the applied stress is 90 % of the yield stresses 

that were determined in Fig. 2.8(a). Other than the stress level, the frequency of the cyclic 

deformations was also considered as main variable since the amorphous polymer displays 

viscoelastic nature in deformations. In particular, considering the timescale difference of 

the MD simulations compared to the experiments20,21, the study on the effect of the 
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frequency is also of primary importance. In this study, the studied frequency level is 8.33 

ns-1 and 4.17 ns-1. Based on the abovementioned stress and frequency conditions, a total of 

500 cycles was simulated by considered epoxy polymers (Note that the number of cycles 

of DGEBA/DETDA by the frequency of 4.17 ns-1 is 480).   

To calculate the change of the stiffness according to the cyclic deformations, 

Parrinello–Rahman strain fluctuation method was adopted, which have been widely used 

for the calculation of the elastic properties of amorphous polymer systems. This method 

measures the stiffness tensor based on the strain fluctuation determined from the inherent 

resistance to shaking of the unit cell, which is represented by: 

1
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

            (2.5) 

where   denotes the strain variation and the bracket means ensemble average. To apply 

the strain variation, 𝑁𝜎𝑇 ensemble simulation for 100 ps was conducted on target unit 

cell. For the characterization of the elastic modulus from the stiffness tensor, we assumed 

that the atomistic unit cell deformed by cyclic loading is orthotropic allowing the stiffness 

difference according to the principal axis. To reduce the inherent statistical uncertainty in 

determining the elastic modulus, the 5 different modulus results were evaluated for deriving 

mean values and standard deviations. 

 

2.2.4 Multi–axial deformation simulations 
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In Chapter 6, the deformation simulations were conducted to estimate yielding 

behavior in multiaxial stress states. The illustration for the deformation simulations and 

their resultant stress–strain profile are shown in Fig. 2.9. The deformation simulations are 

performed by sequential iterative strain application and relaxation, simultaneously 

considering external pressure conditions by NPT ensemble dynamics to consider the 

Poisson’s effect. Since the deformation is applied by multiaxial manner, the determination 

of general stress state at yielding demands adequate yield criterion. In Chapter 6, the yield 

point is obtained from the effective stress–strain by applying 2.5% offset rule which has 

been generally employed in the experimental field76,77. The effective stress and strain are 

defined as: 
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where   is Poisson’s ratio. As an example, an effective stress–strain profile and each 

components are shown in Fig. 2.9(b). The initial stiffness of effective stress–strain 

determined by linear fitting up to a strain of about 5% is used to estimate a yield point. 

Based on the chosen yield point, the each component of yield stress is uniquely determined 

to build a yield surface as denoted by blue triangles in Fig. 2.9(b). The yield surfaces were 

constructed by trying to evaluate all of biaxial loading paths in 
3 0   plane with the 

effective strain rates of 109.5/s and 108.5/s. 
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Fig. 2.1. Molecular structures of the: (a) epoxy resin, (b) curing agent, and (c) co

nstructed epoxy models. Upper and lower unit cells denote the diglycidyl ether of 

bisphenol A (DGEBA)/triethylenetetramine (TETA) and the DGEBA/diethyltoluenedi

amine (DETDA), respectively. 
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Fig. 2.2. Molecular structures of the (a) epoxy resin and curing agent. (b) A constructed 

atomistic model. 

 

 

Fig. 2.3. A flowchart describing the simulation procedure of the dynamic crosslinking 

method. 
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Fig. 2.4. Illustration for the molecular structure of (a) the epoxy resin, (b) curing agent, and 

(c) constructed unit cell.  

 

 

 

Fig. 2.5. A schematic of the uniaxial tensile simulation. Internal polymer chains are 

iteratively strained and relaxed using a multistep procedure. 
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Fig. 2.6. Illustration of (a) scheme for the deformation simulations with atomistic unit cells 

and (b) 2.5 % yield criterion.  
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Fig. 2.7. Scheme for deformation simulations in the molecular dynamics (MD) 

environment with illustrations of: (a) the uniaxial compressive loading–unloading 

simulations and (b) the crosslinked monomers of the epoxy resin and the curing agents. 
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Fig. 2.8. Simulated (a) one–dimensional compressive stress–strain profiles for 

DGEBA/DETDA and DGEBA/TETA epoxy systems, (b) illustration for cyclic loading–

unloading simulations by atomistic unit cell, and (c) scheme of the stress controlled cyclic 

loading–unloading simulations.   



 

 38 

 

 

 

 

Fig. 2.9. Illustration for (a) deformation tests with constructed atomistic model and (b) 

obtained representative stress–strain profiles. The 2.5% offset criterion for yield point from 

the multiaxial stress–strains is used for the yield point selection. The red solid line is 

effective stress–strain and dotted lines are their components. The yield point is represented 

by triangle symbols. 
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Table 2.1. 

Detailed Information of Epoxy-polymer Unit Cells at Room Temperature (RT). 

Composition Model 
Number 

of 

Atoms 
Crosslinking 

Ratio 
Density 
(g/cc) 

Number 

of 

Dihedral 

Angles 

Cell 

Length 
(Å ) 

DGEBA/TETA 
T1 

8750 
81.3 % 1.125 24282 44.16 

T2 77.3 % 1.116 24246 44.29 
T3 80.3 % 1.13 24273 44.11 

DGEBA/DETDA 
D1 

9675 
80.7 % 1.107 26226 45.89 

D2 82.3 % 1.11 26241 45.86 
D3 79.7 % 1.104 26217 45.93 

  

 

Table 2.2 

Comparison of mechanical properties of TGAP/DDS epoxy system with those given in 

experimental literature. 

Present study 
Experiment 

( Gonzalez-Dominguez et al., 2011) 66% crosslinked TGAP/DDS 

E (GPa) G (GPa) ν ρ (g/cm3) E (GPa) ρ (g/cm3) 

3.16 1.14 0.38 1.20 3.1 – 4.3 1.265 
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Table 2.3 

Physical conditions for the considered epoxy unit cells. 

Model Xlink ratio (%) Temperature (K) Pressure (atm) 

M1 80 0 1 

M2 80 100 1 

M3 80 200 1 

M4 80 300 1 

M5 75 300 1 

M6 85 300 1 

M7 80 300 1000 

M8 80 300 3000 

 

 

Table 2.4. 

Comparison of the Mechanical Properties of the Epoxy Systems of the Diglycidyl Ether 

of Bisphenol A (DGEBA)/Triethylenetetramine (TETA) and the 

DGEBA/Diethyltoluenediamine (DETDA) Systems. 

 

 

Mechanical 

Properties 

DGEBA/TETA 

(Present Study) 

DGEBA/TETA 

(Previous Study) 

DGEBA/DETDA 

(Present Study) 

DGEBA/DETDA 

(Previous Study) 

Young’s 

modulus 

(GPa) 

3.84 

Experiment MD 

3.73 

Experiment MD 

2.42 [80] 
4.98 

[25] 
2.71 [81] 

4.00 

[25], 

4–8 [9] 

Density 

(g/cm3) 
1.125 1.1240 [80] 

1.14 

[25] 
1.107 - 

1.12 

[25], 

1.12–

1.14 [9] 
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3. Qualitative analysis on the elasto–plastic deformations 

of epoxy polymers 

 

In this chapter, specific molecular mechanisms that induce macroscopic plastic 

deformations of amorphous epoxy polymers were investigated additionally considering 

effects of the molecular structures of curing agent. In Chapter 3.1, irreversible atomistic 

mechanisms correlated with energy and stress evolutions were characterized by monitoring 

local molecular structures during the deformations. In Chapter 3.2, it was elucidated how 

the different deformation characteristics influence the macroscopic plastic strain 

accumulations depending on the molecular structures of curing agent. 

 

3.1. Influence of the molecular structure of curing agent on plastic 

deformations  

3.1.1 Microscopic deformation mechanisms 

 

 Local structures of the epoxy polymers 

The local structures of fully equilibrated epoxy polymers were investigated using 

the derivation of the radial distribution function (RDF). The RDF is the probability measure 

for the identification of the position of a certain pair of atoms at a given distance r from a 

reference position. The RDF is defined using the following equation: 
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where ( )n r  is the number of atom pairs that consist of the  - and  -atom species 

within a spherical shell in the distance range of ( , )
2 2

r r
r r  , where N and N are 

the numbers of the atom species   and  , respectively, and V  is the systemic volume. 

The RDFs of the considered epoxy polymers are given in Fig. 3.1. Herein, the atomic pairs 

of the monomers of the curing agents and the epoxy resin are respectively investigated to 

observe the influences of the structural characteristics of the curing agents on the network 

topology. 

As can be seen in Fig. 3.1 (a), the discrepancy of the RDF values of the curing 

agents is noticeable between the two epoxy systems since the chemical structures of the 

two epoxy systems are different. The sharp first peak appears at around 1.1Å  in both 

epoxies, which corresponds to the C–H bond. The first DGEBA/TETA peak is higher than 

that of the DGEBA/DETDA epoxy system. The second DGEBA/TETA peak appears at 

around 1.5 Å , which is attributed to the correlation of the N–H bonds. At around 1.45 and 

1.53 Å , the second and third DGEBA/DETDA peaks are evident with relatively small 

heights, respectively, and these small peaks are associated with the bond lengths of the N–

C and C–C bonds, respectively. The C–C bonds are mainly composed of a single C atom 

in a benzene ring and one C atom that is linked to the benzene ring. The third 

DGEBA/TETA peak and the fourth DGEBA/DETDA peak appear at around 1.75 Å , and 

these correspond to the lengths between the hydrogen (H) atoms in the H–C–H bond. The 
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next peaks (at around 2.2 and 2.5 Å ) have been attributed to the correlation between the H 

and C atoms or to those between the C and C atoms in the H–C–C, C–C–C, and C–C–C–

C sequences. 

Unlike the RDF values of the curing agents, the RDF value of the resin represents 

similar structural characteristics. As can be seen in Fig. 3.1 (b), the RDF values of the two 

epoxy systems denote similar profiles, where a noticeable shifting of the peaks is not 

evident. Although the heights of the first peaks that are at around 1.1 Å , which correspond 

to the lengths between the H atoms, are different from each other, the effect of the distance 

between the H atoms on the packing of the monomers is not significant. This finding 

implies that the crosslinking implementations with the different curing agents that are 

considered in this study cannot significantly modify equilibrated epoxy-resin network 

structures.  

 

 Uniaxial loading–unloading simulations of the epoxy polymers 

To determine the primary internal-potential components from the energy 

perspective, the energy-accommodation profiles of both epoxy systems were derived at 300 

K in the loading–unloading ranges that are shown in Fig. 3.2. In the responses of both 

epoxy systems, the total potential energy, which is the sum of the internal-energy 

components, increased in the loading range and decreased in the unloading range. Notably, 

a full recovery of the accommodated-energy state to the initial-energy state is lacking in 

either system; that is, the residual potential energies were observed at the end of the 
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unloading owing to the plasticity effect. These residual potential energies have been mainly 

attributed to the contribution of the nonbonded pairwise interactions (red lines in Fig. 3.2) 

of both systems, thereby implying that the interchain interactions were involved in the 

plastic-deformation energy accommodation that is a result of the irreversible structural 

rearrangement of the epoxy networks. Following the nonbonded pairwise interaction, the 

angle and dihedral-angle interactions noticeably accounted for the total potential-energy 

accommodation in both epoxy systems. Unlike the energy behavior of the nonbonded 

pairwise interaction, however, the irreversible residual energies are not shown in these 

angle-related interactions. When the two epoxy systems were compared, a quantitative 

difference was observed between the energy evolutions for the angle and the dihedral angle. 

It is noticeable that the dihedral-angle interaction accommodated a much larger 

deformation energy than the angle interaction in the DETDA-cured epoxy, while these two 

internal energy components show a similar energy-accommodation trend in the TETA-

cured epoxy. Meanwhile, the influence of the bond contraction is negligible, as the bond 

energies in both systems show the absence of a meaningful increment in either the elastic- 

or plastic-strain ranges compared with the other internal-energy evolutions. 

The derivation of the virial-stress and internal components of the TETA- and 

DETDA-cured epoxy systems are shown in Fig. 3.3. The total virial-stress values of the 

two epoxy systems show the typical deformation regime for thermosetting polymers, as 

can be seen in Fig. 3.3 (a). The two epoxy systems show a linearly increasing stress trend 

in the elastic-strain range, and the yielding began after a strain of approximately 0.07, when 
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the linearity collapsed. Then, the epoxy polymers displayed a hardening or a weak-strain 

softening in the plastic-strain range, as is the case in other studies21,27. Under the unloading-

strain range, the epoxy-system stress rapidly decreased with the decreasing of the strain, 

eventually reaching a stress-free state, as can be seen in Fig. 3.3 (a). The stress-free state 

was reached at a strain of approximately 0.07, implying that the loading–unloading 

deformations of the epoxy polymers exhibited a distinct plastic-strain energy that can be 

calculated using the area of the loading–unloading stress–strain profile. During the 

unloading response, the stiffness decreased as the strain was decreased and it tended to 

converge in the elastic region. 

The total virial stress can be divided into the internal-stress components, like the 

case of the energy components. The components are the nonbonded, bond, angle, and 

dihedral-angle terms that correspond to Eq. (2.2), and the stress evolutions are shown in 

Figs. 3.3 (b), 3.3 (c), 3.3 (d), and 3.3 (e), respectively. Among these internal-stress 

components, the dihedral-angle stress accounts for the largest portion of the total stress 

evolution in both epoxy systems. Following the dihedral-angle stress, the angle stress 

accounts for the second-largest part of the total stress evolution during the deformations. 

The dihedral-angle and angle interactions in the epoxy polymers are the primary potential 

parameters that mainly influence the stress–strain equation. The other parameters mainly 

contributed to the intrinsic deformation regime of the epoxy polymers. The nonbonded and 

bond stresses increased up to a strain of approximately 0.07 and then decreased, implying 

that the slope decrease in the total stress evolution of the plastic-strain range is 
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predominantly attributed to the contributions of the nonbonded and bond stresses. 

Although the deformation regimes of the two epoxy systems are similar, it is 

possible to estimate the influences of the epoxy networks on the deformation behaviors 

from a quantitative comparison between the stress profiles. As the different 3D networks 

of the epoxy polymers in the present study are due to the structural differences in the curing 

agents of the epoxy system, the quantitative differences in the stress–strain behaviors 

results from the structural differences between the aliphatic and aromatic curing agents. As 

far as the total stress evolutions are concerned, the stress increments for both systems in 

the elastic range are nearly the same and show similar elastic-stiffness values. As the strain 

was applied beyond the yielding point, however, the extent of the hardening is different for 

each system, and the TETA-cured epoxy polymer shows a stress that is higher than that of 

the DETDA-cured epoxy polymer. This trend was continuously maintained under the 

unloading response, as follows: The TETA-cured epoxy polymer shows a higher stress and 

unloading stiffness. It is worth noting that this quantitative-stress difference between the 

two epoxies in the plastic range has been mainly attributed to the contributions of the angle 

and dihedral-angle stresses. From the previously described observations and the previous 

studies26,27, the dihedral-angle-related behavior, which is influenced by the structure of the 

curing agent, is of primary importance, because the dihedral-angle stress significantly 

contributed to the elastoplastic stress–strain behaviors of the epoxy polymers. Therefore, 

the focus is the dihedral-angle stress behaviors. 
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The dihedral-angle stress still shows positive values even after the stress-free state 

was passed during the unloading, while the nonbonded, bond, and angle stresses denote 

negative values at the end of the unloading, as can be seen in Figs. 3.3 (b), 3.3 (c), 3.3 (d), 

and 3.3 (e), respectively. This result implies that the stress that is involved with the dihedral 

angle represents a compressive behavior, although the overall stress of the bulk system 

displayed a tensile behavior (negative values after the stress-free state). Owing to the 

irreversible stress behaviors of the dihedral angle, the dihedral-angle stresses of the two 

systems displayed residual stresses even at the end of the unloading, as can be seen in Fig. 

3.3 (e). This result implies that plastic transitions are involved in the dihedral-angle 

behaviors, and these behaviors are dependent on the crosslinked networks that are 

determined by the structure of the curing agent. In a comparison of these two epoxy systems, 

the DETDA-cured epoxy system shows a higher irreversible dihedral-angle stress at the 

end of the unloading, revealing that the aromatic curing agents in epoxy polymers play a 

critical role in the plastic-stress behaviors.  

It is worth noting that the irreversible stress behaviors were identically observed 

in the dihedral-angle stress–strain profiles of all of the prepared initial configurations (the 

profiles in Fig. 3.3 are averaged over different initial configurations, velocity distributions, 

and loading directions). These data denote that the observed residual stress that was 

observed at the end of the unloading is reproducible and reliable.  
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 Influence of the structures of the curing agents on the stress behaviors 

To investigate the contributions of the curing agents on the obtained residual 

dihedral-angle stresses of Fig. 3.3 (e), the monomers of only the curing agents were 

independently observed during the loading–unloading simulations, as shown in Fig. 3.4 (a). 

The dihedral-angle stresses of only the curing-agent monomers of both epoxy systems are 

represented in Fig. 3.4 (b). In this profile, distinctly different dihedral-angle stress 

behaviors are evident. The curing agent of the DETDA-cured epoxy (blue lines) shows a 

large increase in the loading-strain range and a small decrease in the unloading-strain range 

that result in an evident residual stress at the end of the unloading. The curing agent of the 

TETA-cured epoxy system (red lines), however, shows a spring-like reversible stress 

increase and decrease in the loading and unloading ranges, respectively. The dihedral-angle 

stresses of the aromatic-curing-agent monomers accumulated in terms of the plasticity due 

to the accommodation of a large deformation energy compared to the stress response of the 

aliphatic-curing-agent system. Then, these plastic dihedral-angle stress behaviors 

eventually contributed to the irreversibility of the total dihedral-angle stress behavior. 

These residual dihedral-angle stresses are evident in the responses of all of the considered 

initial configurations, as can be confirmed by the error bars. These observations provide 

clear evidence of the significant influences of the structural types of curing agent on the 

plastic-deformation behaviors of epoxy polymers. In particular, they imply that the 

monomers of aromatic curing agents should represent a plasticity that is characterized by 

the dihedral-angle behavior. 
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The influences of the two types of curing agent on the epoxy-resin monomers 

were investigated in a manner that is similar to that of above section. Among the internal-

stress components, the angle stresses that are between the two systems of only the epoxy-

resin monomers, which are shown in Fig. 3.4 (c), were compared. Although both epoxy 

systems are composed of the same type of epoxy-resin monomer, DGEBA, the angle-stress 

profile denotes the quantitative discrepancy between them. The TETA-cured epoxy resin 

exhibited a higher-angle stress than the stress of the DETDA-cured epoxy resin; however, 

although the amounts of the stress increment are different, the angle stresses of the two 

epoxy resins converged to the same value at the end of the unloading. These observations 

revealed that the local angle in the epoxy-resin monomers changes to accommodate 

different deformation-energy amounts in the loading response depending on the structural 

characteristics of the curing agent, but the amounts of the plastic-energy dissipation of the 

two systems are approximately similar. This finding can be confirmed using a calculation 

of the surrounding areas for which the curves of Fig. 3.4 (c) are applied. 

 

 Geometric characteristics: relative atomic displacement (RAD) analysis 

For an improved understanding of the plastic stress and energy behaviors, the 

intrinsic geometric properties of the epoxy polymers were investigated using the relative 

atomic mobility (RAM) analysis. From this analysis, an estimation of the mobility 

discrepancy of the epoxy monomers or specific atoms, which is featured in the molecular 

structures of the epoxy networks, was performed during the loading–unloading simulations. 
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The derived RAM values of specific atom types and monomer sets are displayed in Figs. 

3.5 (a) and 3.5 (b) based on the deviation of the atomic displacement along the time 

increment, as follows: 

2
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where ( )ir t  and (0)ir  denote the current positions of the ith atom at the times t and zero, 

respectively, and N  denotes the number of the specific group of atoms. That is, the RAM 

values were calculated using the averaged considered atoms in the epoxy networks to 

estimate the relative mobility of the considered group during the dynamic response. As the 

applied strain is linearly proportional to the time, Eq. (3.3) is described based on the strain 

increment  , as follows: 
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   ,         (3.3) 

where (0)ir  denotes the position of the ith atoms at the initial loading state. Based on 

Equation (3.3), the derived RAM profiles of the DGEBA/TETA and DGEBA/DETDA 

epoxy systems are shown in Figs. 3.5 (a) and 3.5 (b), respectively. To independently 

investigate the mobility of certain sets, the RAM values of the local sets were calculated 

through groupings of the specific atoms and monomers for the curing agents and the epoxy 

resin and the carbons of the benzene rings in the curing agents and the epoxy resin. In 

particular, the focus of this chapter is the observation of the atomic mobility of the carbons 

in the benzene rings, as the differences in the characteristics of the aliphatic and aromatic 
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curing agents mainly arise from the existence of a benzene ring25,82. As shown in the 

profiles of both systems, the RAM values increased nonlinearly in the loading range, 

showing an increase of the curve slope. This trend implies that the local diffusions of the 

polymer chains that are due to the external force occur more actively when the plastic 

behaviors are involved in the deformation processes; moreover, this observation suggests 

the possibility that, as the plastic deformations proceed, the instantaneous diffusivity of the 

local atoms in the polymer segments tends to increase and provides more room for polymer-

chain movements. Further, the mobility discrepancy between the initial loading state and 

the final unloading state is evident in both epoxy systems; that is, the mobility of the final 

unloading state is higher than that of the initial loading state. This observation reveals that, 

although the strains in the loading directions are equal between the two states, the chain-

segment diffusion occurred actively in the unloading range compared with the 

corresponding strain in the loading range; that is, the mobility discrepancy between the 

loading and unloading ranges could provide evidence of proceeded plastic deformations in 

the loading range. 

The mobility characteristics of the benzene ring can be estimated from the results 

of Figs. 3.5 (a) and 3.5 (b). Since the monomers of the epoxy resins in the two epoxy 

systems are entirely equal, the same numbers of benzene rings are present in the epoxy 

resins of both systems. In the case of the considered curing agents, however, the aromatic 

curing agent, DETDA, includes only the benzene rings. As can be seen in Fig. 3.5 (a), the 

RAM of the C atoms of the benzene ring in the epoxy-resin monomers (solid red lines) is 
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much lower than those of the other atoms (solid cyan lines). Further, this mobility gap 

increased in the unloading range compared with the loading response, while this trend is 

much clearer in the response of the DGEBA/DETDA epoxy system, as can be seen in Fig. 

