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Despite the recent discoveries of and interest in numerous structural variations (SVs)—which include duplications and
inversions—in the human and other higher eukaryotic genomes, little is known about the etiology and biology of these SVs,
partly due to the lack of molecular tools with which to create individual SVs in cultured cells and model organisms. Here, we
present a novel method of inducing duplications and inversions in a targeted manner without pre-manipulation of the genome.
We found that zinc finger nucleases (ZFNs) designed to target two different sites in a human chromosome could introduce two
concurrent double-strand breaks, whose repair via non-homologous end-joining (NHEJ) gives rise to targeted duplications and
inversions of the genomic segments of up to a mega base pair (bp) in length between the two sites. Furthermore, we dem-
onstrated that a ZFN pair could induce the inversion of a 140-kbp chromosomal segment that contains a portion of the blood
coagulation factor VIII gene to mimic the inversion genotype that is associated with some cases of severe hemophilia A. This
same ZFN pair could be used, in theory, to revert the inverted region to restore genomic integrity in these hemophilia A
patients. We propose that ZFNs can be employed as molecular tools to study mechanisms of chromosomal rearrangements and
to create SVs in a predetermined manner so as to study their biological roles. In addition, our method raises the possibility of
correcting genetic defects caused by chromosomal rearrangements and holds new promise in gene and cell therapy.

[Supplemental material is available for this article.]

Many genetic diseases and cancer are associated with chromo-

somal rearrangements such as deletions, insertions, duplications,

translocations, and inversions (Stephens et al. 2009; Stankiewicz

and Lupski 2010). Even among healthy individuals, thousands of

different structural variations (SVs) or copy number variations

resulting from different chromosomal rearrangements are ob-

served (Iafrate et al. 2004; Redon et al. 2006). Thus, genome SVs

contribute to both genetic diversity and the onset of diseases.

Despite the rapid progress in the identification of genome-wide

SVs and growing interest in these variations among geneticists

(Korbel et al. 2007; Park et al. 2010), experimental systems to create

individual SVs, especially inversions and duplications, systemati-

cally in an otherwise genetically identical background are lacking.

Genome-wide association studies could reveal associations of a set

of SVs with a certain phenotype or disease but cannot provide

a causal link between the two. To study individual SVs in cultured

cells or model organisms, one must be able to isolate or construct

isogenic clones that harbor such variations. We reasoned that

mechanistic insights about their formation could help us develop

the means to do so.

DNA sequence analyses of SVs suggest that both non-allelic

homologous recombination (NAHR) and non-homologous end-

joining (NHEJ) are involved in the generation of chromosomal

rearrangements (Hastings et al. 2009; Conrad et al. 2010). Because

DNA double-strand breaks (DSBs) greatly enhance the rate of both

NAHR and NHEJ, it is assumed that most, if not all, chromosomal

rearrangements arise from the repair of DSBs, through NAHR or

NHEJ, that occur accidentally in the genome (van Gent et al. 2001).

In an attempt to mimic chromosomal rearrangements experimen-

tally, DNA-cleaving chemicals and irradiation have been used, which

introduce DSBs at random sites (Rothkamm et al. 2001; Bueno et al.

2009). These studies showed that two DSBs occurring in different

chromosomes could give rise to chromosomal translocations. Other

chromosomal rearrangements, including deletions, duplications, and

inversions, are more difficult than translocations to study, partly

because these aberrations, unlike translocations, cannot easily be

detected using standard karyotyping analysis.

We had shown that two concurrent DSBs induced by engi-

neered ZFNs—artificial endonucleases composed of tailor-made zinc

finger DNA-binding arrays and the FokI nuclease domain (Kim et al.

1996)—are sufficient to promote deletions in the human genome.

But, unlike deletions that involve only a single intra-chromosomal

ligation of DSB endpoints, duplications involve inter-chromosomal

(or inter-chromatidal) ligations, and inversions involve two separate

ligations. To our knowledge, it has never been investigated whether

two concurrent DSBs could give rise to duplications and inversions,

and, if they do, how frequently the events would occur.

To address these questions, we used ZFNs to introduce DSBs at

pre-determined endogenous sites in the human genome. Our re-

sults revealed that two concurrent DSBs are sufficient to promote

frequent genomic inversions and duplications as well as deletions.

In addition, we constructed a ZFN pair that induces the inversion

of a chromosomal segment that contains the promoter and exon

1 of the blood coagulation factor VIII (F8) gene. This ZFN might be

used to restore genomic integrity in patients with severe hemo-

philia A. Thus, we present a novel, ZFN-based method for inducing

SVs without pre-manipulations, such as the insertion of loxP ele-

ments, in the human genome.
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Results

Isolation and analysis of clonal populations of cells with large
chromosomal deletions

To isolate clonal populations of cells in which a cluster of homol-

ogous genes is deleted in the genome, we used previously charac-

terized ZFN pairs, each of which targets one of two sites, separated

by 230 kbp in length, on human chromosome 3 (Perez et al. 2008;

Lee et al. 2010). A ZFN pair termed K230 can induce a DSB at the site

230 kbp upstream of the gene that encodes chemokine receptor 5

(CCR5) and can delete a cluster of homologous chemokine receptor

genes, including CCR1, CCR2, CCR3, and CCR5, when co-expressed

with ZFN-224 (this ZFN was termed S162 in Lee et al. [2010]), the

ZFN pair that targets the CCR5 locus, in human cells (Fig. 1A). These

chemokine receptors may have redundant roles (Choe et al. 1996;

Doranz et al. 1996), and the isolation of single clones in which these

genes are deleted could be useful for their functional analysis.

