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Abstract

Experimental and numerical investigation for the fluting
defect and bake hardening of metallic sheet materials

originated from the yield-point phenomenon

Jaehyun Kim
School of Mechanical and Aerospace Engineering

The Graduate School
Seoul National University

The yield-point phenomenon of annealed or aged metals has duality in terms of

avoiding it or utilizing it. Defects such as fluting in v-bending originated from the

phenomenon can be avoided through roller-leveling process composed of multiple

up-and-down bending operations. However, excessive leveling conditions can lead to

superficies defects, and an adequate process condition remains still elusive. Utilizing

the phenomenon, bake hardening characterized by the significant increase of yield stress

after baking of pre-strained low carbon steel can be used for improving dent resistance

in automotive sheet metal forming applications. However, many previous investigations

about bake hardenability concentrate only on the bake hardening response of uniaxial

tension with related influence factors, and numerous numerical studies for the dent

resistance rarely consider bake hardening effect. To accurately predict the behavior of

materials with this phenomenon, the constitutive model for computational elastovis-

coplastic analysis should be able to depict the yield-point phenomenon, the Bauschinger

effect, and bake hardenability, rendering it difficult to obtain a converged solution in

implicit numerical analysis when the conventional one-point Newton method is used. In

the present study, firstly, comprehensive experimental investigations are performed for

the fluting defect in the v-bending process, its reduction by the roller-leveling process,

and the dent resistance of an automotive bake hardenable steel. Systematic evaluation

for the effect of roller-leveling condition on the fluting in v-bending is then carried out
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using pre-coated low carbon steel after examining the rate dependency and the cyclic

characteristics of the phenomenon in uniaxial loads. The bake hardening behavior of a

dual phase steel is observed in uniaxial load cases and static dent experiments conducted

in pre-strained and bake hardened conditions. For numerical analysis to describe these

experimental observation results, an implicit stress-integration procedure is formulated

and implemented for a constitutive material model that can describe both the yield-point

phenomenon and the Bauschinger effect. And we propose robust stress integration

algorithms that can be used effectively in implicit finite element analysis employing

the bisection method and the two-point Newton method. This material model is also

integrated with a bake hardening model to illustrate bake hardening potentials. The

validation results of the model with simple problems demonstrate that the model can

be reliably used to calculate the solutions of the yield-point phenomenon problems

that cannot be obtained using conventional iterative methods although these algorithms

may require longer computational times. Numerical simulations corresponding to the

experiments are carried out with material parameters determined to reproduce the

uniaxial experiments. V-bending simulations at various roller-leveling conditions fairly

demonstrate the fluting defect and its reduction experimentally observed. The bake

hardening behaviors identified in the experiments are investigated in static dent simula-

tions including a bake hardening step, and the bake hardening effect is overall described

in numerical simulations. To conclude, the proposed analysis procedure is expected to

be useful in estimating a proper leveling condition to prevent potential defects and dent

resistance of automotive bake hardenable steels as well as investigating the effect of the

yield-point phenomenon in various metal forming processes.

keywords: Yield-point phenomenon, Elastoviscoplasticity, Stress integration algorithm,

Fluting, Bake hardening, Dent
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Chapter 1

Introduction

1.1 Yield-point phenomenon

The yield-point phenomenon (YPP) is a unique yielding behavior observed often in aged

or annealed low carbon steel. In a uniaxial tension test, the YPP can be characterized

by three aspects: sharply increased yielding stress, consecutive stress drop and lower

yielding fluctuation as observed in Fig.1.1. As described in the schematic tensile

specimens in Fig.1.1, the sharply increased yielding stress is the elastic limit which can

be called upper yield point, and the lower yielding fluctuation after the subsequent stress

drop results from the local plastic deformation consisting of Lüders bands nucleation

and propagation. The YPP was firstly reported in the experiment of Piobert et al. (1842)

where the surficial marks on a metal plate deformed by a projectile were observed. The

definite description of these marks was made by Lüders (1860) with the polished surface

of bent metal, leading to the birth of terminology, Lüders band. Since these experimental

works, many studies investigating the YPP have been reported including the well-known

dislocation locking theory proposed by Cottrell and Bilby (1949) and the dislocation

proliferation and velocity characteristics acquired by Johnston and Gilman (1959). The

dislocation locking theory brought the terminology, Cottrell atmosphere which can

help to explain the unique characteristics of the YPP such as an upper yield point and
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Figure 1.1. Stress-strain responses of metallic material with YPP and without YPP in

their uniaxial tensile test and corresponding schematic tensile specimens

a subsequent yield drop by relating them with the diffusion of interstitial carbon or

nitrogen atoms into a dislocation core. Although this theory was well established in

terms of the dislocation locking, it was not fully satisfied with the unlocking concept

because Johnston and Gilman (1959) found a case where the YPP was not affected by

the unpinning of dislocations in LiF crystals. Including these locking and unlocking

debates, deeper and broader insights into the YPP in the 1950s and 1960s are well

summarized in Hall (1970). In the last couple of decades, the research focus of the YPP

has been transfigured from explicating the YPP itself to explaining and describing it

with the finite element (FE) method.
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1.2 Avoiding or utilizing the YPP

The YPP can cause forming defects such as stretcher strains and fluting in sheet metal

forming applications where the fluting is also referred to as kinking as stated in Ding

and Duncan (2004) and Duncan et al. (1999). Being distinct from typical defects such

as crack, necking, wrinkle, and springback in sheet metal forming process, these defects

result from inhomogeneous plastic deformation due to the YPP and can be regarded

as critical defects when they appear in outer panels of automotive vehicles or home

appliances.

In general, the YPP can be alleviated by temper rolling, also known as skin pass

rolling, that provides diminutive strains, usually less than 0.5%, to the material as

stated in Hosford and Caddell (2011). However, pre-coated low carbon steel (PLCS)

often exhibits the YPP even after the temper rolling process at the last stage of steel

production because the material can be aged during the post-production color coating

process of hot temperature. Similar to other aged low carbon steels, the YPP of PLCS

is characterized, in its stress-strain curve of uniaxial tension, by the sharp upper yield

point, the subsequent yield drop to the lower yield point and the lower yield region

(Fig.1.2a). Localized plastic deformation due to the YPP engenders Lüders bands
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Figure 1.2. The YPP of PLCS: (a) stress-strain response in uniaxial tension test and (b)

stretcher strains in circular embossing.

or stretcher strains, for example, in circular embossing (Fig.1.2b). The YPP-induced

17



plastic deformations can also lead to the fluting defect in the v-bending (Fig.1.3a) of

PLCS in its as-received (without any process for YPP reduction) condition. Here, an

Upper tool

Lower tool

Material

(a)

R15

(c) (d)

R6~7 R12~13

90�

70

Lower rolls

Upper rolls

Material

(b)

Figure 1.3. Fluting defect in the v-bending process: (a) schematic diagram of the

v-bending process with an R15 punch; (b) schematic diagram of the roller-leveling

process; (c) a sharp corner shape observed in the raw PLCS after the v-bending due to

fluting defects; and (d) a normal corner shape observed in the roller-leveled PLCS after

the v-bending.

undesirably sharp corner is observed as plastic deformations localized at the corner form

a plastic hinge in the bending process (Fig.1.3c). Nevertheless, it has been shown that

the YPP can be reduced, if not fully removed, with the application of the roller-leveling

process consisting of cyclic bending operations (Fig.1.3b). Pearce (1991) explained

that these operations induce mobile dislocations sufficient to diminish the yield-point

elongation. Plastic deformations generated from repeated bending-unbending actions

during this process abate the YPP. While Theis (1999) showed that this process has

been frequently used to correct other shape defects including crossbow, edge wave,

center buckle, camber, and twist, it is essential to avert defects associated with the YPP

such as fluting particularly for materials like PLCS (Fig.1.3d).

Although it is important to eschew the YPP by a roller-leveling process in the

aforementioned cases, the YPP is not always something that should be avoided because

there is a suitable method to utilize it in sheet metal forming applications. That is

bake hardening (BH) behavior characterized by a drastic yield stress increase after the
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paint baking of pre-strained low carbon steel. In general, this BH behavior is known

to be contributed by two effects, the Cottrell atmosphere and precipitation hardening.

Among these two sources of hardening, the dislocation locking develops first until all

of dislocation sites are occupied with solute atoms. When this locking atmosphere is

fully condensed and if free solute atoms are still available, the precipitation hardening

successively begins by forming the precipitates of ε-carbide. This two-stage concept

was reported in the past literature such as Wilson and Russell (1960) and well explained

in Elsen and Hougardy (1993). More detailed metallurgical knowledge for the BH

mechanisms can be referred to Rana and Singh (2017).

Various automotive body parts such as outer skin panels and structural members

take advantage of the BH behavior in order to improve dent and crash resistance. This

improvement also can contribute to the vehicle body lightweighting by reducing the

thickness of the steel sheet used. As stated in Kantereit (2011), representative automotive

steels that reveal the BH behavior are conventional BH steels developed in the 1980s.

Some of advanced steel grades such as dual phase (DP) and transformation-induced

plasticity (TRIP) steels also have the BH potential which is investigated by many studies

like Waterschoot et al. (2003), Timokhina et al. (2007), J. Zhang et al. (2008), and

Ramazani et al. (2014).

As a key mechanical property of bake hardenable automotive steels, BH stress can

be determined in uniaxial tension test before and after baking operation as illustrated

in Fig.1.4. The BH stress value is the difference between the highest stress in the

pre-tension and the lower yield stress of the tension after baking. The pre-tension and

baking step epitomizes the forming and the paint baking process, respectively, in the

actual automotive sheet metal applications. The dent resistance test such as SAE J2575

is often used in evaluating the BH potential of automotive steels. In Holmberg and

Thilderkvist (2002), it was observed that higher yield stress can directly improve the

dent performance. If this higher stress is obtained by BH in paint baking, bake-hardened

steels can induce superior dent characteristics to non-bake-hardenable steels even with
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Figure 1.4. Stress-strain response of DP steel in uniaxial tension test before and after

baking operation.

similar yield stress after forming and similar thickness.

1.3 Literature review

1.3.1 YPP defect and its reduction method

There have been few studies on the YPP-related defect and its reduction method. Aratani

et al. (1997) found that fluting occurred at the yield-point elongation over 4.5% in

the production process of roll-formed three-piece can body with the steel of 0.18 mm

thickness and 0.041% carbon content. They also demonstrated the reduction of fluting

by the flexor treatment that gave bending and unbending deformation prior to the roll

forming process. This treatment is similar to the roller-leveling process except it uses

only one set of rolls. Park and Yoon (2007) did theoretical, experimental and numerical

investigation on the onset condition of fluting in the tangential bending process with

low carbon steel of 0.5-0.6 mm thickness. Park (2015) conducted an experimental study

on adequate roller-leveling conditions to reduce the YPP-related defects, mostly the

stretcher strains in the circular embossing of PLCS. It was found that unwanted surficial
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defects could be generated if an excessive leveling condition was applied. Nevertheless,

the effect of YPP in other manufacturing processes such as the v-bending process has

been rarely reported and the proper condition of a roller-leveling process to eliminate

the YPP-related defects remains elusive.

1.3.2 Dent resistance considering BH behavior

Studies on dent resistance of automotive panels have been reported many times, but

those considering BH behavior are rarely found in the past literature. Asnafi (1995)

derived analytic equations to evaluate the dent resistance and experimentally validated

the equations. Holmberg and Thilderkvist (2002) investigated the material dependency

of the static dent resistance varying the conditions of forming operation. Jung (2002)

conducted FE analysis as well as analytic calculations to identify the relationship

between the dent-related performance of automotive body panels and their design

factors such as material properties, thickness, panel size, curvature, and test condition.

However, these works did not include BH materials or contemplate BH behavior

even when BH materials were involved in their studies. Holmberg and Nejabat (2004)

showed the limitation of isotropic hardening model in the numerical simulation of

dent resistance, and Shen et al. (2010) demonstrated the accuracy improvement in the

numerical analysis of dent resistance by using a linear kinematic hardening model and

a nonlinear combined hardening model. Recently, an advanced constitutive model was

adopted in Lee et al. (2016) for dent resistance FE analysis providing more accurate

predictions than a conventional approach that uses von Mises yield function, isotropic

hardening, and a constant elastic modulus. Nonetheless, BH behaviors or BH materials

were not handled by these studies.

1.3.3 Constitutive model and numerical analysis for YPP

There have been various studies on the constitutive model and numerical analysis

for YPP. The theory proposed by Cottrell and Bilby (1949) was a starting point of
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YPP constitutive models. They suggested a dislocation locking theory to elucidate the

mechanism of the YPP beyond the ostensible observations of Piobert et al. (1842)

and Lüders (1860). However, this well-established theory was not fully aligned with

the unlocking concept because Johnston and Gilman (1959) found no evidence of

dislocation unpinning in LiF crystals exhibiting the YPP. Based on their investigation,

Hahn (1962) built a constitutive model describing the YPP on the premise of the

expeditious dislocation proliferation and the stress effect on the dislocation velocity.

Yoshida (2000) pioneered an elastoviscoplastic constitutive model depicting both the

YPP and cyclic behaviors that had never been suggested before this model. Its YPP

part was developed based on the dislocation multiplication and velocity behavior

where a phenomenological approximation for the fraction of mobile dislocation density

was newly proposed to express the rapid dislocation multiplication. Later, Yoshida et

al. (2008) improved this model in order to capture a sharper upper yield point and carried

out explicit FE simulations to find out the appropriate rolling condition to remove the

YPP in the temper rolling process (hereafter, this improved model is referred to as

Yoshida-2008 model). They adopted a two-surface kinematic hardening rule proposed

by R. D. Krieg (1975) in order to illustrate the Bauschinger effect by using multiple

equations solved for the relative motion of the yield surface to the bounding surface.

A lot of research effort to advance the YPP model and its application to the pre-

diction YPP-related defects has been followed after Yoshida’s pioneering work. Park

and Hwang (2002) performed FE analysis to investigate the optimum roller-leveling

condition to remove blanking bow defects using a rather simple, linear hardening model

without considering the YPP. Park and Yoon (2007) identified the fluting condition in

terms of material properties in tangential bending by using the FE analysis procedure

of Park and Hwang (2002) with an improved material model consisting of lower yield

and linear hardening regions neglecting the upper yield point followed by a sudden

yield drop. Pepelnjak and Barisic (2007) optimized the part geometry to remove the

stretcher strains on tinplate rings based on FE simulation results. Wenman and Chard-
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Tuckey (2010) predicted the residual stress characterizing the Lüders strain in a compact

tension specimen under a complex loading condition by employing the plasticity model

proposed by S. Zhang et al. (2001) without considering the kinematic hardening behav-

ior. Žerovnik et al. (2010) developed a rate-independent phenomenological material

model that captures both cyclic plasticity and YPP. Schwab and Ruff (2013) explained

the actual material behavior associated with the YPP by using a simple macromechani-

cal model without taking the rate dependency of YPP and the Bauschinger effect into

account. Mazière and Forest (2015) obtained the Lüders strain propagation analytically

using a strain gradient plasticity model, which did not suffer from the mesh dependence

problem observed in conventional FE analysis. Nevertheless, this model was also based

on the rate-independent plasticity and did not consider the cyclic behavior. Giarola

et al. (2015) performed FE analysis for the skin pass rolling process using the mate-

rial model displaying the actual upper yield point suggested by Yoshida et al. (2008)

and Schwab and Ruff (2013) with the rigid-plastic, rate-independent, and isotropic

hardening behavior.

1.3.4 Stress integration algorithms

These YPP models were often implemented explicitly for FE analysis partly because

of their high nonlinearities making it hard to obtain a converged solution iteratively

using an implicit stress integration algorithm. As described in Prior (1994), since an

implicit algorithm may fail to find a converged solution or it may require a significantly

large number of iterations to get a solution, the explicit algorithm can be more effective

even though a much smaller time step size need to be used in general. Pepelnjak and

Barisic (2007) used an explicit code to avoid contact instabilities in an implicit method

for simulating and analyzing stretcher strains in the stamping process at the increased

forming speed of 4.6 m/sec. However, if the convergence can be guaranteed, using an

implicit method can be more efficient in general as one can use a larger incremental

step during analysis.
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Since Wilkins (1964) firstly presented the famous stress integration algorithm, radial

return mapping, many related topics such as iso-error map in R. D. Krieg and D. B.

Krieg (1977), consistent tangent operator in Simo and Taylor (1985) and integration

stability in Ortiz and Popov (1985) have been studied. Lately, exponential map based

methods were introduced to enhance the accuracy of stress integration. Rezaiee-Pajand

et al. (2010) applied an exponential-based method on the von Mises plasticity model

with nonlinear kinematic hardening rules to show highly accurate stress integration.

They also conducted similar studies on the nonlinear mixed hardening models in

Rezaiee-Pajand et al. (2011a). Some semi-implicit schemes based on the exponential

map methods in Rezaiee-Pajand et al. (2014) were converted from fully explicit schemes

in Rezaiee-Pajand et al. (2011b). Despite their robustness and improved accuracy in

stress integration, they might not be useful in handling non-convergent cases.

1.3.5 Recent YPP studies

Recently, Žerovnik et al. (2016) investigated the influence of the YPP on the cyclic

plasticity by utilizing strain field images. Their experimental observation was, however,

not connected to any numerical prediction. Markiewicz et al. (2016) identified the

characteristics of viscoplastic behavior for spot-weld heat affected materials showing

the YPP. They used the modified Krupkowsky viscoplastic model to compare numerical

results with experimental data. Nevertheless, in their numerical work, the YPP and the

cyclic behavior were not considered. Abspoel et al. (2017) proposed a new correlation

method for yield criteria to obtain the stress factors directly from tensile test data. They

neglected the YPP exhibited in the tensile test of low carbon steels when calculating

the plastic work. C. Zhang et al. (2017) carried out microstructure-based FE analysis to

study the effect of microstructure heterogeneity on the microscopic stress triaxiality in

C-Mn weld metals. Their numerical simulation using the representative volume element

(RVE) did not properly describe the yield point elongation of tensile experiments. Mao

and Liao (2019) also used RVE to predict the YPP and work hardening behaviors of
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DP steels. Although their model was able to reveal the upper and lower yield points as

well as the yield-point elongation, they did not investigate the cyclic behaviors.

1.3.6 BH models

In order to scope out BH models that can be used to describe the BH behavior, the dis-

location locking mechanism proposed by Cottrell and Bilby (1949) should be revisited.

Their proposed theory involves the diffusivity and concentration of solute atoms with

BH time and temperature and could predict the extent of dislocation locking. However,

their theory was meaningful only for the early stage of pinning process and modified

by Harper (1951) and Cochardt et al. (1955) to consider the saturation of the pinning

process. Hartley (1966) presented a simplified equation to calculate the BH stress

by employing the concepts of thermally activated dislocation mechanisms discussed

in Conrad (1964). The two BH models, one from Harper (1951) and the other from

Hartley (1966) were used to compare the aging kinetics between bake hardenable ultra

low carbon steel and bake hardenable low carbon steel in De et al. (2001). While some

of these early studies might not take the precipitation hardening into account in their

BH models, Das et al. (2014) developed a new BH model that includes both the Cottrell

effect and the precipitation hardening. The Cottrell effect part of this model was based

on the equation of Hartley (1966) and the precipitation hardening part was originated

from the Gladman (1999) and Zener (1949). Many previously published experimental

BH data were in good agreement with the calculated result from the model of Das

et al. (2014).

Although many kinds of literature researching BH models were published in the

past, most of them focused on some factors affecting BH response or the response

magnitude itself and investigations associated with sheet metal forming applications

were rarely reported except for only a few studies such as Ballarin et al. (2009b) and

Ballarin et al. (2009a). Ballarin et al. (2009b) developed a BH model which is based on

the equation proposed by Zhao et al. (2001) for the formation of the Cottrell atmosphere
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and an evolution equation describes the growth of precipitates for the precipitation

hardening. They coupled the developed model with their simple bilinear YPP model

originated from Tsukahara and Iung (1998) and carried out uniaxial tension tests and

simulations to validate their coupled model. Ballarin et al. (2009a) expanded their

original work into complex loading paths by adapting a polycrystalline self-consistent

approach. However, these works did neither consider the kinematic hardening and the

rate-dependency in their YPP model nor assess BH potentials in actual applications

such as static dent cases.

1.4 Objectives and outline

Although many aforementioned investigations on the YPP and related applications

including BH behavior have been reported, no comprehensive studies on the emergence

of YPP-related defects, the process condition for their prevention, and the evaluation of

the BH potential with the static dent performance have been conducted to the best of

authors’ knowledge. In this thesis, the first objective is to experimentally investigate

the YPP with PLCS and BH behavior with DP steel in various cases such as uniaxial

load, v-bending together with roller-leveling for YPP defects, and static dent load for

BH. Secondly, in order to describe these experimental behaviors, it is aimed to enable

implicit elastoviscoplastic FE analysis for materials with the YPP by employing a

robust stress integration algorithm. To illustrate, we consider the Yoshida-2008 model,

arguably the most comprehensive model depicting both the YPP and the Bauschinger

effect, whose kinematic hardening part is replaced with the one proposed by Yoshida

and Uemori (2003) for simplicity. To integrate the BH model into the YPP model is also

included in this objective. The last objective is to numerically simulate the YPP and BH

behavior such as fluting defect in v-bending, its reduction by the roller-leveling process,

and the BH effect in the static dent case using the YPP and BH integrated model.

In the beginning, in Chapter 2, the YPP-related behaviors of PLCS are characterized
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by performing uniaxial tension tests at various crosshead speeds, uniaxial cyclic tests,

and v-bending tests under systematically varied roller-leveling conditions as described.

The investigation on the BH behavior of DP steel is carried out with uniaxial tension

and compression experiments before and after BH operation at several BH conditions.

At the same conditions, static dent experiments before and after BH operation are also

conducted. New findings from these experiments are addressed in detail.

In Chapter 3, a robust implicit stress-integration procedure is formulated for a con-

stitutive material model that can capture the rate-dependent YPP and the Bauschinger

effect. This procedure is implemented as a user-material subroutine UMAT of Abaqus/-

Standard for FE analysis. Here, the Yoshida-2008 model is employed as a base model

with some modifications to use a more efficient kinematic hardening rule in the implicit

approach proposed by Yoshida and Uemori (2003) and to consider the true yield-point

behavior explained in Schwab and Ruff (2013). And the two-point Newton method is

also employed, which is shown to be robust and efficient in solving non-convergent

nonlinear equations with a single variable in Tiruneh et al. (2013) or multiple variables

in Saheya et al. (2016), unlike the typical one-point Newton method. The material

model is used to test several stress integration algorithms including the conventional

one-point Newton method, the two-point Newton method, the bisection method, and

their combinations. The BH model proposed in Das et al. (2014) is taken and coupled

with the material model to take BH behavior into account.

In Chapter 4, numerical simulations for validating the robustness of the material

model are carried out for uniaxial tension, simple shear, uniaxial cyclic, v-bending and

cantilever bending problems. The performance of each stress integration algorithm is

evaluated by the computing time, the number of increments and the simulation response.

BH calculations are also verified using single element simulations.

In Chapter 5, FE simulations corresponding to v-bending and roller-leveling experi-

ments of PLCS are carried out for mimicking the fluting defect and its reduction. These

simulations use the constitutive model whose material parameters are determined to
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match the experimental data in uniaxial tension and cyclic tests of PLCS. The prediction

capability of the model for the pertinent condition of the roller-leveling is demonstrated

by the results of roller-leveling FE analysis followed by v-bending simulations. Numer-

ical simulations corresponding to the static dent experiments of DP steel are conducted

using the YPP and BH coupled model with the material parameters chosen to fit the

experimental result of uniaxial tension and compression tests of the same material. The

BH steps are also included in these simulations. The simulation results overall illustrate

the BH behavior of the DP steel providing the assessment of BH performance of the

material.