3.5 (b). The solid red and blue lines denote the RAM values of the benzene atoms in the 

epoxy resin and the curing agents, respectively. Both curves display similarly increasing 

and decreasing trends with the benzene rings in the TETA-cured system in the loading–

unloading range. The most interesting point in this figure is that the RAM of the benzene 

rings in the curing agent is much smaller than that of the epoxy-resin monomers in the 

unloading range, and this gap increased as the unloading simulation was proceeded. This 

result means that the deformed epoxy networks severely restricted the motions of the 

benzene rings in the curing agent in the unloading range, while the mobility degrees of the 

other linked atoms are relatively high. 

The mobility analysis eventually resulted in the following important physical 

insight: The benzene rings, especially in the curing-agent monomers, are likely to show 

significantly limited movements compared to their connected atoms during the loading–

unloading responses. By contrast, the aliphatic curing agent, TETA, shows a relatively high 

degree of mobility since it is not composed of any benzene rings. In this regard, a simple 

illustration of the obtained mobility results is shown in Fig. 3.5 (c). As shown in the 

illustration of the DETDA-cured epoxy system, a mobility gap is present between the C 

atoms of the benzene rings and their linked chain. This mobility discrepancy suggests the 

possibility of plastic dihedral-angle transitions in the vicinity of the benzene rings and their 
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linked atoms, thereby exerting a significant influence on the plastic behaviors of the 

dihedral-angle stress. Thus, in the following section, a rigorous monitoring of the dihedral-

angle type, which consists of the benzene rings and their linked atoms from the energy 

perspective, is described. 

 

 Selection of the primary dihedral-angle types for plastic dihedral-angle 

transitions 

Based on the results of the mobility analysis in previous section, a thorough 

monitoring of the dihedral-angle transitions of the dihedral-angle sets, which are partially 

composed of benzene atoms, was conducted during the deformation simulations. The two 

dihedral-angle types that were selected exhibited large energy variations during the 

deformations. The selected dihedral-angle types are represented in Fig. 3.6 (a), as follows: 

Type A and Type B. Type A consists of two benzene atoms and their connected O and C 

atoms, while Type B consists of two benzene atoms and their connected N and C atoms. 

Type A is included in the monomers of the epoxy resins of both systems, but Type B is 

included only in the DETDA-cured epoxy system because Type B is composed of the 

benzene atoms that are included in the curing-agent DETDA. The dihedral-energy changes 

of these two selected epoxy-system types are shown in Figs. 3.6 (b) and 3.6 (c). As far as 

the TETA-cured epoxy system is concerned, Type A exhibited a large energy 

accommodation that is similar to the total energy-increase amount, but it does not display 
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a clear residual energy at the end of the unloading. As far as the DETDA-cured epoxy 

system is concerned, a large energy-increase amount is evident in the loading and is 

relatively well maintained during the unloading. Type B in the DETDA-cured system, 

however, did not display energy increases or accumulations like the global energy 

responses of Fig. 3.2. 

  

This result is not desirable, but it is understandable because of the following 

reason: The considered thermostat for the NPT-ensemble-based deformation simulation 

adjusts and dissipates the energy to constantly maintain the target temperature. This reason 

is also suggested as the origin of the contradictory stress–energy relationships in the work 

of Hossain et al.26. In their study, the potential energy was decreased under a deformation 

condition that showed an inversely proportional relationship with the stress evolution. 

Their observation is the result of a simulation condition that is fairly similar to the profile 

of the dihedral energy in Fig. 3.6. Another point of view is that the present simulation only 

covers very-short-term dynamics in the region of several nanoseconds. An inevitable 

limited sampling of the energy state of the set of the local atoms during the short-term 

dynamics cannot avoid the inherent fluctuations that result from the initial velocity 

imposition that corresponds to the considered temperature condition. In this regard, 

tremendous efforts have been made in the current MD simulations to overcome the 

timescale limitations83–85. Thus, in the following section, the performances of deformation 

simulations that are less than 1 K for the avoidance of the effects of high thermal-energy 
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levels are presented. The plastic dihedral transitions and the related energy evolutions are 

also derived.  

 

3.1.2. Dihedral energy analysis  

 

 Plastic dihedral-energy behaviors 

To observe the intrinsic dihedral-energy behaviors without the exertion of large 

fluctuation effects on the energy profiles, the deformation simulations were performed at 1 

K with simulation conditions that are identical to those that are used at 300 K. The energy 

evolutions were derived for Type A and Type B in both systems, as shown in Fig. 3.7. The 

total dihedral energies in both systems increased in the loading range and decreased in the 

unloading range, as can be seen in the response at 300 K, and these outcomes are shown in 

Figs. 3.7 (a) and 3.7 (c), respectively. In the profiles of the total dihedral energies, however, 

the residual dihedral energy is not clearly evident in either system; rather, the dihedral 

energy decreased toward a much lower energy state, especially in the DETDA-cured epoxy. 

Concerning the dihedral-energy evolutions of Type A and Type B, however, a 

clear plastic trend was observed. As shown in Fig. 3.7 (b), in the TETA-cured system, the 

response of Type A displays some residual energy at the end of the unloading. Likewise, in 

the DETDA-cured system, the response of Type A denotes a slight residual energy at the 

end of the unloading, as shown in Fig. 3.7 (d). As far as the dihedral angles of Type B are 
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concerned, the dihedral energy was clearly accumulated during the entire deformation 

process, thereby implying that the dihedral angles of Type B are more likely to exhibit an 

irreversibility from the energy perspective than the dihedral angles of Type A. The 

difference in the extent of the irreversibility of the dihedral energy between Type A and 

Type B can be attributed to the mobility difference between the benzene rings of the 

DETDA-cured epoxy, as shown in Fig. 3.5 (b). As presented in RAM analysis, a mobility 

difference was observed between the benzene rings in the epoxy resin and the curing agents 

that is owing to the effects of the different networking environments in the vicinities of 

these two types of benzene ring. Although the considered temperature conditions are 

different, the results that are shown in Fig. 3.5 (b) can be applied equivalently to the results 

at 1 K, because the plastic behaviors of the local dihedral-angle sets have been attributed 

to the geometric properties that are derived from the molecular structures of the considered 

system.  

 

 Plastic dihedral-angle transitions in the DGEBA/DETDA epoxy system 

To specifically observe the local plastic dihedral-angle transitions, the dihedral-

angle sets of Type A and Type B in the aromatic-cured epoxy system were monitored during 

the deformations. The related dihedral-energy surfaces with the dihedral-angle changes of 

both types are represented in Fig. 3.8 (a). The local energy states can be divided into low 

and high ranges at the angle interval of 90º. As the deformations progress in the loading 

range, the local dihedral angles changed with the energy increment from the low- to the 
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high-energy state, as shown in Fig. 3.8 (a). If the local dihedral angles are abruptly changed 

owing to the external loading, the deformed dihedral angles stay in the high potential state 

during the unloading, or they elastically return to the low-energy state. The representative 

case studies of the plastic dihedral-angle changes of Type A and Type B are denoted in Figs. 

3.8 (b) and 3.8 (c), respectively. In both profiles, the dihedral angles were changed during 

the loading response (solid lines) toward the high potential state, and they were maintained 

during the unloading response (dotted lines). These plastic transitions occurred abruptly 

during the loading, overcoming the potential energy barrier that exists between the local 

energy basins. The local dihedral transitions of Type A and Type B from the low- to the 

high-energy states are similar to the trans-gauche dihedral conformational changes of 

thermoplastic polymers26,27. 

These abrupt local transitions that occur near the benzene rings can be explained 

by the classical yielding theory of amorphous polymers that was proposed by Argon44,45. 

According to this theory, the yielding of amorphous polymers occurs via the molecular 

kinks of flexible polymer chains that are activated by applied deformations. According to 

this theory, until the occurrence of the yield point, the internal networks endure the applied 

deformation with a linear stress increment that corresponds to the elastic-stress evolution, 

which is shown in Fig. 3.3 (a). As the molecular kinks of the polymer chains are activated 

by the applied load, the internal stress is gradually relaxed, thereby denoting inelastic 

stress–strain behaviors.  
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The detailed relationships between the wedge angle, stress, and energy change are 

well described in the work of Sundararaghavan et al.21. When compared to the present MD 

results, the kinks of the local polymer chain that are represented in Argon’s theory 

correspond to the abrupt dihedral-angle changes in Figs. 3.8 (b) and 3.8 (c). It has already 

been concluded in the RAM analysis that the plastic dihedral-angle transitions have been 

mainly attributed to the differences between the mobility and the stiffness of the local 

benzene rings and their linked chains. This results in the important conclusion that the 

differences of the curing-agent chemical structures between the aliphatic and aromatic 

types significantly influences the kinking behaviors of the local polymer chains, and this 

eventually determines the yielding phenomena of the epoxy polymers. That is, considering 

the large contribution of the dihedral-angle stress to the total stress–strain response, the 

dihedral-angle folding behaviors of Type A and Type B exerted a significant effect on the 

elastoplastic mechanical properties.  

Thus, the numerical variations in the plastic dihedral-angle transitions of Type A 

and Type B have been derived for the quantitative investigation and are shown in Figs. 3.8 

(d) and 3.8 (e), respectively. Both of the dihedral types show an increasing trend in the 

loading range. In particular, the numerical plastic-transition ratio jumps abruptly near the 

strain of approximately 0.06, which corresponds to the trend of the dihedral-energy 

evolution in Figs. 3.7 (d) and 3.7 (e). As the unit cells were unloaded, however, the number 

of the plastic transitions of Type A noticeably decreased, while Type B showed a 

considerable increase, as is the case for the energy evolutions. The dihedral angles for both 
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types accommodate the large deformation energies during the loading response; however, 

the dihedral angle of Type B is more advantageous for plastic transitions in terms of the 

two different benzene-linked dihedral types.  

 

3.1.3. Strain-rate dependency of plastic dihedral-angle behaviors 

 

It is necessary to confirm the identical maintenance of the characterized inelastic-

deformation mechanisms as the strain rate was decreased. Accordingly, the relationship 

between the increased relaxation time for the chain segments and the plastic dihedral-angle 

stress behaviors, which result from the plastic dihedral-angle transitions of Fig. 3.8, was 

constructed. To characterize the relationship between the strain rate and the plastic 

dihedral-angle behaviors, the loading–unloading deformation simulations were carried out 

at the low strain rate of 108/s with the same manner of 109/s. In Fig. 3.9, the total stress–

strain profiles and the dihedral-angle stress–strain profiles of only the curing-agent 

monomers are presented. As the strain rate was decreased, the total virial stress also 

decreased, as can be seen in the comparison data of Figs. 3.9 (a) and 3.9 (b). The overall 

deformation trends of both epoxy systems, however, were similarly maintained. The stress 

was linearly increased up to the strain of approximately 0.05, and it was nonlinearly 

changed with the yielding of the epoxy systems. In particular, the stress of the 

DGEBA/TETA system is higher than that of the DGEBA/DETDA system at 109/s under 
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the plastic-strain range, as can be seen in Fig. 3.9 (a). An identical trend is observed in the 

stress–strain profiles at 108/s. 

 

  It is also possible to compare the dihedral-angle stresses of the curing agent at two 

different strain rates. As can be seen in Figs. 3.9 (c) and 3.9 (d), the observed residual 

dihedral-angle stresses in both of the strain rates at the end of the unloading are identical. 

The value of the residual dihedral-angle stress of 108/s is much higher, even though the 

total virial stress was decreased by up to approximately 100 MPa with the decrement of the 

strain rate. This observation implies that the increased relaxation time during the 

deformation activated the plastic dihedral-angle transitions of the dihedral angles of Type 

B.  
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3.2. Influence of the molecular structure of curing agent on 

ratcheting behaviors 

 

In this chapter, the cyclic loading behaviors of glassy epoxy polymers were 

investigated by MD simulations considering the influence of the molecular structure of the 

curing agents. This chapter aims to understand the contribution of the irreversible torsional 

angle transitions on the macroscopic ratcheting behaviors of epoxy polymers by taking into 

account the influence of strain rate. This chapter considers two different epoxy systems 

consisting of different structures of curing agents (aromatic and aliphatic curing agents), 

conduct compressive cyclic loading–unloading simulations, and monitor the macroscopic 

ratcheting behaviors and stiffness variations. In order to correlate macroscopic ratcheting 

behaviors with molecular conformation change, we separately observe the microscopic 

transitions of the monomers of epoxy resin and curing agent by deriving structural 

parameters. 

 

3.2.1. Ratcheting behaviors and stiffness evolutions 

 

 Ratcheting behaviors of epoxy systems considering different curing agents 

The ratcheting behaviors of DGEBA/DETDA and DGEBA/TETA systems were 

investigated and their stress–strain profiles and ratcheting strain evolutions are presented 

in Fig. 3.10. As expected, the stress–strain profiles of both systems evolved as the cycles 
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progressed. When both systems were compared, the stress–strain curve evolved much 

rapidly in the case of the DGEBA/DETDA system, denoting that the plastic strain 

prominently accumulated during the cyclic deformations. Correspondingly, the ratcheting 

strain also rapidly increased in the case of the DGEBA/DETDA system (see Figs. 3.10(c) 

and 3.10(d)). Visualization of this ratcheting discrepancy between two epoxy samples is 

presented in Figs. 3.10(e) and 3.10(f); initially, those two epoxy systems did not exhibit 

any difference in the cell size but, as the cyclic deformation proceeded, the height and width 

became gradually different for the two epoxies. 

The abovementioned discrepancy in the plastic strain accumulation distinctively 

influences the sensitivity of frequency. The amorphous polymers exhibited clear rate 

dependence concerning the evolution of the ratcheting strain; the high frequency results in 

slow ratcheting strain evolution. The result for the DGEBA/DETDA system distinctively 

follows previous observations, although deviation of the ratcheting strain is smaller under 

a high number of cycles. This suggests that the conformational change in the epoxy cured 

by DETDA, which induces macroscopic accumulation of the plastic strain, is severely 

frequency dependent. However, the DGEBA/TETA system does not exhibit a clear 

frequency dependence; the ratcheting strain was almost equal up to 250 cycles and the 

ratcheting strain of high frequency (8.33 ns-1) was rather large compared to the low 

frequency (4.17 ns-1). This means that the structural change of the epoxy network was not 

significantly influenced by the increased relaxation time in the case of the epoxy system 

cured by TETA. This implies that the selection of an aliphatic curing agent like TETA is 
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advantageous from the viewpoint of fatigue life of idealized epoxy. 

The ratcheting regime also exhibited obvious differences for the two epoxy 

systems. As far as the DGEBA/DETDA system is concerned, it displayed an entirely 

different ratcheting regime; an abrupt transition in the slope was observed at about 80 

cycles. Based on this, the range that denotes rapid increase of the ratcheting strain 

transitioned into the second range that exhibits a minor increase (after the 80 cycles). Under 

both ranges, the rate of increase of the ratcheting strain was almost consistent without any 

transient range. This implies that the main molecular deformation mechanisms, which 

dominate the evolution of ratcheting strain, might be different under each range. Further, 

considering that these ratcheting behaviors were not observed in high-frequency conditions, 

it seems that the main molecular deformation mechanism is severely rate-dependent. This 

kind of transition of the ratcheting regime has also been observed for other classes of 

materials. Within the considered range of the cycles, it seems that the DGEBA/TETA 

system almost reached the threshold ratcheting strain. The instance that the system does 

not exhibit a clear increasing trend for the ratcheting strain is sooner at low-frequency 

conditions than at high-frequency conditions, while the ratcheting strain of 

DGEBA/DETDA system increases continuously under both conditions. 

 

 Stiffness variations 

Stiffness of the considered epoxies was examined based on the molecular 

structures deformed by cyclic loads. The snapshot models at 0 (initial), 100, 200, 300, 400, 
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and 500 cycles were tested to derive the elastic modulus. The stiffness results in the loading 

direction (Exx) are presented in Figs. 3.11(a) and 3.11(b), the averaged stiffness results in 

the directions perpendicular to the loading (Eyy or Ezz) are presented in Figs. 3.11(c) and 

3.11(d), and the results of shear stiffness perpendicular to loading (transversal shear), Gyz, 

are presented in Figs. 3.11(e) and 3.11(f). To observe the general trend of the stiffness 

variation, linear regression lines are simultaneously plotted in each figure. The stiffness in 

the loading direction decreases sharply with the number of cycles in the case of the 

DGEBA/DETDA system, while those of the DGEBA/TETA system does not exhibit 

obvious trend. In particular, the DGEBA/DETDA system exhibited a large loss in the 

stiffness even up to about 2 GPa after 500 cycles of loading–unloading, which implies 

severe rearrangement of the internal structure and microvoid generation (free volume 

evolution). Concerning the stiffness perpendicular to loading and shear stiffness, the 

stiffness perpendicular to loading increased slightly or remained constant in both epoxy 

systems and the shear stiffness exhibited a slightly increasing trend in both epoxy systems. 

Similar to the ratcheting strain in Fig. 3.10, the DGEBA/DETDA system exhibited 

strong frequency dependence regarding the stiffness degradation, while the DGEBA/TETA 

system did not exhibit any clear trend. The stiffness in the loading direction decreased 

rapidly in higher-frequency conditions compared to the that in the low-frequency condition. 

The regression slope at high frequency was about 1.5 times of the slope in the low-

frequency condition. Similarly, the stiffness perpendicular to loading and the transverse 

shear stiffness at low frequency exhibited relatively high values than those at high-
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frequency conditions. 

 

 Accumulation of irreversible dihedral angle stress 

The dihedral angle stress, which exhibited entirely different deformation regimes 

according to the structures of the curing agent, was examined within the studied range of 

cycles as shown in Fig. 3.12. It was confirmed that the residual dihedral angle stress in the 

DGEBA/DETDA system after large strain loading–unloading simulations, which was 

observed in our previous work24, was accumulated continuously during the cyclic 

deformation simulations. This implies that the irreversible conformational change related 

to the dihedral angle transitions continuously occurs proportional to the increasing number 

of cycles even below the critical stress. As can be seen in the evolutions of the dihedral 

angle stress of the entire epoxy system, the extent of the accumulation of the 

DGEBA/DETDA system is much higher than that of the DGEBA/TETA system (see Figs. 

3.12(a) and 3.12(b)). This can be attributed to the contributions of the conformational 

change in the connecting part between the resin and curing agent of the DGEBA/DETDA 

system. This could be easily confirmed by evaluating the dihedral angle stress of the curing 

agent monomers; as can be seen in Figs. 3.12(c) and 3.12(d), the dihedral angle stress of 

the curing agent monomers was only observed in the DGEBA/DETDA system while the 

stress of the DGEBA/TETA system was nearly zero even after 500 cycles. 

As far as the influence of the frequency is concerned, discrepancy in the frequency 

dependence was observed in DGEBA/DETDA depending on the type of monomers. As can 
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be seen in the dihedral angle stress of both epoxy systems, the accumulated stress at high 

frequency was slightly higher than that at low frequency (see Figs. 3.12(a) and 3.12(b)). 

However, the accumulated dihedral angle stress of the curing agent monomers was higher 

at low frequency than in the high-frequency condition. It implies that the irreversible 

folding near the connection atoms in curing agents requires more relaxation time than the 

folding behaviors in resin monomers. It also suggests the importance of irreversible folding 

in curing agent with a prolonged timescale that classical MD simulations cannot cover. In 

the case of thee DGEBA/TETA system, there was no frequency-dependent behavior since 

the curing agent cannot possess the stress related to dihedral angle transitions. 

 

3.2.2. Microscopic structural analysis 

 

In this chapter, microscopic structural characteristics were investigated by means 

of analyses on orientation parameters, radius of gyration, and free volume to understand 

the ratcheting behaviors and stiffness degradations at microscopic scale.  

 

 Orientation parameter 

Orientation order parameters of the monomer sets in epoxies were monitored to 

identify the rearrangement of the microstructure during cyclic deformations. The concept 

of the orientation order parameter of the epoxy network was borrowed from the definition 
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of orientations of the backbone bonds of polymers. The orientation order parameter in a 

certain direction is determined from the vector calculated by the maximum and minimum 

coordinates in certain monomer employing the following expression: 

 21
3cos 1 ,

2
x xS             (3.4) 

where cos x  is the directional cosine of each monomer in the epoxy network toward the 

loading axis of the atomistic cell. The threshold value of the orientation parameter is -0.5, 

0.0, and 1.0 for perpendicular arrangement to the loading axis, random arrangement, and 

parallel alignment to the loading axis, respectively. 

We investigated the orientation parameters of monomers of the epoxy resin, 

curing agent, and the entire system to individually observe the rearrangement of each 

monomer set. The results are presented in Fig. 3.13; Figs. 3.13(a) and 3.13(b) show the 

evolutions of the orientation parameters at high frequency and Figs. 3.13(c) and 3.13(d) 

show the evolutions of the orientation parameters at low frequency. The results revealed 

that the monomers of the epoxy resin were prominently aligned perpendicularly to the 

loading direction within both epoxies for all considered frequencies, affecting the 

macroscopic ratcheting strain (see the representative conformational change of resin 

monomer in Fig. 3.13(e)). In particular, it seemed that the change in the orientation 

parameter of the resin monomers account for the alignment of the entire epoxy system of 

DGEBA/DETDA, since the orientation order parameter of the DETDA did not exhibit 
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obvious reorientation. It is natural considering the small molecular structure of the curing 

agent, DETDA. Regarding DGEBA/TETA, similar to DGEBA/DETDA, the influence of 

the alignment of the resin monomers was dominant in plastic deformations at high 

frequency. However, it was confirmed that the contribution of the curing agent on the 

orientation parameter of entire system increased under low frequency due to the prolonged 

relaxation time, which can be confirmed in Figs. 3.13(b) and 3.13(d). It suggests that the 

involvement of the curing agent in the stress possession (other than dihedral angle stress) 

increased with increased relaxation time.  

 

 Radius of gyration 

To intensively observe the overall positions of the epoxies, radius of gyrations of 

the resin monomers were additionally investigated here. The radius of gyration gR  of 

each system was calculated by the weight of atomic mass and deviation of the position of 

each atom and center of mass of system as: 

2 2 2 21
( ) ( ) ( ) ,g i i cm i cm i cm

i

R m x x y y z z
m

       


       (3.5) 

where ,( , , ),( , , )i i i i cm cm cmm x y z x y z  denote the mass of the constituent atom and its position 

vector and the position vector of the center of the mass of system, respectively. We 

monitored the transition of gR  during the whole cyclic deformations and the results are 

presented in Fig. 3.14. Similar to the trend for the orientation parameter, it was observed 
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that the chain segments were redistributed and rearranged perpendicularly to the loading 

direction (x–axis). The polymer segments were contracted in the loading direction and 

expanded along the y- and z-axis. The degree of these molecular rearrangement exhibited 

a discrepancy between the two epoxies, following the ratcheting strain evolution in Fig. 