To this end, we transfected human embryonic kidney (HEK)

293T cells with plasmids that encode these two ZFN pairs and

isolated single clones in two steps. First, transfected cells were

grown in 96-well plates at a density of 50 cells per well for 10 d, and

then genomic DNA was isolated from a portion of the cells and

subjected to PCR analysis to detect chromosomal deletions. Next,

cells from deletion positive pools were cloned by limiting dilution.

Several deletion clones, in which the chromosomal DNA segment

between the two ZFN target sites was deleted, were obtained from

two different pools (Fig. 1B). As expected, clones isolated from

different pools had their own distinctive junction sequences

(Compare DEL1A and DEL1B clones obtained from a pool with

DEL2A and DEL2B clones from the other pool in Fig. 1C), and

clones from the same pools had the same junction sequences.

(However, sibling clones from the same pools turned out to be not

identical with each other. See below.) Interestingly, clones from

one pool (DEL2A and DEL2B) had two different deletion junction

sequences, suggesting that ZFNs induced large deletions in two

homologous chromosomes in these clones.

Chromosomal rearrangements in deletion clones

To analyze deletion clones in further detail, we investigated

whether they had any local mutations other than the 230-kbp

Figure 1. Various chromosomal rearrangements induced by ZFNs. (A) Schematic of ZFN target sites and chemokine receptor genes on the human
chromosome 3 (http://genome.ucsc.edu). Note that ZFN-224 has two target sites, one at the CCR5 locus and the other at the CCR2 locus. Colored
triangles indicate approximate positions of PCR primers. (B) PCR products validating various chromosomal rearrangements. (+) indicates a positive control
(cells transfected with plasmids encoding two ZFN pairs) and (�) indicates a negative control (cells transfected with empty plasmid). (C ) DNA sequences
of PCR products. Each ZFN target site is shown in boldface letters. K230 and CCR5 target sites are shown in green and blue letters, respectively. Note the
absence of the intact CCR5 (ZFN-224) site in these clones. Microhomologies are underlined and inserted bases are shown in italics. Dashes indicate deleted
bases. (D) Schematic of ZFN target sites in wild-type cells and in various clones with chromosomal rearrangements. Two probes (red and orange bars) and
the site recognized by the restriction enzyme, XbaI, used for Southern blot analysis are indicated. (E ) Southern blot analysis of chromosomal rear-
rangements. Genomic DNA digested with XbaI and hybridized with probe 1 (upper) or with probe 2 (lower). A direct evidence of the 15-kbp inversion was
provided by DNA sequencing (Supplemental Fig. 1).
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deletions. To this end, we performed PCR to amplify wild-type

DNA segments encompassing each of the two ZFN target sites and

determined their DNA sequences. Unexpectedly, the DNA seg-

ment that encompasses the ZFN site at the CCR5 locus was not

amplified from any of the four clones, although the DNA seg-

ment that encompasses the K230 site was successfully amplified

and found to have no local mutations (Fig. 1B,C). HEK 293 is a

multiploid cell line that has at least three copies of chromosome

3 (Bylund et al. 2004). Our results suggest that there must be ad-

ditional chromosomal rearrangements that involve the CCR5 site

in the deletion clones on the other two copies of chromosome

3. Because ZFN-224 induces an off-target DNA cleavage at the

CCR2 locus, which is located 15 kbp upstream of the CCR5 locus,

and can efficiently induce targeted deletion of the 15-kbp chro-

mosomal segment between the two sites in human cells (Lee et al.

2010), we suspected that, in addition to the 230-kbp deletions,

these clones might have 15-kbp deletions on other copies of

chromosome 3. We analyzed these clones by PCR and found that

two clones from one pool (DEL1A and DEL1B), indeed, had a 15-

kbp deletion (Fig. 1B; Supplemental Fig. 1) but that the other two

clones from the other pool (DEL2A and DEL2B) did not. At first,

we were puzzled by these findings because we could not account

for the lack of the ZFN-224 site on all copies of chromosome 3. We

then hypothesized that genomic rearrangements other than de-

letions, such as duplications and inversions, might have occurred

via NHEJ-mediated repair of DSBs induced by ZFNs in these

clones.

