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Abstract

In this dissertation, a data-driven multiscale framework has been established
based on molecular dynamics (MD) simulations, finite element (FE) analysis, and a
machine learning (ML) technique; this framework was aimed at elucidating the multi-axial
elasto-plastic deformations of polymer materials. The proposed data-driven multiscale
approach enables the construction of a macroscopic continuum model that has been
customized for achieving unique deformation characteristics of the considered material,
which are attributed to distinct microscopic structural features. In particular, the
macroscopic continuum model is established based on the data-driven yield function,
which is formulated by numerous multi-axial stress-strain behaviors that are systematically
derived from MD simulations. Furthermore, to conduct multiscale analysis without any
experimental support, certain methods have been developed to derive quasi-static stress-
strains that overcome the timescale limitations of classical MD simulations. The main focus
of this thesis is divided into three parts: qualitative analysis of microscopic deformation
mechanisms of polymer materials, development of methods to overcome timescale
limitations of MD simulations, and ML-based constitutive modeling through symbolic data
mining.

With regard to the characterizations of microscopic deformation mechanisms, the
nature of the inelastic-deformation characteristics of highly crosslinked epoxy polymers is
examined at the microscopic level with respect to the differences in the structural network
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topologies. It is examined by microscopic deformation simulations that the structural
differences that arise from different types of curing agents (aliphatic and aromatic) cause
the different irreversible folding behaviors of a local epoxy network.

Following the qualitative analysis on the deformation mechanisms, a calibration
of the timescale difference between MD simulations and experiments is necessitated for
achieving the quantitative analysis on plastic deformations; this is because the stress
evaluated by MD simulations is not comparable to that of the experiments due to its
extremely high strain rate. Two kinds of methods are developed to derive the quasi-static
stress-strain profiles. The first approach is to use a 0 K solution of Argon theory to estimate
internal stress and adopt the cooperative model to represent the nonlinear nature of yield
stress on strain rate and temperature. The second approach is to predict the quasi-static
yields by temperature accelerations by using time and temperature equivalence. A method
to derive a hardening law under different strain rates is also established and demonstrated
based on the yield stress-strain rate relation.

Based on deformation mechanisms and strain rate calibration methods, a
multiscale framework is completed by developing a 3—dimensional constitutive model of
the epoxy polymer from the data-driven yield function, which is formulated by a number
of multi-axial yield data adopting a machine learning technique. The primary focus here is
to confirm that the customized yield functions of various materials can be derived only
from the yield data set without any prior knowledge on the primary stress invariants and
functional structures; herein, the yield data set represents the unique multi-axial hardening
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behavior. To validate the proposed method for yield function mining, the development
history of the classical yield functions, such as von-Mises, Drucker-Prager, Tresca, Mohr-
Coulomb, and paraboloidal yield functions are reproduced from the proposed approach
simultaneously; this successfully characterizes the influence of the dispersion of the yield
data set.

The proposed framework facilitates the understanding of intrinsic deformation
features of polymer materials; further, it enables the construction of the data-driven
plasticity model that is distinct from the conventional yield models. The proposed
methodologies can be extended to a broad class of polymer materials by considering a
variety of factors associated with nanoscale physics; in particular, the methods can address

the problems that cannot be solved with the existing models or governing equations.

Keywords: Data—driven mechanics, Machine learning, Plastic deformations, Multiscale

simulations, Nonlinear finite element analysis, Amorphous polymers.
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1. Introduction

1.1.  Necessity of a data—driven multiscale framework for the

plasticity of polymers

For a thorough description of plastic behaviors of polymer-based materials, an
understanding of the microscopic mechanisms involved in elasto-plastic deformation
regimes is of primary importance. This is because various nanophenomena and
microscopic conditions, which determine the deformation characteristics of a material,
significantly influence those mechanisms. In particular, post-yielding behaviors such as
strain softening and hardening within the constitutive responses of the polymers need to be
understood, with the consideration of chain dynamics that are associated with the topology
of the microstructure.

In this context, MD simulations play a critical role in evaluating the effects of such
diverse microscopic conditions and physical environments with direct observations of the
molecular deformation behaviors. However, derivations of the plastic responses by full—
atomic MD simulations are exceptionally challenging, which are quantitatively matched to
an experimental scale. This is because the timescale discrepancy between the full-atomic
MD simulations and experiments is enormous, which inevitably leads to a considerable
stress gap between the stress-strain profiles of MD and experiments; this hinders the direct
transfer of the constitutive equations of a material to macroscopic continuum models.
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Accordingly, a reliable methodology to evaluate the quasi-static constitutive equations is a
key issue in the multiscale modeling for the polymer plasticity, which can simultaneously
overcome the timescale limitations of MD simulations. Further, the methodology aimed at
calibrating the influence of the timescale limitations of MD enables the generation of a
sufficient data set for multi-axial plastic deformations by characterizing the evolution of
the yield surface in a 3-dimensional stress space. This implies a possibility for the
development of the plasticity model using a machine learning (ML) technique.

From the perspective of mechanics, the development of a data-driven constitutive
model is paramount; this can be achieved using the yield data derived from the discussed
timescale calibration method. However, it cannot be guaranteed that a few classical yield
functions perfectly describe the actual multi-axial yield behavior of the considered
materials; these functions are based on one-dimensional yield stress functions derived by
uniaxial deformation tests. Multi-axial yield behaviors are inevitably influenced by
complicated circumstances such as types of materials, the deformation-testing
environments, and microstructures determined by preprocesses.

Furthermore, additional estimations of the subsequent yield surfaces are also
critical for the exact characterization of the yield surface evolution; this is because it is not
guaranteed that the classical yield function in consideration will adequately describe the
entire post-yielding behavior, even if the initial yield surface is matched well. Accordingly,
the general yield functions could be inappropriate for the subject materials; this depends on
their unique hardening behaviors or physical conditions, even if the yield function has
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already been verified under other conditions within the same class of materials. Therefore,
the ideal method of constitutive modeling constitutes two functions, namely: 1) to examine
the overall evolution of multi-axial stress states of the subject material under the given
physical conditions, and 2) to formulate a customized yield function from the derived data
set by the one-to-one correlation between the yield function and the deformation properties
of the material.

Accordingly, in this dissertation, the focus is placed on three subjects, namely: the
characterization of the microscopic deformation mechanisms of epoxy, the development of
a timescale calibration method, and data—driven constitutive modeling through data
learning by symbolic regressions. This multiscale framework aims to encompass the
qualitative characterizations of microscopic mechanisms and quantitative estimations of
multi-axial plastic deformations of polymers through timescale calibration and an ML
technique, without the need of any experimental characterizations of the deformation

properties.

1.2. Microscopic deformation mechanisms of amorphous

polymers

Amorphous polymer materials have been widely used for engineering purposes

owing to their excellent multifunctional properties. Physical properties of amorphous



polymers are mainly determined by the types of constituents and their microstructure,
which can be artificially controlled depending on the purpose. Generally, the critical factors
of polymer architecture that primarily govern the physical properties are the monomer
arrangement, chain length, and the corresponding morphology of polymer chains.
Accordingly, numerous efforts to understand the structure-property relationship have been
conducted by identifying the characteristics of the microscopic chain structure and

evaluating the corresponding performances®*2,

In particular, epoxy polymers, a class of thermoset polymers, have been used in
various industrial fields such as aerospace, aircraft, automotive, energy, and electronics
owing to their excellent thermomechanical properties and tunability of performance. Their
excellent physical properties are attributed to the three-dimensional (3D) crosslinked
internal networks that are constructed by the chemical reactions between the epoxy resin
and the curing agent. The highly-crosslinked epoxy polymers exhibit more rigid molecular
responses compared with the thermoplastic polymers, as the crosslinked sites in the epoxy
polymers hinder any slippage occurrences between the internal polymer chains'. This
inherent stiffness of the internal networks contributes to the high thermomechanical
properties of epoxy polymers. The performances of epoxy polymers can be tailored using
several degrees of freedom that influence the network morphology, such as the chemical
compositions of the epoxy resin and the curing agent, the curing kinetics, and the branching.

Understanding on the elasto—plastic behaviors of the amorphous polymer materials

demands thorough characterization on the structure—property relationships under various



physical circumstances featured by temperature, strain rate, and hydrostatic pressure. The
influence of these physical variables on the constitutive responses of polymers has been an
important issues in the experiments!*-1° and simulations?®%, since the yield and post-yield
stresses are nonlinearly changed in general due to the relaxation nature of the polymer
segments. It means that the dissipation of the applied stress during the deformation is
determined by the intrinsic chain relaxations which are largely dependent on the time,
temperature, and pressure. Focusing on the relaxation nature of the glassy polymers, the
quantification of the structure—property relations ranging from the elastic to plastic regime
has been conducted considering the influence of crosslinking ratio?®, molecular structure
of the resins and curing agents*?, molecular weight?, extent of chain interactions?’, and
reinforcements!?28.2°,

Recently, systematic estimations of the yielding have been conducted by directly
observing the atomic behaviors during the deformation with the aid of the atomistic
simulations®2.23, The direct observations of the polymer molecules also help better
understanding on the deformation mechanisms especially for characterizing the origins of
plastic deformations. Generally, the atomistic studies on the deformation mechanisms of
amorphous polymer reveal that the interchain non-bonded interaction mainly
accommodates the applied deformation by occupying the most of the deformation
energy?+2%27 |eading to vigorous local molecular movements as the plastic deformation
proceeds. As far as thermoplastic polymers are concerned, the deformations in elastic
regime are accommodated by the non—bonded interactions are dominant increasing the
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portion of free volume. Afterward, the torsional angle transitions are dominant factor for
plastic deformations; the transition population of the dihedral angle from trans to gauche
state is maximized in the vicinity of the yield point based on the increased space between
the polymer segments®2’. Concerning thermosetting polymers, the MD simulations
regarding the epoxy polymers?* reproduced the molecular kinks under compression,
characterizing the correlation between the sharp stress drop and irreversible folding of the
epoxy network.

Although the nature of the plasticity of amorphous glassy polymers has been
identified, a detailed understanding of thermoset systems and the contributions of their
specific structures is limited. Therefore, one of the objective of this thesis is the attainment
of a qualitative understanding of the elastoplastic-deformation mechanisms of thermoset
epoxy polymers in consideration of the effects of different curing agents (aliphatic and
aromatic) and with the aid of MD simulations. In particular, the irreversible deformation
behaviors that are attributed to the different chemical structures of curing agents are
thoroughly investigated, and the variations in the energy, stress, and geometric

characteristics are provided.

1.3. Full-atomic molecular dynamics (MD) and timescale

limitations

It is generally agreed that it is difficult to investigate the effects of individual design



variables related to nanoscale physics and the segmental motion of thermosetting polymers
solely by using experiments that demand a tremendous amount of trials and errors.
Moreover, limitations in the precise control of the conversion ratio, visualization of the
network structure, measurement of free volume related to the aging and degradation, and
inevitable measurement noise make it difficult to fully understand the designed epoxy.
Therefore, computer simulation techniques have also aimed at designing high-performance
epoxies. In particular, MD simulations are considered to be the most effective and efficient
way of probing the internal molecular structure and predicting the physical properties of
thermoset polymers. Several groups have proposed specific modeling procedures to
describe the real structural characteristics of bulk thermosetting polymers and have
estimated their thermo-mechanical properties®%3931, For instance, Kim et al. observed the
effect of the crosslink density on thermo-mechanical properties such as the density, elastic
modulus, and coefficient of thermal expansion with respect to different crosslinking
methods from the point of view of modeling®. Li et al. observed the evolution of the
molecular structures of two thermosetting epoxy systems with different degrees of cure;
they then derived various thermo-mechanical properties, including the yield and glass
transition temperature®.. Moreover, MD simulation studies on epoxy have been a part of
the constitutive modeling of composites, especially for the modeling of nanocomposites,
which requires the elucidation of important nanoscale characteristics related to their
interface or interphase features!*2-%8, In this regard, various thermo-mechanical properties
of epoxy have been predicted and used to establish constitutive models that are essential in
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composite micromechanics theories.

Although MD simulations have been effectively used in establishing the
fundamental background of the elasto-plastic deformation behavior of amorphous polymer
materials, the temporal scale problem arising from extremely short time step, which stems
from the computational limitations in the time integration of the equations of motions to
obtain quasi-static mechanical response of polymers, remains a challenging issue. It has
been generally agreed that in both experimental*3-1517-1939 and simulation studies?!224041,
the yielding of an amorphous polymer is a rate-dependent phenomenon because of its
viscoelastic nature; thus yield stress increases with the increasing strain rate. Therefore,
owing to the huge time scale gap between the experimental and computational contexts, it
is inevitable that notable differences will be observed in the evolution of deformation,
which results in quantitative discrepancies of the stress-strain response.

In an efforts to overcome this timescale limitations, there is previous research to
derive the quasi-static yield stress of the amorphous polymers using the atomistic
simulations. The approach is to use the 0 K solution of the Argon theory considering that
the Argon’s solution is composed of the elastic properties of the materials?>?%. Although the
method has been successfully applied to the several polymer materials, it needs to be noted
that the assumptions to derive the yield solution with respect to temperature deviates from
the experimental observations. The previous studies used linear dependence to represent
the yield stress—temperature relation, which remains unchanged with considered strain rate,
while the experimental observations and classical yield models®**° reveal that the yield
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stress nonlinearly varies with a changing temperature especially under low temperature.
To overcome the timescale limitations without violating the strain rate and
temperature dependent physics of polymer vyielding, two kinds of schemes have been
developed in this thesis. The first approach is to use 0 K Argon solution as the previous
study?-% proposed considering proper nonlinear dependence of yield stress on strain rate
and temperature without any physically incorrect assumption; the second approach is
temperature—accelerated scheme that uses time and temperature equivalence in predicting
quasi-static yield stress as the experimental master curve is made. Based on the
characterized quasi-static yields, the systematic predictions of quasi-static constitutive
laws have been conducted considering strain rate dependence of hardening laws for the

development of macroscopic constitutive model.

1.4. Classical yielding theories for polymer plasticity

In order to describe the nature of the polymer plasticity, the classical theories for
the yielding of amorphous polymers have been developed with experimental validations®-
194245 - As a first attempt, Eyring H. developed theory for the yielding of the glassy
polymers by modeling an amount of energy required for the initiation of plastic flow based
on the transition state theory*2. The Eyring’s theory describes the yielding of polymer as a
single activation process, expressing linear dependence of the yield stress on the logarithm
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of the strain rate. Afterward, Robertson*® also established the correlation among the yield
stress, strain rate, and temperature by assuming cis—trans molecular conformation transition
mechanisms. Robertson’s theory describe the yield stress with the glass transition
temperature of the material by employing the Williams—Landel-Ferry (WLF) equation?®.
Another widely known model that represents the polymer plasticity is Argon’s theory,
which focuses on derivation of an activation free enthalpy of the thermally—activated
production of molecular kinks*#. The Argon’s theory postulated the irreversible
conformational change of the polymer chain with the doubly—kinked elastic cylinder by the
introduction of the wedge disclination loop, which is adopted from the plastic deformation
mechanism of the crystalline materials. The Argon theory describe the kinking activation
energy for the yielding with the mechanical properties of the materials such as elastic
modulus and Poisson’s ratio. The subsequent yielding models such as Ree—~Eyring model*’
and cooperative model**16484° for the polymer plasticity have been developed by focusing
on the accurate prediction of the yield stress under broad range of the strain rate and
temperature. These models were developed based on the Eyring’s equation assuming the
involvement of the multiple relaxations in the plastic deformation of the glassy polymers
to describe the nonlinear nature of the yielding under extremely high strain rate or low
temperature where the local molecular movement is severely frozen. The additional
activation processes contribute to the accurate estimation of the abrupt change of the yield
stress under high strain rate range in the vicinity of the strain rate of about 10%s or
temperature of about -50 ‘C1-°,
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1.5. Development of yield criterion for multi—axial deformations

Yield functions of materials have been developed usually based on the
experimental observations to represent the stress states in 3—dimensional principal stress
space at which the materials start to plastically deform. The various yield functions have
been developed to consider own complicated yielding behaviors for broad class of materials
including ductile metal, concrete, soil, ceramic, polymers, and etc®-55, The basic plasticity
theory generally assumes several aspects; only the deviatoric component of the stress is
involved in the plastic deformations of materials while the hydrostatic component of the
stress is ignored; the compressive and tensile yield stresses are considered equal each other;
the volume of the materials is preserved during the plastic deformations. The von—Mises

yield criterion that represents these aspects well was defined follows:
,/3\]2 =0, (1.2)

o : 1 : N
where o, is yield stress of material, and J, =ES :S is the second invariant of

deviatoric stress tensor, S . The plastic deformation of the material start after the distortion
strain energy reaches critical value that is described by the square root of the second
invariant of deviatoric stress tensor.

The von—Mises yield criterion fails to predict the yielding of pressure—dependent
materials and consider the discrepancy between the compressive and tensile yield stresses.

In order to consider these aspects, the pressure—modified von-Mises criterion!, which is
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also called as Drucker—Prager yield function, characterized by a conically shaped surface
was developed by introducing the first stress invariant as:

al,+4/3, k=0, (1.2)
where « is a material parameter, K is a constant related to the yield stress, and |, is
first stress invariant which is the sum of the diagonal components of the stress tensor. Eq.
(1.2) can be rewritten by the compressive and tensile yield stresses that characterized by 1
dimensional deformation tests as follows:

\/QTZ(O'C+0't)+|1(0'0—0't)—20'C0't:O, (1.3)
where o, and o, arel-dimensional compressive and tensile yield stresses of materials.
Similarly, the pressure—-modification is also carried out by introducing 1, based on the
maximum shear stress, which is called Mohr—Coulomb yield function, as follows:
|7|=Cc—0o, tan g, 4)
where C,¢ are material constants that can be expressed by the compressive and tensile
yield stresses and 7 and o, are shear and normal stresses. Another yield criterion that
can consider the pressure dependency of yielding is paraboloidal yield function developed
by Tschoegl® using the linear combination of the hydrostatic stress and square of von—
Mises stress as follows:

6J,+2(c, —0,)l,-20,.0,=0. (5)
Since the yield function is composed of the stress invariants J, and 1, the magnitude
of the deviatoric stress vector nonlinearly changes according to the variation of 1,. Thus,
the paraboloidal yield function not only represents the pressure—dependency of the yielding
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but also exhibits a smooth apex of the surface in stress space unlike to the Drucker—Prager
yield function.

Although the constitutive modeling using these classical yield functions have been
widely performed for the analysis on the macroscopic inelastic deformation of various
engineering materials®®®°, it cannot be guaranteed that the multi-axial yielding of the
considered material is perfectly described by a few yield functions that generally defined
by uniaxial deformation tests. In fact, it is difficult to make a definite judgement on the
suitability of the typical yield functions on universal use even within the identical material
class. Considering the comparison of yield surfaces previously performed by Ghorbel®, it
seems that the classical yield functions may fail or succeed to predict the initial yield
surface depending on the type of materials or considered physical conditions. It means that
the general yield functions could be inappropriate for the considered materials depending
on their unique hardening behaviors or physical conditions even if the yield function has
already been verified within the same class of materials. This fundamental problem of
distrust in the performance of the yield function could be resolved if the functional structure
of yield function could be reformed or optimized case by case under the given condition.

It is significantly difficult, however, to formulate the customized yield function
corresponding to the specific kinds of materials, which is owing to the absence of the
sufficient yield data set. The sufficient yield data set under broad range of loading paths,
hydrostatic pressure, or other physical variables is necessary for the development of
suitable yield function, but it is extremely challenging by experiments, which stems from
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the inefficient time consumptions and the failure of accurate measures of the multi—axial
stress states during the plastic deformations. Furthermore, the additional estimations on the
subsequent yield surfaces are also of primary importance for the exact characterization of
yield surface since it is not guaranteed that the considered classical yield function properly
describe the entire post-yielding behavior even if the initial yield surface is matched with
the yield function well. In this situations, the simulational approaches?0:2%2429.3361-67 can
play an important role making use of improved computing power not only for the derivation
of sufficient constitutive responses of broad class of materials but also for the accurate
characterizations of yielding features such as pressure—dependency. In particular, their
ability to generate a number of intrinsic constitutive laws leads to the data—driven
constitutive modeling only by using the unique features of the accumulated data® -,

In this thesis, the data—driven multiscale framework is proposed to model the
constitutive law from the data—driven yield function by using MD simulations and
symbolic regression, which is one of the ML technique. The main objective is to confirm
that the constitutive model can be developed by the data—driven yield function that is
formulated just from the intrinsic yield data set considering the unique yielding
characteristics of target material. To identify the intrinsic yielding behaviors, a number of
quasi-static yielding responses of multi-axial deformations are derived from MD
simulations with the suggested strain rate calibration method. Then, a new yield function
is automatically formulated from the calibrated yield data set by extracting primary
elements with the aid of constrained symbolic regressions and implemented in finite
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element analysis.

1.6. Outline of the thesis

The overall objective of this thesis is three-fold: the elucidation of elasto-plastic
deformation mechanisms at the microscopic scale, development of a method to derive
quasi-static constitutive responses under the MD environment, and construction of a
multiscale framework for multi-axial plastic deformations of epoxy polymers with the aid
of MD simulations, finite element (FE) analysis, and an ML technique. The proposed
multiscale framework enables macroscopic FE simulations by considering unique plastic
behaviors of polymer materials without conducting any experiments; this is particularly
true for beyond a uniform yield criterion that might be inappropriate to describe the multi-
axial deformation behaviors depending on considered material. From the viewpoint of data-
driven mechanics, the macroscopic continuum model customized for the given polymer
materials is established by generating numerous multi-axial constitutive responses from the
timescale calibration method and by implementing an ML technique to formulate data-
driven yield functions. The suggested framework demonstrates that the macroscopic
simulations on multi-axial plastic deformations can be conducted by focusing on unique
deformation characteristics of materials that thoroughly reveal the related diverse physics,
solely by simulation approaches.

In Chapter 2, all the modeling techniques, schemes for deformation simulations,
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and preliminaries are presented along with the considered physical environments. In
Chapter 3, qualitative analysis of the microscopic deformation of polymer materials is
carried out to completely understand the deformation characteristics of epoxies. The
deformation mechanisms of highly crosslinked epoxy polymers are investigated using MD
simulations with regard to curing agents with different structures. In particular, the
correlation between characterized irreversible folding mechanisms occurring in proximity
to the benzene ring and accumulations of the plastic strain is identified by cyclic loading-
unloading simulations. Although the direct observations of plastic deformation
mechanisms of epoxy polymers are performed in Chapter 3, these studies are just limited
to qualitative analyses due to the timescale limitations of classical MD simulations.
Accordingly, to avoid quantitative stress deviation arising from ultrahigh timestep of
classical MD simulations, Chapter 4 presents methodologies to provide reliable yield of
the stress-strain master curve that ranges from MD strain rate to quasi-static rate. Further,
the methodologies also allow the consideration of various thermos—mechanical state
variables and chemical variables such as temperature, hydrostatic pressure, and
crosslinking ratio. Subsequently after complete characterizations of their influences have
been achieved, the mapping method for the constitutive law toward a low strain rate is
established for achieving a suitable multiscale analysis quantitatively. Based on the quasi-
static stress-strain profiles derived from Chapter 4, the constitutive model using the
paraboloidal yield surface is implemented in order to evaluate multi-axial deformation
behaviors of the epoxy polymer in Chapter 5. One—element mesh tests under various

temperature, hydrostatic pressure, and crosslinking ratio are performed and compared with
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the original quasi-static constitutive laws. Focusing on the influence of the epoxy network,
the plastic deformation behaviors of the open-hole structure are estimated by examining
the effect of crosslinking densities. Importantly, combined loading behaviors represented
by the constitutive model implemented in Chapter 4 are featured using the failure envelope,
which is described by the classical yield function. The classical yield functions are
generally determined by the one—dimensional hardening laws obtained from experiments
or simulations; this implies that critical stress states in a principal stress space entirely
depend on only the one—dimensional constitutive responses. However, this might be
inappropriate for the deformation characteristics of the intrinsic material due to the unique
description of the multi-axial hardening of the material by classical yield functions.
Therefore, in Chapter 6, the data-driven constitutive model that can properly consider the
intrinsic multi—axial deformation behaviors is developed; this is achieved with the aid of
the timescale extension in Chapter 4, the constrained symbolic data mining, and an ML
technique. In this chapter, the possibility of the use of symbolic data mining for the
characterization of the yield function is examined by reproducing the history of the
development of classical yield functions, even under severe noise of the stress state.
Subsequently, the established constrained symbolic data mining is applied to the
description of plastic deformation of epoxy polymer to formulate the optimized or even
undisclosed phenomenological yield functions; this is achieved by using the yield data
derived from the MD simulations. Further, the mined data-driven yield function is validated

with one—element tests and compared with the classical yield functions.
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2. Atomistic model constructions and deformation

simulations

In this chapter, all of atomistic modeling process, methods for deformation
simulations as well as relevant physical environments considered in this dissertation are
presented in detail. Considering different modeling conditions according to the chapters,

all of simulational details are provided sequentially corresponding to the individual chapter.