3.10 exactly. Under the low frequency, the difference of redistribution of epoxy network 

was more marked, implying that the molecular mechanism causing low ratcheting 

resistance was intensely activated by the increased relaxation time.    

 

 Free volume 

It is of importance to intensively observe the evolution of free volume considering 

their huge influence on the mechanical properties especially for the modulus. Thus, in this 

part of the work, the free volume of fully loaded and unloaded states in each cycle was 

monitored during the cyclic deformations and the results are shown in Fig. 3.15. The free 

volume was estimated by the volume excluded by the occupied volume of the polymer 

chains. The occupied volume is generally defined by the van der Waals surface and solvent 

surface, which is determined by the probe rolling over the van der Waals surface. To 

calculate the free volume, solvent probe radius of 2 A  and van der Waals radius of 9.5 A  

were used for the description of the solvent surface and van der Waals surface. The derived 

evolutions of the free volume are presented in Fig .3.15. 

The results exhibit quite complex frequency dependence depending on the 
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molecular structures of the curing agent. The free volumes of DGEBA/DETDA increased 

more sharply at low frequency up to about 80 cycles and then decreased and was constant. 

After that, the free volume evolutions of DGEBA/DETDA exhibited clear frequency 

dependence; the free volume at lower frequency was much lower than that at higher 

frequency. Regarding the free volume evolutions of DGEBA/TETA, the free volumes of 

two frequencies were at almost same values up to around 300 cycles. After that, the free 

volume at high frequency decreased abruptly in both loading and unloading states, showing 

a reverse trend compared to that of DGEBA/DETDA.  

            

3.2.3. Relationship between epoxy structure and ratcheting 

behavior 

 

The ratcheting behaviors of the highly crosslinked epoxy polymers were studied 

considering the influence of the molecular structures of the curing agents. The studied 

epoxy polymers exhibited significantly different ratcheting characteristics coming from the 

different roles of the curing agent in deformation accommodations. The ratcheting strain 

was highly accumulated within the epoxy cured by DETDA, exhibiting low ratcheting 

resistance. The distinct ratcheting regime was observed; the rate of the ratcheting 

accumulation was fast in early stage of the cyclic deformations and converged in both 

epoxies. The influence of the frequency was also estimated considering the frequencies of 

8.33 ns-1 and 4.17 ns-1, revealing that the epoxy cured by DETDA exhibited huge frequency 
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dependence while the epoxy cured by TETA does not exhibit clear frequency dependence 

in ratcheting strain evolutions. The stiffness evolutions were also studied by observing the 

stiffness along the principal axis of the atomistic cells and shear stiffness. The stiffness 

along the loading axis is highly decreased in the epoxy cured by DETDA as the cyclic 

deformation proceeds, while the stiffness of epoxy cured by TETA does not exhibit clear 

degradation of modulus. The stiffness perpendicular to loading and shear stiffness 

transverse to loading moderately increase during the cyclic deformation in both epoxies. 

The applied deformations result in the stress accumulations induced by the irreversible 

conformational transitions of dihedral angles in the vicinity of benzene rings. The dihedral 

angle stresses of both epoxies were obviously accumulated by the involvement of the epoxy 

resins. But, it exhibited entirely different deformation accommodation trend when only 

observing the curing agent that DETDA irreversibly accommodate the applied stress in 

epoxy network while TETA only stored the applied stress by reversible molecular behaviors.        

To understand the above ratcheting behaviors and stiffness transitions, the 

microscopic structures of the epoxies were observed by measuring the orientation order 

parameters, radius of gyrations, and free volumes during the cyclic deformations. 

Accordingly, we concluded that; 

 The curing agent TETA play a different role in the deformation accommodation 

compared to DETDA, leading to the possibility of high ratcheting resistance of 

DGEBA/TETA; DETDA easily transfer the applied stress into the epoxy resin 

causing alignment of resin monomers perpendicularly to the loading, while 
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TETA stores the applied stress by self–deformation.  

 The observations on the orientation order parameters revealed that the increase 

of the ratcheting strain significantly originated from the alignment of the resin 

monomers perpendicularly to the loading direction. DETDA does not contribute 

to the ratcheting strain due to its small molecular size. TETA requires increased 

relaxation time for its contribution on ratcheting strain accumulations. 

 Rapid increase of ratcheting strain in early cycles of the deformation is correlated 

with the alignment of the resin monomers and corresponding abrupt increase in 

free volumes. Subsequent slow increase of the ratcheting strain regime stems 

from the gradual free volume decrease by the overall chain relaxations of epoxy 

network. 

 Stiffness degradation along the loading direction in DGEBA/DETDA is 

significantly influenced by the free volume evolutions. In particular, the large 

stiffness reduction at high frequency is arising from the slow decrease in free 

volume rather than chain reorientation.  

 Selection of the curing agents is of significant importance in fatigue life of epoxy 

polymers due to their role in load transfer to resin monomers. In particular, the 

curing agents that can independently possess the applied stress is advantageous 

for the ratcheting resistance and stiffness evolutions.     

It needs to be noted that the present study focused on the idealized structure of the epoxy 

polymers and does not consider the influences of the chain scissions and initial microvoids, 
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which could be critical to the fatigue lives of the amorphous polymers. These issues needs 

to be studied with the aid of large time and spatial scale simulations which cannot be 

achieved by full atomic simulations. Thus, the future investigation will concentrate on the 

development of the framework that can quantitatively predict the ratcheting behaviors, 

simultaneously considering abovementioned limitations of present study. 
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3.3. Summary 

 

The deformation mechanisms of highly-crosslinked epoxy polymers have been 

investigated using MD simulations in consideration of curing agents with different 

structures. Structurally different epoxy unit cells were prepared in an MD environment 

wherein the following different curing agents were considered: aliphatic and aromatic. 

Compressive loading–unloading simulations were performed with the constructed unit 

cells at temperatures less than 300 K to observe the local stress, energy, and geometric 

properties.  

During the deformations, the nonbonded interactions and dihedral-angle 

variations served as important internal-potential parameters that largely contributed to the 

energy and stress behaviors of the epoxy polymers. In particular, concerning the plastic 

behaviors under the large deformations, irreversible stress behaviors of the dihedral-angle 

parts in the monomers of the curing agents were observed in the aromatic-cured epoxy 

system, whereas reversible dihedral-angle stress behaviors were shown in the aliphatic-

cured system. To understand these plastic dihedral-angle stress behaviors, a geometric 

analysis was carried out for which the RAM values of local sets of atoms were derived. 

This geometric analysis revealed that the benzene rings showed a rigid low mobility during 

the deformations, while the polymer chains, which consist of N and carbons, showed a high 

and flexible mobility. These results suggest that an irreversible dihedral folding must be 

present near the benzene rings and their linked chains. 
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Based on the characterized geometric properties, two dihedral-angle types that are 

composed of the carbons in benzene were selected from the dihedral-energy evolutions at 

300 K. To observe the intrinsic dihedral-angle behaviors at the microscopic scale, identical 

deformation simulations were performed at 1 K with an intensive monitoring of the plastic 

dihedral-angle transitions of the selected types. Abrupt plastic dihedral-angle transitions 

were observed near the yielding point of the epoxy polymers and this is physically identical 

to the classical yielding theory. Consequently, the plastic dihedral-angle transitions that 

occur near the benzene rings, which are generally observed in aromatic-cured epoxy 

systems, are important in the elastoplastic-deformation mechanisms of epoxy polymers. 

The cyclic loading behaviors of glassy epoxy polymers were investigated as an 

extended issue on influence of the curing agent on plastic deformation, by MD simulations 

considering equal molecular structures of the curing agents in Chapter 3.1. This chapter 

aims to understand the contribution of the irreversible torsional angle transitions on the 

macroscopic ratcheting behaviors of epoxy polymers by taking into account the influence 

of strain rate. We consider two different epoxy systems consisting of different structures of 

curing agents (aromatic and aliphatic curing agents), conduct compressive cyclic loading–

unloading simulations, and monitor the macroscopic ratcheting behaviors and stiffness 

variations. In order to correlate macroscopic ratcheting behaviors with molecular 

conformation change, we separately observe the microscopic transitions of the monomers 

of epoxy resin and curing agent by deriving structural parameters. 
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Fig. 3.1. Comparison of the radial distribution function (RDF) of groups of: (a) curing 

agents and (b) an epoxy resin. The RDF values were derived between all of the atomic pairs 

in the curing agents and the epoxy resin. 
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Fig. 3.2. Evolution of the internal-potential-energy components of two epoxy systems: (a) 

the diglycidyl ether of bisphenol A (DGEBA)/triethylenetetramine (TETA) and the 

DGEBA/diethyltoluenediamine (DETDA). The deformation energy is accommodated by 

nonbonded (red), bond (gray), angle (magenta), and dihedral (green) energies, and the blue 

lines denote their sum. The solid lines and the transparent dotted lines denote the responses 

to the loading and the unloading, respectively. The improper energy is omitted in the 

profiles owing to its small contribution.  
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Fig. 3.3. Comparison of the stress–strain responses of the triethylenetetramine (TETA) and 

diethyltoluenediamine (DETDA)-cured epoxy systems and the contributions of each 

internal parameter: (a), (b) nonbonded, (c) bond, (d) angle, and (e) dihedral-angle 

interactions. The red and blue solid lines denote the responses of the TETA- and DETDA-

cured epoxy systems, respectively. The solid lines and the short-dash lines denote the 

responses to the loading and the unloading, respectively. The stress-free state in (a) denotes 

the moment when the unit cell displayed a stress of zero during the unloading. All of the 

profiles are the averaged results over three different configurations, five different initial-

velocity distributions, and three loading directions. 
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Fig. 3.4. (a) Constructed configurations of the curing-agent monomers of the considered 

crosslinked epoxy systems, (b) predicted dihedral-angle stress of the curing-agent 

monomers only, and (c) angle stress of the epoxy-resin monomers only. The error bars were 

obtained from the standard deviations (SDs) of the profiles of the different initial 

configurations. The dotted lines in (b) and (c) denote the unloading responses. The 

dihedral-angle and angle stresses of the curing-agent monomers were calculated by the 

division of each stress by the total unit-cell volume. 
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Fig. 3.5. Derived relative atomic mobility (RAM) evolutions with the applied strain in 

loading–unloading simulations: (a) the diglycidyl ether of bisphenol A 

(DGEBA)/triethylenetetramine (TETA) and (b) the DGEBA/diethyltoluenediamine 

(DETDA) systems. The RAM profiles for the atoms of the curing agents, the epoxy resin, 

and the inherent benzenes were calculated. In (a) and (b), Cp denotes the benzene atoms. 

(c) An illustration of the mobility characteristics of the considered curing agents. 
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Fig. 3.6. (a) Selected dihedral-angle types, which consist of the atoms of benzene, as well 

as the flexible chain segments that are linked to the benzene atoms, and their derived 

dihedral-energy profiles under (b) the diglycidyl ether of bisphenol A 

(DGEBA)/triethylenetetramine (TETA) and (c) DGEBA/diethyltoluenediamine (DETDA) 

epoxy systems. Type A denotes the dihedral-angle type that is composed of two benzene 

atoms (represented as the force-field-type cp) and their linked oxygen (O) and carbon (C) 

atoms. Type B denotes the dihedral-angle type that is composed of two benzene atoms and 

their linked nitrogen (N) and C atoms. Type A belongs to the epoxy-resin monomers of both 

systems, and Type B belongs to the aromatic curing agent, DETDA.  
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Fig. 3.7. Predicted dihedral-energy evolutions of the diglycidyl ether of the bisphenol A 

(DGEBA)/triethylenetetramine (TETA) and (c) DGEBA/diethyltoluenediamine (DETDA) 

systems. The energy evolutions of the total dihedral angles and Type A in the 

DGEBA/TETA system are represented in (a) and (b), respectively. The energy evolutions 

of the total dihedral angles, Type A, and Type B are represented in (c), (d), and (e), 

respectively. In all of the profiles, the solid lines and the dotted lines denote the loading and 

unloading responses, respectively. 
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Fig. 3.8 (a) Illustration for the dihedral-angle energy states that correspond to the dihedral-

angle variations of Type A and Type B. The representative dihedral-angle changes for Type 

A and Type B are shown in (b) and (c), which is just one case study of the dihedral-angle 

transitions of Type A and Type B. The variations of the numerical ratios of the plastic 

dihedral-angle transitions are shown in (d) and (e). The total of the dihedral angles of Type 

A is 600 and that of Type B is 484. 
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Fig. 3.9. Predicted total stress–strain profiles and contributions of the dihedral-angle 

stresses of only the curing agents at two different strain-rate conditions: (a) 109/s, (b) 108/s, 

(c) 109/s, and (d) 108/s. The dotted lines in all of the profiles denote the unloading responses. 

All of the profiles have been averaged over different initial-velocity distributions (five 

times) and loading directions (x, y, and z axes). 
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Fig. 3.10. Comparison of the ratcheting behaviors of DGEBA/DETDA and DGEBA/TETA 

systems under compressive cyclic loading–unloading. Stress–strain profiles under loading 
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direction with increasing cycles: (a) DGEBA/DETDA, (b) DGEBA/TETA. Corresponding 

evolutions of the ratcheting strain: (c) DGEBA/DETDA, (d) DGEBA/TETA. Visual 

illustration for the ratcheting strains of those two epoxies at 8.33 ns-1 is presented in (e), (f). 

Influence of the frequency condition was considered. The profiles at the high frequency 

(8.33 ns-1) are represented by deep blue and green lines in (a), (b) and by solid line in (c), 

(d), while those at the low frequency (4.17 ns-1) represented by light blue and green lines 

in (a), (b) and by dotted line in (c), (d).  
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Fig. 3.11. Comparisons of the stiffness components with the number of the cycles. Stiffness 

evolutions toward the loading direction: (a) DGEBA/DETDA, (b) DGEBA/TETA; 

stiffness evolutions perpendicular to the loading direction: (c) DGEBA/DETDA, (d) 

DGEBA/TETA; transverse shear stiffness evolutions: (e) DGEBA/DETDA, (f) 
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DGEBA/TETA. The results at high frequency and low frequency are represented in all 

figures by red and blue symbols, respectively. 

 

 

 

Fig. 3.12. Stress evolutions correlated by the dihedral angle behaviors. (a) Dihedral angle 

stress of whole epoxy system DGEBA/DETDA with the number of cycles, (b) dihedral 

angle stress of whole epoxy system DGEBA/TETA with the number of cycles, (c) partial 

dihedral angle stress of curing agent monomers in DGEBA/DETDA with the number of 

cycles, and (d) partial dihedral angle stress of curing agent monomers in DGEBA/TETA 

with the number of cycles.  



 

 95 

 

Fig. 3.13. Change of the orientation order parameters of considered epoxy systems at 

different frequency conditions: (a) DGEBA/DETDA (8.33 ns-1), (b) DGEBA/TETA (8.33 

ns-1), (c) DGEBA/DETDA (4.17 ns-1), and (d) DGEBA/TETA (4.17 ns-1). (e) Illustration 

for representative conformation change of resin monomer in DGEBA/DETDA system.  
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Fig. 3.14. Change of radius of gyrations during the cyclic deformation simulations at (a) 

high frequency 8.33 ns-1 and (b) low frequency 4.17 ns-1. Profiles of DGEBA/DETDA and 

DGEBA/TETA are denoted by hollow and filled symbols, respectively. 
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Fig. 3.15. Free volume evolutions of (a) DGEBA/DETDA and (b) DGEBA/TETA at 

different frequency conditions (8.33 ns-1, 4.17 ns-1). The free volumes measured by fully 

loaded and unloaded states are simultaneously represented at the evolutions of both epoxies. 
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4. Methods to overcome timescale limitations of classical 

molecular dynamics 

  

In this chapter, timescale extension of the classical MD simulations was 

considered via two approaches; the master plot for the yield stress was predicted by using 

the equivalence between time and temperature in deformation behaviors of polymers in 

Chapter 4.1; the Argon theory and Cooperative model were adopted to estimate quasi–

static yield stress and construct the master plot for the yields in Chapter 4.2.  

 

4.1. Prediction of quasi–static constitutive laws by temperature–

accelerated method 

4.1.1. Theoretical background 

 

To account for the quasi-static mechanical behavior, which is not available in 

classical MD simulations, we also utilize the concept of temperature-accelerated dynamics 

(TAD). According to Eyring’s model and extended models47,49, it is revealed that negative 

temperature dependency and positive strain rate dependency are directly associated with 

the yielding of glassy polymers. Therefore, if a proper quantitative characterization is 

enabled between the strain rate and yield strength, and between the temperature and yield 

strength, the limitation in enlarging the time scale required to consider the slow strain rate 

within the available Eyring plot can be overcome. The TAD model enables the acceleration 
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of the transition from one state to other states by incorporating thermal activation energy 

to promote the transition. In combination with transition state theory and the concept of 

TAD, the inherent time scale limitation of MD simulations can be overcome by elevating 

the simulation temperature. 

As a representative model for describing the polymer yield on the basis of 

transition state theory, the Ree-Eyring model47 (modified from the Eyring equation for yield 

stress) was suggested as follows:  

1ln(2 ) sinh exp ,
y QQ

A C A C
T kT kT


   


 

   
              

       (4.1) 

where , ,  y T k , and   are the yield stress, temperature, Boltzmann constant, and strain 

rate, respectively. (i , )iQ    is the activation energy corresponding to the two rate 

processes of   and  , and iA  and iC  are activation constants. In this model, the 

strain rate and temperature dependencies on the yield stress are described quantitatively by 

the activation parameters. While Eyring’s initial equation (which fails to describe the yield 

behavior across a broad range of temperatures and strain rates) considered one rate process 

to predict the yield stress, the Ree-Eyring model can accurately predict the nonlinear 

relationship between 
y

T


 and log . To accomplish this within a broad temperature 

range, the yield stress is defined in Eq. (4.1) by introducing the additional nonlinear strain 

rate-dependent process   via an arc-hyperbolic sine function. 

In addition, Bauwens-Crowet et al.18 introduced shifting factors ( xS  and yS ) on 

the Ree-Eyring model following the linearized Arrhenius equation: 
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,                       (4.2) 

where refT is the reference temperature used to determine the shifting factor, which in 

turn is used to determine the variation in strain rate and yield strength at temperature T. To 

utilize Eq. (4.2) in predicting the strain rate-yield strength relationship of glassy polymers 

at various temperatures, one master curve is obtained from experimental tension or 

compression tests at the reference temperature. By measuring the activation energy from 

the constructed curve, the shifting factors can be readily determined18,19. Then, according 

to the values of the two shifting factors and their ratio, the curve of the reduced yield stress 

y

T


 versus log  is extrapolated from the master curve14, as shown in Fig. 4.1. In our 

simulation study, instead of measuring the activation energy, we propose a novel approach, 

which uses the slope of a reduced yield profile to determine the shift factor. 

 

4.1.2. Investigation on deformation characteristics and physical 

properties 

 

 Glass transition temperature 

The main idea of Chapter 4.1 is to accelerate the transition event by elevating the 

temperature conditions in deriving the desired quasi-static yield stresses. However, it 
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should be noted that the change in material properties caused by the phase transition should 

not occur within the elevated temperature range. Thus, in this chapter, the glass transition 

temperature g(T )  of the epoxy system is estimated from the density-temperature 

relationship by employing the same cooling-down method used in our previous study11,37. 

In particular, after the structural relaxation at 300 K and 1 atm, the unit cell is equilibrated 

at 600 K to reach the rubbery state under NVT and NPT ensemble simulations for 2 ns and 

4 ns, respectively. Then, with a constant cooling down rate of 0.04 K/ps, the temperature 

of the unit cell is decreased to 100 K while monitoring the change of specific volume with 

respect to the variation of temperature. The glass transition temperature is predicted from 

the intersection point of the two linearly fitted lines of the specific volume-temperature 

profile, as shown in Fig. 4.2. By extending the two linear fitted lines for the glassy and 

rubbery states, the glass transition region can be determined from the intersection point 

located in the temperature range between 480 K and 500 K, which is in a good agreement 

with the experimental results86. Considering the transition region, the available temperature 

for the glassy state is set to 450 K in this chapter. 

 

 Stress-strain responses for glassy state under different strain rates and 

temperatures 

Stress-strain profiles under different strain rates (1010/s, 109/s, and 108/s) and 

temperatures (300 K, 350 K, 400 K, and 450 K) were derived from MD simulations, as 

shown in Figs. 4.3(a–c). All the stress-strain curves show a similar material response in 
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which stress increases linearly in the elastic range with increasing strain, and the increasing 

rate of stress is noticeably decreased. The studied material exhibits the elasto-plastic 

behavior without distinct strain softening, which differs from that of non-crosslinked 

thermoplastic polymers. In general, in the stress-strain response of the thermoplastic 

sample, distinct softening and hardening regions have been observed in other MD studies26. 

This difference can be attributed to the constrained chain mobility of the thermoset polymer 

generated by the crosslinked network, which hinders the softening of the polymer chain 

after the yield point. 

As expected, the temperature and strain rate dependencies on the overall stress-

strain profiles are well showcased in all profiles. As shown in Figs. 4.3(a–c), the overall 

stress decreases with increasing temperature and decreasing strain rate, which agrees with 

previous studies13–15,17–19,21,22,39–41. This result implies an important physical insight in MD 

simulations; namely, that both temperature and strain rate have an equivalent effect on the 

mechanical response of an amorphous polymer (from the viscoelastic point of view). In 

other words, the MD results certify that as a result of the equivalence of these two physical 

variables, the time scale (which is difficult to increase up to the quasi-static level in 

simulations) can be adjusted by changing the temperature; this agrees well with the 

experimental literature. 

The exchange of these two physical variables can be understood from the 

perspective of the molecular movement of polymer chains. The elevated kinetic energy 

(which results from the increase of temperature) induces more vigorous molecular 
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movement, which leads to the rapid structural rearrangement of polymer segments during 

the deformation. Similarly, as the strain rate decreases, polymer chains have more sufficient 

relaxation time to transform their internal structure from one state to another equilibrium 

state in the potential energy surface, leading to the same rearrangement. This crucially 

implies a pathway to overcome the limitation of MD simulations regarding their relatively 

short time scale (compared to the experimental counterpart). In other words, MD 

simulations with an elevated temperature generate a higher thermal activation energy that 

can compensate for the insufficient relaxation time of polymer chains caused by the 

inherently high strain rates.  