To investigate whether ZFNs induced duplications or in-

versions, we performed PCR analysis using genomic DNA isolated

from the four clones. As shown in Supplemental Figure 2A, when

two DSB endpoints, each occurring at one of the two different sites

in each sister chromatid (or homologous chromosome), are joined,

the genomic DNA segment between the two DSBs would be deleted

in one chromatid (or homologous chromosome) and duplicated in

the other chromatid (or homologous chromosome). Duplications

can be detected by PCR using appropriate primers. Likewise, PCR

analysis using primers pointing the same direction relative to the

wild-type chromosome can yield amplified products only when the

middle DNA region is inverted (Supplemental Fig. 2B). These anal-

yses showed that deletion clones, indeed, had additional genomic

rearrangements other than 230-kbp or 15-kbp deletions (Fig. 1B).

First, we found that all four clones had 15-kbp inversions; two

breakpoint junctions corresponding to the inversion event were

detected by PCR. As expected, the DNA sequences of two inversion

junctions in clones from the same pool were identical with those of

corresponding junctions in their sibling clones but were different

from those in clones from the other pool (Supplemental Fig. 1).

Furthermore, we were able to detect PCR products corresponding to

230-kbp duplications in two independent clones, DEL1A and

DEL2A, whose breakpoint junction sequences were different from

each other (Fig. 1B,C). Interestingly, the other two clones, DEL1B

and DEL2B, lacked corresponding duplications (Fig. 1B). It ap-

pears that these two clones lost chromosomal segments corre-

sponding to the 230-kbp duplications that are present in their

sibling clones.

To confirm the presence of various genomic rearrangements,

genomic DNA from these clones was further analyzed by Southern

blot using two different probes (Fig. 1D,E). When probe 1 (which

hybridizes downstream from the ZFN-224 site in the CCR5 locus)

was used, a 7.9-kb DNA band that corresponds to the 230-kbp

deletion was detected in all four clones but not in wild-type cells.

(The relative intensity of this DNA band in DEL2A and DEL2B

clones indicates that there are two different 230-kbp deletions in

these clones, which is in line with the presence of two different

deletion breakpoint junctions [Fig. 1C].) When probe 2 (which

hybridizes upstream of the ZFN-224 site in the CCR5 locus) was

used, a 6.8-kb band that corresponds to the 230-kbp duplication

was detected in DEL1A and DEL2A clones but not in the other two

clones or in wild-type cells. Whereas probe 2 hybridized to a 10-kb

band in DNA from wild-type cells, indicating the presence of an

intact CCR5 locus, this probe did not detect a 10-kb band for any of

the clones, which is in line with the PCR analysis showing that all

of them lacked the CCR5 site (Fig. 1B,E). In addition to duplica-

tions and deletions, all four clones showed inversion-specific

bands (Fig. 1E, the 10-kb band with probe 1 and the 5.7-kb band

with probe 2). (Loss of the CCR5 site in these clones suggests that

the 10-kb band detected with probe 1 should be assigned to the 15-

kbp inversion-specific band, not to the wild-type band.) Taken

together, PCR and Southern blot analyses showed that DEL1A and

DEL1B clones had a 230-kbp deletion, a 15-kbp deletion, and a 15-

kbp inversion and that DEL2A and DEL2B clones had two 230-kbp

deletions and a 15-kbp inversion. In addition, DEL1A and DEL2A

clones, but not the other two clones, had a 230-kbp duplication in

chromosome 3.

Duplications induced by ZFNs

To investigate whether duplications can be induced at any site and

are not limited to sites recognized by certain combinations of

ZFNs, we used previously characterized ZFNs that target the CCR5

and CCR2 loci. These two genes are adjacent to each other on

chromosome 3 and are highly homologous. Thus, the target sites

of some of these ZFNs are conserved between the two loci. Dupli-

cations were detected using PCR primers whose sequences corre-

spond to the CCR2 region or to the CCR5 region, as shown in

Figure 2A. We were able to obtain duplication-specific PCR prod-

ucts from cells treated with ZFNs that target two conserved sites at

CCR2 and CCR5 loci but not from cells treated with Z30 and Z266,

ZFN pairs that show genome editing activity at the CCR5 locus but

not at the CCR2 locus because their recognition sites are not con-

served at the CCR2 locus (Fig. 2B). This result suggests that two

DSBs are necessary to induce duplications. The DNA sequences of

the PCR amplicons showed that the 59 portion of the CCR5 coding

region was directly linked to the 39 portion of the CCR2 coding

region (Fig. 2C; Supplemental Fig. 3A). These rearrangements can

be formed only when the 15-kbp genomic DNA segment between

the two conserved ZFN target sites is duplicated.

We also tested various combinations of two ZFNs to in-

vestigate whether two DSBs occurring at diverse sites could give

rise to duplications of the chromosomal segment between the two

DSBs. In every combination of two ZFNs we tested, we detected

PCR products commensurate with duplications of genomic DNA

between the two cleavage sites whose length ranged from 230 to

835 kbp (Supplemental Fig. 3B). No PCR product was obtained

from cells treated with only one ZFN pair or from control cells

transfected with empty vector. As seen with deletion events, small

indels and microhomologies often were observed at the breakpoint

junctions of duplications. These results suggest the involvement of

NHEJ in the generation of ZFN-mediated duplications.