It is expected that the established FE analysis procedure with the proposed material

model would be useful in investigating the effect of YPP in other metal forming

processes and estimating a proper condition for the roller-leveling process to effectively

remove YPP-related defects. Also, the proposed model can be utilized in evaluating

the BH potential with the static dent analysis. Note that the contents from Chapter 2 to

Chapter 5 are addressed based on our previous research of J. Kim and D. N. Kim (2019)

and J. Kim et al. (2019) except for the consideration of BH behavior.

28



Chapter 2

Experimental Investigations

In this chapter, comprehensive sets of experiments are devised and performed to sys-

tematically analyze the YPP-related behaviors of PLCS and the static dent resistance of

bake hardenable DP steel. For the behaviors of PLCS, specifically, we explore the rate

dependency of the YPP in uniaxial tension tests, the cyclic characteristics in uniaxial

cyclic tests, and the effect of roller-leveling conditions on the fluting as well as the rate

dependency of the fluting in v-bending tests. The PLCS of these experiments is the

thickness of 0.6 mm and the carbon content of 0.02%.

For the dent resistance of bake hardenable DP steel, uniaxial tension, uniaxial

tension-compression, and static dent tests are carried out with BH operation. The

bake hardenable galva-annealed DP steel with the carbon content of 0.078%, the

thickness of 0.7 mm, and the tensile stress of 490 MPa is used for these experiments.

Hereinafter, this material is referred to as 490DP. For the BH operation of all related

experiments, a climatic chamber Climats Excal 2211-TA PS is used to have a high

precision temperature profile.
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2.1 Experimental observations for fluting defect and its re-

duction method with PLCS

2.1.1 Uniaxial tension test

The dimensions of PLCS uniaxial tension specimen with the gauge length of 50 mm

are specified in Fig.2.1. The specimens are prepared so that their rolling direction (RD)

200

60

50

61

20

R
1
2
.712.5

Figure 2.1. Specimen for the uniaxial tension test. The thickness of the specimen is 0.6

mm.

is aligned to the tensile direction. Uniaxial tension tests are performed at the crosshead

speeds of 0.6, 6, and 30 mm/min using a Zwick-Roell 100 kN universal testing machine

equipped with a contact-type extensometer. The tests are repeated three times for each

crosshead speed condition.

The stress-strain curves and their YPP-related properties are shown in Fig.2.2a and

Fig.2.2b, respectively. These properties are quantified referring to ISO 6892-1:2016.

The upper yield point is determined from the first peak value of the stress-strain curve

while the lowest value in the lower yield region is measured as the lower yield point.

The yield-point elongation is calculated by subtracting the strain value at the upper

yield point from that at the beginning of uniform strain hardening. The latter value is

selected at the point of highest slope around the beginning of uniform strain hardening

as indicated using hollow symbols in Fig.2.2a. The highest slope point is determined

by selecting the maximum value among instantaneous slope values calculated by

(σ(k) − σ(k−1))/(ε(k) − ε(k−1)) around the beginning of uniform strain hardening. It

can be observed that the upper and lower yield points increase with the crosshead speed,
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Figure 2.2. Results of the uniaxial tension tests: (a) stress-strain responses at the

crosshead speed of 0.6, 6 and 30 mm/min and (b) corresponding YPP-related properties.

HSP indicates the highest slope points and YP denotes the yield-point.

which agrees qualitatively with the experiments by Yoshida (2000) for the hot-rolled

low carbon steel with 0.07% carbon content and the experiments by Watanabe (1982)

for the cold-rolled low carbon steel with 0.07% carbon content. Sun et al. (2003) also

experimentally showed the rate dependency of the yield-point elongation and the lower

yield point for low carbon steel. On the other hand, the yield-point elongation data in the

present experiments are rather scattered with a relatively large variation. The scattered
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yield-point elongations might be because the yield-point elongation is dominated by

the nucleation and propagation of the Lüders band. This behavior of the Lüders band

is hardly homogeneous as well as it is difficult, in practice, to pinpoint the beginning

of uniform strain hardening from the noisy stress-strain curves. As a result, unlike

the previous experiments by Yoshida (2000), Watanabe (1982) and Sun et al. (2003),

no clear tendency with respect to the crosshead speed was observed. Meanwhile, as

reported in Yoshida (2000), the stress level in the strain hardening region is elevated

with respect to the crosshead speed.

2.1.2 Uniaxial cyclic test

Uniaxial cyclic tests consisting of tension, compression, and re-tension processes with

PLCS are carried out for the strain ranges of 4% and 8% at the crosshead speed of 10

mm/min using a servo-controlled testing machine equipped with a laser extensometer.

Specimens whose gauge length is 20 mm are used with other dimensions as specified

in Fig.2.3. Again, the uniaxial force is applied along their RD. The gauge width of the
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Figure 2.3. Specimen for the uniaxial cyclic test. The thickness of the specimen is 0.6

mm.

specimen and the clamping force applied are 15 mm and 200 kgf, respectively. These

values are chosen to avoid any instability during the test based on two equations in Bae

and Huh (2011) originally derived in Boger et al. (2005) and Cao and Wang (2000).

According to those equations, the maximum attainable compressive strain is about
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0.146 and the corresponding clamping force is about 300 kgf. In the present experiment,

however, the clamping force is selected as 200 kgf to reduce the frictional and biaxial

effects on the specimen. In this condition, the compressive strain is 0.094 larger than

the current strain ranges. In addition, Teflon sheets whose thickness is 0.1 mm are

attached to both sides of the gauge section in order to minimize the frictional force

caused by the clamping force. In general, raw stress-strain data need to be corrected for

frictional and biaxial influences due to the clamping force. The frictional corrections

for the acquired stress-strain data are made using the method in Boger et al. (2005). We

adjust the friction coefficient used for correction in the range of 0.06-0.11 to match

the uniaxial tension curve at the same crosshead speed. The biaxial effect is ignored

because the normal stress induced by the clamping force is much smaller than the

longitudinal stress. Normal stress σn in the gauge length area (30 mm x 15 mm) is about

4.4 MPa. Then, the effective stress considering the biaxial effect can be calculated as√
1

2
[(σm − σn)2 + σm2 + σn2] (2.1)

with the measured longitudinal stress σm. The difference between this effective stress

and the absolute value of σm is about 2 MPa which can be neglected.

The corrected stress-strain responses are plotted in Fig.2.4. Note that the curves

in Fig.2.4b are symmetric about the stress reversal points. The Bauschinger effect is

clearly captured after the stress reversals for both 4% and 8% strain ranges. The change

in the strain hardening rate is hardly observed in the second tension of the 4% strain

range test. It might be because the disintegration of the dislocation cell walls generated

during the compression is not completed in the second tension as observed in Hasegawa

et al. (1975) with transmission electron microscopy. No permanent softening in the

compression of the 4% test is identified from the curve. This might be linked to the

fact that the compression region is within the region of yield-point elongation and the

dislocation cell walls are not fully developed during the first tension. On the other

hand, the workhardening stagnation and the subsequent strain hardening appear clearly

in the 8% strain range test. This means that the preformed dislocation cell walls are
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Figure 2.4. Stress-strain responses of the uniaxial cyclic tests in the strain range of 4%

and 8% at the crosshead speed 10 mm/min: (a) engineering stress vs. engineering strain

and (b) true stress vs. true strain symmetrized about the stress reversal points.

completely dissolved at the deflection points in the reversed deformations. The strain

hardening slope after the deflection point in the compression is steeper than that in

the second tension. These workhardening stagnation behaviors are in accord with the

experimental studies by Hu et al. (1992).
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2.1.3 Roller-leveling test

The primary control parameter in the roller-leveling process is an intermesh (IM) that

determines the vertical position of rolls. The roller-leveling tests are conducted with

five intermesh conditions using an experimental roller-leveler illustrated in Fig.2.5 with

the material feeding direction set to the RD. Test specimens are 750-800 mm long and

53

D45

(c)
(b)

(a)

(c)(b)

Movable upper rack

Fixed lower rack

IMEX (+) IMEN (-)

Figure 2.5. Configuration of the roller-leveling process: (a) a layout of upper and lower

rolls; (b) a detail view of the exit intermesh; and (c) a detail view of the entrance

intermesh.

100 mm wide. Generally, for materials with thin gauge, the entrance intermesh IMEN is

set to a negative value and the exit intermesh IMEX is set to a positive value as indicated

in Fig.2.5b and c. The amount of plastic strain induced to the material is determined

by the entrance intermesh. Park et al. (2006) derived an equation to account for this

relationship based on a simplified stress profile through the thickness assuming a pure

bending situation. And Park (2015) rearranged the equation as

PF =
t− te
t

= 1− Y0L
2

12Et(t− IMEN)
(2.2)
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where PF is the plastic fraction representing the amount of induced plastic strain through

the thickness, t and te denote the thickness and its elastic portion, respectively, Y0 is

the yield stress, L is the distance between two rolls and E is Young’s modulus. The

five intermesh conditions and corresponding PF calculated with t = 0.6 mm, Y0 = 305

MPa, L = 53 mm and E = 199.514 GPa are listed in Table 2.1. The IMEX and the

Table 2.1. Intermesh conditions and corresponding PF values in the roller-leveling

process.

IMEN (mm) -0.8910 -1.3880 -1.7856 -2.3821 -3.3761

PF (%) 60 70 75 80 85

rotational speed of rolls are fixed to 0.5 mm and 20 rpm, respectively.

Simple visual inspection of PLCS plates after the roller-leveling process reveals

the appearance of surface defects in the specimen processed with 85% PF condition as

shown in Fig.2.6. These defects are presumably induced by the occurrence of repeated

flutings during the roller-leveling process. They are hardly found in the specimens

processed with other PF conditions. This observation agrees with the experimental

result by Park (2015). To investigate more quantitatively, the 10 mm x 10 mm surfaces

of each specimen are measured using the Wyko NT9300 Optical Profiler. The 3-

D surface profiles and corresponding roughness values are shown in Fig.2.7. The

average roughness Ra and the root mean square roughness Rq defined in Turner and

Miller (2006) are expressed as

Ra =
1

np

np∑
i=1

|Zi − Z̄| and Rq =

√√√√ 1

np

np∑
i=1

(Zi − Z̄)2, (2.3)

respectively. Here, np, Zi, and Z̄ denote the number of measurement points, the surface

height at measurement point i, and the mean value of Zi, respectively. Similar to

the visual inspection in Fig.2.6, the surficial defects shown as the repeated fluting

lines perpendicular to the RD can be observed in the surface profile of specimens

processed with 80% and 85% PF conditions (Fig.2.7a). The measured roughness values
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Figure 2.6. Surfaces of the roller-leveled specimens: (a) a part of specimen samples for

the visual inspection under light; (b) as-received specimen; and (c)-(h) roller-leveled

specimens processed with various PF conditions. (g) and (h) show the surface of the

same specimen at different light angles. Red arrows indicate surface defects due to

excessive roller-leveling.
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Figure 2.7. 3-D surface measurements on the area of 10 mm x 10 mm of specimens: (a)

surface profiles and (b) surface roughness values of specimens with as-received and

five PF conditions. Arrows in (a) indicate fluting defects. Ra and Rq in (b) represent

the average roughness and the root mean square roughness.
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also indicate the emergence of surficial defects at these PF conditions (Fig.2.7b).

Generally, the roughness values decrease as PF increases because the rolls flatten the

surface of specimens more with a higher pressure. In Fig.2.7b, however, it can be

observed that both Ra and Rq roughness metrics increase from 75% PF condition,

suggesting the surficial defects begin to appear around this roller-leveling condition.

These results, which have hardly been found in previous studies, demonstrate that it

is more appropriate to determine the maximum PF condition without surficial defects

from the surface roughness data rather than from simple visual inspection.

The uniaxial tension tests at the crosshead speed of 6 mm/min are then conducted

for these roller-leveled PLCS materials where three uniaxial tension specimens are

extracted for each PF condition. The stress-strain responses and their YPP-related

properties are depicted in Fig.2.8. As expected, all YPP-related properties decrease

with PF (except for 60% PF condition) compared to the as-received condition because

the higher PF condition induces the larger plastic strains by enlarging the plastic region

from outer surface to neutral surface. However, the YPP cannot be entirely disappeared

even with the maximum PF condition due to the remaining elastic region around the

neutral layer. In the strain hardening region, the higher hardening stresses are observed

for materials processed with larger PF conditions as the strain hardening is dependent

on the amount of induced plastic strains.

It is surprising that YPP-related properties of specimens roller-leveled with 60% PF

condition are larger than those of unprocessed materials, which has never been reported

previously to the best of authors’ knowledge. The increased YPP-related properties

might be because of the reduction of residual stresses induced by high temperature

during the coating process of PLCS. The reduction of residual stresses by the roller-

leveling process was proven experimentally in Park et al. (2006) where the residual

stresses in a hot rolled flat plate were shown to be reduced by half when roller-leveled

with 70% PF condition. From the experiment of Hutchison (1957), it can be inferred that

stress concentration that may occur near a region of residual stresses in uniaxial tension
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Figure 2.8. Uniaxial tension tests of roller-leveled materials at the crosshead speed 6

mm/min: (a) stress-strain responses; (b)-(c) detail parts of (a); and (d) corresponding

YPP-related properties.

lowers the upper yield point. Van Rooyen (1971) also showed that the upper yield point

can be drastically increased without any stress concentration in a tensile specimen. So,

the reduction in residual stresses can effectively raise the upper yield point leading to
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the increase of lower yield point and yield-point elongation as a consequence. Hence, it

is presumed that the roller-leveling process has two effects: inducing plastic strains (or

mobile dislocations) and reducing residual stresses each of which exerts an opposite

influence on the YPP-related properties. Results suggest that the effect of residual

stress reduction might be dominant in relatively light roller-leveling conditions while

that of induced mobile dislocations governs the YPP-related properties in more severe

processing conditions. Nevertheless, more systematic and comprehensive experiments

are required to confirm this conjecture, which is out of the scope of this study.

2.1.4 V-bending test

To investigate the effect of roller-leveling conditions on the fluting, the v-bending

experiments as depicted in Fig.1.3a are carried out using a mechanical servo press. The

lower tool is fixed as a die and the upper tool moves downward as a punch. Rectangular

specimens that are 100 mm long, aligned to the RD, and 50 mm wide are used. First,

as-received PLCS without roller-leveling process is tested at four punch speeds of 5, 10,

15 and 20 strokes per minute (SPM) in order to study the rate dependency of the fluting.

Experiments are performed three times at each punch speed. Then, three specimens are

extracted from roller-leveled PLCS materials for each PF condition and tested at the

punch speed of 10 SPM to examine the effect of roller-leveling conditions. The total

stroke of the punch is 250 mm and the punch touches the specimen at the last stroke

of 28.54 mm. The profiles of the punch speed during the last stroke of 29.70 mm are

plotted in Fig.2.9.

The deformed specimens after the v-bending experiments are shown in Fig.2.10a

and b. Deformed shapes of as-received specimens (Fig.2.10a) indicate that the fluting

occurs at all punch speeds, but the rate effect on the amount of fluting is hardly identified

by simple visual inspection. The effect of roller-leveling condition on the fluting defect

is, on the contrary, clearly seen in the deformed specimens (Fig.2.10b) as the radius of

curvature increases as PF increases. Interestingly, deflection lines where the slope of
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Figure 2.9. Profiles of the punch speeds during the last stroke of 29.70 mm in the

v-bending test.

the straight part suddenly changes are observed for both sides at all punch speeds. They

are induced by contact between the punch and the specimen after the fluting occurs

as illustrated in Fig.2.10c. Meanwhile, the deflection lines in roller-leveled specimens

are not observed in higher PF conditions where the fluting does not occur. In order to

analyze the deformed shape of specimens more quantitatively, the bottom surface of

each specimen is scanned using the Metris LC-100 line laser probe. The mid-sectional

curves along the longitudinal direction are then obtained from the scanned data. The

deformed shape of mid-sectional curves is characterized by the radius of curvature R,

the bending angle A and the deflection point denoted in Fig.2.10d. The datum point

in Fig.2.10d is the intersection of two lines each of which is obtained by connecting

two points on the curve at 5 mm and 15 mm from the closest end of the curve. The

radius of curvature R is calculated by nonlinear least-square fitting to a circle using the

data points in the range of −2.5 ≤ x ≤ 2.5. The bending angle A is the angle between

two lines, one from two points at x = 20 and x = 30 and the other from two points at

x = −20 and x = −30.

The mid-sectional curves for as-received specimens tested with four punch speeds

are drawn in Fig.2.11a and the corresponding R and A quantities are plotted in Fig.2.11d.
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Figure 2.10. Deformed specimen samples after the v-bending test: (a) as-received PLCS

with four different punch speeds; (b) roller-leveled PLCS with five PF conditions; (c)

contact states between the punch and the specimen in the test; and (d) definition of the

radius of curvature (R) and the bending angle (A) of a mid-sectional curve. Red arrows

in (a) and (b) indicate the deflection lines. While they are marked at one side surface,

the deflection lines exist at the other side surface as well.
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In Fig.2.11a, the occurrence of flutings can be perceptibly seen in all cases by comparing
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Figure 2.11. V-bending test results for as-received specimens tested with four punch

speeds: (a) mid-sectional curves; (b)-(c) close-up views of mid-sectional curves; and

(d) the measured radius of curvature R and bending angle A.

the curvature of the specimen with the R15 punch profile. All mid-sectional curves in

Fig.2.11a are positioned such that their datum points are located at the origin. Measured

radii of curvature are much smaller than the punch radius due to fluting and they are

decreasing slightly with the punch speed as YPP properties increase with it. Dependence

of the bending angle on the punch speed seems to be negligible as its difference is less

than 1 degree. While deflection points are hardly recognized in Fig.2.11a, they can be
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easily identified near x = ±10 in the plot of tangent slopes for the mid-sectional curves

as shown in Fig.2.12. Here, we can clearly see the formation of two straight regions
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Figure 2.12. Tangent slope of the mid-sectional curves for as-received specimens tested

with four punch speeds.

(corresponding to constant slope) about the deflection point on each side.

The mid-sectional curves for roller-leveled specimens process with five PF condi-

tions and the corresponding R and A quantities are shown in Fig.2.13. The reduction

of the fluting by the roller-leveling process can be visually recognized as in Fig.2.13a

and c. With high PF conditions, the radius of curvature of roller-leveled specimens

becomes closer to the punch radius. Except for 60% PF condition which turns out to

increase the YPP-related properties in the uniaxial tension test, the radius of curvature

increases with PF from approximately 6.3 mm for as-received specimens on average to

11.2 mm for specimens processed with 85% PF condition. The increase of the radius

of curvature from 70% to 80% PF condition is about three times higher than that
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Figure 2.13. V-bending test results for roller-leveled specimens tested with five PF

conditions: (a) mid-sectional curves; (b)-(c) close-up views of mid-sectional curves;

and (d) the measured radius of curvature R and bending angle A. The punch speed is

10 SPM.

from 60% to 70% PF condition. A slightly decreased radius of curvature in the 60%

PF condition compared to the as-received condition agrees with the increased YPP

properties in uniaxial tension test for the same PF condition. The bending angle A is,

on the other hand, decreasing slightly with PF even though R is increasing. It might

be because the bending angle A can be affected by not only the radius of curvature

R but also the amount of plastic strain induced during the roller-leveling process de-
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termining the amount of springback. With lower PF conditions, plastic deformation

is more concentrated on the fluting region resulting in higher strain hardening there.

As a result, the bending angle A becomes bigger due to larger springback. As the PF

condition in the roller-leveling process gets higher, the curved region becomes wider

with a relatively lower strain hardening state leading to a reduction in the amount of

springback. Moreover, the disappearance of deflection lines can be observed as the PF

condition gets higher as shown in Fig.2.10b from the plot of tangent slopes calculated

for these specimens. In Fig.2.14, the plateau begins to disappear with the 70% PF

condition and becomes unnoticeable from the 80% PF condition.
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Figure 2.14. Tangent slope of the mid-sectional curves for roller-leveled specimens

tested with five conditions.
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2.2 Experimental observations for static dent resistance con-

sidering BH behavior with 490DP

Experimental procedures for uniaxial tension and uniaxial tension-compression cases

are listed in Table 2.2. Note that for the ‘T only’ and ‘T-C’ cases just skip the unloading

Table 2.2. Procedure for uniaxial tension and uniaxial tension-compression.

Case pre-strain (%) BH temperature (◦C) BH time (min)

T only

T-U-BH-T 2.0 100, 150, 200 20

T-U-BH-T 2.0 200 5, 20, 35

T-U-BH-T 2.0, 3.0, 4.0 200 35

T-U-BH-C 2.0, 3.0, 4.0 200 35

T-C 2.0, 3.0, 4.0

T: tension, U: unloading, BH: bake hardening, C: compression

and BH steps. The temperature history for all BH operations are shown in Fig.2.15.

Time (min)

Temperature (℃)

10 10BH time

Figure 2.15. Temperature history for the BH operations. Tb denotes BH temperature.

2.2.1 Uniaxial tension test with BH

The dimensions of 490DP uniaxial tension specimen are the same as those in Fig.2.1

except for the shoulder radius which is 20 mm, not 12.7 mm. Uniaxial tension experi-

ments are carried out using the same machine with the PLCS experiments. The tests

are repeated three times for the same condition, and a representative response of the

48



repeated results is selected and used in the present chapter.

The stress-strain responses at the crosshead speed of 6 mm/min in the experiment for

the rolling, transverse, and diagonal directions of the specimen are plotted in Fig.2.16.

The responses show that yielding is anisotropic, and the response of the transverse
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Figure 2.16. Directional stress-strain responses in uniaxial tension test at the crosshead

speed of 6 mm/min.

direction has slightly higher stress levels than those of the other directions which are

almost identical beyond the strain of 5%. The Lankford coefficients for each direction

are recorded as rRD = 0.937, rDD = 0.973, and rTD = 1.085, all measured at the

engineering strain of 15%. Despite the anisotropic characteristics of this material in

these directional tests, remaining uniaxial tension and uniaxial tension-compression

tests are all conducted in the rolling direction, and the numerical analysis part of the

present BH study assumes material isotropy for numerical simplicity. The response of

the rolling direction is defined as an as-received case in the subsequent uniaxial tension

experiments.

The rate-dependency of the material is also examined in the uniaxial tension tests

with the crosshead speed of 0.6, 6, and 30 mm/min as shown in Fig.2.17. Here, the

curve of the crosshead speed of 6 mm/min is the same as the as-received case (RD
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Figure 2.17. Stress-strain responses in uniaxial tension test at the crosshead speed of

0.6, 6 and 30 mm/min.

in Fig.2.16). Although the rate-dependency is clearly observed in the tests, the stress

difference between 0.6 and 30 mm/min in the strain hardening region is not so high as

about 10 MPa. Note that subsequent uniaxial tension and uniaxial tension-compression

experiments are all conducted at the crosshead speed of 6 mm/min unless specified.

Uniaxial tension experiments including BH operation are carried out to investigate

the BH behavior of the material in the uniaxial tensile case. The BH conditions used in

these experiments are the same as the conditions ‘T-U-BH-T’ shown in Table 2.2. Thus,

the test procedure consists of tension as pre-strain, unloading, BH, and tension. The

BH temperature according to the BH time for these conditions follows the temperature

history in Fig.2.15. Firstly, stress-strain responses according to BH temperature are

plotted with the as-received case in Fig.2.18. Pre-strain applied to these tests is 2%.

The highest temperature case apparently shows the yield-point elongation of around 2%

with the highest upper yield point and the highest stress level in the strain hardening

region, while the other temperature cases show relatively weaker YPP. In all cases, the

stress level of the strain hardening region is higher than the as-received condition.