2.1. All-atom MD modeling and derivation of physical properties

To describe the molecular behaviors in an MD environment, a polymer-consistent
force field (PCFF) was used in all of the modeling processes and simulations of this
research. The PCFF has been successfully used in polymer-based material simulations’ "2,

and the PCFF is composed of valence and nonbonded terms as can be seen in Eq. (2.1):
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The valence term consists of the bond stretch, angle, dihedral angle, and improper changes
with their coupled effects, while the nonbonded term is composed of van der Waals and
coulomb interactions. In all chapters, the cutoff distance of the van der Waals interaction is
9.5 A, while the electrostatic interaction was calculated using the Ewald summation.
Concerning the software packages used in this thesis, the commercial software package
Materials Studio vers. 5.5 and the parallel molecular-dynamics code the Large Atomic
Molecular Massively Parallel Simulation (LAMMPS) were used in all modeling and
simulations.
Concerning the atomistic modeling in Chapter 3, the considered epoxy systems
are composed of the diglycidyl ether of bisphenol A (DGEBA) that served as an epoxy resin

and the two different curing agents triethylenetetramine (TETA) and diethyltoluenediamine

(DETDA). The chemical structures of the epoxy resin and the curing agents are represented
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in Figs. 2.1 (a) and 2.1 (b), respectively.

As the first step in the preparation of an epoxy unit cell, the monomers of the
epoxy resin and the curing agents were randomly dispersed in a periodic boundary
condition using an amorphous cell module that satisfies the stoichiometric ratio of 1:1
between the reactive atoms in the resin and the curing agents; that is, the monomer-number
ratios of the epoxy resin and the curing agents are 3:1 and 2:1 for the DGEBA/TETA and
the DGEBA/DETDA, respectively. The monomer-unit number in the epoxy resin is set to
be equal for the two systems. The energy of each unit cell was minimized through the
conjugate-gradient method. Then, prior to the crosslinking simulations, the unit cells were
fully equilibrated using the canonical (NVT) isothermal-ensemble simulation at 500 K for

200 ps.

Then, crosslinking simulations were performed using the dynamic-crosslinking
method®. In this method, the distance between the uncrosslinked reactant pairs is
constantly monitored, and new covalent bonds are formed when the distances between the
reactive-atom pairs are smaller than the predefined cutoff distance. Then, the unit cells were
equilibrated using the NVT isothermal-ensemble simulations to minimize the excessive
stresses that are owing to the formation of new covalent bonds. This procedure was
iteratively performed up to the target crosslinking ratio. In this chapter, the crosslinking
ratio of the epoxy unit cells was set to approximately 80 % for both systems. After the

crosslinked structures were obtained, a high kinetic energy was applied on the crosslinked
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epoxy unit cell to obtain more-optimized structures with the NVT-ensemble dynamics
simulation that was performed at 500 K for 2.5 ns. Then, the crosslinked epoxy unit cells
were fully relaxed using the NVT ensemble at 300 K, followed by the application of the

isothermal isobaric (NPT)-ensemble dynamics simulation at 300 K and 1 atm for 3 ns.

Following the previously described modeling procedure, the preparation of three
different initial configurations of each epoxy composition was completed. Further, the
deformation simulations were respectively performed on the different initial configurations
for the reproducibility of the results. Significantly, the effects of the initial structures on the
deformation behaviors were examined to guarantee the generosity of the characterized
inelastic-deformation nature. Herein, the monomer number and the crosslinking ratio are
set to similar levels to eliminate any other effects. The final constructed DGEBA/TETA
and DGEBA/DETDA models comprise the totals of 8750 and 9675 atoms, respectively.

The detailed information of the epoxy unit cells is shown in Table 2.1.

In Chapter 4.1, an amorphous unit cell consisting of triglycidyl-amino-phenol
(TGAP) as an epoxy resin and diamino-diphenylsulfone (DDS) as a curing agent was
prepared using the Amorphous Cell module with a target density of 1.2 g/cm?; periodic
boundary conditions were imposed on the prepared unit cell in all three directions. The size
of the unit cell was 44.68 A, the epoxy model consisted of a total of 8,505 atoms. The
details of the molecular structures and the constructed unit cell are presented in Fig. 2.2.

Prior to the crosslinking procedure, epoxy resin and curing agent were dispersed

21 ]



amorphously in a unit cell with a ratio of 4:3 in order to match the stoichiometric conditions
determined by having an equal number of reactive sites in epoxy resin and curing agent.
After the amorphous cell construction, the model was minimized through the conjugate
gradient method and equilibrated through an NVT isothermal ensemble simulation at 500
K for 1 ns to guarantee sufficient chain relaxation and dispersion before the crosslinking
procedure. Herein, the crosslinking procedure between the reactive atoms of the resin and
the hardener was also conducted using a dynamic crosslinking method, which was
originally introduced and applied by Heine et al.”® and Varshney et al.! (see Fig. 2.3).

After the crosslinking simulation is complete, the unit cell is equilibrated for a
prolonged time through the NVT and NPT ensemble dynamics routines of LAMMPS. In
order to achieve a more locally relaxed structure via supplying high thermal energy, an NVT
ensemble simulation is performed for 1 ns at 500 K prior to the relaxation at the target
temperatures. Afterwards, the same simulation was conducted at each target temperature
(300 K, 350 K, 400 K, and 450 K) for 7.5 ns followed by the NPT dynamics simulations at
latm for 7.5 ns each. The detailed properties of chosen atomistic model is shown in Table.
2.2.

In Chapter 4.2, 5, and 6, the atomistic models for the epoxy polymer consisting
of diglycidyl ether of bisphenol A (DGEBA) as an epoxy resin and Jeffamine D230 as a
curing agent were constructed. The model construction of epoxy polymers was conducted
in an efforts to describe the actual chemical reactions between the crosslinking sites of the
resin and curing agent. The considered molecular structures of the monomers and the
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constructed unit cell is shown in Fig. 2.4. For the construction of realistic epoxy network,
two lengths of the monomers of the curing agent are considered to properly describe the
given length condition of monomers as in the experiments’*’, The considered molecular
structure is shown in Fig. 2.4(b).

The crosslinked epoxy network is gradually built from the randomly dispersed
monomers of resin and curing agent in such a way that the close contacts between reactive
atoms are connected by priority following the dynamical crosslinking concept'®. Before the
crosslinking, the energy of the dispersed monomers of the resin and curing agent were
minimized by the conjugate gradient method and fully relaxed by the 500 K canonical (NVT)
isothermal ensemble simulations during 300 ps. Then, the crosslinking simulations were
performed until the model is fully crosslinked up to target ratio. The crosslinked unit cells
were fully relaxed again under target temperature and pressure condition by the isothermal
isobaric (NPT) ensemble simulations during 5 ns respectively. The physical conditions of
the constructed models are shown in Table 2.3. The models, M1, M2, M3, M4 are used for
the characterization of the influence of the temperature on the constitutive responses, the
models, M4, M5, M6 are for the characterization of the influence of the crosslinking ratio,
and the models, M4, M7, M8, M9 are for the characterization of the influence of applied

hydrostatic pressure.



2.2 Deformation simulations

In this chapter, the detailed schemes for the deformation simulations are presented.
Since the types of the deformations adopted in each chapter are slightly different each other,

the specific deformation conditions are sequentially explained in following sections.

2.2.1 Uniaxial deformation simulations

In Chapter 4.1, to derive the mechanical responses of the amorphous epoxy
polymer, uniaxial tensile simulations under different strain rates and temperatures were
performed. The basic scheme of the uniaxial tensile simulation is presented in Fig. 2.5.
Under the external pressure on the planes normal to the tensile direction, strain is imposed
gradually on the unit cell structure. Then, polymer chains in the unit cell deform along the
tensile direction under certain strain rate conditions. To equilibrate the internal structure
during the deformation, an NPT ensemble simulation is performed at every strain increment
to describe Poisson’s ratio by allowing the polymer chains to naturally shrink along the
transverse direction. In this chapter, a strain of up to 0.15 is imposed in order to observe
the elasto-plastic response sufficiently over different temperatures and strain rates. The
temperature was chosen below the glass transition temperature, from 300 K to 450 K with

50 K of interval; furthermore, various strain rates were examined for each temperature
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range. To obtain the distinct stress-strain responses, the simulation results were averaged
from 6 to 36 times of independent production runs along all directions under an isotropic

assumption.

In Chapter 4.2, 5 and 6, the deformation tests were conducted to derive the stress—
strain profiles of the considered models that are represented in Table 2.3. The stress—strain
responses are estimated with iterative strain increment and relaxation on the unit cell until
the user—specified maximum strain is reached. The deformed unit cell is relaxed at given
the pressure condition to consider the Poisson’s effect by allowing natural shrinkage or
stretching. The strain is applied up to 0.15 in each deformation test to sufficiently observe
the elasto—plastic deformation response of the epoxy polymers under high strain rate. Since
the deformation tests in MD environment involve severe fluctuations of the stress by the
considered thermostat, the stress—strain profile from each simulation condition was derived
by averaging the 30 profiles for 10%%/s, 10%s and 15 profiles for 1085/s, 108/s. The scheme
for the deformation test is shown in Fig. 2.6(a). In order to determine a yield point from the
obtained stress-strain, the 2.5 % offset rule’®’” was adopted to properly consider the
nonlinearly changing stress trend of epoxy polymer by setting a highly relaxed stress state
as yield point. The illustration for yield criterion is shown in Fig. 2.6(b). The stress slope
to determine a yield point is set by the linear fitting of strain up to about 5 % to guarantee
reasonable stiffness under high variability of stress which stems from the extremely high
strain rate condition’®. Accordingly, it needs to be noted that the identified yield point

belongs to the relatively much more plastically deformed area, showing larger stress than
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the initial flow stress where the material starts to plastically deform.

2.2.2 Uniaxial loading—unloading simulations

In Chapter 3.1, to derive the mechanical responses of the epoxy polymers, uniaxial
loading (compression)—unloading tests were conducted in the LAMMPS environment. Fig.
2.7(a) shows the considered deformation trajectory with a snapshot of the epoxy model.
The epoxy models were compressed up to a strain of 0.15, followed by an unloading to the
initial zero strain under the considered temperature (300 K, 1 K), strain-rate (10%s and

10%/s), and pressure (1 atm) conditions.

The deformation simulations were composed of iterative imposition and relaxation
processes regarding the strain that are based on the NPT-ensemble simulations. In the MD
simulations, the strain was artificially imposed on the unit cell along one direction, and this
was followed by the deformation of the internal polymer networks toward the loading
direction. The deformed networks denoted higher internal stresses upon the imposition of
the strains. Thus, the NPT-ensemble simulations at 300 K and the atmospheric-pressure
conditions along the transverse direction were performed for certain durations that
correspond to the considered strain rate for the chain relaxation. From this iterative
relaxation procedure, the natural relaxation of the deformed networks allowed for a

consideration of the Poisson effect.



During the deformation simulations, the totals of the internal energy and virial
stresses were obtained using the applied strain that could be divided into the contributions

of the internal potential components, as follows:

1 1
_ B ay\ of a
Olirial —\72 EZ(Rl -R )Fj —ngkgT
a | 4 p1 , (2.2)
= O-ke + O-non—bonded + O-bond + O-angle + O-dihedral + O-improper
Epe = Ebond + Eangle + Edihedral + Eimproper + Enon—bonded ' (23)

where nq, Ky, T, and V are the number of the degrees of freedom, the Boltzmann constant,
the temperature, and the occupied volume, respectively. In Egs. (2.2) and (2.3), Gron_sonded
and E, ., noeq iNdicate the contributions of the summation of the van der Waals and
coulomb interactions on the totals of the virial stress and the potential energy, respectively.
The primary internal-potential components can be identified by deriving the contribution
of each internal component on the stress and energy behaviors. The focus of Chapter 3.1
is the plastic-deformation mechanisms for which the evolutions of the energy and the stress
during the loading and unloading simulations were observed. In particular, compared with
the deformation mechanisms of thermoplastic polymers?, the plastic dihedral-angle

behaviors of epoxy polymers were rigorously investigated according to the previously

described manner.

Simultaneously, the monomers of the epoxy resin and the curing agent were

considered to understand the influences of the different curing-agent structures on the

27 *



deformation mechanisms. The monomer sets of the epoxy resin and the curing agents (the
groups of the epoxy resin and the curing agents in the crosslinked epoxy system) were
divided based on crosslinked nitrogen (N) atoms, as can be seen in Fig. 2.7 (b). The internal
energy and stress evolutions of the monomer sets of the epoxy resin and the curing agents
were derived. From the division scheme, the different deformation behaviors in the two
curing-agent molecules and their effects on the epoxy-resin molecules could be

independently investigated.

To validate the prepared MD models, a comparison of the density and mechanical
moduli of the present study with those of the other literature references is given in Table
2.4. The obtained density showed a sound agreement with the values of the other
experimental and theoretical studies. Young’s modulus was obtained from the stress—strain
profiles (linear fitting up to the strain of 0.05) of the MD simulations that are similar to
those of the MD studies®?, but they are quite different from those of the experiments®°8?,
This has been attributed to the idealized MD-model structures that are without any

microscopic defects or the inherent high-strain-rate conditions of MD simulations.

2.2.3 Cyclic deformation simulations

To understand the ratcheting behaviors in Chapter 3.2, compressive cyclic

loading-unloading simulations were conducted by the stress controlled deformations.
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Scheme for the deformations is presented in Fig. 2.8. For the determination of the applied
stress, the uniaxial compressive deformations were performed up to the strain 0. 15 at the
strain rate 10° /s (see Fig. 2.8(a)), and the yield stress of each epoxy was determined by
fitting on linear elastic and Ludwik’s hardening model which is represented by:

o=0,+h(e")", (2.4)
where oy, h, &y and n are yield stress, strength coefficient, plastic strain, and
hardening exponent, respectively. Yield point was chosen as a point denoting that the
deviation between the raw MD data and elasto—plastic model is minimized. Resultant yield
points of DGEBA/DETDA and DGEBA/TETA are (0.068, 253.98 MPa) and (0.07, 264.26
MPa) respectively. Concerning the cyclic deformation simulations, as an initial loading,
compressive loading is applied on the atomistic unit cell by maintaining 1 atm on surfaces
of the unit cell, which the loading is not imposed on, to provide the Poisson’s effect (see
state A in Figs. 2.8(b) and 2.8(c)). Then, the model is compressed till the predefined stress
condition is satisfied (see state B in Figs. 2.8(b) and 2.8(c)). After that, the atomistic unit
cell is reversely loaded to eliminate the stress which corresponds to the state C in Fig. 2.8.
The effect of the ratchet is involved by the strain deviation between the state A and C in
Figs. 2.8(b) and 2.8(c). Note that the level of the applied stress is 90 % of the yield stresses
that were determined in Fig. 2.8(a). Other than the stress level, the frequency of the cyclic
deformations was also considered as main variable since the amorphous polymer displays
viscoelastic nature in deformations. In particular, considering the timescale difference of
the MD simulations compared to the experiments?®?!, the study on the effect of the
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frequency is also of primary importance. In this study, the studied frequency level is 8.33
nstand 4.17 ns. Based on the abovementioned stress and frequency conditions, a total of
500 cycles was simulated by considered epoxy polymers (Note that the number of cycles
of DGEBA/DETDA by the frequency of 4.17 ns? is 480).

To calculate the change of the stiffness according to the cyclic deformations,
Parrinello—Rahman strain fluctuation method was adopted, which have been widely used
for the calculation of the elastic properties of amorphous polymer systems. This method
measures the stiffness tensor based on the strain fluctuation determined from the inherent
resistance to shaking of the unit cell, which is represented by:

KT

V)

where o¢ denotes the strain variation and the bracket means ensemble average. To apply

Cija = <5gij5gkl >_1’ (2.5)

the strain variation, NaT ensemble simulation for 100 ps was conducted on target unit
cell. For the characterization of the elastic modulus from the stiffness tensor, we assumed
that the atomistic unit cell deformed by cyclic loading is orthotropic allowing the stiffness
difference according to the principal axis. To reduce the inherent statistical uncertainty in
determining the elastic modulus, the 5 different modulus results were evaluated for deriving

mean values and standard deviations.

2.2.4 Multi-axial deformation simulations



In Chapter 6, the deformation simulations were conducted to estimate yielding
behavior in multiaxial stress states. The illustration for the deformation simulations and
their resultant stress—strain profile are shown in Fig. 2.9. The deformation simulations are
performed by sequential iterative strain application and relaxation, simultaneously
considering external pressure conditions by NPT ensemble dynamics to consider the
Poisson’s effect. Since the deformation is applied by multiaxial manner, the determination
of general stress state at yielding demands adequate yield criterion. In Chapter 6, the yield
point is obtained from the effective stress—strain by applying 2.5% offset rule which has

been generally employed in the experimental field®’’. The effective stress and strain are

defined as:
1 2 2 2\M2
Ot 25((0_1_0_2) +(0,—03)" + (03— 07) ) '
1 12
Eeff Zm((‘% —&,)" +(& &) + (& _‘91)2) , (2.6)

where v is Poisson’s ratio. As an example, an effective stress—strain profile and each
components are shown in Fig. 2.9(b). The initial stiffness of effective stress—strain
determined by linear fitting up to a strain of about 5% is used to estimate a yield point.
Based on the chosen yield point, the each component of yield stress is uniquely determined
to build a yield surface as denoted by blue triangles in Fig. 2.9(b). The yield surfaces were
constructed by trying to evaluate all of biaxial loading paths in o,=0 plane with the

effective strain rates of 10%%/s and 1085/s.
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Fig. 2.2. Molecular structures of the (a) epoxy resin and curing agent. (b) A constructed
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Fig. 2.4. lllustration for the molecular structure of (a) the epoxy resin, (b) curing agent, and

(c) constructed unit cell.
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Fig. 2.5. A schematic of the uniaxial tensile simulation. Internal polymer chains are

iteratively strained and relaxed using a multistep procedure.
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® Yield criterion for multiaxial loading simulation
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Fig. 2.9. lllustration for (a) deformation tests with constructed atomistic model and (b)
obtained representative stress—strain profiles. The 2.5% offset criterion for yield point from
the multiaxial stress—strains is used for the yield point selection. The red solid line is
effective stress—strain and dotted lines are their components. The yield point is represented

by triangle symbols.
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Table 2.1.

Detailed Information of Epoxy-polymer Unit Cells at Room Temperature (RT).

Number A . ALy Cell
... Crosslinking [ Density of
Composition Model of - . Length
Ratio (g/cc) | Dihedral
Atoms A A)
ngles
T1 81.3% 1.125 24282 44.16
DGEBA/TETA T2 8750 77.3% 1.116 24246 44.29
T3 80.3 % 1.13 24273 44.11
D1 80.7 % 1.107 26226 45.89
DGEBA/DETDA | D2 9675 82.3% 1.11 26241 45.86
D3 79.7 % 1.104 26217 45.93

Table 2.2

Comparison of mechanical properties of TGAP/DDS epoxy system with those given in

experimental literature.

Present study )
Experiment
66% crosslinked TGAP/DDS ( Gonzalez-Dominguez et al., 2011)
E(GPa) | G(GPa) | v | p(g/cm3) E (GPa) p (g/cm3)
3.16 1.14 ]0.38 1.20 3.1-43 1.265




Table 2.3

Physical conditions for the considered epoxy unit cells.

Model Xlink ratio (%) Pressure (atm)
M1 80 0 1
M2 80 100 1
M3 80 200 1
M4 80 300 1
M5 75 300 1
M6 85 300 1
M7 80 300 1000
M8 80 300 3000
Table 2.4.

Comparison of the Mechanical Properties of the Epoxy Systems of the Diglycidyl Ether

of Bisphenol A (DGEBA)/Triethylenetetramine (TETA) and the

DGEBA/Diethyltoluenediamine (DETDA) Systems.

Mechanical | DGEBA/TETA DGEBA/TETA DGEBA/DETDA DGEBA/DETDA
Properties | (Present Study) | (Previous Study) (Present Study) (Previous Study)
Young’s Experiment | MD Experiment MD
modulus 3.84 3.73 700
(GPa) 2.42 [80] ‘[‘é%? 271[81] | [25],
4-819]

1.12

Density 1.14 i [25],
(glem?) 1.125 1.1240 [80] [25] 1.107 112
1.14 [9]
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3. Qualitative analysis on the elasto—plastic deformations

of epoxy polymers

In this chapter, specific molecular mechanisms that induce macroscopic plastic
deformations of amorphous epoxy polymers were investigated additionally considering
effects of the molecular structures of curing agent. In Chapter 3.1, irreversible atomistic
mechanisms correlated with energy and stress evolutions were characterized by monitoring
local molecular structures during the deformations. In Chapter 3.2, it was elucidated how
the different deformation characteristics influence the macroscopic plastic strain

accumulations depending on the molecular structures of curing agent.

3.1. Influence of the molecular structure of curing agent on plastic
deformations

3.1.1 Microscopic deformation mechanisms

® Local structures of the epoxy polymers

The local structures of fully equilibrated epoxy polymers were investigated using
the derivation of the radial distribution function (RDF). The RDF is the probability measure
for the identification of the position of a certain pair of atoms at a given distance r from a

reference position. The RDF is defined using the following equation:



naﬁ(r)
4zr* (NN, IV)'

gaﬁ(r)z (3.1)

where n_,(r) is the number of atom pairs that consist of the «~and / -atom species

within a spherical shell in the distance range of (r—%r,r+%r) , where N, and N ,are

the numbers of the atom species « and /S, respectively, and V is the systemic volume.
The RDFs of the considered epoxy polymers are given in Fig. 3.1. Herein, the atomic pairs
of the monomers of the curing agents and the epoxy resin are respectively investigated to
observe the influences of the structural characteristics of the curing agents on the network
topology.

As can be seen in Fig. 3.1 (), the discrepancy of the RDF values of the curing
agents is noticeable between the two epoxy systems since the chemical structures of the
two epoxy systems are different. The sharp first peak appears at around 1.1A in both
epoxies, which corresponds to the C—H bond. The first DGEBA/TETA peak is higher than
that of the DGEBA/DETDA epoxy system. The second DGEBA/TETA peak appears at
around 1.5 A, which is attributed to the correlation of the N—H bonds. At around 1.45 and
1.53 A, the second and third DGEBA/DETDA peaks are evident with relatively small
heights, respectively, and these small peaks are associated with the bond lengths of the N—
C and C-C bonds, respectively. The C—C bonds are mainly composed of a single C atom
in a benzene ring and one C atom that is linked to the benzene ring. The third
DGEBAJ/TETA peak and the fourth DGEBA/DETDA peak appear at around 1.75 A, and

these correspond to the lengths between the hydrogen (H) atoms in the H-C—H bond. The
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next peaks (at around 2.2 and 2.5 A) have been attributed to the correlation between the H
and C atoms or to those between the C and C atoms in the H-C-C, C-C-C, and C-C-C—
C sequences.

Unlike the RDF values of the curing agents, the RDF value of the resin represents
similar structural characteristics. As can be seen in Fig. 3.1 (b), the RDF values of the two
epoxy systems denote similar profiles, where a noticeable shifting of the peaks is not
evident. Although the heights of the first peaks that are at around 1.1 A, which correspond
to the lengths between the H atoms, are different from each other, the effect of the distance
between the H atoms on the packing of the monomers is not significant. This finding
implies that the crosslinking implementations with the different curing agents that are
considered in this study cannot significantly modify equilibrated epoxy-resin network

structures.

® Uniaxial loading—unloading simulations of the epoxy polymers

To determine the primary internal-potential components from the energy
perspective, the energy-accommodation profiles of both epoxy systems were derived at 300
K in the loading—unloading ranges that are shown in Fig. 3.2. In the responses of both
epoxy systems, the total potential energy, which is the sum of the internal-energy
components, increased in the loading range and decreased in the unloading range. Notably,
a full recovery of the accommodated-energy state to the initial-energy state is lacking in
either system; that is, the residual potential energies were observed at the end of the
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unloading owing to the plasticity effect. These residual potential energies have been mainly
attributed to the contribution of the nonbonded pairwise interactions (red lines in Fig. 3.2)
of both systems, thereby implying that the interchain interactions were involved in the
plastic-deformation energy accommodation that is a result of the irreversible structural
rearrangement of the epoxy networks. Following the nonbonded pairwise interaction, the
angle and dihedral-angle interactions noticeably accounted for the total potential-energy
accommodation in both epoxy systems. Unlike the energy behavior of the nonbonded
pairwise interaction, however, the irreversible residual energies are not shown in these
angle-related interactions. When the two epoxy systems were compared, a quantitative
difference was observed between the energy evolutions for the angle and the dihedral angle.
It is noticeable that the dihedral-angle interaction accommodated a much larger
deformation energy than the angle interaction in the DETDA-cured epoxy, while these two
internal energy components show a similar energy-accommodation trend in the TETA-
cured epoxy. Meanwhile, the influence of the bond contraction is negligible, as the bond
energies in both systems show the absence of a meaningful increment in either the elastic-

or plastic-strain ranges compared with the other internal-energy evolutions.