Next, we screened for clonal populations of cells in which the

15-kbp chromosomal segment between the CCR2 and CCR5 loci is

duplicated after expression of ZFN-224. Several clones were iso-

lated by limiting dilution and two of them, termed DUP1A and

DUP1B, were further characterized by PCR and Southern blot (Fig.
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2C–E), which confirmed the presence of the 15-kbp duplication. In

these clones, no other genomic rearrangements, such as deletions

or inversions, were detected (Fig. 2D). According to our model

described above, two DSBs, each occurring in one of the two sister

chromatids (or homologous chromosomes), could give rise to de-

letions in one chromatid and duplications in the other chromatid

via inter-molecular ligation. It is interesting that duplication was

not accompanied with corresponding deletion in DUP1A and

DUP1B, suggesting that the deletion was lost in these clones. We

also characterized previously isolated deletion clones (Lee et al.

2010), in which the 15-kbp segment between the CCR2 and CCR5

loci is deleted after expression of ZFN-224, to see whether these

clones contain duplications in addition to deletions, and found no

duplications. Taken together, these results show that it is possible

to isolate distinctive clones, by limiting dilution, using ZFNs that

generate two DSBs in a chromosome. Such clones can contain ei-

ther a deletion alone or a duplication alone or both a duplication

and the corresponding deletion.

Inversions induced by ZFNs

Genomic inversions often are associated with cancer and genetic

diseases. For example, a 500-kbp DNA segment on chromosome 10

is inverted in thyroid cancer cells from patients exposed to irradi-

ation associated with the Chernobyl nuclear power accident

(Nikiforov et al. 1999; Nikiforova et al. 2000). Understanding the

mechanisms of genomic inversion formation is of great interest

and is a prerequisite for prevention and potential therapeutic in-

tervention to thwart diseases caused by these genomic aberrations.

To study the etiology of inversions and to explore the po-

tential for flip-flopping inverted DNA segments back to the normal

state, we transiently expressed ZFNs in HEK 293 cells and then

analyzed the cells’ genomic DNA. Unlike deletions or duplications,

which have only one breakpoint junction, genomic inversions

generate two breakpoint junctions, which can be detected by PCR

using appropriate primers (Fig. 3A). We obtained PCR products

containing inversion breakpoint junctions from cells treated with

Figure 2. Duplications induced by ZFNs. (A) Schematic representation of ZFN-mediated duplications. Zigzag lines indicate ZFN target sites. Colored
triangles indicate approximate positions of PCR primers. (B) PCR products corresponding to the 15-kbp duplications in cells treated with various ZFNs. (�)
indicates a negative control (cells transfected with empty plasmid). (C ) DNA sequences of breakpoint junctions of the duplications. Nucleotide sequences
of CCR5 and CCR2 sites are shown in blue and red colors, respectively. Dup indicates various duplication junctions induced by ZFN-224. Duplication
junction sequences induced by other ZFNs are shown in Supplemental Figure 3. DNA sequences of breakpoint junctions in two clones, DUP1A and DUP1B,
are also shown. Nonconserved bases at the CCR2 and CCR5 loci are shown in lowercase letters. Symbols are as in Figure 1. (D) PCR products validating
duplications in two clones. No other mutations or rearrangements were detected in these clones. (+) is a positive control (cells treated with ZFN-224) and (�)
is a negative control (cells transfected with empty plasmid). (E ) Schematic of CCR2 and CCR5 loci in the wild-type and duplication alleles and Southern
blot analysis. Symbols are as in Figure 1.
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various combinations of ZFNs that cleave genomic DNA at two

sites but not from cells treated with a single ZFN pair that cleaves

DNA only at one site or from control cells transfected with empty

plasmid (Fig. 3B). We cloned these PCR products and determined

their DNA sequences, which unequivocally confirmed genomic

inversions in each case (Fig. 3C; Supplemental Fig. 4). We detected

inversions of 15-kbp, 230-kbp, 243-kbp, 276-kbp, 781-kbp, 835-

kbp, and 15-Mbp DNA segments at chromosome 3p21, which were

induced with appropriate combinations of ZFNs. Again, DNA se-

quences at breakpoint junctions often showed indels and micro-

homologies, suggesting the involvement of NHEJ in ZFN-mediated

genomic inversions.

Using ZFN-224, we also generated and isolated clonal pop-

ulations of cells in which the 15-kbp chromosomal segment be-

tween the CCR2 and CCR5 loci is inverted. As expected, the in-

version clone termed INV1 had two breakpoint junctions, which

were detected by inversion-specific PCR (Fig. 3D). DNA sequence

analysis of breakpoint junctions and Southern blot analysis con-

firmed the inversion event in this clone (Fig. 3E). Importantly, no

other genomic rearrangements, such as deletions or duplications,

were detected in this clone. These results suggest that two DSBs

occurring in a chromosome can give rise to frequent inversions of

DNA segments between the breaks and raise the possibility of using

ZFNs for correcting genetic mutations caused by inversions.