Next stress-strain responses drawn in Fig.2.19 and Fig.2.20 are for the BH time of
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Figure 2.18. Stress-strain responses in uniaxial tension test with BH temperature of

100, 150, and 200 ◦C for BH time of 20 min and pre-strain of 2%. ‘AR’ denotes the

as-received condition.

5, 10, and 20 min at the BH temperature of 100 ◦C and for the BH time of 5, 20 and 35

min at the BH temperature of 200 ◦C, respectively. In Fig.2.19, it is observed that the
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Figure 2.19. Stress-strain responses in uniaxial tension test for BH time of 5, 10, and 20

min at BH temperature of 100 ◦C and pre-strain of 2%. ‘AR’ denotes the as-received

condition.

51



0

100

200

300

400

500

0 5 10 15

E
n
g
in

e
e
ri
n
g
 s

tr
e
s
s
 (

M
P

a
)

Engineering strain (%)

AR
5 min
20 min
35 min

420

470

1 2 3 4 5

Figure 2.20. Stress-strain responses in uniaxial tension test for BH time of 5, 20, and 35

min at BH temperature of 200 ◦C and pre-strain of 2%. ‘AR’ denotes the as-received

condition.

YPP is not strong but the upper and lower yield points are slightly elevated according

to the BH time. The stresses in the strain hardening region are similar despite that their

difference with respect to the BH time is exhibited in the detail graph. In Fig.2.20, all

three BH time cases obviously reveal the yield-point elongation which escalates as the

BH time increases. The upper yield point is also elevated as the BH time increases.

However, the stress level in the strain hardening region is very similar to each other.

When the minimum cases in Fig.2.18 and Fig.2.20 are compared, it can be found that

the BH condition of 200 ◦C and 5 min provide stronger YPP than that of 100 ◦C and 20

min.

The last stress-strain responses are plotted in Fig.2.21 showing the BH behavior

according to the pre-strain. As the pre-strain increases, the upper and lower yield stress

are increased because the starting point of BH is located in the strain hardening region,

whereas the BH stress is decreased. The effect of BH temperature, BH time, and pre-

strain on the BH behavior identified in the present uniaxial tension experiments might

be well agreed with the result of many previous works of literature such as Elsen and
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Figure 2.21. Stress-strain responses in uniaxial tension test with pre-strain of 2, 3, and

4%. The BH temperature and time are 200 ◦C and 35 min, respectively. ‘AR’ denotes

the as-received condition.

Hougardy (1993) and De et al. (2001).

With the present uniaxial tension tests of various BH conditions, the evolution of

elastic modulus is investigated. The elastic moduli with respect to the pre-strain are

obtained before and after BH operation as shown in Fig.2.22. The averaged values of the

moduli are similar to the exponential curve which fitted the experimental degradation

of the uniaxial chord modulus for 490DP in Lee et al. (2016) even though they did not

include BH operation for their measurement of the chord modulus. So, the effect of BH

operation on the elastic modulus recovery might be negligible. And this effect is also

hardly observed in Fig.2.23. As the BH condition changes, the elastic modulus does not

show a certain tendency. The exponential curve equation in Fig.2.22 is expressed as

E = E0 − (E0 − Esat)[1− exp(−ξE ε̄)], (2.4)

where E0, Esat, and ξE denote the initial elastic modulus, the saturated modulus, and

the rate of the degradation, respectively. The corresponding parameters are listed in

Table 2.3.
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Figure 2.23. Elastic modulus of various BH conditions at the pre-strain of 2%.

Table 2.3. Elastic modulus parameters.

E0 [GPa] Esat [GPa] ξE

Present (Ave. fit) 212.9 161.5 51

Lee et al. (2016) 207.0 163.0 82
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2.2.2 Uniaxial tension-compression test with BH

Uniaxial tension-compression tests combined with BH operation are performed for the

pre-strain of 2, 3, and 4% using the same machine for the uniaxial cyclic tests of PLCS.

The tests are repeated at least three times for the same condition, and the result responses

are averaged. The dimensions of the test specimen are the same as Fig.2.3 except for

the thickness and the gauge length, which are 0.7 mm and 25 mm, respectively. The

clamping force of 300 kgf is applied to obviate any instability during compression. The

test conditions are the same as the conditions ‘T-U-BH-C’ and ‘T-C’ listed in Table

2.2. Hence, the test procedure with BH consists of tension as pre-strain, unloading,

BH, and compression. The procedure without BH is just tension and compression.

The compressive engineering strains that terminate the tests are 2, 3, and 4% for the

pre-strain of 2, 3, and 4%, respectively. The BH temperature according to the BH time

follows the temperature history in Fig.2.15 with the BH temperature of 200 ◦C and the

BH time of 35 min.

Similarly as the experiments of PLCS, according to two equations introduced from

Boger et al. (2005) and Cao and Wang (2000), the maximum attainable compressive true

strain is calculated as about 0.151 for the gauge width 15 mm, and the corresponding

clamping force estimated as about 541 kgf. Nonetheless, the clamping force of 300 kgf

is used to minimize frictional and biaxial effects on the specimen. With this clamping

force, the maximum compressive true strain can be about 0.080. Although this value

is smaller than the current maximum compressive true strain of 0.083, buckling did

not occur in all compression tests. Teflon sheets of 0.1 mm thickness are affixed on

both sides of the specimen gauge section for minimizing the frictional effect. Referring

to Boger et al. (2005), the obtained stress-strain raw data is corrected to remove the

frictional effects from them with the friction coefficient of 0.080-0.095 so that the

corrected curves in the tensile region can match to a uniaxial tension curve. The biaxial

effects are also corrected by using Eq.(2.1). This biaxial effects can be ignored if they

are considered to be negligibly small. In these tests, the normal stress induced by the
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clamping force in the gauge section (30 mm x 15 mm) is about 6.5 MPa, and the

difference between before and after the corrections is around 3.2 MPa.

The corrected engineering stress-strain curves are shown in Fig.2.24. The ‘T only’
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Figure 2.24. Engineering stress-strain responses in uniaxial tension-compression test

with pre-strain of 2, 3, and 4%. For the ‘T-U-BH-C’ cases, BH temperature and BH

time are 200 ◦C and 35 min, respectively. ‘T only’ denotes tension only.

curve is the same as the ‘AR’ of Fig.2.18-2.21 generated from the uniaxial tension tests

which have twice a higher strain rate than the uniaxial tension-compression tests at the

same crosshead speed due to the difference of the specimen gauge length. Although

the strain rates are different, the rate dependency in this strain rate range might be

negligibly small. Therefore, the ‘T only’ curve can be used in the correction of the

other curves, and as a result, the curves in the tension are well matched with each other

after correcting the frictional and biaxial effects. In the ‘T-C’ cases, the Bauschinger

effect is observed while the workhardening stagnation may not occur. This experimental

evidence of no workhardening stagnation in 490DP, as well as the clearly captured

workhardening stagnation in the experiments of PLCS, conforms to the experimental

result of Yoshida et al. (2002). Compression after BH brings the YPP only clearly in the

2% pre-strain case. However, the intensity of the YPP is quite smaller than the tension
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cases. Furthermore, in the other pre-strain case with BH, the YPP is almost disappeared

despite that the transient regions from elastic to plastic are relatively sharper than the

‘T-C’ cases. These weaker responses of the YPP might be the frictional effects induced

by the clamping force. The sharp upper yield point and abrupt yield drop seem to be

concealed by the friction force. Compressive behaviors after BH were rarely reported

in the past literature, and the present experimental investigation could be the first one to

the best of authors’ knowledge. In order to check the permanent softening behavior of

the material, the curves of Fig.2.24 are converted to true values and symmetrized about

the stress reversal points as plotted in Fig.2.25. The permanent softening is captured
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Figure 2.25. True stress-strain responses converted from Fig.2.24. The curves are

symmetrized about the stress reversal points.

in all ‘T-C’ cases whereas BH cases with the pre-strain of 3 and 4% almost reach the

stress level of uniaxial tension.

2.2.3 Static dent test with BH

Static dent experiments with 490DP are conducted by referring to SAE J2575 (Stan-

dardized Dent Resistance Test Procedure). Generic panels for the experiments are

formed using a 300-tonne hydraulic press with tools illustrated in Fig.2.26a. The tool
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Figure 2.26. Schematics for (a) dent specimen forming and (b) static dent test. Dimen-

sions are given in Fig.5.25.

dimensions given in Fig.5.25 are not exactly the same as those in SAE J2575. The

generic panel whose initial size is 300 mm x 300 mm is bound by the die and the holder

with the holder force of 100 tonnes during the die stroke of 16 mm. This stroke value is

from a touch point between the fixed punch and the blank to the bottom dead point of

the die. The die speed is 3 mm/sec. The die and holder have two sets of stinger beads,

male in the die side and female in the holder side. These stinger beads can generate

two small grooves around the deformed shape of the panel, and the grooves can be

fitted to the holder of the static dent test as shown in Fig.2.26b. In the static dent test,

the deformed panel fixed between the clamp and the holder is pushed by the spherical

indenter of 25.4 mm diameter, and then unloaded. The speed and total displacement of

the indenter are 2 mm/min and 6 mm, respectively.

Before the dent tests, the strains of the deformed panel are measured using a Grid

Analyzer Model 100U of the FMTI systems Inc. for three specimens at the locations as

marked in Fig.2.27a, and the measurement results are shown in Fig.2.27b. The circle

diameter for the strain measurement is 2.5 mm, and the circle grid interval is 10 mm.

The thickness strain e3 values are calculated from plastic incompressibility. The RD
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Figure 2.27. (a) Deformed panels and strain measurement points and (b) measurement

results.

strain of 2.20% on average is higher than the TD strain of 1.72% on average due to

material anisotropy whereas a certain trend of the strain distribution according to the
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measurement location may not be observed. The relation

rTD
rRD

(
=

1.085

0.937
= 1.158

)
=

(dεRD/dε3)

(dεTD/dε3)
=
dεRD
dεTD

(2.5)

also supports the strain difference between the RD and TD strain as

dεRD
dεTD

≈ ln(1 + e1,ave/100)

ln(1 + e2,ave/100)
= 1.276. (2.6)

The thicknesses of the deformed panel are also measured with an ultrasonic thick-

ness gauge of Krautkramer at the same locations as the strain measurement for three

specimens. These thicknesses and calculated values from the thickness strain e3 are

plotted in Fig.2.28. The thickness of the as-received condition is measured as 0.699-

e 3

Figure 2.28. Measured thicknesses of the deformed panels with calculated values from

e3 of Fig.2.27.

0.701. The average measured thickness of the deformed panel is 0.666, and this value

is different from the calculated value of 0.673 on average. This might be because of

low accuracy in strain and thickness measurement.

The convex surfaces of the deformed panels are obtained by 3-D laser-scanning

with the Steinbichler T-Scan pro laser scanner for three specimens. Sectional center

curves in the RD and TD as drawn in Fig.2.29 are extracted from the 3-D scanned

surface data. Note that the y values of the curves are shifted in order that the minimum
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Figure 2.29. Sectional center curves extracted from the 3-D scanned surfaces of the

deformed panels.

point of the curves becomes 0.7 mm. Accordingly, the top points of curves are different,

and the RD curves are higher than the TD curves. The average amount of springback at

the top points obtained from the curves in Fig.2.29 is 0.254 mm in the RD and 0.470

mm in the TD.

The static dent tests are conducted for the deformed panels after BH operation

and those without BH operation. The BH conditions which take the BH temperature

history in Fig.2.15 are 100 ◦C for 5, 10, and 20 min, 150 ◦C for 20 min, and 200
◦C for 5, 20, and 35 min. So, two BH temperature cases with respect to the BH time

and one BH time case with respect to the BH temperature are investigated for the

dent resistance of the material 490DP. The tests are repeated three times for the same

condition, and all test responses are plotted in Fig.2.30. In the same conditions, some

curves show different force levels. As the BH condition becomes strong, the widths

of the curves, which means the force difference between the forward and backward

movement of the indenter, get narrower. Meanwhile, the overall shapes of the curves

are barely changed between the BH conditions. Dent depth and maximum force defined

in Fig.2.30a are drawn in Fig.2.31 according to the BH condition. Note that the dent

depth is determined at the indenter force of 0.5 N. The dent depths are apparently

decreased as the BH condition gets stronger. However, the maximum forces are quite

scattered presumably due to experimental artifacts. Therefore, it can be shown that the
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Figure 2.30. Experimental responses of dent test according to BH condition: (a) no BH

condition and (b)-(h) BH conditions.

dent forces are more sensitive to experimental conditions than the dent depths. The

following force-displacement responses are averaged for the same condition.

The averaged responses for the three BH temperatures are plotted as Fig.2.32. When

the indenter pushes the deformed panels, the forces of the BH temperature of 150 and

200 ◦C follow almost a similar route and even reach nearly equivalent maximum points.

While, when the indenter moves backward, higher BH temperature case reveals higher

indenter force, and this difference might lead to the discrepancy of permanent dent

depth. As expected, the case without BH records the minimum in the indenter force
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Figure 2.32. Averaged force-displacement responses with respect to the BH temperature.

The BH time is 20 min.

and the maximum in the permanent dent depth.

The force-displacement responses for the three BH time are drawn in Fig.2.33-2.34.

In Fig.2.33 with the BH temperature of 100 ◦C, two longer BH time cases have very

similar force histories while the shortest BH time case exhibits a weaker response than

the other two cases as expected. The permanent dent depth is decreased as the BH

time increases, and this trend is clearly identified in Fig.2.31. In Fig.2.34 with the BH
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Figure 2.33. Force-displacement responses with respect to the BH time. The BH

temperature is 100 ◦C.
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Figure 2.34. Force-displacement responses with respect to the BH time. The BH

temperature is 200 ◦C.

temperature of 200 ◦C, the curve widths become narrower than those in Fig.2.33 as

expected. However, the force responses in this BH temperature of 200 ◦C hardly show

a certain tendency with respect to the BH time as already mentioned with Fig.2.31.

Whereas the dent depth is decreased as the BH time increases. When comparing the

dent depth difference between Fig.2.32 and Fig.2.33-2.34, the depth is more sensitive
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to the BH temperature than the BH time. This characteristic is apparently agreed with

the stress-strain responses in the uniaxial tension tests as exhibited in Fig.2.18-2.20.

2.3 Summary

In this chapter, comprehensive and in-depth investigations for the fluting defect and its

reduction by the roller-leveling process were conducted experimentally, the experiments

for the BH behavior of 490DP was also synthetically handled with uniaxial tension,

uniaxial tension-compression, and static dent cases. Uniaxial tension and cyclic exper-

iments were carried out first to check the rate dependency of the YPP and its cyclic

behaviors as well as to determine the material constants of the YPP constitutive model

for PLCS. In the roller-leveling test performed with five PF conditions, surficial defects

in the material processed with higher PF conditions were identified by both visual

inspection and 3-D surface profile measurement. Calculating the surface roughness

values from the 3-D surface measurement as a function of induced plastic strains seems

useful to determine the proper PF condition without leading to surficial defects. YPP

properties of roller-leveled specimens decreased in general as induced plastic strains

increased. Exceptionally, they were slightly increased with 60% PF condition compared

to those of the as-received specimen probably due to the dominant effect of residual

stress reduction over the plastic strain addition in a low PF condition. In the v-bending

tests, specimens with the YPP exhibited the fluting characterized by much smaller radii

of curvature compared with the punch radius. This fluting resulted in the presence of

the deflection point near the contact point between the punch and the specimen. As

YPP-related properties were reduced by the roller-leveling process, these fluting-related

features disappeared.

In the uniaxial tension tests for the BH behavior of DP steel, the stress-strain

responses according to various BH conditions were analyzed, and it was found that the

responses with respect to the BH temperature exhibited more obvious difference than
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those with respect to the BH time. The BH responses and the degradation of the elastic

modulus according to the pre-strain were also studied in the uniaxial tension tests. With

the fixed condition of BH temperature and time, the uniaxial tension-compression tests

were carried out to investigate the Bauschinger effect before and after the BH operation.

Only the pre-strain of a 2% case gave clear YPP in the compression after BH. In the

static dent experiments, the BH effects were examined using the deformed panels. As

the BH conditions got stronger, there was no clear tendency in the maximum dent force

while there was an apparent reduction in the dent depth. As identified in the uniaxial

tension, the BH effect on the dent resistance was even explicitly observed in the BH

temperature variations.
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Chapter 3

Material Modeling

In this chapter, a constitutive material model for YPP, its implicit incremental formu-

lation, and the coupling of a BH model with the YPP material model are presented.

These are for investigating the capabilities of the model to predict the fluting defect in

the v-bending experiments, studying the effect of roller-leveling conditions on it, and

assessing the BH behavior in the static dent experiments. We adopt the Yoshida-2008

model as it can describe both the rate-dependency of the YPP and the cyclic behavior

and develop its implicit form for efficient FE simulations. In this development, the

original kinematic hardening rule in the Yoshida-2008 model is replaced with a simpler

kinematic hardening rule suggested by Yoshida and Uemori (2003) for computational

efficiency. An alternative kinematic hardening model to consider the true YPP behavior

of Schwab and Ruff (2013) is also tested. We newly propose a robust stress integration

method in the implicit formulation to overcome the difficulty in obtaining converged

solutions. For the BH part of the model, a phenomenological BH model introduced in

Das et al. (2014) is utilized for considering the two BH stages, the formation of the

Cottrell atmosphere and the precipitation hardening.
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3.1 Constitutive Model

3.1.1 YPP model

Basic assumptions of infinitesimal elastic deformation and finite plastic deformation

for the present constitutive model approximate the rate of deformation ε̇ to

ε̇ = ε̇e + ε̇p, (3.1)

where ε̇e and ε̇p denote the elastic and plastic part of the rate of deformation, re-

spectively. Based on the material embedded (or co-rotational) coordinate system, the

objective rate σ̇ of the Cauchy stress σ and ε̇e have the elastic relation expressed as

σ̊ = D : ε̇e, (3.2)

where D stands for the elasticity tensor. Hereafter, (◦) is used for the objective rate.

The Yoshida-2008 model has the separate constitutive equations for two regions:

the Lüders band (LB) region and the work hardening (WH) region, represented by the

subscript l and w, respectively. They are expressed as the following equations:

˙̄εl =
bρm
M

(
〈σ̄l − Yl〉

Dl

)ne
, (3.3)

˙̄εw =
bρm
M

(
〈σ̄w − (Yl +Ry)〉

Dw

)ne
, (3.4)

where b, ρm, M and Ry are the magnitude of the Burgers vector, the mobile dislocation

density, the Taylor factor, and the isotropic hardening stress, respectively. Here, Yl,

Dl, Dw and ne are material constants. The angle bracket 〈·〉 stands for the Macaulay

bracket which can be defined as 〈x〉 = max (0, x) and allows to determine whether a

current state is elastic or viscoplastic. The mobile dislocation density ρm is given as

ρm = ρtfm, (3.5)

with

ρt = ρ0 + Zε̄χ, (3.6)
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fm = fm0 + (fma − fm0) [1− exp (−λε̄)] , (3.7)

where ρt, fm and ρ0 are the total dislocation density, its mobile fraction and its initial

value, respectively, and Z and χ are material constants. The initial and saturated values

of fm are fm0 and fma, respectively, and λ is a material constant. The effective stresses

σ̄l and σ̄w are defined as

σ̄l =

√
3

2
s : s and σ̄w =

√
3

2
(s− α) : (s− α), (3.8)

where s and α stand for the deviatoric stress of σ and the back stress, respectively. The

effective plastic strains ˙̄εl and ˙̄εw are calculated using

˙̄ε =

√
2

3
ε̇p : ε̇p. (3.9)

The associated flow rule provides

ε̇p = ˙̄εlnl and ε̇p = ˙̄εwnw, (3.10)

where nl and nw stand for the flow vectors defined as

nl =
3

2

s

σ̄l
and nw =

3

2

s− α
σ̄w

. (3.11)

The WH mode has the same initial yield condition Yl as the LB mode. In this the-

sis, Eq.(3.4) is modified to adopt the kinematic hardening model of Yoshida and

Uemori (2003) and the modified equation for WH mode is given by

˙̄εw =
bfmρt
M

(
〈σ̄w − Yw〉

Dw

)ne
(3.12)

with

Yw = Yw0 + (Ywa − Yw0) [1− exp (−ζε̄)] , (3.13)

where Yw0 and Ywa denote the initial and asymptotic value of Yw, respectively and

ζ is a material constant. This modification enables the present model to capture a

smaller lower yield point than the original kinematic hardening model. Alternatively, to
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closely describe the true material behavior related to the YPP as stated in Schwab and

Ruff (2013), Yw can be also expressed as

Yw =
Ywa

2
[1 + tanh ζ (ε̄− Yw0)] . (3.14)

Both models for kinematic hardening are tested in the present numerical studies.

The back stress α for the kinematic hardening rule in Yoshida and Uemori (2003)

is composed of β, the center of the bounding surface, and θ, the relative position of the

yield surface to the bounding surface, as

α = β+ θ, (3.15)

where β and θ evolve with

θ̊ = C

(
2

3
aε̇p −

√
a

θ̄
θ ˙̄ε

)
, (3.16)

β̊ = m

(
2

3
b1ε̇

p − β ˙̄ε

)
, (3.17)

Here,

a = B0 +Rb − Ywa, (3.18)

θ̄ =

√
3

2
θ : θ, (3.19)

whereC,m and b1 are material constants andB0 denotes the initial size of the bounding

surface. The isotropic hardening stress Rb changes as

Ṙb = m (Rsat −Rb) ˙̄ε, (3.20)

where Rsat stands for the saturated value of Rb. Note that, Eq.(3.20) is only relevant

when β meets the conditions presented in Yoshida and Uemori (2003) as

gσ (β,q, r) =
3

2
(β− q) : (β− q)− r2 = 0 and

∂gσ
∂β

: β̊ = (β− q) : β̊ > 0,
(3.21)
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where gσ is the non-isotropic hardening surface whose center and radius are q and

r, respectively. Otherwise, Ṙb = 0. These conditions suggested in Yoshida and Ue-

mori (2003) are required to represent the workhardening stagnation as observed in

Yoshida et al. (2002). The evolution of q is assumed as

q̊ = µ (β− q) where µ =
3

2r2
(β− q) : β̊− ṙ

r
. (3.22)

Here, µ can be obtained by substituting q̇ into the consistency condition ġσ = 0. And

the evolution of r is assumed as

ṙ = h
3

2r
(β− q) : β̊ when Ṙb > 0,

ṙ = 0 when Ṙb = 0,

(3.23)

where h (0 ≤ h ≤ 1) is a material parameter related to the expansion rate of gσ.

3.1.2 BH model

As previously explained in Chapter 1, the BH stress can be the summation of the two

effects expressed as

σBH = σCott + σprec, (3.24)

where

σCott =
kBTb
Vact

ln
[
(1− gb)(1+ω) (1 + ωgb)

]
, (3.25)

σprec = 0.538
GFebVf

1/2

Xp
ln

(
Xp

2b

)
, (3.26)

derived in Das et al. (2014). Here, σCott and σprec are the stress increase in MPa by the

Cottrell effect and the precipitation hardening, respectively. And these expressions are

from the original references, Hartley (1966) and Gladman (1999).

In Eq.(3.25), kB , Tb, and Vact denote the Boltzmann constant, BH temperature

in ◦K, and the activation volume of the dislocation mechanism, respectively. A BH

parameter ω varying with plastic work was expressed as ω = sb/(0.05σpreεpre) in Das

et al. (2014) with an empirical constant sb, the flow stress σpre at the end of the pre-

strain, and the corresponding plastic strain εpre. But, in the present model, σpreεpre is
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substituted by plastic dissipation energy Ep which can be directly obtained in numerical

FE simulations. Referring to Hartley (1966), gb the concentration of interstitial atoms

on dislocations can be given as

gb = 1− exp

[
−3ncb

(π
2

)1/3
(
ADbtb
kBTb

)2/3
]
, (3.27)

with

Db = D0 exp

(
− Qd
RgasTb

)
, (3.28)

where nc, A, and tb are the volumetric concentration of interstitial atoms in the matrix

of material, an interaction parameter, and BH time, respectively. InDb, the diffusivity of

the interstitial atoms,D0,Qd, andRgas stand for the diffusion coefficient, the activation

energy of diffusion, and the universal gas constant, respectively.