The derivation of the virial-stress and internal components of the TETA- and
DETDA-cured epoxy systems are shown in Fig. 3.3. The total virial-stress values of the
two epoxy systems show the typical deformation regime for thermosetting polymers, as
can be seen in Fig. 3.3 (a). The two epoxy systems show a linearly increasing stress trend

in the elastic-strain range, and the yielding began after a strain of approximately 0.07, when
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the linearity collapsed. Then, the epoxy polymers displayed a hardening or a weak-strain
softening in the plastic-strain range, as is the case in other studies??’. Under the unloading-
strain range, the epoxy-system stress rapidly decreased with the decreasing of the strain,
eventually reaching a stress-free state, as can be seen in Fig. 3.3 (a). The stress-free state
was reached at a strain of approximately 0.07, implying that the loading—unloading
deformations of the epoxy polymers exhibited a distinct plastic-strain energy that can be
calculated using the area of the loading—unloading stress—strain profile. During the
unloading response, the stiffness decreased as the strain was decreased and it tended to

converge in the elastic region.

The total virial stress can be divided into the internal-stress components, like the
case of the energy components. The components are the nonbonded, bond, angle, and
dihedral-angle terms that correspond to Eq. (2.2), and the stress evolutions are shown in
Figs. 3.3 (b), 3.3 (c), 3.3 (d), and 3.3 (e), respectively. Among these internal-stress
components, the dihedral-angle stress accounts for the largest portion of the total stress
evolution in both epoxy systems. Following the dihedral-angle stress, the angle stress
accounts for the second-largest part of the total stress evolution during the deformations.
The dihedral-angle and angle interactions in the epoxy polymers are the primary potential
parameters that mainly influence the stress—strain equation. The other parameters mainly
contributed to the intrinsic deformation regime of the epoxy polymers. The nonbonded and
bond stresses increased up to a strain of approximately 0.07 and then decreased, implying

that the slope decrease in the total stress evolution of the plastic-strain range is
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predominantly attributed to the contributions of the nonbonded and bond stresses.

Although the deformation regimes of the two epoxy systems are similar, it is
possible to estimate the influences of the epoxy networks on the deformation behaviors
from a quantitative comparison between the stress profiles. As the different 3D networks
of the epoxy polymers in the present study are due to the structural differences in the curing
agents of the epoxy system, the quantitative differences in the stress—strain behaviors
results from the structural differences between the aliphatic and aromatic curing agents. As
far as the total stress evolutions are concerned, the stress increments for both systems in
the elastic range are nearly the same and show similar elastic-stiffness values. As the strain
was applied beyond the yielding point, however, the extent of the hardening is different for
each system, and the TETA-cured epoxy polymer shows a stress that is higher than that of
the DETDA-cured epoxy polymer. This trend was continuously maintained under the
unloading response, as follows: The TETA-cured epoxy polymer shows a higher stress and
unloading stiffness. It is worth noting that this quantitative-stress difference between the
two epoxies in the plastic range has been mainly attributed to the contributions of the angle
and dihedral-angle stresses. From the previously described observations and the previous
studies®®?, the dihedral-angle-related behavior, which is influenced by the structure of the
curing agent, is of primary importance, because the dihedral-angle stress significantly
contributed to the elastoplastic stress—strain behaviors of the epoxy polymers. Therefore,

the focus is the dihedral-angle stress behaviors.
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The dihedral-angle stress still shows positive values even after the stress-free state
was passed during the unloading, while the nonbonded, bond, and angle stresses denote
negative values at the end of the unloading, as can be seen in Figs. 3.3 (b), 3.3 (c), 3.3 (d),
and 3.3 (e), respectively. This result implies that the stress that is involved with the dihedral
angle represents a compressive behavior, although the overall stress of the bulk system
displayed a tensile behavior (negative values after the stress-free state). Owing to the
irreversible stress behaviors of the dihedral angle, the dihedral-angle stresses of the two
systems displayed residual stresses even at the end of the unloading, as can be seen in Fig.
3.3 (e). This result implies that plastic transitions are involved in the dihedral-angle
behaviors, and these behaviors are dependent on the crosslinked networks that are
determined by the structure of the curing agent. In a comparison of these two epoxy systems,
the DETDA-cured epoxy system shows a higher irreversible dihedral-angle stress at the
end of the unloading, revealing that the aromatic curing agents in epoxy polymers play a

critical role in the plastic-stress behaviors.

It is worth noting that the irreversible stress behaviors were identically observed
in the dihedral-angle stress—strain profiles of all of the prepared initial configurations (the
profiles in Fig. 3.3 are averaged over different initial configurations, velocity distributions,
and loading directions). These data denote that the observed residual stress that was

observed at the end of the unloading is reproducible and reliable.



® Influence of the structures of the curing agents on the stress behaviors

To investigate the contributions of the curing agents on the obtained residual
dihedral-angle stresses of Fig. 3.3 (e), the monomers of only the curing agents were
independently observed during the loading—unloading simulations, as shown in Fig. 3.4 (a).
The dihedral-angle stresses of only the curing-agent monomers of both epoxy systems are
represented in Fig. 3.4 (b). In this profile, distinctly different dihedral-angle stress
behaviors are evident. The curing agent of the DETDA-cured epoxy (blue lines) shows a
large increase in the loading-strain range and a small decrease in the unloading-strain range
that result in an evident residual stress at the end of the unloading. The curing agent of the
TETA-cured epoxy system (red lines), however, shows a spring-like reversible stress
increase and decrease in the loading and unloading ranges, respectively. The dihedral-angle
stresses of the aromatic-curing-agent monomers accumulated in terms of the plasticity due
to the accommodation of a large deformation energy compared to the stress response of the
aliphatic-curing-agent system. Then, these plastic dihedral-angle stress behaviors
eventually contributed to the irreversibility of the total dihedral-angle stress behavior.
These residual dihedral-angle stresses are evident in the responses of all of the considered
initial configurations, as can be confirmed by the error bars. These observations provide
clear evidence of the significant influences of the structural types of curing agent on the
plastic-deformation behaviors of epoxy polymers. In particular, they imply that the
monomers of aromatic curing agents should represent a plasticity that is characterized by

the dihedral-angle behavior.



The influences of the two types of curing agent on the epoxy-resin monomers
were investigated in a manner that is similar to that of above section. Among the internal-
stress components, the angle stresses that are between the two systems of only the epoxy-
resin monomers, which are shown in Fig. 3.4 (c), were compared. Although both epoxy
systems are composed of the same type of epoxy-resin monomer, DGEBA, the angle-stress
profile denotes the quantitative discrepancy between them. The TETA-cured epoxy resin
exhibited a higher-angle stress than the stress of the DETDA-cured epoxy resin; however,
although the amounts of the stress increment are different, the angle stresses of the two
epoxy resins converged to the same value at the end of the unloading. These observations
revealed that the local angle in the epoxy-resin monomers changes to accommodate
different deformation-energy amounts in the loading response depending on the structural
characteristics of the curing agent, but the amounts of the plastic-energy dissipation of the
two systems are approximately similar. This finding can be confirmed using a calculation

of the surrounding areas for which the curves of Fig. 3.4 (c) are applied.

® Geometric characteristics: relative atomic displacement (RAD) analysis

For an improved understanding of the plastic stress and energy behaviors, the
intrinsic geometric properties of the epoxy polymers were investigated using the relative
atomic mobility (RAM) analysis. From this analysis, an estimation of the mobility
discrepancy of the epoxy monomers or specific atoms, which is featured in the molecular
structures of the epoxy networks, was performed during the loading—unloading simulations.
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The derived RAM values of specific atom types and monomer sets are displayed in Figs.
3.5 (a) and 3.5 (b) based on the deviation of the atomic displacement along the time

increment, as follows:
RAM (0=~ 3150 - £ OF (3.2)

wherer (t) and r(0) denote the current positions of the ith atom at the times t and zero,
respectively, and N denotes the number of the specific group of atoms. That is, the RAM
values were calculated using the averaged considered atoms in the epoxy networks to
estimate the relative mobility of the considered group during the dynamic response. As the
applied strain is linearly proportional to the time, Eq. (3.3) is described based on the strain

increment &, as follows:
RAM () =<1 ()~ O)F (3.3)

where r,(0) denotes the position of the ith atoms at the initial loading state. Based on
Equation (3.3), the derived RAM profiles of the DGEBA/TETA and DGEBA/DETDA
epoxy systems are shown in Figs. 3.5 (a) and 3.5 (b), respectively. To independently
investigate the mobility of certain sets, the RAM values of the local sets were calculated
through groupings of the specific atoms and monomers for the curing agents and the epoxy
resin and the carbons of the benzene rings in the curing agents and the epoxy resin. In
particular, the focus of this chapter is the observation of the atomic mobility of the carbons

in the benzene rings, as the differences in the characteristics of the aliphatic and aromatic
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curing agents mainly arise from the existence of a benzene ring?®. As shown in the
profiles of both systems, the RAM values increased nonlinearly in the loading range,
showing an increase of the curve slope. This trend implies that the local diffusions of the
polymer chains that are due to the external force occur more actively when the plastic
behaviors are involved in the deformation processes; moreover, this observation suggests
the possibility that, as the plastic deformations proceed, the instantaneous diffusivity of the
local atoms in the polymer segments tends to increase and provides more room for polymer-
chain movements. Further, the mobility discrepancy between the initial loading state and
the final unloading state is evident in both epoxy systems; that is, the mobility of the final
unloading state is higher than that of the initial loading state. This observation reveals that,
although the strains in the loading directions are equal between the two states, the chain-
segment diffusion occurred actively in the unloading range compared with the
corresponding strain in the loading range; that is, the mobility discrepancy between the
loading and unloading ranges could provide evidence of proceeded plastic deformations in

the loading range.

The mobility characteristics of the benzene ring can be estimated from the results
of Figs. 3.5 (a) and 3.5 (b). Since the monomers of the epoxy resins in the two epoxy
systems are entirely equal, the same numbers of benzene rings are present in the epoxy
resins of both systems. In the case of the considered curing agents, however, the aromatic
curing agent, DETDA, includes only the benzene rings. As can be seen in Fig. 3.5 (a), the

RAM of the C atoms of the benzene ring in the epoxy-resin monomers (solid red lines) is
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much lower than those of the other atoms (solid cyan lines). Further, this mobility gap
increased in the unloading range compared with the loading response, while this trend is
much clearer in the response of the DGEBA/DETDA epoxy system, as can be seen in Fig.
3.5 (b). The solid red and blue lines denote the RAM values of the benzene atoms in the
epoxy resin and the curing agents, respectively. Both curves display similarly increasing
and decreasing trends with the benzene rings in the TETA-cured system in the loading—
unloading range. The most interesting point in this figure is that the RAM of the benzene
rings in the curing agent is much smaller than that of the epoxy-resin monomers in the
unloading range, and this gap increased as the unloading simulation was proceeded. This
result means that the deformed epoxy networks severely restricted the motions of the
benzene rings in the curing agent in the unloading range, while the mobility degrees of the

other linked atoms are relatively high.

The mobility analysis eventually resulted in the following important physical
insight: The benzene rings, especially in the curing-agent monomers, are likely to show
significantly limited movements compared to their connected atoms during the loading—
unloading responses. By contrast, the aliphatic curing agent, TETA, shows a relatively high
degree of mobility since it is not composed of any benzene rings. In this regard, a simple
illustration of the obtained mobility results is shown in Fig. 3.5 (c). As shown in the
illustration of the DETDA-cured epoxy system, a mobility gap is present between the C
atoms of the benzene rings and their linked chain. This mobility discrepancy suggests the

possibility of plastic dihedral-angle transitions in the vicinity of the benzene rings and their
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linked atoms, thereby exerting a significant influence on the plastic behaviors of the
dihedral-angle stress. Thus, in the following section, a rigorous monitoring of the dihedral-
angle type, which consists of the benzene rings and their linked atoms from the energy

perspective, is described.

® Selection of the primary dihedral-angle types for plastic dihedral-angle
transitions

Based on the results of the mobility analysis in previous section, a thorough
monitoring of the dihedral-angle transitions of the dihedral-angle sets, which are partially
composed of benzene atoms, was conducted during the deformation simulations. The two
dihedral-angle types that were selected exhibited large energy variations during the
deformations. The selected dihedral-angle types are represented in Fig. 3.6 (a), as follows:
Type A and Type B. Type A consists of two benzene atoms and their connected O and C
atoms, while Type B consists of two benzene atoms and their connected N and C atoms.
Type A is included in the monomers of the epoxy resins of both systems, but Type B is
included only in the DETDA-cured epoxy system because Type B is composed of the
benzene atoms that are included in the curing-agent DETDA. The dihedral-energy changes
of these two selected epoxy-system types are shown in Figs. 3.6 (b) and 3.6 (c). As far as
the TETA-cured epoxy system is concerned, Type A exhibited a large energy

accommodation that is similar to the total energy-increase amount, but it does not display
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a clear residual energy at the end of the unloading. As far as the DETDA-cured epoxy
system is concerned, a large energy-increase amount is evident in the loading and is
relatively well maintained during the unloading. Type B in the DETDA-cured system,
however, did not display energy increases or accumulations like the global energy

responses of Fig. 3.2.

This result is not desirable, but it is understandable because of the following
reason: The considered thermostat for the NPT-ensemble-based deformation simulation
adjusts and dissipates the energy to constantly maintain the target temperature. This reason
is also suggested as the origin of the contradictory stress—energy relationships in the work
of Hossain et al.%. In their study, the potential energy was decreased under a deformation
condition that showed an inversely proportional relationship with the stress evolution.
Their observation is the result of a simulation condition that is fairly similar to the profile
of the dihedral energy in Fig. 3.6. Another point of view is that the present simulation only
covers very-short-term dynamics in the region of several nanoseconds. An inevitable
limited sampling of the energy state of the set of the local atoms during the short-term
dynamics cannot avoid the inherent fluctuations that result from the initial velocity
imposition that corresponds to the considered temperature condition. In this regard,
tremendous efforts have been made in the current MD simulations to overcome the
timescale limitations®-°. Thus, in the following section, the performances of deformation
simulations that are less than 1 K for the avoidance of the effects of high thermal-energy
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levels are presented. The plastic dihedral transitions and the related energy evolutions are

also derived.

3.1.2. Dihedral energy analysis

® Plastic dihedral-energy behaviors

To observe the intrinsic dihedral-energy behaviors without the exertion of large
fluctuation effects on the energy profiles, the deformation simulations were performed at 1
K with simulation conditions that are identical to those that are used at 300 K. The energy
evolutions were derived for Type A and Type B in both systems, as shown in Fig. 3.7. The
total dihedral energies in both systems increased in the loading range and decreased in the
unloading range, as can be seen in the response at 300 K, and these outcomes are shown in
Figs. 3.7 (a) and 3.7 (c), respectively. In the profiles of the total dihedral energies, however,
the residual dihedral energy is not clearly evident in either system; rather, the dihedral

energy decreased toward a much lower energy state, especially in the DETDA-cured epoxy.

Concerning the dihedral-energy evolutions of Type A and Type B, however, a
clear plastic trend was observed. As shown in Fig. 3.7 (b), in the TETA-cured system, the
response of Type A displays some residual energy at the end of the unloading. Likewise, in
the DETDA-cured system, the response of Type A denotes a slight residual energy at the

end of the unloading, as shown in Fig. 3.7 (d). As far as the dihedral angles of Type B are
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concerned, the dihedral energy was clearly accumulated during the entire deformation
process, thereby implying that the dihedral angles of Type B are more likely to exhibit an
irreversibility from the energy perspective than the dihedral angles of Type A. The
difference in the extent of the irreversibility of the dihedral energy between Type A and
Type B can be attributed to the mobility difference between the benzene rings of the
DETDA-cured epoxy, as shown in Fig. 3.5 (b). As presented in RAM analysis, a mobility
difference was observed between the benzene rings in the epoxy resin and the curing agents
that is owing to the effects of the different networking environments in the vicinities of
these two types of benzene ring. Although the considered temperature conditions are
different, the results that are shown in Fig. 3.5 (b) can be applied equivalently to the results
at 1 K, because the plastic behaviors of the local dihedral-angle sets have been attributed
to the geometric properties that are derived from the molecular structures of the considered

system.

® Plastic dihedral-angle transitions in the DGEBA/DETDA epoxy system

To specifically observe the local plastic dihedral-angle transitions, the dihedral-
angle sets of Type Aand Type B in the aromatic-cured epoxy system were monitored during
the deformations. The related dihedral-energy surfaces with the dihedral-angle changes of
both types are represented in Fig. 3.8 (a). The local energy states can be divided into low
and high ranges at the angle interval of 90° As the deformations progress in the loading

range, the local dihedral angles changed with the energy increment from the low- to the
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high-energy state, as shown in Fig. 3.8 (a). If the local dihedral angles are abruptly changed
owing to the external loading, the deformed dihedral angles stay in the high potential state
during the unloading, or they elastically return to the low-energy state. The representative
case studies of the plastic dihedral-angle changes of Type A and Type B are denoted in Figs.
3.8 (b) and 3.8 (c), respectively. In both profiles, the dihedral angles were changed during
the loading response (solid lines) toward the high potential state, and they were maintained
during the unloading response (dotted lines). These plastic transitions occurred abruptly
during the loading, overcoming the potential energy barrier that exists between the local
energy basins. The local dihedral transitions of Type A and Type B from the low- to the
high-energy states are similar to the trans-gauche dihedral conformational changes of

thermoplastic polymers?#,

These abrupt local transitions that occur near the benzene rings can be explained
by the classical yielding theory of amorphous polymers that was proposed by Argon®+45,
According to this theory, the yielding of amorphous polymers occurs via the molecular
kinks of flexible polymer chains that are activated by applied deformations. According to
this theory, until the occurrence of the yield point, the internal networks endure the applied
deformation with a linear stress increment that corresponds to the elastic-stress evolution,
which is shown in Fig. 3.3 (a). As the molecular kinks of the polymer chains are activated
by the applied load, the internal stress is gradually relaxed, thereby denoting inelastic

stress—strain behaviors.



The detailed relationships between the wedge angle, stress, and energy change are
well described in the work of Sundararaghavan et al.?*. When compared to the present MD
results, the kinks of the local polymer chain that are represented in Argon’s theory
correspond to the abrupt dihedral-angle changes in Figs. 3.8 (b) and 3.8 (c). It has already
been concluded in the RAM analysis that the plastic dihedral-angle transitions have been
mainly attributed to the differences between the mobility and the stiffness of the local
benzene rings and their linked chains. This results in the important conclusion that the
differences of the curing-agent chemical structures between the aliphatic and aromatic
types significantly influences the kinking behaviors of the local polymer chains, and this
eventually determines the yielding phenomena of the epoxy polymers. That is, considering
the large contribution of the dihedral-angle stress to the total stress—strain response, the
dihedral-angle folding behaviors of Type A and Type B exerted a significant effect on the

elastoplastic mechanical properties.

Thus, the numerical variations in the plastic dihedral-angle transitions of Type A
and Type B have been derived for the quantitative investigation and are shown in Figs. 3.8
(d) and 3.8 (e), respectively. Both of the dihedral types show an increasing trend in the
loading range. In particular, the numerical plastic-transition ratio jumps abruptly near the
strain of approximately 0.06, which corresponds to the trend of the dihedral-energy
evolution in Figs. 3.7 (d) and 3.7 (). As the unit cells were unloaded, however, the number
of the plastic transitions of Type A noticeably decreased, while Type B showed a

considerable increase, as is the case for the energy evolutions. The dihedral angles for both
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types accommodate the large deformation energies during the loading response; however,
the dihedral angle of Type B is more advantageous for plastic transitions in terms of the

two different benzene-linked dihedral types.

3.1.3. Strain-rate dependency of plastic dihedral-angle behaviors

It is necessary to confirm the identical maintenance of the characterized inelastic-
deformation mechanisms as the strain rate was decreased. Accordingly, the relationship
between the increased relaxation time for the chain segments and the plastic dihedral-angle
stress behaviors, which result from the plastic dihedral-angle transitions of Fig. 3.8, was
constructed. To characterize the relationship between the strain rate and the plastic
dihedral-angle behaviors, the loading—unloading deformation simulations were carried out
at the low strain rate of 10%/s with the same manner of 10%s. In Fig. 3.9, the total stress—
strain profiles and the dihedral-angle stress—strain profiles of only the curing-agent
monomers are presented. As the strain rate was decreased, the total virial stress also
decreased, as can be seen in the comparison data of Figs. 3.9 (a) and 3.9 (b). The overall
deformation trends of both epoxy systems, however, were similarly maintained. The stress
was linearly increased up to the strain of approximately 0.05, and it was nonlinearly
changed with the yielding of the epoxy systems. In particular, the stress of the

DGEBA/TETA system is higher than that of the DGEBA/DETDA system at 10%s under
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the plastic-strain range, as can be seen in Fig. 3.9 (a). An identical trend is observed in the

stress—strain profiles at 10/s.

It is also possible to compare the dihedral-angle stresses of the curing agent at two
different strain rates. As can be seen in Figs. 3.9 (¢) and 3.9 (d), the observed residual
dihedral-angle stresses in both of the strain rates at the end of the unloading are identical.
The value of the residual dihedral-angle stress of 10%/s is much higher, even though the
total virial stress was decreased by up to approximately 100 MPa with the decrement of the
strain rate. This observation implies that the increased relaxation time during the
deformation activated the plastic dihedral-angle transitions of the dihedral angles of Type

B.



3.2. Influence of the molecular structure of curing agent on

ratcheting behaviors

In this chapter, the cyclic loading behaviors of glassy epoxy polymers were
investigated by MD simulations considering the influence of the molecular structure of the
curing agents. This chapter aims to understand the contribution of the irreversible torsional
angle transitions on the macroscopic ratcheting behaviors of epoxy polymers by taking into
account the influence of strain rate. This chapter considers two different epoxy systems
consisting of different structures of curing agents (aromatic and aliphatic curing agents),
conduct compressive cyclic loading—unloading simulations, and monitor the macroscopic
ratcheting behaviors and stiffness variations. In order to correlate macroscopic ratcheting
behaviors with molecular conformation change, we separately observe the microscopic
transitions of the monomers of epoxy resin and curing agent by deriving structural

parameters.

3.2.1. Ratcheting behaviors and stiffness evolutions

® Ratcheting behaviors of epoxy systems considering different curing agents

The ratcheting behaviors of DGEBA/DETDA and DGEBA/TETA systems were
investigated and their stress—strain profiles and ratcheting strain evolutions are presented

in Fig. 3.10. As expected, the stress—strain profiles of both systems evolved as the cycles
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progressed. When both systems were compared, the stress—strain curve evolved much
rapidly in the case of the DGEBA/DETDA system, denoting that the plastic strain
prominently accumulated during the cyclic deformations. Correspondingly, the ratcheting
strain also rapidly increased in the case of the DGEBA/DETDA system (see Figs. 3.10(c)
and 3.10(d)). Visualization of this ratcheting discrepancy between two epoxy samples is
presented in Figs. 3.10(e) and 3.10(f); initially, those two epoxy systems did not exhibit
any difference in the cell size but, as the cyclic deformation proceeded, the height and width

became gradually different for the two epoxies.

The abovementioned discrepancy in the plastic strain accumulation distinctively
influences the sensitivity of frequency. The amorphous polymers exhibited clear rate
dependence concerning the evolution of the ratcheting strain; the high frequency results in
slow ratcheting strain evolution. The result for the DGEBA/DETDA system distinctively
follows previous observations, although deviation of the ratcheting strain is smaller under
a high number of cycles. This suggests that the conformational change in the epoxy cured
by DETDA, which induces macroscopic accumulation of the plastic strain, is severely
frequency dependent. However, the DGEBA/TETA system does not exhibit a clear
frequency dependence; the ratcheting strain was almost equal up to 250 cycles and the
ratcheting strain of high frequency (8.33 ns?) was rather large compared to the low
frequency (4.17 nst). This means that the structural change of the epoxy network was not
significantly influenced by the increased relaxation time in the case of the epoxy system

cured by TETA. This implies that the selection of an aliphatic curing agent like TETA is
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advantageous from the viewpoint of fatigue life of idealized epoxy.