 

 Yield criterion  

The distinct criterion for determining the yield point must be established to obtain 

the clear tendency of yield stress change from MD simulations. The yield of an amorphous 

polymer occurs when the polymer chain segments start to plastically flow to overcome the 

energy barrier for the local chains. Once the yield point is reached, various internal 

parameters such as dihedral angle, free volume, and angle are changed irreversibly as 

reported by previous studies26,27. Moreover, the deformation behavior of post-yield range 

of epoxy polymer can be dominated by the microcracking due to brittleness of epoxy 

networks. Due to the complex contribution of internal parameters, amorphous thermoset 

polymers are generally characterized by an unclear yield point (in contrast to crystalline 

materials)22.  



 

 104 

Thus, in order to determine the yield stress from the stress-strain curves of glassy 

polymers, we fitted the stress-strain data with a polynomial curve using a least-squares fit. 

Raw stress-strain data obtained from MD simulations (solid squares) are presented in Fig. 

4.4 along with the fitted polynomial curve (purple solid line). Then, the fitted polynomial 

curve was fitted again by employing the linear elasto-plastic model where the stress 

behavior is described as two bilinear lines (elastic and linear plastic region). From the fitted 

linear elasto-plastic model, the Young’s modulus, yield stress, and hardening parameters 

were determined as shown in Fig. 4.4. In the evaluation stage, we defined the residue of 

the stress as follows: 

( , , ) ( , , ), MinimizeE P

Y Y Y Yr K f K r      ,      (4.3) 

where 
E Pf 

 and   are the linear elasto-plastic function and the stress of the epoxy in 

the polynomial fitted curve, respectively, and K is the hardening parameter. The yield 

stresses for each temperature and strain rate are provided in Table 4.1.  

 

4.1.3. Scheme for prediction of quasi–static solutions 

  

 Nonlinear characteristics of yield and their utilization with the MD result 

Similar to the stress-strain responses, the derived yield stress values given in Fig. 

4.5(a) demonstrate the temperature and strain rate-dependent characteristics; the yield 

stress linearly decreases with decreasing logarithmic strain rate and increasing temperature 

for the conditions considered in this work. This linearly decaying trend of yield stress in 
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the computational environment corresponding to the variation of temperature was 

previously observed by Vu-Bac et al.23 using MD simulations. More specifically, they 

obtained the yield stress of epoxy for the theoretical value of strain rate of 5×109/s via MD 

simulations by employing the Argon theory, which was based on the assumption that the 

linearly decreasing trend of the yield stress with respect to temperature at high strain rates 

can be equally observed at the quasi-static conditions. 

However, it should be noted that such linearity in the temperature-yield strength 

relationship cannot be guaranteed experimentally at extremely low temperatures where the 

molecular movements are severely frozen. This fact leads to the nonlinear variation of the 

yield stress with respect to the broad range of temperatures and strain rates. Bauwens-

Crowet et al.19 focused on this phenomenon and developed an experimental model for the 

yield of amorphous polymers by extending Eyring’s model. In order to illustrate the 

yielding behavior at extremely low temperatures (from −150 ºC to 50 ºC in work of 

Bauwens-Crowet et al.19), it was assumed that the yield at this condition involves two 

independent rate processes, which have already been introduced in Eq. (4.2). In line with 

this approach, a cooperative model modified from Eyring`s equation was also used to 

describe the yield stress-temperature relation of glassy polymers at a wide range of 

temperatures by Fortherigham and Cherry49. In their results, the same tendency was 

observed in which the yield stress nonlinearly varies over the broad range of strain rates 

and temperatures. This provides an important physical insight: namely, that the yield stress 

should vary nonlinearly over the broad range of strain rates; likewise, the yield stress varies 
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nonlinearly with the variation of temperature. Therefore, nonlinearly varying yield stress 

according to the change of strain rate and temperature is obvious in the deformation kinetics 

of amorphous polymers, and also provides the logical basis for the TAD using a changeable 

shifting factor, which is proposed in this study for the first time.  

To take into account the nonlinear characteristics of yield stress according to the 

temperature and strain rate on the environment of MD simulations, the profile for the 

reduced yield stress y

T


 versus log  is plotted in Fig. 4.5(b) from the same data of Fig. 

4.5(a). The slope of the reduced yield stress is also derived over the considered temperature 

conditions of this study in Table 4.1. The slope decreases with the increasing temperature 

from 0.128 at 300 K to 0.064 at 450 K. This decreasing slope of Fig. 4.5(b) is natural 

considering the abovementioned linear trend depicted in Fig. 4.5(a), since each slope is 

determined by the inverse of the given temperature.  

Considering the abovementioned nonlinear varying trend of yield stress with 

strain rate, which is represented in the Eyring plot (Fig. 4.1), the slope of the reduced yield 

stress will steadily decrease as the strain rate decreases to the quasi-static level. Under the 

quasi-static rate conditions, the change of slope with respect to temperature is smaller than 

that of the high-rate conditions18,19, since the sufficient structural relaxation time for 

inducing the viscous flow of polymer segments is guaranteed to initiate the yield, thereby 

resulting in low stress. Thus, the slope of reduced yield under quasi-static conditions must 

be lower than that under computational rate conditions. Furthermore, this trend can be 
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confirmed by comparing the experimental results18,19 with Fig. 4.5(b).  

The obtained data imply that the slope of the reduced yield measured at the quasi-

static conditions can be reached at high simulated strain rates, if the temperature is 

sufficiently elevated using the variation trend of the reduced yield with respect to 

temperature. In other words, the slope of the reduced yield (which is decreased by elevating 

temperature in MD simulations) is comparable with that obtained under the quasi-static 

conditions. In this chapter, owing to the equivalence between temperature and strain rate, 

changeable shift factors are obtained from the MD simulations by taking into account the 

nonlinear characteristics of yield stress. Subsequently, quasi-static yield can be estimated 

from the calculated shift factors.  

 

 Convergence of yield stress in lower strain rate range 

To robustly predict quasi-static yield stress by constructing Eyring plot, the 

convergence of the reduced yield stress – strain rate plot should be guaranteed when the 

yield points at the high temperature range shift toward the lower strain rate. Accordingly, 

the slope of yield points at 300 K and higher strain rate range (higher than 108/s) should be 

sufficiently decreased to the level at the experimentally lower strain rate range that is 

possibly determined from the yield points of 450 K. To confirm the convergence at 450 K, 

therefore, yield stresses were further examined with the various ranges of strain rates as 

given in Fig. 4.6. As mentioned in the previous section, the nonlinear relation between the 

yield stress and logarithmic strain rate is observed. Moreover, as far as the slope of yield 
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stress with logarithmic strain rate is concerned, the data points can be separated into three 

groups (blue, green, and red points in Fig. 4.6). Unlike with lower temperature conditions, 

in a higher temperature range, the yield stresses of 450 K clearly show a relatively faster 

convergence with decreasing strain rate due to the contribution of temperature on the 

relaxation of polymer chains.  

Thus, if the blue points in Fig. 4.6 (with a strain rate of computational scale at a 

higher temperature) are properly shifted toward the lower strain rate region that 

corresponds to an experimental strain rate range at the room temperature, the quasi-static 

yield stress can be reasonably obtained. 

 

 Shifting method and quasi-static (low strain rate) solution 

In this section, a specific methodology for predicting quasi-static yield stress from 

high strain rate conditions is proposed for the first time by carefully considering the 

viscoelastic nature of amorphous polymers. The limitation of MD simulations regarding 

the time scale can be overcome by elevating the temperature based on the similarity of the 

slope of reduced yield between the quasi-static conditions and high-rate, elevated-

temperature conditions. To take into account the nonlinear varying of yield stress with 

temperature and strain rate, the shifting method based on the ratio of changeable shifting 

factors are introduced in this chapter. This method is based on the sequential shifting 

processes using the data sets in the elevated temperature conditions with the iterative 

algorithm to achieve the appropriate shifted positions of the given data sets. 
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The proposed method considers the involvement of multiple rate processes in the 

yield behavior of amorphous polymers, which means that the slope of the profile for the 

reduced yield stress versus logarithmic strain rate is constantly decreased with the 

decreasing strain rate in the MD simulations. Other researcher also observed the multiple 

rate processes regarding the polymer relaxation using the MD simulations40; Capaldi F. M. 

et al. carried out compressive tests using united atom model and observed nonlinear yield 

behavior with different temperatures. They indicated that the nonlinear feature observed in 

MD simulations is a clear evidence of multiple rate processes in polymer yield behavior. 

Based on the assumption that the yield behavior of amorphous polymers under the wide 

range of strain rate is significantly involved with the multiple rate processes, the changeable 

shifting factor concept are introduced in the present work. Herein, to take into account the 

multiple rate processes in polymer yielding behavior, the correlation among yield stress, 

strain rate, and temperature is described as an exponentially decaying function: 

exp( log ) log
y

a b c d
T


       ,                  (4.4) 

where, a, b, c, and d are fitting coefficients. Compared to the Ree-Eyring model in Eq . 

(4.1), the present model is composed of exponential terms instead of using arc hyperbolic 

sine function to consider the nonlinear nature of multiple rate processes. The linear term in 

Eq. (4.4) is to illustrate the extinction of nonlinearity in yield stress for the extremely low 

strain rate condition, which is similar to the Ree-Eyring model. 
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Detailed description to predict quasi-static yield using the iterative regime is 

shown in Fig. 4.7. The present acceleration method is based on the sequential shifting 

concept; the data points at a higher temperature can be shifted sequentially to a lower strain 

rate range using the shifting factor ratio calculated from the existing fitted curve (shifting 

factors are derived by Eq. (4.2)). In the shifting procedure, the selection of data points 

require a profound consideration; the proper data points showing the linearly decaying 

trend need to be determined which represent the same rate processes. 

Herein, once the data points set is shifted to the existing fitting curve, the constant 

slope trend should be maintained to represent the same rate processes. The data points in 

the shifted condition were derived by minimizing the deviation between the shifted point 

at the highest strain rate and existing fitting curve using the least square method. 

However, the accuracy would not be guaranteed in the first shifted points since 

the existing fitting curve may not be able to properly predict the yield stress of the lower 

strain rate range. Thus, the shifting of data sets should be performed iteratively with an 

appropriate modification of the prediction curve. In the present study, the existing fitting 

curve was iteratively updated using the shifted data sets to describe the nature of rate 

process of considered temperature condition. Among the revised candidates of fitting curve, 

the most appropriate curve was determined to show a minimum deviation between the 

shifted points and candidate curve. This iterative modification of fitting curve was 

conducted for at least 30 times at each elevated temperature condition. Finally, the quasi-

static yield stress was properly predicted through the sequential shifting of yield in higher 
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temperature conditions based on the iterative modification of prediction curve. 

When it comes to applying the present method, the following features need to be 

considered for the robust and accurate estimation. First, when selecting the data set, the 

linearity should be guaranteed to demonstrate the same nature of rate process. Plus, the 

prediction region should be magnified sequentially from the initial region where the 

deviation of nature in the rate process is minimal. Moreover, the more proper estimation of 

yield stress will be possible with the more yield stress points, especially for the region 

showing larger deviation in the nature of rate process. In this regard, the validation of 

proposed method is conducted at the end of section by the comparison between the full and 

limited data sets. 

Yield points at 300 K were derived from 108/s to 1011/s at the interval of 100.5/s 

and fitted with Eq. (4.4) as shown with grey dash line in Fig. 4.7(a). Based on the previous 

shifting factor method of two rate processes18,19, each shifting factor ratio for the data points 

of 350 K is derived and represented by the grey solid lines in Fig. 4.7(a). Taking these solid 

lines as a guideline, the data set was shifted while maintaining its original slope. As can be 

seen in Fig. 4.7(a), the first shifted points (grey square points) are deviated from the initial 

prediction curve (grey dash line). It means that in fact, the initial prediction curve is not 

enough to predict the yield of lower strain rate range. Thus, the initial prediction curve is 

modified with the shifted points as shown with blue dash line in Fig. 4.7(a). Following the 

iterative update process with the data set of 350 K, the most appropriate curve is determined 

with the final shifted points (red circle points) and shown with blue solid line in Fig. 4.7(a). 
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Comparing with the previous prediction curve shown with grey dash line in Fig. 4.7(a), the 

updated curve displays quite different quasi-static yield stress in a lower strain rate range. 

With the same manner, the data points in 400 K and 450 K were shifted and the fitting 

curve was iteratively updated.  

One thing to be noted is that the data points for 450 K was divided into two groups 

depending on their slope as represented in Fig. 4.6. Since the change in yield stresses with 

the strain rate is nonlinear in this case, we separated the obtained raw data into two groups 

having different slope respectively and then applied the shifting process for each group.  

From the present shifting method, the profile for the shifted yield stress along the 

logarithmic strain rate is constructed at the target temperature (300 K) in Fig. 4.8(a). With 

the shifted strain rate condition, the ultimate tensile strength is also plotted in Fig. 4.8(b). 

Interestingly, the ultimate tensile stress decreases more rapidly than the yield stress. This 

behavior is likely to be attributed to the more relaxed state of the post-yield region. Lastly, 

as shown in Fig. 4.8, the two predicted values show a good agreement with the experimental 

results, which are represented by the dotted line. From the present model, we expect that 

the effect of physical parameters influencing the yielding of amorphous polymers as 

reported in the previous literature can be further considered, such as crosslinking ratio6,9, 

crosslinking method6, and system size9.  

To confirm the robustness of proposed method, we compared the predicted results 

from the full data sets (identical data sets with the Fig. 4.8(a)) and limited data sets. The 

following data sets for yield stresses are considered for the case of using limited data sets: 
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1010/s, 108/s (350 K), 1010/s, 108/s (400 K), and 1010/s, 109/s, 108/s, 107.5/s, 106.5/s (450 K). 

In total, four points are omitted for the limited data set to compare with the result of using 

the full data sets. Although the data points are omitted, the slope of each data set at reduced 

yield versus logarithmic strain rate profile is maintained without showing a significant 

deviation. The predicted yield stresses with the strain rate for the cases of full data sets and 

limited data sets are given in Fig. 4.9, showing almost identical trend. Only minor 

difference (about 2 MPa) is observed under the quasi-static strain rate range. The 

application of many intermediate data points to the shifting procedure can possibly improve 

the accuracy of yield stress evolution. As far as the overall trend in yield stresses is 

concerned, the omission of intermediate points in the data set does not hinder the prediction 

of quasi-static yield and overall yield evolution with varying strain rate when the linearity 

is ensured in the limited data set. Above all, the most important point in predicting of quasi-

static yield is that the overall accuracy can be substantially enhanced by deriving more 

yield stress points which can be shifted to the quasi-static strain rate region. 

 

 Quasi-static (low rate) stress-strain equation via established yield model 

The quasi-static mechanical response can be estimated via the suggested yield 

model by considering the quasi-static elastic and hardening law. Since the elastic modulus 

generally varies with the strain rate, as reported in previous studies13,87, the quasi-static 

elastic modulus must be determined in an MD environment in order to establish the stress-

strain profile. Therefore, the modulus under the reference state (300 K) without any rate 
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effect was obtained from the Parrinello-Rahman fluctuation strain method in Chapter 2.1.  

To describe the plastic response of the epoxy polymer, Ludwick’s hardening model is 

adopted according to the following form: 

( ) ,p n

e Y h                                        (4.5) 

where e , h, p , and n are the von Mises’s effective stress, strength coefficient, effective 

plastic strain, and hardening exponent, respectively. As well as the elastic modulus, the 

hardening of glassy polymers under 1010/s, 109/s, and 108/s conditions (at 300 K) also 

indicates the rate-dependent characteristics, as reported by previous studies88–90. The values 

of h and n rapidly decrease as the strain rate decreases to 108/s, indicating that the slope of 

the plastic strain range in the stress-strain response significantly decreases. When 

considering the monotonically hardened plastic behavior of thermoset polymers, this trend 

also can be explained in terms of the yield model by noting that the distinction between the 

ultimate tensile strength and yielding quickly becomes constant as the rate decreases as 

shown in Fig. 4.8(b). In this manner, quasi-static h and n values were determined via 

exponential fitting by reflecting the rapid convergence.  

Finally, the uniaxial tensile behavior of the epoxy polymer was derived, as shown 

in Fig. 4.10. The quasi-static yield stress, yield strain, Young’s modulus, and hardening 

parameters (h, n) were determined to be 48.12 MPa, 1.52%, 3.17 GPa, 40.81, and 0.44, 

respectively. The proposed model shows good agreement with the experimental stress-

strain profiles91,92. As indicated by Fig. 4.10, the quasi-static yield strain is found to be 

about 1.52%, which represents a drop by about 4–5% (as compared to the computational 
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rate conditions) and is attributed to the strain rate dependency on the yield strain as reported 

in previous study93. In addition, the suggested quasi-static model can describe the rate effect 

by considering the rate-dependent elastic and hardening law, which can be derived from 

the exponential form. 
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4.2. Prediction of quasi–static constitutive laws by classical 

yielding theory 

 

In this chapter, considering the drawbacks of the existing methods that overcome 

the timescale limitations, the method using 0 K solution of Argon’s theory to derive quasi–

static yield stress has been further developed to represent the nonlinear characteristics of 

the polymer plasticity by additionally taking into account the influence of the hydrostatic 

pressure and crosslinking density. The cooperative model is intensively adopted to 

represent the nonlinear characteristics of the yield stress with varying strain rate and predict 

quasi–static solution under different temperature using a glass transition temperature as a 

criterion for the extinction of the internal yield stress.  

 

4.2.1. Prediction of quasi–static yields and construction of master 

curve 

 Glass transition temperature 

Similarly to Chapter 4.1, the glass transition temperature (Tg) of epoxy polymers 

was estimated from density–temperature relations for the prediction of quasi–static yields, 

since Tg displays an substantial correlation with the characteristic stress such as yield stress 

as also described in classical yielding theory43. In order to derive the density–temperature 

profile, the fully relaxed unit cell was annealed up to the temperature of 450 K by NPT 

ensemble simulations for 5 ns where the epoxy belongs to rubbery state. Then, the unit cell 
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was cooled down with the rate of 0.01 K/ps by monitoring the density and temperature. 

The simulations were conducted considering three different crosslinking ratio, 75%, 80%, 

and 85%, which are the crosslinking conditions of the models in Table 4.2. The derived 

density–temperature profiles are shown in Fig. 4.11. The Tg is determined as a temperature 

where the slope of the profile is abruptly changed. Note that the linear lines of Fig. 4.11 is 

fitting lines based on the determined temperature. Although the extent of the cure 

influences the determination of Tg
5,94,95, the predicted density–temperature profiles under 

the considered range of crosslinking density do not show clear variation of Tg according to 

the crosslinking density. It might result from the inherent variation of density with the 

temperature fluctuation, prohibiting the exact prediction on subtle change of Tg 

corresponding to the 10 % change of the crosslinking density. Thus, in this study, the Tg of 

80 % crosslinked model 375 K is used as representative temperature for the prediction of 

the quasi–static yield solutions. 

 

 Derivation of quasi–static solutions for yield stress 

For the construction of quasi–static constitutive laws of epoxy polymer, the quasi–

static yield stress needs to be identified from the MD simulations considering various 

temperature, pressure, and crosslinking densities. In this Chapter 4.2, the quasi–static 

solutions are derived using the 0 K yield stress of Argon theory following the details of 

previous research21. The strain rate is expressed by Arrhenius form with a critical free 

enthalpy, which is required to occur the yielding event, as follows: 
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*

0 exp ,
b

G

k T
 

 
  

 
           (4.6) 

where *

0 , , bG k   denote pre–exponential factor (1013 s-1), critical free enthalpy, and 

Boltzmann constant. The change in free enthalpy of the polymer chain due to the double 

wedge disclination is written as follows: 

52 3 2 3
2 33 9

,
16(1 ) 8(1 )

r r r z
G r

v v z r

  




 
    

   
        (4.7) 

where , , , ,r     represent shear modulus, kinking angle, molecular radius, Poisson’s 

ratio, and critical stress respectively. The free enthalpy denotes the sum of self–energy of 

the kinks, their interaction energy, and work done by external stresses during the creation 

of the kinks. Then, the differentiation of the Eq. (4.7) with respect to z  is obtained in 

order to find a moment when the free enthalpy is maximized. The maximum free enthalpy 

is obtained when satisfying: 

1/6
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.

8(1 )

z

r v





 
  

 
            (4.8) 

The critical free enthalpy of Argon theory is obtained with substitution of Eq. (4.8) into Eq. 

(4.7) as follows: 

5/62 3
* 5/63
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

  
     

    

        (4.9) 

Then, the critical stress can be expressed with substitution into Eq. (4.6) as: 
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The main advantage of the Argon theory compared to the other classical yielding theories 

is that the critical stress is expressed by the several mechanical properties that can be 

directly derived by the MD simulations. When focusing on the 0 K solution of Eq. (4.10), 

the quasi–static yield stress can be expressed as: 

00

0.077
,

(1 )

y

TT

C


  

 
 

 
           (4.11) 

where C is the ratio factor between shear yield stress and 1–d yield stress that is assumed 

as 3 . The 0 K solution can be extended toward the high temperature range with the 

construction of the correlation between the mechanical properties and temperature. 

Concerning the yield stress–temperature relationship, the previous researchers 

assumed that the yield stress–temperature relationship under the MD strain rate is 

consistently maintained up to the quasi–static conditions21,23. Accordingly, the quasi–static 

yield stresses under different temperature are predicted by the linear yield stress–

temperature law obtained from the MD strain rates. It means that the constant amount of 

the yield stress is dropped with the steady temperature increase regardless of the strain rate 

condition. However, the assumption might be inappropriate for broad range of polymer 

materials; the yield stress also nonlinearly varies with the change of temperature especially 

under extremely low temperature and yield theories have been developed to consider such 

physics14,15,19. Moreover, the linear dependence of the yield stress on temperature also 

violates the nonlinear dependence on strain rate that has been previously observed by many 

experiments and theories13–19. In order to avoid the discrepancy in this chapter, the 
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cooperative model for the polymer plasticity is adopted by making use of the feature of the 

yield stress defined in the model14–16. The cooperative model considers multiple relaxation 

nature of polymers to represent the nonlinear characteristics of the yield stress with respect 

to the temperature and strain rate. The cooperative model restricts the stress that is involved 

in the activated rate process by subtracting internal stress from the yield stress, which is 

called effective stress: 

* ,y i              (4.12) 

where *, i   denote the effective stress and internal stress respectively. The resulting 

strain rate is determined by the effective stress and effective strain rate as follows: 

*
* sinh ,

2

n V

kT


 

 
  

 
         (4.13) 

where 
*,V  represent the effective strain rate and activation volume respectively. It 

means that not all portion of the yield stress is influenced by the strain rate variation. The 

effective stress only determines the dependence of the yield stress with respect to the strain 

rate. Considering these aspects, the cooperative model for the yield stress below Tg is 

represented as follows15:  
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        (4.14) 

where ( )i T  is given as: 

(0)
( ) (0) .i

i i

g

T T
T


            (4.15) 

These relations mean that while the yield stress resulting from the strain rate effect 
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nonlinearly varies under extremely low temperature due to the influence of the effective 

stress, the internal stress which does not participate in rate process can be predicted with 

Tg by linear dependence law on the temperature. Concerning the cooperative model Eq. 