In Eq.(3.26), GFe is the shear modulus of the matrix of material, Xp is a spatial

diameter of the precipitate particles, b is the Burgers vector, and Vf is the volume

fraction of precipitation particles expressed as

Vf =

(
4π

3

)
α3
p(Dbtb)

3/2, (3.29)

with a growth coefficient αp, originally proposed by Zener (1949), given as

αp =

√
2
nc − n1

n0 − n1
, (3.30)

where nc, n0, and n1 denote the available free carbon concentration in the matrix,

the carbon concentration in the precipitate, and the equilibrium carbon concentration

between the interface and the precipitate, respectively. In the present model, for avoiding

too small value of Vf , Eq.(3.29) can be slightly modified as

Vf = Cprec

(
4π

3

)
α3
p(Dbtb)

3/2, (3.31)

where Cprec is a material constant with the order of 107. In Eq.(3.30), nc can be

calculated at the corresponding annealing temperature using Thermo-Calc with the
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TCFE-9 database. n0 can be obtained from the stoichiometry of ε-carbide (Fe2.4C). In

Leslie (1991), n1 can be approximately estimated by the following equation

log (n1)ppm = 4.06− 1335

Tb
. (3.32)

This equation was originally suggested by Chipman (1972).

3.1.3 Integration of BH model into YPP model

There can be various methods to couple this BH model with the YPP model. The

present study does not directly use σCott calculated from Eq.(3.25), rather adopts the

relationship derived in Hartley (1966), which is expressed as

(1− gb)(1+ω) (1 + ωgb) = exp

(
VactσCott
kBTb

)
=
Ldis,BH
Ldis

, (3.33)

where Ldis,BH is the length of the mobile dislocation line after BH and Ldis is that

before BH. Then, by assuming

Ldis,BH
Ldis

=
ρm,BH
ρm

, (3.34)

where ρm,BH is the mobile dislocation density after BH and ρm is that before BH,

Eq.(3.33) can be rewritten as

ρr =
ρm,BH
ρm

= (1− gb)(1+ω) (1 + ωgb) , (3.35)

where ρr denotes the mobile dislocation density ratio. However, the mobile dislocation

density ρm defined in Eq.(3.5) is only a function of ε̄. So, a simple and effective method

to associate Eq.(3.35) with Eq.(3.5) is to adopt an offset value xb in Eq.(3.6) and

Eq.(3.7) as

ρm,BH = [ρ0 + Z(ε̄− xb)χ] {fm0 + (fma − fm0) [1− exp (−λ(ε̄− xb))]} .

(3.36)

Therefore, after the dislocation density ratio is calculated from Eq.(3.35), xb can be

easily obtained by applying the Newton method to Eq.(3.36). A detailed procedure for

obtaining xb will be described in the next section.
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The back stress α also should be taken into account for the BH behavior in the

LB mode. This is because the BH behavior after the pre-strain also is associated with

the Bauschinger effect. Thus, the effective stress of the LB mode σ̄l in Eq.(3.8) can be

redefined as

σ̄l =

√
3

2
(s− Cbαb) : (s− Cbαb), , (3.37)

where αb and Cb denote the last back stress before BH and its coefficient. This stress

does not change during the BH step. The flow vector of the LB mode in Eq.(3.11) is

also changed as

nl =
3

2

s− Cbαb
σ̄l

. (3.38)

Meanwhile, σprec in Eq.(3.26) can be directly coupled with Eq.(3.3) and Eq.(3.12)

as

˙̄εl =
bρm
M

(
〈σ̄l − Yl − σprec〉

Dl

)ne
, (3.39)

˙̄εw =
bρm
M

(
〈σ̄w − Yw − σprec〉

Dw

)ne
. (3.40)

3.2 Computational Implementation

All quantities in the discretized constitutive equations are regarded as those at the

current increment n+1, unless specified. For instance, ε̄ is the effective plastic strain of

the current increment n+ 1 and ε̄n is that of the previous increment n. The discretized

constitutive equations are implemented into the Abaqus UMAT subroutine which

includes BH calculations, trial state assessment, stress integration, state variable update,

and consistent tangent stiffness calculation.

3.2.1 BH calculation

The calculation of the BH equations is firstly conducted before the trial stresses are

assessed. The first assumption for this step is that the calculation is only performed

when Tb exceeds a certain temperature, 30 ◦C in this study. The second assumption
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is a separate calculation of BH equations from the stress integration. This means that

the stress integration cannot proceed once the BH equations are calculated in the same

increment. These assumptions might be quite reasonable in terms of actual automotive

forming applications. For example, in the actual applications, bake hardenable steels

normally take several months to be aged at room temperature as stated in Baker et

al. (2002), and paint baking operations are generally separated from forming operations.

The objective of this calculation step is to obtain the offset value xb for the Cottrell

effect and the precipitation hardening σprec. Prior to determine xb, it is necessary to

calculate gb in Eq.(3.35) by using Eq.(3.27) with BH temperature Tb and BH time tb.

When the BH temperature is constant, gb can be directly calculated. However, it may

take several minutes to increase and decrease the temperature of target objects in typical

paint baking operations. Hence, a certain calculation procedure for the duration of

temperature increase and decrease should be specified. In the present implementation,

gb is calculated as

gb = gbn + ∆gb. (3.41)

When the BH temperature increase or decrease during the current increment, by differ-

entiating Eq.(3.27), ∆gb can be given as

∆gb = 2ncb

(
π

2tb

)1/3( ADb

kBTb

)2/3

·

{
exp

[
−3ncb

(π
2

)1/3
(
ADbtb
kBTb

)2/3
]}

∆tb,

(3.42)

evaluated at tb which is the value of time (step time in Abaqus) at the beginning of the

current increment, and ∆tb is time increment. When the BH temperature is constant

during the current increment, ∆gb can be directly calculated from Eq.(3.27) replacing

tb with the total time of constant temperature. Note that if Eq.(3.42) is used when the

BH temperature is constant, a much smaller value of gb can be obtained than using

Eq.(3.27). Thus, this customized procedure might be appropriate.

Meanwhile, in Eq.(3.35), ω represents sb/(0.05Ep) as previously explained. In

single element FE simulations, Ep is always larger than zero when the BH calculation
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proceeds after the pre-strain. However, Ep can be zero in the simulations with multiple

elements, for instance, near the grip area of the tensile specimen. Therefore, ω should

be alternatively expressed as sb/[0.05(Ep + 1)] in order to avoid the infinity value of ω

when there is no plastic deformation in some elements.

Now, the determination of the offset value xb is addressed. Substituting Eq.(3.36)

into Eq.(3.35) and rearranging it gives

ψρ(xb) = ρm,BH(xb)− ρmnρr = 0, (3.43)

where ρmn stands for ρm of the previous increment. Then, xb can be obtained by

solving this equation with the Newton method. Linearization of Eq.(3.43) can give the

(k)th iterative correction as

xb
(k) := xb

(k−1) −
ψρ
(
xb

(k−1)
)

∂ψρ

∂xb

∣∣∣∣∣
xb=xb

(k−1)

, (3.44)

where
∂ψρ
∂xb

=
∂fm
∂xb

ρt + fm
∂ρt
∂xb

, (3.45)

with
∂fm
∂xb

= λ (fm − fma) , (3.46)

∂ρt
∂xb

= −χZ (ε̄− xb)χ−1 . (3.47)

Similarly as gb, the precipitation hardening value σprec can be integrated as

σprec = σprecn + ∆σprec, (3.48)

where σprecn stands for σprec of the previous increment, and

∆σprec = 0.538
GFeb

2XpVf
1/2

ln

(
Xp

2b

)
3

2
Cprec

(
4π

3

)
α3
pDb

3/2tb
1/2∆tb

= 0.538
3GFebVf

1/2

4Xptb
ln

(
Xp

2b

)
∆tb.

(3.49)
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Note that Eq.(3.49) is only applicable when the BH temperature is changed, and if it is

constant, Eq.(3.26) is used after replacing tb with the total time of constant temperature.

With the obtained values of xb and σprec, the next stress integration procedure begins.

3.2.2 Trial state assessment

When the total strain increment ∆ε is given in the subroutine, it is decomposed as

∆ε = ∆εe + ∆εp, (3.50)

where ∆εe and ∆εp are the elastic and plastic part of ∆ε, respectively. This equation

is obtained from Eq.(3.1) based on the incremental deformation theory of Chung and

Richmond (1993). At the beginning of the subroutine, we assume the current state is

purely elastic, i.e. ∆ε = ∆εe, and the trial stress and its effective values are obtained

as

σT = σn + D : ∆εe, (3.51)

σ̄Tl =

√
3

2
(sT − Cbαb) : (sT − Cbαb), (3.52)

σ̄Tw =

√
3

2
(sT − αn) : (sT − αn), (3.53)

where ′T ′ denotes the trial state. Then, we can assess whether the current state is purely

elastic or viscoplastic using the following conditions:

σ̄Tl < (Yl + σprec) and σ̄Tw < (Ywn + σprec), (3.54)

σ̄Tl < (Yl + σprec) and σ̄Tw ≥ (Ywn + σprec), (3.55)

σ̄Tl ≥ (Yl + σprec) and σ̄Tw < (Ywn + σprec), (3.56)

σ̄Tl > (Yl + σprec) and σ̄Tw > (Ywn + σprec), (3.57)

with Eq.(3.39) and Eq.(3.40). The discrete form of Eq.(3.39) and Eq.(3.40) becomes

∆ε̄l
∆t

=
bfmρt
M

(
〈σ̄l − Yl − σprec〉

Dl

)ne
, (3.58)
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∆ε̄w
∆t

=
bfmρt
M

(
〈σ̄w − Yw − σprec〉

Dw

)ne
, (3.59)

where

fm = fm0 + (fma − fm0) {1− exp [−λ (ε̄n + ∆ε̄− xb)]} , (3.60)

ρt = ρ0 + Z (ε̄n + ∆ε̄− xb)χ , (3.61)

and

Yw = Yw0 + (Ywa − Yw0) {1− exp [−ζ (ε̄n + ∆ε̄)]} or

Yw =
Ywa

2
{1 + tanh [ζ (ε̄n + ∆ε̄− Yw0)]} ,

(3.62)

with ∆ε̄ = ∆ε̄l and ∆ε̄ = ∆ε̄w for the LB region and the WH region, respectively.

It is obvious that the condition Eq.(3.54) is elastic and the condition Eq.(3.57) is

viscoplastic by the angle bracket. For other conditions, we need the selection criterion

of the Yoshida-2008 model for the region as

LB region if ∆ε̄l < ∆ε̄w or

WH region if ∆ε̄l ≥ ∆ε̄w

(3.63)

for a given stress, assuming Dl > Dw. Applying the condition Eq.(3.55) to Eqs.(3.58)-

(3.59) yields ∆ε̄l = 0 and ∆ε̄w ≥ 0. Then, by the criterion Eq.(3.63), the current state

is still elastic. Analogously, the condition Eq.(3.56) is also an elastic state. If the current

state turns out to be elastic, the subroutine goes on to the next increment after updating

the stress as σ = σT and returning the elasticity tensor D as the consistent tangent

stiffness. When the current state becomes viscoplastic, the subroutine starts the stress

integration procedure.

3.2.3 Stress integration

The primary computation of the stress integration is to find ∆ε̄l for the LB region and

∆ε̄w, θ, and β for the WH region.
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LB region

With the well-known relation

σ̄l = σ̄Tl − 3G∆ε̄l (3.64)

in the radial return mapping scheme for von Mises plasticity, rewriting Eq.(3.58) for

the LB region gives

ψl (∆ε̄l) =
∆ε̄l
∆t
− bfmρt

M

(
σ̄Tl − 3G∆ε̄l − Yl − σprec

Dl

)ne
= 0, (3.65)

where G denotes the shear modulus. The traditional one-point Newton method to solve

ψl (∆ε̄l) = 0 brings the (k)th iterative correction as

∆ε̄
(k)
l := ∆ε̄

(k−1)
l −

ψl

(
∆ε̄

(k−1)
l

)
∂ψl

∂∆ε̄l

∣∣∣∣∣
∆ε̄l=∆ε̄

(k−1)
l

, (3.66)

where

∂ψl
∂∆ε̄l

=
1

∆t
− b

M

(
∂fm
∂∆ε̄l

ρt + fm
∂ρt
∂∆ε̄l

)(
σ̄Tl − 3G∆ε̄l − Yl − σprec

Dl

)ne
−bfmρt

M

(
−3Gne
Dl

)(
σ̄Tl − 3G∆ε̄l − Yl − σprec

Dl

)ne−1

,

(3.67)

with

∂fm
∂∆ε̄l

= λ (fma − fm) and
∂ρt
∂∆ε̄l

= χZ (ε̄n + ∆ε̄l − xb)χ−1 . (3.68)

With this method, however, the solution of Eq.(3.65) may not be obtained when

∆ε̄
(0)
l = 0 and ε̄n is close to zero because Eq.(3.65) has a minimum in the vicinity

of ∆ε̄l = 0 as shown Fig.3.1. For this reason, a robust iterative method such as the

bisection method or the two-point Newton method is required in the stress integration.

If we use the bisection method, the convergence is guaranteed as the initial lower bound

L(0)
l and the initial upper bound U(0)

l determined from Eq.(3.65) as

L(0)
l = 0 and U(0)

l =
σ̄Tl − Yl − σprec

3G
, (3.69)
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Figure 3.1. Graph of Eq.(3.65) when ∆t = 0.001, σ̄Tl = 460, ε̄n = 0.00001 and the

material parameters in Table 3.1.

Table 3.1. Material parameters for Fig.3.1.

Common parameters LB mode

E [GPa] ν b [mm] M fm0 fma λ ρ0 Z χ ne Dl Yl

199.5 0.3 2.5e-7 2.76 1.0e-5 0.1 10 1.0e4 3.0e9 1.5 20 130.0 150.0

satisfy always ψl(L
(0)
l ) < 0 and ψl(U

(0)
l ) > 0. The iterative update for this method can

be made as

L(k)
l =

L(k−1)
l + U(k−1)

l

2
if ψl(L

(k)
l ) · ψl(L

(k−1)
l ) > 0

U(k)
l =

L(k−1)
l + U(k−1)

l

2
otherwise,

(3.70)

until ψl(L
(k)
l ), ψl(U

(k)
l ) or (U(k)

l − L(k)
l ) are less than the specified tolerance of the

integration procedure.

The two-point Newton method Tiruneh et al. (2013) defines a new variable as

M =
ψl − ψ

(k−1)
l

∆ε̄l −∆ε̄
(k−1)
l

, (3.71)

where ∆ε̄
(k−1)
l and ψ(k−1)

l denote the (k − 1)th guess and the corresponding ψ(k−1)
l at

∆ε̄
(k−1)
l , respectively. Then, this variable can be used as an independent variable of the
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function ψl. By applying the Newton method, a better approximation M(k+1) for the

(k + 1)th iteration becomes

M(k+1) = M(k) −
ψ

(k)
l

dψl

dM

∣∣∣∣∣
∆ε̄l=∆ε̄

(k)
l

, (3.72)

where

M(k+1) =
ψ

(k+1)
l − ψ(k−1)

l

∆ε̄
(k+1)
l −∆ε̄

(k−1)
l

and M(k) =
ψ

(k)
l − ψ

(k−1)
l

∆ε̄
(k)
l −∆ε̄

(k−1)
l

. (3.73)

If M(k+1) satisfies ψl = 0, ψ(k+1)
l = 0. Then, substituting Eq.(3.73) into Eq.(3.72)

gives

−ψ(k−1)
l

∆ε̄
(k+1)
l −∆ε̄

(k−1)
l

=
ψ

(k)
l − ψ

(k−1)
l

∆ε̄
(k)
l −∆ε̄

(k−1)
l

−
ψ

(k)
l

dψl

dM

∣∣∣∣∣
∆ε̄l=∆ε̄

(k)
l

. (3.74)

The derivative ψl with respect to M can be expressed as

dψl
dM

=

dψl

d∆ε̄l

dM
d∆ε̄l

=

dψl

d∆ε̄l

(
∆ε̄l −∆ε̄

(0)
l

)2

(
∆ε̄l −∆ε̄

(0)
l

) dψl

d∆ε̄l
−
(
ψl − ψ

(0)
l

). (3.75)

Inserting Eq.(3.75) into Eq.(3.74) and deriving for ∆ε̄
(k+1)
l yield

∆ε̄
(k+1)
l = ∆ε̄

(k−1)
l +

∆ε̄
(k)
l −∆ε̄

(k−1)
l

1−
ψ

(k)
l

ψ
(k−1)
l

ψ
(k)
l − ψ

(k−1)
l

∆ε̄
(k)
l −∆ε̄

(k−1)
l

1

dψl

d∆ε̄l

∣∣∣∣∣
∆ε̄l=∆ε̄

(k)
l

. (3.76)

The initial two points ∆ε̄
(0)
l and ∆ε̄

(1)
l can be chosen as L(0) and U(0)/2, respectively,

for this two-point Newton method.
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WH region

For the WH mode, Eq.(3.59), Eqs.(3.60)-(3.62) and the following incremental forms

θ− θn = C∆ε̄w

(
2

3
anw −

√
a

θ̄
θ

)
, (3.77)

β− βn = m∆ε̄w

(
2

3
b1nw − β

)
, (3.78)

are solved to find ∆ε̄w, θ and β. After θ and β are obtained, the back stress α can be

obtained by Eq.(3.15). Rearranged from Eq.(3.59) and Eqs.(3.16)-(3.17), the discrete

constitutive equations for the WH region can be defined as

ψw (∆ε̄w,θ,β) =
∆ε̄w
∆t
− bfmρt

M

(
σ̄Tw − 3G∆ε̄w − Yw − σprec

Dw

)ne
= 0, (3.79)

ψθ (∆ε̄w,θ,β) = θ− θn − C∆ε̄w

(
2

3
anw −

√
a

θ̄
θ

)
= 0, (3.80)

ψβ (∆ε̄w,θ,β) = β− βn −m∆ε̄w

(
2

3
b1nw − β

)
= 0, (3.81)

where

σ̄Tw =

√
3

2
(sT − α) : (sT − α), (3.82)

nw =
3

2

s− α
σ̄w

=
3

2

sT − α
σ̄Tw

. (3.83)

Note that, as in the LB region, the well-known relation

σ̄w = σ̄Tw − 3G∆ε̄w (3.84)

is used in defining Eq.(3.79). α in Eq.(3.82) is the back stress calculated from Eq.(3.15)

at the current increment. Then, the conventional one-point Newton method for multi-

variate case uses the linear equations

∂ψw
∂∆ε̄w

d∆ε̄w +
∂ψw
∂θ

: dθ+
∂ψw
∂β

: dβ = −ψw, (3.85)

∂ψθ
∂∆ε̄w

d∆ε̄w +
∂ψθ
∂θ

: dθ+
∂ψθ
∂β

: dβ = −ψθ, (3.86)
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∂ψβ
∂∆ε̄w

d∆ε̄w +
∂ψβ
∂θ

: dθ+
∂ψβ
∂β

: dβ = −ψβ, (3.87)

where

∂ψw
∂∆ε̄w

=
1

∆t
− b

M

(
∂fm
∂∆ε̄w

ρt + fm
∂ρt
∂∆ε̄w

)(
σ̄Tw − 3G∆ε̄w − Yw − σprec

Dw

)ne
+
bfmρt
M

ne
Dw

(
3G+

∂Yw
∂∆ε̄

)(
σ̄Tw − 3G∆ε̄w − Yw − σprec

Dw

)ne−1

,

(3.88)
∂ψw
∂θ

=
∂ψw
∂β

=
bfmρt
M

ne
Dw

(
σ̄Tw − 3G∆ε̄w − Yw − σprec

Dw

)ne−1

nw, (3.89)

∂ψθ
∂∆ε̄w

= C

[(√
a

θ̄
+

∂a

∂∆ε̄w

∆ε̄w

2
√
aθ̄

)
θ− 2

3

(
a+ ∆ε̄w

∂a

∂∆ε̄w

)
nw

]
, (3.90)

∂ψθ
∂θ

= Is + C∆ε̄w

[
2

3
a
∂nw
∂s

+

√
a

θ̄

(
Is −

3

4

θ⊗ θ
θ̄2

)]
, (3.91)

∂ψθ
∂β

= C∆ε̄w
2

3
a
∂nw
∂s

, (3.92)

∂ψβ
∂∆ε̄w

= m

(
β− 2

3
b1nw

)
, (3.93)

∂ψβ
∂θ

= m∆ε̄w
2

3
b1
∂nw
∂s

, (3.94)

∂ψβ
∂β

= Is +m∆ε̄w

(
2

3
b1
∂nw
∂s

+ Is

)
, (3.95)

with
∂fm
∂∆ε̄w

= λ (fma − fm) , (3.96)

∂ρt
∂∆ε̄w

= χZ (ε̄n + ∆ε̄w − xb)χ−1 , (3.97)

∂a

∂∆ε̄w
= m (Rsat −Rb) , (3.98)

and

∂Yw
∂∆ε̄w

= ζ (Ywa − Yw) or
∂Yw
∂∆ε̄w

=
ζYwa

2 cosh2 ζ (ε̄n + ∆ε̄w − Yw0)
, (3.99)

for the correction to the current θ, β and ∆ε̄w as

∆ε̄(k)
w := ∆ε̄(k−1)

w + d∆ε̄w, (3.100)
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θ(k) := θ(k−1) + dθ, (3.101)

β(k) := β(k−1) + dβ. (3.102)

Here, Is is the fourth-order symmetric projection tensor. The right-hand side terms

of Eqs.(3.85)-(3.99) are evaluated at (∆ε̄w,θ,β) = (∆ε̄
(k−1)
w ,θ(k−1),β(k−1)). The

initial points for this case are chosen as (∆ε̄
(0)
w ,θ(0),β(0)) = (0,θn,βn).