The ratcheting regime also exhibited obvious differences for the two epoxy
systems. As far as the DGEBA/DETDA system is concerned, it displayed an entirely
different ratcheting regime; an abrupt transition in the slope was observed at about 80
cycles. Based on this, the range that denotes rapid increase of the ratcheting strain
transitioned into the second range that exhibits a minor increase (after the 80 cycles). Under
both ranges, the rate of increase of the ratcheting strain was almost consistent without any
transient range. This implies that the main molecular deformation mechanisms, which
dominate the evolution of ratcheting strain, might be different under each range. Further,
considering that these ratcheting behaviors were not observed in high-frequency conditions,
it seems that the main molecular deformation mechanism is severely rate-dependent. This
kind of transition of the ratcheting regime has also been observed for other classes of
materials. Within the considered range of the cycles, it seems that the DGEBA/TETA
system almost reached the threshold ratcheting strain. The instance that the system does
not exhibit a clear increasing trend for the ratcheting strain is sooner at low-frequency
conditions than at high-frequency conditions, while the ratcheting strain of

DGEBA/DETDA system increases continuously under both conditions.

@ Stiffness variations
Stiffness of the considered epoxies was examined based on the molecular

structures deformed by cyclic loads. The snapshot models at O (initial), 100, 200, 300, 400,
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and 500 cycles were tested to derive the elastic modulus. The stiffness results in the loading
direction (Ex«) are presented in Figs. 3.11(a) and 3.11(b), the averaged stiffness results in
the directions perpendicular to the loading (Eyy or E;;) are presented in Figs. 3.11(c) and
3.11(d), and the results of shear stiffness perpendicular to loading (transversal shear), Gy,
are presented in Figs. 3.11(e) and 3.11(f). To observe the general trend of the stiffness
variation, linear regression lines are simultaneously plotted in each figure. The stiffness in
the loading direction decreases sharply with the number of cycles in the case of the
DGEBA/DETDA system, while those of the DGEBA/TETA system does not exhibit
obvious trend. In particular, the DGEBA/DETDA system exhibited a large loss in the
stiffness even up to about 2 GPa after 500 cycles of loading—unloading, which implies
severe rearrangement of the internal structure and microvoid generation (free volume
evolution). Concerning the stiffness perpendicular to loading and shear stiffness, the
stiffness perpendicular to loading increased slightly or remained constant in both epoxy
systems and the shear stiffness exhibited a slightly increasing trend in both epoxy systems.

Similar to the ratcheting strain in Fig. 3.10, the DGEBA/DETDA system exhibited
strong frequency dependence regarding the stiffness degradation, while the DGEBA/TETA
system did not exhibit any clear trend. The stiffness in the loading direction decreased
rapidly in higher-frequency conditions compared to the that in the low-frequency condition.
The regression slope at high frequency was about 1.5 times of the slope in the low-
frequency condition. Similarly, the stiffness perpendicular to loading and the transverse
shear stiffness at low frequency exhibited relatively high values than those at high-
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frequency conditions.

® Accumulation of irreversible dihedral angle stress

The dihedral angle stress, which exhibited entirely different deformation regimes
according to the structures of the curing agent, was examined within the studied range of
cycles as shown in Fig. 3.12. It was confirmed that the residual dihedral angle stress in the
DGEBA/DETDA system after large strain loading—unloading simulations, which was
observed in our previous work?, was accumulated continuously during the cyclic
deformation simulations. This implies that the irreversible conformational change related
to the dihedral angle transitions continuously occurs proportional to the increasing number
of cycles even below the critical stress. As can be seen in the evolutions of the dihedral
angle stress of the entire epoxy system, the extent of the accumulation of the
DGEBA/DETDA system is much higher than that of the DGEBA/TETA system (see Figs.
3.12(a) and 3.12(b)). This can be attributed to the contributions of the conformational
change in the connecting part between the resin and curing agent of the DGEBA/DETDA
system. This could be easily confirmed by evaluating the dihedral angle stress of the curing
agent monomers; as can be seen in Figs. 3.12(c) and 3.12(d), the dihedral angle stress of
the curing agent monomers was only observed in the DGEBA/DETDA system while the

stress of the DGEBA/TETA system was nearly zero even after 500 cycles.

As far as the influence of the frequency is concerned, discrepancy in the frequency

dependence was observed in DGEBA/DETDA depending on the type of monomers. As can
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be seen in the dihedral angle stress of both epoxy systems, the accumulated stress at high
frequency was slightly higher than that at low frequency (see Figs. 3.12(a) and 3.12(b)).
However, the accumulated dihedral angle stress of the curing agent monomers was higher
at low frequency than in the high-frequency condition. It implies that the irreversible
folding near the connection atoms in curing agents requires more relaxation time than the
folding behaviors in resin monomers. It also suggests the importance of irreversible folding
in curing agent with a prolonged timescale that classical MD simulations cannot cover. In
the case of thee DGEBA/TETA system, there was no frequency-dependent behavior since

the curing agent cannot possess the stress related to dihedral angle transitions.

3.2.2. Microscopic structural analysis

In this chapter, microscopic structural characteristics were investigated by means
of analyses on orientation parameters, radius of gyration, and free volume to understand

the ratcheting behaviors and stiffness degradations at microscopic scale.

® Orientation parameter
Orientation order parameters of the monomer sets in epoxies were monitored to
identify the rearrangement of the microstructure during cyclic deformations. The concept

of the orientation order parameter of the epoxy network was borrowed from the definition
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of orientations of the backbone bonds of polymers. The orientation order parameter in a
certain direction is determined from the vector calculated by the maximum and minimum

coordinates in certain monomer employing the following expression:
S =1(3cosze -1) (3.4)
X 2 X 1 .

where cosé, is the directional cosine of each monomer in the epoxy network toward the
loading axis of the atomistic cell. The threshold value of the orientation parameter is -0.5,
0.0, and 1.0 for perpendicular arrangement to the loading axis, random arrangement, and

parallel alignment to the loading axis, respectively.

We investigated the orientation parameters of monomers of the epoxy resin,
curing agent, and the entire system to individually observe the rearrangement of each
monomer set. The results are presented in Fig. 3.13; Figs. 3.13(a) and 3.13(b) show the
evolutions of the orientation parameters at high frequency and Figs. 3.13(c) and 3.13(d)
show the evolutions of the orientation parameters at low frequency. The results revealed
that the monomers of the epoxy resin were prominently aligned perpendicularly to the
loading direction within both epoxies for all considered frequencies, affecting the
macroscopic ratcheting strain (see the representative conformational change of resin
monomer in Fig. 3.13(e)). In particular, it seemed that the change in the orientation
parameter of the resin monomers account for the alignment of the entire epoxy system of

DGEBA/DETDA, since the orientation order parameter of the DETDA did not exhibit
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obvious reorientation. It is natural considering the small molecular structure of the curing
agent, DETDA. Regarding DGEBAJ/TETA, similar to DGEBA/DETDA, the influence of
the alignment of the resin monomers was dominant in plastic deformations at high
frequency. However, it was confirmed that the contribution of the curing agent on the
orientation parameter of entire system increased under low frequency due to the prolonged
relaxation time, which can be confirmed in Figs. 3.13(b) and 3.13(d). It suggests that the
involvement of the curing agent in the stress possession (other than dihedral angle stress)

increased with increased relaxation time.

® Radius of gyration

To intensively observe the overall positions of the epoxies, radius of gyrations of
the resin monomers were additionally investigated here. The radius of gyration R, of
each system was calculated by the weight of atomic mass and deviation of the position of

each atom and center of mass of system as:

L

>m

RQZ = Zmi I:(Xi - Xcm)2 + (y| - ycm)2 + (Zi - Zcm)zj! (35)

where m,(x,V:,z),(x

cm? ycm ! Zcm

) denote the mass of the constituent atom and its position

vector and the position vector of the center of the mass of system, respectively. We

monitored the transition of R, during the whole cyclic deformations and the results are

presented in Fig. 3.14. Similar to the trend for the orientation parameter, it was observed
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that the chain segments were redistributed and rearranged perpendicularly to the loading
direction (x—axis). The polymer segments were contracted in the loading direction and
expanded along the y- and z-axis. The degree of these molecular rearrangement exhibited
a discrepancy between the two epoxies, following the ratcheting strain evolution in Fig.
3.10 exactly. Under the low frequency, the difference of redistribution of epoxy network
was more marked, implying that the molecular mechanism causing low ratcheting

resistance was intensely activated by the increased relaxation time.

® Free volume

It is of importance to intensively observe the evolution of free volume considering
their huge influence on the mechanical properties especially for the modulus. Thus, in this
part of the work, the free volume of fully loaded and unloaded states in each cycle was
monitored during the cyclic deformations and the results are shown in Fig. 3.15. The free
volume was estimated by the volume excluded by the occupied volume of the polymer
chains. The occupied volume is generally defined by the van der Waals surface and solvent
surface, which is determined by the probe rolling over the van der Waals surface. To
calculate the free volume, solvent probe radius of 2 A and van der Waals radius of 9.5 A
were used for the description of the solvent surface and van der Waals surface. The derived
evolutions of the free volume are presented in Fig .3.15.

The results exhibit quite complex frequency dependence depending on the
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molecular structures of the curing agent. The free volumes of DGEBA/DETDA increased
more sharply at low frequency up to about 80 cycles and then decreased and was constant.
After that, the free volume evolutions of DGEBA/DETDA exhibited clear frequency
dependence; the free volume at lower frequency was much lower than that at higher
frequency. Regarding the free volume evolutions of DGEBA/TETA, the free volumes of
two frequencies were at almost same values up to around 300 cycles. After that, the free
volume at high frequency decreased abruptly in both loading and unloading states, showing

a reverse trend compared to that of DGEBA/DETDA.

3.2.3. Relationship between epoxy structure and ratcheting

behavior

The ratcheting behaviors of the highly crosslinked epoxy polymers were studied
considering the influence of the molecular structures of the curing agents. The studied
epoxy polymers exhibited significantly different ratcheting characteristics coming from the
different roles of the curing agent in deformation accommodations. The ratcheting strain
was highly accumulated within the epoxy cured by DETDA, exhibiting low ratcheting
resistance. The distinct ratcheting regime was observed; the rate of the ratcheting
accumulation was fast in early stage of the cyclic deformations and converged in both
epoxies. The influence of the frequency was also estimated considering the frequencies of
8.33 nsand 4.17 ns’?, revealing that the epoxy cured by DETDA exhibited huge frequency
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dependence while the epoxy cured by TETA does not exhibit clear frequency dependence
in ratcheting strain evolutions. The stiffness evolutions were also studied by observing the
stiffness along the principal axis of the atomistic cells and shear stiffness. The stiffness
along the loading axis is highly decreased in the epoxy cured by DETDA as the cyclic
deformation proceeds, while the stiffness of epoxy cured by TETA does not exhibit clear
degradation of modulus. The stiffness perpendicular to loading and shear stiffness
transverse to loading moderately increase during the cyclic deformation in both epoxies.
The applied deformations result in the stress accumulations induced by the irreversible
conformational transitions of dihedral angles in the vicinity of benzene rings. The dihedral
angle stresses of both epoxies were obviously accumulated by the involvement of the epoxy
resins. But, it exhibited entirely different deformation accommodation trend when only
observing the curing agent that DETDA irreversibly accommodate the applied stress in
epoxy network while TETA only stored the applied stress by reversible molecular behaviors.
To understand the above ratcheting behaviors and stiffness transitions, the
microscopic structures of the epoxies were observed by measuring the orientation order
parameters, radius of gyrations, and free volumes during the cyclic deformations.
Accordingly, we concluded that;
® The curing agent TETA play a different role in the deformation accommodation
compared to DETDA, leading to the possibility of high ratcheting resistance of
DGEBA/TETA; DETDA easily transfer the applied stress into the epoxy resin
causing alignment of resin monomers perpendicularly to the loading, while
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TETA stores the applied stress by self—deformation.

® The observations on the orientation order parameters revealed that the increase
of the ratcheting strain significantly originated from the alignment of the resin
monomers perpendicularly to the loading direction. DETDA does not contribute
to the ratcheting strain due to its small molecular size. TETA requires increased
relaxation time for its contribution on ratcheting strain accumulations.

® Rapid increase of ratcheting strain in early cycles of the deformation is correlated
with the alignment of the resin monomers and corresponding abrupt increase in
free volumes. Subsequent slow increase of the ratcheting strain regime stems
from the gradual free volume decrease by the overall chain relaxations of epoxy
network.

® Stiffness degradation along the loading direction in DGEBA/DETDA is
significantly influenced by the free volume evolutions. In particular, the large
stiffness reduction at high frequency is arising from the slow decrease in free
volume rather than chain reorientation.

® Selection of the curing agents is of significant importance in fatigue life of epoxy
polymers due to their role in load transfer to resin monomers. In particular, the
curing agents that can independently possess the applied stress is advantageous
for the ratcheting resistance and stiffness evolutions.

It needs to be noted that the present study focused on the idealized structure of the epoxy
polymers and does not consider the influences of the chain scissions and initial microvoids,
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which could be critical to the fatigue lives of the amorphous polymers. These issues needs
to be studied with the aid of large time and spatial scale simulations which cannot be
achieved by full atomic simulations. Thus, the future investigation will concentrate on the
development of the framework that can quantitatively predict the ratcheting behaviors,

simultaneously considering abovementioned limitations of present study.
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3.3. Summary

The deformation mechanisms of highly-crosslinked epoxy polymers have been
investigated using MD simulations in consideration of curing agents with different
structures. Structurally different epoxy unit cells were prepared in an MD environment
wherein the following different curing agents were considered: aliphatic and aromatic.
Compressive loading—unloading simulations were performed with the constructed unit
cells at temperatures less than 300 K to observe the local stress, energy, and geometric
properties.

During the deformations, the nonbonded interactions and dihedral-angle
variations served as important internal-potential parameters that largely contributed to the
energy and stress behaviors of the epoxy polymers. In particular, concerning the plastic
behaviors under the large deformations, irreversible stress behaviors of the dihedral-angle
parts in the monomers of the curing agents were observed in the aromatic-cured epoxy
system, whereas reversible dihedral-angle stress behaviors were shown in the aliphatic-
cured system. To understand these plastic dihedral-angle stress behaviors, a geometric
analysis was carried out for which the RAM values of local sets of atoms were derived.
This geometric analysis revealed that the benzene rings showed a rigid low mobility during
the deformations, while the polymer chains, which consist of N and carbons, showed a high
and flexible mobility. These results suggest that an irreversible dihedral folding must be
present near the benzene rings and their linked chains.
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Based on the characterized geometric properties, two dihedral-angle types that are
composed of the carbons in benzene were selected from the dihedral-energy evolutions at
300 K. To observe the intrinsic dihedral-angle behaviors at the microscopic scale, identical
deformation simulations were performed at 1 K with an intensive monitoring of the plastic
dihedral-angle transitions of the selected types. Abrupt plastic dihedral-angle transitions
were observed near the yielding point of the epoxy polymers and this is physically identical
to the classical yielding theory. Consequently, the plastic dihedral-angle transitions that
occur near the benzene rings, which are generally observed in aromatic-cured epoxy
systems, are important in the elastoplastic-deformation mechanisms of epoxy polymers.

The cyclic loading behaviors of glassy epoxy polymers were investigated as an
extended issue on influence of the curing agent on plastic deformation, by MD simulations
considering equal molecular structures of the curing agents in Chapter 3.1. This chapter
aims to understand the contribution of the irreversible torsional angle transitions on the
macroscopic ratcheting behaviors of epoxy polymers by taking into account the influence
of strain rate. We consider two different epoxy systems consisting of different structures of
curing agents (aromatic and aliphatic curing agents), conduct compressive cyclic loading—
unloading simulations, and monitor the macroscopic ratcheting behaviors and stiffness
variations. In order to correlate macroscopic ratcheting behaviors with molecular
conformation change, we separately observe the microscopic transitions of the monomers

of epoxy resin and curing agent by deriving structural parameters.
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Fig. 3.1. Comparison of the radial distribution function (RDF) of groups of: (a) curing

agents and (b) an epoxy resin. The RDF values were derived between all of the atomic pairs

in the curing agents and the epoxy resin.
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DGEBA/diethyltoluenediamine (DETDA). The deformation energy is accommodated by
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Fig. 3.5. Derived relative atomic mobility (RAM) evolutions with the applied strain in
loading-unloading simulations: (a) the diglycidyl ether of bisphenol A
(DGEBA)/triethylenetetramine (TETA) and (b) the DGEBA/diethyltoluenediamine
(DETDA) systems. The RAM profiles for the atoms of the curing agents, the epoxy resin,
and the inherent benzenes were calculated. In (a) and (b), Cp denotes the benzene atoms.

(c) An illustration of the mobility characteristics of the considered curing agents.
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direction with increasing cycles: (a) DGEBA/DETDA, (b) DGEBA/TETA. Corresponding
evolutions of the ratcheting strain: (c) DGEBA/DETDA, (d) DGEBA/TETA. Visual
illustration for the ratcheting strains of those two epoxies at 8.33 ns is presented in (e), (f).
Influence of the frequency condition was considered. The profiles at the high frequency
(8.33 ns?) are represented by deep blue and green lines in (a), (b) and by solid line in (c),
(d), while those at the low frequency (4.17 ns) represented by light blue and green lines

in (a), (b) and by dotted line in (c), (d).
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DGEBA/TETA. The results at high frequency and low frequency are represented in all

figures by red and blue symbols, respectively.
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4. Methods to overcome timescale limitations of classical

molecular dynamics

In this chapter, timescale extension of the classical MD simulations was
considered via two approaches; the master plot for the yield stress was predicted by using
the equivalence between time and temperature in deformation behaviors of polymers in
Chapter 4.1; the Argon theory and Cooperative model were adopted to estimate quasi—

static yield stress and construct the master plot for the yields in Chapter 4.2.

4.1. Prediction of quasi-static constitutive laws by temperature—
accelerated method

4.1.1. Theoretical background

To account for the quasi-static mechanical behavior, which is not available in
classical MD simulations, we also utilize the concept of temperature-accelerated dynamics
(TAD). According to Eyring’s model and extended models*’#9, it is revealed that negative
temperature dependency and positive strain rate dependency are directly associated with
the yielding of glassy polymers. Therefore, if a proper quantitative characterization is
enabled between the strain rate and yield strength, and between the temperature and yield
strength, the limitation in enlarging the time scale required to consider the slow strain rate
within the available Eyring plot can be overcome. The TAD model enables the acceleration
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of the transition from one state to other states by incorporating thermal activation energy
to promote the transition. In combination with transition state theory and the concept of
TAD, the inherent time scale limitation of MD simulations can be overcome by elevating
the simulation temperature.

As a representative model for describing the polymer yield on the basis of
transition state theory, the Ree-Eyring model*” (modified from the Eyring equation for yield

stress) was suggested as follows:

% -A -(ln(zcag) +E—1‘fj+ A, -sinh-l(cﬁgexp{%}J, (4.1)
where o, T, k,and ¢ are the yield stress, temperature, Boltzmann constant, and strain
rate, respectively. Q,(i=«, f8) is the activation energy corresponding to the two rate
processes of « and g, and A and C, are activation constants. In this model, the
strain rate and temperature dependencies on the yield stress are described quantitatively by
the activation parameters. While Eyring’s initial equation (which fails to describe the yield

behavior across a broad range of temperatures and strain rates) considered one rate process

to predict the yield stress, the Ree-Eyring model can accurately predict the nonlinear

o
relationship between ?y and log & . To accomplish this within a broad temperature

range, the yield stress is defined in Eq. (4.1) by introducing the additional nonlinear strain

rate-dependent process g via an arc-hyperbolic sine function.
In addition, Bauwens-Crowet et al.’® introduced shifting factors (S, and Sy) on

the Ree-Eyring model following the linearized Arrhenius equation: :
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(4.2)

where T, is the reference temperature used to determine the shifting factor, which in
turn is used to determine the variation in strain rate and yield strength at temperature T. To
utilize Eq. (4.2) in predicting the strain rate-yield strength relationship of glassy polymers
at various temperatures, one master curve is obtained from experimental tension or
compression tests at the reference temperature. By measuring the activation energy from
the constructed curve, the shifting factors can be readily determined!®°, Then, according

to the values of the two shifting factors and their ratio, the curve of the reduced yield stress

O
?y versus logé is extrapolated from the master curve'®, as shown in Fig. 4.1. In our

simulation study, instead of measuring the activation energy, we propose a novel approach,

which uses the slope of a reduced yield profile to determine the shift factor.

4.1.2. Investigation on deformation characteristics and physical

properties

® Glass transition temperature
The main idea of Chapter 4.1 is to accelerate the transition event by elevating the

temperature conditions in deriving the desired quasi-static yield stresses. However, it
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should be noted that the change in material properties caused by the phase transition should
not occur within the elevated temperature range. Thus, in this chapter, the glass transition
temperature (Tg) of the epoxy system is estimated from the density-temperature
relationship by employing the same cooling-down method used in our previous study**¥.
In particular, after the structural relaxation at 300 K and 1 atm, the unit cell is equilibrated
at 600 K to reach the rubbery state under NVT and NPT ensemble simulations for 2 ns and
4 ns, respectively. Then, with a constant cooling down rate of 0.04 K/ps, the temperature
of the unit cell is decreased to 100 K while monitoring the change of specific volume with
respect to the variation of temperature. The glass transition temperature is predicted from
the intersection point of the two linearly fitted lines of the specific volume-temperature
profile, as shown in Fig. 4.2. By extending the two linear fitted lines for the glassy and
rubbery states, the glass transition region can be determined from the intersection point
located in the temperature range between 480 K and 500 K, which is in a good agreement
with the experimental results®. Considering the transition region, the available temperature

for the glassy state is set to 450 K in this chapter.

® Stress-strain responses for glassy state under different strain rates and
temperatures
Stress-strain profiles under different strain rates (10*/s, 10%s, and 10%/s) and
temperatures (300 K, 350 K, 400 K, and 450 K) were derived from MD simulations, as
shown in Figs. 4.3(a—c). All the stress-strain curves show a similar material response in
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which stress increases linearly in the elastic range with increasing strain, and the increasing
rate of stress is noticeably decreased. The studied material exhibits the elasto-plastic
behavior without distinct strain softening, which differs from that of non-crosslinked
thermoplastic polymers. In general, in the stress-strain response of the thermoplastic
sample, distinct softening and hardening regions have been observed in other MD studies?®.
This difference can be attributed to the constrained chain mobility of the thermoset polymer
generated by the crosslinked network, which hinders the softening of the polymer chain
after the yield point.

As expected, the temperature and strain rate dependencies on the overall stress-
strain profiles are well showcased in all profiles. As shown in Figs. 4.3(a—c), the overall
stress decreases with increasing temperature and decreasing strain rate, which agrees with
previous studies!®1517-19212239-41 ‘Thijs result implies an important physical insight in MD
simulations; namely, that both temperature and strain rate have an equivalent effect on the
mechanical response of an amorphous polymer (from the viscoelastic point of view). In
other words, the MD results certify that as a result of the equivalence of these two physical
variables, the time scale (which is difficult to increase up to the quasi-static level in
simulations) can be adjusted by changing the temperature; this agrees well with the
experimental literature.

The exchange of these two physical variables can be understood from the
perspective of the molecular movement of polymer chains. The elevated kinetic energy
(which results from the increase of temperature) induces more vigorous molecular
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movement, which leads to the rapid structural rearrangement of polymer segments during
the deformation. Similarly, as the strain rate decreases, polymer chains have more sufficient
relaxation time to transform their internal structure from one state to another equilibrium
state in the potential energy surface, leading to the same rearrangement. This crucially
implies a pathway to overcome the limitation of MD simulations regarding their relatively
short time scale (compared to the experimental counterpart). In other words, MD
simulations with an elevated temperature generate a higher thermal activation energy that
can compensate for the insufficient relaxation time of polymer chains caused by the

inherently high strain rates.

® Yield criterion

The distinct criterion for determining the yield point must be established to obtain
the clear tendency of yield stress change from MD simulations. The yield of an amorphous
polymer occurs when the polymer chain segments start to plastically flow to overcome the
energy barrier for the local chains. Once the yield point is reached, various internal
parameters such as dihedral angle, free volume, and angle are changed irreversibly as
reported by previous studies®?’. Moreover, the deformation behavior of post-yield range
of epoxy polymer can be dominated by the microcracking due to brittleness of epoxy
networks. Due to the complex contribution of internal parameters, amorphous thermoset
polymers are generally characterized by an unclear yield point (in contrast to crystalline
materials)?.
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Thus, in order to determine the yield stress from the stress-strain curves of glassy
polymers, we fitted the stress-strain data with a polynomial curve using a least-squares fit.
Raw stress-strain data obtained from MD simulations (solid squares) are presented in Fig.
4.4 along with the fitted polynomial curve (purple solid line). Then, the fitted polynomial
curve was fitted again by employing the linear elasto-plastic model where the stress
behavior is described as two bilinear lines (elastic and linear plastic region). From the fitted
linear elasto-plastic model, the Young’s modulus, yield stress, and hardening parameters
were determined as shown in Fig. 4.4. In the evaluation stage, we defined the residue of
the stress as follows:
r(o,,&,K)=c—- 157 (q,,&,K), Minimize|r| (4.3)
where T5° and o are the linear elasto-plastic function and the stress of the epoxy in
the polynomial fitted curve, respectively, and K is the hardening parameter. The yield

stresses for each temperature and strain rate are provided in Table 4.1.