Frequencies of genomic rearrangements

To estimate the frequencies of various genomic rearrangements

induced by ZFNs, we performed digital PCR analysis using serially

diluted genomic DNA samples isolated from cells transfected with

ZFNs (Kim et al. 2010b). The Extreme Limiting Dilution Analysis

program (Hu and Smyth 2009) was used for statistical analysis of

this PCR-based method. The frequencies of duplications and in-

versions induced by various ZFNs ranged from 0.01% to 5%

Figure 3. Inversions induced by ZFNs. (A) Schematic representation of ZFN-mediated inversions. Zigzag lines indicate ZFN target sites. PCR primers
(triangles) used for the detection of two breakpoint junctions that result from genomic inversions are shown. (B) PCR products corresponding to inversion
events in cells treated with various combinations of two ZFN pairs. (C ) DNA sequences of breakpoint junctions of the inversion events. Nucleotide
sequences of CCR5 and CCR2 sites are shown in blue and red, respectively. (Inv) Various inversion junctions induced by ZFN-224. Inversion junction
sequences induced by other ZFNs are shown in Supplemental Figure 4. The two breakpoint junction sequences in the INV1 clone are also shown.
Nonconserved bases at the CCR2 and CCR5 loci are shown in lowercase letters. Symbols are as in Figure 1. (D) PCR products validating inversions in the
INV1 clone. (+) and (�) are as in Figure 2D. (E ) Schematic of CCR2 and CCR5 loci in the wild-type and inversion alleles and Southern blot analysis. Symbols
are as in Figure 1.
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(Supplemental Table 1). Large genomic segments of up to hun-

dreds of kbp in length could be duplicated or inverted efficiently,

although these frequencies appeared to be somewhat lower than

those of deletions that were generated using the same ZFNs, which

range from 0.03% to 10% (Lee et al. 2010). In Supplemental Table

2, we compared the frequencies of duplications and inversions

with those of corresponding deletions induced using the same

ZFNs.

These high frequencies suggest that one should be able to

isolate clones harboring intended genomic rearrangements by di-

lution cloning, as demonstrated above. For example, we identified

11 clones that contain 15-kbp duplications after screening 9000

cells (0.1%). This frequency is somewhat lower than that mea-

sured by the digital PCR analysis (0.3%). It appears that not all

single cells that contain the duplications could survive to form

colonies due to the cytotoxicity of ZFNs as observed previously

(Kim et al. 2009).

Toward gene therapy of severe hemophilia A caused
by DNA inversion

Hemophilia A is caused by various mutations in the F8 gene

(Graw et al. 2005). Almost half of all severe hemophilia A cases

result from inversions of portions of the F8 gene (Lakich et al.

1993; Bagnall et al. 2002). Such inversions are caused by NAHR

between far-upstream sequences and their corresponding highly

homologous sequences that are located in intron 1 or intron 22 of

the F8 gene. Here, we focused on the inversion that involves the

intron 1 homolog (Fig. 4A). Unfortunately, no cell lines are cur-

rently available that harbor either of these inversion genotypes.

We used HEK 293 cells as a surrogate system, because both wild-

type and mutant cells contain the same target sequences that are

associated with the inversion genotypes.

We constructed a ZFN pair that targets the intron 1 homolog

and expressed this ZFN (termed Z10) in HEK 293 cells to test its

genome-editing activity. We found that Z10 was highly active,

inducing site-specific mutations at the target site (Fig. 4B). Next, we

used PCR to test whether this ZFN could induce the inversion of

the 140-kbp DNA segment that contains the promoter and exon 1

of the F8 gene. PCR amplicons specific to the DNA inversion found

in severe hemophilia A patients were produced from HEK 293 cells

transfected with Z10 but not from untransfected, control cells (Fig.

4C). DNA sequence analysis of these PCR products showed that

indels were often, but not always, induced at the ZFN target site

(Fig. 4D). These indels are characteristic of NHEJ-mediated DSB

repair. But we cannot rule out the possibility that the ZFN-induced

inversions were mediated first by NAHR and that indels were

formed later by NHEJ repair of DSBs generated by persistent ZFN

activity on the target site.

We then determined the inversion frequency of Z10 using

digital PCR analysis (Kim et al. 2010b). The frequency of the 140-kbp

inversion induced by Z10 ranged from 0.2% to 0.4% (Supplemental

Table 1). Next, we screened for clones that contained the inverted

genotype via limiting dilution. We obtained three independent

Figure 4. Targeted inversion of the F8 gene using ZFNs. (A) Schematic representation of a chromosomal inversion that causes severe hemophilia A.
NAHR between two homologous regions, one in intron 1 of the F8 gene (here named homolog 1) and the other located 140 kbp upstream (homolog 2),
gives rise to an inversion found in severe hemophilia A. The two homologous regions are oriented in opposite directions. PCR primers (colored triangles)
used to detect the inversion are shown. Z10 target sites are indicated by arrows. (B) Site-specific mutations at the Z10 target site in the F8 intron 1 revealed
by the T7 endonuclease assay. (C ) PCR products corresponding to wild-type and inversion genotypes. Genomic DNA isolated from a hemophilia A patient
was used as a positive control for the inversion-specific PCR. (D) DNA sequences of breakpoint junctions of the inversion events. Z10 target sites are shown
in red (homolog 1) or blue (homolog 2).
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clones from 3000 single cells (0.1%) and confirmed the inversion