Inferred from the similarity between Eq.(3.65) and Eq.(3.79), it may be necessary

to use the two-point Newton method. For the multivariate two-point Newton method,

Eqs.(3.79)-(3.81) may be expressed as

Ψ(γ) = 0, (3.103)

where the vector Ψ consists of ψw, ψθ and ψβ and the vector γ includes ∆ε̄w, θ and

β as

Ψ =


ψw

ψθ

ψβ

 and γ =


∆ε̄w

θ

β

 . (3.104)

Here, ψθ, ψβ , θ and β are written in vector form for convenience in calculation. Then,

the approximated function R, proposed by Saheya et al. (2016), at γ(k) is given as

Ψ(γ) ≈ R(γ) = Ψ(γ(k)) +
J(k)(γ− γ(k))

1 + b(k) · (γ− γ(k))
= 0, (3.105)

where

J(k) =
∂Ψ

∂γ

∣∣∣∣∣
γ=γ(k)

=


∂ψw
∂∆ε̄w

∂ψw
∂θ

∂ψw
∂β

∂ψθ
∂∆ε̄w

∂ψθ
∂θ

∂ψθ
∂β

∂ψβ
∂∆ε̄w

∂ψβ
∂θ

∂ψβ
∂β


γ=γ(k)

, (3.106)

and b(k) is the unknown coefficient vector which has the same size as the vector γ. If

b(k) = 0, Eq.(3.105) becomes the linear equations in Eqs.(3.85)-(3.87). If b(k) 6= 0,

the (k + 1)th iterative correction can be obtained from Eq.(3.105) as

γ(k+1) = γ(k) − (J(k) +Ψ(k) ⊗ b(k))−1Ψ(k), (3.107)
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where Ψ(k) = Ψ(γ(k)). In order to determine b(k), substituting the condition

R(γ(k−1)) = Ψ(γ(k−1)) (3.108)

into Eq.(3.105) provides

Ψ(k−1) = Ψ(k) − J(k)(γ(k) − γ(k−1))

1− b(k) · (γ(k) − γ(k−1))
, (3.109)

where Ψ(k−1) = Ψ(γ(k−1)). Rearranging of Eq.(3.109) gives

b(k) · (γ(k) − γ(k−1))

=
(Ψ(k) −Ψ(k−1)) ·

[
(Ψ(k) −Ψ(k−1))− J(k)(γ(k) − γ(k−1))

]
(Ψ(k) −Ψ(k−1)) · (Ψ(k) −Ψ(k−1))

,

(3.110)

and Saheya et al. (2016) chose b(k) as

b(k) = B(γ(k) − γ(k−1)) where B =

(Ψ(k) −Ψ(k−1)) ·
[
(Ψ(k) −Ψ(k−1))− J(k)(γ(k) − γ(k−1))

]
‖Ψ(k) −Ψ(k−1)‖2‖γ(k) − γ(k−1)‖2

,

(3.111)

which satisfies Eq.(3.110). The single variable case of Eq.(3.107) becomes identical

with Eq.(3.76). The initial two vectors γ(0) and γ(1) may be selected as

γ(i) =


∆ε̄

(i)
w

θ(i)

β(i)

 , (i = 1, 2), (3.112)

where

β(i) =
βn + 2

3b1m∆ε̄
(i)
w nwn

1 +m∆ε̄
(i)
w

and θ(i) =
θn + 2

3Can∆ε̄
(i)
w nwn

1 + C∆ε̄
(i)
w

√(
an/θ̄n

) , (3.113)

with

nwn =
sT − αn
σ̄Tw

, an = B0 +Rbn − Ywa and θ̄n =

√
3

2
θn : θn. (3.114)

Here, we can use

∆ε̄(0)
w = L(0)

w = 0 and ∆ε̄(1)
w = U(0)

w /2 (3.115)
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after U(0)
w is obtained by solving the following equation

σ̄Tw − 3G∆ε̄w − Yw − σprec = 0, (3.116)

with the one-point Newton method.

Initialization for the WH region

Although the two-point Newton method, not to mention the conventional one-point

method, is adopted in the WH region, converged solutions are not easily attained when

ε̄n is very small and ∆ε̄
(0)
w = 0. Therefore, in the present study, we add an initialization

procedure before solving Eqs.(3.79)-(3.81) to have the initial value ∆ε̄
(0)
w closer to an

actual solution. In this initialization, only Eq.(3.79) is solved using the one-point or the

two-point Newton method with the initial points of Eq.(3.115) after σ̄Tw is replaced by

σ̄Tw . If these Newton methods do not give a converged solution, the bisection method

can be activated with the lower bound L(0)
w and the upper bound U(0)

w in Eq.(3.115).

Once ∆ε̄
(0)
w (6= 0) is obtained, β(0) and θ(0) for solving Eqs.(3.79)-(3.81) with the

one-point Newton method are calculated from Eq.(3.113). For the two-point Newton

method, ∆ε̄
(1)
w = U(0)

w /2 is used again to get β(1) and θ(1) from Eq.(3.113).

Conditional isotropic hardening

The computational implementation for the evolution of non-isotropic hardening surface

in Eqs.(3.22)-(3.23) is described by Ghaei and Green (2010) or Ghaei et al. (2010) as

r2 = r2
n + 3hξ : ∆β, (3.117)

q = qn + ∆µξ, (3.118)

ξ =
ξn

1 + ∆µ
, (3.119)

∆µ =
−3hξn : ∆β+

√
(3hξn : ∆β)2 + 4r2

n

(
3
2ξn : ξn

)
2r2
n

− 1, (3.120)
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where

∆β = β− βn and ξn = β− qn, (3.121)

and these calculations are conditionally performed when (3/2)(ξn : ξn)− r2
n > 0.

Update of stress and state variables

When ∆ε̄l and ∆ε̄w are simultaneously obtained, the condition Eq.(3.63) can decide

the region and the effective plastic strain is accumulated as

ε̄ = ε̄n + ∆ε̄, (3.122)

where ∆ε̄ = ∆ε̄l for the LB region and ∆ε̄ = ∆ε̄w for the WH region. Then, the stress

is finally updated as

∆εe = ∆ε−∆ε̄lnl or ∆εe = ∆ε−∆ε̄wnw, (3.123)

σ = σn + D : ∆εe, (3.124)

where

nl =
3

2

s− Cbαb
σ̄l

=
3

2

sT − Cbαb
σ̄Tl

, (3.125)

and nw is given by Eq.(3.83).

3.2.4 Consistent tangent stiffness

When the implicit procedure for the stress update is applied to the implementation of

a material model, the consistent tangent operator needs to solve the FE equilibrium

equations with the quadratic rate of convergence. The derivation of the consistent

tangent operator for the LB mode be started by applying the differential operator to

Eq.(3.125) as follows

δs =
σ̄l
σ̄Tl

δsT +

(
δσ̄l
σ̄Tl
− σ̄l
σ̄Tl

δσ̄Tl
σ̄Tl

)
(sT − Cbαb). (3.126)
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Applying the differential operator to Eq.(3.52) and Eq.(3.64) gives

δσ̄Tl =
1

σ̄Tl

3

2
(sT − Cbαb) : δsT , (3.127)

δσ̄l = δσ̄Tl − 3Gδ∆ε̄l. (3.128)

Substituting Eq.(3.127) and Eq.(3.128) into Eq.(3.126) with rearrangement yields

δs =
σ̄l
σ̄Tl

δsT − 2Gδ∆ε̄lnl +

(
1− σ̄l

σ̄Tl

)
2

3
nl
(
nl : δsT

)
. (3.129)

Rewriting Eq.(3.58) as

∆ε̄l = φl (σ̄l, ε̄l) ∆t, (3.130)

where

φl (σ̄l, ε̄l) =
bfmρt
M

(
σ̄l − Yl − σprec

Dl

)ne
, (3.131)

and applying the differential operator provides

δ∆ε̄l =

(
∂φl
∂ε̄l

δε̄l +
∂φl
∂σ̄l

δσ̄l

)
∆t. (3.132)

Substituting Eq.(3.128) and δε̄l = δ∆ε̄l into Eq.(3.132) and deriving for δ∆ε̄l becomes

δ∆ε̄l = Ulδσ̄
T
l , (3.133)

where

Ul =

∂φl

∂σ̄l

1

∆t
−
∂φl

∂ε̄l
+ 3G

∂φl

∂σ̄l

, (3.134)

∂φl
∂ε̄l

=
b

M

(
∂fm
∂ε̄l

ρt + fm
∂ρt
∂ε̄l

)(
σ̄l − Yl − σprec

Dl

)ne
, (3.135)

∂φl
∂σ̄l

=
bfmρt
M

(
ne
Dl

)(
σ̄l − Yl − σprec

Dl

)ne−1

, (3.136)

with
∂fm
∂ε̄l

= λ (fma − fm) , (3.137)
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∂ρt
∂ε̄l

= χZ (ε̄l − xb)χ−1 . (3.138)

Plugging Eq.(3.133) into Eq.(3.129) after replacing δσ̄Tl in Eq.(3.133) with Eq.(3.127)

gives

δs =

[
VlIs +

2

3
Ql (nl ⊗ nl)

]
: δsT . (3.139)

where

Vl =
σ̄l
σ̄Tl

and Ql = 1− Vl − 3GUl. (3.140)

Applying the differential operator to the deviatoric stress and its deviator gives

δsT = 2GId : δε, (3.141)

δs = δσ−K(III ⊗ III) : δε, (3.142)

where Id, III and K denote the fourth-order deviatoric projection tensor, the second-

order identity tensor, and the bulk modulus, respectively. Substituting Eq.(3.141) and

Eq.(3.142) into Eq.(3.139) finally delivers the consistent tangent operator Dep
l for the

LB mode as

δσ = Dep
l : δε =

[
2GVlId +

4

3
GQl (nl ⊗ nl) +K (III ⊗ III)

]
: δε. (3.143)

The derivation of the consistent tangent operator for the WH mode is analogous to

the LB mode. Applying similar procedures to Eq.(3.83) brings

δη =
σ̄w
σ̄Tw

δηT − 2Gδ∆ε̄wnw +

(
1− σ̄w

σ̄Tw

)
2

3
nw

(
nw : δηT

)
, (3.144)

where

δη = δs− δα, (3.145)

δηT = δsT − δα. (3.146)

Note that the following relations

δσ̄Tw =
1

σ̄Tw

3

2
ηT : δηT, (3.147)

δσ̄w = δσ̄Tw − 3Gδ∆ε̄w, (3.148)
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are used when Eq.(3.144) is derived. Likewise, for the following equation

∆ε̄w = φw (σ̄w, ε̄w) ∆t, (3.149)

where

φw (σ̄w, ε̄w) =
bfmρt
M

(
σ̄w − Yw − σprec

Dw

)ne
, (3.150)

δ∆ε̄w can be expressed as

δ∆ε̄w = Uwδσ̄
T
w, (3.151)

where

Uw =

∂φw

∂σ̄w

1

∆t
−
∂φw

∂ε̄w
+ 3G

∂φw

∂σ̄w

, (3.152)

∂φw
∂ε̄w

=
b

M

(
∂fm
∂ε̄w

ρt + fm
∂ρt
∂ε̄w

)(
σ̄w − Yw − σprec

Dw

)ne
−bfmρt

M

ne
Dw

(
∂Yw
∂ε̄w

)(
σ̄w − Yw − σprec

Dw

)ne−1

,

(3.153)

∂φw
∂σ̄w

=
bfmρt
M

(
ne
Dw

)(
σ̄w − Yw − σprec

Dw

)ne−1

, (3.154)

with
∂fm
∂ε̄w

= λ (fma − fm) , (3.155)

∂ρt
∂ε̄w

= χZ (ε̄w − xb)χ−1 , (3.156)

and
∂Yw
∂ε̄w

= ζ (Ywa − Yw) or
∂Yw
∂ε̄w

=
ζYwa

2 cosh2 ζ (ε̄w − Yw0)
. (3.157)

Eliminating δsT in Eq.(3.146) using Eq.(3.141) gives

δηT = 2GId : δε− δα. (3.158)

Adding Eq.(3.77) and Eq.(3.78) becomes the following equation

δα = δθ+ δβ = hδ∆ε̄w, (3.159)

90



where

h = C

(
2

3
anw −

√
a

θ̄
θ

)
+m

(
2

3
b1nw − β

)
(3.160)

by Eq.(3.15). Rewriting Eq.(3.158) using Eq.(3.147), Eq.(3.151) and Eq.(3.159) for

δηT reads

δηT = Ξ : δε, (3.161)

where

Ξ = 2G (Is + Uwh⊗ nw)−1 : Id. (3.162)

Substituting Eq.(3.158) into Eq.(3.145) to remove δα yields

δη = δσ−K (III ⊗ III) : δε+ δηT − 2GId : δε. (3.163)

Combining Eq.(3.161) and Eq.(3.163) with Eq.(3.144) lastly brings the consistent

tangent operator Dep
w for the WH mode as

δσ = Dep
w : δε

=

{
2GId +

[
2GVwIs −

4

3
GQw (nw ⊗ nw)

]
: Ξ +K (III ⊗ III)

}
: δε,

(3.164)

where

Vw =
σ̄w
σ̄Tw
− 1 and Qw = Vw + 3GUw. (3.165)

3.2.5 Summary of the overall procedure

A comprehensive flow chart representing the present subroutine and the detailed al-

gorithm of the stress integration is drawn in Fig.3.2. The circled texts a©- e© in this

figure indicate the aforementioned iterative methods. In the present study, four possible

combinations of the one-point Newton method, the two-point Newton method, and

the bisection method are adopted as organized in Table 3.2 to compare the simula-

tion performance of each combination. Except for the part of region selection, the
1Although the bisection method is implemented in the subroutine, it is not called during the present

simulations when the two-point Newton method is applied for a© and c©.
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Figure 3.2. Flow chart for the present subroutine and the stress integration algorithm.
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Table 3.2. Four stress integration algorithms to solve the constitutive equations.

a© b© c© d© e©

OP One-point Newton - - - One-point Newton

BI One-point Newton Bisection One-point Newton Bisection One-point Newton

TP1 Two-point Newton (Bisection)1 Two-point Newton (Bisection)1 One-point Newton

TP2 Two-point Newton (Bisection)1 Two-point Newton (Bisection)1 Two-point Newton

overall algorithm in Fig.3.2 is similar to typical von Mises-type viscoplastic models

Souza Neto et al. (2011). However, particularly in the stress integration procedure,

there should be two separate calculations for the LB and WH regions. Furthermore,

the initialization and the conditional isotropic hardening algorithm are required for the

WH region. Only the OP algorithm intentionally does not have the initialization step

to show the non-convergent characteristics of the present model and compare it with

the other algorithms. When the converged solutions are not obtained in a© or e© in the

OP algorithm and b©, d© or e© in the BI, TP1 and TP2 algorithms, the subroutine lets

Abaqus/Standard automatically attempt the current increment again with a new time

increment decreased by half unless the maximum number of increments is reached. A

UMAT subroutine pseudocode of the proposed algorithm is provided in Appendix A.1.

3.3 Summary

In this chapter, the material modeling for YPP and BH was addressed with their coupling

method. For the YPP model, we employed and modified the Yoshida-2008 model by

using simple kinematic hardening rules and to consider the true yield-point behavior. To

overcome non-convergent characteristics of YPP constitutive equations, we proposed

the robust stress integration algorithms that adopt the bisection method and/or the

two-point Newton method. For the BH feature of the model, a phenomenological

BH model was utilized for considering the formation of the Cottrell atmosphere and

the precipitation hardening. The Cottrell effect was taken into account in the way to
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calculate the dislocation density ratio, and the precipitation hardening was directly

associated with the viscoplastic equations of the YPP model. The YPP part of the model

was formulated and implemented implicitly while the BH calculation part was codified

and placed before this implicit stress integration steps. The overall procedure was

prepared to selectively choose the algorithm combinations for numerical simulations.
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Chapter 4

Validation of the Material Model

Numerical simulations to test the four stress integration algorithms of the YPP model

in Table 3.2 are carried out using Abaqus/Standard with the corresponding four UMAT

subroutines. These YPP simulations exclude BH calculations and the analysis type of

the simulations is Static, General without the global stabilization control. The automatic

time incrementation is selected in the analysis procedure. The material parameters in

Table 4.1 and the common parameters in Table 3.1 are used in the YPP simulations.

Problems for the YPP simulations include uniaxial tension, simple shear, uniaxial cyclic,

Table 4.1. Material parameters for the YPP simulations.

LB region WH region

Dl Yl Dw Yw0 Ywa ζ B0 C b1 m Rsat h

185 70 120 0.013 70 150 150 1000 20 7 210 0.05

cantilever bending and v-bending.

BH simulations using a single element are also conducted for validating the YPP

and BH coupled material model. These BH simulations use the BI algorithm in Table

3.2 and include the analysis type of the Static, General as well as that of Coupled

temp-displacement, both without the global stabilization control. The automatic time

incrementation is also selected in this BH analysis. In the UMAT for these simulations,
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volumetric heat generation associated with mechanical work of the material and its

variations with respect to the strain increments and the temperature as well as variation

of the stress increments with respect to the temperature is ignored by assuming that

there is no plastic behavior during BH operation.

4.1 Single element analysis

The uniaxial cyclic and the simple shear problems are solved using a single S4R

element, 4-node shell element with reduced integration, as shown in Fig.4.1. In the 3-

1

1

a shell element

(S4R)

thickness = 0.6

displacement

(a)
1

1

a shell element

(S4R)

thickness = 0.6

displacement

(b)

Figure 4.1. FE models for a single element simulations (dimensions in mm): (a) uniaxial

cyclic and (b) simple shear.

step (tension-compression-tension) uniaxial cyclic analysis, the speed of the first tension

step is 6 mm/min, and that of the compression and second tension steps is 10 mm/min.

The compression starts at 2 % of the tension, and the second tension starts at 4 % of the

compression. The simple shear is simulated with a speed of 6 mm/min. The stress-strain

responses of the single element analysis are depicted in Fig.4.2. All responses show the

key features of the YPP such as the upper yield point and the lower yield point. However,

the yield-point elongation does not appear because a single element is used only. In

Fig.4.2a, the Bauschinger effect is also identified in the cyclic response. Except for OP,

the other algorithms provide the same responses. Only the OP algorithm predicts the

higher upper yield points and the different stress levels in the strain hardening region.
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Figure 4.2. Stress-strain responses of the single element analysis: (a) uniaxial cyclic

and (b) simple shear.

As plotted in Fig.4.3, the number of increments in the OP algorithm abnormally reaches

about 3,000 due to numerous cutbacks of the time increment in the vicinity of the

upper yield point in both problems, whereas the other algorithms do not suffer from any

cutbacks. It means that the OP algorithm frequently cannot provide converged results in

a given time increment near the upper yield point, and this leads to the drastic decrease

of the time increment size. Subsequently, the remaining responses are influenced by

these increased stresses near the upper yield point. Although the results obtained using

97



the OP algorithm are not significantly different from those from the other algorithms in

single element analysis, a profuse number of increments due to repeated cutbacks can

be a critical obstacle to obtain converged solutions in analysis with multiple elements.

step 3
step 2

N
u
m

b
e
r 

o
f 

in
c
re

m
e
n
ts

N
u
m

b
e
r 

o
f 

in
c
re

m
e
n
ts

(a)

(b)

-400

-200

0

200

400

0 0.5 1 1.5 2

T
ru

e
 s

tr
e
s
s
 [

M
P

a
]

Time [s]

BI

TP1

TP2

OP

0

50

100

150

200

250

0 0.5 1 1.5 2

S
h
e
a
r 

s
tr

e
s
s
 [

M
P

a
]

Time [s]

BI

TP1

TP2

OP

0

1000

2000

3000

4000

5000

0

1000

2000

3000

4000

5000

Figure 4.3. History of the number of increments and corresponding stress: (a) uniaxial

cyclic and (b) simple shear.
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4.2 Uniaxial tension and cyclic simulations

FE models used for the uniaxial tension and the uniaxial cyclic simulations are depicted

in Fig.4.4. The dimensions of the uniaxial tension FE model are similar to the standard

90

60

gauge length
50

(a) (b)

thickness = 0.3

(symmetric to z-plane)

50

gauge
length

20

20

R12.7
12.5

measuring points

fix all
displacement (x-direction)

thickness = 0.6

- hexahedral elements (C3D20R)

- element size in gauge length (length x width) = 0.625 x 0.625

- one layer in thickness-direction

30

50 15

x

y

z x

y

z
R5

Figure 4.4. FE models for uniaxial simulations (dimensions in mm): (a) uniaxial tension

and (b) uniaxial cyclic.

specimen 13B of KS B 0801 (Korean Industrial Standard) and those of the uniaxial

cyclic FE model refer to Bae and Huh (2011). Both FE models use quadratic hexahedral

elements of type C3D20R with reduced integration. The strains are evaluated from the

displacements at the measuring points marked in Fig.4.4. The stresses are calculated

from the reaction forces at the fixed nodes. The uniaxial tension simulation consists of a

single step, whereas the uniaxial cyclic simulation has three steps: tension, compression,

and re-tension. The crosshead speed of the uniaxial tension is 6 mm/min and that of

all steps in the uniaxial cyclic is 10 mm/min. The displacement reversal condition

for the uniaxial cyclic is the same as the single element simulation. The stress-strain

curves obtained using the BI, TP1 and TP2 algorithms in Fig.4.5 show almost no

difference. However, both uniaxial tension and cyclic simulations are stopped when

the OP algorithm is used as the maximum number of increments (set to 20,000 in this

study unless specified) is reached without convergence. It cannot overleap the upper

yield point as inferred from the radical increase in the number of increments near the

upper yield point observed in the single element analysis.
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Figure 4.5. Stress-strain responses of uniaxial simulations: (a) uniaxial tension and (b)

uniaxial cyclic.

4.3 V-bending simulations

FE models used in the v-bending simulations are shown in Fig.4.6. The workpiece

of the 2D v-bending is made up of 8-node biquadratic plane strain elements of type

CPE8R with reduced integration. For the 3D v-bending, 8-node doubly curved thick

shell elements of type S8R with reduced integration are used. Five integration points

are used in the shell element through the thickness. For the 2D v-bending, the punch

and the die are constructed with rigid elements of type R2D2, 2-node linear link of size
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Figure 4.6. FE models with their boundary and load conditions for the v-bending

simulations (dimensions in mm): (a) 2D v-bending model, (b) punch speed of the 2D

v-bending, (c) 3D v-bending model and (d) load input of the 3D v-bending.

0.05 mm. The punch in the 3D v-bending which has the same dimension in xy plane as

the one in 2D is meshed with rigid elements of type R3D4, 4-node bilinear quadrilateral

facet. The facet length along the profile in the xy plane is 0.5 mm in the R15 corner

and 1.0 mm in the flat area. The facet width in the z-direction is the same as the punch

depth in the z-direction. The surface-to-surface contact method with the finite sliding

tracking is selected for the interaction type between the tools and the workpiece. The

penalty method with the friction coefficient of 0.15 is used for the tangential contact

behavior. For the normal contact behavior, the exponential pressure-overclosure rule

is applied with the contact pressure of 30 MPa at zero clearance and the clearance of

0.0001 mm at zero contact pressure.

The 2D v-bending simulation begins with moving down the punch by 1.16 mm be-

fore touching the workpiece on the die followed by a total stroke of 29.7 mm according
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to the speed profile in Fig.4.6b. Then, tools are released to obtain the springback of the

workpiece while the center node at its bottom surface is fixed. This simulation setup

models an actual v-bending experiment using a servo-controlled mechanical press. In

the 3D v-bending, on the other hand, we intentionally change the simulation setup to test

the algorithms in force boundary conditions. Here, the workpiece initially positioned

0.4 mm from the punch moves vertically 4 mm upward during a displacement step

of one second. Then, the vertical forces are applied at both ends of the workpiece

following the linear load history plotted in Fig.4.6d. All loading conditions are released

at the last step while fixing the center node of the workpiece on the line of symmetry.

Fig.4.7 shows the vertical displacements of the bottom nodes obtained from the

2D v-bending simulations. The algorithm BI, TP1, and TP2 provide almost identical
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Figure 4.7. Vertical displacements of the bottom nodes in the 2D v-bending simulations.

deformations and clearly predict the fluting with a sharp bending radius. On the other

hand, with the OP algorithm, the analysis stops as it reaches its maximum number of

increments in the v-bending step. As illustrated in Fig.4.8, the OP algorithm suffers from

difficulties in finding a solution near the upper yield point as shown in the distribution

and history of the effective stress around the bending center at the last increment.

The 3D v-bending simulations provide similar results as the 2D v-bending simula-

tions. They are successfully completed and almost the same bent shapes are obtained

as plotted in Fig.4.9a except when the OP algorithm is used. The analysis with the OP

algorithm is terminated in the middle of the second step since it reaches the maximum
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Figure 4.8. Contour plot of the effective stress around the bending center at the last

increment of the OP algorithm in the 2D v-bending simulation with the stress histories

of the center nodes.

number of increments (set to 10,000). Analogously to the 2D case, the OP algorithm

cannot fully pass over the upper yield point (Fig.4.9b), while the other algorithms

can surmount it and enter into the springback step (Fig.4.9c). As observed in the 2D

v-bending, the fluting is also clearly seen in the 3D v-bending simulations.