4.1.3. Scheme for prediction of quasi-static solutions

® Nonlinear characteristics of yield and their utilization with the MD result
Similar to the stress-strain responses, the derived yield stress values given in Fig.
4.5(a) demonstrate the temperature and strain rate-dependent characteristics; the yield
stress linearly decreases with decreasing logarithmic strain rate and increasing temperature
for the conditions considered in this work. This linearly decaying trend of yield stress in
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the computational environment corresponding to the variation of temperature was
previously observed by Vu-Bac et al.? using MD simulations. More specifically, they
obtained the yield stress of epoxy for the theoretical value of strain rate of 5x10%s via MD
simulations by employing the Argon theory, which was based on the assumption that the
linearly decreasing trend of the yield stress with respect to temperature at high strain rates
can be equally observed at the quasi-static conditions.

However, it should be noted that such linearity in the temperature-yield strength
relationship cannot be guaranteed experimentally at extremely low temperatures where the
molecular movements are severely frozen. This fact leads to the nonlinear variation of the
yield stress with respect to the broad range of temperatures and strain rates. Bauwens-
Crowet et al.*® focused on this phenomenon and developed an experimental model for the
yield of amorphous polymers by extending Eyring’s model. In order to illustrate the
yielding behavior at extremely low temperatures (from —150 °C to 50 °C in work of
Bauwens-Crowet et al.'%), it was assumed that the yield at this condition involves two
independent rate processes, which have already been introduced in Eq. (4.2). In line with
this approach, a cooperative model modified from Eyring’s equation was also used to
describe the yield stress-temperature relation of glassy polymers at a wide range of
temperatures by Fortherigham and Cherry*. In their results, the same tendency was
observed in which the yield stress nonlinearly varies over the broad range of strain rates
and temperatures. This provides an important physical insight: namely, that the yield stress
should vary nonlinearly over the broad range of strain rates; likewise, the yield stress varies
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nonlinearly with the variation of temperature. Therefore, nonlinearly varying yield stress
according to the change of strain rate and temperature is obvious in the deformation kinetics
of amorphous polymers, and also provides the logical basis for the TAD using a changeable
shifting factor, which is proposed in this study for the first time.

To take into account the nonlinear characteristics of yield stress according to the

temperature and strain rate on the environment of MD simulations, the profile for the

reduced yield stress % versus logé¢ is plotted in Fig. 4.5(b) from the same data of Fig.

4.5(a). The slope of the reduced yield stress is also derived over the considered temperature
conditions of this study in Table 4.1. The slope decreases with the increasing temperature
from 0.128 at 300 K to 0.064 at 450 K. This decreasing slope of Fig. 4.5(b) is natural
considering the abovementioned linear trend depicted in Fig. 4.5(a), since each slope is
determined by the inverse of the given temperature.

Considering the abovementioned nonlinear varying trend of yield stress with
strain rate, which is represented in the Eyring plot (Fig. 4.1), the slope of the reduced yield
stress will steadily decrease as the strain rate decreases to the quasi-static level. Under the
quasi-static rate conditions, the change of slope with respect to temperature is smaller than
that of the high-rate conditions'®!°, since the sufficient structural relaxation time for
inducing the viscous flow of polymer segments is guaranteed to initiate the yield, thereby
resulting in low stress. Thus, the slope of reduced yield under quasi-static conditions must

be lower than that under computational rate conditions. Furthermore, this trend can be
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confirmed by comparing the experimental results'®*® with Fig. 4.5(b).

The obtained data imply that the slope of the reduced yield measured at the quasi-
static conditions can be reached at high simulated strain rates, if the temperature is
sufficiently elevated using the variation trend of the reduced yield with respect to
temperature. In other words, the slope of the reduced yield (which is decreased by elevating
temperature in MD simulations) is comparable with that obtained under the quasi-static
conditions. In this chapter, owing to the equivalence between temperature and strain rate,
changeable shift factors are obtained from the MD simulations by taking into account the
nonlinear characteristics of yield stress. Subsequently, quasi-static yield can be estimated

from the calculated shift factors.

® Convergence of yield stress in lower strain rate range

To robustly predict quasi-static yield stress by constructing Eyring plot, the
convergence of the reduced yield stress — strain rate plot should be guaranteed when the
yield points at the high temperature range shift toward the lower strain rate. Accordingly,
the slope of yield points at 300 K and higher strain rate range (higher than 108/s) should be
sufficiently decreased to the level at the experimentally lower strain rate range that is
possibly determined from the yield points of 450 K. To confirm the convergence at 450 K,
therefore, yield stresses were further examined with the various ranges of strain rates as
given in Fig. 4.6. As mentioned in the previous section, the nonlinear relation between the
yield stress and logarithmic strain rate is observed. Moreover, as far as the slope of yield
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stress with logarithmic strain rate is concerned, the data points can be separated into three
groups (blue, green, and red points in Fig. 4.6). Unlike with lower temperature conditions,
in a higher temperature range, the yield stresses of 450 K clearly show a relatively faster
convergence with decreasing strain rate due to the contribution of temperature on the
relaxation of polymer chains.

Thus, if the blue points in Fig. 4.6 (with a strain rate of computational scale at a
higher temperature) are properly shifted toward the lower strain rate region that
corresponds to an experimental strain rate range at the room temperature, the quasi-static

yield stress can be reasonably obtained.

® Shifting method and quasi-static (low strain rate) solution

In this section, a specific methodology for predicting quasi-static yield stress from
high strain rate conditions is proposed for the first time by carefully considering the
viscoelastic nature of amorphous polymers. The limitation of MD simulations regarding
the time scale can be overcome by elevating the temperature based on the similarity of the
slope of reduced yield between the quasi-static conditions and high-rate, elevated-
temperature conditions. To take into account the nonlinear varying of yield stress with
temperature and strain rate, the shifting method based on the ratio of changeable shifting
factors are introduced in this chapter. This method is based on the sequential shifting
processes using the data sets in the elevated temperature conditions with the iterative
algorithm to achieve the appropriate shifted positions of the given data sets.
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The proposed method considers the involvement of multiple rate processes in the
yield behavior of amorphous polymers, which means that the slope of the profile for the
reduced yield stress versus logarithmic strain rate is constantly decreased with the
decreasing strain rate in the MD simulations. Other researcher also observed the multiple
rate processes regarding the polymer relaxation using the MD simulations*®; Capaldi F. M.
et al. carried out compressive tests using united atom model and observed nonlinear yield
behavior with different temperatures. They indicated that the nonlinear feature observed in
MD simulations is a clear evidence of multiple rate processes in polymer yield behavior.
Based on the assumption that the yield behavior of amorphous polymers under the wide
range of strain rate is significantly involved with the multiple rate processes, the changeable
shifting factor concept are introduced in the present work. Herein, to take into account the
multiple rate processes in polymer yielding behavior, the correlation among yield stress,

strain rate, and temperature is described as an exponentially decaying function:
O-y . .
Tza-exp(b-logg)+c-logg+d, (4.4)

where, a, b, ¢, and d are fitting coefficients. Compared to the Ree-Eyring model in Eq .
(4.1), the present model is composed of exponential terms instead of using arc hyperbolic
sine function to consider the nonlinear nature of multiple rate processes. The linear term in
Eq. (4.4) is to illustrate the extinction of nonlinearity in yield stress for the extremely low

strain rate condition, which is similar to the Ree-Eyring model.
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Detailed description to predict quasi-static yield using the iterative regime is
shown in Fig. 4.7. The present acceleration method is based on the sequential shifting
concept; the data points at a higher temperature can be shifted sequentially to a lower strain
rate range using the shifting factor ratio calculated from the existing fitted curve (shifting
factors are derived by Eq. (4.2)). In the shifting procedure, the selection of data points
require a profound consideration; the proper data points showing the linearly decaying
trend need to be determined which represent the same rate processes.

Herein, once the data points set is shifted to the existing fitting curve, the constant
slope trend should be maintained to represent the same rate processes. The data points in
the shifted condition were derived by minimizing the deviation between the shifted point
at the highest strain rate and existing fitting curve using the least square method.

However, the accuracy would not be guaranteed in the first shifted points since
the existing fitting curve may not be able to properly predict the yield stress of the lower
strain rate range. Thus, the shifting of data sets should be performed iteratively with an
appropriate modification of the prediction curve. In the present study, the existing fitting
curve was iteratively updated using the shifted data sets to describe the nature of rate
process of considered temperature condition. Among the revised candidates of fitting curve,
the most appropriate curve was determined to show a minimum deviation between the
shifted points and candidate curve. This iterative modification of fitting curve was
conducted for at least 30 times at each elevated temperature condition. Finally, the quasi-
static yield stress was properly predicted through the sequential shifting of yield in higher
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temperature conditions based on the iterative modification of prediction curve.

When it comes to applying the present method, the following features need to be
considered for the robust and accurate estimation. First, when selecting the data set, the
linearity should be guaranteed to demonstrate the same nature of rate process. Plus, the
prediction region should be magnified sequentially from the initial region where the
deviation of nature in the rate process is minimal. Moreover, the more proper estimation of
yield stress will be possible with the more yield stress points, especially for the region
showing larger deviation in the nature of rate process. In this regard, the validation of
proposed method is conducted at the end of section by the comparison between the full and
limited data sets.

Yield points at 300 K were derived from 108/s to 10*/s at the interval of 10%%/s
and fitted with Eq. (4.4) as shown with grey dash line in Fig. 4.7(a). Based on the previous
shifting factor method of two rate processes'®*°, each shifting factor ratio for the data points
of 350 K is derived and represented by the grey solid lines in Fig. 4.7(a). Taking these solid
lines as a guideline, the data set was shifted while maintaining its original slope. As can be
seen in Fig. 4.7(a), the first shifted points (grey square points) are deviated from the initial
prediction curve (grey dash line). It means that in fact, the initial prediction curve is not
enough to predict the yield of lower strain rate range. Thus, the initial prediction curve is
modified with the shifted points as shown with blue dash line in Fig. 4.7(a). Following the
iterative update process with the data set of 350 K, the most appropriate curve is determined
with the final shifted points (red circle points) and shown with blue solid line in Fig. 4.7(a).
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Comparing with the previous prediction curve shown with grey dash line in Fig. 4.7(a), the
updated curve displays quite different quasi-static yield stress in a lower strain rate range.
With the same manner, the data points in 400 K and 450 K were shifted and the fitting
curve was iteratively updated.

One thing to be noted is that the data points for 450 K was divided into two groups
depending on their slope as represented in Fig. 4.6. Since the change in yield stresses with
the strain rate is nonlinear in this case, we separated the obtained raw data into two groups
having different slope respectively and then applied the shifting process for each group.
From the present shifting method, the profile for the shifted yield stress along the
logarithmic strain rate is constructed at the target temperature (300 K) in Fig. 4.8(a). With
the shifted strain rate condition, the ultimate tensile strength is also plotted in Fig. 4.8(b).
Interestingly, the ultimate tensile stress decreases more rapidly than the yield stress. This
behavior is likely to be attributed to the more relaxed state of the post-yield region. Lastly,
as shown in Fig. 4.8, the two predicted values show a good agreement with the experimental
results, which are represented by the dotted line. From the present model, we expect that
the effect of physical parameters influencing the yielding of amorphous polymers as
reported in the previous literature can be further considered, such as crosslinking ratio®®,
crosslinking method®, and system size®.

To confirm the robustness of proposed method, we compared the predicted results
from the full data sets (identical data sets with the Fig. 4.8(a)) and limited data sets. The
following data sets for yield stresses are considered for the case of using limited data sets:
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10%/s, 108/s (350 K), 10%/s, 10%/s (400 K), and 10%%/s, 10%s, 10%/s, 107/, 105%/s (450 K).
In total, four points are omitted for the limited data set to compare with the result of using
the full data sets. Although the data points are omitted, the slope of each data set at reduced
yield versus logarithmic strain rate profile is maintained without showing a significant
deviation. The predicted yield stresses with the strain rate for the cases of full data sets and
limited data sets are given in Fig. 4.9, showing almost identical trend. Only minor
difference (about 2 MPa) is observed under the quasi-static strain rate range. The
application of many intermediate data points to the shifting procedure can possibly improve
the accuracy of yield stress evolution. As far as the overall trend in yield stresses is
concerned, the omission of intermediate points in the data set does not hinder the prediction
of quasi-static yield and overall yield evolution with varying strain rate when the linearity
is ensured in the limited data set. Above all, the most important point in predicting of quasi-
static yield is that the overall accuracy can be substantially enhanced by deriving more

yield stress points which can be shifted to the quasi-static strain rate region.

® Quasi-static (low rate) stress-strain equation via established yield model

The quasi-static mechanical response can be estimated via the suggested yield
model by considering the quasi-static elastic and hardening law. Since the elastic modulus
generally varies with the strain rate, as reported in previous studies!*®#’, the quasi-static
elastic modulus must be determined in an MD environment in order to establish the stress-
strain profile. Therefore, the modulus under the reference state (300 K) without any rate
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effect was obtained from the Parrinello-Rahman fluctuation strain method in Chapter 2.1.
To describe the plastic response of the epoxy polymer, Ludwick’s hardening model is
adopted according to the following form:

o,=0, +h(")", (4.5)
where 0,,h, £°,andn are the von Mises’s effective stress, strength coefficient, effective
plastic strain, and hardening exponent, respectively. As well as the elastic modulus, the
hardening of glassy polymers under 10%%/s, 10%s, and 10%/s conditions (at 300 K) also
indicates the rate-dependent characteristics, as reported by previous studies®°. The values
of h and n rapidly decrease as the strain rate decreases to 10%/s, indicating that the slope of
the plastic strain range in the stress-strain response significantly decreases. When
considering the monotonically hardened plastic behavior of thermoset polymers, this trend
also can be explained in terms of the yield model by noting that the distinction between the
ultimate tensile strength and yielding quickly becomes constant as the rate decreases as
shown in Fig. 4.8(b). In this manner, quasi-static h and n values were determined via
exponential fitting by reflecting the rapid convergence.

Finally, the uniaxial tensile behavior of the epoxy polymer was derived, as shown
in Fig. 4.10. The quasi-static yield stress, yield strain, Young’s modulus, and hardening
parameters (h, n) were determined to be 48.12 MPa, 1.52%, 3.17 GPa, 40.81, and 0.44,
respectively. The proposed model shows good agreement with the experimental stress-
strain profiles® . As indicated by Fig. 4.10, the quasi-static yield strain is found to be
about 1.52%, which represents a drop by about 4-5% (as compared to the computational
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rate conditions) and is attributed to the strain rate dependency on the yield strain as reported
in previous study®3. In addition, the suggested quasi-static model can describe the rate effect
by considering the rate-dependent elastic and hardening law, which can be derived from

the exponential form.
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4.2. Prediction of quasi-static constitutive laws by classical

yielding theory

In this chapter, considering the drawbacks of the existing methods that overcome
the timescale limitations, the method using 0 K solution of Argon’s theory to derive quasi—
static yield stress has been further developed to represent the nonlinear characteristics of
the polymer plasticity by additionally taking into account the influence of the hydrostatic
pressure and crosslinking density. The cooperative model is intensively adopted to
represent the nonlinear characteristics of the yield stress with varying strain rate and predict
guasi-static solution under different temperature using a glass transition temperature as a

criterion for the extinction of the internal yield stress.

4.2.1. Prediction of quasi-static yields and construction of master
curve
® Glass transition temperature

Similarly to Chapter 4.1, the glass transition temperature (Tg) of epoxy polymers
was estimated from density—temperature relations for the prediction of quasi—static yields,
since T4 displays an substantial correlation with the characteristic stress such as yield stress
as also described in classical yielding theory*. In order to derive the density—temperature
profile, the fully relaxed unit cell was annealed up to the temperature of 450 K by NPT

ensemble simulations for 5 ns where the epoxy belongs to rubbery state. Then, the unit cell
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was cooled down with the rate of 0.01 K/ps by monitoring the density and temperature.
The simulations were conducted considering three different crosslinking ratio, 75%, 80%,
and 85%, which are the crosslinking conditions of the models in Table 4.2. The derived
density—temperature profiles are shown in Fig. 4.11. The Ty is determined as a temperature
where the slope of the profile is abruptly changed. Note that the linear lines of Fig. 4.11 is
fitting lines based on the determined temperature. Although the extent of the cure
influences the determination of T,>%%, the predicted density—temperature profiles under
the considered range of crosslinking density do not show clear variation of Tgaccording to
the crosslinking density. It might result from the inherent variation of density with the
temperature fluctuation, prohibiting the exact prediction on subtle change of Ty
corresponding to the 10 % change of the crosslinking density. Thus, in this study, the T of
80 % crosslinked model 375 K is used as representative temperature for the prediction of

the quasi-static yield solutions.

® Derivation of quasi-static solutions for yield stress

For the construction of quasi—static constitutive laws of epoxy polymer, the quasi—
static yield stress needs to be identified from the MD simulations considering various
temperature, pressure, and crosslinking densities. In this Chapter 4.2, the quasi-static
solutions are derived using the 0 K yield stress of Argon theory following the details of
previous research?'. The strain rate is expressed by Arrhenius form with a critical free
enthalpy, which is required to occur the yielding event, as follows:
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AG”
=0 Xp[ ka] (4.6)

where ,,AG",k, denote pre-exponential factor (10% s), critical free enthalpy, and
Boltzmann constant. The change in free enthalpy of the polymer chain due to the double

wedge disclination is written as follows:

2.3 2.3 5
G- Bnuar”  9mw’r (Lj —7z,uco2r3££, “.7)
16(1-v) 8(1-v)\z

ur
where s, ,r,v,7 represent shear modulus, kinking angle, molecular radius, Poisson’s
ratio, and critical stress respectively. The free enthalpy denotes the sum of self-energy of
the kinks, their interaction energy, and work done by external stresses during the creation
of the kinks. Then, the differentiation of the Eq. (4.7) with respect to z is obtained in

order to find a moment when the free enthalpy is maximized. The maximum free enthalpy

is obtained when satisfying:

Ez 45 E 1/6 (4 8)
r o (8-v)z ) '

The critical free enthalpy of Argon theory is obtained with substitution of Eq. (4.8) into Eq.

(4.7) as follows:

*_37z,ua)2r3 B e[ T o
AG _—16(1—V) {1 8.5(1-V) (/Ij ] (4.9)

Then, the critical stress can be expressed with substitution into Eq. (4.6) as:

- 0.077 {1_ 16(1—v)KT
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=T e (7o 7)} (4.10)
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The main advantage of the Argon theory compared to the other classical yielding theories
is that the critical stress is expressed by the several mechanical properties that can be
directly derived by the MD simulations. When focusing on the 0 K solution of Eq. (4.10),

the quasi-static yield stress can be expressed as:

[ﬁ] _c 907 (4.11)
H )i d-vrL)

where C is the ratio factor between shear yield stress and 1-d yield stress that is assumed
as /3. The 0 K solution can be extended toward the high temperature range with the
construction of the correlation between the mechanical properties and temperature.
Concerning the yield stress—temperature relationship, the previous researchers
assumed that the yield stress—temperature relationship under the MD strain rate is
consistently maintained up to the quasi-static conditions®-%. Accordingly, the quasi-static
yield stresses under different temperature are predicted by the linear yield stress—
temperature law obtained from the MD strain rates. It means that the constant amount of
the yield stress is dropped with the steady temperature increase regardless of the strain rate
condition. However, the assumption might be inappropriate for broad range of polymer
materials; the yield stress also nonlinearly varies with the change of temperature especially
under extremely low temperature and yield theories have been developed to consider such
physics!#1%1° Moreover, the linear dependence of the yield stress on temperature also
violates the nonlinear dependence on strain rate that has been previously observed by many

experiments and theories™®°, In order to avoid the discrepancy in this chapter, the
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cooperative model for the polymer plasticity is adopted by making use of the feature of the
yield stress defined in the model***%. The cooperative model considers multiple relaxation
nature of polymers to represent the nonlinear characteristics of the yield stress with respect
to the temperature and strain rate. The cooperative model restricts the stress that is involved
in the activated rate process by subtracting internal stress from the yield stress, which is
called effective stress:

o =0,-0;, (4.12)

where o&,o, denote the effective stress and internal stress respectively. The resulting

strain rate is determined by the effective stress and effective strain rate as follows:

ézé*sinh”[ﬂ} (4.13)
2kT

where &,V represent the effective strain rate and activation volume respectively. It
means that not all portion of the yield stress is influenced by the strain rate variation. The
effective stress only determines the dependence of the yield stress with respect to the strain
rate. Considering these aspects, the cooperative model for the yield stress below Ty is

represented as follows?®:

. \Un
o,=0, (T)+2Vﬂsinh-l(§j , (4.14)
where o,(T) isgiven as:

0,N=0,0-2T. (4.15)
Tg
These relations mean that while the yield stress resulting from the strain rate effect
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nonlinearly varies under extremely low temperature due to the influence of the effective
stress, the internal stress which does not participate in rate process can be predicted with
Ty by linear dependence law on the temperature. Concerning the cooperative model Eqg.
(4.14), the internal stress o,(T) is limit of the yield stress at given temperature as the
strain rate vanishes. It implies that the prediction of quasi-static yield at different
temperature is possible by establishing the relationship between the internal stress and
temperature Eq. (4.15), which is composed in such a way that the internal stress disappears
at Tq. The internal stress without any temperature effect o;(0) is estimated by the 0 K
solution of Argon theory Eq. (4.11).

The influence of the hydrostatic pressure on the yield stress can be considered by
the phenomenological linear dependence®. The linear dependence of yield stress on
arbitrary pressure can be written as follows:
o,(P)=0,(0)+a,P, (4.16)
where o, (P),o,(0),a, are yield stress at pressure P, yield stress at zero pressure, and
pressure coefficient respectively. That is, the yield stress is linearly increased
proportionally to the pressure coefficient as the given pressure is increased. Then Eq. (4.16)

can be rewritten with the substitution of Egs. (4.14) and (4.15) as follows:

5,(0)- 0(0) +5sinh- (*jn+apP. (4.17)
&

Q
The quasi-static yield stresses considering the broad range of temperature and

hydrostatic pressure can be predicted from both the internal stress—temperature law Eq.
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(4.15) and yield stress—pressure law Eq. (4.16), which is reduced form of general version
of cooperative model Eq. (4.17). In order to construct the master profile of the yield stress
by Eq. (4.17), the yield data under MD strain rates was systematically investigated with the
characterizations on the Tg, «,. Then, the fitting coefficients of Eq. (4.17) which are
expressed by the activation volume and effective strain rate are determined correspondingly.
The pressure coefficients of the compression and tension were derived as 0.3624, 0.2908
respectively for the considered epoxy by averaging the results of 10%%/s, 10%s, and 108%/s

deformation tests with M4, M7, M8, and M9 models in Table 2.3.

4.2.2. Effects of temperature, pressure, and crosslinking density

® Effect of temperature

The yield data of the epoxy models M1, M2, M3, M4 was examined to elucidate
the influence of the temperature and shown in Fig. 4.12 and Table 4.2. As expected, the
yielding behaviors represent huge dependence on the strain rate and temperature; the yield
stress is decreased with the extended relaxation time and elevated temperature during the
deformation tests. This trend confirms the equivalent role of the time and temperature in
the plastic deformation of amorphous polymers as presented by the classical yielding
theories!*194247 Based on the obtained quasi-static yield stresses, the yield data were fitted
with the cooperative model Eq. (4.17) and the fitted master curves according to the
temperature are shown with red solid lines in Fig. 4.12. Concerning the quasi—static yield
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stresses of both compressive and tensile loadings, the 0 K solution of the Argon theory does
not denote distinct deviation with the yield stresses under 0 K and 10°/s, 107/s. As the
considered temperature increases, the strain rate where the MD vyield stress is roughly
converged to the quasi-static yield is correspondingly decreased. Accordingly, the master
curve at 300 K is converged at the lowest strain rate compared to the other temperatures. It
might be inferred that the increase of the kinetic energy on the polymer segments can
sufficiently dissipate the applied stress for given relaxation time as the chain relaxation
behaviors are gradually active.