genotype using PCR (Supplemental Fig. 5A) and DNA sequencing

(Supplemental Fig. 5B). HEK 293 cells contain three copies of the X

chromosome and thus three copies of the X-linked F8 gene

(Bylund et al. 2004). Each of these three clones was heterozygous,

containing both the wild-type allele and an inverted allele. We

determined the DNA sequence of the ZFN target site in these clones

and found that only one clone contained an indel at the inversion

junction (Supplemental Fig. 5B). No other local mutations were

observed at the ZFN target site in other clones. Furthermore, no

other genome rearrangements, such as deletions or duplications

that involve the ZFN target site, were observed in these clones. We

propose that this same ZFN could be used to revert the inverted

chromosomal segment in mutant cells that carry the inversion

genotype back to the wild-type orientation because the DNA se-

quence of the target site is the same in wild-type and mutant cells.

Discussion
Thanks to the rapid progress in DNA sequencing and microarray

technologies, SVs in the human and other genomes are being

identified at an accelerated rate. However, little is known about

their etiology and biology. DNA sequence analyses of SVs suggest

that three different mechanisms are involved in the generation

of SVs: NAHR, NHEJ, and replication-based mechanisms (Hastings

et al. 2009; Conrad et al. 2010). Experimental tests of each mech-

anism in mammalian and other higher eukaryotic cells have been

limited due to the lack of appropriate tools. In this report, we used

custom-designed ZFNs to demonstrate that two concurrent DSBs

occurring in human chromosomes give rise to duplications, in-

versions, and deletions of pre-defined chromosomal segments in

human cells, thus providing strong experimental evidence that

supports NHEJ-mediated generation of SVs. (Because most of our

ZFNs, except for the F8 gene-targeting Z10, were designed to target

non-homologous regions, we did not observe targeted genome

rearrangements via NAHR in this study. The limited homology

between CCR2 and CCR5 appears not sufficient to promote rear-

rangements via NAHR.) DSBs are a frequently occurring form of

DNA damage caused by chemical, physical, and biological stresses.

Apparently, the repair of DSBs can give rise to genomic rear-

rangements, which contribute to SVs and genetic diversity.

Our results suggest that targeted genome rearrangements us-

ing ZFNs could provide a powerful platform for inducing in-

dividual SVs in cultured cells and model organisms. It has been

shown that SVs are associated with various phenotypes and dis-

eases such as susceptibility to viral infection (Gonzalez et al. 2005),

obesity (Bochukova et al. 2010), mental disorders (International

Schizophrenia Consortium 2008; Pinto et al. 2010), etc. The bi-

ological roles and phenotypic effects of thousands of newly dis-

covered SVs in human and other organisms are largely unexplored

and are likely to become the subjects of intense research. To study

the biology of an SV of interest, researchers ultimately need to

obtain a clone that harbors the variation and compare it with an

isogenic wild-type clone. This approach has been hampered by

a lack of specialized molecular methods to induce SVs in an iso-

genic background. As demonstrated in this report, ZFNs can be

custom-designed to target any genomic locus and could allow

creation of SVs in cultured cells and organisms.

In our study, the frequencies of ZFN-mediated genome rear-

rangements ranged from 10�4 to 10�1 and were largely independent

on the length of rearranged genomic segments, at least up to hun-

dreds of kbp in length (Supplemental Table 1). These high fre-

quencies allowed us to isolate clonal populations of cells, by limiting

dilution, in which pre-defined genomic segments were rearranged.

The use of improved nuclease domains in the ZFNs (Guo et al. 2010;

Doyon et al. 2011) or altered cell culture conditions (Doyon et al.

2010) might improve the frequencies of targeted genome rear-

rangements further. It remains to be seen whether these high

frequencies of genome rearrangements can be achieved in non-

transformed primary cells that are difficult to transfect. Surrogate

reporters might be used for the enrichment of cells that contain

nuclease-induced genome rearrangements, as demonstrated for the

enrichment of cells that contain local mutations (Kim et al. 2011a).

Unfortunately, however, ZFNs that generate two concurrent

DSBs in a chromosome often, but not always, give rise to two or

more rearrangement events in a single cell, as we have shown in

our analysis of clonal populations of cells. (Note that the complex

rearrangements we observed in DEL1A/B and DEL2A/B clones were

caused by induction of three rather than two DSBs in a cell.) Thus,

deletions can be accompanied with duplications and even with

inversions, or vice versa, in single cells. Because these events ap-

pear to occur randomly, a sufficient number of cells must be

screened to isolate clones that harbor only the SV of interest. In-

deed, we were able to isolate clones that contain only the intended

inversion or duplication but no other rearrangements, as demon-

strated above.