4.4 Cantilever bending simulation

The cantilever bending simulation is performed using the FE model in Fig.4.10a where

cyclic loads are applied at one end as in Fig.4.10b. The same type of shell element as in

the 3D v-bending is used in this simulation. Interestingly, the analysis can be completed

only when the TP2 algorithm is used (Fig.4.11). The simulations using the BI and TP1

algorithms are aborted as the minimum time increment or the maximum attempts in

an increment is reached before completion of the analysis. The analysis using the OP

algorithm is terminated at a very early stage. This problem with a serrated cyclic loading

might be a highly non-convergent problem as high plastic strains are accumulated near
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Figure 4.9. Results of the 3D v-bending simulations: (a) Vertical displacements of the

nodes at the symmetry line, (b) stress histories of the center element of which edge lies

on the symmetry line in the OP algorithm (element centroid value of integration points),

and (c) stress histories of the same element as (b) at the bottom centroid in the four

algorithms.
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Figure 4.10. FE model with its boundary and load conditions for the cantilever bending

simulation: (a) FE model and (b) corresponding load input.

the clamped end and very unstable stress states are developed (Fig.4.11b), whose

solution cannot be easily obtained even with robust iterative methods.
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Figure 4.11. Cantilever bending results at the nodes of the width center line: (a) vertical

displacements and (b) effective plastic strain and effective stress (averaged with the 75

% averaging threshold at the top integration points).

4.5 Performance comparison

All present simulations are carried out using a PC with four CPU cores (Intel Core

i5-6600 3.3 GHz) and one GPU core (NVIDIA Quadro K620 2 GB) with 16 GB of

system memory. Computation times and total increments including time increment

cutbacks are listed in Table 4.2. In the single element (S.E.) simulations, the CPU times

and the wall clocks are similar to each other as only a single CPU core is engaged in
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Table 4.2. CPU times, wall clocks, total increments and cutbacks of the simulations.

(Ratios in CPU time and wall clock is calculated with respect to the BI case.)

Case
CPU time [s]

(ratio)

Wall clock [s]

(ratio)

Total

increments

UMAT

cutbacks

Total

cutbacks

Completion

[%]

S.E. uniaxial

cyclic 3-step

OP 1,469 (1.70) 1,511 (1.45) 5,601 1,812 1,812 100.00

BI 863 (1.00) 1039 (1.00) 2,513 0 0 100.00

TP1 849 (0.98) 961 (0.92) 2,513 0 0 100.00

TP2 856 (0.99) 979 (0.94) 2,513 0 0 100.00

S.E. simple

shear 1-step

OP 1,299 (1.81) 1,391 (1.74) 5,062 1,790 1,790 100.00

BI 717 (1.00) 798 (1.00) 2,011 0 0 100.00

TP1 706 (0.98) 800 (1.00) 2,011 0 0 100.00

TP2 727 (1.01) 826 (1.04) 2,011 0 0 100.00

Uniaxial

tension 1-step

OP 80,293 24,460 20,000 11,695 11,695 1.28

BI 2,942 (1.00) 894 (1.00) 376 11 17 100.00

TP1 2,890 (0.98) 881 (0.99) 376 11 18 100.00

TP2 3,436 (1.17) 1,019 (1.14) 376 11 18 100.00

Uniaxial

cyclic 3-step

OP 70,416 21,608 20,000 11,549 11,549 1.60

BI 68,687 (1.00) 20,918 (1.00) 30,077 102 102 100.00

TP1 70,074 (1.02) 21,312 (1.02) 30,100 132 132 100.00

TP2 81,052 (1.18) 24,092 (1.15) 30,100 132 132 100.00

2D v-bending

2-step

OP 263,780 146,731 20,000 11,702 11,702 3.83

BI 13,041 (1.00) 7,854 (1.00) 446 102 119 100.00

TP1 12,621 (0.97) 6,659 (0.85) 438 86 107 100.00

TP2 14,070 (1.08) 7,104 (0.90) 450 107 125 100.00

3D v-bending

3-step

OP 211,581 66,740 10,083 5,893 5,895 46.00

BI 8,177 (1.00) 2,576 (1.00) 282 18 20 100.00

TP1 8,127 (0.99) 2,558 (0.99) 282 18 20 100.00

TP2 10,033 (1.23) 3,052 (1.18) 275 25 25 100.00

Cantilever

bending

1-step

OP 138,899 39,352 5,725 3,340 3,365 6.80

BI 30,342 8,404 595 252 298 46.10

TP1 45,228 12,457 993 495 532 49.70

TP2 194,436 51,522 2,783 1,509 1,541 100.00

analysis. In other simulations where multiple elements are used, the CPU times are

about 1.7 to 3.8 times longer than the wall clocks as multiple CPU cores are used. The

simulations with the OP algorithm are all terminated around at the upper yield point

except when a single element is used. Although we can obtain completed solutions for

single element simulations with the OP algorithm, they are slightly different from the

solutions obtained using other algorithms and it takes about 1.45 to 1.74 times longer
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than when the BI algorithm is used. Therefore, it is not suitable to use the conventional

one-point Newton method for the analysis of materials with the YPP. Note that 46 % of

analysis is completed using the OP algorithm for the 3D v-bending simulations, but the

completed solutions correspond to the displacement step which is not associated with

the upper yield point.

Overall, BI, TP1 and TP2 algorithms demonstrate their robustness in most problems.

The TP1 algorithm requires a slightly shorter computing time in general and the TP2

algorithm turns out to be the most robust. It seems appropriate to use the two-point

Newton method for highly nonlinear problems when convergence is hardly achieved by

using the conventional one-point Newton method. These test results suggest that the

TP2 algorithm may be useful particularly in solving non- or hardly-convergent problems

such as the YPP even though it might be slower than the one-point Newton method

in solving normal, convergent problems. In practice, one can use both one-point and

two-point Newton methods adaptively so that the stress integration algorithm chooses

one of these methods by monitoring the convergence histories during analysis.

4.6 Single element BH simulations

Uniaxial tension and compression simulations including BH step are performed using a

single element C3D8RT, 8-node trilinear displacement and temperature with reduced

integration and enhanced hourglass control. The boundary conditions are shown in

Fig.4.12. The simulations have 4-step analysis: a uniaxial tension, unloading, BH, and

tension or compression. The initial temperature of this analysis is 20 ◦C and applies all

nodes as the Predefined fields. The first and second steps are uniaxial pre-strain step

with the speed of 6 mm/min (0.1 mm/sec) and unloading step, respectively. The third

BH step uses the temperature history shown in Fig.2.15. This temperature boundary

condition applies to all nodes. The maximum time increment size of the third step is

set to 10 seconds. The last step at the same speed as the first step can be tension or
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Figure 4.12. FE model for a single element BH simulations with boundary conditions

(dimensions in mm).

compression according to simulation conditions.

The material parameters used in the simulations are shown in Table 4.3. The free

Table 4.3. Material parameters for the BH simulations.

Common parameters

E [GPa] ν b [mm] M fm0 fma λ ρ0 Z χ ne

212.9 0.3 2.5e-7 2.76 1.0e-5 0.1 10 1.0e4 3.0e9 1.5 30

LB region WH region

Dl Yl Dw Yw0 Ywa ζ B0 C b1 m Rsat h

185 160 120 190 190 20 190 150 140 18 180 0.01

BH parameters

A [Nmm2] D0 [mm2/s] Qd [J/mol] Rgas [J/mol◦K] sb k [mJ/◦K]

3.0e-23 2.0 8.4e4 8.314 9.5e11 1.38e-20

BH parameters

nc [ppm] n0 [ppm] Cb GFe [MPa] Xp [mm] Cprec

779.21 82,245 0.7 81,600 5.0e-5 5.0e6

carbon concentration nc is obtained from Thermo-Calc with the TCFE-9 database at the

annealing temperature of 778 ◦C. Other mechanical and thermal constants necessary for

the Coupled temp-displacement analysis are a material density of 7.89e-9 tonne/mm3,

the thermal conductivity of 58.8 mW/mm◦K, the thermal expansion coefficient of

1.2e-5 /◦K at 20 ◦C, and constant volume specific heat of 4.46e8 mJ/tonne◦K. These

constants are used throughout the present study. The simulations start with the initial
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value of the effective plastic strain as ε̄0 = 0.02 assuming that objective material does

not show YPP initially.

The simulation cases are the same as shown in Table 2.2, including the detail

conditions of pre-strain, BH temperature and BH time. Stress-strain responses in these

conditions are plotted in Fig.4.13-4.16. In Fig.4.13, the BH responses according to
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Figure 4.13. Stress-strain responses of the ‘T-U-BH-T’ cases according to the BH

temperature in the single element BH simulations with the BH time of 20 min and the

pre-strain of 2%.

the BH temperature are described. Two higher temperature cases show clear YPP as

expected, and even with 100 ◦C, the slightly increased upper yield point is captured.

The responses with respect to the BH time and the pre-strain are plotted in Fig.4.14.

Similar upper yield points between 5, 20, and 35 min are recorded, and those according

to the pre-strain are weakly elevated than the strain hardening slope. While, in the strain

hardening region, small stress differences with respect to the BH time and the pre-strain

are identified. In Fig.4.15, tension-compression responses are shown, and the kinematic

hardening behaviors are exhibited in these responses. Compressive responses after the

BH step in Fig.4.15 show YPP but not as strong as the YPP in tension cases.
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-700

-500

-300

-100

100

300

500

-8 -6 -4 -2 0 2 4 6 8 10

E
n
g
in

e
e
ri
n
g
 s

tr
e
s
s
 (

M
P

a
)

Engineering strain (%)

T only

2%

3%

4%

Figure 4.15. Stress-strain responses of the ‘T-C’ cases according to the pre-strain in the

single element BH simulations with the ‘T only’ case.

4.7 Summary

In this chapter, the material model that adopts the bisection method and/or the two-point

Newton method for stress integration was validated to check its robustness in solving
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Figure 4.16. Stress-strain responses of the ‘T-U-BH-C’ cases according to the pre-strain

in the single element BH simulations with the BH temperature of 200 ◦C and the BH

time of 35 min.

YPP-related non-convergent problems. These methods are shown to be much more

effective in performing the YPP-related simulations than the conventional one-point

Newton method. While these algorithms may require longer computational times, they

can be reliably used to calculate the solutions of YPP problems that cannot be obtained

using conventional iterative methods. The BH feature of the material model was also

verified using single element simulations with various BH conditions. As a result, a

possibility that the present material model can be utilized in predicting the BH potential

of bake hardenable material is identified.
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Chapter 5

Numerical Analysis

In this chapter, FE simulations corresponding to the experiments are performed to

study the capabilities of the present material model for describing the fluting defect of

PLCS and the BH behavior of 490DP. In these simulations, the BI algorithm in Table

3.2 is used. For the simulations of the fluting defect with PLCS, the Static, General

analysis procedure is chosen without using the global stabilization control. The material

parameters are determined by comparing the simulation results with the experimental

ones for uniaxial tension and cyclic cases. In contemplation of true material behaviors

related to the YPP, three sets of the parameters, two for Eq.(3.13) and one for Eq.(3.14),

are chosen and tested. With these parameter sets, the v-bending simulations followed

by the roller-leveling simulations are performed.

The simulations for the BH behavior of 490DP include the analysis type of the Static,

General and the Coupled temp-displacement. These simulations ignore volumetric

heat generation and its variations with respect to both the strain increments and the

temperature. The variation of the stress increments with respect to the temperature

is also ignored in the UMAT subroutine. The simulations does not use the global

stabilization control, whereas, in order to have better convergent characteristics in the

global iterative loop, the simulation step after BH uses the Discontinuous analysis

option, activates the Line Search Control, and sets the maximum number of cutbacks
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allowed for an increment to 10-15 in the General Solution Controls. The automatic time

incrementation is also selected.

5.1 Numerical simulations of fluting defect and its reduction

method for PLCS

5.1.1 Uniaxial tension and cyclic simulation

FE models used for the uniaxial tension and cyclic simulations for PLCS are the same

as the models in Fig.4.4. The mesh is generated so as to minimize the distortion of the

elements in the transition area from the grip section to the gauge section. In the uniaxial

tension simulation, a total of 2,680 quadratic hexahedral elements of type C3D20R with

reduced integration are used to construct the model in Fig.4.4a. Among them, 1,600

elements of size 0.625 mm x 0.625 mm x 0.6 mm are occupied in the gauge section.

In the uniaxial cyclic simulation, a total of 2,464 elements of the same type are used

as depicted in Fig.4.4b where 768 elements of size 0.625 mm x 0.625 mm x 0.3 mm

are in the gauge section. Symmetric boundary conditions in the thickness direction

are imposed on one side of uniaxial cyclic specimens to avoid buckling. The strain

is calculated with the displacements of measuring points indicated in Fig.4.4 and the

stress is evaluated from the reaction force of the fixed end. In addition, the uniaxial

tension simulations using a single shell element are carried out to investigate the true

yield-point behavior, such as a higher upper yield point and a degraded lower yield

point, evaluated by several ways in Schwab and Ruff (2013).

After comprehensive parametric studies for these simulations, three simulation

sets of material parameters are established as listed in Table 5.1 and 5.2. The common

parameters related to the dislocation density are gleaned from Yoshida (2000). Here,

the material parameters in sim.2 and sim.3 sets are chosen to describe the true yield-

point behavior better. Eq.(3.13) is used for sim.1 and sim.2 sets while Eq.(3.14) is

used instead for sim.3 set. Note that, sim.1 set represents a constant yield surface of
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Table 5.1. Common material parameters.

E (GPa) ν b (mm) M fm0 fma λ ρ0 Z χ ne

199.5 0.3 2.5e-7 2.76 1.0e-5 0.1 10 1.0e4 3.0e9 1.5 20

Table 5.2. Material parameter sets.

Set Dl Yl Dw Yw0 Ywa ζ B0 C b1 m Rsat h

sim.1 130 150 120 70 70 20 150 500 20 7 210 0.1

sim.2 185 70 120 5 70 70 150 1000 20 7 210 0.05

sim.3 185 70 120 0.013 70 150 150 1000 20 7 210 0.05

Yoshida and Uemori (2003), and sim.2 set uses an exponential change of the yield

surface similar to Yoshida et al. (2008). The tangent hyperbolic evolution of the yield

surface in sim.3 set is the newly proposed rule for the yield surface evolution in the

present material model.

The stress-strain curves obtained from the single element uniaxial tension sim-

ulations at the crosshead speed of 6 mm/min are plotted in Fig.5.1 as well as one

experimental curve at the same speed. The upper yield points of sim.2 and sim.3 sets
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Figure 5.1. Stress-strain curves obtained from the uniaxial tension simulations using a

single shell element at the crosshead speed of 6 mm/min.
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are higher than that of sim.1 set as higher Dl and lower Yl values are used in LB

mode. Similarly, the lower yield points of sim.2 and sim.3 sets are smaller than that of

sim.1 set as lower Yw0 values are used. In sim.3 set, Yw saturates to Ywa much faster

than sim.2 set due to the hyperbolic tangent function in Eq.(3.14) that can describe a

higher rate of strain hardening after the lower yield point as shown in Fig.5.1. Hence,

it seems sim.3 set can capture the true yield-point behavior more closely than sim.2

set. Note that the experimental curve shows a smaller stress level of about 23 MPa

compared to single element simulations. This difference is because the region of gauge

length deforms slower than the crosshead speed due to specimen shape, unlike the

single element simulations where the strain rate corresponding to the crosshead speed

is applied uniformly.

The increased upper yield value of 422 MPa and the decreased lower yield value

of 282 MPa in the single element simulation with the sim.3 set can be validated by

the analytical expression for the observed lower yield value suggested in Schwab and

Ruff (2013). The observed lower yield point can be calculated as

ReL(obs) =
ReH(tr) +

√
R2

eH(tr) + 8R2
eL(tr)

4
= 331 MPa, (5.1)

where ReH(tr) and ReL(tr) denote the true upper yield point and the true lower yield

point, respectively. Subtracting the stress difference of 23 MPa between the experiment

and single element simulations results in ReL(obs) of 308 MPa, which is similar to the

experimentally observed lower yield point.

Stress-strain curves obtained from uniaxial tension simulations at the three different

crosshead speeds using the FE model for the experimental specimen in Fig.4.4a are

plotted in Fig.5.2 with the experimental ones. Experimental curves in Fig.5.2 are chosen

from the data shown in Fig.2.2 for each crosshead speed. Note that the experimental

curves which exhibit the increase of the yield-point elongation with respect to the

crosshead speed are selected even though no clear tendency is observed in the overall

data. The model can capture the effect of crosshead speed on the yield-point behavior

115



250

300

350

400

0 0.05 0.1 0.15

T
ru

e
 s

tr
e
s
s
 (

M
P

a
)

True strain

sim.3 30
sim.3 6
sim.3 0.6
exp. 30
exp. 6
exp. 0.6

310

350

390

0.0015 0.0025

250

300

350

400

0 0.05 0.1 0.15

T
ru

e
 s

tr
e
s
s
 (

M
P

a
)

True strain

sim.2 30
sim.2 6
sim.2 0.6
exp. 30
exp. 6
exp. 0.6

310

350

390

0.0015 0.0025

250

300

350

400

0 0.05 0.1 0.15

T
ru

e
 s

tr
e
s
s
 (

M
P

a
)

True strain

sim.1 30
sim.1 6
sim.1 0.6
exp. 30
exp. 6
exp. 0.6

310

350

390

0.0015 0.0025

(a)

(b)

(c)

Figure 5.2. Stress-strain curves obtained from uniaxial tension simulations using the

FE model for experimental specimen conducted at 0.6, 6, and 30 mm/min with the

parameter sets (a) sim.1, (b) sim.2 and (c) sim.3.

observed in the selected experimental data successfully. The predicted upper yield

points are quite similar to the experimental values, whereas the lower yield points

and the yield-point elongations show some discrepancy between the simulated and
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measured values particularly when sim.1 set is used regardless of the crosshead speed.

The parameter sets of sim.2 and sim.3 are working pretty well except for the crosshead

speed of 30 mm/min, and the sim.3 set reveals slightly better results at 0.6 mm/min

among them. Nevertheless, the predicted stress-strain curves in Fig.5.2 agree well with

the experimental ones in the strain hardening region. Overall, the parameter set sim.3

shows the best fit in all regions probably due to its consideration for the true yield-point

behavior.

Fig.5.3 illustrates the stress-strain curves obtained from uniaxial cyclic simulations

in the strain range of 4% at the crosshead speed of 10 mm/min using the FE model for

the experimental specimen in Fig.4.4b. The predicted upper yield points are slightly
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Figure 5.3. Stress-strain curves obtained from uniaxial cyclic simulations using the FE

model for the experimental specimen in the strain range of 4% at the crosshead speed

of 10 mm/min.

higher than the experimental value by 6 to 14 MPa while the predicted stress level in

the lower yield region is slightly smaller than the experimental one by 8 to 15 MPa. All

simulated curves moderately fit the experimental result in the transient Bauschinger

deformation stated in Yoshida and Uemori (2003) during the compression. But the
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curve obtained using the parameter set sim.1 shows a slow transient hardening behavior

in the second tension while the results using other parameter sets look acceptable. The

stress drop after the beginning of strain hardening at the latter part of the compression

in simulated curves is induced by the completion of the yield-point elongation, which

is not observed in the experiments.

5.1.2 Roller-leveling and v-bending simulations

The roller-leveling and the v-bending simulations for PLCS are performed using the FE

model for the material illustrated in Fig.5.4. The model is 900 mm long and composed

transition zone

100400 400

0.6

BA + transition zone transition zone + C

0.1 x 0.1

B

0.3 x 0.3

A and C

0.6

Figure 5.4. FE model for the material in the roller-leveling and v-bending simulations.

of three instances from A to C discretized using 8-node biquadratic plane strain elements

of type CPE8R with reduced integration. The reason for using 2-D elements is due to

computational efficiency. Nevertheless, the 2-D simulations results such as the radius

of curvature and the bending angle would be almost the same as the case in which

3-D elements are adopted except for specimen edges. Because the specimen width

of roller-leveling and v-bending experiments is 50-100 mm and the corresponding

experimental results in the deformed shape after the v-bending test are measured by

using laser scanned mid-sectional curves. This mid-sectional area can be assumed as

a plane strain condition. The instances A and C are dummy instances whereas the

instance B is a target instance used for the v-bending simulations. For computational

efficiency, the element size of dummy instances is set to 0.3 mm x 0.3 mm while the

element size of 0.1 mm x 0.1 mm is used for the target instance as depicted in Fig.5.4.
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The instances are connected to each other by transition zones of 0.6 mm long.

FE models for the tools are meshed with 2-D rigid elements of type R2D2. The

element sizes for the roll and v-bending tools are 0.2 mm and 0.05 mm, respectively.

The tool dimensions specified in Fig.2.5a for the roller-leveling and in Fig.1.3a for the

v-bending are used.

The surface-to-surface contact discretization method between the material and the

tools is implemented with the finite sliding tracking approach. The penalty method is

employed for tangential behaviors with a friction coefficient of 0.15. This coefficient

is an averaged value from the data of friction experiments which were conducted

without lubricant considering no lubricant condition in roller-leveling and v-bending

experiments. Because of this condition, the friction coefficients obtained from these

experiments were scattered in the range of 0.12 to 0.19. For normal behaviors, the

exponential pressure-overclosure relationship is selected with the contact pressure of

30 MPa at zero clearance and the clearance of 0.0001 mm at zero contact pressure. This

softened contact relationship is adopted for better convergence. The solution using this

softened contact condition can be as accurate as the one provided by the hard contact

condition in the Hertzian contact problem (see Appendix A.2).

The FE analysis procedure is established for the roller-leveling and the v-bending

simulation as illustrated in Fig.5.5. Here, the figure for each step displays the last

state within the step. Starting with the initial state where the upper and lower rolls just

touch the material, the intermesh condition in Table 2.1 is applied in the first step by

the downward displacement of upper rolls. In the second step, every roll rotates for

11 seconds at the same speed used in the experiment while maintaining the vertical

position of the rolls. The time period of 11 seconds is sufficiently long for the target

instance to pass all the rolls during the second step. At the beginning of the third step,

the dummy instances are removed and the target instances are horizontally translated

to the position for the v-bending simulation. Simultaneously, the tools are vertically

translated to the position at which the die touches the material and the punch has the
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Step-1 : intermesh

Step-2 : roller-leveling

Step-3 : element removal
              and translation

Step-4 : v-bending Step-5 : springback

Initial state

Figure 5.5. FE analysis procedure for the roller-leveling and v-bending simulations.

last stroke of 29.70 mm. The fourth step is the v-bending process which uses the punch

speed shown in Fig.2.9. The springback calculation is performed in the last step. In the

v-bending simulation for materials in the as-received condition, the first two steps are

simply skipped. In the following simulation results, the element-based output values

such as stresses and strains are averaged at the nodes with the averaging threshold of

75% in Abaqus/CAE.

The rate dependency of the fluting in the v-bending simulation

The v-bending simulations for materials in the as-received condition are carried out

at four different punch speeds. Fig.5.6 shows the final deformed shapes predicted by

the present procedure using the parameter set sim.3 along with the experimentally

measured ones. The experimental curve corresponding to punch speed is chosen from

three experimental data conducted in the same condition. The predicted curves are

shifted to the experimental ones so that their bottom points coincide. The fluting clearly

appears in all the predicted curves and their radii of curvature are quite similar to those

of the experimental curves. However, the predicted curves are a little bit deviated from

the experimental ones near the tips indicating the simulated shapes are bent a little bit

more inwards.
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Figure 5.6. Results of the v-bending simulations for materials in the as-received condi-

tion performed using the parameter set sim.3 at four different punch speeds (5, 10, 15

and 20 SPM): (a) deformed shapes and (b)-(c) close-up views of the deformed shape.