(4.14), the internal stress ( )i T  is limit of the yield stress at given temperature as the 

strain rate vanishes. It implies that the prediction of quasi–static yield at different 

temperature is possible by establishing the relationship between the internal stress and 

temperature Eq. (4.15), which is composed in such a way that the internal stress disappears 

at Tg. The internal stress without any temperature effect (0)i  is estimated by the 0 K 

solution of Argon theory Eq. (4.11).  

The influence of the hydrostatic pressure on the yield stress can be considered by 

the phenomenological linear dependence15. The linear dependence of yield stress on 

arbitrary pressure can be written as follows: 

( ) (0) ,y y pP P             (4.16) 

where ( ), (0),y y pP    are yield stress at pressure P , yield stress at zero pressure, and 

pressure coefficient respectively. That is, the yield stress is linearly increased 

proportionally to the pressure coefficient as the given pressure is increased. Then Eq. (4.16) 

can be rewritten with the substitution of Eqs. (4.14) and (4.15) as follows:  
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      (4.17) 

The quasi–static yield stresses considering the broad range of temperature and 

hydrostatic pressure can be predicted from both the internal stress–temperature law Eq. 
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(4.15) and yield stress–pressure law Eq. (4.16), which is reduced form of general version 

of cooperative model Eq. (4.17). In order to construct the master profile of the yield stress 

by Eq. (4.17), the yield data under MD strain rates was systematically investigated with the 

characterizations on the Tg, p . Then, the fitting coefficients of Eq. (4.17) which are 

expressed by the activation volume and effective strain rate are determined correspondingly. 

The pressure coefficients of the compression and tension were derived as 0.3624, 0.2908 

respectively for the considered epoxy by averaging the results of 109.5/s, 109/s, and 108.5/s 

deformation tests with M4, M7, M8, and M9 models in Table 2.3. 

 

4.2.2. Effects of temperature, pressure, and crosslinking density 

 

 Effect of temperature 

The yield data of the epoxy models M1, M2, M3, M4 was examined to elucidate 

the influence of the temperature and shown in Fig. 4.12 and Table 4.2. As expected, the 

yielding behaviors represent huge dependence on the strain rate and temperature; the yield 

stress is decreased with the extended relaxation time and elevated temperature during the 

deformation tests. This trend confirms the equivalent role of the time and temperature in 

the plastic deformation of amorphous polymers as presented by the classical yielding 

theories14–19,42,47. Based on the obtained quasi–static yield stresses, the yield data were fitted 

with the cooperative model Eq. (4.17) and the fitted master curves according to the 

temperature are shown with red solid lines in Fig. 4.12. Concerning the quasi–static yield 
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stresses of both compressive and tensile loadings, the 0 K solution of the Argon theory does 

not denote distinct deviation with the yield stresses under 0 K and 107.5/s, 107/s. As the 

considered temperature increases, the strain rate where the MD yield stress is roughly 

converged to the quasi–static yield is correspondingly decreased. Accordingly, the master 

curve at 300 K is converged at the lowest strain rate compared to the other temperatures. It 

might be inferred that the increase of the kinetic energy on the polymer segments can 

sufficiently dissipate the applied stress for given relaxation time as the chain relaxation 

behaviors are gradually active. 

The observations on the different rate of the convergence to the quasi–static 

solutions suggest that the yield stress–temperature relation is closely dependent on the 

considered strain rate condition. When considering the strain rate of about 108 /s in Fig. 

4.12(a), the change of the yield stress between 0 K and 100 K is about 100 MPa which is 

definitely larger than the change between 200 K and 300 K which is about 50 MPa. That 

is, the yield stress is highly increased as the temperature is decreased from 100 K to 0 K, 

which corresponds to the experimental observation19. This trend is consistently observed 

in the behavior of the tensile deformations Fig. 4.12(b). In contrast, the yield stress is 

steadily dropped with the temperature increase at quasi–static condition as denoted in Figs. 

4.12(a) and 4.12(b), corresponding to the ratio of internal stress at 0 K and glass transition 

temperature as denoted in Eq. (4.15). It implies that the assumption of the previous 

works21,23, which states that the linear dependence of the yield stress on the temperature is 

constantly maintained regardless of the strain rate condition, might not be suitable for the 
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broad range of amorphous polymers. In a methodological sense, the adoption of Eq. (4.15) 

allows to avoid the assumption on the yield stress–temperature law that might be physically 

incorrect by just constructing the relation between quasi–static yield and temperature. 

 

 Effect of hydrostatic pressure 

The influence of the applied hydrostatic pressure is also examined up to 5000 atm 

considering different strain rates from the deformation simulations by the models M4, M7, 

M8, and M9 in Table 2.3. The amount of the increase of quasi–static yield stress is 

estimated based on the pressure coefficients that were evaluated from the MD yield data. 

The yield data and fitted profiles under different pressure conditions are shown in Fig. 4.13 

and Table 4.3. As expected, the increase of the applied pressure results in the higher 

estimation of the yield stress under all of strain rate range. Especially, the higher pressure 

coefficient is estimated under compressive loading condition since the amorphous 

polymers generally display severe dependence on the hydrostatic pressure15,52. All of the 

master profiles at different pressures are nonlinearly converged under both loading 

conditions.  

 

 Effect of crosslinking density 

The influence of the crosslinking density on the yield stress evaluation is also 

examined under different strain rates from the deformation simulations by the models M4, 

M5, and M6 in Table 2.3. The estimated yield stresses and fitted profiles by the cooperative 
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model are shown in Fig. 4.14 and Table 4.4. As shown in Fig. 4.14, the yield stress is 

increased with the increasing crosslinking density under both loading conditions as the 

previous studies reported96–98, revealing that the finely crosslinked network of the epoxy 

results in the reinforcement of the strength. However, since the considered range of the 

crosslinking density is quite narrow, the yield stress just shows minor change compared to 

the influence of the temperature and hydrostatic pressure of Figs. 4.12 and 4.13. The 

structural change of the epoxy also causes the modulus change as shown in Table. 4.4; the 

10 % change of the crosslink density increases the modulus about 500 MPa. 

Correspondingly, the quasi–static solution of the Argon’s theory Eq. (4.11) also varies 

according to the modulus variation. That is, the reinforcing effect coming from the network 

characteristics of epoxy is reflected in the determination of quasi–static yield stress. It can 

be confirmed under both loading conditions by the fitted master profiles in Figs. 4.14(a) 

and 4.14(b). When focusing on the quantitative evaluations of mechanical behaviors, the 

estimation of the effect of crosslinking density on the yield stress enables the detailed 

comparison with experimental results. The experimental yield stresses74,75 are comparable 

to those of the 80 % and 85 % crosslinked models which are fully crosslinked state, while 

denoting higher stresses than that of 75% crosslinked model.  

 

4.2.3. Construction of quasi–static constitutive laws 

 

 Construction of 1–d constitutive law at arbitrary strain rate 
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Using the obtained quasi-static yield data, 1–dimensional quasi-static constitutive 

laws can be established by considering the strain rate dependence on the post-yielding 

behavior of epoxy polymers. The deformation properties of amorphous polymers indicate 

that the strain rate dependence is observed not only on stress, but also on the strain evolution 

during elasto-plastic deformation; the yield strain generally varies with the strain rate 

leading to the change in the tangent stiffness at different strains78,79. Thus, it is of primary 

importance to consider the difference between the yield strains under the MD and quasi-

static conditions. In order to determine the strain rate effects on the entire stress-strain 

profiles, the following scaling law for the rate dependence, in which both the stress and 

strain are normalized and reconstructed in accordance with the yield point (which was 

defined by 2.5 % offset rule) and proportional limit, is proposed: 

0

0 0 0 0

( )
| | ,

( )

y prop y prop

nonl nonl

y prop y prop

 

   
  

   

  
     

      (4.17) 

where nonl  is the stress evolution after the proportional limit; 0 0 0, ,y y prop     

represent the yield stress, yield strain, and proportional limit strain at the initial (MD) strain 

rate, and , ,y y prop     are the yield stress, yield strain, and proportional limit strain at 

the final (quasi-static) strain rate. It shows that the nonlinear stress-strain profile at the 

quasi–static rate is obtained by mapping the profile constructed at the initial strain rate with 

a ratio determined by the yield point and proportional limit. In this study, it was assumed 

that the latter parameter remained constant under different strain rate conditions to account 

for the rate dependence of the strain itself as follows: 
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0

0

.
y

prop prop

y


 


           (4.18) 

This relationship characterizes the proportional limit stress and strain at quasi–static 

condition from the obtained yield stress and strain at the quasi-static conditions. A detailed 

illustration of the applicability of Eqs. (4.17) and (4.18) is shown in Fig. 4.15, where the 

data set was obtained from the deformation tests conducted at 300 K and 1 atm by the 80% 

crosslinked model. As shown in Figs. 4.15(b) and 4.15(c), since 
y  is directly derived 

from the quasi–static yield stress and stiffness by 2.5 % offset rule, the proportional limits 

denoted by the blue dotted circles were calculated by Eq. (4.18) using the yield points 

determined at the MD and quasi-static rates (red symbols) and proportional limits at the 

MD rate (blue circles). Then, the post-yielding behavior of the MD strain rate (dark green 

line) was mapped under the quasi-static conditions (green line) using Eq. (4.17). The 

derived quasi-static constitutive laws of compression and tension show a good agreement 

with the experimental constitutive responses depicted in Figs. 4.15(b) and 4.15(c). 

 

4.3. Summary 

 

Concerning Chapter 4.1, an accelerated method to predict the quasi-static 

(experimental low strain rate) rate yield from the full-atomic MD simulation has been 

established by employing the concept of Eyring theory for the yield of amorphous polymer 

systems. Using the stress-strain responses of amorphous epoxy polymers under different 
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temperatures and strain rates, the yield stress of each strain rate and temperature can be 

obtained with the linear elasto-plastic yield criterion. In order to take the nonlinear 

characteristics of the yield stress into consideration, shifting factor ratios were calculated 

and applied to shift the yield at the elevated temperature toward the lower strain rate 

conditions at the target temperature based on the derived trend for the slope of the reduced 

yield.  

The quasi-static yield stress (in accordance with the derived shifting factor ratios) 

was estimated through the MD simulations and validated with previous experiments, 

showing good nonlinear rate-dependent behavior. The suggested yield model opens an 

avenue for establishing a quasi-static stress-strain response with the rate-dependent elasto-

plastic law in an MD environment.  

With respect to Chapter 4.2, the method to predict quasi–static yields has been 

elaborated based on 0 K solution of Argon theory. In order to consider inefficiency of the 

proposed method in Chapter 4.1, theoretical model has been directly utilized to predict 

quasi–static yield stress under different temperatures. In particular, the nonlinear 

dependence of the yield stress on the strain rate and temperature, which was not considered 

in previous works, is well–described by the adoption of cooperative model and internal 

stress law under broad range of strain rate. For the construction of quasi–static constitutive 

laws, the mapping method of hardening law into the arbitrary strain rate condition including 

quasi–static rate has been proposed simultaneously. The predicted quasi–static constitutive 

equations are successfully validated with the experiments. 
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Fig. 4.1. Eyring plots constructed at three different temperatures ( 1 2 3T T T  ) and effects 

of the shift factors (reproduced from ref. [14]). 

 

 

Fig. 4.2. Density-temperature relationship for the target epoxy system, which is used to 

obtain the glass transition temperature (intersection point). 
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Fig. 4.3. Stress-strain responses obtained at various temperatures (below the glass 

transition temperature) and strain rates. The temperature/strain rate relationship is observed. 

 

 

 

Fig. 4.4. A criterion for the yield point obtained from the stress-strain response. The yield 

point is determined by fitting the scattered MD data. The linear elastoplastic model is 

composed of four degrees of freedom: Young’s modulus, yield stress, yield strain and 

hardening exponent.  
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Fig. 4.5. Predicted (a) yield stress and (b) reduced yield stress at various strain rates and 

temperatures. The slopes of three points set in (b) are determined as 0.128 (300 K), 0.111 

(350 K), 0.095 (400 K), and 0.064 (450 K). 

 

 

Fig. 4.6. Variation of yield stress depending on the strain rate under 450 K. The yield 

stresses can be divided into three groups according to the slope change.  
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Fig. 4.7. Illustration of construction process of Eyring plot for the reference temperature 

(300 K). Reduced yield stresses under elevated temperatures ((a) 350 K, (b) 400 K, and (c), 

(d) 450 K) are shifted to a lower strain rate range based on the derived shifting factor ratio. 

At each shifting step, the prediction profile is updated iteratively to achieve the appropriate 

modification of prediction curve. The fitted equation for the final updated curve for each 

step are given in the figures. 
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Fig. 4.8. Predicted yield stress (a) and corresponding ultimate stress (b) changes with 

variation of the strain rate. The obtained curves show good agreements with the magnitudes 

of the experimental yield stress (50.19 MPa) and ultimate stress (60 MPa), which are 

obtained from the quasi-static response (experimental test) of epoxy by applying the 

suggested yield criterion. 

 

Fig. 4.9. Comparison of prediction profiles between models of using full data points 

(identical curve in Fig. 4.8(a)) and limited data points.  
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Fig. 4.10. A comparison of the predicted quasi-static (experimental low strain rate) stress-

strain solution (blue solid line) with the experimental results. The inset depicts the 

exponentially fitted Young’s modulus as a function of strain rate. 

 

Fig. 4.11. Determination of glass transition temperatures by the density–temperature 

profiles under three different crosslinking densities (75%, 80%, and 85%).  
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Fig. 4.12. Derived yield stress versus logarithm of the strain rate profiles under (a) 

compression and (b) tension considering different temperature (0 K, 100 K, 200 K, and 300 

K). The yield data at each temperature is fitted by the cooperative model considering the 

quasi–static yield stress. 
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Fig. 4.13. Derived yield stress versus logarithm of the strain rate profiles under (a) 

compression and (b) tension considering different hydrostatic pressures (1 atm, 1000 atm, 

3000 atm, and 5000 atm). The yield data under each pressure is fitted with the quasi–static 

yield stresses which were predicted by the internal stresses depending on the pressure 

coefficients.  

 

Fig. 4.14. Derived yield stress versus logarithm of the strain rate profiles under (a) 

compression and (b) tension considering different crosslinking densities (75%, 80%, and 

85%). The quasi–static yields were predicted respectively by the Argon theory and used for 

the constructions of the master curves (dashed lines). 
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Fig. 4.15. Illustration for (a) the scheme for the construction of the quasi–static post–

yielding responses and applications to the (b) compression and (c) tension at 300 K, 1 atm. 

The MD data was obtained from the 1–dimensional deformation tests of 80% crosslinked 

model and validated with experimental results74,75. 
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Table 4.1 

Yield data under different temperature and strain rate conditions for deriving quasi-static 

yield stress. For the accurate prediction of quasi-static yield, more detailed strain rate 

conditions of 300 K and 450 K are examined.  

 

Temperature (K) 
Strain rate 

(/ sec)  

(MPa)y
 y  

/

(MPa/ K)

y T

 

Slope 

300 

1011 289.63 0.138 0.9654  

1010.5 238.10 0.077 0.7937  

1010 203.82 0.065 0.6794  

109.5 185.36 0.066 0.6179  

109 163.78 0.054 0.5459  

108.5 141.16 0.063 0.4705  

108 127.10 0.053 0.4237  

350 

1010 174.89 0.059 0.4997 

0.1112 109 135.82 0.050 0.3881 

108 97.05 0.043 0.2730 

400 

1010 146.55 0.061 0.3664 

0.0946 109 109.20 0.057 0.2730 

108 70.85 0.050 0.1771 

450 

1011.5 275.09 0.114 0.6113  

1011 204.12 0.130 0.4536  

1010 117.47 0.061 0.2610 

0.0643 
109 80.06 0.053 0.1779 

108.5 73.51 0.073 0.1634 

108 58.61 0.066 0.1302 

107.5 37.07 0.034 0.0823 

0.0146 107 34.78 0.035 0.0773 

106.5 30.49 0.041 0.0678 
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Table 4.2. 

Derived yield data and quasi–static yield for the construction of the master yield profile 

considering the influence of temperature. Note that the Young’s modulus is derived by the 

linear regression up to the strain of 1 %. 

 

Crosslink 

density 

Temperature 

(K) 

Pressure 

(atm) 
Deformation 

Strain 

rate (/s) 

Yield 

strain 

Yield 

stress 

(MPa) 

E (MPa) 

80% 

0K 1atm 

Compression 

1010/s 0.141 597.93 5809 

109.5/s 0.137 515.57 5647 

109/s 0.129 474.12 5632 

108.5/s 0.131 452.92 5402 

108/s 0.132 451.13 5360 

107.5/s 0.129 432.36 5081 

107/s 0.131 422.21 5082 

Quasi-

static 
- 429.03 5564 

Tension 

1010/s 0.127 360.38 5546 

109.5/s 0.126 339.00 5425 

109/s 0.123 321.77 5375 

108.5/s 0.122 306.21 5160 

108/s 0.124 312.15 5035 

107.5/s 0.123 294.20 4792 

107/s 0.123 291.89 4782 

Quasi-

static 
- 291.37 5564 

100K 1atm 

Compression 

109.5/s 0.116 386.66 5163 

109/s 0.117 359.99 5425 

108.5/s 0.119 329.81 4979 

108/s 0.120 311.86 4918 

Quasi-

static 
0.090 314.62 4696 

Tension 

109.5/s 0.116 279.43 4569 

109/s 0.117 263.47 4950 

108.5/s 0.119 244.57 4769 

108/s 0.118 229.73 4696 

Quasi-

static 
0.070 213.67 4696 

200K 1atm Compression 

109.5/s 0.111 341.97 4776 

109/s 0.108 299.48 5202 

108.5/s 0.110 259.96 4421 

108/s 0.108 209.14 3883 

Quasi- 0.073 200.22 4144 
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static 

Tension 

109.5/s 0.113 241.15 4923 

109/s 0.114 215.51 4786 

108.5/s 0.117 196.35 4497 

108/s 0.124 179.44 4144 

Quasi-

static 
0.058 135.97 4144 

300K 1atm 

Compression 

109.5/s 0.114 300.88 3966 

109/s 0.107 235.84 4075 

108.5/s 0.114 205.94 3698 

108/s 0.116 173.04 3091 

Quasi-

static 
0.054 85.80 2930 

Tension 

109.5/s 0.116 209.26 4406 

109/s 0.111 177.41 3765 

108.5/s 0.114 145.86 3735 

108/s 0.118 125.71 2930 

Quasi-

static 
0.045 58.27 2930 
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Table 4.3.  

Derived yield data and quasi–static yield for the construction of the master yield profile 

considering the influence of hydrostatic pressure. Note that the Young’s modulus is derived 

by the linear regression up to the strain of 1 %. 

 

Crosslink 

density 

Temperature 

(K) 

Pressure 

(atm) 
Deformation 

Strain 

rate 

(/s) 

Yield 

strain 

Yield 

stress 

(MPa) 

E 

(MPa) 

80% 300K 

1000atm 

Compression 

109.5/s 0.110 337.84 5527 

109/s 0.105 283.06 4934 

108.5/s 0.108 234.44 4760 

Quasi-

static 
0.055 122.05 4063 

Tension 

109.5/s 0.108 238.60 4595 

109/s 0.111 214.79 4585 

108.5/s 0.108 172.67 4063 

Quasi-

static 
0.046 87.35 4063 

3000atm 

Compression 

109.5/s 0.111 419.89 5025 

109/s 0.111 368.43 6069 

108.5/s 0.111 315.53 5286 

Quasi-

static 
0.062 194.53 5256 

Tension 

109.5/s 0.111 314.94 6024 

109/s 0.109 275.72 5655 

108.5/s 0.113 231.22 5256 

Quasi-

static 
0.053 145.51 5256 

5000atm 

Compression 

109.5/s 0.111 505.56 7091 

109/s 0.108 440.32 7013 

108.5/s 0.107 367.14 6347 

Quasi-

static 
0.071 267.01 5762 

Tension 

109.5/s 0.113 393.30 7141 

109/s 0.109 343.82 6244 

108.5/s 0.107 294.37 5762 

Quasi-

static 
0.060 203.67 5762 
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Table 4.4. 

Derived yield data and quasi–static yields for the construction of the master yield profile 

considering different crosslinking densities. Note that the Young’s modulus is derived by 

the linear regression up to the strain of 1 %. 

 

Crosslink 

density 

Temperature 

(K) 

Pressure 

(atm) 
Loading 

Strain 

rate (/s) 

Yield 

strain 

Yield 

stress 

(MPa) 

E (MPa) 

75% 300K 1atm 

Compression 

109.5/s 0.109 260.31 3229 

109/s 0.113 227.16 4172 

108.5/s 0.108 178.76 3281 

Quasi-

static 
0.051 70.16 2657 

Tension 

109.5/s 0.113 196.39 3620 

109/s 0.112 167.14 3450 

108.5/s 0.113 132.97 3275 

Quasi-

static 
0.042 45.90 2657 

80% 300K 1atm 

Compression 

109.5/s 0.114 300.88 3966 

109/s 0.107 235.84 4075 

108.5/s 0.114 205.94 3698 

108/s 0.116 173.04 3091 

Quasi-

static 
0.054 85.80 2930 

Tension 

109.5/s 0.116 209.26 4406 

109/s 0.111 177.41 3765 

108.5/s 0.114 145.86 3735 

108/s 0.118 125.71 2930 

Quasi-

static 
0.045 58.27 2930 

85% 300K 1atm 

Compression 

109.5/s 0.116 318.17 4893 

109/s 0.111 266.84 3807 

108.5/s 0.110 215.83 3551 

Quasi-

static 
0.053 90.52 3203 

Tension 

109.5/s 0113 218.72 3631 

109/s 0.112 191.21 3686 

108.5/s 0.113 168.24 3536 

Quasi-

static 
0.043 59.23 3203 

 

 



 

 143 

5. Classical yield function based constitutive modeling for 

multi-axial plastic deformations 

 

In this chapter, the derived quasi–static constitutive laws in Chapter 4.2 were 

used for the construction of the FE plasticity numerical model based on the paraboloidal 

yield surface52 to evaluate multi–axial loading behaviors of epoxy polymers. The FE 

analysis was carried out by validating the constitutive model by one–element mesh first 

and evaluating the multi–axial deformation behaviors of open–hall specimen under 

different crosslinking densities. The constitutive model that was adopted in present chapter 

is based on the work of Melro et al.56. 