To induce chromosomal deletions, duplications, and in-

versions, one needs to use two pairs of ZFNs in general, unless

a single ZFN pair targets two sites with identical or highly ho-

mologous sequences. Functional ZFNs can be formed not only

between orthogonal pairs but also between unorthogonal pairs,

which gives rise to off-target mutations. In this regard, we recom-

mend use of two different autonomous ZFN pairs to prevent the

formation of crossed dimers (Sollu et al. 2010).

We also propose that ZFNs can be used to correct genetic ab-

errations caused by chromosomal rearrangements. Many genetic

diseases and cancer are known to result from recurrent chromo-

somal rearrangements. An example shown here is the inversion of

a large genomic segment that disrupts the blood coagulation factor

VIII gene, which is responsible for almost half of all cases of severe

hemophilia A (Lakich et al. 1993). Both deletions and duplications

of dosage-sensitive genes such as PLP1 result in genetic disorders

(Lee et al. 2007). As demonstrated in this study, ZFNs may provide

the means to correct these chromosomal aberrations. Of note is the

possibility of implementing ZFN technology with induced plu-

ripotent stem (iPS) cells (Takahashi et al. 2007). iPS cells derived

from patients with genetic diseases contain the very genetic defects

that cause the diseases and, thus, cannot be used per se in cell

therapy. Tailor-made ZFNs could be used to correct the genetic ab-

errations in iPS or somatic cells, which are subsequently differenti-

ated or de-differentiated, respectively, into appropriate cells and

then delivered to patients. In principle, clones of gene-corrected iPS

cells can be isolated by limiting dilution and then expanded. This

approach is not limited by the efficiency of ZFN delivery into host

cells as is conventional gene therapy using viral or nonviral vectors

to deliver ZFNs directly to cells in the patient. Furthermore, clones

of gene-corrected iPS cells can be carefully monitored, before use in

cell therapy, to examine whether they contain any other undesired

rearrangements or off-target mutations in the genome, a critical ad-

vantage of using gene-corrected iPS cells over direct delivery of ZFNs

into patients.

Our findings that ZFNs can induce various chromosomal

rearrangements raise a concern about ZFN-mediated gene therapy.

A derivative of ZFN-224 used in this study is now under clinical
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investigation in the U.S. to treat patients with AIDS (Holt et al.

2010). The rationale behind this clinical study is that ZFN-224-

treated T cells would be devoid of CCR5, an essential co-receptor of

HIV, and become resistant to the viral infection. As shown in this

and our previous study (Lee et al. 2010), ZFN-224 can induce de-

letion, inversion, and/or duplication of the 15-kbp chromosomal

segment between the CCR2 and CCR5 loci in human cells. (Note,

however, that Sangamo Biosciences Inc. claims that its CCR5-tar-

geting ZFN has been optimized for clinical use [doi: 10.1038/

news.2011.461].) Recently, two groups independently reported on

genome-wide off-target effects of ZFNs, including ZFN-224 (Gabriel

et al. 2011; Pattanayak et al. 2011). They carefully measured local

mutation frequencies at potential off-target sites. Our results sug-

gest that gross chromosomal rearrangements between off-target

sites and the on-target site should also be monitored, because

these events would be more detrimental than are local mutations.

ZFNs have traditionally been used to introduce local genomic

modifications in higher eukaryotic cells and organisms by target-

ing a single site in the genome (Kim et al. 2010a, 2011b), and the

possible outcomes of two concurrent ZFN-induced DSBs have only

recently been explored (Kim et al. 2010a). ZFNs inducing two

concurrent DSBs, each occurring in a different chromosome, have

been shown to promote translocations in human cells (Brunet

et al. 2009). We reported on the isolation and characterization of

single clones that harbor 15-kbp deletions of the genomic segment

between the CCR2 and CCR5 genes in human cells (Lee et al. 2010).

However, these deletions generate CCR2–CCR5 hybrid genes and

may not be appropriate for functional studies of these genes. In

this report, we extended the scale of DNA excision to isolate clones

that harbor 230-kbp deletions, which remove the entire cluster of

four chemokine receptor genes, CCR1, CCR2, CCR3, and CCR5.

(These homologous genes may have arisen from gene duplications,

possibly mediated by DSB repair.) These genes may have redundant

roles, and ZFNs used for making the 230-kbp genomic excision could

provide valuable resources to study the functions of these genes.

Duplications and inversions constitute a large fraction of SVs

in the genome and are responsible for many genetic diseases. To

our knowledge, it has never been demonstrated that these im-

portant classes of genomic rearrangements can be induced in

eukaryotic cells in a targeted manner. In principle, it may be pos-

sible to create duplications and inversions using recombinase sys-

tems such as Cre/loxP (Ramirez-Solis et al. 1995) or meganucleases

such as I-SceI (Simsek and Jasin 2010). But these methods are not

only laborious and time-consuming but also impractical for use in

gene or cell therapy because they require pre-insertion of the target

sequence into the genome. This report is the first demonstration

that duplications and inversions can be induced in a targeted

manner without pre-manipulation of the genome.