A more quantitative comparison of the curves in terms of R and A is given in Fig.5.7.

As observed in experiments, R decreases monotonically and A increases slightly with

the punch speed in simulations. The calculated R values using the parameter set sim.2

are the closest to the experimental ones. As the fluting occurs in every simulation case,

the predicted R values are much smaller than the punch radius of 15 mm. The calculated

A values are smaller than the experimental ones by about four degrees regardless of the

used parameter set. This angle difference is clearly seen in the plot of tangent slopes

shown in Fig.5.8. Experimental curves exhibit a step-like, sudden slope change around

the deflection point. In contrast, the simulation predicts a more gradual increase in the

tangent slope of the deformed shape, resulting in a higher tangent slope near the tips.

This result suggests that the plastic strain might be less localized around the deflection

point in the simulations than in experiments. It is probably because the contact model

used here has a limitation in modeling the real frictional contact condition accurately.
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Figure 5.7. Comparison between the predicted and experimental R and A values in the

as-received condition.

The time evolution of the effective stress, the effective plastic strain and the dis-

placement profiles along the curve during the v-bending simulation reveals how the

fluting affects the deformed shape of the material (Fig.5.9). These values are calculated

on the bottom nodes of the material in the as-received condition simulated with the

punch speed of 10 SPM. In the early stage of the v-bending process, a stress sink forms

at the center of the model where the plastic deformation is localized and acts as a plastic

hinge inducing the fluting in the v-bending process. It broadens up to 30 mm from

the center along the curve. Because of this fluting at the center, stress and strain peaks

are then generated by the contact between the punch and the material as described

in Fig.2.10c, which induce the deflection points in the deformed shape. This unique

stress profiles over time were not found in Trzepiecinski and Lemu (2017) because the

material model without considering YPP was used.
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as-received condition.

The reduction of the fluting by the roller-leveling process

In order to investigate the effect of the roller-leveling process on the fluting in the

v-bending process, we performed the roller-leveling simulations with five PF conditions

and the subsequent v-bending simulations at the punch speed of 10 SPM. Unless

specified, the parameter set sim.3 is used by default in these simulations.

The roller-leveled specimens are looked into first. Fig.5.10a shows the effective

plastic strain profiles in the target instance of FE models after the roller-leveling simu-

lation. They are calculated on the bottom nodes of the model. The amount of induced

effective plastic strain increases naturally with the PF condition. It is observed that the

effective plastic strain fluctuates in the target instance and their fluctuation amount

seems non-monotonically changing with respect to the PF condition. It is presumed

that it might be somehow related to the surface profile measured experimentally for
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Figure 5.9. Time evolution of the effective stress, effective plastic strain and the dis-

placement profiles along the curve during the v-bending simulation. They are calculated

on the bottom nodes of the material in the as-received condition simulated with the

punch speed of 10 SPM.

the roller-leveled specimens as shown in Fig.2.7. Hence, the roughness values (Ra and

Rq) of effective plastic strain profiles are computed in the central 50 mm of the target

instance and compared them with the surface roughness values obtained from the 3-D

surface measurements as depicted in Fig.5.10. Interestingly, the plastic strain roughness

shows a quite similar trend overall to the surface roughness in that it decreases initially

and then increases with the PF. There exists a discrepancy in the PF values at the valley

point, but it might be due to the difference between 2-D and 3-D characterizations

and the coarseness of FE mesh. Also, it is possible that the induced plastic strains

in experiments are smaller than the expected ones from the PF condition because of,

for example, the slip between the specimen and rollers, the deformation of rollers,
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Figure 5.10. Effective plastic strains in the specimen after the roller-leveling simulation:

(a) effective plastic strain profiles in the target instance and (b) their roughness values

(Ra and Rq) compared to the experimental surface roughness values.

and the dynamic effects. With this in mind, the roughness of effective plastic strain

profiles might be useful in estimating the surface roughness of a specimen after the

roller-leveling process.

The gradient of effective plastic strains in the thickness direction increases with the

PF as expected. Fig.5.11 displays the through-the-thickness profile of mean effective

plastic strains that are calculated by averaging nodal strain values in the central 50 mm

of the target region for each thickness layer. Slightly negative values can be treated as
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Figure 5.11. Through-the-thickness profiles of effective plastic strains. Each point

represents the mean effective plastic strain computed by averaging nodal strain values

in the central 50 mm of the target instance for the corresponding thickness layer.

zero because they appear when extrapolated from the values at integration points. The

vertical lines represent the theoretical elastoplastic boundaries according to Eq.(2.2) so

that the inside of which can be assumed as an elastic region. Overall, the elastic regions

estimated from the through-the-thickness profile of mean effective plastic strains agree

well with theoretical ones. Nevertheless, the predicted elastic regions for 60 to 75% PF

conditions are wider while those for 80 to 85% PF conditions are narrower than the

corresponding theoretical regions.

The v-bending simulations for materials roller-leveled with five PF conditions are

then conducted at the punch speed of 10 SPM. Fig.5.12 shows the final deformed

shapes predicted using the parameter set sim.3 along with the experimentally measured

ones. The experimental curve corresponding to each PF condition is selected from three

experimental data conducted in the same condition. The predicted curves are translated

to the experimental ones so that their bottom points are matched. The as-received curves

in this figure are the same as the curves at the punch speed of 10 SPM in Fig.5.6.

The overall trend of the shape change with respect to the PF condition in simulations

is similar to experiments, but the predicted deformed shape itself at each condition
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Figure 5.12. Results of the v-bending simulations for materials roller-leveled with five

PF conditions: (a) deformed shapes and (b)-(c) close-up views of the deformed shape.

deviates from the experimental one. In particular, even for the material roller-leveled

with the lowest PF condition, the fluting is already weakened significantly unlike

experiments where strong fluting is still observed at lower PF conditions.

Variations in the bending angle and the radius of curvature quantified from the

experimental and simulated curves clearly show this discrepancy as shown in Fig.5.13.

The predicted bending angle decreases with the PF and becomes saturated around

75% condition similar to experiments. As in the as-received condition, there exists the

angle difference of four to seven degrees between the experiment and the simulation.

On the other hand, the radius of curvature in simulations increases with the PF as

in experiments. However, unlike in the as-received condition, the predicted radii of

curvature differ from the experimental ones by about 3.5 to 6.3 mm. Notably, the radii

of curvature predicted for higher PF conditions reach almost the punch radius of 15 mm

whereas the largest radius obtained experimentally with 85% PF condition was only

around 11 mm. The present simulation predicts this value already at 60% PF condition.
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Figure 5.13. Comparison between the predicted and experimental R and A values for

materials roller-leveled with five PF conditions.

As a result, the deflection points do not appear in these simulations since the fluting

hardly occurs as shown in Fig.5.14, leading to a rather gradual change of tangent slopes

without a flat region and sudden increase.

It can be presumed that this considerable difference in the radius of curvature

for roller-leveled materials might be because the imposed plastic strains in the actual

roller-leveling process are probably much smaller than the expected ones from the

PF condition. And also because the predicted radii of curvature in the as-received

condition agree reasonably well with the experimental ones at various punch speeds.

To test this hypothesis, additional v-bending simulations are conducted with even lower

PF conditions of 40% and 50%. In Fig.5.15 and 5.16, the simulation results for 40%,

50% and 60% PF conditions are compared with the experimental results for 65%, 75%

and 85% PF conditions, respectively. The experimental result of 65% PF condition

is estimated by averaging the results of 60% and 70% PF conditions. As shown in

Fig.5.15, the predicted radii of curvature are well matched with the experimental values
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Figure 5.14. Comparison between the predicted and experimental tangent slopes for

materials roller-leveled with five PF conditions.

while the bending angles show a difference of about four degrees which exists for the

simulations even in the as-received condition. Tangent slope analysis in Fig.5.16, which

predicts the emergence of the deflection points as in experiments, supports the present

hypothesis as well. Therefore, it is reasonable to think that plastic strains smaller than

the ones predicted theoretically or computationally are likely to be induced in the actual

roller-leveling process. Because there could be unconsidered physical reasons in the

model including the slip between the material and the rollers, the dynamic effects, and

the side slipping of the material.
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mental (65-85% PF conditions) results in the v-bending process: (a) deformed shapes,

(b) R and A. The experimental result for 65% PF condition is obtained by averaging the

result for 60% and 70% PF conditions.

5.2 Numerical simulations of static dent resistance consider-

ing BH behavior for 490DP

5.2.1 Uniaxial tension and tension-compression simulations

Uniaxial tension and tension-compression simulations for 490DP including BH step

use FE models shown in Fig.5.17. These models have a few different dimensions from

Fig.4.4, those are the radius of specimen shoulder in uniaxial tension, the gauge length

in uniaxial tension-compression, and the thickness of both models. The hexahedral

elements construct the FE models are C3D20RT (20-node triquadratic displacement,
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Figure 5.16. Tangent slopes of deformed shapes in Fig.5.15 when x coordinate is (a)

negative and (b) positive.

trilinear temperature, and reduced integration) for the Coupled temp-displacement

analysis. Among the total of 3,040 elements of the uniaxial tension FE model, 1,600

elements of size 0.625 mm x 0.625 mm x 0.7 mm are located in the gauge section. In

the uniaxial tension-compression model of the total of 768 elements, 768 elements of

size 0.625 mm x 0.625 mm x 0.35 mm occupy the gauge section. The FE models have a

single layer of elements in the thickness direction. To avoid the buckling instability, the

FE model of the uniaxial tension-compression has symmetric boundary conditions in

the thickness direction. The stress-strain responses are obtained by the strain evaluated

from the relative displacements between measuring points and the stress calculated

131



100

60

gauge length

50

(a) (b)

thickness = 0.35
(symmetric to z-plane)

50

gauge
length

25

20

R20 12.5

measuring points
fix all
displacement (x-direction)

thickness = 0.7

- hexahedral elements (C3D20RT)
- element size in gauge length (length x width) = 0.625 x 0.625
- one layer in thickness-direction

30

50 15

x

y
z x

y
z

R5
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mm): (a) uniaxial tension and (b) uniaxial tension-compression.

from the reaction force of the fixed end.

The other simulation conditions, steps, cases are also analogous to the single

element BH simulation in Chapter 4. The simulations consist of 4 steps as follows:

• Step-1: Uniaxial tension (tStep−1 sec).

• Step-2: Unloading (1 sec).

• Step-3: Bake hardening (BH time + 1,200 sec).

• Step-4: Uniaxial tension or compression (tStep−4 sec).

In the Step-1, the displacement boundary condition is 5 mm and 2.5 mm for the uniaxial

tension and the uniaxial tension-compression, respectively. Then, tStep−1 can be set

so as to meet the crosshead speed of 6 mm/min. The Predefined fields with an initial

temperature of 20 ◦C is used in this step. The Step-2 can be started from a certain time

increment of the Step-1 in order to meet the pre-strain condition. For this, the Restart

feature is used in the Step-1 and the Predefined fields with the initial state, the certain

increment of the Step-1, is defined in the Step-2. This analysis continuation technique

is necessary because, not like the single element simulations, these multiple elements of

an experimental specimen shape are unable to directly acquire strain information by the
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displacement boundary condition before executing the simulations. In the Step-2, only

the fixed boundary condition remains for unloading. The boundary conditions for the

Step-3 take the temperature history shows in Fig.2.15. These temperature conditions

are applied to all nodes of the FE models. The last step can be uniaxial tension or

uniaxial compression with tStep−4 calculated from the remaining displacement and the

crosshead speed.

The simulations use the same cases of Table 2.2. The material constants are chosen

to well reflect the experimental results of uniaxial tension and tension-compression.

Those are listed in Table 4.3. Note that Eq.(3.13) and the condition of Yw0 = Ywa

(similar to the sim.1 set of Table 5.2) are used for the material parameter Yw. The

mechanical and thermal constants for Coupled temp-displacement analysis are the same

as those of the single element BH simulations. The simulations also start with ε̄0 = 0.02

considering no initial YPP of the material.

Firstly, Fig.5.18 shows stress-strain responses extracted from the unaxial tension

simulation cases ‘T only’ at the crosshead speed of 0.6, 6, and 30 mm/min with the

corresponding experimental responses. The yield points and the strain hardening regions
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Figure 5.18. Stress-strain responses of the simulation cases ‘T only’ at the crosshead

speed of 0.6, 6 and 30 mm/min with the corresponding experimental responses.
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of the experimental curves are fittingly described by the simulation results. The rate

dependency of the material is also properly mimicked by using the rate exponent ne set

to 30 in the simulations.

The stress-strain curves of ‘T-U-BH-T’ cases according to BH temperature are

plotted in Fig.5.19. In this figure, it is identified that the experimental BH behaviors
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Figure 5.19. Stress-strain responses of the simulation cases ‘T-U-BH-T’ with BH

temperature of 100, 150, and 200 ◦C for BH time of 20 min and pre-strain of 2%.

are overall illustrated by the simulations. In detail, however, the simulation curve of

200 ◦C BH temperature does not exhibit the experimental instability of the yield-point

elongation. The reason for no instability in the yield-point elongation region of this

simulation curve might be due to a relatively small difference (about 50 MPa) between

the upper yield point and the lower yield point in the single element simulation of

the same BH condition as depicted in Fig.4.13. In the previous simulations, as shown

in Fig.5.2a, the yield-point elongation instability is realized in simulations, and the

difference between the upper yield point and the lower yield point in the sim.1 case

of Fig.5.1 is over 85 MPa. The next unsatisfied aspect is that the simulation curve of

100 ◦C BH temperature does not have the upper yield point. This could be originated

from that the present material model and its BH parameters have some limitations to
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describe BH effects in this temperature of 100 ◦C.

Next graphs are the stress-strain responses of ‘T-U-BH-T’ cases according to BH

time as drawn in Fig.5.20-5.21. With the BH temperature of 100 ◦C, the simulation
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Figure 5.20. Stress-strain responses of the simulation cases ‘T-U-BH-T’ for BH time of

5, 10, and 20 min at BH temperature of 100 ◦C and pre-strain of 2%.
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Figure 5.21. Stress-strain responses of the simulation cases ‘T-U-BH-T’ for BH time of

5, 20, and 35 min at BH temperature of 200 ◦C and pre-strain of 2%.

responses do not reveal the YPP that is weakly shown in the experimental curves as
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plotted in Fig.5.20. The stress level in the simulation responses is slightly different

according to the BH time, and the magnitude of the difference is smaller than the

experimental result. In Fig.5.21 with the BH temperature of 200 ◦C, all experimental

curves clearly show the yield-point elongation instability whereas simulations curves

do not display it presumably due to the similar reason explained in Fig.5.19. The exper-

imental variation of the upper and lower yield point according to BH time is roughly

described by the simulations. The experimental stress level in the strain hardening

region is relatively narrower than the simulated one. This might be because the present

material model considers the precipitation hardening effects, and the term σprec in

Eq.(3.26) associated with these effects makes the difference according to BH time in

these simulation cases.

The last stress-strain responses of ‘T-U-BH-T’ simulation cases are with respect

to the pre-strain of 2, 3, and 4% as plotted in Fig.5.22. In these simulations cases, the
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Figure 5.22. Stress-strain responses of the simulation cases ‘T-U-BH-T’ with pre-strain

of 2, 3, and 4%. The BH temperature and time are 200 ◦C and 20 min, respectively.

experimental instabilities in the yield-point elongation are not captured, and the lower

yield stresses are lower than the experiments. However, the upper yield stress levels are

similarly depicted. The simulation curves in the strain hardening region are very close
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to each other while the experimental ones show some difference.

For the uniaxial tension-compression simulations, the stress-strain responses of

‘T-C’ and ‘T-U-BH-C’ are plotted with the experimental curves in Fig.5.23-5.24. In
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Figure 5.23. Stress-strain responses of the simulation cases ‘T-C’ with pre-strain of 2,

3, and 4%.
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Figure 5.24. Stress-strain responses of the simulation cases ‘T-U-BH-C’ with pre-strain

of 2, 3, and 4%. The BH temperature and BH time are 200 ◦C and 35 min, respectively.

the simulation cases ‘T-C’, the Bauschinger effects observed in the experiments are
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partially well described. Only the compressive yield stress with the pre-strain of 4% is

comparable, and its gap between the experiments and the simulations increases as the

pre-strain reduces. The stress levels in the compression region show in the other way;

the stress difference in the strain hardening region increases as the pre-strain increases.

This seems to be caused by a limitation of the kinematic hardening rule the present

material model takes. The simulation cases ‘T-U-BH-C’ also show similar results.

The simulation case with the pre-strain of 2% quite well fits the experimental curve

however the other cases cannot describe the disappearance of YPP in the experiments.

If Yw varies as the effective plastic strain increases (Yw0 6= Ywa), the experimental

compressive responses after BH might be described. If then, however, the compressive

yield stress can be increased so that its current difference between the experiments and

simulations can be also increased.

5.2.2 Static dent simulations

Static dent simulations for 490DP corresponding to the static dent experiments are

carried out using the axisymmetric FE models displayed in Fig.5.25. The element

type and size for the blank of these models are thermally coupled CAX8RT (8-node

axisymmetric, quadrilateral displacement, bilinear temperature, and reduced integration)

and 0.175 mm x 0.175 mm, respectively. The blank FE model has total a 3,272 of

elements composing four layers in the thickness direction. Axisymmetric discrete rigid

elements RAX2 of 0.1 mm are used for all tools including the indenter. The holder

shown in Fig.5.25a is the same as the one in Fig.5.25b, and its positions in the x-

direction are also identical in both models. Therefore, the blank is fixed at the same

position in the x-direction which is the stinger bead position (=the holder lock position).

The contact conditions of these simulations are determined analogously to the

roller-leveling and v-bending simulations. The contact discretization method between

the blank and the tools is surface-to-surface with the finite sliding tracking approach.

For tangential behavior, the penalty method is chosen with a friction coefficient of 0.15.
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Figure 5.25. FE models for (a) dent specimen forming and (b) dent test.

In order to avoid contact instability, the exponential pressure-overclosure relationship,

so called ‘softened contact’, in normal behaviors is employed with the contact pressure

of 30 MPa at zero clearance and the clearance of 0.0001 mm at zero contact pressure.

The accuracy of this softened contact condition may be referred to Appendix A.2.

The simulation steps are composed as follows:

• Step-1: Dent specimen forming (5.333 sec).

• Step-2: Springback (1 sec).

• Step-3: BH (BH time + 1,200 sec).

• Step-4: Holder clamping for dent test (1 sec).

• Step-5: Dent - indenter 6 mm forward (180 sec).

• Step-6: Dent - indenter 6 mm backward (180 sec).

These steps are also shown in Fig.5.26. The first and second steps are simulating dent
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Figure 5.26. Simulation steps for dent specimen forming, BH, and dent. The figure for

each step shows the last state within the step.

specimen forming and its springback. The Step-1 time (5.333 sec) is calculated from

dividing the die stroke by the forming speed. The initial temperature for this step is 20
◦C. The BH operation in the Step-3 takes the temperature history drawn in Fig.2.15. The

BH conditions are the same as the experiments. For no BH condition, the Step-3 can

be skipped. In the Step-4, the deformed specimen is clamped by the holder, and initial

indenter position for the Step-5 is obtained. During the dent steps, the indenter moves

forward by 6 mm and backward by 6 mm with a speed of 2 mm/min. The indenter force
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can be obtained from the reaction force of the rigid elements composing the indenter.

In order to examine the influence of the elastic modulus degradation on the dent

simulations, the sets of simulation parameters associated with the degradation are

chosen as listed in Table 5.3. The sim.a set uses a constant elastic modulus, and the

Table 5.3. Simulation sets for the elastic modulus degradation.

E0 [GPa] Esat [GPa] ξE Remark

sim.a 212.9 constant

sim.b 212.9 161.5 51 degra. (uniaxial)

sim.c 212.9 183.5 119 degra. (biaxial)

other sets use the degradation rule of Eq.(2.4). The parameters of the sim.b set are the

same as the present one in Table 2.3, and those of the sim.c set are assumed values by

referring the biaxial modulus of 490DP in Lee et al. (2016).

The deformed shape (top layer) of the blank after simulating the Step-1 and 2 is

drawn in Fig.5.27 with the averaged experimental data of Fig.2.29. The experimental
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Figure 5.27. Deformed shape (top layer) obtained from the simulation Step-2 with the

averaged experimental data symmetrized to the y axis.

data in the negative x coordinate in Fig.2.29 is symmetrized to the y axis. The sim-

ulation curves are shifted to the position in which their bottom points were matched
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to the experimental data. The overall shapes of the simulations are fairly fitted to the

experimental data whereas the top point springbacks of the simulations are bigger than

those of the experiments. As expected from the general knowledge that springback

increases as elastic modulus decreases, the order of the springback magnitude in the

simulation sets is the sim.b set, the sim.c set, and the sim.a set.

The strain of the deformed top layer in the x-direction is extracted from the Step-2

result and plotted as in Fig.5.28. The experimental data in this figure is distributed
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Figure 5.28. Top layer strain profiles obtained from the simulation Step-2 results in the

x-direction along to x coordinate with the experimental strain measurement.

considering the measurement locations as shown in Fig.2.27b. The calculated strain

results are not significantly different from the experimental data. However, they are not

located inside the RD and TD average values. As expected, the maximum calculated

strain of about 5.4% is observed around the end of the convex shape. The highest

strain in the convex shape among the simulation sets is the sim.a set while the lowest

142



strain is the sim.b set despite that their difference is very small. The thicknesses of

the deformed blank obtained from the Step-2 results in the x-direction are shown in

Fig.5.29. The experimental data of this figure is the same as those of Fig.2.28. The
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Figure 5.29. Thickness profiles obtained from the simulation Step-2 results in the

x-direction along to x coordinate with the experimental thickness measurement.

simulation thicknesses are closer to the ultrasonic gauge measurement result than the

calculated values from e3. The order of the thickness profiles in the simulations is the

opposite to the strain profiles as anticipated. The minimum thickness is about 0.660

mm, and its location is the same as the maximum strain point in Fig.5.28.

The force-displacement simulation responses without BH operation are drawn

with the corresponding averaged experimental result. The experimental response is

from Fig.2.32. Since the initial slope of the sim.a set curve is the highest among the

simulation sets, the highest force is maintained during the forward movement of the

indenter, and its maximum force is also the highest. The shape of its unloading curve
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Figure 5.30. Force-displacement simulation and averaged experimental responses with-

out BH operation.

is quite different from the experimental one, and its dent depth is recorded more than

twice as high as the experiment. The possible reason for this might be that the sim.a set

uses a constant and highest elastic modulus. The other sets that use the degradation rule

get closer to the experimental data. These results show that the degradation of elastic

modulus can be a important factor for this kind of dent simulations as explained in Lee

et al. (2016). However, these degradation sets are not able to fully meet both the dent

depth and the maximum force of the experiments.

The simulation results with the experimental curves according to the BH tem-

perature are plotted in Fig.5.31. The experimental curves are the same as Fig.2.32.

Analogously to Fig.5.30, the initial slopes of the sim.a set curves in Fig.5.31a are the

steepest among the simulation sets. This set also leads to the highest maximum forces

and the biggest dent depths among the simulation sets being the farthest away from the

experimental curves. In Fig.5.31b-c, the simulation sets which use the elastic degra-

dation rule have closer slopes to those of the experiments. Nonetheless, the sim.b set

starts with a similar slope to the experiments, this set records the lowest maximum force

showing some difference from the experiments. However, the dent depths of the sim.b
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Figure 5.31. Force-displacement simulation responses according to the BH temperature

with the experimental responses: (a) sim.a, (b) sim.b, and (c) sim.c. The BH time is 20

min.

set are the closest to the experiments among the simulation sets. Fig.5.31c illustrates

the medium level results between the Fig.5.31a and b. Despite these inaccuracies, the

simulations are able to describe the behavior that the depths are reduced as the BH
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temperature increases.