 

5.1. Constitutive modeling based on paraboloidal yield function 

 

The elastic deformation of the considered epoxy follows the isotropic linear 

elasticity as follows: 

,e e
σ= D : ε            (5.1) 

where 
e

D  is fourth order isotropic elasticity tensor. The stress evaluation can be split into 

the deviatoric stress tensor and hydrostatic stress as: 

2 , ,e e

d vG p KS = ε           (5.2) 

where , , ,e

v G Ke

dε  are elastic deviatoric strain tensor, volumetric strain, shear modulus, 
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and bulk modulus of the considered material. The yield criterion for the plastic deformation 

is described by the paraboloidal yield surface proposed by Tschoegl52 as: 

2 1( , , ) 6 2 ( ) 2 ,c t c t c tJ I         σ         (5.3) 

where 
2 1,J I  are second invariant of the deviatoric stress tensor 

2 1/ 2J  S : S  and first 

invariant of the stress tensor 
1 (I tr σ) , and ,c t   are compressive and tensile yield 

stresses. Concerning the evolution of the plastic strain, non–associative flow rule is used 

for a correct definition of the volumetric deformation as follows: 

2 2 , ,p

vm

g
g p  


  


ε

σ
         (5.4) 

where 23vm J   is von–Mises equivalent stress, 
11/ 3p I  is hydrostatic stress,   

is material parameter which determines the contribution of the hydrostatic pressure on the 

flow direction, and   is increment of the plastic multiplier. The considered   is 

represented by the plastic Poisson’s ratio 
p  as follows: 

1 29
.

2 1

p

p










           (5.5) 

Then, flow rule of Eq. (5.4) is rewritten with considered plastic Poisson’s ratio by: 

1

2
3 .

9

p  
 

   
 

S I           (5.6) 

The evolution of the yield surface is expressed by the uniaxial hardening laws in Eq. (5.3) 

that are determined by equivalent plastic strain. The equivalent plastic strain is defined as 

follows: 
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2

1
: , .

1 2

p p p

e

p

k k


    


ε ε         (5.7) 

The stress evaluation of the constructed plasticity model is based on the numerical 

integration scheme using elastic predictor/return mapping algorithm. The main procedure 

of the algorithm is to update the elastic predictor tensor by solving the nonlinear equation 

which is function of the plastic multiplier in an efforts to derive plastic strain increment by 

Eq. (5.6). This procedure is iteratively performed with Newton–Raphson algorithm to 

derive proper plastic multiplier at each iteration that satisfies ( , , ) 0c t  σ . During the 

time interval 
, 1[ ],n nt t 

 the deviatoric stress tensor and volumetric stress at 
1nt 

 are 

expressed with the trial stress and computed plastic multiplier by: 

1 1 1 1
1 1, ,

1 6 1 2

tr tr tr tr

n n n n
n n

s p

p p
p

G K    
   

    
   

S S
S         (5.8) 

where 
1 1,tr tr

n np S  are trial deviatoric stress tensor and trial hydrostatic stress at 
1nt 
. Then, 

the consistency condition of yield surface Eq. (5.3) is represented by the trial stresses Eq. 

(5.8) as follows: 

12

2

2 ( )6
2 0.

trtr

c t
c t

s p

IJ  
 

 


            (5.9) 

In order to apply the Newton–Raphson algorithm to find the plastic multiplier that satisfies 

Eq. (5.9), the derivative of the consistency condition is expressed as: 

12

3 2

4 ( )72
.

tr ptr

c t e

p

s p e

K IGJ    

    

  
  

  
      (5.10) 
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The derivatives ,
p

e

p

e



 



 
 in Eq. (5.10) are given by: 

1 ˆ2 2 ,
tr

c t t c
c tp p p p

e e p e e

I
H

   
 

     

      
       

       
     (5.11)  

3 2

2 1

2 3 3

216 16 ( )1
,

1 2 272

p tr tr

e

p s p

GJ K I
A

A

 

   

   
    

      

     (5.12) 

where A  is defined as: 

2

2 1

2

18 4
.

27

tr tr

s p

J I
A



 

 
   

 
 

         (5.13) 

The consistent tangent operator in plastic deformation regime is derived from the 

derivative of the stress which can be represented by Eq. (5.8). The detailed procedure is 

presented in the work of van der Meer et al.96. The consistent tangent operator is given by: 

4 ( ) ,
3

s tr tr tr tr tr
      


       



σ
I II S I S S IS S E IE

ε
    (5.14) 

where , , , , , ,        are coefficients for each term, and 
4 ,s

I E  are deviatoric fourth 

order identity tensor and derivative of the equivalent plastic strain with respect to strain 

p

e

ε
. The coefficients are represented by: 

2 2
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          (5.16)   

 

5.2. Finite element analysis: one–element mesh validations 

 

 Quasi–static constitutive laws and 1–element deformation tests 

The systematic predictions of quasi–static constitutive equations of tension and 

compression were conducted based on the proposed methodology at Chapter 4.2 and 

corresponding profiles are presented in Fig. 5.1 as solid lines considering the influence of 

the temperature (Figs. 5.1(a) and 5.1 (b)), pressure (Figs. 5.1(c) and 5.1 (d)), and 

crosslinking density (Figs. 5.1(e) and 5.1(f)) respectively. Since the intrinsic deformation 

characteristics of the considered epoxy is ductile, all of the profiles denotes plateau as the 

plastic deformation proceeds. The constructed constitutive laws represent the influence of 

the considered physical conditions and network characteristics well based on the predicted 

quasi–static yield stresses. The stress under elasto–plastic deformation regimes increases 

as the hydrostatic pressure and crosslinking density increase and the temperature decreases. 

The considered conditions also contribute to the initiation of the plastic flow of the epoxy 

polymers; the decrease of temperature and increase of pressure and crosslinking ratio delay 

the plastic events of polymer segments under both tension and compression loadings. In 

particular, the quasi–static constitutive equations obtained from the 80 % and 85 % 

crosslinked models represent a good agreement with the experimental stress–strains under 
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both loadings.     

The constitutive model was implemented by a UMAT user subroutine of the finite 

element commercial software package ABAQUS and validated with the quasi–static 

constitutive laws of which the hardening profiles are used for inputs of FE simulations. In 

order to validate the constitutive model, the stress–strain profiles of quasi–static MD and 

FE simulations are intensively compared under tensile and compressive deformations by 

1–element mesh. All of the elasto–plastic properties required for the FE analysis were 

obtained from the quasi–static constitutive equations including modulus and Poisson’s ratio. 

Especially, the plastic Poisson’s ratio was calculated from the MD simulations by averaging 

the results of considered rate conditions.  

The results of the 1–element deformation simulations are shown in Fig. 5.1. The 

solid lines denote established quasi–static constitutive laws and circular symbols represent 

the constitutive responses of FE analysis. Concerning the influence of the temperature, the 

1–element tests were performed under different temperatures (100 K, 200 K, 300 K) based 

on the quasi–static constitutive equations obtained from the atomistic models (M2–M4 in 

Table 2.3). Under three different temperatures, the derived stress–strain profiles of 1–

element tests perfectly follow the quasi–static MD profiles in both loading conditions as 

shown in Figs. 5.1(a) and 5.1(b). The influence of the hydrostatic pressure was similarly 

estimated considering three different hydrostatic pressures (1000 atm, 3000 atm, 5000 atm) 

based on the quasi–static constitutive equations from the atomistic models (M4, M7–M9 

in Table 2.3). The results of both loading conditions also denote perfect coincidence with 

the considered quasi–static MD profiles. Likewise, the influence of the crosslinking ratio 
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was also estimated considering three different crosslinking ratios (M4–M6) at 300 K and 1 

atm. The results of FE analysis also show perfect agreement with the considered 

constitutive laws as well as experimental results. 

To investigate the multi–axial plastic deformations corresponding to the 1–

dimensional hardening laws in Fig. 5.1, the evolution of yield surfaces is observed by 

depicting the 
3 0   planes at flow state and severely hardened state simultaneously in 

Fig. 5.2. Since the considered yield criterion is isotropic and not dependent on the rotation 

about hydrostatic axis, all of the envelopes evolve elliptically. The effect of the temperature 

is shown in Fig. 5.2(a) revealing that the temperature drop results in the huge expansion in 

both flow and hardened states. Likewise, the increase of the pressure also expands the 

envelopes as presented in Fig. 5.2(b), but extent of the expansion is highly dependent on 

the loading path. Especially, the initial yield surfaces are not self–similarly evolved with 

increasing pressure; when focusing on the bi–compressive deformations, the envelope does 

not show large expansion between 1000 atm and 3000 atm but expanded rapidly from 3000 

atm to 5000 atm. This irregular evolution behaviors stem from the functional structure of 

the yield criterion in which the mathematical terms consisting of compressive and tensile 

stresses are closely involved. Concerning the effect of the crosslinking ratio in Fig. 5.2(c), 

the highly crosslinked model also displays more expanded yield surface corresponding to 

the hardening behaviors of each crosslinking condition. But, it is worth to note that the 

extent of the expansion is also dependent on the loading directions as observed in Fig. 

5.2(b). Since the constitutive laws of 80 % and 85% crosslinked models in Figs. 5.2(e) and 

5.2(f) are closely comparable, those two yield surfaces in Fig. 5.2(c) only denotes slight 
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deviation especially for 1–dimensional tensile and bi–tensile loadings. Although the close 

match is observed in tensile loading directions, the largest deviation between the yield 

surfaces of 80 % and 85 % crosslinked models is presented near the bi–compression loading. 

 

5.3. Finite element analysis: open–hole deformation tests 

 

Based on the validated constitutive model, the multi–axial plastic deformation 

behaviors of the open–hole structure were investigated by monitoring the evolution of the 

equivalent plastic strain near the hole. In particular, we have focused on the influence of 

the network topology that is featured by the crosslinking density, observing the influence 

according to the delay of plastic deformation characterized by the high extent of cure. 

Concerning the loading path, the bi–axial compression is applied by displacement on the 

edge plane constraining the deformation on the normal direction to the loading directions, 

since the deviation between yield surfaces is dominant under bi–compression as can be 

seen in Fig. 5.2(c). The influence of about 10% variation of the crosslinking density, which 

is microscopic feature of network topology of epoxy polymer, on macroscopic plastic strain 

could be quantitatively demonstrated by the open–hole deformation tests.   

The results of the open–hole deformation tests are shown in Fig. 5.3 with 

snapshots of the displacement field and equivalent plastic strain field. The Fig. 5.3(a) 

denotes the applied displacement field when the 85 % crosslinked structure starts to deform 

plastically and Fig. 5.3(b) represents the equivalent plastic strain field of three different 
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crosslinked model at that moment. As can be seen in Fig. 5.3(b), the 75 % crosslinked 

structure shows prominent plastic deformation compared to those of the 80 % crosslinked 

structures nearby the hole; the maximum equivalent plastic strain of 75 % crosslinked 

structure is 5.26e-3 while the plastic deformation of 80 % and 85 % structures is just initiated. 

It is natural due to, as confirmed in Figs. 5.1(e) and 5.1(f), the delay of the plastic 

deformation attributed to the increase of the crosslinks, prohibiting local plastic 

deformation. This trend is consistently observed as the deformation proceeds. The Fig. 

5.3(c) denotes the applied displacement that the 75% crosslinked structure reaches the 

plateau state. Correspondingly, the maximum equivalent plastic strain is about 2.13e-2 

nearby the hole while the 80 % and 85 % crosslinked structures only denote maximum 

values about 1.0e-2. It implies that the 10 % drop of the extent of cure results in about twice 

of the maximum equivalent plastic strain near the hole.    

 

5.4. Summary 

 

The finite element analysis for elasto–plastic deformations of the epoxy polymer 

has been conducted by considering the influence of the temperature, strain rate, hydrostatic 

pressure, and crosslinking density. In order to construct the multiscale framework without 

any experimental supports, the method to predict quasi–static yields represented in 

Chapter 4.2 has been used to derive quasi–static constitutive laws under considered 

physical environment. The predicted quasi–static constitutive equations are successfully 
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validated with the experiments with respect to the tension and compression. 

Based on the fully characterized constitutive laws, the constitutive model that 

originally proposed by Melro et al.56 has been implemented in finite element analysis and 

validated in tensile and compressive loadings by 1–element mesh tests. The stress–strain 

responses of FE and quasi–static MD denote close agreement each other, leading to the 

universal validity of the constructed model. After the 1–element validation, the multi–axial 

plastic deformations of open–hole structures have been examined by considering the effect 

of crosslinking density on the local plastic deformations. The deformation simulations 

confirm the plastic deformation behaviors hugely depending on the microscopic structural 

change of epoxy. The proposed multiscale framework for the prediction of elasto–plastic 

deformation of epoxy polymers will be broadly utilized to envisage deformation behaviors 

where the experimental approach is inefficient or limited. In particular, the proposed 

framework enables the establishment of correlation between various microscopic structures 

and plasticity, demonstrating the microscopic structure–plasticity relationships.     
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Fig. 5.1. Comparison of the quasi–static constitutive equations and stress–strain profiles 

obtained from the 1–element simulations considering different temperature ((a) 

compression, (b) tension), hydrostatic pressure ((c) compression, (d) tension), and 

crosslinking density ((e) compression, (f) tension). The experimental results in (e) and (f) 

are taken from the works of Guest et al.74 and Tsai et al.75.  
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Fig. 5.2. Evolution of the yield surface in 
3 0   plane which corresponds to the uniaxial 

hardening laws considering the influence of (a) temperature, (b) hydrostatic pressure, and 

(c) crosslinking ratio. The definition of the effective strain in work of Rottler et al.67 is used 

for specification.  

 

Fig. 5.3. Applied displacement fields and corresponding equivalent plastic strain fields 

depending on the crosslinking ratios. (a) displacement field when the 85 % crosslinked 

model starts to deform plastically; (b) the equivalent plastic strain field (corresponding to 

the displacement field (a)); (c) displacement field when the 75 % crosslinked model reaches 

plateau state; (d) the equivalent plastic strain field (corresponding to the displacement field 

(c)). 
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6. Machine learning based data–driven constitutive 

modeling for multi-axial plastic deformations 

 

In this chapter, a multiscale framework was proposed to develop a 3–dimensional 

constitutive model of the epoxy polymer from the data–driven yield function which is 

formulated by the multi–axial yield data using a machine learning technique. The main 

focus of this chapter is to confirm that the customized yield functions of various materials 

can be established only from the given yield data which represents the unique multi–axial 

hardening behavior without any prior knowledge on the primary stress invariants and 

functional structures. In order to examine the possibility of yield function mining, the 

development of the classical yield functions such as von–Mises, Drucker–Prager, Tresca, 

Mohr–Coulomb, and paraboloidal yield functions was reproduced from the proposed 

approach simultaneously characterizing the influence of the dispersion of yield data set. 

 

6.1. Reproduction of classical yield functions by symbolic 

regression 

6.1.1. Symbolic regression 

 

Symbolic regression builds a free-form mathematical equation that can correlate 

nonlinear input and output relationships using evolutionary algorithms. The structure of the 

function and the coefficients are automatically determined based on the fitness criteria that 
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the user specifies. Although the symbolic regression automatically gives mathematical 

expressions regarding the given problem, the user can carefully select the model, based on 

the characteristics of the problems and the complexity of models, to avoid the overfitting 

issue70. Therefore, investigator knowledge and insight regarding the given problem is 

significantly important in solving problems.  

The symbolic regression starts by randomly generating solution candidates, which 

is called the “population” at the first iteration. These candidates might not be able to 

represent appropriately the nonlinear relationships between input and output. These 

candidates are updated with an evolutionary algorithm using crossover, mutation, and 

selection as the iteration is continued. At every iteration, the performance of the model is 

evaluated by the fitness function, usually represented by the mean squared error (MSE). 

This iterative process is performed until the user-defined criteria are satisfied. Note that the 

functional form of the fitness function has significant effects on the finding of a solution. 

The users are responsible for selecting proper fitness functions for the symbolic regression 

procedure to succeed. 

It is often necessary to consider constraint conditions during the application of 

evolutionary algorithms that depend on the characteristics that a solution of given problem 

should display. The most basic way to handle constraints in evolutionary algorithms is to 

use a penalty function originally proposed by Courant.97 The penalty function affects the 

fitness evaluation during the evolution progress, inducing the final solution to satisfy the 

user-defined constraints. There are many advanced ways to set penalty functions, 
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depending on the types of the given problems.98 In the present study, the penalty function 

is defined to satisfy the condition that the yield function should be coincident with the stress 

states specified by uniaxial yield stresses. It means that if the arbitrary compressive and 

tensile stresses are given, the mined yield function should be able to represent the 

corresponding stress states in principal stress space. 

 

6.1.2. Symbolic data mining of classical yield functions 

 

It is demonstrated in this section that the symbolic data mining can reproduce 

well-known classical yield functions from the yield data without any prior knowledge of 

the functions. The exact mathematical formulas of various classical yield functions are 

produced from limited yield data sets generated by the exact classical function in the 

3 0   plane. The symbolic data mining was able to consider candidates of stress 

invariants and find the proper relationship by evaluating the fitness, as calculated from the 

function’s deviation versus the given data set. In particular, the symbolic regression 

simultaneously screens important stress invariants and finds exact functional structures for 

some circumstances. In these cases, inappropriate stress invariants for the given problem 

are eliminated, based on genetic algorithms, while the proper mathematical expression 

composed of meaningful stress invariants is automatically formulated. All procedures of 

symbolic data mining reported here were conducted on the basis of the symbolic regression 

algorithm of Searson.99 
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In addition, it is necessary to verify that symbolic regression also can produce the 

yield functions under the circumstance where the yield data set is arbitrarily dispersed in 

stress space due to the noise of raw data. If yield function mining is possible, it is also 

worthwhile to identify the threshold error under which the expected yield function can be 

still reproduced. In this work, the arbitrary error was uniformly applied on the principal 

stress coordinates in stress space by regulating the lower and upper bound of the 

coordinates. For example, when each component of the stress coordinates arbitrarily varies 

within 10 % of the lower and upper range of its original value, it is called herein “10 % 

dispersion,” for convenience. For all these cases, the arbitrary error was applied up to a 

maximum of 40 % to provide for the influence of the dispersion of raw data on the results 

of symbolic data mining. 

As a first example for classical yield function mining, the data set of von–Mises 

yield function was generated by exact von–Mises yield function of Eq. (1.1), under the two 

different yield stresses, 50MPa and 100MPa. The symbolic regression considered the stress 

invariant set, 
1 2 3 2 3{ , , , , }I I I J J  at which a meaningful set of the stress invariants is 

extracted, and yield stress, y  as a fixed node. The fitness function is composed as a MSE 

calculated by comparing the deviation between training data and prediction model in 

principal stress space as follows: 

2
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


          (6.1) 

where train  and pred  denotes the general stress state of training data (MD data set) and 
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the predicted yield function in principal stress space respectively.  

The performed symbolic data mining successfully reproduced the formula for 

von–Mises function under the 0%, 5%, and 10% dispersions and failed after the 20% 

dispersion condition. The mathematical expressions of mined yield function of 0% and 10% 

error conditions are shown in Table. 6.1 and the comparison of mined and exact yield 

functions is shown in Figs. 6.1(a) and 6.1(b). As denoted by models a1 and b1 of Table 6.1, 

the mined functional structures are completely identical to the von–Mises function. 

Especially, it should be noted that the symbolic data mining successfully identified the role 

of the second invariant of the deviatoric stress 
2J  in majority of models in Table 6.1, 

while the contributions of other stress invariants were eliminated during the regressions. It 

reveals that the symbolic data mining is able to identify the primary stress invariants within 

the all considered variables simultaneously optimizing the functional structure and the 

coefficients.  

However, the prediction of the exact coefficient of 2J  seems to be a lot harder 

under severe error. While both of the functional structure and the coefficient of 2J  is 

accurately determined under 0% dispersion condition as denoted by model a1, it is observed 

that the determined coefficient of 2J  is getting far away from the exact value 3  as 

the applied error is increased as shown by model b1. The applied error eventually leads to 

the failure of the prediction of the von–Mises function under 20% dispersion condition.  

The second example problem of the function mining is conical yield surface 

denoted in Eq. (1.3). The symbolic data mining was performed by considering four 
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arbitrary data sets that are shown in Figs. 6.1(c) and 6.1(d). Unlike to the von–Mises 

example, the set of stress invariants and yield stresses, 
1 2 3 3{ , , , , , }c tI I I J   , is considered 

as function nodes to be evaluated while 
2J  is considered as fixed node but without any 

preliminary assumption on its functional form. Due to the complex functional form of the 

conical yield function and lots of input nodes involved, it is nearly impossible to mine exact 

solution with the fitness implemented in von–Mises case. Accordingly, the constraint 

condition is applied to the fitness function in order to reduce the range of functional 

structure to be probed. The applied constraint condition is that the predicted yield function 

should pass through the stress states in principal stress space corresponding to the arbitrary 

compressive and tensile yielding. The constraint condition is implemented to the fitness 

function by multiplication of MSE as follows: 

1 2 ,fitness MSE MSE             (6.2) 

where 
1MSE  is calculated by considered input data set and 

2MSE  denotes how much 

the prediction model deviates from the stress states defined by given 1–dimensional yield 

stresses 
c  and 

t . 

The performed symbolic data mining successfully reproduced the Drucker–Prager 

yield function under up to the 20% of dispersion condition. The mathematical expressions 

of mined yield function under 0% and 20% dispersion conditions are shown in Table. 6.1 

and the comparison of mined and exact yield functions is shown in Figs. 6.1(c) and 6.1(d). 

The most important point of this example is that the symbolic regression is able to represent 

the pressure–dependency of the considered data set by introducing 
1I  into the yield 
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function, which is screened among the stress invariants, 
1 2 3 3{ , , , , , }c tI I I J    based on the 

fitness function. It implies that the introduction of 
1I  into the yield function, which was 

outcome solely by physical intuition and experience of researchers, was reproduced just by 

the considered data set even under severe error.  