The observations on the different rate of the convergence to the quasi-—static
solutions suggest that the yield stress—temperature relation is closely dependent on the
considered strain rate condition. When considering the strain rate of about 108 /s in Fig.
4.12(a), the change of the yield stress between 0 K and 100 K is about 100 MPa which is
definitely larger than the change between 200 K and 300 K which is about 50 MPa. That
is, the yield stress is highly increased as the temperature is decreased from 100 K to 0 K,
which corresponds to the experimental observation'®. This trend is consistently observed
in the behavior of the tensile deformations Fig. 4.12(b). In contrast, the yield stress is
steadily dropped with the temperature increase at quasi—static condition as denoted in Figs.
4.12(a) and 4.12(b), corresponding to the ratio of internal stress at 0 K and glass transition
temperature as denoted in Eqg. (4.15). It implies that the assumption of the previous
works?23, which states that the linear dependence of the yield stress on the temperature is
constantly maintained regardless of the strain rate condition, might not be suitable for the
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broad range of amorphous polymers. In a methodological sense, the adoption of Eq. (4.15)
allows to avoid the assumption on the yield stress—temperature law that might be physically

incorrect by just constructing the relation between quasi-static yield and temperature.

® [Effect of hydrostatic pressure

The influence of the applied hydrostatic pressure is also examined up to 5000 atm
considering different strain rates from the deformation simulations by the models M4, M7,
M8, and M9 in Table 2.3. The amount of the increase of quasi-static yield stress is
estimated based on the pressure coefficients that were evaluated from the MD yield data.
The yield data and fitted profiles under different pressure conditions are shown in Fig. 4.13
and Table 4.3. As expected, the increase of the applied pressure results in the higher
estimation of the yield stress under all of strain rate range. Especially, the higher pressure
coefficient is estimated under compressive loading condition since the amorphous
polymers generally display severe dependence on the hydrostatic pressure!>®2, All of the
master profiles at different pressures are nonlinearly converged under both loading

conditions.

® Effect of crosslinking density

The influence of the crosslinking density on the yield stress evaluation is also
examined under different strain rates from the deformation simulations by the models M4,
M5, and M6 in Table 2.3. The estimated yield stresses and fitted profiles by the cooperative
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model are shown in Fig. 4.14 and Table 4.4. As shown in Fig. 4.14, the yield stress is
increased with the increasing crosslinking density under both loading conditions as the
previous studies reported®®8, revealing that the finely crosslinked network of the epoxy
results in the reinforcement of the strength. However, since the considered range of the
crosslinking density is quite narrow, the yield stress just shows minor change compared to
the influence of the temperature and hydrostatic pressure of Figs. 4.12 and 4.13. The
structural change of the epoxy also causes the modulus change as shown in Table. 4.4; the
10 % change of the crosslink density increases the modulus about 500 MPa.
Correspondingly, the quasi-static solution of the Argon’s theory Eq. (4.11) also varies
according to the modulus variation. That is, the reinforcing effect coming from the network
characteristics of epoxy is reflected in the determination of quasi—static yield stress. It can
be confirmed under both loading conditions by the fitted master profiles in Figs. 4.14(a)
and 4.14(b). When focusing on the quantitative evaluations of mechanical behaviors, the
estimation of the effect of crosslinking density on the yield stress enables the detailed
comparison with experimental results. The experimental yield stresses’*" are comparable
to those of the 80 % and 85 % crosslinked models which are fully crosslinked state, while

denoting higher stresses than that of 75% crosslinked model.

4.2.3. Construction of quasi-static constitutive laws

® Construction of 1-d constitutive law at arbitrary strain rate
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Using the obtained quasi-static yield data, 1-dimensional quasi-static constitutive
laws can be established by considering the strain rate dependence on the post-yielding
behavior of epoxy polymers. The deformation properties of amorphous polymers indicate
that the strain rate dependence is observed not only on stress, but also on the strain evolution
during elasto-plastic deformation; the yield strain generally varies with the strain rate
leading to the change in the tangent stiffness at different strains’®’°, Thus, it is of primary
importance to consider the difference between the yield strains under the MD and quasi-
static conditions. In order to determine the strain rate effects on the entire stress-strain
profiles, the following scaling law for the rate dependence, in which both the stress and
strain are normalized and reconstructed in accordance with the yield point (which was

defined by 2.5 % offset rule) and proportional limit, is proposed:

(e, —€,05) o,—0

— y prop y prop

O ol |g =Ooni |g’0 & ) (417)
( yo gpropo) Oy0 ~ O propo

where o, is the stress evolution after the proportional limit; o4, £,4, Epopo

represent the yield stress, yield strain, and proportional limit strain at the initial (MD) strain

rate, and Oy, Eys € are the yield stress, yield strain, and proportional limit strain at

prop
the final (quasi-static) strain rate. It shows that the nonlinear stress-strain profile at the
quasi-static rate is obtained by mapping the profile constructed at the initial strain rate with
a ratio determined by the yield point and proportional limit. In this study, it was assumed

that the latter parameter remained constant under different strain rate conditions to account

for the rate dependence of the strain itself as follows:
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&
£ g X, (4.18)
&

prop — € propo
yo

This relationship characterizes the proportional limit stress and strain at quasi—static
condition from the obtained yield stress and strain at the quasi-static conditions. A detailed
illustration of the applicability of Egs. (4.17) and (4.18) is shown in Fig. 4.15, where the
data set was obtained from the deformation tests conducted at 300 K and 1 atm by the 80%
crosslinked model. As shown in Figs. 4.15(b) and 4.15(c), since &, is directly derived
from the quasi-static yield stress and stiffness by 2.5 % offset rule, the proportional limits
denoted by the blue dotted circles were calculated by Eg. (4.18) using the yield points
determined at the MD and quasi-static rates (red symbols) and proportional limits at the
MD rate (blue circles). Then, the post-yielding behavior of the MD strain rate (dark green
line) was mapped under the quasi-static conditions (green line) using Eq. (4.17). The
derived quasi-static constitutive laws of compression and tension show a good agreement

with the experimental constitutive responses depicted in Figs. 4.15(b) and 4.15(c).

4.3. Summary

Concerning Chapter 4.1, an accelerated method to predict the quasi-static
(experimental low strain rate) rate yield from the full-atomic MD simulation has been
established by employing the concept of Eyring theory for the yield of amorphous polymer

systems. Using the stress-strain responses of amorphous epoxy polymers under different
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temperatures and strain rates, the yield stress of each strain rate and temperature can be
obtained with the linear elasto-plastic yield criterion. In order to take the nonlinear
characteristics of the yield stress into consideration, shifting factor ratios were calculated
and applied to shift the yield at the elevated temperature toward the lower strain rate
conditions at the target temperature based on the derived trend for the slope of the reduced
yield.

The quasi-static yield stress (in accordance with the derived shifting factor ratios)
was estimated through the MD simulations and validated with previous experiments,
showing good nonlinear rate-dependent behavior. The suggested yield model opens an
avenue for establishing a quasi-static stress-strain response with the rate-dependent elasto-
plastic law in an MD environment.

With respect to Chapter 4.2, the method to predict quasi-static yields has been
elaborated based on 0 K solution of Argon theory. In order to consider inefficiency of the
proposed method in Chapter 4.1, theoretical model has been directly utilized to predict
guasi-static yield stress under different temperatures. In particular, the nonlinear
dependence of the yield stress on the strain rate and temperature, which was not considered
in previous works, is well-described by the adoption of cooperative model and internal
stress law under broad range of strain rate. For the construction of quasi-static constitutive
laws, the mapping method of hardening law into the arbitrary strain rate condition including
quasi-static rate has been proposed simultaneously. The predicted quasi—static constitutive
equations are successfully validated with the experiments.
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Fig. 4.1. Eyring plots constructed at three different temperatures (T, <T, <T;) and effects

of the shift factors (reproduced from ref. [14]).
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Fig. 4.3. Stress-strain responses obtained at various temperatures (below the glass

transition temperature) and strain rates. The temperature/strain rate relationship is observed.
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Fig. 4.4. A criterion for the yield point obtained from the stress-strain response. The yield
point is determined by fitting the scattered MD data. The linear elastoplastic model is
composed of four degrees of freedom: Young’s modulus, yield stress, yield strain and
hardening exponent.
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Fig. 4.5. Predicted (a) yield stress and (b) reduced yield stress at various strain rates and

temperatures. The slopes of three points set in (b) are determined as 0.128 (300 K), 0.111

(350 K), 0.095 (400 K), and 0.064 (450 K).
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Fig. 4.7. lllustration of construction process of Eyring plot for the reference temperature

(300 K). Reduced yield stresses under elevated temperatures ((a) 350 K, (b) 400 K, and (c),

(d) 450 K) are shifted to a lower strain rate range based on the derived shifting factor ratio.

At each shifting step, the prediction profile is updated iteratively to achieve the appropriate

modification of prediction curve. The fitted equation for the final updated curve for each

step are given in the figures.
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Fig. 4.8. Predicted yield stress (a) and corresponding ultimate stress (b) changes with
variation of the strain rate. The obtained curves show good agreements with the magnitudes
of the experimental yield stress (50.19 MPa) and ultimate stress (60 MPa), which are
obtained from the quasi-static response (experimental test) of epoxy by applying the

suggested yield criterion.
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Fig. 4.11. Determination of glass transition temperatures by the density—temperature

profiles under three different crosslinking densities (75%, 80%, and 85%).
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Fig. 4.12. Derived yield stress versus logarithm of the strain rate profiles under (a)
compression and (b) tension considering different temperature (0 K, 100 K, 200 K, and 300
K). The yield data at each temperature is fitted by the cooperative model considering the

quasi-static yield stress.
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Fig. 4.13. Derived yield stress versus logarithm of the strain rate profiles under (a)
compression and (b) tension considering different hydrostatic pressures (1 atm, 1000 atm,
3000 atm, and 5000 atm). The yield data under each pressure is fitted with the quasi—static
yield stresses which were predicted by the internal stresses depending on the pressure
coefficients.
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Fig. 4.14. Derived yield stress versus logarithm of the strain rate profiles under (a)
compression and (b) tension considering different crosslinking densities (75%, 80%, and
85%). The quasi-static yields were predicted respectively by the Argon theory and used for
the constructions of the master curves (dashed lines).
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Table 4.1

Yield data under different temperature and strain rate conditions for deriving quasi-static

yield stress. For the accurate prediction of quasi-static yield, more detailed strain rate

conditions of 300 K and 450 K are examined.

Strain rate o, /T
Temperature (K) (/sec) o, (MPa) &, (MPa/ K) Slope
10t 289.63 0.138 | 0.9654
10105 238.10 0.077 | 0.7937
10% 203.82 0.065 | 0.6794
300 10°° 185.36 0.066 | 0.6179
10° 163.78 0.054 | 0.5459
108 141.16 0.063 | 0.4705
108 127.10 0.053 | 0.4237
10% 174.89 0.059 | 0.4997
350 10° 135.82 0.050 | 0.3881 0.1112
108 97.05 0.043 | 0.2730
10% 146.55 0.061 | 0.3664
400 10° 109.20 0.057 | 0.2730 0.0946
108 70.85 0.050 | 0.1771
105 275.09 0.114 | 0.6113
101 204.12 0.130 | 0.4536
10% 117.47 0.061 | 0.2610
10° 80.06 0.053 | 0.1779
0.0643
450 1085 73.51 0.073 | 0.1634
108 58.61 0.066 | 0.1302
1075 37.07 0.034 | 0.0823
107 34.78 0.035 | 0.0773 0.0146
1085 30.49 0.041 | 0.0678
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Table 4.2.
Derived yield data and quasi—static yield for the construction of the master yield profile
considering the influence of temperature. Note that the Young’s modulus is derived by the

linear regression up to the strain of 1 %.

. . . Yield
Cros§llnk Temperature | Pressure Deformation Strain Y|elq stress E (MPa)
density (K) (atm) rate (/s) | strain (MPa)

10%s | 0.141 | 597.93 5809

10%%s | 0.137 | 515.57 5647

10%s 0.129 | 474.12 5632

108%s | 0.131 | 452.92 5402

Compression 10%/s 0.132 | 451.13 5360

10"%s | 0.129 | 432.36 5081

107/s 0.131 | 422.21 5082

Quasi- - 42903 | 5564

0K 1latm static
1095 | 0.127 | 360.38 | 5546
10%/s | 0.126 | 339.00 | 5425
10% | 0.123 | 321.77 | 5375
10%%/s | 0.122 | 30621 | 5160
Tension 108/s 0.124 | 312.15 5035
107%/s | 0.123 | 29420 | 4792
107s | 0.123 | 291.89 | 4782

Quasi-
80% o - 29137 | 5564
10%/s | 0.116 | 386.66 | 5163
10% | 0.117 | 359.99 | 5425
Compression |_10°7s | 0119 | 32081 | 4979
10% | 0.120 | 311.86 | 4918
%t‘:;fé 0.090 | 314.62 4696

100K latm

10%%/s | 0.116 | 279.43 4569

10%s 0.117 | 263.47 4950

10%5/s | 0.119 | 24457 4769

Tension 10%s | 0118 | 229.73 | 4696

Quasi- | 4 070 | 21367 4696
static

10%%s | 0.111 | 341.97 4776

10%s 0.108 | 299.48 5202

200K latm Compression | 10%5/s | 0.110 | 259.96 4421

108/s 0.108 | 209.14 3883

Quasi- | 0.073 | 200.22 4144

3 i 211 §
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static

10°5s | 0.113 | 24115 | 4923
10% | 0114 | 21551 | 4786
Tension 10°5/s | 0.117 | 196.35 | 4497
10 | 0124 | 179.44 | 4144
Quasi- | 058 | 135.97 4144

static
10°5s | 0.114 | 300.88 | 3966
10% | 0107 | 23584 | 4075
Compression | 10°7s | 0114 | 20594 | 3698
P 10 | 0116 | 173.04 | 3091
géfé 0054 | 8580 | 2930
300K latm 109%/s | 0116 | 20926 | 4406
10% | 0411 | 17741 | 3765
. 10°5s | 0.114 | 14586 | 3735
Tension 10%s | 0118 | 125.71 | 2930
Quasi- | 545 | 5827 2930

static
b 1 « 1 T
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Table 4.3.
Derived yield data and quasi—static yield for the construction of the master yield profile
considering the influence of hydrostatic pressure. Note that the Young’s modulus is derived

by the linear regression up to the strain of 1 %.

Crosslink | Temperature | Pressure . Strain Yield Yield E
density (K) (atm) Deformation rate strain stress (MPa)
(/s) (MPa)
10°%/s | 0.110 | 337.84 | 5527
10% | 0.105 | 283.06 | 4934
Compression | 10%5%/s | 0.108 | 234.44 | 4760
Quasi- | 655 | 122,05 | 4063
1000atm static
10°%/s | 0.108 | 238.60 | 4595
10% | 0.111 | 214.79 | 4585
Tension 10%5/s | 0.108 | 172.67 | 4063
Quasi- | 646 | 87.35 | 4063
static
10°%/s | 0.111 | 419.89 | 5025
10% | 0.111 | 368.43 | 6069
Compression | 10%%s | 0.111 | 31553 | 5286
Quasi- | 667 | 19453 | 5256
3000atm St?;téc
80% 300K 10°%/s | 0.111 | 314.94 | 6024
10% | 0.109 | 275.72 | 5655
Tension 1085s | 0.113 | 231.22 | 5256
Quasi- | ) 053 | 14551 | 5256
static
10°%s | 0.111 | 505.56 | 7091
10% | 0.108 | 440.32 | 7013
Compression | 108%/s 0.107 | 367.14 | 6347
Quasi- | 0071 | 267.01 | 5762
5000atm static
10°%/s | 0.113 | 393.30 | 7141
10% | 0.109 | 343.82 | 6244
Tension 1085/s 0.107 294.37 | 5762
Quasi- | ) 060 | 203.67 | 5762
static
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Table 4.4.
Derived yield data and quasi-static yields for the construction of the master yield profile
considering different crosslinking densities. Note that the Young’s modulus is derived by

the linear regression up to the strain of 1 %.

. | Yield | Yield
Crogslmk Temperature | Pressure Loading Strain strain | stress | E (MPa)
density (K) (atm) rate (/s)
(MPa)
10°%/s | 0.109 | 260.31 | 3229
10% | 0113 | 227.16 4172
Compression | 10%%/s | 0.108 | 178.76 3281
2;??('; 0051 70.16 | 2657
0,
5% 300K latm 10°5/s | 0.113 | 196.39 | 3620
10% | 0112  167.14 | 3450
Tension 10%%/s | 0.113 13297 3275
Quasi- | 404 4500 @ 2657
static
10°5/s | 0.114  300.88 = 3966
10% | 0.107 23584 4075
Compression | 10°s | 0.114 | 205.94 3698
P 10%s | 0.116 | 173.04 3091
(gt”ails(': 0.054 8580 @ 2930
0,
80% 300K latm 10°5/s | 0.116 | 209.26 | 4406
10% | 0111  177.41 3765
Tension 10°5s | 0.114 14586 = 3735
10%s | 0.118 12571 | 2930
Quasi- 4045 5827 | 2930
static
10°5/s | 0.116 31817 | 4893
10% | 0.111 | 266.84 3807
Compression | 1085s | 0.110 | 215.83 3551
(gfafé 0053 9052 | 3203
85% 300K latm

10%%s | 0113 | 218.72 3631
10%s 0.112 | 191.21 3686
Tension 10%%s | 0.113 | 168.24 3536

Quasi- | 043 | 5923 | 3203
static
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5. Classical yield function based constitutive modeling for

multi-axial plastic deformations

In this chapter, the derived quasi—static constitutive laws in Chapter 4.2 were
used for the construction of the FE plasticity humerical model based on the paraboloidal
yield surface®® to evaluate multi-axial loading behaviors of epoxy polymers. The FE
analysis was carried out by validating the constitutive model by one—element mesh first
and evaluating the multi-axial deformation behaviors of open-hall specimen under
different crosslinking densities. The constitutive model that was adopted in present chapter

is based on the work of Melro et al.%.

5.1. Constitutive modeling based on paraboloidal yield function

The elastic deformation of the considered epoxy follows the isotropic linear

elasticity as follows:
c=D°: &, (5.1)

where D° is fourth order isotropic elasticity tensor. The stress evaluation can be split into

the deviatoric stress tensor and hydrostatic stress as:

S=2Gs, p=Ke, (5.2)

where &8, £8,G,K are elastic deviatoric strain tensor, volumetric strain, shear modulus,
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and bulk modulus of the considered material. The yield criterion for the plastic deformation

is described by the paraboloidal yield surface proposed by Tschoegl®? as:
d(o,0,,0,)=6J3,+2l,(c, —0,)—20,0,, (5.3)

where J,,1, are second invariant of the deviatoric stress tensor J,=1/2S:S and first

1

invariant of the stress tensor 1,=tr(s), and o_,o, are compressive and tensile yield

stresses. Concerning the evolution of the plastic strain, non-associative flow rule is used

for a correct definition of the volumetric deformation as follows:
g=0 5 +ap’, &= .8_g’ (5.4)

where o, :«/3\]2 is von—Mises equivalent stress, p=1/3l, is hydrostatic stress, &
is material parameter which determines the contribution of the hydrostatic pressure on the
flow direction, and 5 is increment of the plastic multiplier. The considered & is

represented by the plastic Poisson’s ratio = as follows:

9l1- 21/p -
a=— . .
21+v, (53)
Then, flow rule of Eq. (5.4) is rewritten with considered plastic Poisson’s ratio by:
2
Ag":A}/(3S+§allj. (5.6)

The evolution of the yield surface is expressed by the uniaxial hardening laws in Eq. (5.3)
that are determined by equivalent plastic strain. The equivalent plastic strain is defined as

follows: :
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Agl =\kAeP: A&, k L (5.7)

1t 2vp2'

The stress evaluation of the constructed plasticity model is based on the numerical
integration scheme using elastic predictor/return mapping algorithm. The main procedure
of the algorithm is to update the elastic predictor tensor by solving the nonlinear equation
which is function of the plastic multiplier in an efforts to derive plastic strain increment by
Eq. (5.6). This procedure is iteratively performed with Newton—Raphson algorithm to
derive proper plastic multiplier at each iteration that satisfies @(e,o,,0,)=0. During the

time interval ¢ t ], the deviatoric stress tensor and volumetric stress at t , are

expressed with the trial stress and computed plastic multiplier by:

s, st B
Sn+1:—1:_11 pn+1: p L = p l! (58)
1+6GAy  C, 1+2KaAy ¢,

where s¥_, p", are trial deviatoric stress tensor and trial hydrostatic stress at t_ . Then,

the consistency condition of yield surface Eq. (5.3) is represented by the trial stresses Eq.

(5.8) as follows:

63 21 (0,~0)
I -

—20,0, =0. (5.9)

In order to apply the Newton—Raphson algorithm to find the plastic multiplier that satisfies

Eqg. (5.9), the derivative of the consistency condition is expressed as:

o0 72G1° 4Kal'(o,-o,) oD OAe?
T s T 2 + . (5.10)
OAy % < OAe? OAy
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The derivatives in Eq. (5.10) are given by:

OAg? " AAy
tr
0 ol 00 _ 9o |l _of 9o 90 |_p (5.11)
OAy OAel  OAegl )¢, OAg/ OAg!

og” 1 Ay [ 216GJF 16K (1")?
%e - | JA-=L 2 2 (;) , (5.12)
oAy \1+2v, rNINGS 21¢,

where A is defined as:

2
181 4 al
A=—F+—| =1 |. :

% 27[ §pj (5.13)

The consistent tangent operator in plastic deformation regime is derived from the
derivative of the stress which can be represented by Eq. (5.8). The detailed procedure is

presented in the work of van der Meer et al.*®. The consistent tangent operator is given by:

oo s Y tr trotr tr tr

a—:ﬂl4+(¢—§)ll—p8 | - 7S"S" —yIS" —wS"E - £IE, (5.14)
&

where B.,¢,p, x, v, 0,& are coefficients for each term, and 15, E are deviatoric fourth

order identity tensor and derivative of the equivalent plastic strain with respect to strain

p
6;; . The coefficients are represented by:
&
2G K 4K?al) (o, -0 36KG(o, -0, 72G*
ﬂ:_l ¢:__ 1(3 t)l p:#v Z: 2
Ss - ns, n5sSy ngs (5.15)
8KGal " 6GH 2Kal"H '
Y= 2.2 0 P9 523—2’
774/5 é/p 774’;; né’P
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with

oD
n=——-: 5.16
OAy ( )

5.2. Finite element analysis: one—element mesh validations

® Quasi-static constitutive laws and 1-element deformation tests

The systematic predictions of quasi—static constitutive equations of tension and
compression were conducted based on the proposed methodology at Chapter 4.2 and
corresponding profiles are presented in Fig. 5.1 as solid lines considering the influence of
the temperature (Figs. 5.1(a) and 5.1 (b)), pressure (Figs. 5.1(c) and 5.1 (d)), and
crosslinking density (Figs. 5.1(e) and 5.1(f)) respectively. Since the intrinsic deformation
characteristics of the considered epoxy is ductile, all of the profiles denotes plateau as the
plastic deformation proceeds. The constructed constitutive laws represent the influence of
the considered physical conditions and network characteristics well based on the predicted
quasi-static yield stresses. The stress under elasto—plastic deformation regimes increases
as the hydrostatic pressure and crosslinking density increase and the temperature decreases.
The considered conditions also contribute to the initiation of the plastic flow of the epoxy
polymers; the decrease of temperature and increase of pressure and crosslinking ratio delay
the plastic events of polymer segments under both tension and compression loadings. In
particular, the quasi-static constitutive equations obtained from the 80 % and 85 %

crosslinked models represent a good agreement with the experimental stress—strains under
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both loadings.

The constitutive model was implemented by a UMAT user subroutine of the finite
element commercial software package ABAQUS and validated with the quasi—static
constitutive laws of which the hardening profiles are used for inputs of FE simulations. In
order to validate the constitutive model, the stress—strain profiles of quasi-—static MD and
FE simulations are intensively compared under tensile and compressive deformations by
1-element mesh. All of the elasto—plastic properties required for the FE analysis were
obtained from the quasi—static constitutive equations including modulus and Poisson’s ratio.
Especially, the plastic Poisson’s ratio was calculated from the MD simulations by averaging

the results of considered rate conditions.

The results of the 1-element deformation simulations are shown in Fig. 5.1. The
solid lines denote established quasi-static constitutive laws and circular symbols represent
the constitutive responses of FE analysis. Concerning the influence of the temperature, the
1-element tests were performed under different temperatures (100 K, 200 K, 300 K) based
on the quasi-static constitutive equations obtained from the atomistic models (M2—-M4 in
Table 2.3). Under three different temperatures, the derived stress—strain profiles of 1-
element tests perfectly follow the quasi—static MD profiles in both loading conditions as
shown in Figs. 5.1(a) and 5.1(b). The influence of the hydrostatic pressure was similarly
estimated considering three different hydrostatic pressures (1000 atm, 3000 atm, 5000 atm)
based on the quasi-static constitutive equations from the atomistic models (M4, M7-M9
in Table 2.3). The results of both loading conditions also denote perfect coincidence with

the considered quasi-static MD profiles. Likewise, the influence of the crosslinking ratio
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was also estimated considering three different crosslinking ratios (M4-M6) at 300 K and 1
atm. The results of FE analysis also show perfect agreement with the considered

constitutive laws as well as experimental results.