The next two sets of results, Fig.5.32 and Fig.5.33, are the simulation results

according to the BH time for the BH temperature of 100 and 200 ◦C, respectively. The

experimental curves for these graphs are from Fig.2.33-2.34. In Fig.5.32, although

the force-displacement responses of the experiments are different from each other

according to the BH time, those of the simulations are almost identical to each other due

to the insensitivity of the present material model and its parameter set around the BH

temperature of 100 ◦C. The experimental dent depth level is fairly predicted in the sim.b

set whereas the experimental maximum force level is well estimated by the sim.c set. In

Fig.5.33, not like Fig.5.32, the simulation curves on the backward movement vary with

respect to the BH time while those on the forward movement are hardly distinguishable.

These simulation responses do not seem to fully describe the experimental responses

according to the BH time. However, the experimental dent depths and the maximum

forces are roughly forecast by the sim.b set and the sim.c set, respectively. All results

from Fig.5.30-5.33 are plotted in Fig.5.34-5.35 in terms of the maximum force and the

dent depth. In Fig.5.34, the maximum force level in the experiments is approximately

predicted by the sim.c set notwithstanding the scattered experimental data. In Fig.5.35,

the experimental dent depth with respect to the BH conditions is adequately predicted

by the sim.b set.

5.3 Summary

In this chapter, comprehensive and in-depth numerical investigations for the fluting

defect of PLCS in the v-bending and its reduction by the roller-leveling were conducted,

and extensive simulation works for the BH behavior of 490DP were synthetically

handled with uniaxial loads and static dent cases. The material model developed in

the present study could effectively reproduce the uniaxial tension and cyclic behaviors

of PLCS after determining the material parameters to fit the uniaxial experiments.
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Figure 5.32. Force-displacement simulation responses according to the BH time with

the experimental responses: (a) sim.a, (b) sim.b, and (c) sim.c. The BH temperature is

100 ◦C.

V-bending simulations of PLCS in the as-received condition with this model could

predict the fluting-related features fairly well including the radii of curvature and the

deflection points. They clearly showed how the fluting defect affected the deformed
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Figure 5.33. Force-displacement simulation responses according to the BH time with

the experimental responses: (a) sim.a, (b) sim.b, and (c) sim.c. The BH temperature is

200 ◦C.

shape of specimens with the YPP. In the simulations, the stress sink first developed

from the YPP at the center which operated as a plastic hinge and then the plastic

deformation was localized near the contact point between the punch and the specimen
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Figure 5.34. Maximum forces in the simulations according to BH condition.
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Figure 5.35. Dent depths in the simulations according to BH condition.

forming the deflection points. Roller-leveling simulations could also capture the overall

trend of experimental results well. However, the predicted values at various roller-

leveling conditions showed some deviations from the experimentally measured ones.

We found that simulated results became well matched with experimental ones if we

used a lower leveling condition in simulation than the one estimated from the analytical

expression for the experimental roller-leveling condition. This suggests that the actual

roller-leveling condition might be lighter than expected due to some losses during the
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process. Or, the present FE analysis might impose a higher leveling condition since the

simulations worked well in other cases.

The FE simulations including BH steps for the corresponding experiments of

490DP brought some insights for predicting the BH behavior in the experiments with

the present material model which combines the YPP model and the BH model. The

material parameters for 490DP were determined to fit the uniaxial load cases with

BH. In the uniaxial tension cases, the simulation responses according to various BH

conditions overall described the experiments except for the yield-point elongations.

The compressive responses before and after BH operation in the uniaxial tension-

compression cases were partially illustrated presumably owing to the limitation of the

present kinematic hardening rule. Static dent simulations including forming simulations

were able to roughly depict the experiments. Plastic strains and thickness obtained in

the simulations were comparable to the test values. Static dent resistance calculated in

the simulations was also commensurate with the experimental results more obviously

when the degradation of the elastic modulus was taken into consideration.
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Chapter 6

Conclusion

In this thesis, we firstly investigated the YPP of PLCS and the BH behavior of 490DP

in the comprehensive experiments. Specifically, the fluting defect of PLCS in the

v-bending, the defect reduction by roller-leveling, and the dent resistance of bake

hardened 490DP were investigated after examining the YPP of PLCS and the BH

behavior of 490DP in the uniaxial loads. Secondly, the material modeling was carried

out to reflect all experimental observations. In the material modeling, the robust stress

integration algorithms were newly proposed for conducting implicit elastoviscoplastic

FE analysis for YPP materials. These robust algorithms were applied to the present

material modeling based on the Yoshida-2008 model. The BH model was also combined

with the YPP model in order to encompass the ambilaterality of the YPP, avoiding or

utilizing it. Lastly, numerical analysis was performed to illustrate the fluting defect

of PLCS with its reduction and the dent resistance of 490DP using the YPP and

BH integrated model. While these objectives were being achieved, the following key

outcomes were drawn:

1. The fluting defect of PLCS in the v-bending and its reduction by the roller-

leveling process were embracively and intensively studied in the experiments.

After observing the rate dependency of the YPP and its cyclic behaviors for

PLCS in the uniaxial experiments, the roller-leveling tests were performed with
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five PF conditions. It would be beneficial to assess the surface roughness of the

material processed with the PF conditions to determine the proper PF condition

without leading to surficial defects. Although the YPP values of roller-leveled

specimens decreased in general as induced plastic strains increased, they were

slightly more strengthened in the 60% PF condition than the as-received condition

presumably due to the dominant effect of residual stress reduction over the plastic

strain addition in a low PF condition. The v-bending tests for the as-received

and the roller-leveled materials demonstrated that the fluting, much smaller radii

of curvature compared with the punch radius, occurred, this fluting additionally

generated the deflection point, and as the YPP properties were reduced by the

roller-leveling, these fluting-related features disappeared. The BH behavior of

DP steel was synthetically studied in the experiments of uniaxial loads and static

dent cases. In the uniaxial tension tests, the responses with respect to the BH

temperature exhibited a more obvious difference than those with respect to the BH

time. The degradation of the elastic modulus according to the pre-strain identified

in the uniaxial tension tests was similar to the previous literature regardless of BH

conditions. With the fixed BH condition in the uniaxial tension-compression tests,

only the pre-strain of a 2% case gave clear YPP in the compression after BH. In

the static dent experiments, as the BH conditions got stronger, there was no clear

tendency in the maximum dent force while there was an apparent reduction in the

dent depth. The BH effect on the dent resistance was more explicitly observed in

the BH temperature variations than the BH time.

2. The material modeling for describing the YPP with the BH behavior was newly

presented with their coupling scheme. Based on the Yoshida-2008 model, sim-

ple kinematic hardening rules and the true yield-point behavior were adopted

and considered, respectively. Non-convergent characteristics of YPP constitutive

equations were conquered by proposing the robust stress integration algorithms

that adopt the bisection method and/or the two-point Newton method. A phe-
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nomenological BH model was taken into account for the material model to mimic

the formation of the Cottrell atmosphere and the precipitation hardening. The

YPP material model in combination with the BH calculation portion was im-

plemented with the proposed robust algorithms. This model was validated to

check its robustness in solving YPP-related non-convergent problems showing

its effectiveness in performing the YPP-related simulations than the conventional

approach. Whereas these algorithms may require longer computational times.

The BH part of the material model was also verified using the single element

simulations delivering a possibility that the present material model can be utilized

in predicting the BH potential of bake hardenable material.

3. The extensive experimental results were able to be effectively reproduced by the

numerical simulations using the material model developed in the present study

and the material parameter sets determined to fit the uniaxial load experiments.

The material parameter set for the true yield-point behavior was suitable to de-

scribe the YPP in the uniaxial simulations of PLCS, while the other simulations

showed different results. In the roller-leveling simulations for PLCS, it might be

worth to utilize the effective plastic strain fluctuation to assess the experimental

surface roughness with respect to the PF conditions. The v-bending simulations

for the as-received PLCS could describe the fluting-related features fairly well

providing the insights of the fluting mechanism which the stress sink acts as

the plastic hinge. The roller-leveling simulations could also depict the overall

trend of experimental results well despite that the predicted values at various

roller-leveling conditions showed some deviations from the experimental mea-

surements presumably due to a higher leveling condition in the simulations. The

FE simulations for 490DP corresponding experimental conditions delivered key

insights for predicting the BH behavior with the present material model which

combines the YPP model and the BH model. The uniaxial tension simulations

according to various BH conditions overall demonstrated the experimental BH
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behaviors except for the yield-point elongations. The compressive responses

before and after BH operation in the uniaxial tension-compression simulations

were partially described presumably due to the limitation of the present kinematic

hardening rule. The static dent simulations including forming simulations were

able to roughly depict the experiments. The static dent resistance acquired in the

simulations was also commensurate with the experimental results more obviously

when the degradation of the elastic modulus was taken into consideration.

To conclude, from these experimental and numerical investigations, we obtained

important mechanical insights into both the fluting defect in the v-bending process

with its reduction by the roller-leveling process and the BH effects in the static dent

case. The capabilities and usefulness of the present FE analysis procedure with the YPP

constitutive model and the BH model were demonstrated through various numerical

tests. Nevertheless, more refined experimental and computational setup and studies

for the roller-leveling process and the static dent case would be beneficial. To take

material anisotropy into account for the material model could provide more sophisticated

outcomes. Also, on top of this, the extension to fully 3-D simulations with efficiency

would be valuable to explore the effect of YPP and BH in actual 3-D parts of a product.
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Chapter A

Appendix

A.1 Pseudocodes of UMAT subroutine for numerical simu-

lations

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,...

+ ...

+ ...,DSTRAN,...,TEMP,DTEMP,...

+ ...,NTENS,NSTATV,...,PNEWDT,

+ ...)

c

DIMENSION STRESS(NTENS),STATEV(NSTATV),

+ DDSDDE(NTENS,NTENS),...

+ ...,DSTRAN(NTENS),...

+ ...

c

c0. Inputs passed in

c STRESS: σn

c STATEV: αn, βn, θn, qn, and other state variables of the previous

increment n

c DDSDDE: Dep
l or Dep

w

c DSTRAN: ∆ε

c TEMP, DTEMP: used for BH temperature Tb

c NTENS: Number of stress or strain components

c NSTATV: Number of state variables

c PNEWDT: Ratio of new time increment to the current one
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c STRESS, STATEV, and DDSDDE should be updated

c

c1. BH calculation

IF(BH temperature) THEN

Calculation of xb and σprec

αb = α

ELSE

c

c2. Calculation of σ̄Tl and σ̄Tw assuming ∆ε = ∆εe

σT = σn + D : ∆εe

σ̄Tl =
√

3
2

(sT − Cbαb) : (sT − Cbαb) and σ̄Tw =
√

3
2

(sT − αn) : (sT − αn)

c

c3. State evaluation whether elastic or not

IF(viscoplastic) THEN

c (i) Stress integration: LB mode

c (a) Upper and lower bound for bisection method

L(0)
l = 0 and U(0)

l =
σ̄Tl −Yl−σprec

3G

c (b) Calculation of ∆ε̄l

c One-point Newton method for OP and BI,

∆ε̄
(k)
l = ∆ε̄

(k−1)
l −

ψl

(
∆ε̄

(k−1)
l

)
∂ψl

∂∆ε̄l

∣∣∣∣∣
∆ε̄l=∆ε̄

(k−1)
l

with ∆ε̄
(0)
l = L(0)

c Two-point Newton method for TP1 and TP2,

∆ε̄
(k+1)
l = ∆ε̄

(k−1)
l +

∆ε̄
(k)
l −∆ε̄

(k−1)
l

1−
ψ

(k)
l

ψ
(k−1)
l

ψ
(k)
l − ψ(k−1)

l

∆ε̄
(k)
l −∆ε̄

(k−1)
l

1

dψl

d∆ε̄l

∣∣∣∣∣
∆ε̄l=∆ε̄

(k)
l

with ∆ε̄
(0)
l = L(0) and ∆ε̄

(1)
l = U(0)/2

IF(converged) THEN

CONTINUE

ELSE

c Bisection method for BI, TP1 and TP2

L(k)
l =

L(k−1)
l + U(k−1)

l

2
if ψl(L

(k)
l ) · ψl(L

(k−1)
l ) > 0

U(k)
l =

L(k−1)
l + U(k−1)

l

2
otherwise

IF(converged) THEN

CONTINUE

ELSE
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c New increment attempt with a decreased time increment

PNEWDT=0.5

RETURN

END IF

END IF

c (ii) Stress integration: WH mode

c (a) WH initialization (only for BI, TP1 and TP2)

c Calculation of U(0)
w by solving

σ̄Tw − 3G∆ε̄w − Yw − σprec = 0 with the one-point Newton method

c (initial value:
σ̄Tw−Ywn−σprec

3G
)

c Calculation of ∆ε̄
(0)
w by solving

∆ε̄w
∆t
− bfmρt

M

(
σ̄T
w−3G∆ε̄w−Yw−σprec

Dw

)ne
= 0

c for BI

with one-point Newton method (initial value: 0)

c for TP1 and TP2

with two-point Newton method (initial values: 0 and U(0)
w /2)

IF(converged) THEN

CONTINUE

ELSE

Bisection method with L(0)
w = 0 and U(0)

w

IF(converged) THEN

CONTINUE

ELSE

PNEWDT=0.5

RETURN

END IF

END IF

∆ε̄
(1)
w = U(0)

w /2

β(i) =
βn+ 2

3
b1m∆ε̄

(i)
w nwn

1+m∆ε̄
(i)
w

and θ(i) =
θn+ 2

3
Can∆ε̄

(i)
w nwn

1+C∆ε̄
(i)
w

√
(an/θ̄n)

c (b) Calculation of ∆ε̄w,θ and β

c Check isotropic hardening flag (ih_flag)

IF(ih_flag) THEN

Rb update

ELSE

Rb no update

END IF

c One-point Newton method for OP, BI and TP1

∂ψw
∂∆ε̄w

d∆ε̄w + ∂ψw
∂θ

: dθ+ ∂ψw
∂β

: dβ = −ψw
∂ψθ
∂∆ε̄w

d∆ε̄w +
∂ψθ
∂θ

: dθ+
∂ψθ
∂β

: dβ = −ψθ
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∂ψβ
∂∆ε̄w

d∆ε̄w +
∂ψβ
∂θ

: dθ+
∂ψβ
∂β

: dβ = −ψβ
∆ε̄

(k)
w := ∆ε̄

(k−1)
w + d∆ε̄w

θ(k) := θ(k−1) + dθ

β(k) := β(k−1) + dβ

c Two-point Newton method for TP2

γ(k+1) = γ(k) − (J(k) + Ψ(k) ⊗ b(k))−1Ψ(k)

J(k) =


∂ψw
∂∆ε̄w

∂ψw
∂θ

∂ψw
∂β

∂ψθ
∂∆ε̄w

∂ψθ
∂θ

∂ψθ
∂β

∂ψβ
∂∆ε̄w

∂ψβ
∂θ

∂ψβ
∂β


γ=γ(k)

b(k) =
(Ψ(k)−Ψ(k−1))·

[
(Ψ(k)−Ψ(k−1))−J(k)(γ(k)−γ(k−1))

]
‖Ψ(k)−Ψ(k−1)‖2‖γ(k)−γ(k−1)‖2

(γ(k) − γ(k−1))

IF(converged) THEN

CONTINUE

ELSE

PNEWDT=0.5

RETURN

END IF

c Workhardening stagnation

∆β = β− βn and ξn = β− qn

IF((3/2)(ξn : ξn)− r2
n > 0) THEN

IF(ih_flag) THEN

r2 = r2
n + 3hξ : ∆β

q = qn + ∆µξ

ξ = ξn
1+∆µ

∆µ =
−3hξn:∆β+

√
(3hξn:∆β)2+4r2n( 3

2
ξn:ξn)

2r2n
− 1

ELSE

ih_flag=TRUE

GOTO (b)

END IF

ELSE

IF(ih_flag) THEN

ih_flag=FALSE

GOTO (b)

ELSE

CONTINUE

END IF

END IF

c (c) State variables update

STATEV=new values

c (iii) Mode selection
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IF(∆ε̄l < ∆ε̄w) THEN

c LB mode

∆εe = ∆ε−∆ε̄lnl

DDSDDE = Dep
l = 2GVlId + 4

3
GQl (nl ⊗ nl) +K (III ⊗ III)

ELSE

c WH mode

∆εe = ∆ε−∆ε̄wnw

DDSDDE = Dep
w = 2GId +

[
2GVwIs − 4

3
GQw (nw ⊗ nw)

]
: Ξ+K (III ⊗ III)

END IF

c Stress update

STRESS(σ)= σn + D : ∆εe

ELSE

c Current state is elastic

STRESS(σ)= σT

DDSDDE = D

c State evaluation whether elastic or not ‘END IF’

END IF

c BH calculation ‘END IF’

END IF

RETURN

END

A.2 Hertz contact problem for validating the parameters of

the exponential pressure-overclosure relationship

The exponential pressure-overclosure relationship between the contact pressure pex and

the contact clearance c in Abaqus/Standard is defined as

pex(c) =


0, c ≥ c0

p0

(
1− c

c0

) exp (1− c
c0

)−1

exp (1)−1 , c < c0

, (A.2.1)

where p0 and c0 are the contact pressure at zero clearance and the clearance at zero

contact pressure, respectively. In order to verify the validity of the parameters of the ex-

ponential pressure-overclosure relationship used in the simulations of the roller-leveling

and the v-bending, simple simulations for the 2-D Hertzian contact problem as shown

in Fig.A.2.1a are performed using the benchmark analysis model of Abaqus/Standard
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as depicted in Fig.A.2.1b. The simulations use the three contact conditions for normal

fixed rigid plane

prescribed displacement

symmetry plane

(a) (b)

Figure A.2.1. Hertzian contact problem: (a) 2-D contact model for two infinitely long

cylinders Franke (2011), (b) 2-D quarter-cylinder model meshed with 8-node plane

strain elements and a rigid plane in the benchmark problem in Abaqus/Standard.

behavior: (a) hard contact, (b) softened contact with p0 = 30 MPa and c0 = 0.0001

mm, and (c) softened contact with p0 = 3 MPa and c0 = 0.01 mm.

For the analytic contact solution between a cylinder and a rigid plane, assuming r2

and the Young’s modulus E2 of the lower cylinder are infinite, Franke (2011) derived

the distribution of the pressure in the contact interface as follows

p(x) =
E1

2r1(1− ν2
1)

√
γ2 − x2, (A.2.2)

and the half width γ of the contact interface can be given as

γ =

√
4Fr1

πl

(1− ν2
1)r1

E1
, (A.2.3)

where E1 and ν1 denote the Young’s modulus and the Poisson’s ratio of the lower

cylinder, respectively. The length of the cylinders is l. Referring to Johnson (1987), the

prescribed displacement δ1 indicated in Fig.A.2.1 can be calculated as

δ1 =
F

πl

(1− ν2
1)

E1

(
2 ln

4r1

γ
− 1

)
= 0.4 (A.2.4)

with E1 = 199514 GPa, ν1 = 0.3, l = 1 mm, r1 = 10 mm, and F = 52, 314 N.
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The contact pressures obtained from the simulations and the analytic solution

calculated with Eq.(A.2.2) are plotted in Fig.A.2.2. The softened contact condition
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Figure A.2.2. Contact pressure calculated from the simulations and the analytic solution.

(b) is as accurate as the hard contact condition while the condition (c) shows weaker

contact pressure. The reaction forces measured from the rigid plane and the maximum

penetration at the bottom nodes are entered in Table A.2.1. Even though the forces

Table A.2.1. Reaction force of the rigid plane and maximum penetrations at the bottom

nodes.

analytic (a) hard (b) soft (30, 0.0001) (c) soft (3, 0.01)

reaction force (N) 52,314 52,214 52,152 43,364

maximum penetration (mm) 0.0e0 0.0e0 4.3392e-4 6.2047e-2

of the simulations are smaller than the analytic value, the force of the condition (b)

is acceptable as that of the condition (a). No penetration occurs in the condition (a),

whereas the maximum penetrations in the condition (b) and (c) are about 4.34e-4 mm

and 6.20e-2 mm, respectively, at the bottom node. Depending on the dimensional scale

of FE models, this penetration amount of the condition (b) can be negligible.
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초록

소둔이 되었거나 시효가 발생한 금속의 항복점 현상은 이 현상을 회피하거나

활용하는 관점에서 양면성을 가지고 있다. 이 현상으로 발생하는 V굽힘 공정에서

의 꺾임 결함은 소재에 상하방향 굽힘을 부과하는 롤러 레벨링 공정의 적용으로

감소될수있다.롤러레벨링조건이과할경우표면결함이발생할수있고,적절한

공정 조건을 찾는 것이 여전히 어려운 실정이다. 예변형된 저탄소강을 구웠을 때

항복점이 현저하게 높이지는 특징을 보이는 소부 경화 거동은 이 현상을 활용하는

경우이며,자동차박판금속성형응용분야에서덴트저항성을향상시키기위해사

용된다.그러나소부경화능에대한많은연구는일축인장에서의소부경화응답및

그영향인자에만집중하고있고,자동차강판의덴트저항성을위한수치적연구는

소부 경화 효과를 거의 고려하지 않고 있다. 항복점 현상을 보이는 소재의 거동을

정확하게 예측하기 위해서는 점탄소성 수치해석을 위한 구성 모델이 항복점 현상,

바우싱거효과,그리고소부경화능을묘사할수있어야하지만,이러한예측과정에

서전통적인 1점뉴턴법을사용할경우내연적수치해석에서수렴된해를획득하기

어렵다.본연구에서는먼저 V굽힘공정에서의꺾임,롤러레벨링공정을통한꺾임

감소,그리고자동차소부경화강판의덴트저항성에대한포괄적인실험적연구를

수행하였다.일축하중하에서저탄소도장강판의속도의존성과주기거동특성을

조사한 뒤 V굽힘에서의 꺾임에 대한 롤러 레벨링 조건의 효과를 체계적으로 평가

하였다. 2상강판의소부경화거동은예변형과소부경화조건의일축하중및정적

덴트 실험에서 관찰되었다. 이러한 실험적 관찰 결과를 수치해석으로 묘사하기 위

해, 항복점 현상과 바우싱거 효과를 동시에 묘사할 수 있는 재료 구성 모델에 대해
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내연적응력적분과정을수식화하고이를유한요소해석코드로구현하였다.그리

고양분법과 2점뉴턴법을채택하여내연적유한요소해석에서효율적으로사용될

수있는강건한응력적분알고리즘을제안하였다.또한소부경화능을묘사하기위

해소부경화모델과본재료모델을통합하였다.단순한문제에본모델을적용하여

수행한 검증 해석 결과는 고전적인 반복법으로는 해를 얻을 수 없는 항복점 현상

문제에본모델이신뢰할수준으로사용될수있지만계산시간은증가할수도있다

는것을보여주었다.일축실험을재현할수있도록결정된재료변수들을이용하여

실험에 대응되는 수치해석이 수행되었다. 다양한 롤러 레벨링 조건에서의 V굽힘

해석은실험적으로관찰된꺾임결함과그감소현상을잘보여주었다.실험에서확

인된소부경화거동은소부경화단계를포함하는정적덴트해석에서분석되었고,

소부 경화 효과가 수치 해석에서 전반적으로 묘사되었다. 결론적으로 본 연구에서

제안된해석방법은다양한금속성형공정에서항복점현상의효과를연구하는것

뿐만아니라꺾임결함을방지하기위한롤러레벨링조건을추정하고자동차소부

경화강판의덴트저항성을예측하는데유용하게사용될것으로기대된다.

주요어:항복점현상,점탄소성,응력적분알고리즘,꺾임,소부경화,덴트

학번: 2016-36339
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