As far as the accuracy of the mined yield function is concerned, it should be noted 

that the constrained symbolic regression robustly produce the correct form of the conical 

yield function regardless of the applied error. Unlike to the von–Mises example, all of the 

mined conical models in Table 6.1 includes the exact conical function even if the applied 

error is increased up to 20%. The increased error just leads to the complex redundant term 

that provide extremely small contribution to the overall function as can be seen by models 

d2 and d3 of Table 6.1. It is because the narrowed exploration range of functional structure 

of yield function leads to find out the exact yield function although the severe noise on the 

data set is concerned.  

The symbolic data mining for the Tresca, Mohr–Coulomb, and paraboloidal yield 

functions was performed by applying the constraint condition as in the case of the Drucker–

Prager yield function. For the cases of the Mohr–Coulomb and paraboloidal yield functions, 

the primary stress invariants were screened as 
1 2{ , }I J  in advance to focus on the 

derivation of exact yield function. Since the data set of Tresca and Mohr–Coulomb function 

is dependent on   of Haigh–Westergaard coordinates, cos  and sin  are additionally 

considered as inputs of symbolic data mining. As far as the fitness function is concerned, 

the total fitness is composed identically to Eq. (6.2) except the Mohr–Coulomb yield 
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function of which the fitness function is composed of the addition of MSEs. The symbolic 

regressions successfully reproduce the Tresca and Mohr–Coulomb yield functions up to 3% 

dispersion, and paraboloidal yield function up to 30% dispersion. The involvement of the 

artificial error in the case of Tresca and Mohr–Coulomb results in the difficulty of accurate 

symbolic data mining compared to the other cases. It might be attributed to the non–smooth 

characteristics of yield functions since the surfaces display sharp corners depending on  . 

The mined functions are represented in Table 6.1 and compared with exact solutions in Figs. 

6.1(e)–6.1(j).  

It is of worth to identify the mined functions under the error where the symbolic 

data mining fail to reproduce the considered classical yield functions. The mined functions 

for the Drucker–Prager, Mohr–Coulomb, and paraboloidal yield functions under arbitrary 

dispersions of 30%, 20%, and 40% are represented in Fig. 6.2 and Table 6.1. The applied 

error leads to the minor change of the surface based on the considered yield function or 

even dramatic change of shape of surface. These observation suggests a possibility of 

mining better yield function than existing functions based on the considered data set.     
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6.2. Development of data–driven yield function 

6.2.1. MD characterizations on evolution of yield surface 

 

In this section, the evolution of yield surface of the epoxy polymer is investigated 

by MD simulations considering their extremely high strain rate, which has been a limitation 

in that the constitutive responses directly derived from the simulations cannot be compared 

with the experimental results20,23. Thus, a mapping method of yield surface from MD strain 

rate to quasi–static condition is proposed in this section to calibrate the influence of the 

strain rate discrepancy.  

As a first step to construct the quasi–static yield surface, the yield surface 

evolution of epoxy polymer was evaluated from the multiaxial deformation simulations. 

Fig. 2.9 exhibits the typical deformation simulations with an atomistic unit cell and the 

representative constitutive response of multiaxial deformations. The stress states of total 

450 stress–strain profiles under the strain rate of 108.5/s were examined under various 

loading paths for establishment of the yield surface. Initial and subsequent yield surfaces 

were build based on the yield points derived from the effective stress–effective strain 

profiles and shown in Fig. 6.3(a). Obtained yield surfaces of considered epoxy are 

isotropically evolved with increasing equivalent plastic strain. The evolution of yield 

surface shows minor change after the equivalent plastic strain of about 0.01, since the 

considered epoxy system is relatively ductile than other typical epoxies74,75,100. One thing 

to be noted is that the extent of hardening is especially strong under the biaxial compressive 
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deformations compared to the other loading paths. Moreover, the variation of principal 

stresses is also evident within the biaxial compression deformations.  

The basic concept of the calibration method is based on the normalized yield 

surface. The yield surface is normalized by the given yield stress to focus on the general 

shape of the surface, which has been widely considered for the comparison of the yield 

surfaces of the materials that display different strengths101–103. The normalization requires 

the characterization of the yield function which consists of the compressive and tensile 

stresses as:  

 , ( ), ( ) 0c t    σ .            (6.3) 

That is, the characterized nonlinear relationship between yield stress and strain rate even 

up to the MD strain rate condition is required, which can be investigated by several ways 

using the classical yielding theory23 and temperature acceleration approach20.    

The overall scheme to establish the quasi–static yield surface is shown in Fig. 

6.3(b). Once the compressive and tensile yield stresses of MD and quasi–static conditions 

are characterized, each stress state of the yield surface under MD strain rate is mapped into 

the quasi–static condition by the yield stress ratio between MD and quasi–static conditions. 

The yield stress ratio are determined by four different combinations of compressive and 

tensile yield stresses depending on their quadrant since the yield function is severely 

dependent on both yield stresses. This approach assumes that the yield surfaces under the 

different strain rate conditions are self–similar each other at equal equivalent plastic strain. 

As far as the variation of the stress states is concerned, the distribution of the stress states 
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is proportionally decreased as the strain rate is decreased corresponding to the considered 

nonlinear relation between yield stress and strain rate.  

Considering the data set in Fig. 6.3(a), the normalized yield surfaces are obtained 

with different equivalent plastic strains in Fig. 6.3(c). Since the yield points are 

isotropically evolved the normalized yield surfaces exhibit similar shape one another. It is 

worth to note that the distribution of data points within biaxial compressions is fairly large 

in case of the equivalent plastic strain of 0.01 (blue circles), owing to the influence of the 

inherent initial variation of the yield stresses in Fig. 6.3(a). This observation confirms that 

the characteristics of yield surface of MD condition are generally reflected into the quasi–

static yield surface by considered mapping method. Considering the quasi–static hardening 

profiles that derived by previous study104, the evolution of yield surface under quasi–static 

condition is finally established in Fig. 6.3(d). 

The proposed mapping method was verified in Figs. 6.3(e) and 6.3(f) by 

investigating the suggested assumption that self–similarity of the yield surfaces is observed 

under the different strain rate conditions. It was observed whether there is difference 

between quasi–static solutions derived from different effective strain rates of 109.5/s and 

108.5/s. As expected, the difference of strain rates results in the different size of envelope of 

the yield surface. However, the size difference of the yield surface does not lead to the 

different quasi–static surfaces. It was observed in Fig. 6.3(f) that the quasi–static yield 

surfaces constructed by the identical quasi–static constitutive law exhibit similar shape and 

size each other, revealing that the considered self–similarity is reasonable.  
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6.2.2. Construction of data–driven yield function 

 

Based on the evolution of quasi–static yield surface, the constrained symbolic 

regression was performed to derive an optimized yield function for the epoxy. In order to 

properly consider the evolution behavior of yield surfaces, the fitness function is composed 

of multiplication of each sub–fitness function which is defined by MSE function. The 

overall fitness function consists of a sub-fitness function for the constraint condition and 

yield surfaces, according to the evolution of equivalent plastic strain, as shown in Fig. 6.3(d) 

as: 

1 2 ,fitness fitness fitness            (6.4) 

where 1fitness  is sub–fitness function to impose constraint function and 2fitness  is sub–

fitness function defined by the error between prediction function and MD data set. 1fitness   

is defined to impose penalty under the range of constraint violation which is judged by 

MSE function as: 

1 1 1

1 2

2 1

,
,

( ) , else

MSE MSE C
fitness

C MSE

  
 

  
        (6.5)  

where C1 is a criterion coefficient for constraint condition and C2 is a coefficient that 

controls a degree of penalty depending on the MSE. 2fitness  is also defined to consider 

the all of errors between the MD data and prediction function under different equivalent 

plastic strains by:   

2 2 2 20 0.005 0.03
| | | ,p p p

eq eq eq

fitness fitness fitness fitness
    

                 (6.6) 
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where 2 | p
eq

fitness


 denotes the sub–fitness measured by the MSE under arbitrary 

equivalent plastic strain. It is defined by the identical penalty function of Eq. (6.5) as 

follows:   

2 2 3

2 2

4 2

,
| ,

( ) , else
p
eq

MSE MSE C
fitness

C MSE

  
 

  
                (6.7) 

where, similar to the coefficients of 1fitness , C3 is a criterion coefficient for the application 

of penalty and C4 is a coefficient that controls a degree of penalty depending on the MSE. 

The contribution of each sub–fitness function can be controlled by adjusting the 

coefficients. In the present study, C1, C2, C3, and C4 were set to 2.5∙10-2, 106, 2.5∙10-1, and 106 

respectively.  

The constraint condition that is applied by the sub–fitness function 1fitness  is 

defined to consider that the mined yield function should be able to pass through the stress 

states corresponding to the considered 1–dimensional yields as is the symbolic data mining 

of classical yield functions. The sub–fitness function 2fitness  is defined to represent the 

fitness with the input MD data set corresponding to the evolution of yield surface in Fig. 

6.3(d). In this work, the five snapshots of subsequent yield surfaces under different 

equivalent plastic strains are considered. These snapshots play a role like extracted 

interpolation points from the whole post–yielding response for the development of the yield 

function. Therefore, the sub–fitness, 2 | p
eq

fitness


, calculated based on each snapshot is 

treated independently by adding penalty when the predicted function is not able to properly 

describe the considered yield surface. Accordingly the sub–fitness function 2fitness  
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defined by multiplication of 2 | p
eq

fitness


 induces that the any violation of the considered 

criterion among five data sets leads to the huge disadvantage on the total fitness function. 

The symbolic regression was performed based on the total fitness function of Eq. 

(6.4). All candidate functions derived by symbolic data mining are presented by 

complexity–fitness profiles in Fig. 6.4. Note that the R–squared value (R2) of Fig. 6.4 is 

MSE that calculated from the deviation between candidate function and all of considered 

MD data set. The fitness of the candidates of the yield function is decreased as the 

expressional complexity increases up to the complexity of about 40 and, after that, 

maintained although the expressional complexity increases. In order to find out appropriate 

yield function for the considered multi–axial hardening behavior, the candidates were 

filtered based on the constraint condition, fitness (sub–fitness function 2fitness ), and 

expressional complexity. Among the candidates, the models satisfying the conditions that 

1 0.025fitness   ; 5

2 0.25fitness  ; and 80Complexity  were selected and represented 

by red symbols in Fig. 6.4(a). The filtered candidates were again validated whether the 

candidate function always could have real solutions for 1 2 3( , , )    under the considered 

range of 1–dimensional yield stresses. Accordingly, 24 candidates for the data–driven yield 

function were selected and presented by the yellow–green symbols in Fig. 6.4(b). Among 

these candidates, the yield function that exhibited the best performance and concise 

functional form was finally chosen as the data-driven yield function to be implemented in 

finite-element analysis. The expressions for the data-driven yield function, including the 

2nd highest R2-valued function and most concise function (the lowest complexity), are 
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shown and compared with the classical functions in Table 6.2 

 

6.2.3. Validation of the mined yield function 

 

The data–driven yield function was validated with input data set and compared 

with the Drucker–Prager and paraboloidal yield functions in Fig. 6.5. When comparing the 

yield surfaces of three yield functions, all of the surfaces nearly overlap at the stress states 

corresponding to the uniaxial yielding due to the applied constraint condition. It is 

attributed to the conservative coefficient criterion C1 set to only 2.5 % during the symbolic 

regression, which results in the almost identical estimation of the yield surface in the second 

and fourth quadrants. This constraint mainly allows the change of prediction of data–driven 

yield function in the vicinity of biaxial deformations. When focusing on the biaxial 

deformations, the estimation of yielding under biaxial compression exhibits quite different 

surfaces in all of equivalent plastic strains; the present data–driven yield surface displays 

much larger envelope compared to the conical and paraboloidal yield surfaces. In particular, 

the paraboloidal yield surface fairly underestimates the stress states of biaxial deformations 

compared to the present data–driven model. The shape change of data–driven model leads 

to the improved fitness with the data set; the R2 values of the data–driven, Drucker–Prager, 

and paraboloidal functions are 0.8354, 0.8167, and 0.5969 respectively.  

The data–driven yield surface was also validated with the experimental result of 

plain strain compression tests which was previously performed by Haba et al.100. In order 
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to estimate stress states of biaxial compression, the experimental yield points 

corresponding to about 0% and 1% of equivalent plastic strain are plotted together in Fig. 

6.5. It is observed that the experimental yield points are better described by the present 

data–driven model, being out of conical and paraboloidal yield surfaces.  

 

6.3. Constitutive modeling based on data–driven yield function 

 

The constitutive model of epoxy was developed by the present data–driven yield 

function following the overall scheme for numerical time integration based on the previous 

works of Melro et al. and van der Meer56,96. Stress evaluation of considered epoxy is carried 

out by the general return mapping scheme105,106. The stress state is estimated by assuming 

elastic trial stress as: 

1 : ,tr e

n n  σ = σ D ε           (6.8)  

where 1

tr

n   and n  are trial stress at time 1n   and stress at time n  respectively, 
e

D  

is the fourth order isotropic elasticity tensor, and ε  is strain increment corresponding to 

the time interval. At the end of the return mapping procedure, the stress at time 1n   is 

evaluated by: 

1 1 : ,tr e p

n n   σ = σ D ε           (6.9) 

where pε  is plastic strain increment characterized by the flow rule. Elasto–plastic 

behavior of considered epoxy polymer is modelled using the present data–driven yield 

function. The consistency condition from the present yield function can be written as 
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follows:  

  22

2

1

( , , ) 1.855 1.732 30.4 0.0149 2.087 1.998

15.9 ( ) 0.

c t c t t c t c

s

t c t

p

J

I

       


  


       

  

σ

 (6.10) 

A non–associative flow rule is used to correctly consider the volumetric deformation in 

constitutive modeling with the flow potential as follows: 

2 2 ,vmg p              (6.11) 

where 23vm J   is the von Mises equivalent stress and   is a material parameter for 

the contribution of volumetric deformation on the plastic flow. The flow rule is represented 

with the flow potential, g  as follows: 

,p g






ε
σ

          (6.12) 

where   denotes the time derivative of the plastic multiplier. By substituting Eq. (6.11) 

into Eq. (6.12), the increment of plastic strain is written as: 

1

2
3 .

9

p  
 

   
 

S I

         (6.13) 

The parameter   related to the plastic Poisson’s ratio 
p  is written as follows: 

1 29
.

2 1

p

p










          (6.14) 

The increment in equivalent plastic strain is defined by the plastic strain as follows: 

: : ,p p p

eq k k     ε ε M M         (6.15) 

where k  is 
21 (1 2 )p  and M  is the direction of plastic flow shown in Eq. (6.13) as: 
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2
193

.
trtr

s p

I
M



 
 

IS
          (6.16) 

The stress is evaluated at the end of the return mapping procedure with characterized 

increment of plastic multiplier as: 

1 1
1 13 3 ,

1 6 1 2

tr trtr tr

s p

I I

G K   
  

   

I IS S
σ =         (6.17) 

where G  is shear modulus and K  is bulk modulus of the considered material. Then, 

the consistency condition of Eq. (6.10) is reduced to nonlinear function of single variable 

  from Eqs. (6.15) and (6.16). This nonlinear equation is solved by Newton–Raphson 

iteration scheme at every time step. This iteration scheme only allows for 

thermodynamically admissible solution 0  . The details of implementation of 

Newton–Raphson scheme is shown in Table 6.3.  

The consistent tangent operator is derived by taking derivative of stress from Eq. (6.16) as 

follows: 

1 1

2 2

1
6 2 ,

3 3

tr trtr tr

s p s p

I I
G K

 


   

   
   

    

Iσ S I S

ε ε ε ε ε
     (6.18) 

In order to obtain fully characterized consistent tangent operator, the derivative of 

increment of plastic multiplier with respect to the strain is needed. Since there is no explicit 

expression, this relationship should be obtained by the derivative of consistency condition. 

The final expression for the consistent tangent operator is shown as follows: 

4 ( ) ,
3

s tr tr tr tr tr
      


       



σ
I II S I S S IS S E IE

ε
    (6.19) 
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where 4

s
I  is the deviatoric fourth–order identity tensor, E  is the derivative of 

equivalent plastic strain with respect to strain tensor, .

p

eq



E

ε
  The constants of Eq. 

(6.19) are given as: 

 

 

2

1

3 2

2

3

2

1 1

2 22

2

2 ( ) 18 ( )2
, , ,

6
1.855 1.732 30.4 ,

ˆˆ2 26
1.855 1.732 30.4 , , ,

33

tr

c t c t

s p p s p

c t
tr

s

tr tr

c t
tr

p ps p

K I KGG K

G

J

KG I K I HGH

J

    
  

    

  


 
    

  

 
   

  

    

    (6.20) 

where Ĥ  is the derivative of yield function with respect to equivalent plastic strain 

ˆ
p

eq

H






. 

 

6.4. Finite element analysis: one–element mesh validations 

 

The deformation simulations under tension, compression, shear, and bi–

compression were performed with UMAT user subroutine of commercial finite element 

analysis software, ABAQUS. In order to validate the constitutive model based on the data–

driven yield function, the constitutive model based on the paraboloidal yield function56 was 

also examined under equal conditions. For the implementation of the constitutive model, 

the compressive and tensile hardening profiles including modulus and Poisson’s ratios that 

extracted from the work of Park et al. were used as inputs of the simulations104. Since the 
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paraboloidal and data–driven yield functions exhibit only different behaviors under the 

biaxial deformations, the numerical prediction of compression, tension, and shear tests 

should denote nearly identical responses, and conversely the prediction of bi–compression 

test should denote the different responses between the two yield function.  

The comparison of one–element deformation tests between the data–driven and 

paraboloidal yield functions is shown in Fig. 6.6. The numerical prediction of compression, 

tension, and shear is shown in Fig. 6.6(a) and bi–compression is shown in Fig. 6.6(b) 

respectively. Note that the bi–compressive stress denotes axial stress component only. The 

prediction profiles from both yield functions are almost identical under the tension, 

compression, and shear, which results from the closely similar hardening behavior under 

these loading paths of yield surfaces as seen in Fig. 6.6. It is because both yield surfaces 

consistently follow the 1–dimensional post–yielding behavior by the imposed constraint 

condition of Eq. (6.5). As far as the prediction of bi–compressive loading is concerned, the 

stress of the present data–driven function is more optimized for the yield data set by the 

application of Eq. (6.6), displaying higher value than that of paraboloidal yield function as 

can be seen in Fig. 6.6.  

 

6.5. Characteristics of data–driven yield function 

 

The data–driven yield function was formulated by the symbolic data mining 

considering the multi–axial yield behavior of epoxy polymer. The function mining was 
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performed based on the ability of constrained symbolic regression on the screening of 

primary stress invariants under severe error involved and optimization of functional 

structure. It was confirmed by the mining examples of the classical yield functions that it 

is possible to develop the data–driven yield functions just by the yield data set 

simultaneously reflecting the yielding nature of the materials. The examples also suggest 

an importance of application of constraint condition which enables the robust prediction of 

yield function even with severely dispersed data set. 

It is necessary to specifically focus on the functional expressions of the data–

driven yield function of epoxy. Considering the mined yield functions in Table 6.2, all of 

functions consist of linear combination between terms for 2J  and 1I  denoting 

conically–shaped surface. The derivation of stress invariant set consisting of 2J  and 

1I  instead of 2J  and 1I  suggests that the considered MD data set is better described by 

the conically–shaped yield function than paraboloidally–shaped yield function. It can be 

inferred that the paraboloidally–shaped candidate functions might have difficulty in 

describing the bi–compressive hardening behavior of epoxy, being eliminated during the 

symbolic data mining. 

When focusing on the present data–driven model (model 1 in Table 6.2), it can be 

found out that the functional structure of the mined yield function is quite similar to the 

classical functions. The terms consisting of the stress invariants 

2 (1.855 1.732 )c tJ    and 
1( )c tI   are similar to the Drucker–Prager and 

paraboloidal functions (see Eqs. (1.3) and (1.5)). The term to define an elastic deformation 
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range 2.087 c t   also denotes identical functional structure with the Drucker–Prager 

and paraboloidal functions. There is also close correlation for the determined coefficients 

with the classical functions; the coefficients for 2 cJ   and 2 tJ   are 1.855 and 

1.732 respectively being close to the coefficient of the Drucker–Prager yield function, 

3 , while the coefficient of 
1( )c tI   is unity. The determination of the coefficients of 

2J  and 
1I  is of primary importance since the ratio between them represents the pressure 

sensitivity of the yielding of materials. When considering Haigh–Westergaard stress space, 

the magnitude of hydrostatic stress and deviatoric stress vectors is described by: 

1| | 3 / 3 ,m I   ρ   2| | 2 .S J S       (6.21) 

Then, the ratio between S  and  denotes how much the deviatoric stress varies with a 

change of hydrostatic pressure. The ratio of both functions is represented respectively by: 

6( )
,

(1.855 1.732 30.4)

c t

c t

d

dS

 

 

  
    mined

         (6.22) 

6( )
.

3( )

c t

c t

d

dS

 

 

  
 

 Drucker-Prager

        (6.23) 

Although additional terms in the denominator of the mined model are involved, the term 

1.855 1.732c t  , which closely correlated to the 3 , mainly contribute to a pressure–

sensitivity of epoxy as in the case of the Drucker–Prager function. Furthermore, the 

coefficients for the term, 2.087 c t   representing the contribution of 1–dimensional 

yield stresses on the finite elastic range is also optimized similarly to the Drucker–Prager 

yield function. These similar functional forms and coefficients imply that the symbolic 

regression formulated the yield function closely following the feature of the classical yield 
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function despite of absence of preliminary knowledge on the classical function.  

On the basis of these similarities, the modifications were performed to optimize 

the data–driven function corresponding to the yielding nature of the considered epoxy by 

the terms such as 230.4 J , 20.0149 t , 1.998 15.9c t  , and 1.998 15.9c t  . 

These terms might contribute to the proper description of distinctive multi–axial hardening 

behavior of considered epoxy especially for the bi–compression loading.  

When it comes to the new formulation of yield function, it is necessary to evaluate 

the candidate function based on the desirable features of the yield function53,. Especially 

for amorphous polymers, these are: 

1. Description of finite extent of elastic range; 

2. Pressure–dependency; 

3. Deviation between compressive and tensile yield stresses; 

4. Smoothness of the yield surface; 

5. Convexity; 

6. Simple expression.   

The present data–driven yield function can be evaluated by above features; (1) the model 

can represent the finite extent of elastic range by the terms  2.087 c t  , 20.0149 t , 

and 1.998 15.9c t  ; (2) the pressure–dependency is described by the first stress 

invariant with a sensitivity of Eq. (6.22); (3) the mined yield function consists of both 

compressive and tensile yield stresses to describe the uniaxial yielding separately in stress 

space; (4) since the model is conically–shaped surface the smoothness is guaranteed except 



 

 178 

the apex; (5) convexity is guaranteed on the conically–shaped surface; (6) expressional 

complexity is considered during the symbolic data mining. 