To investigate the multi-axial plastic deformations corresponding to the 1-
dimensional hardening laws in Fig. 5.1, the evolution of yield surfaces is observed by
depicting the &, =0 planes at flow state and severely hardened state simultaneously in
Fig. 5.2. Since the considered yield criterion is isotropic and not dependent on the rotation
about hydrostatic axis, all of the envelopes evolve elliptically. The effect of the temperature
is shown in Fig. 5.2(a) revealing that the temperature drop results in the huge expansion in
both flow and hardened states. Likewise, the increase of the pressure also expands the
envelopes as presented in Fig. 5.2(b), but extent of the expansion is highly dependent on
the loading path. Especially, the initial yield surfaces are not self-similarly evolved with
increasing pressure; when focusing on the bi—compressive deformations, the envelope does
not show large expansion between 1000 atm and 3000 atm but expanded rapidly from 3000
atm to 5000 atm. This irregular evolution behaviors stem from the functional structure of
the yield criterion in which the mathematical terms consisting of compressive and tensile
stresses are closely involved. Concerning the effect of the crosslinking ratio in Fig. 5.2(c),
the highly crosslinked model also displays more expanded yield surface corresponding to
the hardening behaviors of each crosslinking condition. But, it is worth to note that the
extent of the expansion is also dependent on the loading directions as observed in Fig.
5.2(b). Since the constitutive laws of 80 % and 85% crosslinked models in Figs. 5.2(e) and

5.2(f) are closely comparable, those two yield surfaces in Fig. 5.2(c) only denotes slight
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deviation especially for 1-dimensional tensile and bi—tensile loadings. Although the close
match is observed in tensile loading directions, the largest deviation between the yield

surfaces of 80 % and 85 % crosslinked models is presented near the bi—compression loading.

5.3. Finite element analysis: open-hole deformation tests

Based on the validated constitutive model, the multi—axial plastic deformation
behaviors of the open-hole structure were investigated by monitoring the evolution of the
equivalent plastic strain near the hole. In particular, we have focused on the influence of
the network topology that is featured by the crosslinking density, observing the influence
according to the delay of plastic deformation characterized by the high extent of cure.
Concerning the loading path, the bi—axial compression is applied by displacement on the
edge plane constraining the deformation on the normal direction to the loading directions,
since the deviation between yield surfaces is dominant under bi—compression as can be
seen in Fig. 5.2(c). The influence of about 10% variation of the crosslinking density, which
is microscopic feature of network topology of epoxy polymer, on macroscopic plastic strain

could be quantitatively demonstrated by the open—hole deformation tests.

The results of the open-hole deformation tests are shown in Fig. 5.3 with
snapshots of the displacement field and equivalent plastic strain field. The Fig. 5.3(a)
denotes the applied displacement field when the 85 % crosslinked structure starts to deform

plastically and Fig. 5.3(b) represents the equivalent plastic strain field of three different
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crosslinked model at that moment. As can be seen in Fig. 5.3(b), the 75 % crosslinked
structure shows prominent plastic deformation compared to those of the 80 % crosslinked
structures nearby the hole; the maximum equivalent plastic strain of 75 % crosslinked
structure is 5.26e while the plastic deformation of 80 % and 85 % structures is just initiated.
It is natural due to, as confirmed in Figs. 5.1(e) and 5.1(f), the delay of the plastic
deformation attributed to the increase of the crosslinks, prohibiting local plastic
deformation. This trend is consistently observed as the deformation proceeds. The Fig.
5.3(c) denotes the applied displacement that the 75% crosslinked structure reaches the
plateau state. Correspondingly, the maximum equivalent plastic strain is about 2.13e%
nearby the hole while the 80 % and 85 % crosslinked structures only denote maximum
values about 1.0e2. It implies that the 10 % drop of the extent of cure results in about twice

of the maximum equivalent plastic strain near the hole.

5.4. Summary

The finite element analysis for elasto—plastic deformations of the epoxy polymer
has been conducted by considering the influence of the temperature, strain rate, hydrostatic
pressure, and crosslinking density. In order to construct the multiscale framework without
any experimental supports, the method to predict quasi-static yields represented in
Chapter 4.2 has been used to derive quasi-static constitutive laws under considered

physical environment. The predicted quasi—static constitutive equations are successfully
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validated with the experiments with respect to the tension and compression.

Based on the fully characterized constitutive laws, the constitutive model that
originally proposed by Melro et al.>® has been implemented in finite element analysis and
validated in tensile and compressive loadings by 1-element mesh tests. The stress—strain
responses of FE and quasi-static MD denote close agreement each other, leading to the
universal validity of the constructed model. After the 1-element validation, the multi—axial
plastic deformations of open—hole structures have been examined by considering the effect
of crosslinking density on the local plastic deformations. The deformation simulations
confirm the plastic deformation behaviors hugely depending on the microscopic structural
change of epoxy. The proposed multiscale framework for the prediction of elasto—plastic
deformation of epoxy polymers will be broadly utilized to envisage deformation behaviors
where the experimental approach is inefficient or limited. In particular, the proposed
framework enables the establishment of correlation between various microscopic structures

and plasticity, demonstrating the microscopic structure—plasticity relationships.
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Fig. 5.1. Comparison of the quasi-static constitutive equations and stress—strain profiles
obtained from the 1-element simulations considering different temperature ((a)
compression, (b) tension), hydrostatic pressure ((c) compression, (d) tension), and
crosslinking density ((e) compression, (f) tension). The experimental results in (e) and (f)
are taken from the works of Guest et al.” and Tsai et al.”.
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Fig. 5.2. Evolution of the yield surface in o, =0 plane which corresponds to the uniaxial

hardening laws considering the influence of (a) temperature, (b) hydrostatic pressure, and

(c) crosslinking ratio. The definition of the effective strain in work of Rottler et al.®" is used

for specification.
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(d 75% Xlinked 80% Xlinked 85% Xlinked
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Fig. 5.3. Applied displacement fields and corresponding equivalent plastic strain fields
depending on the crosslinking ratios. (a) displacement field when the 85 % crosslinked
model starts to deform plastically; (b) the equivalent plastic strain field (corresponding to
the displacement field (a)); (c) displacement field when the 75 % crosslinked model reaches

plateau state; (d) the equivalent plastic strain field (corresponding to the displacement field
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6. Machine learning based data—-driven constitutive

modeling for multi-axial plastic deformations

In this chapter, a multiscale framework was proposed to develop a 3—dimensional
constitutive model of the epoxy polymer from the data—driven yield function which is
formulated by the multi—axial yield data using a machine learning technique. The main
focus of this chapter is to confirm that the customized yield functions of various materials
can be established only from the given yield data which represents the unique multi—axial
hardening behavior without any prior knowledge on the primary stress invariants and
functional structures. In order to examine the possibility of yield function mining, the
development of the classical yield functions such as von—Mises, Drucker—Prager, Tresca,
Mohr—Coulomb, and paraboloidal yield functions was reproduced from the proposed

approach simultaneously characterizing the influence of the dispersion of yield data set.

6.1. Reproduction of classical yield functions by symbolic
regression

6.1.1. Symbolic regression

Symbolic regression builds a free-form mathematical equation that can correlate
nonlinear input and output relationships using evolutionary algorithms. The structure of the
function and the coefficients are automatically determined based on the fitness criteria that
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the user specifies. Although the symbolic regression automatically gives mathematical
expressions regarding the given problem, the user can carefully select the model, based on
the characteristics of the problems and the complexity of models, to avoid the overfitting
issue’. Therefore, investigator knowledge and insight regarding the given problem is
significantly important in solving problems.

The symbolic regression starts by randomly generating solution candidates, which
is called the “population” at the first iteration. These candidates might not be able to
represent appropriately the nonlinear relationships between input and output. These
candidates are updated with an evolutionary algorithm using crossover, mutation, and
selection as the iteration is continued. At every iteration, the performance of the model is
evaluated by the fitness function, usually represented by the mean squared error (MSE).
This iterative process is performed until the user-defined criteria are satisfied. Note that the
functional form of the fitness function has significant effects on the finding of a solution.
The users are responsible for selecting proper fitness functions for the symbolic regression
procedure to succeed.

It is often necessary to consider constraint conditions during the application of
evolutionary algorithms that depend on the characteristics that a solution of given problem
should display. The most basic way to handle constraints in evolutionary algorithms is to
use a penalty function originally proposed by Courant.®” The penalty function affects the
fitness evaluation during the evolution progress, inducing the final solution to satisfy the
user-defined constraints. There are many advanced ways to set penalty functions,
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depending on the types of the given problems.®® In the present study, the penalty function
is defined to satisfy the condition that the yield function should be coincident with the stress
states specified by uniaxial yield stresses. It means that if the arbitrary compressive and
tensile stresses are given, the mined yield function should be able to represent the

corresponding stress states in principal stress space.

6.1.2. Symbolic data mining of classical yield functions

It is demonstrated in this section that the symbolic data mining can reproduce
well-known classical yield functions from the yield data without any prior knowledge of
the functions. The exact mathematical formulas of various classical yield functions are
produced from limited yield data sets generated by the exact classical function in the
o, =0 plane. The symbolic data mining was able to consider candidates of stress
invariants and find the proper relationship by evaluating the fitness, as calculated from the
function’s deviation versus the given data set. In particular, the symbolic regression
simultaneously screens important stress invariants and finds exact functional structures for
some circumstances. In these cases, inappropriate stress invariants for the given problem
are eliminated, based on genetic algorithms, while the proper mathematical expression
composed of meaningful stress invariants is automatically formulated. All procedures of
symbolic data mining reported here were conducted on the basis of the symbolic regression
algorithm of Searson.®
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In addition, it is necessary to verify that symbolic regression also can produce the
yield functions under the circumstance where the yield data set is arbitrarily dispersed in
stress space due to the noise of raw data. If yield function mining is possible, it is also
worthwhile to identify the threshold error under which the expected yield function can be
still reproduced. In this work, the arbitrary error was uniformly applied on the principal
stress coordinates in stress space by regulating the lower and upper bound of the
coordinates. For example, when each component of the stress coordinates arbitrarily varies
within 10 % of the lower and upper range of its original value, it is called herein “10 %
dispersion,” for convenience. For all these cases, the arbitrary error was applied up to a
maximum of 40 % to provide for the influence of the dispersion of raw data on the results
of symbolic data mining.

As a first example for classical yield function mining, the data set of von—Mises
yield function was generated by exact von—Mises yield function of Eq. (1.1), under the two
different yield stresses, 50MPa and 100MPa. The symbolic regression considered the stress
invariant set, {1,,1,,1,,J,,J,} at which a meaningful set of the stress invariants is
extracted, and yield stress, 0, as a fixed node. The fitness function is composed as a MSE
calculated by comparing the deviation between training data and prediction model in

principal stress space as follows:

Z(O—_train _ 5pred )2
MSE=&— | (6.1)
Z(O_ rain _O_mean)

where ™" and 5" denotes the general stress state of training data (MD data set) and
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the predicted yield function in principal stress space respectively.

The performed symbolic data mining successfully reproduced the formula for
von-Mises function under the 0%, 5%, and 10% dispersions and failed after the 20%
dispersion condition. The mathematical expressions of mined yield function of 0% and 10%
error conditions are shown in Table. 6.1 and the comparison of mined and exact yield
functions is shown in Figs. 6.1(a) and 6.1(b). As denoted by models al and b1 of Table 6.1,
the mined functional structures are completely identical to the von—Mises function.
Especially, it should be noted that the symbolic data mining successfully identified the role
of the second invariant of the deviatoric stress J, in majority of models in Table 6.1,
while the contributions of other stress invariants were eliminated during the regressions. It
reveals that the symbolic data mining is able to identify the primary stress invariants within
the all considered variables simultaneously optimizing the functional structure and the
coefficients.

However, the prediction of the exact coefficient of \/z seems to be a lot harder
under severe error. While both of the functional structure and the coefficient of \/3 is
accurately determined under 0% dispersion condition as denoted by model a1, it is observed
that the determined coefficient of \/f is getting far away from the exact value 3 as
the applied error is increased as shown by model bl. The applied error eventually leads to
the failure of the prediction of the von—Mises function under 20% dispersion condition.

The second example problem of the function mining is conical yield surface
denoted in Eq. (1.3). The symbolic data mining was performed by considering four
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arbitrary data sets that are shown in Figs. 6.1(c) and 6.1(d). Unlike to the von—Mises
example, the set of stress invariants and yield stresses, {I,1,,1,,J,,0.,0,}, is considered
as function nodes to be evaluated while J, is considered as fixed node but without any
preliminary assumption on its functional form. Due to the complex functional form of the
conical yield function and lots of input nodes involved, it is nearly impossible to mine exact
solution with the fitness implemented in von—Mises case. Accordingly, the constraint
condition is applied to the fitness function in order to reduce the range of functional
structure to be probed. The applied constraint condition is that the predicted yield function
should pass through the stress states in principal stress space corresponding to the arbitrary
compressive and tensile yielding. The constraint condition is implemented to the fitness
function by multiplication of MSE as follows:

fitness=MSE, - MSE,, (6.2)
where MSE, is calculated by considered input data set and MSE, denotes how much
the prediction model deviates from the stress states defined by given 1-dimensional yield
stresses o, and o,.

The performed symbolic data mining successfully reproduced the Drucker—Prager
yield function under up to the 20% of dispersion condition. The mathematical expressions
of mined yield function under 0% and 20% dispersion conditions are shown in Table. 6.1
and the comparison of mined and exact yield functions is shown in Figs. 6.1(c) and 6.1(d).
The most important point of this example is that the symbolic regression is able to represent

the pressure—dependency of the considered data set by introducing into the yield

I

160 2]



function, which is screened among the stress invariants, {1,,1,,1,,J,,0.,c} based on the

fitness function. It implies that the introduction of 1, into the yield function, which was

1
outcome solely by physical intuition and experience of researchers, was reproduced just by
the considered data set even under severe error.

As far as the accuracy of the mined yield function is concerned, it should be noted
that the constrained symbolic regression robustly produce the correct form of the conical
yield function regardless of the applied error. Unlike to the von—Mises example, all of the
mined conical models in Table 6.1 includes the exact conical function even if the applied
error is increased up to 20%. The increased error just leads to the complex redundant term
that provide extremely small contribution to the overall function as can be seen by models
d2 and d3 of Table 6.1. It is because the narrowed exploration range of functional structure
of yield function leads to find out the exact yield function although the severe noise on the
data set is concerned.

The symbolic data mining for the Tresca, Mohr—Coulomb, and paraboloidal yield
functions was performed by applying the constraint condition as in the case of the Drucker—
Prager yield function. For the cases of the Mohr—Coulomb and paraboloidal yield functions,
the primary stress invariants were screened as {1,,J,} in advance to focus on the
derivation of exact yield function. Since the data set of Tresca and Mohr—Coulomb function
is dependenton 6 of Haigh—Westergaard coordinates, c0s@ and sind are additionally
considered as inputs of symbolic data mining. As far as the fitness function is concerned,
the total fitness is composed identically to Eq. (6.2) except the Mohr—Coulomb yield
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function of which the fitness function is composed of the addition of MSEs. The symbolic
regressions successfully reproduce the Tresca and Mohr—Coulomb yield functions up to 3%
dispersion, and paraboloidal yield function up to 30% dispersion. The involvement of the
artificial error in the case of Tresca and Mohr—Coulomb results in the difficulty of accurate
symbolic data mining compared to the other cases. It might be attributed to the non—smooth
characteristics of yield functions since the surfaces display sharp corners depending on 6.
The mined functions are represented in Table 6.1 and compared with exact solutions in Figs.
6.1(e)-6.1(j).

It is of worth to identify the mined functions under the error where the symbolic
data mining fail to reproduce the considered classical yield functions. The mined functions
for the Drucker—Prager, Mohr—Coulomb, and paraboloidal yield functions under arbitrary
dispersions of 30%, 20%, and 40% are represented in Fig. 6.2 and Table 6.1. The applied
error leads to the minor change of the surface based on the considered yield function or
even dramatic change of shape of surface. These observation suggests a possibility of

mining better yield function than existing functions based on the considered data set.
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6.2. Development of data—driven yield function

6.2.1. MD characterizations on evolution of yield surface

In this section, the evolution of yield surface of the epoxy polymer is investigated
by MD simulations considering their extremely high strain rate, which has been a limitation
in that the constitutive responses directly derived from the simulations cannot be compared
with the experimental results®®23, Thus, a mapping method of yield surface from MD strain
rate to quasi-static condition is proposed in this section to calibrate the influence of the
strain rate discrepancy.

As a first step to construct the quasi-—static yield surface, the yield surface
evolution of epoxy polymer was evaluated from the multiaxial deformation simulations.
Fig. 2.9 exhibits the typical deformation simulations with an atomistic unit cell and the
representative constitutive response of multiaxial deformations. The stress states of total
450 stress—strain profiles under the strain rate of 10%%s were examined under various
loading paths for establishment of the yield surface. Initial and subsequent yield surfaces
were build based on the yield points derived from the effective stress—effective strain
profiles and shown in Fig. 6.3(a). Obtained yield surfaces of considered epoxy are
isotropically evolved with increasing equivalent plastic strain. The evolution of yield
surface shows minor change after the equivalent plastic strain of about 0.01, since the
considered epoxy system is relatively ductile than other typical epoxies’ "%, One thing
to be noted is that the extent of hardening is especially strong under the biaxial compressive
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deformations compared to the other loading paths. Moreover, the variation of principal
stresses is also evident within the biaxial compression deformations.

The basic concept of the calibration method is based on the normalized yield
surface. The yield surface is normalized by the given yield stress to focus on the general
shape of the surface, which has been widely considered for the comparison of the yield
surfaces of the materials that display different strengths®*-13, The normalization requires
the characterization of the yield function which consists of the compressive and tensile
stresses as:
®(0,0,(),0,(£))=0. (6.3)
That is, the characterized nonlinear relationship between yield stress and strain rate even
up to the MD strain rate condition is required, which can be investigated by several ways
using the classical yielding theory? and temperature acceleration approach®.

The overall scheme to establish the quasi-static yield surface is shown in Fig.
6.3(b). Once the compressive and tensile yield stresses of MD and quasi—static conditions
are characterized, each stress state of the yield surface under MD strain rate is mapped into
the quasi—static condition by the yield stress ratio between MD and quasi-static conditions.
The yield stress ratio are determined by four different combinations of compressive and
tensile yield stresses depending on their quadrant since the yield function is severely
dependent on both yield stresses. This approach assumes that the yield surfaces under the
different strain rate conditions are self-similar each other at equal equivalent plastic strain.
As far as the variation of the stress states is concerned, the distribution of the stress states
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is proportionally decreased as the strain rate is decreased corresponding to the considered
nonlinear relation between yield stress and strain rate.

Considering the data set in Fig. 6.3(a), the normalized yield surfaces are obtained
with different equivalent plastic strains in Fig. 6.3(c). Since the yield points are
isotropically evolved the normalized yield surfaces exhibit similar shape one another. It is
worth to note that the distribution of data points within biaxial compressions is fairly large
in case of the equivalent plastic strain of 0.01 (blue circles), owing to the influence of the
inherent initial variation of the yield stresses in Fig. 6.3(a). This observation confirms that
the characteristics of yield surface of MD condition are generally reflected into the quasi—
static yield surface by considered mapping method. Considering the quasi—static hardening
profiles that derived by previous study'%, the evolution of yield surface under quasi-static
condition is finally established in Fig. 6.3(d).

The proposed mapping method was verified in Figs. 6.3(e) and 6.3(f) by
investigating the suggested assumption that self—similarity of the yield surfaces is observed
under the different strain rate conditions. It was observed whether there is difference
between quasi-static solutions derived from different effective strain rates of 10%%/s and
10%5/s. As expected, the difference of strain rates results in the different size of envelope of
the yield surface. However, the size difference of the yield surface does not lead to the
different quasi-static surfaces. It was observed in Fig. 6.3(f) that the quasi-static yield
surfaces constructed by the identical quasi—static constitutive law exhibit similar shape and
size each other, revealing that the considered self—similarity is reasonable.
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6.2.2. Construction of data—driven yield function

Based on the evolution of quasi-static yield surface, the constrained symbolic
regression was performed to derive an optimized yield function for the epoxy. In order to
properly consider the evolution behavior of yield surfaces, the fitness function is composed
of multiplication of each sub—fitness function which is defined by MSE function. The
overall fitness function consists of a sub-fitness function for the constraint condition and
yield surfaces, according to the evolution of equivalent plastic strain, as shown in Fig. 6.3(d)
as:

fitness= fitness, - fitness,, (6.4)
where fitness, is sub—fitness function to impose constraint function and fitness, is sub—
fitness function defined by the error between prediction function and MD data set. ~ fitness
is defined to impose penalty under the range of constraint violation which is judged by

MSE function as:

(6.5)

_ {Msa, MSE, < Cl}
fitness, = ,

C, - (MSE,))?, else
where C; is a criterion coefficient for constraint condition and C; is a coefficient that
controls a degree of penalty depending on the MSE. fitness, is also defined to consider
the all of errors between the MD data and prediction function under different equivalent
plastic strains by:

fitness, = fitness, |€§1:0 x fitness, |

50005 X% fIUNESS, |, oo (6.6)
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where fitness, Igp denotes the sub-fitness measured by the MSE under arbitrary
eq

equivalent plastic strain. It is defined by the identical penalty function of Eq. (6.5) as
follows:

MSE,, MSE, < C,
(6.7)

fitness, | , ={ ,
= |C,-(MSE,)", else

where, similar to the coefficients of fitness,, Czis a criterion coefficient for the application

of penalty and C4is a coefficient that controls a degree of penalty depending on the MSE.

The contribution of each sub-—fitness function can be controlled by adjusting the

coefficients. In the present study, Ci, C,, C3 and C4were set to 2.5-1072, 10%, 2.5-10%, and 108

respectively.

The constraint condition that is applied by the sub—fitness function fitness, is
defined to consider that the mined yield function should be able to pass through the stress
states corresponding to the considered 1-dimensional yields as is the symbolic data mining
of classical yield functions. The sub—fitness function fitness, is defined to represent the
fitness with the input MD data set corresponding to the evolution of yield surface in Fig.
6.3(d). In this work, the five snapshots of subsequent yield surfaces under different
equivalent plastic strains are considered. These shapshots play a role like extracted
interpolation points from the whole post—yielding response for the development of the yield
function. Therefore, the sub—fitness, fitness, IEepq , calculated based on each snapshot is
treated independently by adding penalty when the predicted function is not able to properly

describe the considered yield surface. Accordingly the sub—fitness function fitness,
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defined by multiplication of fitness, Igp induces that the any violation of the considered
eq

criterion among five data sets leads to the huge disadvantage on the total fitness function.

The symbolic regression was performed based on the total fitness function of Eq.
(6.4). All candidate functions derived by symbolic data mining are presented by
complexity—fitness profiles in Fig. 6.4. Note that the R—squared value (R?) of Fig. 6.4 is
MSE that calculated from the deviation between candidate function and all of considered
MD data set. The fitness of the candidates of the yield function is decreased as the
expressional complexity increases up to the complexity of about 40 and, after that,
maintained although the expressional complexity increases. In order to find out appropriate
yield function for the considered multi—axial hardening behavior, the candidates were
filtered based on the constraint condition, fitness (sub—fitness function fitness, ), and
expressional complexity. Among the candidates, the models satisfying the conditions that
fitness, <0.025 ; fitness, <0.25°; and Complexity<80 were selected and represented
by red symbols in Fig. 6.4(a). The filtered candidates were again validated whether the
candidate function always could have real solutions for (o;,0,,0;) under the considered
range of 1-dimensional yield stresses. Accordingly, 24 candidates for the data—driven yield
function were selected and presented by the yellow—green symbols in Fig. 6.4(b). Among
these candidates, the yield function that exhibited the best performance and concise
functional form was finally chosen as the data-driven yield function to be implemented in
finite-element analysis. The expressions for the data-driven yield function, including the
2" highest R?-valued function and most concise function (the lowest complexity), are
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shown and compared with the classical functions in Table 6.2

6.2.3. Validation of the mined yield function

The data—driven yield function was validated with input data set and compared
with the Drucker—Prager and paraboloidal yield functions in Fig. 6.5. When comparing the
yield surfaces of three yield functions, all of the surfaces nearly overlap at the stress states
corresponding to the uniaxial yielding due to the applied constraint condition. It is
attributed to the conservative coefficient criterion C; set to only 2.5 % during the symbolic
regression, which results in the almost identical estimation of the yield surface in the second
and fourth quadrants. This constraint mainly allows the change of prediction of data—driven
yield function in the vicinity of biaxial deformations. When focusing on the biaxial
deformations, the estimation of yielding under biaxial compression exhibits quite different
surfaces in all of equivalent plastic strains; the present data—driven yield surface displays
much larger envelope compared to the conical and paraboloidal yield surfaces. In particular,
the paraboloidal yield surface fairly underestimates the stress states of biaxial deformations
compared to the present data—driven model. The shape change of data—driven model leads
to the improved fitness with the data set; the R? values of the data—driven, Drucker—Prager,
and paraboloidal functions are 0.8354, 0.8167, and 0.5969 respectively.