In summary, we have developed a novel method of targeted

genome rearrangements using engineered ZFNs. We propose

that ZFNs can be employed as molecular tools to study the

mechanisms that cause chromosomal rearrangements and to cre-

ate SVs in cultured cells and model organisms so as to study their

biological roles. In addition, our method raises the possibility of

correcting genetic defects caused by chromosomal rearrange-

ments and holds new promise in gene and cell therapy.

Methods

Plasmids
Plasmids that encode ZFNs targeting the CCR5 gene are described
(Kim et al. 2009), as are plasmids that encode ZFNs targeting sites

far upstream of the CCR5 locus (Lee et al. 2010). Z10 was obtained
from ToolGen Inc. Z10 and ZFN-224 have an obligatory hetero-
dimeric nuclease domain (Miller et al. 2007) and all the other ZFNs
have the wild-type nuclease domain.

Cell culture and transfection

HEK 293T/17 (ATCC, CRL-11268) cells were maintained in Dulbecco’s
modified Eagle medium (Welgene Biotech) supplemented with fetal
bovine serum (10%), penicillin (100 units/mL), and streptomycin
(100 mg/mL) at 37°C and 5% CO2. Cells were seeded at 1 3 106 cells/
well in a six-well plate, incubated for 24 h, and then transfected with
ZFN-encoding plasmids (total 4 mg) using polyethylenimine (Aldrich,
cat#40872). At 3 d post-transfection, genomic DNA was isolated from
cells using the G-DEX IIc Genomic DNA Extraction Kit (iNtRON,
cat#17231) as described by the manufacturer’s protocol and used for
PCR analysis.

Isolation of clonal populations of cells

Clonal populations of cells that harbor various genomic rearrange-
ments were isolated in a two-step dilution cloning process as de-
scribed (Kim et al. 2010b). First, HEK 293T/17 cells transfected with
plasmids encoding ZFNs were incubated for 6 h and seeded in three
96-well plates at a density of 50 or 30 cells per well on average. When
grown to confluency, cell populations were split into two halves,
one of which was used for PCR analysis to screen for pools of cells
that contained clones with desired genomic rearrangements. Cells
in positive wells were seeded in three 96-well plates at limiting di-
lution (0.4 cell per well on average). Each clone was cultured for two
to three weeks, and a portion of cells in each well was used for PCR
analysis to detect chromosomal rearrangements.

PCR analysis and DNA sequencing of breakpoint junctions

To detect chromosomal rearrangements, cells in 96-well plates
were lysed in 50 mL lysis buffer (400 ng/mL proteinase K, 17 mM
SDS), and genomic DNA (100 ng per reaction) was subjected to
PCR analysis using appropriate primers (Supplemental Table 3).
For sequencing analysis, PCR products corresponding to chro-
mosomal rearrangements were purified using QIAquick Gel Ex-
traction Kit (QIAGEN) and cloned into the T-Blunt vector using
the T-Blunt PCR Cloning Kit (SolGent). Cloned PCR products
were sequenced using M13 primers or primers used for PCR
amplification.

Southern blot analysis

DNA probes were amplified from a suitable template with Phu-
sion High-Fidelity DNA Polymerases (Finnzymes, cat#530) using
appropriate primers (Supplemental Table 3), and PCR products
were cloned into the T-Blunt vector and sequenced. DNA probes
were prepared by PCR amplification of cloned DNA templates and
labeling with [a-32P]-dCTP using the Megaprime DNA Labeling
System (Amersham). Genomic DNA (30 mg) was treated with XbaI
(New England Biolabs), electrophoresed on agarose gels (0.8%),
and transferred to Hybond-N+membrane (Amersham). After hy-
bridization at 65°C for 24 h, the membrane was washed and ex-
posed to an imaging plate (Fuji Photo Film Co.), which was then
scanned using the BAS-2500 system (FUJIFILM Life Science)
and analyzed using Multi Gauge Ver3.0 (Fuji Photo Film Co.)
software.
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Frequencies of chromosomal rearrangements

The frequencies of chromosomal rearrangements were estimated
by digital PCR analysis as described (Kim et al. 2010b). Genomic
DNA samples isolated from cells transfected with plasmids encoding
ZFNs were serially diluted in distilled water and diluted samples were
then subjected to nested PCR using appropriate primers (Supple-
mental Table 3). Critical dilution points that support the amplifi-
cation of breakpoint junctions were determined. The results were
analyzed using the Extreme Limiting Dilution Analysis program
(Hu and Smyth 2009) (http://bioinf.wehi.edu.au/software/elda/).

Genomic DNA from hemophilia A patients

Seoul National University Institutional Review Board (SNUIRB) ap-
proval was obtained for the analysis performed in this study. Blood
cells of a hemophilia A patient were obtained at Korea Hemophilia
Foundation Clinic, and genomic DNA was isolated using QIAamp
DNA blood Maxi kit.
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