The present data–driven yield function that properly denotes the yield behavior of 

the considered epoxy has been successfully implemented in the constitutive model. The 

two questions in the introduction are successfully answered by the symbolic mining for 

classical yield functions and the development of the constitutive model by the data–driven 

yield function. Accordingly, it was confirmed that the failure behaviors of the materials can 

be simulated by concentrating on their own nature of plasticity using the data–driven yield 

function overcoming a disagreement with the existing yield functions.  
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6.6. Summary 

 

The main contribution of this chapter is to propose data–driven multiscale 

framework for the elasto–plastic constitutive modeling that can reflect the unique 

multiaxial yielding and post–yielding behaviors of various materials even for unknown 

plastic deformation characteristics. The constitutive model is developed based on the data–

driven yield function of the target material instead of classical yield function which is 

naturally formulated from the yield data set by constrained symbolic regression, one of the 

machine learning technique. In this procedure, the application of the constraint equation 

can play an important role in the reliable prediction of mathematical expression of the 

mined model. In particular, the data–driven yield function developed by the present 

approach can adequately consider the intrinsic multi–axial hardening of yield surface, 

which is probably impossible with the classical yield functions. The developed yield 

function properly predict the bi–compressive yielding behaviors which exhibit much larger 

envelope compared to the classical yield functions. The present framework can be extended 

to various future works by applying to various materials for the accumulation of database, 

validation of the existing yield functions, or characterizing unrevealed nature of plasticity. 
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Fig. 6.1. Reproduced classical yield functions by symbolic data mining under various 

artificial errors: (a) 0% arbitrary dispersion, von–Mises function, (b) 10% arbitrary 

dispersion, von–Mises function, (c) 0% arbitrary dispersion, Drucker–Prager function, (d) 

20% arbitrary dispersion, Drucker–Prager function, (e) 0% arbitrary dispersion, Tresca 

function, (f) 3% arbitrary dispersion, Tresca function, (g) 0% arbitrary dispersion, Mohr–

Coulomb function, (h) 3% arbitrary dispersion, Mohr–Coulomb function, (i) 0% arbitrary 

dispersion, paraboloidal function, and (j) 30% arbitrary dispersion, paraboloidal function. 

The hollow data points in each figure denote the subject training data set and the black dots 

denote the response of the exact yield functions. The red solid line exhibits the responses 

of the mined models. 
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Fig. 6.2. Mined yield surfaces under severe error: (a) Drucker–Prager, 30% arbitrary 

dispersion, (b) Mohr–Coulomb, 20% arbitrary dispersion, and (c) paraboloidal, 40% 

arbitrary dispersion. 
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Fig. 6.3. Illustration for the construction of quasi-static yield surface from the MD yield 

surface: (a) yield surface evolution with increment of equivalent plastic strain under MD 

strain rate condition (108.5/s); (b) proposed scheme to construct a quasi-static yield surface 

from MD simulations; (c) normalized yield surfaces’ evolution with different equivalent 

plastic strains; and (d) constructed quasi-static yield surfaces with increasing equivalent 
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plastic strains. Note that the quasi-static stress–strain profiles of a previous study (Park et 

al.104) were used to reconstruct the surfaces. Comparison of (e) the yield surfaces under 

different strain rates (109.5/s and 108.5/s), and (f) quasi-static yield surfaces obtained by 

proposed mapping method. 

 

 

 

Fig. 6.4. Resulting candidate functions from symbolic regression. Each candidate yield 

function is shown in the complexity-fitness profile: (a) total and (b) filtered populations. 

For symbolic data mining, a total of 12,000 populations were randomly produced with 

multiple runs for model diversity. The mathematical nodes considered in the present study 

are basic arithmetic symbols, including power.  
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Fig. 6.5. Comparison of the data-driven yield function with the classical yield functions 

(Drucker–Prager and paraboloidal yield functions) and experimental result. The evaluated 

equivalent plastic strains are (a) 0, (b) 0.005, (c) 0.01, (d) 0.015, and (e) 0.03. The data-

driven, Drucker–Prager, and paraboloidal yield functions are represented by solid, dotted, 

and dashed lines, respectively (a–g). Validation of the data-driven yield surface with 

experimental result of Haba et al.100 with correlated equivalent plastic strain condition: (f) 

0, (g) 0.01.  
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Fig. 6.6. Results of one-element deformation tests under various loading paths: (a) 

compression, tension, and shear, and (b) bi-compression. The one-dimensional 

hardening profiles extracted by Park et al.104 were used for inputs including all other 

physical properties. The studied Young’s modulus, Poisson’s ratio, and plastic 

Poisson’s ratio were 2930 MPa, 0.35, and 0.35, respectively.  

 

 

 

 

 

 

 

 

 

 



 

 187 

Table 6.1.  

Details of the symbolic data mining for the classical yield functions and the data-driven 

yield function. 

Mined 

functions 
Input nodes 

Fixed 

node 

Mathematical 

nodes 

Population 

(number of 

runs) 

von-Mises 
1 2 3 2 3{ , , , , }I I I J J  { }y  2{ , , , /, ,( ) }    3,000 (10) 

Drucker-Prager 

(conical) 1 2 3 3{ , , , , , }c tI I I J    
2{ }J  { , , , /}    3,000 (10) 

Tresca 
1 2 3 2 3{ , , , , ,

cos ,sin }

I I I J J

 
 { }y  { , , , /, }    30,000 (100) 

Mohr-Coulomb 
2{ ,cos ,sin , , }c tJ      

1{ }I  { , , , /}    
200,000 

(100) 

Paraboloidal 
1{ , , }c tI    

2{ }J  { , , , /, }    3,000 (10) 

Data-driven 
2{ , , }c tJ    

1{ }I  { , , , /, }    12,000 (5) 
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Table 6.2 

Mined models for von–Mises, Drucker–Prager, Tresca, Mohr–Coulomb, and paraboloidal 

yield functions by the symbolic regressions. 

Yield 

function 
Dispersion Model Mined models 

von–Mises 

0% 

a1 
12

21.732 5.46e yJ    

a2 20.02 33 yJ    

a3 
5 2 4

2 20.07 1.2 1.0 yJ e J e      

10% 

b1 21.684 2.29 yJ    

b2 
1/4

222 67 yJ    

b3 

1/4 3/4

2 2 2

2

812.7 45.76 812.70 26522
3929

1
y

J J J

J


  
 


 

Drucker–

Prager 

0% 

c1 

16 11

2 1 1( ) 0.5774 ( ) 1.155 ( )( 1.62 3.64 )

0

c t c t c t c tJ I e I e                



 

c2 
16 11

2 1 1( ) 0.5774 ( ) 1.155 ( )( 8.3 4.8 )

0

c t c t c t c tJ I e I e                



 

c3 
13 9

2 1 1( ) 0.5774 ( ) 1.155 ( )( 6.7 4.8 )

0

c t c t c t c tJ I e I e                



 

20% 

d1 

7

2 1 3 1

2

( ) 0.5774 ( ) 1.155 ( )( 5.13 ( )

3.09 ) 0

c t c t c t c t cJ I e I I

e

        



       

 
 

d2 

9

2 1 2 1 3 1

2

( ) 0.5774 ( ) 1.155 ( )(1.7 ( )

1.9 ) 0

c t c t c t c t cJ I e I I I I

e

        



       

 

 

d3 

4

2 1 2

6 8

3 1 2 1 3 1

( ) 0.5774 ( ) 1.155 ( )( 1.1

2.0e ( ) 2.6e ( )) 0

c t c t c t c t

c c

J I e I

I I I I I I

       

 



 

       

    
 

30% d4 

41 1
1

2

0.5 0.077 ( ) ( ) 0.3007 ( ) 2.3e (( )(I

2 )) 2.9 0

t
t t c c t c t c

c c c

t c

I I

J


       

  

 

 
        

 

    

 

Tresca 
0% e1 2 (1.732cos sin ) yJ      

3% e2 2 (1.732cos 0.993sin ) 0.203 sin 0.012 yJ         

Mohr–

Coulomb 

0% f1 
10

2 2 1

3
3 sin( ) 1.732 cos( ) 4.6 0

3 3

c t c t

c t c t

J J I e
    

 
   


      

 
 

3% f2 
2 2 1

2

2.927
2.935 sin( ) 1.619 cos( ) 0.28

3 3

0.00168( ) / (( )sin( )) 0
3

c t c t

c t c t

c t c t

J J I
    

 
   


    


     

 

    
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20% f3 
2 1

3

0.1 0.03sin( ) 0.048( ) 0.577( )cos( )
3 3

0.25( ) / sin( ) 0.0619( )cos( ) / sin ( ) 0.1 0
3 3 3

c t c t

c t c t

J I
 

     

  
      

       

        

 

Paraboloidal 

0% g1 1 1 20.333 0.333 0.333 0t c c tI I J        

30% g2 
7

1 1 20.333 0.333 0.333 4.021 0t c c tI I e J          

40% g3 
2

1 1 1 20.301 0.301 0.301 0.033 1.3 0t c c tI I I J          

 

 

 

 

Table 6.3 

Mined yield functions for the subject epoxy polymer and the classical yield functions. 

Model 1 was finally selected as the data-driven yield function.  

Model Symbolic regression model R2 

1 

(Best) 

2

2

1

(1.855 1.732 30.4) 0.0149 2.087 1.998

15.9 ( ) 0

c t t c t c

t c t

J

I

     

  

     

  
 0.8354 

2 

(2nd best) 
2

1

(2.002 1.418 60.3 60.3) ( )(0.096

0.018 ) 1.975 21.58( ) ( ) 0

c t t c c t c

t c t c t c t

J

I

      

      

    

      
 0.8333 

3 

(Min. 

complexity) 

2

1

(1.728 1.674 213.2 ) 1.963 1.339( )

( ) 0

c t c c t c t

c t

J

I

      

 

     

 
 0.8302 

4 

(Conical) 2 13 ( ) ( ) 2 0c t c t c tJ I           0.8167 

5 

(Paraboloidal) 2 16 2( ) 2 0c t c tJ I        0.5969 
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Table 6.4.  

Algorithm for the implementation of the constitutive model with the data–driven yield 

function. 

(i) Trial stress. Based on the strain increment at nt : 

1 : ,tr e

n n  σ = σ D ε   
1

,
tr

n n

p p

eq eq 


    

1 1 1 1
( ) ( ), ( ) ( ).

tr tr

n n n n n n n n

p p p p

c eq c eq t eq t eq       
   
       

(ii) Check if the stress state is beyond the yield criterion: 

 

1 1 1 1

2

2

1

1 1

1.855 1.732 30.4 0.0149 2.087

1.998 15.9 ( ) 0

, , .
n n n n

tr

c t t c t

tr

c t c t

tr tr tr

n n c c t t

IF J

I

THEN

ELSE IF

    

   

     
    

    

   

  

retrun mapping algorithm

 

- Initial guess for the plastic multiplier,  . 

 
1

2
22

12 2 2

181 4
( ) ,

1 2 27n

tr
p tr

eq

p s p

J
I

v


 

 
   


   

1 1 1 1
( ), ( ),

n n n n

p p

c c eq t t eq     
   
      

 
1 1 1 1 1 1

1 1 1

22

2

1

1.855 1.732 30.4 0.0149 2.087 1.998

15.9 ( ).

n n n n n n

n n n

tr

c t t c t c

s

tr

t c t

p

J

I

     


  


     

  

       

 

 

- For Newton–Raphson iteration scheme, 
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 ,

p p

eq eqc c
cp

eq

H
  

   

  
 

   
  ,

p p

eq eqt t
tp

eq

H
  

   

  
 

   
 

 

2

2 1

2 3 3

216 161
,

1 2 272

p tr tr
eq

p s p

GJ KI
A

A

 

   

   
    

      

 

 where A is defined by: 

 

2
22

12 2

18 4
( ) .

27

tr
tr

s p

J
A I



 
     

2 1

2 2

6 2
(1.855 1.732 30.4) ( )

.

tr tr

c t c t

s p

p

eq

p

eq

G J K I
   

  



 


     





 

  

where 
p

eq




 can be written as:  

 2

1

1.855 1.732 0.03 2.087( )

1.998 15.9 ( ).

tr

c t t t c t c tp

eq s

tr

c t c t

p

J
H H H H H

I
H H H H

  
 




    



   

 

Thus, the plastic multiplier that satisfies 0   is derived iteratively by: 

. 




   




  

(iii) Update stress tensor and plastic strain tensor with characterized plastic 

multiplier: 

1 1
1 ,

1 6 1 2

tr tr

n n
n

p

G K  
 

  
   

S
σ  

1

2
3 .

9

p  
 

   
 

S I  

(iv) Go to next iteration. 
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7. Conclusion and Recommendation 

   

  In this dissertation, a multiscale framework was developed to investigate plastic 

behaviors of amorphous polymers without experimental support, which can reveal the 

microscopic deformation properties of the material. The timescale limitation of classical 

MD simulations, which has been considered an obstacle for the characterizations of 

constitutive equations by MD simulations, was overcome based on the relaxation nature of 

polymers. The obtained constitutive responses were used for achieving further predictions 

of macroscopic plastic behaviors as compared to the classical methodologies, which only 

utilize the classical yield criteria for multi-axial deformation behaviors of polymers. To 

establish 3-dimensional FE models by the derived data set, machine learning was used for 

the mathematical prediction of yield functions. 

  The microscopic mechanisms of the plastic deformations were investigated 

focusing on the energy, stress, and chain conformations during the deformations. In 

particular, the influence of structural differences that arise from different curing agents was 

estimated from the perspective of plastic deformations. The results revealed that 

irreversible folding of the dihedral angle was mainly observed at the benzene rings in the 

epoxy network, as the plastic deformations were initiated. The folding behaviors led to a 

different trend in plastic strain accumulations, when the cyclic loadings were applied. The 

plastic strain of epoxy cured by an aromatic curing agent was accumulated rapidly as 

compared to that of the epoxy cured by an aliphatic curing agent. 
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  The methods to predict quasi-static constitutive laws were developed using 

classical yielding theories and polymer kinetics. To predict the scaled constitutive laws at 

a quasi-static level, the master profiles of yield stress were predicted by two approaches. 

The first method employs the time and temperature equivalence and sequentially construct 

the master profile by utilizing the yield slope of the higher temperatures. The second 

method is to use the 0 K solution of Argon theory and a cooperative model for a proper 

description of the nonlinear nature of polymer, which yields the corresponding rate and 

temperature. 

 The FE model for the plastic deformation behaviors of epoxy polymers was 

constructed by data-driven constitutive modeling. The data-driven constitutive model was 

established by generating data-driven yield function, which was predicted from machine 

learning with the MD data set. The MD data set displays its own envelope at 
3 0   plane, 

which is featured by a significantly larger boundary in bi–compressive loading. The 

subsequent yield surfaces as well as the initial surface were considered in the prediction 

procedure; this has been not taken into account by previous constitutive modeling 

techniques. The predicted data-driven yield function thoroughly describes the evolution of 

the yield surface that is featured by a raw data set, as compared to the existing yield 

functions (Drucker-Prager and paraboloidal yield functions). 

 We expect that the machine learning based multiscale framework will be broadly 

used for the predictions of macroscopic plastic deformations of various polymers by 

revealing their deformation characteristics more effectively and efficiently than that 
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obtained with classical FE analysis; this can eventually lead to the formation of a library of 

amorphous polymer materials. Further, this framework can be extended to other classes of 

materials such as crystalline polymers, metals, and biomaterials with well–defined methods 

to identify constitutive responses of those materials. 
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국문 요약 

 

본 논문에서는 고분자 기반 소재의 탄성 및 소성 변형에 대한 미시적 

변형 메커니즘의 정성적 규명과, 정량적 모사를 위한 머신 러닝 기반의 멀티

스케일 해석 방법론을 제시한다. 제안된 해석 방법론은 미시적 소성 변형 거

동에 대한 분자 수준에서의 일반적인 메커니즘 규명과, 고분자 소재의 비선형 

기계적 거동에 대해 실험의 도움 없이 정량적 예측을 가능케 하며, 도출된 다

수의 데이터를 기반으로 학습된 구성 방정식 모델링을 통해 거시적 구조물의 

비선형 거동을 예측한다. 특히, 제안된 멀티스케일 해석 방법론은 다양한 고분

자 소재 자체의 고유한 구조–물성간의 관계를 고려한 구성방정식의 모델링을 

가능케 하며, 이는 기존의 범용적 소성 거동에 대한 모델링에서 소재의 변형 

특성에 일대일 맞춤화된 해석 모델로의 확장이라는 점에 그 의의가 있다.  

 

원자 및 분자 스케일에서의 미시 구조의 동적 모사가 가능한 분자동

역학 전산해석을 활용하여, 열경화성 소재의 한 종류인 에폭시 소재의 미시적 

변형 메커니즘을 규명하였다. 특히, 가교제의 분자 구조 특성이 경화된 에폭시 

소재의 거시적 소성 변형에 미치는 영향을 이해하기 위하여, 분자동역학 모델

에 압축 변형을 가한 후 하중을 제거하는 동안 에너지, 응력, 구조적 변화를 

관찰하였으며, 그 결과, 소성 변형 영역에서 방향족 가교제의 벤젠 고리 주변

의 비가역적 접힘 현상의 거시적 소성 변형률에 대한 기여를 규명하였다. 이

러한 벤젠고리 근처 비가역적 접힘 거동은 반복 하중 하에서 점진적으로 축적
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되며, 지방족 가교제 기반 에폭시 소재의 거시적 스케일에서의 소성 변형률 

진전보다 더욱 빠른 진전을 야기함을 밝혀내었다. 

 

분자동역학 전산해석은 원자의 거동을 모사하기 위하여 매우 짧은 펨

토 초 (fs) 단위의 타임 스텝을 사용하기 때문에, 실험적 시간 스케일의 분자 

거동을 모사하는데 제한이 있다. 이로 인하여, 분자동역학 전산해석과 실험간

의 기계적 거동 예측 측면에서 정량적 괴리가 발생하게 되는데, 이를 고려하

기 위하여 본 연구에서는 분자 동역학 전산해석을 이용하여 준정적 상태의 응

력–변형률 선도를 예측하는 두가지 방법론을 제시하였다. 첫번째 방법론은 고

분자 소재의 항복 응력의 평가에 대한 시간과 온도의 동일성을 이용하여 항복 

응력에 대한 마스터 선도를 순차적으로 구축하여 준정적 상태에서의 항복 응

력을 예측한다. 두번째 방법론은 고분자 소재의 고전적 항복 이론을 이용하여 

기계적 물성을 통해 준정적 상태에서의 항복 응력을 예측한다. 변형 속도와 

온도에 대한 항복 응력의 비선형 특성을 반영하기 위하여 첫번째 방법론에서

는 기준 온도 보다 높은 온도 하에서의 고분자 사슬의 운동 특성을 준정적 상

태의 항복 거동 예측에 이용하였으며, 두번째 방법론에서는 Cooperative 모델

과 내부 응력을 도입하여 준정적 항복 응력을 예측하는 마스터 선도를 구축하

였다. 이후 완성된 방법론을 통하여 다양한 온도, 압력 및 재료의 미시 구조 

특성을 반영하여 준정적 상태의 응력–변형률 선도를 도출하였다.  

 

본 연구에서는 분자동역학 전산해석을 통해 예측된 준정적 상태의 기
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계적 물성 및 응력–변형률 선도를 토대로, 다양한 온도, 압력 등 물리적 상황

과 고분자 소재의 미시구조 특성을 반영하여 다양한 조합 하중 하의 거시적 

구조물의 소성 변형을 모사하기 위한 구성방정식을 모델링을 하였다. 에폭시

의 구조 특성을 반영하기 위해 다양한 가교율 하에서 도출된 준정적 상태의 

물성 및 응력–변형률 선도를 도출하였고, 3차원 홀 구조물의 소성 변형을 모사

하기 위한 유한요소해석을 수행하였다. 그 결과, 가교율에 따라 홀 주변부의 

소성 변형률의 진전 속도가 상이함을 확인하였다.  

 

특히, 본 연구에서는 조합 하중에 따른 거시적 소성 변형을 모사하기 

위해 기존의 고전적 항복 함수의 도입 대신, 3차원 응력 공간에서의 고려된 고

분자 소재의 항복 표면의 최초 형상 및 변형이 진행됨에 따라 나타나는 항복 

표면의 진전을 정밀하게 모사하기 위한 항복 함수를 머신 러닝 학습을 통하여 

도출하는 방법론을 개발하였다. 이를 위해, 다양한 하중 방향에서의 에폭시 소

재의 항복 데이터를 분자동역학 해석을 통해 도출하였으며, 변형 속도의 영향

을 고려하기 위해 준정적 상태의 항복 표면을 예측하기 위한 방법론을 개발하

였다. 도출된 항복 데이터를 기반으로 항복 함수의 수학적 표현을 도출하기 

위하여 머신 러닝 학습 방법의 일종인 유전 알고리즘 (Genetic algorithm) 을 도

입하였으며, 항복 함수의 필수적 특성을 학습에 반영시키기 위한 제한 조건을 

부과하였다. 학습을 통해 도출된 데이터 기반 항복 함수를 통해 소성 변형 모

사를 위한 구성방정식을 정식화 하였으며, 이의 성능을 유한요소해석을 통해 

기존의 고전적 항복 함수와 비교 검증하였다.      
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 본 연구에서 제시된 고분자 소재의 소성 변형 전산 해석을 위한 머신 

러닝 기반 멀티스케일 해석 방법론은 분자 스케일 수준의 소성 변형 메커니즘

의 규명과 더불어, 소재 고유의 다축 변형 항복 특성에 기인한 구성방정식의 

모델링을 통해 거시적 기계 거동을 실험 없이 정밀하게 예측할 수 있다. 이는 

기존의 물리적, 수학적 고찰을 통해 고안될 수 밖에 없던 소성 모델링을 재료 

자체의 고유한 변형 특성에 초점을 맞춘 모델링으로의 확장이 가능함을 의미

하며, 제안된 방법론의 다양한 소재에 대한 적용을 통해 라이브러리화 할 수 

있음을 의미한다. 따라서 제안된 해석 방법론은 단일 고분자 소재뿐만 아니라 

고분자 소재 기반 다양한 복합재의 기계적 거동에 대한 예측 요구되는 모든 

산업에서 전방위적으로 사용될 것으로 기대된다.  

      

주요어: 데이터 기반 역학, 머신 러닝, 소성 변형, 멀티스케일 해석, 비선형 

유한요소해석, 고분자 소재 
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