The data—driven yield surface was also validated with the experimental result of
plain strain compression tests which was previously performed by Haba et al.'®. In order
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to estimate stress states of biaxial compression, the experimental yield points
corresponding to about 0% and 1% of equivalent plastic strain are plotted together in Fig.
6.5. It is observed that the experimental yield points are better described by the present

data—driven model, being out of conical and paraboloidal yield surfaces.

6.3. Constitutive modeling based on data—driven yield function

The constitutive model of epoxy was developed by the present data—driven yield
function following the overall scheme for numerical time integration based on the previous
works of Melro et al. and van der Meer®®, Stress evaluation of considered epoxy is carried
out by the general return mapping scheme%>1%, The stress state is estimated by assuming
elastic trial stress as:

6, =0 +D°:As (6.8)
where G:ﬂ and O, are trial stressattime n+1 and stress attime 1 respectively, D°
is the fourth order isotropic elasticity tensor, and Ae is strain increment corresponding to
the time interval. At the end of the return mapping procedure, the stress at time n+1 is

evaluated by:

6n+1

_ .
=g, ,-D° 1A, (6.9)
where AgP is plastic strain increment characterized by the flow rule. Elasto—plastic
behavior of considered epoxy polymer is modelled using the present data—driven yield

function. The consistency condition from the present yield function can be written as
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follows:

®(o,0,,0,)= /% (1.8550, +1.7320, —30.4)+0.01495,” —2.0870,0, +1.9980 +
s (6.10)

15.90, +|—1(0C -0,)=0.
S

A non-associative flow rule is used to correctly consider the volumetric deformation in
constitutive modeling with the flow potential as follows:

g=o,,+ap’, (6.11)
where o, a/ﬁ is the von Mises equivalent stress and & is a material parameter for
the contribution of volumetric deformation on the plastic flow. The flow rule is represented

with the flow potential, J as follows:

2= 8 (6.12)
oo

where 5 denotes the time derivative of the plastic multiplier. By substituting Eq. (6.11)

into Eq. (6.12), the increment of plastic strain is written as:

Agpsz(3S+§allj.

(6.13)
The parameter & related to the plastic Poisson’s ratio yP is written as follows:
oL, 6.14
a=— . ,
2 1+v, ( )

The increment in equivalent plastic strain is defined by the plastic strain as follows:

Agh =\kAe? 1 A =AyNKM 1 M, (6.15)

where k is ]/(1+ 2v§) and M s the direction of plastic flow shown in Eq. (6.13) as:
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é’s gp

M = (6.16)

The stress is evaluated at the end of the return mapping procedure with characterized

increment of plastic multiplier as:

tr 1qtr tr 1 qtr
S I st L

’T116GAy 1+2KAy ¢, ¢

: (6.17)

p

where G is shear modulus and K is bulk modulus of the considered material. Then,
the consistency condition of Eq. (6.10) is reduced to nonlinear function of single variable
Ay from Egs. (6.15) and (6.16). This nonlinear equation is solved by Newton—Raphson
iteration scheme at every time step. This iteration scheme only allows for
thermodynamically admissible solution Ay >0 . The details of implementation of
Newton—Raphson scheme is shown in Table 6.3.

The consistent tangent operator is derived by taking derivative of stress from Eq. (6.16) as

follows:

tr tr tr tr
Qo 105 1Ay 5 gy Lloy,®r (6.18)
de ¢, oe 3G, de (g de 3¢, Oe

In order to obtain fully characterized consistent tangent operator, the derivative of
increment of plastic multiplier with respect to the strain is needed. Since there is no explicit
expression, this relationship should be obtained by the derivative of consistency condition.

The final expression for the consistent tangent operator is shown as follows:

g—“=ﬁ|j +(¢—§)II —pSTl— ySUSY —yIS" —wS"E - £IE, (6.19)
&
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where |Z is the deviatoric fourth-order identity tensor, E is the derivative of

oel
equivalent plastic strain with respect to strain tensor, Ea—eq- The constants of Eq.
e
(6.19) are given as:
ﬂzﬁ ¢:£_2K205I1”(Gc—0'l) _18KG(o, - )
[ < ng, e,
x= £(1.85500 +1.7320, —30.4), (6.20)
Ugjxsztr
tr 1 tr
y=—2K6oh i ge6s 117320, -304), 0=2C0 2K H
IR N A % 3¢y

where H is the derivative of yield function with respect to equivalent plastic strain

I
Il
0|8

@
a

6.4. Finite element analysis: one—element mesh validations

The deformation simulations under tension, compression, shear, and bi—
compression were performed with UMAT user subroutine of commercial finite element
analysis software, ABAQUS. In order to validate the constitutive model based on the data—
driven yield function, the constitutive model based on the paraboloidal yield function® was
also examined under equal conditions. For the implementation of the constitutive model,
the compressive and tensile hardening profiles including modulus and Poisson’s ratios that

extracted from the work of Park et al. were used as inputs of the simulations®. Since the
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paraboloidal and data—driven yield functions exhibit only different behaviors under the
biaxial deformations, the numerical prediction of compression, tension, and shear tests
should denote nearly identical responses, and conversely the prediction of bi—compression
test should denote the different responses between the two yield function.

The comparison of one—element deformation tests between the data—driven and
paraboloidal yield functions is shown in Fig. 6.6. The numerical prediction of compression,
tension, and shear is shown in Fig. 6.6(a) and bi—compression is shown in Fig. 6.6(b)
respectively. Note that the bi—compressive stress denotes axial stress component only. The
prediction profiles from both yield functions are almost identical under the tension,
compression, and shear, which results from the closely similar hardening behavior under
these loading paths of yield surfaces as seen in Fig. 6.6. It is because both yield surfaces
consistently follow the 1-dimensional post-yielding behavior by the imposed constraint
condition of Eq. (6.5). As far as the prediction of bi—compressive loading is concerned, the
stress of the present data—driven function is more optimized for the yield data set by the
application of Eq. (6.6), displaying higher value than that of paraboloidal yield function as

can be seen in Fig. 6.6.

6.5. Characteristics of data—driven yield function

The data—driven yield function was formulated by the symbolic data mining
considering the multi—axial yield behavior of epoxy polymer. The function mining was
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performed based on the ability of constrained symbolic regression on the screening of
primary stress invariants under severe error involved and optimization of functional
structure. It was confirmed by the mining examples of the classical yield functions that it
is possible to develop the data—driven yield functions just by the yield data set
simultaneously reflecting the yielding nature of the materials. The examples also suggest
an importance of application of constraint condition which enables the robust prediction of
yield function even with severely dispersed data set.

It is necessary to specifically focus on the functional expressions of the data—
driven yield function of epoxy. Considering the mined yield functions in Table 6.2, all of
functions consist of linear combination between terms for \jz and 1, denoting
conically—shaped surface. The derivation of stress invariant set consisting of ﬁ and
I, instead of J, and I, suggests that the considered MD data set is better described by
the conically—shaped yield function than paraboloidally—shaped yield function. It can be
inferred that the paraboloidally—shaped candidate functions might have difficulty in
describing the bi—compressive hardening behavior of epoxy, being eliminated during the
symbolic data mining.

When focusing on the present data—driven model (model 1 in Table 6.2), it can be
found out that the functional structure of the mined yield function is quite similar to the
classical  functions. The terms consisting of the stress invariants
\/z (1.8550,+1.7320,) and 1,(c,—o,) are similar to the Drucker—Prager and
paraboloidal functions (see Egs. (1.3) and (1.5)). The term to define an elastic deformation
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range —2.087c,0, also denotes identical functional structure with the Drucker—Prager
and paraboloidal functions. There is also close correlation for the determined coefficients
with the classical functions; the coefficients for a,JZO'C and «fJZGt are 1.855 and

1.732 respectively being close to the coefficient of the Drucker—Prager yield function,

x/g, while the coefficient of I (o, -o,) is unity. The determination of the coefficients of
\E and |, isof primary importance since the ratio between them represents the pressure
sensitivity of the yielding of materials. When considering Haigh—Westergaard stress space,
the magnitude of hydrostatic stress and deviatoric stress vectors is described by:

p=lp|=\3c,=1,/3, S=|S|=y2J,. (6.21)
Then, the ratio between S and p denotes how much the deviatoric stress varies with a

change of hydrostatic pressure. The ratio of both functions is represented respectively by:

—d_p} — —\/E(O'C - O-t) (6.22)
| dS | .., (1.8550, +1.7320, —30.4)’

_d_p} _ —\/E(O'c —O't). (623
L ds Drucker-Prager \/§(UC + Gt)

Although additional terms in the denominator of the mined model are involved, the term

1.8550, +1.7320, , Which closely correlated to the \ﬁ , mainly contribute to a pressure—
sensitivity of epoxy as in the case of the Drucker—Prager function. Furthermore, the

coefficients for the term, —2.0875,5, representing the contribution of 1-dimensional
yield stresses on the finite elastic range is also optimized similarly to the Drucker—Prager
yield function. These similar functional forms and coefficients imply that the symbolic

regression formulated the yield function closely following the feature of the classical yield
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function despite of absence of preliminary knowledge on the classical function.

On the basis of these similarities, the modifications were performed to optimize
the data—driven function corresponding to the yielding nature of the considered epoxy by
the terms such as -30.4,/J, , 001495, 1.998c.+15.90, , and 1.998c, +15.95, .
These terms might contribute to the proper description of distinctive multi—axial hardening
behavior of considered epoxy especially for the bi—compression loading.

When it comes to the new formulation of yield function, it is necessary to evaluate
the candidate function based on the desirable features of the yield function®®. Especially
for amorphous polymers, these are:

1. Description of finite extent of elastic range;

2. Pressure—dependency;

3. Deviation between compressive and tensile yield stresses;

4. Smoothness of the yield surface;

5. Convexity;

6. Simple expression.
The present data—driven yield function can be evaluated by above features; (1) the model
can represent the finite extent of elastic range by the terms  —2.0875.c, , 0.01495,2,
and 1.998c,+15.90, ; (2) the pressure—dependency is described by the first stress
invariant with a sensitivity of Eg. (6.22); (3) the mined yield function consists of both
compressive and tensile yield stresses to describe the uniaxial yielding separately in stress
space; (4) since the model is conically—shaped surface the smoothness is guaranteed except
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the apex; (5) convexity is guaranteed on the conically—shaped surface; (6) expressional
complexity is considered during the symbolic data mining.

The present data—driven yield function that properly denotes the yield behavior of
the considered epoxy has been successfully implemented in the constitutive model. The
two questions in the introduction are successfully answered by the symbolic mining for
classical yield functions and the development of the constitutive model by the data—driven
yield function. Accordingly, it was confirmed that the failure behaviors of the materials can
be simulated by concentrating on their own nature of plasticity using the data—driven yield

function overcoming a disagreement with the existing yield functions.
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6.6. Summary

The main contribution of this chapter is to propose data—driven multiscale
framework for the elasto—plastic constitutive modeling that can reflect the unique
multiaxial yielding and post-yielding behaviors of various materials even for unknown
plastic deformation characteristics. The constitutive model is developed based on the data—
driven yield function of the target material instead of classical yield function which is
naturally formulated from the yield data set by constrained symbolic regression, one of the
machine learning technique. In this procedure, the application of the constraint equation
can play an important role in the reliable prediction of mathematical expression of the
mined model. In particular, the data—driven yield function developed by the present
approach can adequately consider the intrinsic multi—axial hardening of yield surface,
which is probably impossible with the classical yield functions. The developed yield
function properly predict the bi—-compressive yielding behaviors which exhibit much larger
envelope compared to the classical yield functions. The present framework can be extended
to various future works by applying to various materials for the accumulation of database,

validation of the existing yield functions, or characterizing unrevealed nature of plasticity.
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Fig. 6.1. Reproduced classical yield functions by symbolic data mining under various

artificial errors: (a) 0% arbitrary dispersion, von—-Mises function, (b) 10% arbitrary

dispersion, von—Mises function, (c) 0% arbitrary dispersion, Drucker—Prager function, (d)

20% arbitrary dispersion, Drucker—Prager function, (e) 0% arbitrary dispersion, Tresca

function, (f) 3% arbitrary dispersion, Tresca function, (g) 0% arbitrary dispersion, Mohr—

Coulomb function, (h) 3% arbitrary dispersion, Mohr—Coulomb function, (i) 0% arbitrary

dispersion, paraboloidal function, and (j) 30% arbitrary dispersion, paraboloidal function.

The hollow data points in each figure denote the subject training data set and the black dots

denote the response of the exact yield functions. The red solid line exhibits the responses

of the mined models.
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plastic strains. Note that the quasi-static stress—strain profiles of a previous study (Park et

al.%%) were used to reconstruct the surfaces. Comparison of () the yield surfaces under

different strain rates (10%%s and 10%%/s), and (f) quasi-static yield surfaces obtained by

proposed mapping method.
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Fig. 6.4. Resulting candidate functions from symbolic regression. Each candidate yield

function is shown in the complexity-fitness profile: (a) total and (b) filtered populations.

For symbolic data mining, a total of 12,000 populations were randomly produced with

multiple runs for model diversity. The mathematical nodes considered in the present study

are basic arithmetic symbols, including power.
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Fig. 6.5. Comparison of the data-driven yield function with the classical yield functions

(Drucker—Prager and paraboloidal yield functions) and experimental result. The evaluated

equivalent plastic strains are (a) 0, (b) 0.005, (c) 0.01, (d) 0.015, and (e) 0.03. The data-

driven, Drucker—Prager, and paraboloidal yield functions are represented by solid, dotted,

and dashed lines, respectively (a—g). Validation of the data-driven yield surface with

experimental result of Haba et al.’® with correlated equivalent plastic strain condition: (f)

0, (9) 0.01.
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Fig. 6.6. Results of one-element deformation tests under various loading paths: (a)

compression, tension, and shear, and (b) bi-compression. The one-dimensional

hardening profiles extracted by Park et al.1* were used for inputs including all other

physical properties. The studied Young’s modulus, Poisson’s ratio, and plastic

Poisson’s ratio were 2930 MPa, 0.35, and 0.35, respectively.
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Table 6.1.

Details of the symbolic data mining for the classical yield functions and the data-driven

yield function.

Mined Fixed Mathematical Population
. Input nodes (number of
functions node nodes
runs)
von-Mises {1,,1,,1,,3,,3.} {o} | {-x/ ()3 | 3,000 (10)
Drucker-Prager
(conical) {.,1,,15,35,0,,0.} {3} {+1_1X!/} 3,000 (10)
{|1,|2,|3,~]2,J3,
T . o - 30,000 (100
resca c0s0,5in 6} {0} {+ ,X,/,\f} (100)
Mohr-Coulomb | {,/J,,c0s8,siné,c,,0,} | {1} {-I-,—,X,/} 2(()?0%())0
Paraboloidal {003} oy | {=xI3 | 3,000 (10)
Data-driven {,.0.,0} {3 {+,—,x,/,\f} 12,000 (5)
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Table 6.2

Mined models for von—-Mises, Drucker—Prager, Tresca, Mohr—Coulomb, and paraboloidal

yield functions by the symbolic regressions.

:'EId. Dispersion | Model | Mined models
unction
al | 17321, +546e "=
0% a2 0.02J, +33=o0,
a3 0.07J, —1.2e'5JZ2 +1.0e =
von-Mises b1 1.684,[3, +2.29 =0,
b2 223, —67=0,
10% v4 3/4
b3 812.7J," —45.76J, +812.70J," + 26522 3929=0,
\/Tfrl
J, (o, +06,)+0.57741,(c, — 0,) +1.1550 .0, + (o, + o,)(—1.62e *°1, —3.64e ™)
\/_2 c t 1\Y¢ t @t c t 1
cl =0
0% 2 3% (o, +0,) +0.57741, (0, — 6,) +1.1550,0; + (0, +0,)(~8.3e *°I, —4.8¢71)
=0
3 32 (o, +6,) +0.57741, (0, — 0,) +1.1550,0, + (0, + 0, )(—6.7e I, — 4.8¢™°)
=0
i 3. (0, +5,) +057741 (0, - 5,) +1.1550,0, + (0, +0,)(-5.13¢ (0, +1,)
+3.0962) =0
Drucker— 3 (0, +0) +0.57741 (0, - 0,) +1.1550,0, + (0, + 0,)L.7e 1, (0,1, + 1, — 1)
Prager 20% d2 +1.ge_2) -0
i 3, (0, +06,)+057741 (0, — 5,) +1.1550,0, + (0, +0,)(-L.1e I, +
2.0e° I,(I,+0,)+2.6e° (Lo, +1,-1))=0
050, ~0.077 [ﬂ (6,~0.)~ (0, + L)] £03007 1% (6, —0,) + 23e (6 — 0.)(,
30% d4 ¢ ¢ ¢
-20,+0,))+2.9-[1, =0
0% el J3,.732c0s0 +sin0) = 5,
Tresca
3% e2 I, (1.732c0s 0 +0.993sin 9) +0.203\5in 0 +0.012 =5,
77 0, +0, 30,0,
9 33 sin(0+2) 2% 117323, cos(0+ = )+l ——L 466 =0
0% fl \/_ 3 0,0, \/_ 3 o, -0,
Mohr- o, +o0, 2.9270 0,
C t i — ct
Coulomb » o 2. 935\j_5|n(9+ ) +1 6193, cos(0 + = )+ 1 e +0.28
0

-0.00168(c, +7,)* / (o, — ;) sin(@ + 5)) =0
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J3, +0.11, -0.03sin(6 + %) +0.048(c, — 5,) + 0.577(c, — ) coS(6 + %)
20% f3
~0.25(c, +0,) /sin(0+ %) ~0.0619(c, +0,)cos(0 + %) Isin*(@ + %) +0.1=0
0% g1 0.3331,6, —0.333l,0, +0.3330,0, —J, =0
Paraboloidal | 30% g2 0.333l,0, —0.333l,6, +0.3330,0, —4.021e" - J, =0
40% 93 0.301l,0, —0.301l,0, +0.3015,5, +0.0331,? ~1.3—J, =0

Table 6.3

Mined vyield functions for the subject epoxy polymer and the classical yield functions.

Model 1 was finally selected as the data-driven yield function.

Model Symbolic regression model R2
1 {3, 18550, +1.7320, -30.4)+0.01490,” - 2.0870,0, +1.9980, + 08354
(Best) 1590, +1,(0, - 0,)=0
2 JJ.(2.0020, +1.4185, +60.30, /o, —60.3) - (o, — 5,)(0.0960, 08333
(2" best) +0.0180,) —1.9750, 0, +21.58(c, — ;) + 1,(c, —0,)=0 -
(Nfin' V3, (L7280, +16740, -213.2/0,) ~1.9630,0,~1.33%(0, ~)) + |
complexity) | (o, —0,)=0
4
(Conicaly | V32 (0, +a)+1(0, - 0) - 20,0, =0 0.8167
5
(Paraboloidal) | 8J2*2(0. —o))l, ~20,6,=0 0.5969
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Table 6.4.

Algorithm for the implementation of the constitutive model with the data—driven yield

function.

0] Trial stress. Based on the strain increment at tn:
6 . =0, +D":As,  Ac” =As?

n+l €0n1 - €qy !

o. (Aey V=0, (Al )0, (Agl )=0, (Agy ).

Cni1 €d, N+l e

(i) Check if the stress state is beyond the yield criterion:

IF\|J; (1.8550, +1.7320, —30.4)+0.01495,” —2.0870, 0, +
1.998c, +15.90, +1," (0, —0,) <0

t t t
THENo,,, =0,,,0. =0, ,0, =0,

n+1? Cni1 Cni1 ! tn+1 tr|+1 '
ELSE IF retrun mapping algorithm

- Initial guess for the plastic multiplier, Ay.

1 181" 4a® .,
Ager]rwl = 142 2 A]/ 22 + 2 (II )2’
+2v, S, 27¢,

- O (Age[;ml )' o

N+]

o,

n+l

tr
= [— |1 o, +1. o, —aolU.4)+VU. O, —LZ. o. o, +l1. o. +
@ ‘;22 1.8550, +1.7320, —30.4)+0.01490, *-2.087c, o, +1.9980,

S
tr
1590, +—(o,
p

-0, ).

n+l n+l

- For Newton—Raphson iteration scheme,
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8Gt _ 80‘[ aAé‘eZ _H 6A6‘e%
OAy OAgy OAy ' OAy

)

8gc B 80‘0 aASJ; _H aAé‘e%
oAy OAsy oAy ¢ ony

OA p tr tr2
beq _ 1 : JA- Ay 216(;)\]2 +16aKI31 |
oAy \1+2v, Al & 21¢,

where A is defined by:

18JY  4a® .,
— 2 —Z(II)Z

A —+ N
¢ 21¢,
N v
0 _ N2 4 g550. +1.7320, ~30.4) - 2K (5 )
oAy s So
oD Oeg,
ded Ay’

€q

where aclz can be written as:
o€

€q

Jtr
90 _NY2 (1 855H, +1.732H, )+ 0.030,H, — 2.087(H, 0, + o,H,)
ogly <.

tr
+1.998H_ +15.9H +L(H —H,).
c t é, c t

p

Thus, the plastic multiplier that satisfies ® =0 is derived iteratively by:

D
AM

Update stress tensor and plastic strain tensor with characterized plastic

(iii)
multiplier:

Sr[1r+1 p:+1 p 2
G = + , AgP=Ay|3S+—al, |
1+6GAy 1+2KaAy 9

(iv)  Go to next iteration.
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7. Conclusion and Recommendation

In this dissertation, a multiscale framework was developed to investigate plastic
behaviors of amorphous polymers without experimental support, which can reveal the
microscopic deformation properties of the material. The timescale limitation of classical
MD simulations, which has been considered an obstacle for the characterizations of
constitutive equations by MD simulations, was overcome based on the relaxation nature of
polymers. The obtained constitutive responses were used for achieving further predictions
of macroscopic plastic behaviors as compared to the classical methodologies, which only
utilize the classical yield criteria for multi-axial deformation behaviors of polymers. To
establish 3-dimensional FE models by the derived data set, machine learning was used for
the mathematical prediction of yield functions.

The microscopic mechanisms of the plastic deformations were investigated
focusing on the energy, stress, and chain conformations during the deformations. In
particular, the influence of structural differences that arise from different curing agents was
estimated from the perspective of plastic deformations. The results revealed that
irreversible folding of the dihedral angle was mainly observed at the benzene rings in the
epoxy network, as the plastic deformations were initiated. The folding behaviors led to a
different trend in plastic strain accumulations, when the cyclic loadings were applied. The
plastic strain of epoxy cured by an aromatic curing agent was accumulated rapidly as

compared to that of the epoxy cured by an aliphatic curing agent.
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The methods to predict quasi-static constitutive laws were developed using
classical yielding theories and polymer kinetics. To predict the scaled constitutive laws at
a quasi-static level, the master profiles of yield stress were predicted by two approaches.
The first method employs the time and temperature equivalence and sequentially construct
the master profile by utilizing the yield slope of the higher temperatures. The second
method is to use the 0 K solution of Argon theory and a cooperative model for a proper
description of the nonlinear nature of polymer, which yields the corresponding rate and
temperature.

The FE model for the plastic deformation behaviors of epoxy polymers was
constructed by data-driven constitutive modeling. The data-driven constitutive model was
established by generating data-driven yield function, which was predicted from machine
learning with the MD data set. The MD data set displays its own envelope at o, =0 plane,
which is featured by a significantly larger boundary in bi—compressive loading. The
subsequent yield surfaces as well as the initial surface were considered in the prediction
procedure; this has been not taken into account by previous constitutive modeling
techniques. The predicted data-driven yield function thoroughly describes the evolution of
the yield surface that is featured by a raw data set, as compared to the existing yield
functions (Drucker-Prager and paraboloidal yield functions).

We expect that the machine learning based multiscale framework will be broadly

used for the predictions of macroscopic plastic deformations of various polymers by

revealing their deformation characteristics more effectively and efficiently than that
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obtained with classical FE analysis; this can eventually lead to the formation of a library of
amorphous polymer materials. Further, this framework can be extended to other classes of
materials such as crystalline polymers, metals, and biomaterials with well-defined methods

to identify constitutive responses of those materials.
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